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ABSTRACT 
 

Effect of Multistability and Hysteresis on  
Oral Microbiome Patterns Observed in Clinical Studies 

 
 

The oral microbiome of a healthy cohort is utilised as a reference point for evaluating clinical 
cases and interventions. Nonetheless, current cohort-based studies have fallen short in thoroughly 
considering multistability in microbial communities. Screening analysis has been confined to 
phenotypic traits that exhibit significant differences among microbial genomic markers. The 
objective of this study was to assess the temporal stability of the oral microbiome over time in an 
intervention-free and phenotypically healthy cohort. 

 
33 longitudinal supragingival plaque samples were collected from 11 healthy participants, 

sourced from the biobank. For each participant, samples were designated as baseline (T0), 1-month 
(T1), and 3-month (T2) intervals for 16S ribosomal RNA gene sequencing analysis. 

 
Taxonomic profiling consistently exhibited a recurring pattern of predominant genera, 

specifically Rothia, Prevotella, and Haemophilus, across all observed time points. In the alpha 
diversity analysis, the Shannon index showed a significant increase with time from T0 (p <0.05). 
Bray–Curtis dissimilarity (beta diversity) demonstrated substantial variation within the cohort at 
each time point (r = –0.02, p <0.01). The community and stability evaluation at the species level 
showed a negative correlation with synchrony (r = –0.739; p = 0.009) and variance (r = –0.605;         
p = 0.048). Clustering data based on the species abundance profiles of participants resulted in the 
formation of three distinct cluster groups, with notable variations in the grouping patterns across the 
three time points. At all observed time points, the clusters exhibited a markedly distinct array of 
differentially abundant taxonomic and functional biomarkers. 

 
Even in healthy individuals free of intervention, distinct patterns of species turnover and 

abundance were observed, supporting the concept of multistability and hysteresis within the oral 
microbiome. Therefore, to establish a definitive and meaningful long-term reference, it is imperative 
that clinical cohort microbiome research considers the dynamic nature of the oral microbiome and 
its multi-stable states within the context of personalised therapy. This consideration is crucial for 
enhancing the accuracy of identifying and classifying reliable markers, ultimately leading to more 
effective interventions and improved oral health outcomes. 
 

                                                                   
Key words : multistability, oral microbiome, dysbiosis, 16S rRNA gene sequencing,  

      temporal variability
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1. Introduction 
 

1.1. Oral microbiome 

 

The oral microbiome is a complex dynamic polymicrobial community that inhabits the oral 
cavity (Radaic & Kapila, 2021). The oral cavity is the second largest microbial habitat, followed by 
the gut, harvesting bacteria, fungi, viruses, and archaea (Deo & Deshmukh, 2019). The habitat is 
unique in its constant exposure to external factors and serves as a primary barricading gateway to 
the gastrointestinal tract. The microbes within colonise hard tissues such as teeth, and soft tissues 
such as the oral mucosa, to form a complex symbiotic ecosystem that maintains host homeostasis 
(Sedghi et al., 2021). Due to the ease of sample collection, the oral microbiome has become the most 
extensively studied microbiome to date (Deo & Deshmukh, 2019). Studies have shown dysbiosis, 
an imbalance in oral microflora, as not only the precursor of dento-periodontal diseases but also in 
its association with systemic disorders (He et al., 2015; Kumar, 2013; Lamont et al., 2018; Van Dyke 
et al., 2020). The aetiological correlation between microbiome and oral diseases has driven the use 
of culture and polymerase chain reaction-based techniques to identify the causative organisms. 
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<Fig 1> Constituents of the oral microbiome. Framework of a healthy versus dysbiotic microbiome. 
Created with BioRender.com  
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1.2. Next-generation sequencing 

 

Rapidly advancing technology in metagenomics has enabled improved accessibility and 
affordability of sequencing-based metabarcoding, such as 16S ribosomal RNA (rRNA) next-
generation sequencing (NGS) (Caselli et al., 2020). Traditional methods were self-limited in 
inferring the difficult-to-grow organisms and are considered close-ended (Ng et al., 2021). With the 
advancement of bioinformatics and the establishment of the ‘Polymicrobial Synergy and Dysbiosis’ 
hypothesis (Lamont et al., 2018), researchers preferably utilise the sequence-based approaches to 
identify difficult-to-grow organisms. Consequently, research on the human oral microbiome has 
notably enriched in the past decade (Jakubovics & Shi, 2020). The evoking trend is encouraging 
researchers and clinicians to adopt oral microbiome analyses in clinical studies to incorporate the 
findings into clinical practice and thus lead a step closer to personalised dental care. 

 
The renewed emphasis on personalised oral health therapy has driven the development of fast 

advancing microbiomics towards hypothesis-based research (Nibali et al., 2020; Wei et al., 2019). 
Recent studies have provided detailed insights into the composition and abundance analysis, 
revealing distinct differences between health and disease states. Current research in clinical dentistry, 
using conventional study methods, has demonstrated distinctions between carious and non-carious, 
chronic and aggressive periodontitis, with the help of microbiome sequencing techniques (Pang et 
al., 2021; Wei et al., 2019). Comparable designs are being rapidly adapted by comparing a 
phenotypically healthy cohort against a diseased cohort. 
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1.3. Limitations in current microbiome research 

 

Despite the flourishing publication in the field, concerns have arisen regarding the pitfall of 
microbiome data interpretation, including the overestimation of clinical relevance (Kim et al., 2017; 
Zaura et al., 2021). Common confounding factors in oral microbial samples include age, gender, 
comorbidity, medication, body weight, diet, dental health, and oral health habits and more (Burcham 
et al., 2020). The risk of overlooking bias is high in microbial studies. Hence, both readers and 
clinical researchers must understand the sophisticated manner in which metagenomic data are 
collected and carefully plan clinical studies based on this knowledge to avoid misinterpretation of 
the results. 

 
From a clinical perspective, numerous hurdles exist in applying appropriate methodologies for 

microbial intervention studies in surgical settings. Healthcare clinicians are first faced with 
inexperience when dealing with meta-bioinformatics data and vastly rely on microbial data analysis 
platform services. Consequently, the risk of failing to identify bias in the data is high. Unlike 
specialised microbiologists and bench workers in the field, clinicians are restricted both in subject 
and sample size and thus are much limited when performing a gold standard oral microbiome study. 
Under such circumstances, thorough attention to experimental design and prior knowledge of inter-
individual microbial variability should be arranged to avoid yielding experimental artefacts (Kim et 
al., 2017). Clinicians must also have insight into common confounding factors in microbial samples, 
which could substantially impact the outcome of microbiome analyses. 

 
An optimised oral microbiome clinical study design begins with an understanding of the target 

patient group. Most clinical research takes subject demographic and clinical characteristics into 
account, yet previous microbial intervention studies have focused on measuring the change in the 
microbial composition between pre- and post-intervention (Goodrich et al., 2014; Zaura et al., 2021). 
In addition, the time and duration of intervention observation were selected on the basis of limited 
evidence (Zaura et al., 2021). The observed subtle changes in the microbial composition may in fact 
be part of the natural temporal variability of the subject. The global large-scale Human Microbiome 
Project reported that the oral cavity is highly stable in between-subject diversity, similar to other 
body sites (Consortium, 2012). However, a subsequent study on repeated observation of the oral 
microbiome in the dorsum of the tongue revealed that the level of stability varies inter-
individually (Flores et al., 2014). Therefore, it is important to understand and assess individuals’ 
homeostatic range of variability in the intervention-free oral microbiome, prior to measuring the 
impact of clinical intervention.  
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1.4. Multistability and hysteresis model 

 

Most research designs rely on inferences derived from the incidence of increases or decreases 
in microbial species levels. This type of description is referred to as bimodal (Gonze et al., 2017). 
The bimodality concept involves a binary behaviour, where a species associated with healthy state 
exhibits a reversible and predictable increase or decrease in its population. Before and after oral 
prophylaxis, the abundance of a known species (e.g., Porphyromonas species) will decrease 
substantially, thereby restoring overall health. However, the given example is self-contradictive 
when considering the interactions and adaptations of the microbiota over time. 

 
Therefore, a more relevant model was proposed to account for the dynamic balance. This model 

is referred to as multistability and hysteresis (MSH) (Gonze et al., 2017; Khazaei et al., 2020). The 
notion of 'multistability' describes the capacity of a microbial community to achieve distinct stable 
states, even when exposed to similar environmental conditions.‘ Hysteresis’ is a phenomenon where 
the shift in the microbial composition is path-dependent, where reversing the environmental 
condition that once triggered to cross a tipping point (threshold factor causing an abrupt shift e.g., 
oxygen level) is non-reversible (Faust et al., 2015). As a result, the microbial community exhibits 
distinct stable states. The proposed MSH model incorporates both of these concepts.    

 
Accounting for the MSH model, an optimal oral microbiome clinical study design, whether 

observational (case-control/cohort) or interventional (clinical trial), should first involve 
understanding the target subject group. However, the difficulty in establishing a healthy reference 
group increases when considering variations related to niche-based, time-based, and observer effects. 
Furthermore, researchers select the timing and duration of intervention or observation based on 
relatively limited evidence (Zaura et al., 2021). The sampling time points may deviate from the 
overall cross-sectional and longitudinal patterns. Therefore, it is essential to consider the 
homeostatic range of variation between participants in the pre-interventional oral microbiome.  
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1.5. Research objective 

 

In light of the aforementioned considerations, this study sought to elucidate the concept of MSH 
within oral microbiome samples, focusing specifically on a healthy cohort derived from biobank-
sourced specimens. The central hypothesis was that the oral microbiome collected from the cervical 
third surface of the first molar in young, disease-free individuals would exhibit a random and 
variable state. This variability was considered a relevant factor for clinicians in selecting participants 
for control groups in planned clinical interventions. 

To simulate a clinically realistic follow-up framework, the study implemented sampling across 
three time points over a 90-day period, without any intervention. Additionally, a focused comparison 
between two phenotypically similar participants was conducted to explore intra-cohort variability. 
The null hypothesis was that there would be no significant change in the oral microbiome 
composition over time within a disease-free (healthy) community sample. 
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2. Materials and Methods 
 

2.1. Study population and data collection 

 

The study was approved and conducted in accordance with the guidelines from the Institutional 
Review Board at Yonsei University Dental Hospital (Approval number: 2-2021-0050). Genomic 
samples were collected from the Oral-derived bioresources for the human-derived materials biobank 
located at the Yonsei University Dental Hospital, South Korea (Korea Biobank Network: 
KBN4_A04). 

 
The inclusion criteria were as follows: (i) sequential multi-period supragingival plaque 

samples, (ii) taken from the marginal gingival regions of the posterior teeth, (iii) low plaque index, 
(iv) individuals over 18 years old at the time of the first sample, and (v) samples collected and stored 
using a consistent buffering protocol (Hallmaier-Wacker et al., 2018).  

 
The exclusion criteria were as follows: (i) individuals over 30 years old during sample 

collection, (ii) smoking, or a history of pregnancy or breastfeeding, (iii) loss of natural tooth 
structure at or near the sampling site, (iv) professional dental treatment within 6 months prior to 
sampling, (v) a history of chronic medication use (e.g., antibiotic therapy, probiotics) and 
comorbidities (e.g. gastrointestinal issues), and (vi) inadequate or inconsistent biobank data. 

 
Based on the outlined criteria, 33 samples were selected from 11 participants. The samples were 

collected and stored using an OMNI-gene OMR-110 kit (DNA Genotek, Ottawa) in line with a 
consistent processing protocol. The sample intervals were redefined as baseline (T0), one month 
after (T1 = T0 + 30 days), and three months after the baseline (T2 = T0 + 90 days). 

 
Among the various locations within the oral cavity, samples were collected from the first 

permanent molar. This decision was based on the fact that it is the earliest permanent tooth to appear, 
offering a record of an individual's past oral health and containing health information unique to the 
person (Brickley et al., 2020). Additionally, a recent systematic review highlighted that the first 
molar has been incorporated into the case definition and examination protocol for diagnosing 
periodontitis (Albandar, 2014; Bouziane et al., 2020). In the current study, the collection of samples 
was specifically focused on the first molar regions. Samples were collected from the upper and lower 
first molars on the contralateral side and subsequently combined for sequencing analysis. Samples 
from each individual were obtained at three different time points: T0, T1, and T2. 
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<Fig 2> Study design and flow. Samples obtained from the Biobank that met the specific selection 
criteria were sequenced and analysed. 
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2.2. 16S rRNA sequencing and data processing 

 

The sequencing of the 16S rRNA gene was conducted at CJ BioScience Inc. (Seoul, Republic 
of Korea), following the established protocol (Kim et al., 2021). In brief, DNA samples were 
extracted, followed by polymerase chain reaction amplification using primers targeting the V3-V4 
regions of the 16S rRNA gene. Amplicon sequencing was performed using an Illumina Miseq 
Sequencing System (Illumina, CA, USA). Raw reads were processed for quality check, and low-
quality reads (<25) were filtered, followed by the merge of paired-end sequence data. Primers were 
trimmed, and 16S rRNA unique reads using a similarity threshold of 97% were isolated for 
taxonomy allocation based on the EzBioCloud 16S rRNA database (Yoon et al., 2017). The chimeric 
reads were filtered out. 

<Fig 3> General workflow of 16S rRNA sequencing. Created with BioRender.com. 
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2.3. Abundance profiling and diversity measurements 

 

Downstream analyses were conducted primarily using web-based tools, except where 
otherwise stated. Using the EzBioCloud platform, the microbiome data were normalised by gene 
copy number (Yoon et al., 2017). Normalised gene count data were then uploaded onto the 
MicrobiomeAnlayst tool for meta-analyses (Chong et al., 2020; Dhariwal et al., 2017; Yoon et al., 
2017). Relative abundance at the genus level was adjusted at a 1% cut-off, grouping those below 
this threshold under the ‘Others’ category.  

 
To observe within-subject species richness and evenness, alpha diversity was visualised using 

the Chao1, Shannon and inverse Simpson indices. The Wilcoxon signed-rank test was employed for 
statistical analysis, with a significance threshold of 0.05. To compare the distance matrix between 
each subject and the time points, beta diversity was performed using the principal coordinate 
analysis (PCoA) using the Bray-Curtis dissimilarity index (Duran-Pinedo et al., 2021). Dissimilarity 
distances were then statistically analysed using permutational multivariate analysis of variance 
(PERMANOVA) and analysis of similarities (ANOSIM). The calculations involved are 
comprehensively presented in Tables 1–3. 
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<Table 1> Description of different indices used in analysing the alpha diversity 

 

 
  

 

Index 
 

Clinical implication 

 
 
 

Chao1 
 
 
 

 
 

Estimation of species 
richness from rare-

species counts 
 
 

 
 

A higher Chao1 
value suggests higher 

species diversity. 
 
 

 
A significant increase or decrease 
in alpha diversity implies a shift 

in species diversity, which, for the 
oral microbiome, is typically 
associated with deteriorating 
dental or periodontal health. 

 

 
 
 
 
 

Shannon 
 
 
 
 
 

 
 
 
 

Estimation of species 
evenness relative to 

species richness 
 
 
 
 

 
 

A higher Shannon 
value indicates 
greater species 

diversity, with the 
maximum value 
implying equal 

numbers for each 
species. 

 
 

 
In an individual, a shift in species 

evenness (relative abundance) 
may indicate disruption in 

symbiosis, i.e., suppression of 
beneficial commensal bacteria 
and enrichment of pathogenic 

bacteria. An increase in species 
richness indicates the appearance 

of more species within a 
community, leading to increased 
species diversity, and vice versa 
for decreased species richness. 

 

Inverse 
Simpson 

Estimation of species 
richness and evenness 

A higher inverse 
Simpson value 

indicates greater 
species diversity, 

with 1 representing 
no diversity. 

 
While focusing on the dominating 
(highly abundant) species in the 
given sample, the characteristics 

and functions of each species 
should be investigated to 

understand the overall clinical 
effect of the shift in alpha 

diversity. 
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<Table 2> Description of index used in analysing the beta diversity 

 

Index 
 

Clinical implication 

 
 
 
 
 
 
 
 

 
Bray–Curtis 
dissimilarity 

 
 

 
 
 
 
 
 
 

 
Dissimilarity 

coefficient based on 
the distance between 

communities. 
 

 
 
 
 
 
 
 

 
A smaller distance 
suggests greater 

similarity between 
communities. 

 

By observing mutual species 
between communities, beta 

diversity is often used to contrast 
microbial shifts from point A 

(e.g., before intervention) to point 
B (e.g., after intervention). 

 
Among the beta diversity indices, 

the Bray–Curtis index uses 
principal coordinate analysis to 

visualise community dissimilarity 
in terms of distance. 

 
In a clinical study, beta diversity 
helps understand intervention-

specific shifts in microbial 
communities and community 

variance between study subjects 
or time points. 
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<Table 3> Description of metrics and statistics used in alpha and beta diversities 

Index Clinical implication 

Wilcoxon 
signed-rank test 

A non-parametric test used to 
compare samples not adhering to a 
normal distribution. A low p-value 

suggests a significant difference 
between groups. 

In microbiome studies, the test 
compares (i) the median 

variations in alpha diversity and 
(ii) the proportion of core taxa or 

the abundance of specific taxa 
between paired study groups. 

Principal 
coordinate 
analysis 
(PCoA) 

 
A multivariate analysis method based 

on a distance matrix visualising 
relationships between samples by 

reducing the high-dimensional data to 
a lower space. 

 

PCoA visualises Beta diversity by 
plotting sample clusters using a 

selected matrix (e.g., Bray–Curtis 
index). Closer sample points 

indicate microbial community 
similarity based on relative 

abundance. 

Permutational 
multivariate 
analysis of 
variance 
(PERMANOVA) 

Non-parametric test for analysing 
multivariate data using a distance 

matrix. F value is the ratio of 
between- to within-group variation; 
higher values indicate greater group 

distinction. R2 value shows the 
proportional variation related to the 
grouping factor, with values near 1 
implying more variation between 

groups. 

F and R2 values compare baseline 
to post-intervention data. A high 

F value indicates a strong 
intervention impact on the 

microbiome composition. An R2 
value near 1 indicates a strong 

association between intervention 
and microbiome changes. 

Analysis of 
similarities 
(ANOSIM) 

Non-parametric test comparing 
average ranked dissimilarities within 

and between groups. R values near +1 
indicate higher dissimilarities 

between groups, suggesting strong 
separation. A value near 0 indicates 

no separation. Value near -1 is 
uncommon, indicating higher within-

group dissimilarities, suggesting 
possible sampling design issues. 

 
ANOSIM identifies significant 

differences in microbial 
composition among individuals, 
environments, or treatments and 

factors influencing group 
variation. An R value near +1 

indicates a significant difference 
in community composition. 
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2.4. Microbiome stability analysis 

 

The ‘Codyn’ package in RStudio (version 2021.09.0, MA, USA) was utilised to assess the 
extent of temporal changes (Hallett et al., 2016). Species turnover was assessed to measure the 
proportion of species appearance and disappearance, and stability was determined based on the ratio 
of the temporal mean to the temporal standard deviation. Additionally, the variance ratio was 
examined to contrast the community’s overall variance with the sum of individual variances, and 
synchrony was assessed by comparing the variance of total species abundances to the combined 
variances of each species (Duran-Pinedo et al., 2021). A detailed description of the indices used is 
provided in Table 4.  
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<Table 4> Description of the different indices used in analysing species turnover and stability 

 

Index 
 

Clinical implication 

 
 
 
Species 
turnover 

 
 
 

The rate of species composition changes 
within a community over time, 

calculated by the proportion of species 
gained or lost between time points. A 

higher value indicates greater 
fluctuations in species composition over 
time, with more species appearing and 

disappearing between periods. 

The species turnover metric is 
valuable for examining a 

microbial community’s temporal 
dynamics and evaluating 

intervention effects on community 
structure. 

 
 
Community 
stability 

 
 

The overall stability of a microbial 
community over time, assessed by 

calculating the ratio of temporal mean to 
temporal standard deviation of 

aggregated species abundance. A higher 
value suggests a more stable community, 

where the average species abundance 
remains relatively constant over time, in 
contrast to variations in their abundance. 

The community stability metric 
evaluates microbial communities' 
dynamic behaviour by assessing 

their stability over time. The 
metric indicates the community’s 

resilience in preserving its 
structure and function despite 

species abundance fluctuations. 

 
 
 
Synchrony 

 

Comparison of aggregated species 
abundances with the summed variances 
of individual species. The value ranges 

from 0 to 1, where 0 is absolute 
asynchrony and 1 is absolute synchrony. 

In data showing synchrony 
despite fluctuations in individual 

species numbers, total community 
stability is maintained through the 
loss of one species compensated 

by the gain of another. In contrast, 
asynchrony is associated with 

community perturbations. 

 
 
 
 
Variance 

 

Patterns of species covariance based on 
comparing community variance to 

summed individual species variance. A 
value less than 1 suggests negative 
species covariance, whereas a value 

greater than 1 suggests positive species 
covariance. 

In positive covariance data, 
despite fluctuations in species 

numbers, community stability is 
maintained as species loss by one 

is offset by another's gain. 
Conversely, negative covariance 

is linked to community 
perturbations. 
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2.5. Clustering and biomarker comparisons 

 

Temporal dynamics were investigated by clustering the data according to species abundance 
profiles. The trajectories of the species were organised using the method detailed in Arumugam et 
al., which formulates the concept of enterotypes for the gut microbiome (Arumugam et al., 2011). 
The concept can be applied similarly to as stomatotype for the oral microbiome (Willis et al., 2018).  
 

In brief, normalised genus abundance profiles were organised and clustered using the Jensen-
Shannon divergence distance in conjunction with the partitioning around medoids clustering 
algorithm (cluster library) (Maechler, 2019). The Calinski-Harabasz index was employed to 
determine the optimal number of clusters. Ultimately, the statistical significance of the optimal 
clustering was verified using the silhouette coefficient. The full algorithm and its explanations are 
comprehensively outlined in the online tutorial (http://enterotype.embl.de), which was followed 
precisely without any alterations (Arumugam et al., 2014; Arumugam M, 2014). 

 
Biomarkers were compared across clusters to identify taxa associated with variability between 

the clustered groups. Functional biomarkers were assessed using the Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States (PICRUSt) (Avolio et al., 2015). Significant 
differences were determined using a Linear Discriminant Analysis Effect Size (LEfSe) with a 
threshold linear discriminant analysis (LDA) score ³2.0 (Segata et al., 2011). For brevity, only the 
abbreviation ‘LDA’ is used within the table cells in Table 6. The results were subsequently mapped 
against the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database to interpret the metabolic 
functions of the microbial community. For brevity, only the abbreviation ‘KEGG’ is used within the 
table cells in Table 6. 
 

Lastly, to demonstrate periodic variation within similar phenotypes, datasets from two 
representative subjects were compared. A comparable analysis was conducted to emphasise the 
turnover pattern and depict proportional differences at the genus level using the Statistical Analysis 
of Metagenomic Profiles (STAMP) with false discovery rate (FDR)-corrected q-values (Parks & 
Beiko, 2010). For brevity, only the abbreviation ‘FDR’ is used within the table cells in Table 6. The 
descriptions of the indices and calculations involved are comprehensively presented in Tables 5 and 
6. 
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    <Table 5> Description of stomatotype clustering and biomarker analysis 

 

Index 
 

Clinical implication 

 
 
Clustering 

 
 

 
Categorising 

individuals into 
groups based on 

similar oral 
microbial 

community profiles 
(stomatotype). 

 

 
While numerous clinical 

studies categorise subjects into 
groups such as healthy versus 
diseased or pre- versus post-
intervention, categorisation 

based on microbial similarity 
is also frequently employed in 
human microbiome research. 

 

Functional 
biomarker 
analysis 

Identification of 
metabolic pathways 

associated with 
highly abundant 

species (or genera) 
in a community. 

 
The optimal aim of an oral 

microbiome study is to 
pinpoint key species associated 

with the clinical state in 
question (e.g., healthy 

periodontium, progressed 
periodontitis) using functional 

biomarker analysis. 
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<Table 6> Description of metrics and indices used in clustering and biomarker analysis 

Index Clinical implication 

 
Jensen-Shannon 
divergence 
distance (JSD) 

 

Symmetric distance metric to 
compare probability distributions, 

where 0 indicates an identical 
distribution and higher values 
indicates greater differences. 

JSD identifies microbial shifts and clusters 
samples by microbial compositions. 

Calculating JSD at different time points 
allows researchers to track community 

composition changes over time. 

 
Calinski-Harabasz 
(CH) 
 

Cluster validity index to assess 
clustering quality, particularly 
when determining the optimal 

number of clusters. 

CH index is used to cluster samples with 
similar microbial compositions, potentially 
reflecting distinct health states. The index 
also prevents over- or under-clustering. 

Silhouette 
coefficient 

Metric evaluating clustering 
quality. A higher Silhouette 

coefficient indicates data points 
are more closely grouped within 
their clusters and further from 

other clusters. 

Silhouette coefficient evaluates the quality 
of microbial-based clustering algorithms. 

When clustering oral microbiome samples, 
a high value suggests successfully 

identified distinct and well-separated 
stomatotypes. 

Phylogenetic 
investigation of 
communities by 
reconstruction of 
unobserved states 
(PICRUSt) 

Bioinformatics tool to predict the 
functional profiles of microbial 
communities from marker gene 

data, primarily 16S rRNA 
sequencing. 

PICRUSt provides a functional snapshot 
of a microbial community based on its 

taxonomic composition, which is valuable 
for understanding the metabolic 

capabilities of uncultivated species. It is 
commonly used with the KEGG database 

of genes and metabolic pathways. 

Linear 
discriminant 
analysis effect size 
(LEfSe) 

Bioinformatics tool to identify 
biomarkers that significantly 

characterise differences between 
groups in microbiome data. 

LEfSe identifies statistically and 
biologically distinct genomic features 

between sample groups. Features over the 
threshold score of 2.0 LDA are indicated 

as significantly different. 

Statistical analysis 
of metagenomic 
profiles 
(STAMP) 

A software platform for 
statistically analysing taxonomic 

and functional profiles of 
metagenomic data in microbiome 

analysis. 

STAMP compare sample groups and 
identify significant microbial differences. 
Due to the high risk of false positives in 
microbiome studies, an FDR corrected    

q-value is used to represent the expected 
proportion of false discoveries among 

significant features. 
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3. Results 
 

3.1. Subject demographics 

 

Using the Wilcoxon signed-rank test, a pairwise comparison of the Silness & Löe plaque index 
data showed no significant differences (p >0.05) between the time points. All participants were fully 
dentate, with no restorations on the first molar (the area of interest). Likewise, all participants shared 
the same racial and geographical background. 

 
<Table 7> Subject demographic characteristics 

 

Demographic feature 
 
 

 

 
Age in years (range) 

 
25.8 ± 1.73 (23-28) 

 
Gender, n (%) 

 

Male 3 (27.3) 
Female 8 (72.7) 

 
Silness & Löe Plaque index  

T0 0.39 ± 0.27 
T1 0.39 ± 0.20 
T2 0.44 ± 0.19 
 
Pairwise comparison (p-value) 

 

T0 – T1  0.937 
T0 – T2 0.527 
T1 – T2 
 

0.240 
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3.2. Abundance profiling 

 

The abundance distributions for all samples across the three time points, categorised at the 
genus level, is depicted in Fig 4. The microbial composition of the study population at phylum level 
(Fig 5a) and genus level (Fig 5b) remained consistent from T0 to T2, suggesting a comparable 
community composition across the three time points. At the phylum level, Actinobacteria were found 
to be the most abundant at every sampling point. Initially, at T0, Proteobacteria were more prevalent 
than Firmicutes, but this trend reversed at T1 and T2, with the difference remaining under 5%. At 
the genus level, the sequence of the most prevalent taxa remained consistent across the three time 
points, with Rothia, Prevotella, and Haemophilus leading in abundance. 
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<Fig 4> Relative abundance distribution. Variations among individuals at three different time points, aggregated at the genus level. 
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<Fig 5> Relative distribution of (a) phyla and (b) genera across time points. The dot and line marks the values at the initial time point, 

T0. T1 and T2 indicate the values recorded at 30-day and 90-day intervals from T0, respectively. 

(a) (b) 
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3.3. Alpha diversity measurements 

 

The analysis comparing the Chao1 and the inverse Simpson index over different time points 

revealed no statistically significant differences. The Shannon index presented a significant increase 

at both T1 (p = 0.021) and T2 (p = 0.041) (Fig 6a). Conversely, the initial difference was not 

statistically significant (p = 0.306, Fig 7). 

 

Fig 6b illustrates the subject-level variation by indicating the T0 results with a traced line. Any 

divergence from this line represents a degree of fluctuation in the within-participant alpha diversity. 

The comparison at the subject-level revealed differences in the pattern across T0, T1, and T2, with 

some participants (e.g., C1, C2) exhibiting less variation in diversity compared to others (e.g., C3, 

C9). 
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<Fig 6> Alpha diversity metrics. (a) Box plot of Chao1, Shannon, and inverse Simpson indices of 

all samples in three different time groups. The boxes cover the range from the first to the third 

quartiles, with the horizontal lines inside indicating the median, while the dots show all samples at 

each time point. Pairwise comparison is performed using the non-parametric Wilcoxon test, with the 

p-values provided. (b) Profiles of the three diversity measures for the individual participants. 
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<Fig 7> Rate of change in the Shannon diversity index. No statistically significant difference was 

observed in the index (expressed as the first difference) between short-term (T0 to T1) and long-

term (T0 to T2) changes (Wilcoxon signed-rank test, p = 0.306). The error bars represent the standard 

deviation. 
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3.4. Patterns of dissimilarity and stability within the cohort 

 

Beta-diversity metrics highlight the dissimilarity in abundance at the community level. The 

distance matrix, when visualised through PCoA, shows the dissimilarities between two samples as 

dots. The analyses based on time points (Fig 8a) showed a significant overlap in diversity, suggesting 

a certain level of similarity. Conversely, when examining the metric at the level of individual 

participants (Fig 8b), a substantial degree of variation emerged. The Bray–Curtis dissimilarity index 

demonstrated statistical significance (p < 0.001), analysed with multivariate ANOSIM (R = 0.745) 

and (R2 = 0.64, F = 3.8). 

 

In the analysis of community stability, a significant negative correlation—ranging from 

medium to strong—was identified with both synchrony (Fig 9a: r = –0.739; p = 0.009) and variance 

(Fig 9b: r = –0.605; p = 0.048). This indicates that higher community stability is linked to reduced 

synchrony and more substantial negative covariance.  
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<Fig 8> Beta diversity of microbial communities. Principal coordinate analysis with the Bray-Curtis dissimilarity distance was utilised 

to conduct multidimensional ordination for (a) time point-based and (b) participant-based analyses, by calculating the mean distance of 

individual groups from their respective group centroids. 
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         <Fig 9> Community stability metrics of (a) synchrony and (b) variance to the stability. 

  

(a) (b) 
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3.5. Stomatotype cluster variation across time 

 

The participant-based clustering approach produced three distinct groups, which were unevenly 

distributed in terms of participant numbers and showed inconsistency from T0 to T2 (Fig 10). These 

participant clusters exhibited differences in their microbial compositions, particularly in taxa with 

high and low abundance. 

 

Taxonomic biomarkers were identified to determine the key species or higher taxa that 

exhibited significant variation (LDA ≥ 2.0) among the three clusters (Fig 11). Genera such as 

Neisseria, Acinetobacter, and Moryella, along with species such as Blautia and Capnocytophaga, 

were predominant in one of the clusters. In terms of functional biomarker analysis, 11 metabolic 

pathways exhibited significant variations between the clusters (Fig 12). 
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<Fig 10> Participants’ microbial-based clustering. Stomatotypes are computed using the Jensen-Shannon Divergence metric at three 

different time points (T0, T1, and T2). 
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<Fig 11> Taxonomic biomarkers. The biomarkers were used to ascertain the representative species or higher taxa that varied significantly 

(LDA ≥ 2.0) between the three clusters. The time points are arranged from left to right, from T0 to T2. 
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<Fig 12> Functional biomarkers. The biomarkers were used to identify the traits that varied significantly (LDA ≥ 2.0) between the three 

clusters. The time points are arranged from left to right, from T0 to T2. 
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3.6. Periodic variation within similar phenotypes 

 

According to the clinical data and species turnover rate depicted in Fig 13, subjects C1 and C6 

were similar in terms of overall species turnover rate and community stability metrics, in addition 

to sharing comparable demographic characteristics clinically. However, the rates of appearance and 

disappearance varied between the two individuals (Fig 14). Both participants showed an uneven 

distribution of taxa, with each having unique patterns of dominant taxa (Fig 15). 

 

Through proportional-difference analysis, the appearance and disappearance patterns of 

significant taxa with fluctuating differences were identified (Fig 16). At T2, the most substantial 

range of differences is highlighted by notable variations in Saccharimonas and PAC000677_g, which 

correspond to the turnover trend depicted in Fig 14. 

 
Microbial taxa that significantly contribute to variation in community composition among 

participants at all time points were identified using similarity percentage (SIMPER) analysis. These 
taxa collectively contributed to a dissimilarity of 49.11%, with the Haemophilus parainfluenzae 
group and Rothia dentocariosa accounting for a significant proportion (Table 8). Variations at the 
KEGG metabolism level were observed through functional analysis, with markers for carbohydrate 
and amino acid metabolism pathways being relatively more prominent in C1 compared to C6 (Fig 
17).  
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<Fig 13> Community stability turnover metric. The turnover metric is described as the total 

appearance and disappearance of the species across time. 
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<Fig 14> Community turnover metrics of participants C1 and C6. The data display contrasting 
patterns of appearance and disappearance, despite having similar total turnover.
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<Fig 15> Comparative analysis of C1 and C6: relative abundance of OTUs. The data were aggregated at the genus level, as observed 

from T0 to T2.
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<Fig 16> Comparative analysis of C1 and C6: taxa with fluctuating differences. Significantly 

different proportions are presented with FDR-corrected p-values (q-value), with the difference 

expressed as a percentage of the higher groups.
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<Table 8 > SIMPER1) analysis between the two representative participants. C1 and C6 showing an 

average dissimilarity of 49.11%. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1) The SIMPER analysis quantifies the relative contribution of each taxon to the overall dissimilarity between 
groups using the Bray–Curtis dissimilarity index.  

Taxon 
 

Average dissimilarity Contribution (%) 

Haemophilus parainfluenzae group 12.18 24.79 

Rothia dentocariosa 5.076 10.34 

Rothia aeria 3.938 8.019 

Actinomyces viscosus group 3.447 7.018 

Streptococcus pneumoniae group 2.414 4.916 

Streptococcus sanguinis group 2.162 4.403 

Actinomyces naeslundii 1.924 3.917 

Veillonella dispar 1.289 2.625 

Lautropia mirabilis 1.089 2.216 
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<Fig 17> Comparative analysis of C1 and C6: significant KEGG metabolic pathways. The pathways 

were identified with an LDA effect size ≥ 2.0.
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4. Discussion 

 

The concept of a healthy cohort has gained importance, largely due to the widely accepted 

understanding that there are substantial variations among individuals. The empirically established 

sampling intervals with a schedule of 1-month and 3-month follow-ups were designed to closely 

mimic standard research setting that includes a healthy reference cohort. The results of this study 

indicate that the healthy cohort exhibits notable differences in the microbiome profile of samples 

collected at various times, suggesting variation in the state of microbial stability. 

 

The sampled cohort exhibited similar behaviour in terms of population richness and evenness. 

Nonetheless, the notable variations in the Shannon index suggest bio-interactions at the species level. 

The evidence of microbial interaction was further highlighted in the participant-wise index pattern, 

and a pronounced contrast to the phenotypic (clinical) selection criteria became apparent when 

examining the changes over three distinct time points. Additionally, a broader range of intra-

individual variability was evidenced, particularly concerning the Shannon diversity index measured 

around T0. The observations described above align closely with the pioneering discoveries from the 

Human Microbiome Project (Consortium, 2012). Likewise, Sato et al. reported a significant 

variation in samples collected from healthy adults both on consecutive days and within the same 

day (Sato et al., 2015). These collective findings conclusively show that the health-associated 

microbiome exhibits varying degrees of stability over time. Furthermore, these findings are 

consistent with previous studies confirming the existence of a core microbiome within individuals 

(Zaura et al., 2009). 

 

These time-dependent fluctuations raise significant concerns when the principle with increased 

variability within an individual’s microbiome serves as an indicator of dysbiosis (Altabtbaei et al., 

2021; Zaneveld et al., 2017). In this research, both PERMANOVA and ANOSIM demonstrated 

statistically significant differences in participant-based analyses, indicating substantial variation 

within the cohort, i.e., suggesting a higher likelihood of dysbiosis. Consequently, the variability in 
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the diversity metric found within participants poses a challenge to the concept of a healthy cohort, 

which is associated with a state of eubiosis.  

 

To identify patterns of variation from T0 to T2 within the study cohort, correlations were 

examined using a stability metric based on ecological indices (Hallett et al., 2016; Loreau & de 

Mazancourt, 2008). Regardless of their net abundance, unstable species with high turnover rates 

have been observed to uphold community states in fluctuating communities (Duran-Pinedo et al., 

2021). The stability of a community is influenced by the interaction of its constituent elements. To 

evaluate this stability, metrics like variance and synchrony are utilised. The variance ratio serves as 

a tool for comparing community variance with the variance derived from the sum of individual 

populations (Duran-Pinedo et al., 2021). The synchrony metric evaluates the aggregated abundance 

of species in relation to the sum of individual species variances (Loreau & de Mazancourt, 2008). 

Analytically, microbial community states exhibit a pattern of negative covariance or asynchrony 

when assessed for stability over time (Yachi & Loreau, 1999). In this study, a significant portion of 

participants demonstrated notably low levels of synchrony (<0.4, asynchrony to synchrony scale 

ranging from 0 to 1). Furthermore, the study identified a moderate to strong negative correlation 

pattern, indicating an inverse relationship with stability (Duran-Pinedo et al., 2021). Consequently, 

these findings suggest the existence of an alternative state of balance among the cohort participants, 

indicating the presence of unstable species. In the present study, a baseline was established by 

selecting participants who had not received any oral prophylaxis treatment for at least six months. 

Nevertheless, it is important to acknowledge that the effects of prior professional oral hygiene 

treatments cannot be completely overlooked. As a result, the presence of unstable species may have 

been influenced by these earlier treatments. 

 

A cluster model was implemented to categorise taxa into stomatotypes and explore distribution 

similarity. As a characteristic feature of a stable community, taxa clustering is expected to result in 

a reproducible pattern (Duran-Pinedo et al., 2021; Sato et al., 2015). Such characteristic responses 

to clustering are associated with low inherent variation within an individual. Nevertheless, the 

concept is contradicted by the observed significant variations in (i) clustering patterns, (ii) 

biomarkers, and (iii) metabolic indicators. The inconsistency in cluster reproducibility stands in 

contrast to the findings for a healthy cohort, as concluded by Sato et al (Sato et al., 2015). However, 
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these discrepancies may also stem from the relatively extended sampling intervals examined in this 

study, thereby underscoring the significant impact of time as a factor influencing the stability of the 

community state. 

 

Despite the variations over time, it is thought that overall stability can be sustained when the 

increase in one species balances out the decline in another (Hallett et al., 2016). Earlier research on 

microbiomes has identified temporal fluctuations as a ubiquitous and essential element in 

maintaining the stability of the overall community (Hooper et al., 2005; Loreau, 2000; Loreau et al., 

2001; McCann, 2000; McNaughton, 1977). In essence, temporal fluctuations and asynchronous 

patterns observed over time are natural occurrences contributing towards stabilising microbial 

communities. Yet, significant stress can trigger a change in the stomatotype (clustering pattern), 

thereby leading to an alternative state (Vandeputte et al., 2021). 

 

The shift in stability is most evidently illustrated through temporal analysis. The example cases 

highlighted in this study demonstrate a pattern between two individuals who, based on clinical 

parameters, would typically be classified within a healthy group in a clinical study. Nevertheless, 

the comparison of the turnover metric between the two individuals revealed a contrasting trend in 

the number of taxonomic units that gained (appearance) and lost (disappearance). Abundance 

profiling highlighted the variations, showing a distinct set of dominant genera between the two 

participants throughout the entire time points. Collectively, they exhibited a dissimilarity of 49.11% 

(SIMPER, Table 8). In addition, the turnover metrics effect was expressed in a significant disparity 

in proportions, with an effect size greater than 5. At the initial time point, T0, the 99.9% confidence 

intervals showed a difference in proportions within a 60% range, which decreased to 40% by T1. 

While the genus Leptotrichia was more abundant in subject C6 at the T0 timepoint, over 20% 

increase in its proportion was observed in subject C1 at the T1 timepoint. While genera Rothia, 

Fusobacterium, and Saccharimonas maintain similar proportions at each of the three time points, 

Saccharimonas and PAC000677_g exhibit a marked change in variation. In essence, there is a 

probable pattern of shifts in the community state, where distinct stable states are characterised by 

varying dominant species.  
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Alterations in a stable state are influenced by multiple factors, including the role of microbial 

metabolic interactions. Distinctions at the KEGG metabolism level were detected, with markers for 

carbohydrate and amino acid metabolism pathways being relatively more pronounced in C1 

compared with C6 (Fig 16). A recent investigation utilising genome-scale mathematical modelling 

yielded definitive findings. Alterations to oxygen and nutrient conditions resulted in a noticeable 

shift in metabolism. This metabolic shift was then followed by modifications in the expression of 

related genes, ultimately leading to multiple stable states. Likewise, a recent study utilising genome-

scale mathematical modelling has yielded definitive findings. Changes in oxygen and nutrient 

environments caused a distinct alteration in metabolic processes. This metabolic shift was then 

followed by modifications in the expression of associated genes, ultimately resulting in the 

formation of multiple stable states. The necessity of investigating the role of MSH in microbiome 

dynamics independent of otherwise simplistic causation correlations was emphasised by Khazaei et 

al (Khazaei et al., 2020). Based on the aforementioned points, it can be inferred that even in a state 

of health, individuals may exhibit variability, with each person exhibiting distinct stable states with 

minor differences in the dominant species. These variations within individuals appear to remain 

consistent longitudinally. 

 

It can be concluded that while the phenotype appears clinically healthy, the intermediate states 

of the microbiome may be on the verge of transitioning into a disease state. Stable states can 

encounter triggering events, whether favourable or unfavourable, that may result in a sudden change. 

Therefore, a single sampling event in a study could reflect a temporary condition, potentially leading 

to an inaccurate estimation of eubiosis or dysbiosis. In the context of this study, transitioning the 

baseline point to T1 (instead of T0) could result in a markedly different interpretation, as evidenced 

by variations in stomatotyping. Thus, a new stable state or reversal between states can only occur if 

a stimulus exceeds the trigger threshold. In the context of this study, transitioning the baseline from 

T0 to T1 might lead to a notably different interpretation, as evidenced by changes in stomatotyping. 

Thus, a new equilibrium or a shift between states can only be achieved if the stimulus surpasses the 

trigger threshold. Analysis of samples that are in a transitional state, though considered as standard 

healthy, can introduce bias due to locational effects (illustrated as points 1, 2, and 3 as initiation 

points in Fig 17) (Zaneveld et al., 2017) 
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<Fig 18> Multistability and hysteresis perspective. The microbial community undergoes alterations in response to changing conditions, 

leading to the development of a multi-stable community. Within similar environmental conditions, different stable states are adopted. 

State changes are precipitated by trigger events, whether environmental or therapeutic, that exert abrupt changes. The system transitions 

across a tipping point (black stars), and changes may not fully revert (hysteresis). Markers 1, 2, and 3 illustrate three potential scenarios 

for the initiation of a study, each offering distinct perspectives in cross-sectional and longitudinal analyses.
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In summary, the findings of this study imply that when designing an oral microbiome study, 

relying solely on phenotypic screening may be insufficient as the confounding factors extend beyond 

the basic characteristics of the subjects (Zaura et al., 2021). Conducting a genomic screening phase 

will aid in characterising the homeostatic range of the cohort and objectively stratifying participants 

based on relevant microbial features. This approach will be particularly valuable for identifying 

disease-associated strains and supporting the development of customised treatment strategies. 

Genomic screening also plays a crucial role in accounting for interpersonal variation and will 

become increasingly important in precision analysis of individual genotype–phenotype relationships 

(Vandeputte et al., 2021). Collectively, these efforts will improve the quality of oral microbiome 

research to pinpoint diagnostic and therapeutic markers. Another crucial aspect of intervention and 

follow-up research is incorporating a ‘false start’. This strategy not only helps to counteract the 

observer effect but also supports the development of an adaptational equilibrium over time, which 

is essential for determining an accurate baseline (Zaura et al., 2021). While there is currently a lack 

of substantial evidence on the precise number of visits required to achieve equilibrium, it is advisable 

to collect replicate samples prior to the intervention phase. These replicate samples are valuable for 

evaluating an individual’s natural temporal stability and for making comparisons post-intervention. 

 

While this study offered an in-depth examination of data based on time and participants, the 

reliance on web-based tools for analysis can present a fundamental limitation. Additionally, sourcing 

samples from the biobank posed challenges concerning the availability of concurring sample counts 

and the duration of the assessment period. Lastly, comparison of associative phenotype patterns was 

not possible due to the limited host metadata available for the samples. While it was possible to 

screen participant metadata for medication use, factors related to lifestyle, such as the type of 

toothpaste and dietary components, could not be fully considered (Adams et al., 2017). As a result, 

the small sample size and the lack of comprehensive host metadata does not allow for a 

generalisation of the findings from this study. A future investigation incorporating repeated 

sampling over an extended period will enhance the understanding of MSH in the oral microbiome 

and aid in the establishment of guiding criteria for selecting healthy cohorts in dental clinical studies. 
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5. Conclusion 

 

This study evaluated the homeostatic range of stability observed within the oral microbiome of 

young, disease-free individuals across three time points. Establishing a microbial reference for a 

healthy cohort is pivotal when designing comparative clinical research exploring health versus 

disease states or when conducting observational case studies. The findings from this study indicate 

variations in taxonomic profiles, diversity, and community stability over time within a clinically 

healthy group. 

 

By applying metrics such as variance and synchrony, this study revealed the existence of 

temporal variability among participants. Stomatotype clustering analysis further identified 

meaningful differences in clustering patterns and taxonomic biomarkers across the sampled time 

points. These findings substantiate the applicability of the multistability hypothesis, which posits 

that temporal shifts and asynchronous patterns that emerge over time are natural phenomena 

contributing to the stabilisation of the oral microbiome. 

 

The null hypothesis that there would be no significant difference in the oral microbiome data 

at each time point, was therefore rejected. The observed temporal differences in microbial 

community structure and functional potential suggest that even in the absence of clinical intervention 

or disease, the oral microbiome exhibits variability over time. 

 

In conclusion, for dental clinical research to generate meaningful and generalisable microbial 

references, the inherent variability and multi-stable nature of the pre-intervention oral microbiome 

must be carefully considered. The notion of static microbial baseline of health may not adequately 

capture the natural fluctuations observed even in clinically healthy individuals. Acknowledging such 

variability has important implications for refining study design and developing a more detailed 

comprehension understanding of microbial health in both clinical and research settings.  
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Abstract in Korean 
 

임상 연구에서 구강 마이크로바이옴 패턴에 미치는  

다중 안정성 및 이력 현상의 영향 

 

 

구강 마이크로바이옴 연구에서 '건강한 코호트(동일집단)'라는 개념은 임상 증례 및 

치료적 평가하기 위한 기준점으로 활용되고 있다. 그러나 최근까지의 코호트 기반 연구는 

마이크로바이옴의 다중 안정성 측면을 충분히 고려하지 않았다. 임상 연구 시 선별 검사 

방법 또한 뚜렷하게 유의미한 차이를 보이는 미생물 유전체 지표와 관련된 표현형 

특성들에만 국한되어 있었다. 따라서 본 연구의 목적은 임상적 개입이 없는 표현형적으로 

건강한 코호트에서 시간 경과에 따른 구강 마이크로바이옴의 일시적 안정성을 평가하는 

것이다. 

 

본 연구는 인체 유래물 은행을 통해 11 명의 참여자로부터 33 개의 치은연상 치태 샘플을 

분양받아 후향적으로 수행되었다. 각 참여자의 샘플은 기준일(T0), 1 개월(T1), 3 개월(T2) 

간격으로 지정하여 16S 리보솜 RNA 유전자 염기서열 분석을 실시하였다. 

 

마이크로바이옴 계통 분류 프로파일링 결과, Rothia, Prevotella, Haemophilus 속이 모든 

시간 범위 그룹에서 지속적으로 우세한 패턴을 보였다. 알파-다양성 지표 중 하나인 샤논 

지수(Shannon index)에서는 시간 경과에 따라 T0 으로부터 유의미한 증가를 나타냈다          (p 

<0.05). Bray Curtis 비유사도 지수에 따른 베타-다양성 지표 분석 결과, 각 시간 범위 

코호트마다 개인 간 변이가 높게 관찰되었다(r = –0.02, p <0.01). 종 수준에서의 미생물 군집 

안정성 평가는 동시성(synchrony: r = –0.739; p = 0.009)과 분산(variance: r = –0.605; p = 0.048) 

분석에서 음의 상관 관계를 나타냈다. 참여자의 종 상대적 풍부도 프로파일을 기반으로 

데이터를 클러스터링한 결과, 세 가지 클러스터 그룹이 형성되었다. 이러한 데이터 

클러스터링을 각 시간 범위 그룹마다 수행했을 때, 시간대마다 뚜렷한 클러스터 그룹 패턴 

차이가 존재하였다. 또한, 각 시간대에서 형성된 클러스터 그룹들은 계통 분류의 다양성 및 

기능적 바이오마커 측면에서 뚜렷한 차이를 보였다. 
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임상적 개입이 없는 건강한 코호트에서도 개인 간 종 교체율과 풍부도에서 차이가 

나타나는 것은 구강 마이크로바이옴에서 이력 현상과 다중 안정성의 개념을 뒷받침한다. 

따라서 보다 정확하고 의미 있는 장기적인 참조 테이터를 확립하기 위해서는 개인 맞춤형 

치료의 맥락에서 임상 코호트 연구가 마이크로바이옴의 역동성과 다중 안정성을 고려해야 

한다. 이러한 고려 사항은 신뢰할 수 있는 바이오마커를 식별하고 분류하는 데 있어 

정확성을 향상시키고, 궁극적으로 더 효과적인 임상 개입을 통해 구강 건강의 진전을 

도모할 수 있다. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

핵심되는 말 : 구강 마이크로바이옴, 다중 안정성, 디스바이오시스(미생물총 불균형),        
          일시적 변동성, 16S 리보솜 RNA 유전자 염기서열 분석


