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ABSTRACT

Effect of Multistability and Hysteresis on
Oral Microbiome Patterns Observed in Clinical Studies

The oral microbiome of a healthy cohort is utilised as a reference point for evaluating clinical
cases and interventions. Nonetheless, current cohort-based studies have fallen short in thoroughly
considering multistability in microbial communities. Screening analysis has been confined to
phenotypic traits that exhibit significant differences among microbial genomic markers. The
objective of this study was to assess the temporal stability of the oral microbiome over time in an
intervention-free and phenotypically healthy cohort.

33 longitudinal supragingival plaque samples were collected from 11 healthy participants,
sourced from the biobank. For each participant, samples were designated as baseline (T0), 1-month
(T1), and 3-month (T2) intervals for 16S ribosomal RNA gene sequencing analysis.

Taxonomic profiling consistently exhibited a recurring pattern of predominant genera,
specifically Rothia, Prevotella, and Haemophilus, across all observed time points. In the alpha
diversity analysis, the Shannon index showed a significant increase with time from TO (p <0.05).
Bray—Curtis dissimilarity (beta diversity) demonstrated substantial variation within the cohort at
each time point (r = —0.02, p <0.01). The community and stability evaluation at the species level
showed a negative correlation with synchrony (r = —0.739; p = 0.009) and variance (r = —0.605;
p = 0.048). Clustering data based on the species abundance profiles of participants resulted in the
formation of three distinct cluster groups, with notable variations in the grouping patterns across the
three time points. At all observed time points, the clusters exhibited a markedly distinct array of
differentially abundant taxonomic and functional biomarkers.

Even in healthy individuals free of intervention, distinct patterns of species turnover and
abundance were observed, supporting the concept of multistability and hysteresis within the oral
microbiome. Therefore, to establish a definitive and meaningful long-term reference, it is imperative
that clinical cohort microbiome research considers the dynamic nature of the oral microbiome and
its multi-stable states within the context of personalised therapy. This consideration is crucial for
enhancing the accuracy of identifying and classifying reliable markers, ultimately leading to more
effective interventions and improved oral health outcomes.

Key words : multistability, oral microbiome, dysbiosis, 16S rRNA gene sequencing,
temporal variability
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1. Introduction

1.1. Oral microbiome

The oral microbiome is a complex dynamic polymicrobial community that inhabits the oral
cavity (Radaic & Kapila, 2021). The oral cavity is the second largest microbial habitat, followed by
the gut, harvesting bacteria, fungi, viruses, and archaea (Deo & Deshmukh, 2019). The habitat is
unique in its constant exposure to external factors and serves as a primary barricading gateway to
the gastrointestinal tract. The microbes within colonise hard tissues such as teeth, and soft tissues
such as the oral mucosa, to form a complex symbiotic ecosystem that maintains host homeostasis
(Sedghi et al., 2021). Due to the ease of sample collection, the oral microbiome has become the most
extensively studied microbiome to date (Deo & Deshmukh, 2019). Studies have shown dysbiosis,
an imbalance in oral microflora, as not only the precursor of dento-periodontal diseases but also in
its association with systemic disorders (He et al., 2015; Kumar, 2013; Lamont et al., 2018; Van Dyke
et al., 2020). The aetiological correlation between microbiome and oral diseases has driven the use
of culture and polymerase chain reaction-based techniques to identify the causative organisms.
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<Fig 1> Constituents of the oral microbiome. Framework of a healthy versus dysbiotic microbiome.
Created with BioRender.com



1.2. Next-generation sequencing

Rapidly advancing technology in metagenomics has enabled improved accessibility and
affordability of sequencing-based metabarcoding, such as 16S ribosomal RNA (rRNA) next-
generation sequencing (NGS) (Caselli et al., 2020). Traditional methods were self-limited in
inferring the difficult-to-grow organisms and are considered close-ended (Ng et al., 2021). With the
advancement of bioinformatics and the establishment of the ‘Polymicrobial Synergy and Dysbiosis’
hypothesis (Lamont et al., 2018), researchers preferably utilise the sequence-based approaches to
identify difficult-to-grow organisms. Consequently, research on the human oral microbiome has
notably enriched in the past decade (Jakubovics & Shi, 2020). The evoking trend is encouraging
researchers and clinicians to adopt oral microbiome analyses in clinical studies to incorporate the
findings into clinical practice and thus lead a step closer to personalised dental care.

The renewed emphasis on personalised oral health therapy has driven the development of fast
advancing microbiomics towards hypothesis-based research (Nibali et al., 2020; Wei et al., 2019).
Recent studies have provided detailed insights into the composition and abundance analysis,
revealing distinct differences between health and disease states. Current research in clinical dentistry,
using conventional study methods, has demonstrated distinctions between carious and non-carious,
chronic and aggressive periodontitis, with the help of microbiome sequencing techniques (Pang et
al., 2021; Wei et al., 2019). Comparable designs are being rapidly adapted by comparing a
phenotypically healthy cohort against a diseased cohort.



1.3. Limitations in current microbiome research

Despite the flourishing publication in the field, concerns have arisen regarding the pitfall of
microbiome data interpretation, including the overestimation of clinical relevance (Kim et al., 2017;
Zaura et al., 2021). Common confounding factors in oral microbial samples include age, gender,
comorbidity, medication, body weight, diet, dental health, and oral health habits and more (Burcham
et al., 2020). The risk of overlooking bias is high in microbial studies. Hence, both readers and
clinical researchers must understand the sophisticated manner in which metagenomic data are
collected and carefully plan clinical studies based on this knowledge to avoid misinterpretation of
the results.

From a clinical perspective, numerous hurdles exist in applying appropriate methodologies for
microbial intervention studies in surgical settings. Healthcare clinicians are first faced with
inexperience when dealing with meta-bioinformatics data and vastly rely on microbial data analysis
platform services. Consequently, the risk of failing to identify bias in the data is high. Unlike
specialised microbiologists and bench workers in the field, clinicians are restricted both in subject
and sample size and thus are much limited when performing a gold standard oral microbiome study.
Under such circumstances, thorough attention to experimental design and prior knowledge of inter-
individual microbial variability should be arranged to avoid yielding experimental artefacts (Kim et
al., 2017). Clinicians must also have insight into common confounding factors in microbial samples,
which could substantially impact the outcome of microbiome analyses.

An optimised oral microbiome clinical study design begins with an understanding of the target
patient group. Most clinical research takes subject demographic and clinical characteristics into
account, yet previous microbial intervention studies have focused on measuring the change in the
microbial composition between pre- and post-intervention (Goodrich et al., 2014; Zaura et al., 2021).
In addition, the time and duration of intervention observation were selected on the basis of limited
evidence (Zaura et al., 2021). The observed subtle changes in the microbial composition may in fact
be part of the natural temporal variability of the subject. The global large-scale Human Microbiome
Project reported that the oral cavity is highly stable in between-subject diversity, similar to other
body sites (Consortium, 2012). However, a subsequent study on repeated observation of the oral
microbiome in the dorsum of the tongue revealed that the level of stability varies inter-
individually (Flores et al., 2014). Therefore, it is important to understand and assess individuals’
homeostatic range of variability in the intervention-free oral microbiome, prior to measuring the
impact of clinical intervention.



1.4. Multistability and hysteresis model

Most research designs rely on inferences derived from the incidence of increases or decreases
in microbial species levels. This type of description is referred to as bimodal (Gonze et al., 2017).
The bimodality concept involves a binary behaviour, where a species associated with healthy state
exhibits a reversible and predictable increase or decrease in its population. Before and after oral
prophylaxis, the abundance of a known species (e.g., Porphyromonas species) will decrease
substantially, thereby restoring overall health. However, the given example is self-contradictive
when considering the interactions and adaptations of the microbiota over time.

Therefore, a more relevant model was proposed to account for the dynamic balance. This model
is referred to as multistability and hysteresis (MSH) (Gonze et al., 2017; Khazaei et al., 2020). The
notion of 'multistability’ describes the capacity of a microbial community to achieve distinct stable
states, even when exposed to similar environmental conditions.‘ Hysteresis’ is a phenomenon where
the shift in the microbial composition is path-dependent, where reversing the environmental
condition that once triggered to cross a tipping point (threshold factor causing an abrupt shift e.g.,
oxygen level) is non-reversible (Faust et al., 2015). As a result, the microbial community exhibits
distinct stable states. The proposed MSH model incorporates both of these concepts.

Accounting for the MSH model, an optimal oral microbiome clinical study design, whether
observational (case-control/cohort) or interventional (clinical trial), should first involve
understanding the target subject group. However, the difficulty in establishing a healthy reference
group increases when considering variations related to niche-based, time-based, and observer effects.
Furthermore, researchers select the timing and duration of intervention or observation based on
relatively limited evidence (Zaura et al., 2021). The sampling time points may deviate from the
overall cross-sectional and longitudinal patterns. Therefore, it is essential to consider the
homeostatic range of variation between participants in the pre-interventional oral microbiome.



1.5. Research objective

In light of the aforementioned considerations, this study sought to elucidate the concept of MSH
within oral microbiome samples, focusing specifically on a healthy cohort derived from biobank-
sourced specimens. The central hypothesis was that the oral microbiome collected from the cervical
third surface of the first molar in young, disease-free individuals would exhibit a random and
variable state. This variability was considered a relevant factor for clinicians in selecting participants
for control groups in planned clinical interventions.

To simulate a clinically realistic follow-up framework, the study implemented sampling across
three time points over a 90-day period, without any intervention. Additionally, a focused comparison
between two phenotypically similar participants was conducted to explore intra-cohort variability.
The null hypothesis was that there would be no significant change in the oral microbiome
composition over time within a disease-free (healthy) community sample.



2. Materials and Methods

2.1. Study population and data collection

The study was approved and conducted in accordance with the guidelines from the Institutional
Review Board at Yonsei University Dental Hospital (Approval number: 2-2021-0050). Genomic
samples were collected from the Oral-derived bioresources for the human-derived materials biobank
located at the Yonsei University Dental Hospital, South Korea (Korea Biobank Network:
KBN4 A04).

The inclusion criteria were as follows: (i) sequential multi-period supragingival plaque
samples, (ii) taken from the marginal gingival regions of the posterior teeth, (iii) low plaque index,
(iv) individuals over 18 years old at the time of the first sample, and (v) samples collected and stored
using a consistent buffering protocol (Hallmaier-Wacker et al., 2018).

The exclusion criteria were as follows: (i) individuals over 30 years old during sample
collection, (ii) smoking, or a history of pregnancy or breastfeeding, (iii) loss of natural tooth
structure at or near the sampling site, (iv) professional dental treatment within 6 months prior to
sampling, (v) a history of chronic medication use (e.g., antibiotic therapy, probiotics) and
comorbidities (e.g. gastrointestinal issues), and (vi) inadequate or inconsistent biobank data.

Based on the outlined criteria, 33 samples were selected from 11 participants. The samples were
collected and stored using an OMNI-gene OMR-110 kit (DNA Genotek, Ottawa) in line with a
consistent processing protocol. The sample intervals were redefined as baseline (T0), one month
after (T1 =TO + 30 days), and three months after the baseline (T2 = TO + 90 days).

Among the various locations within the oral cavity, samples were collected from the first
permanent molar. This decision was based on the fact that it is the earliest permanent tooth to appear,
offering a record of an individual's past oral health and containing health information unique to the
person (Brickley et al., 2020). Additionally, a recent systematic review highlighted that the first
molar has been incorporated into the case definition and examination protocol for diagnosing
periodontitis (Albandar, 2014; Bouziane et al., 2020). In the current study, the collection of samples
was specifically focused on the first molar regions. Samples were collected from the upper and lower
first molars on the contralateral side and subsequently combined for sequencing analysis. Samples
from each individual were obtained at three different time points: TO, T1, and T2.
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<Fig 2> Study design and flow. Samples obtained from the Biobank that met the specific selection
criteria were sequenced and analysed.



2.2. 16S rRNA sequencing and data processing

The sequencing of the 16S rRNA gene was conducted at CJ BioScience Inc. (Seoul, Republic
of Korea), following the established protocol (Kim et al., 2021). In brief, DNA samples were
extracted, followed by polymerase chain reaction amplification using primers targeting the V3-V4
regions of the 16S rRNA gene. Amplicon sequencing was performed using an Illumina Miseq
Sequencing System (Illumina, CA, USA). Raw reads were processed for quality check, and low-
quality reads (<25) were filtered, followed by the merge of paired-end sequence data. Primers were
trimmed, and 16S rRNA unique reads using a similarity threshold of 97% were isolated for

16S rRNA gene:
V3-v4

taxonomy allocation based on the EzBioCloud 16S rRNA database (Yoon et al., 2017). The chimeric
. / \ Amplification ||" ||

reads were filtered out.

PCR amplification Library construction

DNA extraction

Data analysis

9000 reads

[ 20 reads .
97% 5000 reads */ Sequencing
w 8000 reads
B¢ 17 reads
Data filtering and
Taxonomic annotation Quality control

<Fig 3> General workflow of 16S rRNA sequencing. Created with BioRender.com.



2.3. Abundance profiling and diversity measurements

Downstream analyses were conducted primarily using web-based tools, except where
otherwise stated. Using the EzBioCloud platform, the microbiome data were normalised by gene
copy number (Yoon et al., 2017). Normalised gene count data were then uploaded onto the
MicrobiomeAnlayst tool for meta-analyses (Chong et al., 2020; Dhariwal et al., 2017; Yoon et al.,
2017). Relative abundance at the genus level was adjusted at a 1% cut-off, grouping those below
this threshold under the ‘Others’ category.

To observe within-subject species richness and evenness, alpha diversity was visualised using
the Chaol, Shannon and inverse Simpson indices. The Wilcoxon signed-rank test was employed for
statistical analysis, with a significance threshold of 0.05. To compare the distance matrix between
each subject and the time points, beta diversity was performed using the principal coordinate
analysis (PCoA) using the Bray-Curtis dissimilarity index (Duran-Pinedo et al., 2021). Dissimilarity
distances were then statistically analysed using permutational multivariate analysis of variance
(PERMANOVA) and analysis of similarities (ANOSIM). The -calculations involved are
comprehensively presented in Tables 1-3.

-10-



<Table 1> Description of different indices used in analysing the alpha diversity

Index

Clinical implication

Estimation of species

A higher Chaol

value suggests higher

species diversity.

A significant increase or decrease
in alpha diversity implies a shift
in species diversity, which, for the
oral microbiome, is typically
associated with deteriorating
dental or periodontal health.

A higher Shannon
value indicates
greater species

diversity, with the

maximum value
implying equal
numbers for each
species.

In an individual, a shift in species
evenness (relative abundance)
may indicate disruption in
symbiosis, i.e., suppression of
beneficial commensal bacteria
and enrichment of pathogenic
bacteria. An increase in species
richness indicates the appearance
of more species within a
community, leading to increased
species diversity, and vice versa
for decreased species richness.

Chaol richness from rare-
species counts
Estimation of species
Shannon evenness relative to
species richness
Inverse Estimation of species
Simpson  richness and evenness

A higher inverse
Simpson value
indicates greater
species diversity,
with 1 representing
no diversity.

While focusing on the dominating
(highly abundant) species in the
given sample, the characteristics

and functions of each species
should be investigated to
understand the overall clinical
effect of the shift in alpha
diversity.

- 11 -



<Table 2> Description of index used in analysing the beta diversity

Index

Clinical implication

Dissimilarity
Bray—Curtis  coefficient based on
dissimilarity the distance between

communities.

A smaller distance
suggests greater
similarity between
communities.

By observing mutual species
between communities, beta
diversity is often used to contrast
microbial shifts from point A
(e.g., before intervention) to point
B (e.g., after intervention).

Among the beta diversity indices,
the Bray—Curtis index uses
principal coordinate analysis to
visualise community dissimilarity
in terms of distance.

In a clinical study, beta diversity
helps understand intervention-
specific shifts in microbial
communities and community
variance between study subjects
or time points.

-12-



<Table 3> Description of metrics and statistics used in alpha and beta diversities

Index

Clinical implication

A non-parametric test used to
compare samples not adhering to a
normal distribution. A low p-value

suggests a significant difference

Wilcoxon
signed-rank test

between groups.

In microbiome studies, the test
compares (i) the median
variations in alpha diversity and
(ii) the proportion of core taxa or
the abundance of specific taxa
between paired study groups.

A multivariate analysis method based

PCoA visualises Beta diversity by
plotting sample clusters using a

Princi.pal on a distance matrix visualising selected matrix (e.g., Bray—Curtis
;ﬁzli;sl?sate relationships between samples by index). Closer sample points
(PCoA) reducing the high-dimensional data to indicate microbial community
a lower space. similarity based on relative
abundance.
Non-parametric test for analysing
multivariate data using a distance F and R? values compare baseline
matrix. F value is the ratio of to post-intervention data. A high
Permutational between- to within-group variation; F value indicates a strong
multiv.ariate higher values indicate greater group intervention impact on the
3::;;7:::1' distinction. R? value shows the microbiome composition. An R?
(PERMANOVA) proportional variation related to the value near 1 indicates a strong
grouping factor, with values near 1 association between intervention
implying more variation between and microbiome changes.
groups.
Non-parametric test comparing
average ranked dissimilarities within ANOSIM identifies significant
and between groups. R values near +1 differences in microbial
indicate higher dissimilarities composition among individuals,
Atm!lysi.s.of between groups, suggesting strong environments, or treatments and
zggglltllve[s) separation. A value near 0 indicates factors influencing group

no separation. Value near -1 is
uncommon, indicating higher within-
group dissimilarities, suggesting
possible sampling design issues.

variation. An R value near +1
indicates a significant difference
in community composition.

-13-



2.4. Microbiome stability analysis

The ‘Codyn’ package in RStudio (version 2021.09.0, MA, USA) was utilised to assess the
extent of temporal changes (Hallett et al., 2016). Species turnover was assessed to measure the
proportion of species appearance and disappearance, and stability was determined based on the ratio
of the temporal mean to the temporal standard deviation. Additionally, the variance ratio was
examined to contrast the community’s overall variance with the sum of individual variances, and
synchrony was assessed by comparing the variance of total species abundances to the combined
variances of each species (Duran-Pinedo et al., 2021). A detailed description of the indices used is
provided in Table 4.

- 14 -



<Table 4> Description of the different indices used in analysing species turnover and stability

Index

Clinical implication

Species
turnover

The rate of species composition changes
within a community over time,
calculated by the proportion of species
gained or lost between time points. A
higher value indicates greater
fluctuations in species composition over
time, with more species appearing and
disappearing between periods.

The species turnover metric is
valuable for examining a
microbial community’s temporal
dynamics and evaluating
intervention effects on community
structure.

Community
stability

The overall stability of a microbial
community over time, assessed by
calculating the ratio of temporal mean to
temporal standard deviation of
aggregated species abundance. A higher
value suggests a more stable community,
where the average species abundance
remains relatively constant over time, in
contrast to variations in their abundance.

The community stability metric
evaluates microbial communities'
dynamic behaviour by assessing
their stability over time. The
metric indicates the community’s
resilience in preserving its
structure and function despite
species abundance fluctuations.

Synchrony

Comparison of aggregated species
abundances with the summed variances
of individual species. The value ranges

from 0 to 1, where 0 is absolute
asynchrony and 1 is absolute synchrony.

In data showing synchrony
despite fluctuations in individual
species numbers, total community
stability is maintained through the

loss of one species compensated
by the gain of another. In contrast,
asynchrony is associated with
community perturbations.

Variance

Patterns of species covariance based on
comparing community variance to
summed individual species variance. A
value less than 1 suggests negative
species covariance, whereas a value
greater than 1 suggests positive species
covariance.

In positive covariance data,
despite fluctuations in species
numbers, community stability is
maintained as species loss by one
is offset by another's gain.
Conversely, negative covariance
is linked to community
perturbations.

-15-



2.5. Clustering and biomarker comparisons

Temporal dynamics were investigated by clustering the data according to species abundance
profiles. The trajectories of the species were organised using the method detailed in Arumugam et
al., which formulates the concept of enterotypes for the gut microbiome (Arumugam et al., 2011).
The concept can be applied similarly to as stomatotype for the oral microbiome (Willis et al., 2018).

In brief, normalised genus abundance profiles were organised and clustered using the Jensen-
Shannon divergence distance in conjunction with the partitioning around medoids clustering
algorithm (cluster library) (Maechler, 2019). The Calinski-Harabasz index was employed to
determine the optimal number of clusters. Ultimately, the statistical significance of the optimal
clustering was verified using the silhouette coefficient. The full algorithm and its explanations are
comprehensively outlined in the online tutorial (http://enterotype.embl.de), which was followed
precisely without any alterations (Arumugam et al., 2014; Arumugam M, 2014).

Biomarkers were compared across clusters to identify taxa associated with variability between
the clustered groups. Functional biomarkers were assessed using the Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States (PICRUSt) (Avolio et al., 2015). Significant
differences were determined using a Linear Discriminant Analysis Effect Size (LEfSe) with a
threshold linear discriminant analysis (LDA) score >2.0 (Segata et al., 2011). For brevity, only the
abbreviation ‘LDA’ is used within the table cells in Table 6. The results were subsequently mapped
against the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database to interpret the metabolic
functions of the microbial community. For brevity, only the abbreviation ‘KEGG’ is used within the
table cells in Table 6.

Lastly, to demonstrate periodic variation within similar phenotypes, datasets from two
representative subjects were compared. A comparable analysis was conducted to emphasise the
turnover pattern and depict proportional differences at the genus level using the Statistical Analysis
of Metagenomic Profiles (STAMP) with false discovery rate (FDR)-corrected g-values (Parks &
Beiko, 2010). For brevity, only the abbreviation ‘FDR’ is used within the table cells in Table 6. The
descriptions of the indices and calculations involved are comprehensively presented in Tables 5 and
6.
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<Table 5> Description of stomatotype clustering and biomarker analysis

Index Clinical implication
L While numerous clinical
Categorising . . . .
o . studies categorise subjects into
individuals into
groups such as healthy versus
groups based on .
. . diseased or pre- versus post-
Clustering similar oral . . .
. . intervention, categorisation
microbial . .
. based on microbial similarity
community profiles . ;
(stomatotype) is also frequently employed in
P human microbiome research.
The optimal aim of an oral
Identification of microbiome study is to
. metabolic pathways  pinpoint key species associated
Functional . P . ys PP . Y p . .
. associated with with the clinical state in
biomarker ;
. highly abundant
analysis

question (e.g., healthy
periodontium, progressed
periodontitis) using functional
biomarker analysis.

species (or genera)
in a community.
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<Table 6> Description of metrics and indices used in clustering and biomarker analysis

Index

Clinical implication

Jensen-Shannon
divergence
distance (JSD)

Symmetric distance metric to
compare probability distributions,
where 0 indicates an identical
distribution and higher values
indicates greater differences.

JSD identifies microbial shifts and clusters
samples by microbial compositions.
Calculating JSD at different time points
allows researchers to track community
composition changes over time.

Calinski-Harabasz
(CH)

Cluster validity index to assess

clustering quality, particularly

when determining the optimal
number of clusters.

CH index is used to cluster samples with
similar microbial compositions, potentially
reflecting distinct health states. The index

also prevents over- or under-clustering.

Silhouette
coefficient

Metric evaluating clustering
quality. A higher Silhouette
coefficient indicates data points
are more closely grouped within
their clusters and further from
other clusters.

Silhouette coefficient evaluates the quality
of microbial-based clustering algorithms.
When clustering oral microbiome samples,
a high value suggests successfully
identified distinct and well-separated
stomatotypes.

Phylogenetic
investigation of
communities by
reconstruction of
unobserved states

Bioinformatics tool to predict the
functional profiles of microbial
communities from marker gene

data, primarily 16S rRNA

PICRUSt provides a functional snapshot
of a microbial community based on its
taxonomic composition, which is valuable
for understanding the metabolic
capabilities of uncultivated species. It is

sequencing. commonly used with the KEGG database
(PICRUSY) .
of genes and metabolic pathways.
. - . Sy LEfSe identifies statisticall
Linear Bioinformatics tool to identify biolo fiiffezi;t;iits ae;soifl?c ?ezrtll(lires
discriminant biomarkers that significantly glealy g

analysis effect size
(LEfSe)

characterise differences between
groups in microbiome data.

between sample groups. Features over the
threshold score of 2.0 LDA are indicated
as significantly different.

Statistical analysis
of metagenomic
profiles

(STAMP)

A software platform for
statistically analysing taxonomic
and functional profiles of
metagenomic data in microbiome
analysis.

STAMP compare sample groups and
identify significant microbial differences.
Due to the high risk of false positives in
microbiome studies, an FDR corrected
g-value is used to represent the expected
proportion of false discoveries among
significant features.
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3. Results

3.1. Subject demographics

Using the Wilcoxon signed-rank test, a pairwise comparison of the Silness & Loe plaque index
data showed no significant differences (p >0.05) between the time points. All participants were fully
dentate, with no restorations on the first molar (the area of interest). Likewise, all participants shared
the same racial and geographical background.

<Table 7> Subject demographic characteristics

Demographic feature

Age in years (range) 25.8 +1.73 (23-28)
Gender, n (%)

Male 3(27.3)

Female 8(72.7)

Silness & Loe Plaque index

TO 0.39+0.27
Tl 0.39+£0.20
T2 0.44+0.19

Pairwise comparison (p-value)

TO-T1 0.937
TO -T2 0.527
T1-T2 0.240
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3.2. Abundance profiling

The abundance distributions for all samples across the three time points, categorised at the
genus level, is depicted in Fig 4. The microbial composition of the study population at phylum level
(Fig 5a) and genus level (Fig 5b) remained consistent from TO to T2, suggesting a comparable
community composition across the three time points. At the phylum level, Actinobacteria were found
to be the most abundant at every sampling point. Initially, at TO, Proteobacteria were more prevalent
than Firmicutes, but this trend reversed at T1 and T2, with the difference remaining under 5%. At
the genus level, the sequence of the most prevalent taxa remained consistent across the three time
points, with Rothia, Prevotella, and Haemophilus leading in abundance.
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<Fig 4> Relative abundance distribution. Variations among individuals at three different time points, aggregated at the genus level.
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3.3. Alpha diversity measurements

The analysis comparing the Chaol and the inverse Simpson index over different time points
revealed no statistically significant differences. The Shannon index presented a significant increase
at both T1 (p = 0.021) and T2 (p = 0.041) (Fig 6a). Conversely, the initial difference was not
statistically significant (p = 0.306, Fig 7).

Fig 6b illustrates the subject-level variation by indicating the TO results with a traced line. Any
divergence from this line represents a degree of fluctuation in the within-participant alpha diversity.
The comparison at the subject-level revealed differences in the pattern across TO, T1, and T2, with
some participants (e.g., C1, C2) exhibiting less variation in diversity compared to others (e.g., C3,
C9).
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<Fig 6> Alpha diversity metrics. (a) Box plot of Chaol, Shannon, and inverse Simpson indices of

all samples in three different time groups. The boxes cover the range from the first to the third

quartiles, with the horizontal lines inside indicating the median, while the dots show all samples at

each time point. Pairwise comparison is performed using the non-parametric Wilcoxon test, with the

p-values provided. (b) Profiles of the three diversity measures for the individual participants.
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3.4. Patterns of dissimilarity and stability within the cohort

Beta-diversity metrics highlight the dissimilarity in abundance at the community level. The
distance matrix, when visualised through PCoA, shows the dissimilarities between two samples as
dots. The analyses based on time points (Fig 8a) showed a significant overlap in diversity, suggesting
a certain level of similarity. Conversely, when examining the metric at the level of individual
participants (Fig 8b), a substantial degree of variation emerged. The Bray—Curtis dissimilarity index
demonstrated statistical significance (p < 0.001), analysed with multivariate ANOSIM (R = 0.745)
and (R>=0.64, F =3.8).

In the analysis of community stability, a significant negative correlation—ranging from
medium to strong—was identified with both synchrony (Fig 9a: r =—-0.739; p = 0.009) and variance
(Fig 9b: r = —0.605; p = 0.048). This indicates that higher community stability is linked to reduced

synchrony and more substantial negative covariance.
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<Fig 8> Beta diversity of microbial communities. Principal coordinate analysis with the Bray-Curtis dissimilarity distance was utilised

to conduct multidimensional ordination for (a) time point-based and (b) participant-based analyses, by calculating the mean distance of

individual groups from their respective group centroids.
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3.5. Stomatotype cluster variation across time

The participant-based clustering approach produced three distinct groups, which were unevenly
distributed in terms of participant numbers and showed inconsistency from TO to T2 (Fig 10). These
participant clusters exhibited differences in their microbial compositions, particularly in taxa with

high and low abundance.

Taxonomic biomarkers were identified to determine the key species or higher taxa that
exhibited significant variation (LDA > 2.0) among the three clusters (Fig 11). Genera such as
Neisseria, Acinetobacter, and Moryella, along with species such as Blautia and Capnocytophaga,
were predominant in one of the clusters. In terms of functional biomarker analysis, 11 metabolic

pathways exhibited significant variations between the clusters (Fig 12).
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Cluster pattern

<Fig 10> Participants’ microbial-based clustering. Stomatotypes are computed using the Jensen-Shannon Divergence metric at three

different time points (TO0, T1, and T2).
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<Fig 11> Taxonomic biomarkers. The biomarkers were used to ascertain the representative species or higher taxa that varied significantly

(LDA > 2.0) between the three clusters. The time points are arranged from left to right, from TO to T2.
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3.6. Periodic variation within similar phenotypes

According to the clinical data and species turnover rate depicted in Fig 13, subjects C1 and C6
were similar in terms of overall species turnover rate and community stability metrics, in addition
to sharing comparable demographic characteristics clinically. However, the rates of appearance and
disappearance varied between the two individuals (Fig 14). Both participants showed an uneven

distribution of taxa, with each having unique patterns of dominant taxa (Fig 15).

Through proportional-difference analysis, the appearance and disappearance patterns of
significant taxa with fluctuating differences were identified (Fig 16). At T2, the most substantial
range of differences is highlighted by notable variations in Saccharimonas and PAC000677 g, which

correspond to the turnover trend depicted in Fig 14.

Microbial taxa that significantly contribute to variation in community composition among
participants at all time points were identified using similarity percentage (SIMPER) analysis. These
taxa collectively contributed to a dissimilarity of 49.11%, with the Haemophilus parainfluenzae
group and Rothia dentocariosa accounting for a significant proportion (Table 8). Variations at the
KEGG metabolism level were observed through functional analysis, with markers for carbohydrate

and amino acid metabolism pathways being relatively more prominent in C1 compared to C6 (Fig
17).
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<Table 8 > SIMPERY analysis between the two representative participants. C1 and C6 showing an

average dissimilarity of 49.11%.

Taxon Average dissimilarity Contribution (%)
Haemophilus parainfluenzae group 12.18 24.79
Rothia dentocariosa 5.076 10.34
Rothia aeria 3.938 8.019
Actinomyces viscosus group 3.447 7.018
Streptococcus pneumoniae group 2.414 4916
Streptococcus sanguinis group 2.162 4.403
Actinomyces naeslundii 1.924 3.917
Veillonella dispar 1.289 2.625
Lautropia mirabilis 1.089 2.216

Y The SIMPER analysis quantifies the relative contribution of each taxon to the overall dissimilarity between

groups using the Bray—Curtis dissimilarity index.
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were identified with an LDA effect size > 2.0.
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4. Discussion

The concept of a healthy cohort has gained importance, largely due to the widely accepted
understanding that there are substantial variations among individuals. The empirically established
sampling intervals with a schedule of 1-month and 3-month follow-ups were designed to closely
mimic standard research setting that includes a healthy reference cohort. The results of this study
indicate that the healthy cohort exhibits notable differences in the microbiome profile of samples

collected at various times, suggesting variation in the state of microbial stability.

The sampled cohort exhibited similar behaviour in terms of population richness and evenness.
Nonetheless, the notable variations in the Shannon index suggest bio-interactions at the species level.
The evidence of microbial interaction was further highlighted in the participant-wise index pattern,
and a pronounced contrast to the phenotypic (clinical) selection criteria became apparent when
examining the changes over three distinct time points. Additionally, a broader range of intra-
individual variability was evidenced, particularly concerning the Shannon diversity index measured
around TO. The observations described above align closely with the pioneering discoveries from the
Human Microbiome Project (Consortium, 2012). Likewise, Sato et al. reported a significant
variation in samples collected from healthy adults both on consecutive days and within the same
day (Sato et al., 2015). These collective findings conclusively show that the health-associated
microbiome exhibits varying degrees of stability over time. Furthermore, these findings are
consistent with previous studies confirming the existence of a core microbiome within individuals

(Zaura et al., 2009).

These time-dependent fluctuations raise significant concerns when the principle with increased
variability within an individual’s microbiome serves as an indicator of dysbiosis (Altabtbaei et al.,
2021; Zaneveld et al., 2017). In this research, both PERMANOVA and ANOSIM demonstrated
statistically significant differences in participant-based analyses, indicating substantial variation

within the cohort, i.e., suggesting a higher likelihood of dysbiosis. Consequently, the variability in
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the diversity metric found within participants poses a challenge to the concept of a healthy cohort,

which is associated with a state of eubiosis.

To identify patterns of variation from TO to T2 within the study cohort, correlations were
examined using a stability metric based on ecological indices (Hallett et al., 2016; Loreau & de
Mazancourt, 2008). Regardless of their net abundance, unstable species with high turnover rates
have been observed to uphold community states in fluctuating communities (Duran-Pinedo et al.,
2021). The stability of a community is influenced by the interaction of its constituent elements. To
evaluate this stability, metrics like variance and synchrony are utilised. The variance ratio serves as
a tool for comparing community variance with the variance derived from the sum of individual
populations (Duran-Pinedo et al., 2021). The synchrony metric evaluates the aggregated abundance
of species in relation to the sum of individual species variances (Loreau & de Mazancourt, 2008).
Analytically, microbial community states exhibit a pattern of negative covariance or asynchrony
when assessed for stability over time (Yachi & Loreau, 1999). In this study, a significant portion of
participants demonstrated notably low levels of synchrony (<0.4, asynchrony to synchrony scale
ranging from 0 to 1). Furthermore, the study identified a moderate to strong negative correlation
pattern, indicating an inverse relationship with stability (Duran-Pinedo et al., 2021). Consequently,
these findings suggest the existence of an alternative state of balance among the cohort participants,
indicating the presence of unstable species. In the present study, a baseline was established by
selecting participants who had not received any oral prophylaxis treatment for at least six months.
Nevertheless, it is important to acknowledge that the effects of prior professional oral hygiene
treatments cannot be completely overlooked. As a result, the presence of unstable species may have

been influenced by these earlier treatments.

A cluster model was implemented to categorise taxa into stomatotypes and explore distribution
similarity. As a characteristic feature of a stable community, taxa clustering is expected to result in
a reproducible pattern (Duran-Pinedo et al., 2021; Sato et al., 2015). Such characteristic responses
to clustering are associated with low inherent variation within an individual. Nevertheless, the
concept is contradicted by the observed significant variations in (i) clustering patterns, (ii)
biomarkers, and (iii) metabolic indicators. The inconsistency in cluster reproducibility stands in

contrast to the findings for a healthy cohort, as concluded by Sato et al (Sato et al., 2015). However,
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these discrepancies may also stem from the relatively extended sampling intervals examined in this
study, thereby underscoring the significant impact of time as a factor influencing the stability of the

community state.

Despite the variations over time, it is thought that overall stability can be sustained when the
increase in one species balances out the decline in another (Hallett et al., 2016). Earlier research on
microbiomes has identified temporal fluctuations as a ubiquitous and essential element in
maintaining the stability of the overall community (Hooper et al., 2005; Loreau, 2000; Loreau et al.,
2001; McCann, 2000; McNaughton, 1977). In essence, temporal fluctuations and asynchronous
patterns observed over time are natural occurrences contributing towards stabilising microbial
communities. Yet, significant stress can trigger a change in the stomatotype (clustering pattern),

thereby leading to an alternative state (Vandeputte et al., 2021).

The shift in stability is most evidently illustrated through temporal analysis. The example cases
highlighted in this study demonstrate a pattern between two individuals who, based on clinical
parameters, would typically be classified within a healthy group in a clinical study. Nevertheless,
the comparison of the turnover metric between the two individuals revealed a contrasting trend in
the number of taxonomic units that gained (appearance) and lost (disappearance). Abundance
profiling highlighted the variations, showing a distinct set of dominant genera between the two
participants throughout the entire time points. Collectively, they exhibited a dissimilarity of 49.11%
(SIMPER, Table 8). In addition, the turnover metrics effect was expressed in a significant disparity
in proportions, with an effect size greater than 5. At the initial time point, T0, the 99.9% confidence
intervals showed a difference in proportions within a 60% range, which decreased to 40% by T1.
While the genus Leptotrichia was more abundant in subject C6 at the TO timepoint, over 20%
increase in its proportion was observed in subject C1 at the T1 timepoint. While genera Rothia,
Fusobacterium, and Saccharimonas maintain similar proportions at each of the three time points,
Saccharimonas and PAC000677 g exhibit a marked change in variation. In essence, there is a
probable pattern of shifts in the community state, where distinct stable states are characterised by

varying dominant species.
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Alterations in a stable state are influenced by multiple factors, including the role of microbial
metabolic interactions. Distinctions at the KEGG metabolism level were detected, with markers for
carbohydrate and amino acid metabolism pathways being relatively more pronounced in Cl
compared with C6 (Fig 16). A recent investigation utilising genome-scale mathematical modelling
yielded definitive findings. Alterations to oxygen and nutrient conditions resulted in a noticeable
shift in metabolism. This metabolic shift was then followed by modifications in the expression of
related genes, ultimately leading to multiple stable states. Likewise, a recent study utilising genome-
scale mathematical modelling has yielded definitive findings. Changes in oxygen and nutrient
environments caused a distinct alteration in metabolic processes. This metabolic shift was then
followed by modifications in the expression of associated genes, ultimately resulting in the
formation of multiple stable states. The necessity of investigating the role of MSH in microbiome
dynamics independent of otherwise simplistic causation correlations was emphasised by Khazaei et
al (Khazaei et al., 2020). Based on the aforementioned points, it can be inferred that even in a state
of health, individuals may exhibit variability, with each person exhibiting distinct stable states with
minor differences in the dominant species. These variations within individuals appear to remain

consistent longitudinally.

It can be concluded that while the phenotype appears clinically healthy, the intermediate states
of the microbiome may be on the verge of transitioning into a disease state. Stable states can
encounter triggering events, whether favourable or unfavourable, that may result in a sudden change.
Therefore, a single sampling event in a study could reflect a temporary condition, potentially leading
to an inaccurate estimation of eubiosis or dysbiosis. In the context of this study, transitioning the
baseline point to T1 (instead of TO) could result in a markedly different interpretation, as evidenced
by variations in stomatotyping. Thus, a new stable state or reversal between states can only occur if
a stimulus exceeds the trigger threshold. In the context of this study, transitioning the baseline from
TO to T1 might lead to a notably different interpretation, as evidenced by changes in stomatotyping.
Thus, a new equilibrium or a shift between states can only be achieved if the stimulus surpasses the
trigger threshold. Analysis of samples that are in a transitional state, though considered as standard
healthy, can introduce bias due to locational effects (illustrated as points 1, 2, and 3 as initiation

points in Fig 17) (Zaneveld et al., 2017)
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leading to the development of a multi-stable community. Within similar environmental conditions, different stable states are adopted.
State changes are precipitated by trigger events, whether environmental or therapeutic, that exert abrupt changes. The system transitions
across a tipping point (black stars), and changes may not fully revert (hysteresis). Markers 1, 2, and 3 illustrate three potential scenarios
for the initiation of a study, each offering distinct perspectives in cross-sectional and longitudinal analyses.
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In summary, the findings of this study imply that when designing an oral microbiome study,
relying solely on phenotypic screening may be insufficient as the confounding factors extend beyond
the basic characteristics of the subjects (Zaura et al., 2021). Conducting a genomic screening phase
will aid in characterising the homeostatic range of the cohort and objectively stratifying participants
based on relevant microbial features. This approach will be particularly valuable for identifying
disease-associated strains and supporting the development of customised treatment strategies.
Genomic screening also plays a crucial role in accounting for interpersonal variation and will
become increasingly important in precision analysis of individual genotype—phenotype relationships
(Vandeputte et al., 2021). Collectively, these efforts will improve the quality of oral microbiome
research to pinpoint diagnostic and therapeutic markers. Another crucial aspect of intervention and
follow-up research is incorporating a ‘false start’. This strategy not only helps to counteract the
observer effect but also supports the development of an adaptational equilibrium over time, which
is essential for determining an accurate baseline (Zaura et al., 2021). While there is currently a lack
of substantial evidence on the precise number of visits required to achieve equilibrium, it is advisable
to collect replicate samples prior to the intervention phase. These replicate samples are valuable for

evaluating an individual’s natural temporal stability and for making comparisons post-intervention.

While this study offered an in-depth examination of data based on time and participants, the
reliance on web-based tools for analysis can present a fundamental limitation. Additionally, sourcing
samples from the biobank posed challenges concerning the availability of concurring sample counts
and the duration of the assessment period. Lastly, comparison of associative phenotype patterns was
not possible due to the limited host metadata available for the samples. While it was possible to
screen participant metadata for medication use, factors related to lifestyle, such as the type of
toothpaste and dietary components, could not be fully considered (Adams et al., 2017). As a result,
the small sample size and the lack of comprehensive host metadata does not allow for a
generalisation of the findings from this study. A future investigation incorporating repeated
sampling over an extended period will enhance the understanding of MSH in the oral microbiome

and aid in the establishment of guiding criteria for selecting healthy cohorts in dental clinical studies.
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5. Conclusion

This study evaluated the homeostatic range of stability observed within the oral microbiome of
young, disease-free individuals across three time points. Establishing a microbial reference for a
healthy cohort is pivotal when designing comparative clinical research exploring health versus
disease states or when conducting observational case studies. The findings from this study indicate
variations in taxonomic profiles, diversity, and community stability over time within a clinically

healthy group.

By applying metrics such as variance and synchrony, this study revealed the existence of
temporal variability among participants. Stomatotype clustering analysis further identified
meaningful differences in clustering patterns and taxonomic biomarkers across the sampled time
points. These findings substantiate the applicability of the multistability hypothesis, which posits
that temporal shifts and asynchronous patterns that emerge over time are natural phenomena

contributing to the stabilisation of the oral microbiome.

The null hypothesis that there would be no significant difference in the oral microbiome data
at each time point, was therefore rejected. The observed temporal differences in microbial
community structure and functional potential suggest that even in the absence of clinical intervention

or disease, the oral microbiome exhibits variability over time.

In conclusion, for dental clinical research to generate meaningful and generalisable microbial
references, the inherent variability and multi-stable nature of the pre-intervention oral microbiome
must be carefully considered. The notion of static microbial baseline of health may not adequately
capture the natural fluctuations observed even in clinically healthy individuals. Acknowledging such
variability has important implications for refining study design and developing a more detailed

comprehension understanding of microbial health in both clinical and research settings.
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