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ABSTRACT 

 
Genomic Analysis and Lineage Tracing  

Using Two Sequencing Platforms 
 

Recent studies have revealed the occurrence of somatic mosaicism in human organisms, where 
genetically distinct cells coexist due to somatic mutations during cell division in early development 
or later in life. Each cell, with its unique combination of mutations, acts as a genetic barcode for 
lineage tracing. This discovery provides important clues for tracing the developmental origin of cells 
and understanding the origins and progression of cancer. 
In this study, I compared and analyzed Illumina, the most widely used sequencing platform to date, 

and Ultima Genomics, which has recently attracted attention as a wafer-based sequencing 
technology, for the purpose of tracing this lineage. To identify cell lineages from zygote 
differentiation to adulthood, postmortem tissue samples were utilized. After collecting tissues from 
the anterior left and anterior right legs, I secured enough DNA through primary cell culture and 
single-cell clone expansion and applied a protocol that considered the characteristics of each cell 
type to generate high-quality whole-genome data.  
Data were generated on both Illumina and Ultima Genomics platforms, followed by a comparative 

analysis of their quality and mutation detection performance. Statistical quality evaluation was 
performed based on indicators such as base-by-base error rate, reference genome coverage, and the 
percentage of reads remaining after removal of PCR duplicate reads. In addition, various genomic 
mutations such as SNVs, INDELs, CNVs, and SVs were detected and analyzed to perform a 
comparison between platforms. Furthermore, the annotation of genomic mutations, including BRCA 
mutations, and their clinical significance were evaluated to examine practical applicability.  
Finally, we evaluated the fidelity with which the new technology reproduces existing lineage 

tracing methods by identifying major and minor cell branches based on previously reported early 
embryonic mutations and analyzing cell-specific somatic mutations. This study is expected to 
provide a basis for selecting sequencing technologies in future studies of somatic mosaicism and 
disease occurrence. 
 
 
 

                                                                                

Key words : Somatic mosaicism, Somatic mutations, Lineage tracing, Whole Genome 
Sequencing (WGS), Next-generation sequencing (NGS), Illumina, Ultima genomics, 
Development, Embryogenesis. 
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1. INTRODUCTION 
1.1 Somatic Mosaicism and Its Implications for Lineage Tracing 
 Somatic mosaicism refers to the phenomenon in which multiple cells with different genetic 
characteristics coexist within the same organism due to somatic mutations that occur during cell 
division in early development or later in life. [1] In the past, it was thought that all cells in 
multicellular organisms, including humans, shared the same genetic information. However, all cells 
originate from the same zygote, but over time, different genetic mutations accumulate in individual 
cells, forming genetic heterogeneity within the organism. However, recent advances in single-cell 
genome analysis and ultra-high-resolution sequencing technologies have revealed that genetic 
diversity can exist between cells in both normal and tumor tissues [1, 2]. These technological 
advances are highlighting the importance of studying somatic mosaicism to understand not only 
biological development but also the initiation and progression of diseases such as cancer [3]. 
 In particular, recent studies have attempted to reconstruct the cell lineage formed during human 
development by analyzing somatic mutations in postmortem human tissues. [4, 5] These studies 
provide a powerful approach to indirectly reconstruct early developmental stages that are difficult 
to access in living organisms and suggest new possibilities for restoring the entire human 
developmental lineage based on developmental traces retained in postnatal tissues. 
 The core concept of these studies is that somatic mutations accumulated by cells during 
development serve as a genetic barcode [3, 6]. When mutations occur during the repeated divisions 
of the fertilized egg to create new cells, those mutations are passed on to all descendant cells. As a 
result, each cell has a different combination of mutations, and the pattern of mutations shared only 
by a specific cell population acts as a unique fingerprint that reveals the developmental path of each 
cell. 
 These genetic barcodes provide quantitative information about the timing of mutation occurrence 
beyond the mere presence of mutations. For example, a mutation occurring in one cell during the 
two-cell stage of a fertilized egg will be observed in approximately 50% of all cells, with a variant 
allele frequency (VAF) of approximately 50%. If the mutation occurs at the 4-cell or 8-cell stage, 
the VAF decreases to approximately 25% and 12.5%, respectively. Since these VAF values indirectly 
reflect the timing of lineage branching along the developmental time axis, they serve as key 
indicators for reconstructing the cell lineage tree with spatial and temporal precision [3, 7, 8]. 
 This lineage tracing method based on somatic mutations is highly useful for understanding the 
origins of normal tissue development and identifying the cells from which diseases such as cancer 
originate. Its research value is expanding as a powerful tool for analyzing and quantifying lineage 
structures among cells in various physiological and pathological processes, including tumor clonal 
expansion, tissue regeneration, degeneration, and aging [1, 3, 8, 9]. 
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1.2 Lineage Tracing Studies Enabled by Next-Generation Sequencing 
(NGS) 

Mutation analysis for somatic mosaicism is mostly performed using Next-Generation Sequencing 
(NGS) technology. This process involves extracting DNA from each cell or group of cells, decoding 
the base sequence, mapping it to the reference genome, and analyzing the differences (variant calling) 
to detect mutations. This sequencing plays a key role in identifying the location and frequency of 
somatic mutations, and in inferring their timing and the cell lineage structure. There are three main 
sequencing strategies used in somatic mosaicism research [1, 3]. 
 The first is the bulk sequencing method, which mixes DNA extracted from multiple cells into one 
sample and analyzes it. This method is relatively inexpensive and simple; however, as analysis is 
performed on a mixture of various clones, mutations present in a low proportion of cells may be 
difficult to detect due to low VAF. For example, if only 12.5% of all cells carry a specific mutation, 
theoretically the mutation will appear at a VAF of about 6%, and due to technical limitations, 
mutations in less than 5% of the cell population are likely to go undetected due to background noise 
[8]. 
 The second strategy is single-cell sequencing. This method isolates individual cells and performs 
sequencing independently, allowing direct identification of somatic mutations that exist only in 
specific cells [2, 7]. However, the very limited amount of DNA obtained from a single cell 
necessitates whole genome amplification. Potential coverage bias or allelic dropout during this 
process may hinder interpretation accuracy, and there are also limitations in technical complexity 
and cost. Nevertheless, recent technological advancements are gradually overcoming these 
challenges [9]. 
 The third strategy is based on clonal expansion. In this method, single cells are selected, and their 
daughter cells with identical genetic characteristics are sufficiently expanded through cell culture, 
after which bulk sequencing is performed on this expanded population. This strategy combines the 
sensitivity of single-cell analysis with the stability of bulk analysis and allows identification of 
mutations in a single cell at high resolution. It provides stable genome coverage and is considered a 
suitable method for somatic mosaicism research because it enables high-precision lineage tracing [4, 
5]. However, distinguishing artifacts that may arise during cell culture from original somatic 
mutations remains a challenge [10, 11]. 
 In this study, I adopted whole genome sequencing based on clonal expansion among these three 
strategies and conducted our analysis accordingly. I secured clones derived from single cells and 
analyzed their genomes to detect somatic mutations with high sensitivity. Furthermore, I aimed to 
infer lineage structures based on genetic similarities and differences among the clones. This 
approach serves as an effective analytical framework for reconstructing cell branching processes in 
the early stages of development and for increasing the precision of cell lineage tracing [6]. 
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1.3 Expansion of Lineage Tracing Through the Adoption of Emerging 
Sequencing Platforms 

Next-generation sequencing (NGS) is one of the core technologies that have driven the rapid 
advancement of genome research by providing significantly higher throughput than conventional 
Sanger sequencing [12]. NGS enables the high-speed acquisition of sequence information at the 
whole-genome level, facilitating precise genome interpretation such as genetic mutation analysis, 
gene expression studies, and cell lineage tracing [13, 14]. 
 The most widely used NGS platform to date is the Illumina system, which adopts the sequencing-
by-synthesis (SBS) method. Illumina's sequencing process begins with fragmenting sample DNA 
into small pieces, followed by attaching each fragment to an adapter fixed on a flow cell to form 
clusters. Then, fluorescently labeled nucleotides are incorporated one by one, and the fluorescent 
signals emitted during base incorporation are detected by a high-resolution camera to decode the 
sequence. This method ensures high accuracy and consistency and has been established as a standard 
technology in numerous genome analysis studies to date [15]. However, the requirement for repeated 
cycles of incorporation, signal capture, and imaging for each base limits sequencing speed and cost-
efficiency. Additionally, its reliance on complex optical equipment is considered a disadvantage [16]. 
Meanwhile, Ultima Genomics has recently gained attention as a new sequencing technology 
designed to overcome these limitations of Illumina. Ultima employs a non-optical, flow-based 
sequencing method, which eliminates fluorescence-based image analysis and simplifies the overall 
process. In this method, DNA is amplified and immobilized on a wafer disk, and solutions containing 
each nucleotide type (dNTP) are sequentially flowed across the surface. When a nucleotide binds to 
DNA, a specific chemical reaction occurs, and the presence or absence of this reaction is used to 
detect nucleotide incorporation. By omitting fluorescence-based detection, this method offers 
significant advantages in sequencing speed, cost, and instrumentation simplicity. 
 In this study, based on the two platforms introduced above—Illumina and Ultima Genomics—I 
aim to compare and analyze the differences in sequencing characteristics and results under identical 
analytical conditions. Through this comparison, I seek to evaluate the applicability and performance 
of newly introduced sequencing technologies and to provide practical criteria for selecting the 
optimal platform in future somatic mosaicism-based lineage tracing and mutation detection studies 
[17]. 

In lineage tracing studies, the choice of sequencing method directly influences the resolution, 
scalability, and cost-efficiency of the analysis [9]. For instance, in conventional bulk sequencing-
based lineage tracing, studies are typically conducted using a relatively small number of samples, 
ranging from as few as 3–5 to around 10–20 datasets. While this approach allows for an overall 
estimation of clonal structures and the identification of shared mutations, it has limitations in 
resolving fine-scale lineage relationships, particularly when rare subclones are present [18]. 
 By contrast, studies utilizing single-cell clonal expansion methods have demonstrated significantly 
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higher resolution in reconstructing cell lineage trees. These studies often rely on sequencing 100 to 
200 or more individual clones derived from single cells, and recent advances in cell culture and 
amplification protocols have enabled even larger-scale experiments [5]. Such approaches have been 
shown to capture early postzygotic mutations and to uncover the branching architecture of human 
development with greater precision [6]. However, the increase in sample throughput inevitably leads 
to a corresponding rise in sequencing costs and processing time. 
 In this context, the emergence of Ultima Genomics, a cost-effective, non-optical sequencing 
platform, provides an excellent opportunity for large-scale lineage tracing studies. Ultima Genomics 
simplifies the configuration of the sequencer instrument through flow-based sequencing chemistry, 
significantly improves sequencing speed, and dramatically reduces costs, and is attracting attention 
as a platform suitable for high-throughput analysis requiring hundreds of clone samples [17, 19]. In 
particular, with the recent advancement of sequencing technology, the cost of whole-genome 
sequencing has decreased to about $200 for Illumina's NovaSeq X platform and about $100 for 
Ultima Genomics, significantly increasing the feasibility of large-scale somatic mosaic studies. [20] 
Considering this potential, this study aimed to evaluate how applicable the Ultima Genomics 
platform is compared to the widely used Illumina system. 
 This study addresses three primary objectives. First, I compare the core technological differences 
and operational characteristics of Illumina and Ultima Genomics, focusing on their sequencing 
principles, performance, and platform requirements. Second, I investigate the respective strengths 
and limitations of these platforms when applied to genome analysis and somatic lineage tracing, 
considering factors such as variant detection sensitivity, data quality, and scalability. Finally, based 
on experimental data generated from both platforms, I evaluate the feasibility of adopting a new 
sequencing platform—specifically Ultima Genomics—for high-resolution lineage reconstruction. 
By departing from the conventional single-platform paradigm and exploring the integration of 
distinct sequencing technologies, this study aims to propose a more accurate, scalable, and cost-
effective framework for future somatic mosaicism–based lineage tracing research [4, 9]. 
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2. MATERIALS AND METHODS 
2.1 Primary Culture of Skin from Postmortem Body 

Skin tissues were harvested from the anterior regions of both left and right legs of postmortem 
human donors within 24 hours of death (Figure 1B). Upon collection, dermal tissues were rinsed 
twice with phosphate-buffered saline (PBS) under sterile conditions. Enzymatic dissociation was 
performed using a collagenase-dispase (CD) solution (1 mg/mL in PBS) at 37°C for 4–6 hours. 
Following digestion, tissues were neutralized with culture medium (20% FBS DMEM), trimmed to 
remove residual adipose and vascular components, and cut into fragments of approximately 2–3 mm 
in diameter. The tissue fragments then were transferred to collagen I-coated 24-well plates (Corning 
BioCoat), with each well containing 200 µL of pre-warmed culture medium. Cultures were 
maintained in a humidified incubator at 37°C with 5% CO₂. The culture medium—Dulbecco’s 
Modified Eagle Medium (DMEM) low glucose supplemented with 20% fetal bovine serum (FBS), 
100 IU/mL penicillin, 100 µg/mL streptomycin, 2 mM L-glutamine, and 1 µg/mL amphotericin B 
(Fungizone; all from Gibco)—was replaced every four days to remove floating debris and non-
adherent cells. Fibroblasts typically migrated out of the tissue fragments and proliferated over the 
course of ~2 weeks. Once confluency was reached, cells were passaged into larger culture vessels 
(60-mm or 100-mm dishes) for further expansion (Figure 1A). 
 

2.2 Single-cell Clonal Expansion 
Single-cell clonal expansion was conducted from primary cultures of skin dermis using 

fluorescence-activated cell sorting (FACS). Subconfluent fibroblast cultures were enzymatically 
dissociated using TrypLE Express (Gibco), and the resulting cell suspensions were passed through 
a 40-µm cell strainer (SPL) to ensure single-cellularity. Cells were sorted using a FACSAria II cell 
sorter (BD Biosciences) directly into 96-well culture plates (Corning), without any fluorescent 
staining. Plates were visually inspected to confirm single-cell occupancy under microscopy. Clonal 
expansion proceeded stepwise from 96-well plates to 24-well and then 6-well plates. Final expansion 
and harvest were performed in 100-mm culture dishes. 
 

2.3 DNA Extraction and Quantification, Quality Control 
Genomic DNA was extracted from the collected cells using the DNeasy Blood & Tissue Kit 

(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Briefly, tissue samples 
were lysed in ATL buffer and proteinase K at 56°C until complete digestion, followed by incubation 
with AL buffer and ethanol to facilitate DNA binding to the silica membrane. The column was 
washed with AW1 and AW2 buffers, and genomic DNA was eluted in AE buffer. The concentration 
of extracted DNA was measured using a Qubit 4 Fluorometer with the Qubit dsDNA HS Assay Kit 
(Thermo Fisher Scientific), and purity was assessed by A260/A280 and A260/A230 ratios using a 
NanoDrop spectrophotometer. DNA integrity and fragment size distribution were evaluated using 
the Agilent 4200 TapeStation and D1000 ScreenTape systems. Only samples exhibiting high 
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molecular weight, minimal degradation, and a sufficient DNA Integrity Number (DIN) were selected 
for downstream processing. Following quality control, each sample was divided into two equal-
volume aliquots: one for library preparation and sequencing on the Ultima Genomics platform and 
the other for the Illumina platform. Subsequent library quality control confirmed the expected 
fragment sizes—approximately 661–689 bp for Illumina libraries and 548–569 bp for Ultima 
Genomics libraries—with no significant presence of adapter dimers. These quality assurance steps 
ensured that only high-quality DNA samples proceeded with library preparation and sequencing. 
 

2.4 Library Preparation and Whole Genome Sequencing 
Illumina Library Preparation and Sequencing: Genomic DNA (100 ng) was prepared for 

sequencing using the TruSeq Nano DNA Library Prep Kit (Illumina, San Diego, CA) in accordance 
with the manufacturer's instructions. In brief, the DNA was fragmented mechanically to a size of 
approximately 350 bp using a Covaris ultrasonicator. The fragmented DNA was then subjected to 
end repair, A-tailing and ligation with Illumina-specific indexed adapters. The adapter-ligated 
fragments were then size-selected using sample purification beads (Beckman Coulter). The libraries 
were then amplified via limited-cycle PCR (8 cycles) and purified to produce sequencing-ready 
libraries.  
 The sequencing process was conducted on an Illumina NovaSeq X Plus system utilising standard 
SBS chemistry. Libraries were loaded onto patterned flow cells where clonally amplified clusters 
were generated via bridge amplification. The sequencing-by-synthesis process was conducted 
through the cyclic addition of reversible terminator nucleotides, with the use of fluorescence imaging 
facilitating the identification of bases in paired-end mode (2 × 150 bp). 

Ultima Genomics Library Preparation and Sequencing: The genomic DNA was processed 
using the TruSeq PCR Plus Library Prep Kit (Illumina), with adaptations made to ensure 
compatibility with the Ultima Genomics UG100 platform. The DNA was enzymatically fragmented, 
followed by end-repair and A-tailing. During adapter ligation, proprietary Ultima Genomics 
platform-specific adapters were utilized instead of standard Illumina adapters to ensure 
compatibility with mnSBS sequencing chemistry. Adapter-ligated DNA was purified and subjected 
to PCR amplification using primers specific to Ultima Genomics, as recommended by the 
manufacturer. The final libraries were bead-purified prior to the process of sequencing. 
 The sequencing process was conducted on the Ultima Genomics UG100 instrument, which 
employs a flow-based sequencing-by-synthesis approach on an open flow cell design featuring a 
rotating silicon wafer. The process of clonal amplification of DNA fragments, followed by binding 
via emulsion PCR, results in the deposition of the DNA fragments onto patterned landing pads that 
are distributed across the wafer. Each sequencing cycle introduces a single nucleotide type across 
all beads, and incorporated events are detected via optical end-point imaging without the use of 
reversible terminators. This approach has been demonstrated to generate single-end reads of 
approximately 300 base pairs with high throughput and accuracy. 
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2.5 Mapping and Deduplication 

For Illumina sequencing data, paired-end reads were aligned to the human reference genome 
(GRCh37 [21] and GRCh38 [22]) using BWA-MEM (v0.7.17) [23] with read group information 
included to facilitate downstream sample-level analyses. The resulting SAM files were converted to 
BAM format and sorted using samtools (v1.9) [24]. PCR duplicates were subsequently marked using 
Picard MarkDuplicates (v2.3.0) with default settings, retaining all reads while flagging duplicates 
for later filtering. This process also generated duplication metrics for quality assessment. All steps 
were performed within a Snakemake workflow, ensuring consistency and reproducibility through 
defined resource allocation and Docker-based environments. 
 In the case of Ultima Genomics data, raw reads generated from the UG100 sequencer were 
processed using UGmapper (v1.3.2), a proprietary software tool developed by Ultima Genomics. 
This tool performs alignment, read sorting, and duplicate marking as part of an integrated pipeline, 
directly outputting aligned data in the CRAM file format. Unlike conventional formats, these CRAM 
files contain custom tags (tp, to) that encode base-level error probabilities associated with 
homopolymer lengths, enhancing downstream variant calling accuracy. No additional realignment 
or duplicate marking was required after UGmapper processing. (Figure 1C) 
 

2.6 Sequencing Data Quality Control 
Quality metrics were evaluated using FastQC (v0.12.1) [25] and Qualimap (v2.3) [26]. to ensure 

the integrity of raw and aligned sequencing data. FastQC was used to assess base quality scores, per-
base sequence content, GC content distribution, and levels of duplication across reads. Qualimap 
was applied to the aligned BAM files to evaluate overall mapping quality, coverage distribution, and 
alignment statistics across the genome. 
 All analyses were performed using default parameters. Depth of coverage and coverage uniformity 
across genomic regions were visually inspected using the Integrative Genomics Viewer (IGV) [27], 
allowing for the manual confirmation of data consistency and the detection of any potential 
anomalies in sequencing depth. 
 

2.7 Variant Calling and VAF Distribution Analysis 

Single nucleotide variants (SNVs) and indels were identified using the Genome Analysis Toolkit 
(GATK) HaplotypeCaller (v4.0.5.1) [28]. Prior to variant calling, input BAM files were 
preprocessed through local realignment around indels using RealignerTargetCreator and 
IndelRealigner from GATK v3.5, to reduce alignment artifacts and improve variant calling accuracy. 
Variant calling was performed in haplotype-based mode using sorted, deduplicated, and indel-
realigned BAM files as input. The GRCh37 or GRCh38 human reference genome was used 
depending on the sample group. Resulting variant call format (VCF) files were generated per sample. 
Variant allele frequencies (VAFs) were calculated from the output VCFs and visualized to infer 
clonal structure and to identify candidate early postzygotic mutations. 
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2.8 CNV Analysis & SV Analysis 

Copy number variants (CNVs) were detected using CNVkit (v0.9.12) [29], based on read depth 
information from aligned BAM files. Default copy number call parameters were used. CNV profiles 
were visualized as log₂ copy ratio plots were exported for comparative analysis across samples and 
sequencing platforms. 

Structural variants (SVs) were identified from whole genome sequencing data using DELLY 
(v1.2.6) [30], a software tool based on paired-end and split-read mapping signals. DELLY was run 
separately for each sample to detect deletions, duplications, inversions, and translocations. The 
resulting variant call format (VCF) files were filtered to retain high-confidence SVs based on default 
quality metrics and genotype support. 
 To compare SV profiles across samples and platforms, the resulting SVs were merged using 
SURVIVOR (v1.0.7) [31]. A maximum allowed distance of 1,000 bp between breakpoints was used 
to define SV equivalence across samples, and only variants supported by at least one sample were 
retained. The merged SV set was then used to generate a presence/absence matrix, from which 
pairwise correlations between samples were calculated. 
 This approach enabled the identification of common and platform-specific structural variants and 
allowed for the assessment of concordance across sequencing platforms. 
 

2.9 Variant Annotation 

Variants identified through GATK HaplotypeCaller (v4.5.0.0) were annotated using snpEff (v5.1) 
[32] referencing dbSNP [33], gnomAD [34], and ClinVar [35] databases. Annotation included 
functional classifications (e.g., missense, nonsense, frameshift) and predicted impact levels, along 
with population allele frequencies and clinical significance. 
 

2.10 Mutation Signature Analysis 

Somatic single nucleotide variants (SNVs) were selected by comparing four DNA samples 
obtained from the same individual. Variants identified in all four samples were considered germline 
mutations and excluded from analysis. Variants shared by two or three samples were classified as 
somatic mutations, while those detected in only one sample were classified as private mutations and 
analyzed separately. Only variants detected in both the Illumina and Ultima Genomics platforms for 
the same DNA sample were included in the somatic mutation analysis. In addition, platform-specific 
mutations, identified exclusively by either Illumina or Ultima Genomics, were analyzed separately 
to assess potential platform-dependent biases. 
 Mutational signature analysis was performed using SigProfilerExtractor (v1.1.25) [36]. For each 
somatic SNV, the trinucleotide context was determined to construct a 96-channel mutation profile. 
de novo mutational signatures were extracted using non-negative matrix factorization (NMF) and 
compared to reference signatures from COSMIC v3.4 using cosine similarity. 
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2.11 Sanger Sequencing Validation 

Three candidate INDEL variants were validated by Sanger sequencing. Genomic DNA was 
amplified by PCR using variant-specific primers (amplicon size: 273–495 bp) targeting BRCA1 and 
BRCA2 loci. PCR was carried out using Dr. MAX DNA Polymerase (Doctor Protein Inc., Korea) 
with optimized thermal cycling conditions. Amplified products were purified and sequenced 
bidirectionally using the BigDye Terminator v3.1 Cycle Sequencing Kit on an ABI 3730xl DNA 
Analyzer (Applied Biosystems). 
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3. RESULTS 
3.1 Comparison of Sequencing Data Characteristics Between the Two 
Sequencing Platforms 
Prior to performing mutation analysis based on Whole Genome Sequencing (WGS) data generated 

from two sequencing platforms, a quality assessment was first conducted on each dataset. For the 
Illumina platform, quality assessment began with FASTQ files generated from the sequencer, 
whereas for the Ultima Genomics platform, evaluation was performed on CRAM files. However, to 
ensure a fair comparison, files in a standardized format were generated, and quality assessment was 
conducted using a unified analysis pipeline. 
 First, to evaluate the base call quality of each platform, statistics were calculated using the samtools 
stats function on the aligned BAM files. As evaluation metrics, the proportion of bases with a Phred 
score of Q30 (error rate ≤ 0.001%) or higher, and Q20 (error rate ≤ 0.01%) or higher, was measured. 
(Figure 2) The analysis results showed that the four samples on the left were generated using the 
Illumina platform, and the four samples on the right were generated using the Ultima Genomics 
platform. It was confirmed that the data produced by the Illumina platform exhibited higher base 
quality overall. Specifically, the average proportion of bases with Q20 or higher was approximately 
3.03% greater for Illumina than for Ultima Genomics, and the Q30-based quality was, on average, 
7.48% higher. 
 Next, alignment was performed for all sequenced data against the hg38 human reference genome, 
and the Mapped Read Rate was calculated. This analysis also utilized samtools stats, and the results 
showed that the data from the Ultima Genomics platform had, on average, a 0.4% higher mapping 
rate. However, this difference is considered to result from sample-specific characteristics rather than 
technical differences between the platforms. (Figure 3A) 
 In addition, the ratio of deduplicated reads was analyzed to determine the proportion of actual reads 
remaining after PCR duplicates were removed. This allowed a comparison of library complexity and 
duplication rate during the sequencing process. As a result, no significant difference was observed 
between the two platforms in terms of the deduplicated read ratio, which is interpreted as variation 
due to individual sample characteristics. (Figure 3B) 
 In general, the results of comparing sequencing data quality between the two platforms showed 
that the Illumina platform was superior in base quality (Phred score), while the mapping rate and 
deduplicated read ratio did not show significant differences between the platforms. These results 
suggest that although there may be differences in base-calling accuracy, both platforms provide 
comparable performance in terms of overall alignment and library quality. Therefore, data from both 
platforms can be considered a valid basis for subsequent mutation analysis. 

To evaluate potential base composition bias between sequencing platforms, GC content distribution 
analysis was performed (Figure 4). This analysis examined the proportion of guanine (G) and 
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cytosine (C) bases across reads to assess whether sequencing efficiency varies according to GC 
content. The Illumina platform (orange line) exhibited a unimodal distribution with a clear peak 
around 40% GC content, aligning with the expected average for the human genome. The distribution 
was relatively symmetric and stable, suggesting consistent performance across a range of GC 
contents. In contrast, the Ultima Genomics platform (blue line) also showed a peak at a similar GC 
content range but demonstrated a steeper decline in read frequency as GC content increased beyond 
the peak. Notably, in the high-GC regions (50–70%), Ultima Genomics exhibited a sharper drop in 
read coverage compared to Illumina. These findings suggest that Ultima Genomics may have 
reduced sequencing efficiency or coverage uniformity in GC-rich regions, potentially due to 
technical limitations in base incorporation or amplification under high GC content. In contrast, 
Illumina maintained a more stable read distribution across the GC spectrum, indicating greater 
tolerance to GC content variation and more uniform genome coverage. 

To evaluate the sequencing performance of each platform, we analyzed the relationship between 
coverage depth and genome fraction covered for each sample. The average of four samples per 
platform was plotted on a graph (Figure 5). In whole genome sequencing, a wide range of the 
genome must be covered even at intermediate levels of depth, so this analysis serves as a key 
indicator for evaluating sequencing reliability. As shown in the plot, most samples achieved more 
than 90% genome coverage at depths below 10X, demonstrating excellent baseline sequencing 
efficiency. However, no significant differences were observed between samples across platforms as 
the coverage depth increased. Overall, the patterns observed in both Ultima Genomics and Illumina 
datasets were similar. These results suggest that variation in data quality is more attributable to 
sample-specific factors than to differences between the two platforms, especially in studies that 
require high coverage or comprehensive genome-wide analysis (Table 1). 

 
Table 1. Data Yield and Mean Coverage per Sample 

  

 Category ALL_Fb1-3_G11 ALL_Fb13-4_G7 ARL_Fb12-2_H6 ARL_Fb5-4_C2 

Illumina 

Yields (Gb) 147.80 147.49 153.71 151.95 

Mean 
Coverage (X) 43.51 42.86 43.79 45.96 

Ultima 
Genomics 

Yields (Gb) 182.43 135.04 147.45 137.76 

Mean 
Coverage (X) 54.10 39.60 42.40 41.95 
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3.2 Comparison of Called Variants Between Sequencing Platforms 

To perform lineage tracing and downstream analysis on single-cell clones using Whole Genome 
Sequencing (WGS) data, we first generated a VCF file containing mutation information from the 
BAM file of each sample to identify mutations compared to the reference genome (hg38). Mutation 
calling was performed using the HaplotypeCaller of GATK, with default parameters applied and no 
additional filtering process used. Before conducting a full-scale mutation analysis, we visualized the 
Variant Allele Frequency (VAF) distribution to identify the overall characteristics of the generated 
call set, and variants with a VAF value of 1 were excluded from the analysis. The Illumina data 
showed a typical bell-shaped VAF distribution, with some samples also revealing high-frequency 
mutations with a VAF close to 0.9. (Figure 6A) Conversely, data from the Ultima Genomics platform 
showed a concentration of mutations in the low allele frequency region (around 0.1), with a 
significantly larger total number of mutations (4.8 million to 5.1 million) compared to Illumina 
(approximately 3.2 million). (Figure 6B) 

To more clearly examine this difference in distribution, all mutations were separated into SNVs 
and INDELs and analyzed. When SNVs were extracted from the Illumina VCF and analyzed, the 
resulting distribution maintained the same bell-shaped curve observed earlier. (Figure 7A) The 
SNVs from Ultima Genomics also showed a distribution similar to that of Illumina, with a reduced 
presence of low VAF variants compared to the overall mutation set. (Figure 7B) SNVs commonly 
identified between the two platforms and those identified specifically by each platform were 
visualized through a Venn diagram, with mutations detected across all eight samples considered 
germline mutations and excluded from the analysis. (Figure 8) As a result, Illumina-specific SNVs 
were relatively more numerous than those from Ultima Genomics, but the overall distribution 
patterns between the two platforms were similar. 
 On the other hand, a clear difference was observed in the analysis of INDELs. The VAF distribution 
of Illumina INDELs showed a significantly higher number of mutations at VAF 0.9 or above, and 
many mutations were also found in the 0.6–0.8 range, indicating relatively high VAF values 
compared to SNVs. (Figure 9A) In contrast, the distribution of Ultima Genomics INDELs was left-
skewed, with a predominance of mutations having low VAF values. (Figure 9B) While the number 
of INDELs identified in Illumina was approximately 680,000, Ultima Genomics recorded 
approximately 2.4 million to a maximum of 2.7 million, nearly four times as many. 
 Specifically, mutations with VAF values of 0.2 or lower were considered likely false positives, 
prompting additional analysis. A Venn diagram was also created for the INDEL variants from both 
platforms, excluding germline mutations detected across all eight samples. This analysis revealed 
that the number of INDEL mutations uniquely detected by Ultima Genomics was approximately 20 
times higher than those detected by Illumina, indicating a clear difference in INDEL detection 
characteristics between the platforms. (Figure 10) 

In order to analyze the characteristics of the INDEL mutations identified above more precisely, 
additional analysis was performed by dividing INDELs into homopolymer INDELs and non-
homopolymer INDELs. Homopolymer INDELs are defined as insertion or deletion mutations 
consisting of repeated identical bases. In this study, an INDEL was classified as homopolymer if its 
length was 3 bp or longer, and one base (A, T, G, or C) constituted 80% or more of the total length 
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within the INDEL region. 
 As a result of the analysis (Table 2), PolyA and PolyT were observed more frequently than PolyC 
and PolyG in homopolymer INDELs on both the Illumina and Ultima Genomics platforms, 
suggesting an asymmetric tendency of occurrence depending on base composition. In addition, the 
overall number of homopolymer INDELs was slightly higher on the Ultima Genomics platform than 
on the Illumina platform, indicating that this difference may result from platform-specific 
differences in base insertion/deletion processing. (Figure 11) 
 On the other hand, for non-homopolymer INDELs—excluding homopolymer INDELs—the 
number of mutations detected on Ultima Genomics was found to be approximately four times higher 
than that on Illumina. This suggests that beyond simple technical differences, there may be unique 
error patterns or artificial mutation artifacts specific to the Ultima Genomics platform. 
 Therefore, these results imply that when analyzing INDEL mutations using the Ultima Genomics 
platform, it is essential to employ a filtering method that accounts for the potential presence of false 
positives, particularly in non-homopolymer regions. Establishing an analysis strategy that 
incorporates platform-specific characteristics is crucial, and the development of appropriate 
validation and correction methodologies will be necessary in future studies. 

Mutation signature analysis was performed to compare the biological signals and technical 
characteristics of mutations detected on different sequencing platforms. The analysis included 
common mutations identified only on both Illumina and Ultima Genomics platforms in the same 
cell, and platform-specific mutations detected exclusively on each platform. Mutations commonly 
observed in four DNAs were excluded as germline mutations, and mutations observed only on one 
of the platforms were analyzed separately. Mutations shared by two or three DNA samples, as well 
as unique mutations detected in only one DNA sample, were considered somatic mutations and 
subjected to analysis. 
 Mutation signature analysis results for commonly detected mutations showed very high similarity 
with cosine similarity of 0.99 and correlation of 0.989, indicating excellent agreement between the 
original data and the modeled signature. Considering that the sample was skin fibroblast, SBS1 and 
SBS5, which are clock-like signatures that accumulate over time, stood out along with SBS7a and 
SBS7b signatures induced by UV, and some SBS58 signatures were suggested to be due to 
sequencing errors. This confirmed that biological mutation signals were consistently well restored 
on both platforms. (Figure 12) 
 Analysis targeting mutations detected specifically on the Illumina platform showed relatively high 
similarity with cosine similarity of 0.949 and correlation of 0.889, and SBS5, SBS58, and SBS96 
contributed as major signatures. In particular, signatures related to the action of AID enzymes related 
to immune response were also observed, suggesting biological significance. However, the 
reproducibility of some signatures was limited due to the relatively high L1/L2 error and KL 
divergence values, which may reflect the possibility of technical bias unique to the platform. (Figure 
13A) 
 On the other hand, the signature analysis of mutations observed only on the Ultima Genomics 
platform showed the lowest similarity among the analyses so far, with cosine similarity of 0.76 and 
correlation of 0.46. In addition, the L1/L2 error was 50~66% and the KL divergence was very high 
at 0.237, suggesting that the reproducibility of the original signature was low. Although SBS96 and 
SBS5 were identified as major signatures, SBS96 had limitations in interpretation as its biological 
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function has not been clearly known to date. Overall, the signature pattern was not clear and was 
dispersed, raising the possibility of platform-specific error characteristics or bias in the analysis 
process. (Figure 13B) 

In summary, while the signature based on common mutations stably restored biological signals, 
different signature patterns appeared when targeting only platform-specific mutations, and this 
tendency was observed more clearly on the Ultima Genomics platform. This suggests that platform-
specific technical characteristics have an impact on mutation signature analysis, and demonstrates 
the need to consider platform-specific biases in future sequencing-based mutation interpretation. 

 

Table 2. Comparison of Homopolymer and Non-Homopolymer INDEL Counts 

Variant Counts polyA polyT polyC polyG Homo 
polymer 

Non- 
homo 

polymer 

ALL_Fb1-
3_G11_I 

Illumina 

14,930 13,523 375 335 29,163 607,317 

ALL_Fb13-
4_G7_I 14,860 13,417 381 341 28,999 603,660 

ARL_Fb12-
2_H6_I 14,856 13,496 368 354 29,074 605,704 

ARL_Fb5-
4_C2_I 15,160 13,840 393 336 29,729 615,257 

ALL_Fb1-
3_G11_U 

Ultima  
Genomics 

19,125 15,960 272 269 35,626 2,654,955 

ALL_Fb13-
4_G7_U 15,913 13,485 222 240 29,860 2,418,196 

ARL_Fb12-
2_H6_U 15,978 13,432 221 214 29,845 2,347,992 

ARL_Fb5-
4_C2_U 16,230 13,709 224 231 30,394 2,378,122 
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3.3 Identification of Platform-Specific Variants Through Variant 
Annotation 
Variant annotation was performed for further analysis of the variant call set. The variant annotation 

process involves evaluating the pathological relevance of each variant, its functional impact at the 
protein level, and other factors by utilizing various genome and disease-related databases based on 
sequencing data. Since the medical records of the cadaver donor used in this study confirmed a 
history of breast cancer, annotation was carried out to identify mutations strongly associated with 
breast cancer. However, as the samples were derived from normal cells rather than tumor tissue, the 
analysis focused on germline mutations instead of somatic mutations. After integrating the VCF files 
generated from all eight samples, mutations in breast cancer-related gene regions, including BRCA1 
and BRCA2, were filtered. During this process, mutations classified as ‘IMPACT = HIGH’—
indicating a significant effect on protein structure or function—were prioritized. Additionally, the 
ClinVar database was used to annotate the disease types and pathological implications associated 
with each mutation. (Figure 14) 
 As a result, mutations at three genetic loci were classified as ‘Pathogenic,’ and all were confirmed 
to be related to breast-ovarian cancer. These mutations were marked as ‘ORIGIN = 1’ in the ClinVar 
database, indicating that they are germline-derived. All three mutations were INDELs caused by the 
deletion of a single nucleotide, and were therefore interpreted as having a high potential to alter 
protein structure. (Table 3) 
 Notably, the first and third mutations were not detected in the Illumina platform data but were 
observed exclusively in the Ultima Genomics platform data. In contrast, the second mutation was 
identified by both platforms and may serve as an example of cross-platform detection consistency. 
Finally, to verify whether the variants identified through variant calling represented true mutations, 
visual inspection of aligned reads was performed using the BAM files for each sample. (Figure 15) 

Additionally, to verify whether the variants identified at the three loci were true variants, validation 
was performed using Sanger sequencing as an orthogonal method. The Sanger sequencing results 
revealed that the INDELs detected exclusively in the Ultima Genomics platform at the first and third 
loci were not present in any of the four DNA samples, indicating that they were false positives. In 
contrast, the variant at the second locus was consistently observed in all four DNA samples, 
confirming it as a true variant. (Figure 16) 

These findings suggest that INDELs frequently observed specifically in the Ultima Genomics 
platform may include a high rate of false positives. Therefore, a platform-specific filtration strategy 
for INDEL variants is necessary. 
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Table 3. Annotation of Selected BRCA1/BRCA2 Mutations 

 

 

3.4 Comparison of CNV Profiles Between Sequencing Platforms 
Next, we performed an analysis of CNV (Copy Number Variation) for structural mutation analysis 

at the whole genome level. The CNVkit tool was used for the analysis, which is a tool that can 
visualize copy number variability in the entire genome based on the Read Depth of the sequencing 
data. The graph presented in the figure was generated using CNVkit and shows the variation in Read 
Depth observed in the sequencing data of each platform. 
 Copy number variants (CNVs) were analyzed using CNVkit, and both Illumina and Ultima 
Genomics platforms produced consistent and stable copy number profiles. While minor fluctuations 
in read depth were observed in some regions, these did not lead to significant differences in the 
segmented CNV calls between platforms. No platform-specific artifacts or signal distortions were 
detected, indicating that CNVkit performs robustly across different sequencing technologies when 
using the same analysis conditions. (Figure 17) 

 

3.5 Comparison of SV Profiles Between Sequencing Platforms 
Finally, we performed an analysis on structural variants (SVs). SVs were derived from data 

produced by each sequencing platform (=Illumina and Ultima Genomics), and the analysis included 
various types such as inversion, translocation, and large insertion/deletion using an SV detection 
tool. However, due to the nature of SVs, the precise definition of breakpoints or variant lengths can 
vary across sequencing platforms and analysis tools, making direct comparison and relevance 
evaluation, unlike single nucleotide variants (SNVs), challenging. 
 Accordingly, in this study, we utilized the SURVIVOR tool to comprehensively analyze the SV 
detection results and compare the similarity between samples. SURVIVOR provides a pairwise 
comparison function that can quantitatively calculate the SV similarity between two samples after 
merging SVs detected in different samples based on criteria. Through this, SV-based correlation 
analysis was performed on a total of 8 sequencing data. (Figure 18) 
 The analysis results showed that the SV similarity between data generated on the same platform 
tended to be higher than that between data generated on different platforms derived from the same 
sample. In particular, the correlation between data produced on the Ultima Genomics platform was 
observed to be slightly higher than that between Illumina platforms. This suggests that the analysis 
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results of Ultima Genomics may show higher reproducibility and consistency within the platform. 
 These results show that there is a batch effect due to the technical characteristics of each platform 
and suggest caution in interpretation that may occur when directly comparing platforms. In future 
analyses, it is judged that a follow-up strategy to correct such platform-specific bias is necessary. 
 

3.6 Branch confirmation for 8 data based on previous Lineage Tracing 
studies 
Based on the Early Embryonic Mutations (EEM) information confirmed in previous analyses, we 

inferred the lineage (branch) of the newly sequenced data by comparing it with the lineage tree 
presented in a previous study [10]. This was done by defining the lineage position of each sample 
by confirming whether the corresponding mutations exist in the newly generated sample, if the 
branch-defining mutations obtained in the previous study can be used as a reliable reference point. 

As a result of the analysis, the newly sequenced data showed a pattern of branching in a 3:1 ratio 
overall, which is consistent with the major occurrence branching pattern confirmed in the previous 
study. In particular, the results were clearly distinguished through comparison with the data produced 
by the existing Illumina platform, and it was possible to precisely classify which branch each sample 
belongs to base on whether it had an EEM. 

This lineage structure was visualized through (Figure 19), and the lineage of the newly analyzed 
sample was indicated by a red line to clearly distinguish its position in the existing lineage tree. Each 
sample was placed in the appropriate branch based on the presence or absence of EEM, which 
allowed for visual verification of lineage consistency between data from the two sequencing 
platforms. 

The phylogenetic analysis confirmed that the new sequence data can be logically connected to the 
existing phylogenetic branch structure, supporting that mutation-based lineage tracing is a 
reproducible analysis strategy regardless of the platform. Furthermore, this suggests that single-cell-
derived genome information provides sufficient reliability and resolution to be utilized for 
developmental phylogenetic analysis, and it is expected to function as a core base data for more 
expanded analyses in the future.  
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4. DISCUSSION 
This study is significant in that it performed whole-genome sequencing on single-cell clones 

derived from normal tissues and compared the characteristics and mutation detection performance 
of the Illumina and Ultima Genomics platforms. However, several limitations should be considered 
when interpreting the results.  
 First, the number of single-cell clone samples analyzed was limited to four, which made it difficult 
to detect private mutations unique to individual cells and ultimately reduced the resolution of the 
subclonal structure. To achieve high-resolution lineage tracing in single-cell genome analysis, a 
larger number of clones should be secured, and expanding the sample size in future studies would 
allow for more precise identification of genetic differences between cells.  
 Second, as the study was based solely on normal cells, it was not possible to identify mutations 
specific to tumor cells. Since tumor-derived mutations provide critical insights into clonal evolution 
and tumor heterogeneity, applying the same analysis to tumor-derived single-cell clones in future 
studies is expected to enable richer biological interpretation.  
 Third, for certain additional analyses such as structural variant (SV) detection and short tandem 
repeat (STR) profiling, the analysis tools used were not fully compatible with the Ultima Genomics 
platform. Ultima Genomics produces output data in CRAM format by default, which differs from 
the standard FASTQ-based pipelines, necessitating additional preprocessing and parameter 
adjustments. This introduced complexity to the analysis workflow and limited the scope of 
downstream analyses.  
 Finally, a variant filtering model specifically optimized for the Ultima Genomics platform was not 
applied in this study. The platform utilizes a flow-based sequencing method that detects base 
incorporation by measuring signal intensity as specific nucleotides are flowed over the DNA 
template. However, in homopolymer regions—where the same base is repeated (e.g., AAAAA or 
TTTT)—this method struggles to accurately quantify the number of incorporated bases due to the 
non-linear and saturable nature of signal intensities.  
 As a result, insertion/deletion (INDEL) errors are more frequent, increasing the likelihood of false 
positives. Recently, a machine learning–based filtering model has been developed to address this 
issue by learning the platform-specific error patterns and distinguishing true variants from 
sequencing artifacts. Although this model was not implemented in the current study, applying it in 
future work is expected to significantly improve INDEL detection accuracy and enhance the overall 
reliability of analyses performed using the Ultima Genomics platform. 
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5. CONCLUSION 
This study conducted a comparative analysis with the current standard technology, the Illumina 

platform, to evaluate the applicability of the new sequencing platform, Ultima Genomics, to somatic 
mutation-based lineage tracing research. In terms of overall sequencing quality indicators, Ultima 
Genomics showed slightly lower or similar performance compared to Illumina, and SNV mutation 
concordance exhibited similar patterns between the two platforms. 
 On the other hand, the correlation between platforms was low for INDEL mutations, and it was 
identified that there was a platform-specific bias due to the unique technical characteristics of Ultima 
Genomics. In particular, there were cases where small deletion INDELs of 1 bp that were not 
identified in Illumina data were detected in Ultima Genomics data, and it is judged that confirmation 
of data including IGV for the corresponding mutations and validation through other cross-methods 
are necessary. 
 In CNV analysis, No clear differences were observed between the two platform. However, further 
evaluation using tumor-specific samples with copy number amplifications or deletions is needed to 
more clearly assess potential differences between the platforms. However, in SV analysis, the 
concordance between platforms was low, which is interpreted as a result of differences in analysis 
tools and technology. 
 Finally, Ultima Genomics is judged to provide sufficient resolution for capturing branch structures 
in single-cell-based lineage tracing. However, for precise interpretation of detailed lineage structures, 
a correction strategy for platform-specific variation characteristics, along with a larger number of 
samples, should be implemented. 
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FIGURES 

 

Figure 1. Overall workflow and underlying principle of the study 

(A) Experimental design for lineage tracing. Skin tissues were obtained from a postmortem donor 
via warm autopsy and subjected to primary culture, single-cell isolation, clonal expansion, and 
whole-genome sequencing. (B) Sampling location: anterior regions of both lower legs. (C) 
Comparison of sequencing workflows between Illumina and Ultima Genomics platforms. While the 
initial data formats and processing steps differ, all downstream analyses were standardized using a 
unified Snakemake pipeline. 
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Figure 2. Comparison of Base Call Quality Between Sequencing Platforms 

Prior to variant analysis, sequencing data quality was evaluated, including base call quality, mapping 
rate, deduplication rate, GC content, and coverage distribution. Illumina showed higher base call 
accuracy than Ultima Genomics, with 3.03% higher Q20 and 7.48% higher Q30 metrics on average 
across samples. 
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Figure 3. Comparison of Alignment Statistics Between Sequencing Platforms 

(A) The Mapped Read Rate represents the proportion of reads successfully aligned to the reference 
genome. Ultima Genomics samples showed a slightly higher average rate (~0.4%) compared to 
Illumina, although this difference is likely within the margin of error. (B) The Deduplicated Read 
Rate, indicating the percentage of reads remaining after PCR duplicate removal, showed no notable 
difference between platforms, suggesting that variation is more sample-dependent than platform-
dependent. 
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Figure 4. GC Content Distribution of Sequencing Read Count 

The fourth quality metric evaluated was the average GC content distribution. Ultima Genomics 
showed a sharp peak near 40% GC content, indicating a narrow distribution of reads. This suggests 
reduced sequencing efficiency in high or low GC regions, which may affect coverage uniformity 
and downstream variant detection sensitivity. 
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Figure 5. Genome-wide fraction coverage at varying sequencing depths 

This figure illustrates the average genome coverage fraction across varying sequencing depths for 
eight datasets. The x-axis represents sequencing depth, and the y-axis indicates the percentage of 
the genome covered at or above each depth. Both Illumina and Ultima Genomics platforms showed 
similar patterns of coverage decay as depth increased, with no platform-specific differences 
observed. These results suggest that genome coverage is more influenced by sequencing yield than 
by platform characteristics. 
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Figure 6. VAF Distribution of Total Called Variants Across Sequencing Platforms 

(A) Illumina showed a typical bell-shaped VAF distribution with a peak near 0.5 and some high-
frequency variants. (B) Ultima Genomics exhibited a broader spread with more low-frequency 
variants and a greater total variant count. 
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Figure 7. VAF Distribution of SNV Across Sequencing Platforms 

(A) The VAF distribution of SNVs from Illumina data shows a typical bell-shaped curve with a 
stable variant count. (B) The Ultima Genomics platform also exhibited a similar distribution pattern 
and comparable total SNV counts to Illumina. 
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Figure 8. Venn Diagrams of SNVs Detected by Each Sequencing Platform Across Four 
Samples 

Venn diagrams visualize the overlap and platform-specific detection of SNVs between Illumina and 
Ultima Genomics. Variants commonly identified in all eight samples (germline) were excluded from 
the comparison. While Illumina-specific SNVs appeared slightly more numerous, the overall variant 
patterns were similar across platforms. 
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Figure 9. VAF Distribution of INDELs Across Sequencing Platforms 

(A) Illumina data show a typical INDEL VAF distribution with peaks around 0.6–0.9. (B) Ultima 
Genomics data show left-skewed distribution, indicating a high number of low-VAF INDELs, with 
total INDEL counts 3–4 times higher than Illumina. 
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Figure 10. Venn Diagrams of INDELs Detected by Each Sequencing Platform Across Four 
Samples 

Venn diagrams show platform-specific and shared INDELs between Illumina and Ultima Genomics 
for each sample. Germline variants identified across all eight datasets were excluded. The number 
of INDELs uniquely detected by Ultima Genomics was approximately 20 times higher than that of 
Illumina. 
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Figure 11. Comparison of Homopolymer and Non-Homopolymer INDEL Counts Across 
Sequencing Platforms 

INDEL variants were classified into homopolymer and non-homopolymer types based on base 
repetition criteria (≥3 bp and ≥80% single-base content). (A) Ultima Genomics showed a slightly 
higher count of homopolymer INDELs than Illumina. (B) For non-homopolymer INDELs, Ultima 
Genomics showed ~4-fold higher counts, indicating the need for platform-specific filtering 
strategies. 
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Figure 12. Shared Somatic Mutation Signatures 

Mutation signatures based on somatic variants were detected on both Illumina and Ultima Genomics 
platforms. High concordance (cosine similarity = 0.99) supports accurate reconstruction of UV-
induced (SBS7a, SBS7b) and clock-like (SBS1, SBS5) signatures. 
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Figure 13. Platform-specific mutation signatures 

(A) Mutation signature analysis of Illumina-specific SNVs showed relatively high reproducibility, 
with strong contributions from SBS5, SBS58, and immune-related SBS96. (B) In contrast, Ultima 
Genomics-specific SNVs yielded low similarity and dispersed patterns, with high L1/L2 error and 
KL divergence, indicating potential platform-specific technical artifacts. 
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Figure 14. VAF Heatmap of Selected BRCA1/2 Variants Across Samples 

Visual representation of allele frequencies for three BRCA1/2 deletion variants across all samples. 
Variants only observed in Ultima Genomics or in both platforms are shown, highlighting cross-
platform detection differences. 

 

 

 

Figure 15. IGV Validation of Selected BRCA1/2 Mutations Across Sequencing Platforms 

IGV visualizations confirm the presence of three BRCA-related mutations. The first and third 
variants are observed only in Ultima Genomics data, while the second is consistently detected in 
both Illumina and Ultima Genomics datasets. 
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Figure 16. Sanger Sequencing Results for the Three Variant Loci 
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To validate the three filtered loci (chr13:32,363,371; chr17:43,045,763; chr17:43,091,999) 
identified through annotation, Sanger sequencing was performed as an orthogonal method. The first 
and third loci, where INDEL variants were detected only in the Ultima Genomics platform, were 
confirmed to be false positives, as no variants were observed in any of the four DNA samples. In 
contrast, the second locus showed a deletion consistently detected by both sequencing platforms, 
and this result was also confirmed by Sanger sequencing. Additionally, the reverse strand was also 
examined to confirm these results. 

 

 

Figure 17. Genome-wide CNV Profiles Across Platforms 

Copy number variation (CNV) was analyzed using CNVkit. No distinct differences were observed 
between the two platforms, although regions with reduced read depth due to sequencing artifacts 
were identified in the Illumina data. 
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Figure 18. Pairwise Correlation of Structural Variants Across Sequencing Platforms 

SVs from each sample were merged and compared using SURVIVOR to assess pairwise correlation. 
Higher correlations were observed within platforms, with Ultima Genomics showing slightly 
stronger consistency.
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Figure 19. Lineage mapping of the four sequenced samples onto the previously established lineage tree 

Samples sequenced on the Ultima Genomics platform were aligned to hg19 and mapped onto a pre-established lineage tree. 
This confirmed that branch assignment is feasible using variants detected by Ultima Genomics data.
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ABSTRACT IN KOREAN 

 

두 가지 시퀀싱 플랫폼을 활용한  
유전체 분석 및 계통 추적 연구 

 
최근 연구에 따르면, 인간의 개체 내에서도 유전적으로 서로 다른 세포들이 공존할 

수 있는 체성 모자이크 현상이 발생한다는 사실이 밝혀졌다. 이는 발생 초기 또는 

생애 동안 세포 분열 중 발생한 체세포 돌연변이로 인해 나타나며, 각 세포는 고유한 

돌연변이 조합을 통해 계통 추적이 가능한 유전체 바코드 역할을 한다. 이러한 

발견은 세포의 발생적 기원을 추적하고, 암 발생 및 진행 경로를 이해하는 데 중요한 

단서를 제공한다. 

본 연구에서는 이러한 계통 추적을 목적으로, 현재 가장 널리 사용되는 시퀀싱 

플랫폼인 Illumina와, 최근 웨이퍼 기반 시퀀싱 기술로 주목받고 있는 Ultima 

Genomics를 비교 분석하였다. 특히, 수정란이 성체로 분화하는 과정에서의 세포 

계통을 확인하기 위해, 사후 조직 샘플을 활용하였다. 좌측 및 우측 앞다리에서 

조직을 채취한 후 1차 배양 및 단일세포 클론 확장을 통해 DNA를 충분히 확보한 뒤, 

세포 유형별 특성을 고려한 프로토콜을 적용하여 고품질의 전장 유전체 데이터를 

생성하였다. 

데이터는 Illumina와 Ultima Genomics 플랫폼에서 각각 생산되었으며, 두 플랫폼의 

품질 및 변이 검출 성능을 비교 분석하였다. 통계적 품질 평가는 염기별 오류율, 참조 

유전체 커버리지(coverage), PCR 중복 리드를 제거한 후 남은 리드 비율 등의 지표를 

기준으로 수행되었다. 또한 다양한 유전체 변이를 탐지하고 분석하여 플랫폼 간 

비교를 수행하였다. 아울러 BRCA 변이를 포함한 유전체 변이에 대해 주석 

(annotation) 및 임상적 의의를 평가하였으며, 이를 통해 실제 응용 가능성을 

검토하였다. 

마지막으로, 기존 문헌에서 보고된 초기 배아 돌연변이를 바탕으로 세포의 주된 

계통과 하위 계통을 식별하고, 각 세포에서 특이적으로 발견되는 체세포 돌연변이를 

분석함으로써, 새로운 기술이 기존 기술을 계통 추적 연구에서 얼마나 충실히 재현할 

수 있는지를 평가하였다. 본 연구는 향후 체성 모자이크 현상 및 질병 발생 연구에 

있어 시퀀싱 기술 선택의 기준을 제시할 수 있을 것으로 기대된다. 

                                                                                

핵심어 : 체세포 모자이크 현상, 체세포 돌연변이, 세포 계통 추적, 전장 유전체 
분석, 차세대 염기서열 분석, Illumina, Ultima Genomics, 발생 과정, 배아 발생 


