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ABSTRACT

Genomic Analysis and Lineage Tracing
Using Two Sequencing Platforms

Recent studies have revealed the occurrence of somatic mosaicism in human organisms, where
genetically distinct cells coexist due to somatic mutations during cell division in early development
or later in life. Each cell, with its unique combination of mutations, acts as a genetic barcode for
lineage tracing. This discovery provides important clues for tracing the developmental origin of cells
and understanding the origins and progression of cancer.

In this study, I compared and analyzed Illumina, the most widely used sequencing platform to date,
and Ultima Genomics, which has recently attracted attention as a wafer-based sequencing
technology, for the purpose of tracing this lineage. To identify cell lineages from zygote
differentiation to adulthood, postmortem tissue samples were utilized. After collecting tissues from
the anterior left and anterior right legs, I secured enough DNA through primary cell culture and
single-cell clone expansion and applied a protocol that considered the characteristics of each cell
type to generate high-quality whole-genome data.

Data were generated on both Illumina and Ultima Genomics platforms, followed by a comparative
analysis of their quality and mutation detection performance. Statistical quality evaluation was
performed based on indicators such as base-by-base error rate, reference genome coverage, and the
percentage of reads remaining after removal of PCR duplicate reads. In addition, various genomic
mutations such as SNVs, INDELs, CNVs, and SVs were detected and analyzed to perform a
comparison between platforms. Furthermore, the annotation of genomic mutations, including BRCA
mutations, and their clinical significance were evaluated to examine practical applicability.

Finally, we evaluated the fidelity with which the new technology reproduces existing lineage
tracing methods by identifying major and minor cell branches based on previously reported early
embryonic mutations and analyzing cell-specific somatic mutations. This study is expected to
provide a basis for selecting sequencing technologies in future studies of somatic mosaicism and
disease occurrence.

Key words : Somatic mosaicism, Somatic mutations, Lineage tracing, Whole Genome
Sequencing (WGS), Next-generation sequencing (NGS), Illumina, Ultima genomics,
Development, Embryogenesis.
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1. INTRODUCTION

1.1 Somatic Mosaicism and Its Implications for Lineage Tracing

Somatic mosaicism refers to the phenomenon in which multiple cells with different genetic
characteristics coexist within the same organism due to somatic mutations that occur during cell
division in early development or later in life. [1] In the past, it was thought that all cells in
multicellular organisms, including humans, shared the same genetic information. However, all cells
originate from the same zygote, but over time, different genetic mutations accumulate in individual
cells, forming genetic heterogeneity within the organism. However, recent advances in single-cell
genome analysis and ultra-high-resolution sequencing technologies have revealed that genetic
diversity can exist between cells in both normal and tumor tissues [1, 2]. These technological
advances are highlighting the importance of studying somatic mosaicism to understand not only
biological development but also the initiation and progression of diseases such as cancer [3].

In particular, recent studies have attempted to reconstruct the cell lineage formed during human
development by analyzing somatic mutations in postmortem human tissues. [4, 5] These studies
provide a powerful approach to indirectly reconstruct early developmental stages that are difficult
to access in living organisms and suggest new possibilities for restoring the entire human
developmental lineage based on developmental traces retained in postnatal tissues.

The core concept of these studies is that somatic mutations accumulated by cells during
development serve as a genetic barcode [3, 6]. When mutations occur during the repeated divisions
of the fertilized egg to create new cells, those mutations are passed on to all descendant cells. As a
result, each cell has a different combination of mutations, and the pattern of mutations shared only
by a specific cell population acts as a unique fingerprint that reveals the developmental path of each
cell.

These genetic barcodes provide quantitative information about the timing of mutation occurrence
beyond the mere presence of mutations. For example, a mutation occurring in one cell during the
two-cell stage of a fertilized egg will be observed in approximately 50% of all cells, with a variant
allele frequency (VAF) of approximately 50%. If the mutation occurs at the 4-cell or 8-cell stage,
the VAF decreases to approximately 25% and 12.5%, respectively. Since these VAF values indirectly
reflect the timing of lineage branching along the developmental time axis, they serve as key
indicators for reconstructing the cell lineage tree with spatial and temporal precision [3, 7, 8].

This lineage tracing method based on somatic mutations is highly useful for understanding the
origins of normal tissue development and identifying the cells from which diseases such as cancer
originate. Its research value is expanding as a powerful tool for analyzing and quantifying lineage
structures among cells in various physiological and pathological processes, including tumor clonal
expansion, tissue regeneration, degeneration, and aging [1, 3, 8, 9].



1.2 Lineage Tracing Studies Enabled by Next-Generation Sequencing
(NGS)

Mutation analysis for somatic mosaicism is mostly performed using Next-Generation Sequencing
(NGS) technology. This process involves extracting DNA from each cell or group of cells, decoding
the base sequence, mapping it to the reference genome, and analyzing the differences (variant calling)
to detect mutations. This sequencing plays a key role in identifying the location and frequency of
somatic mutations, and in inferring their timing and the cell lineage structure. There are three main
sequencing strategies used in somatic mosaicism research [1, 3].

The first is the bulk sequencing method, which mixes DNA extracted from multiple cells into one
sample and analyzes it. This method is relatively inexpensive and simple; however, as analysis is
performed on a mixture of various clones, mutations present in a low proportion of cells may be
difficult to detect due to low VAF. For example, if only 12.5% of all cells carry a specific mutation,
theoretically the mutation will appear at a VAF of about 6%, and due to technical limitations,
mutations in less than 5% of the cell population are likely to go undetected due to background noise
[8].

The second strategy is single-cell sequencing. This method isolates individual cells and performs
sequencing independently, allowing direct identification of somatic mutations that exist only in
specific cells [2, 7]. However, the very limited amount of DNA obtained from a single cell
necessitates whole genome amplification. Potential coverage bias or allelic dropout during this
process may hinder interpretation accuracy, and there are also limitations in technical complexity
and cost. Nevertheless, recent technological advancements are gradually overcoming these
challenges [9].

The third strategy is based on clonal expansion. In this method, single cells are selected, and their
daughter cells with identical genetic characteristics are sufficiently expanded through cell culture,
after which bulk sequencing is performed on this expanded population. This strategy combines the
sensitivity of single-cell analysis with the stability of bulk analysis and allows identification of
mutations in a single cell at high resolution. It provides stable genome coverage and is considered a
suitable method for somatic mosaicism research because it enables high-precision lineage tracing [4,
5]. However, distinguishing artifacts that may arise during cell culture from original somatic
mutations remains a challenge [10, 11].

In this study, I adopted whole genome sequencing based on clonal expansion among these three
strategies and conducted our analysis accordingly. I secured clones derived from single cells and
analyzed their genomes to detect somatic mutations with high sensitivity. Furthermore, I aimed to
infer lineage structures based on genetic similarities and differences among the clones. This
approach serves as an effective analytical framework for reconstructing cell branching processes in
the early stages of development and for increasing the precision of cell lineage tracing [6].



1.3 Expansion of Lineage Tracing Through the Adoption of Emerging
Sequencing Platforms

Next-generation sequencing (NGS) is one of the core technologies that have driven the rapid
advancement of genome research by providing significantly higher throughput than conventional
Sanger sequencing [12]. NGS enables the high-speed acquisition of sequence information at the
whole-genome level, facilitating precise genome interpretation such as genetic mutation analysis,
gene expression studies, and cell lineage tracing [13, 14].

The most widely used NGS platform to date is the Illumina system, which adopts the sequencing-
by-synthesis (SBS) method. Illumina's sequencing process begins with fragmenting sample DNA
into small pieces, followed by attaching each fragment to an adapter fixed on a flow cell to form
clusters. Then, fluorescently labeled nucleotides are incorporated one by one, and the fluorescent
signals emitted during base incorporation are detected by a high-resolution camera to decode the
sequence. This method ensures high accuracy and consistency and has been established as a standard
technology in numerous genome analysis studies to date [15]. However, the requirement for repeated
cycles of incorporation, signal capture, and imaging for each base limits sequencing speed and cost-
efficiency. Additionally, its reliance on complex optical equipment is considered a disadvantage [16].
Meanwhile, Ultima Genomics has recently gained attention as a new sequencing technology
designed to overcome these limitations of Illumina. Ultima employs a non-optical, flow-based
sequencing method, which eliminates fluorescence-based image analysis and simplifies the overall
process. In this method, DNA is amplified and immobilized on a wafer disk, and solutions containing
each nucleotide type (ANTP) are sequentially flowed across the surface. When a nucleotide binds to
DNA, a specific chemical reaction occurs, and the presence or absence of this reaction is used to
detect nucleotide incorporation. By omitting fluorescence-based detection, this method offers
significant advantages in sequencing speed, cost, and instrumentation simplicity.

In this study, based on the two platforms introduced above—Illumina and Ultima Genomics—I
aim to compare and analyze the differences in sequencing characteristics and results under identical
analytical conditions. Through this comparison, I seek to evaluate the applicability and performance
of newly introduced sequencing technologies and to provide practical criteria for selecting the
optimal platform in future somatic mosaicism-based lineage tracing and mutation detection studies
[17].

In lineage tracing studies, the choice of sequencing method directly influences the resolution,
scalability, and cost-efficiency of the analysis [9]. For instance, in conventional bulk sequencing-
based lineage tracing, studies are typically conducted using a relatively small number of samples,
ranging from as few as 3—5 to around 10-20 datasets. While this approach allows for an overall
estimation of clonal structures and the identification of shared mutations, it has limitations in
resolving fine-scale lineage relationships, particularly when rare subclones are present [18].

By contrast, studies utilizing single-cell clonal expansion methods have demonstrated significantly



higher resolution in reconstructing cell lineage trees. These studies often rely on sequencing 100 to
200 or more individual clones derived from single cells, and recent advances in cell culture and
amplification protocols have enabled even larger-scale experiments [5]. Such approaches have been
shown to capture early postzygotic mutations and to uncover the branching architecture of human
development with greater precision [6]. However, the increase in sample throughput inevitably leads
to a corresponding rise in sequencing costs and processing time.

In this context, the emergence of Ultima Genomics, a cost-effective, non-optical sequencing
platform, provides an excellent opportunity for large-scale lineage tracing studies. Ultima Genomics
simplifies the configuration of the sequencer instrument through flow-based sequencing chemistry,
significantly improves sequencing speed, and dramatically reduces costs, and is attracting attention
as a platform suitable for high-throughput analysis requiring hundreds of clone samples [17, 19]. In
particular, with the recent advancement of sequencing technology, the cost of whole-genome
sequencing has decreased to about $200 for Illumina's NovaSeq X platform and about $100 for
Ultima Genomics, significantly increasing the feasibility of large-scale somatic mosaic studies. [20]
Considering this potential, this study aimed to evaluate how applicable the Ultima Genomics
platform is compared to the widely used Illumina system.

This study addresses three primary objectives. First, I compare the core technological differences
and operational characteristics of Illumina and Ultima Genomics, focusing on their sequencing
principles, performance, and platform requirements. Second, I investigate the respective strengths
and limitations of these platforms when applied to genome analysis and somatic lineage tracing,
considering factors such as variant detection sensitivity, data quality, and scalability. Finally, based
on experimental data generated from both platforms, I evaluate the feasibility of adopting a new
sequencing platform—specifically Ultima Genomics—for high-resolution lineage reconstruction.
By departing from the conventional single-platform paradigm and exploring the integration of
distinct sequencing technologies, this study aims to propose a more accurate, scalable, and cost-
effective framework for future somatic mosaicism—based lineage tracing research [4, 9].



2. MATERIALS AND METHODS

2.1 Primary Culture of Skin from Postmortem Body

Skin tissues were harvested from the anterior regions of both left and right legs of postmortem
human donors within 24 hours of death (Figure 1B). Upon collection, dermal tissues were rinsed
twice with phosphate-buffered saline (PBS) under sterile conditions. Enzymatic dissociation was
performed using a collagenase-dispase (CD) solution (I mg/mL in PBS) at 37°C for 4-6 hours.
Following digestion, tissues were neutralized with culture medium (20% FBS DMEM), trimmed to
remove residual adipose and vascular components, and cut into fragments of approximately 2—-3 mm
in diameter. The tissue fragments then were transferred to collagen I-coated 24-well plates (Corning
BioCoat), with each well containing 200 pL of pre-warmed culture medium. Cultures were
maintained in a humidified incubator at 37°C with 5% CO.. The culture medium—Dulbecco’s
Modified Eagle Medium (DMEM) low glucose supplemented with 20% fetal bovine serum (FBS),
100 IU/mL penicillin, 100 png/mL streptomycin, 2 mM L-glutamine, and 1 pg/mL amphotericin B
(Fungizone; all from Gibco)—was replaced every four days to remove floating debris and non-
adherent cells. Fibroblasts typically migrated out of the tissue fragments and proliferated over the
course of ~2 weeks. Once confluency was reached, cells were passaged into larger culture vessels
(60-mm or 100-mm dishes) for further expansion (Figure 1A).

2.2 Single-cell Clonal Expansion

Single-cell clonal expansion was conducted from primary cultures of skin dermis using
fluorescence-activated cell sorting (FACS). Subconfluent fibroblast cultures were enzymatically
dissociated using TrypLE Express (Gibco), and the resulting cell suspensions were passed through
a 40-pum cell strainer (SPL) to ensure single-cellularity. Cells were sorted using a FACSAria II cell
sorter (BD Biosciences) directly into 96-well culture plates (Corning), without any fluorescent
staining. Plates were visually inspected to confirm single-cell occupancy under microscopy. Clonal
expansion proceeded stepwise from 96-well plates to 24-well and then 6-well plates. Final expansion
and harvest were performed in 100-mm culture dishes.

2.3 DNA Extraction and Quantification, Quality Control

Genomic DNA was extracted from the collected cells using the DNeasy Blood & Tissue Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Briefly, tissue samples
were lysed in ATL buffer and proteinase K at 56°C until complete digestion, followed by incubation
with AL buffer and ethanol to facilitate DNA binding to the silica membrane. The column was
washed with AW1 and AW2 buffers, and genomic DNA was eluted in AE buffer. The concentration
of extracted DNA was measured using a Qubit 4 Fluorometer with the Qubit dsSDNA HS Assay Kit
(Thermo Fisher Scientific), and purity was assessed by A260/A280 and A260/A230 ratios using a
NanoDrop spectrophotometer. DNA integrity and fragment size distribution were evaluated using
the Agilent 4200 TapeStation and D1000 ScreenTape systems. Only samples exhibiting high



molecular weight, minimal degradation, and a sufficient DNA Integrity Number (DIN) were selected
for downstream processing. Following quality control, each sample was divided into two equal-
volume aliquots: one for library preparation and sequencing on the Ultima Genomics platform and
the other for the Illumina platform. Subsequent library quality control confirmed the expected
fragment sizes—approximately 661-689 bp for Illumina libraries and 548-569 bp for Ultima
Genomics libraries—with no significant presence of adapter dimers. These quality assurance steps
ensured that only high-quality DNA samples proceeded with library preparation and sequencing.

2.4 Library Preparation and Whole Genome Sequencing

INlumina Library Preparation and Sequencing: Genomic DNA (100 ng) was prepared for
sequencing using the TruSeq Nano DNA Library Prep Kit (Illumina, San Diego, CA) in accordance
with the manufacturer's instructions. In brief, the DNA was fragmented mechanically to a size of
approximately 350 bp using a Covaris ultrasonicator. The fragmented DNA was then subjected to
end repair, A-tailing and ligation with Illumina-specific indexed adapters. The adapter-ligated
fragments were then size-selected using sample purification beads (Beckman Coulter). The libraries
were then amplified via limited-cycle PCR (8 cycles) and purified to produce sequencing-ready
libraries.

The sequencing process was conducted on an Illumina NovaSeq X Plus system utilising standard
SBS chemistry. Libraries were loaded onto patterned flow cells where clonally amplified clusters
were generated via bridge amplification. The sequencing-by-synthesis process was conducted
through the cyclic addition of reversible terminator nucleotides, with the use of fluorescence imaging
facilitating the identification of bases in paired-end mode (2 % 150 bp).

Ultima Genomics Library Preparation and Sequencing: The genomic DNA was processed
using the TruSeq PCR Plus Library Prep Kit (Illumina), with adaptations made to ensure
compatibility with the Ultima Genomics UG100 platform. The DNA was enzymatically fragmented,
followed by end-repair and A-tailing. During adapter ligation, proprietary Ultima Genomics
platform-specific adapters were utilized instead of standard Illumina adapters to ensure
compatibility with mnSBS sequencing chemistry. Adapter-ligated DNA was purified and subjected
to PCR amplification using primers specific to Ultima Genomics, as recommended by the
manufacturer. The final libraries were bead-purified prior to the process of sequencing.

The sequencing process was conducted on the Ultima Genomics UG100 instrument, which
employs a flow-based sequencing-by-synthesis approach on an open flow cell design featuring a
rotating silicon wafer. The process of clonal amplification of DNA fragments, followed by binding
via emulsion PCR, results in the deposition of the DNA fragments onto patterned landing pads that
are distributed across the wafer. Each sequencing cycle introduces a single nucleotide type across
all beads, and incorporated events are detected via optical end-point imaging without the use of
reversible terminators. This approach has been demonstrated to generate single-end reads of
approximately 300 base pairs with high throughput and accuracy.



2.5 Mapping and Deduplication

For Illumina sequencing data, paired-end reads were aligned to the human reference genome
(GRCh37 [21] and GRCh38 [22]) using BWA-MEM (v0.7.17) [23] with read group information
included to facilitate downstream sample-level analyses. The resulting SAM files were converted to
BAM format and sorted using samtools (v1.9) [24]. PCR duplicates were subsequently marked using
Picard MarkDuplicates (v2.3.0) with default settings, retaining all reads while flagging duplicates
for later filtering. This process also generated duplication metrics for quality assessment. All steps
were performed within a Snakemake workflow, ensuring consistency and reproducibility through
defined resource allocation and Docker-based environments.

In the case of Ultima Genomics data, raw reads generated from the UG100 sequencer were
processed using UGmapper (v1.3.2), a proprietary software tool developed by Ultima Genomics.
This tool performs alignment, read sorting, and duplicate marking as part of an integrated pipeline,
directly outputting aligned data in the CRAM file format. Unlike conventional formats, these CRAM
files contain custom tags (tp, to) that encode base-level error probabilities associated with
homopolymer lengths, enhancing downstream variant calling accuracy. No additional realignment
or duplicate marking was required after UGmapper processing. (Figure 1C)

2.6 Sequencing Data Quality Control

Quality metrics were evaluated using FastQC (v0.12.1) [25] and Qualimap (v2.3) [26]. to ensure
the integrity of raw and aligned sequencing data. FastQC was used to assess base quality scores, per-
base sequence content, GC content distribution, and levels of duplication across reads. Qualimap
was applied to the aligned BAM files to evaluate overall mapping quality, coverage distribution, and
alignment statistics across the genome.

All analyses were performed using default parameters. Depth of coverage and coverage uniformity
across genomic regions were visually inspected using the Integrative Genomics Viewer (IGV) [27],
allowing for the manual confirmation of data consistency and the detection of any potential
anomalies in sequencing depth.

2.7 Variant Calling and VAF Distribution Analysis

Single nucleotide variants (SN'Vs) and indels were identified using the Genome Analysis Toolkit
(GATK) HaplotypeCaller (v4.0.5.1) [28]. Prior to variant calling, input BAM files were
preprocessed through local realignment around indels using RealignerTargetCreator and
IndelRealigner from GATK v3.5, to reduce alignment artifacts and improve variant calling accuracy.
Variant calling was performed in haplotype-based mode using sorted, deduplicated, and indel-
realigned BAM files as input. The GRCh37 or GRCh38 human reference genome was used
depending on the sample group. Resulting variant call format (VCF) files were generated per sample.
Variant allele frequencies (VAFs) were calculated from the output VCFs and visualized to infer
clonal structure and to identify candidate early postzygotic mutations.



2.8 CNV Analysis & SV Analysis

Copy number variants (CNVs) were detected using CNVKkit (v0.9.12) [29], based on read depth
information from aligned BAM files. Default copy number call parameters were used. CNV profiles
were visualized as logz copy ratio plots were exported for comparative analysis across samples and
sequencing platforms.

Structural variants (SVs) were identified from whole genome sequencing data using DELLY
(v1.2.6) [30], a software tool based on paired-end and split-read mapping signals. DELLY was run
separately for each sample to detect deletions, duplications, inversions, and translocations. The
resulting variant call format (VCF) files were filtered to retain high-confidence SVs based on default
quality metrics and genotype support.

To compare SV profiles across samples and platforms, the resulting SVs were merged using
SURVIVOR (v1.0.7) [31]. A maximum allowed distance of 1,000 bp between breakpoints was used
to define SV equivalence across samples, and only variants supported by at least one sample were
retained. The merged SV set was then used to generate a presence/absence matrix, from which
pairwise correlations between samples were calculated.

This approach enabled the identification of common and platform-specific structural variants and
allowed for the assessment of concordance across sequencing platforms.

2.9 Variant Annotation

Variants identified through GATK HaplotypeCaller (v4.5.0.0) were annotated using snpEff (v5.1)
[32] referencing dbSNP [33], gnomAD [34], and ClinVar [35] databases. Annotation included
functional classifications (e.g., missense, nonsense, frameshift) and predicted impact levels, along
with population allele frequencies and clinical significance.

2.10 Mutation Signature Analysis

Somatic single nucleotide variants (SNVs) were selected by comparing four DNA samples
obtained from the same individual. Variants identified in all four samples were considered germline
mutations and excluded from analysis. Variants shared by two or three samples were classified as
somatic mutations, while those detected in only one sample were classified as private mutations and
analyzed separately. Only variants detected in both the [llumina and Ultima Genomics platforms for
the same DNA sample were included in the somatic mutation analysis. In addition, platform-specific
mutations, identified exclusively by either [llumina or Ultima Genomics, were analyzed separately
to assess potential platform-dependent biases.

Mutational signature analysis was performed using SigProfilerExtractor (v1.1.25) [36]. For each
somatic SNV, the trinucleotide context was determined to construct a 96-channel mutation profile.
de novo mutational signatures were extracted using non-negative matrix factorization (NMF) and
compared to reference signatures from COSMIC v3.4 using cosine similarity.



2.11 Sanger Sequencing Validation

Three candidate INDEL variants were validated by Sanger sequencing. Genomic DNA was
amplified by PCR using variant-specific primers (amplicon size: 273—495 bp) targeting BRCA1 and
BRCAZ2 loci. PCR was carried out using Dr. MAX DNA Polymerase (Doctor Protein Inc., Korea)
with optimized thermal cycling conditions. Amplified products were purified and sequenced
bidirectionally using the BigDye Terminator v3.1 Cycle Sequencing Kit on an ABI 3730x] DNA
Analyzer (Applied Biosystems).



3. RESULTS

3.1 Comparison of Sequencing Data Characteristics Between the Two
Sequencing Platforms

Prior to performing mutation analysis based on Whole Genome Sequencing (WGS) data generated
from two sequencing platforms, a quality assessment was first conducted on each dataset. For the
[llumina platform, quality assessment began with FASTQ files generated from the sequencer,
whereas for the Ultima Genomics platform, evaluation was performed on CRAM files. However, to
ensure a fair comparison, files in a standardized format were generated, and quality assessment was
conducted using a unified analysis pipeline.

First, to evaluate the base call quality of each platform, statistics were calculated using the samtools
stats function on the aligned BAM files. As evaluation metrics, the proportion of bases with a Phred
score of Q30 (error rate < 0.001%) or higher, and Q20 (error rate < 0.01%) or higher, was measured.
(Figure 2) The analysis results showed that the four samples on the left were generated using the
[llumina platform, and the four samples on the right were generated using the Ultima Genomics
platform. It was confirmed that the data produced by the Illumina platform exhibited higher base
quality overall. Specifically, the average proportion of bases with Q20 or higher was approximately
3.03% greater for Illumina than for Ultima Genomics, and the Q30-based quality was, on average,
7.48% higher.

Next, alignment was performed for all sequenced data against the hg38 human reference genome,
and the Mapped Read Rate was calculated. This analysis also utilized samtools stats, and the results
showed that the data from the Ultima Genomics platform had, on average, a 0.4% higher mapping
rate. However, this difference is considered to result from sample-specific characteristics rather than
technical differences between the platforms. (Figure 3A)

In addition, the ratio of deduplicated reads was analyzed to determine the proportion of actual reads
remaining after PCR duplicates were removed. This allowed a comparison of library complexity and
duplication rate during the sequencing process. As a result, no significant difference was observed
between the two platforms in terms of the deduplicated read ratio, which is interpreted as variation
due to individual sample characteristics. (Figure 3B)

In general, the results of comparing sequencing data quality between the two platforms showed
that the Illumina platform was superior in base quality (Phred score), while the mapping rate and
deduplicated read ratio did not show significant differences between the platforms. These results
suggest that although there may be differences in base-calling accuracy, both platforms provide
comparable performance in terms of overall alignment and library quality. Therefore, data from both
platforms can be considered a valid basis for subsequent mutation analysis.

To evaluate potential base composition bias between sequencing platforms, GC content distribution
analysis was performed (Figure 4). This analysis examined the proportion of guanine (G) and
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cytosine (C) bases across reads to assess whether sequencing efficiency varies according to GC
content. The Illumina platform (orange line) exhibited a unimodal distribution with a clear peak
around 40% GC content, aligning with the expected average for the human genome. The distribution
was relatively symmetric and stable, suggesting consistent performance across a range of GC
contents. In contrast, the Ultima Genomics platform (blue line) also showed a peak at a similar GC
content range but demonstrated a steeper decline in read frequency as GC content increased beyond
the peak. Notably, in the high-GC regions (50-70%), Ultima Genomics exhibited a sharper drop in
read coverage compared to Illumina. These findings suggest that Ultima Genomics may have
reduced sequencing efficiency or coverage uniformity in GC-rich regions, potentially due to
technical limitations in base incorporation or amplification under high GC content. In contrast,
[llumina maintained a more stable read distribution across the GC spectrum, indicating greater
tolerance to GC content variation and more uniform genome coverage.

To evaluate the sequencing performance of each platform, we analyzed the relationship between
coverage depth and genome fraction covered for each sample. The average of four samples per
platform was plotted on a graph (Figure 5). In whole genome sequencing, a wide range of the
genome must be covered even at intermediate levels of depth, so this analysis serves as a key
indicator for evaluating sequencing reliability. As shown in the plot, most samples achieved more
than 90% genome coverage at depths below 10X, demonstrating excellent baseline sequencing
efficiency. However, no significant differences were observed between samples across platforms as
the coverage depth increased. Overall, the patterns observed in both Ultima Genomics and Illumina
datasets were similar. These results suggest that variation in data quality is more attributable to
sample-specific factors than to differences between the two platforms, especially in studies that
require high coverage or comprehensive genome-wide analysis (Table 1).

Table 1. Data Yield and Mean Coverage per Sample

Category ALL_Fb1-3 G11 | ALL_Fb13-4_G7 | ARL_Fb12-2 H6 | ARL_Fb5-4 C2
Yields (Gb) 147.80 147.49 153.71 151.95
Illumina
Mean 43.51 42.86 43.79 45.96
Coverage (X) : : ' :
Yields (Gb) 182.43 135.04 147.45 137.76
Ultima
Genomics Mean
Coverage (X) 54.10 39.60 42.40 41.95
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3.2 Comparison of Called Variants Between Sequencing Platforms

To perform lineage tracing and downstream analysis on single-cell clones using Whole Genome
Sequencing (WGS) data, we first generated a VCF file containing mutation information from the
BAM file of each sample to identify mutations compared to the reference genome (hg38). Mutation
calling was performed using the HaplotypeCaller of GATK, with default parameters applied and no
additional filtering process used. Before conducting a full-scale mutation analysis, we visualized the
Variant Allele Frequency (VAF) distribution to identify the overall characteristics of the generated
call set, and variants with a VAF value of 1 were excluded from the analysis. The Illumina data
showed a typical bell-shaped VAF distribution, with some samples also revealing high-frequency
mutations with a VAF close to 0.9. (Figure 6A) Conversely, data from the Ultima Genomics platform
showed a concentration of mutations in the low allele frequency region (around 0.1), with a
significantly larger total number of mutations (4.8 million to 5.1 million) compared to Illumina
(approximately 3.2 million). (Figure 6B)

To more clearly examine this difference in distribution, all mutations were separated into SNV
and INDELSs and analyzed. When SNVs were extracted from the Illumina VCF and analyzed, the
resulting distribution maintained the same bell-shaped curve observed earlier. (Figure 7A) The
SNVs from Ultima Genomics also showed a distribution similar to that of Illumina, with a reduced
presence of low VAF variants compared to the overall mutation set. (Figure 7B) SNVs commonly
identified between the two platforms and those identified specifically by each platform were
visualized through a Venn diagram, with mutations detected across all eight samples considered
germline mutations and excluded from the analysis. (Figure 8) As a result, [llumina-specific SNVs
were relatively more numerous than those from Ultima Genomics, but the overall distribution
patterns between the two platforms were similar.

On the other hand, a clear difference was observed in the analysis of INDELs. The VAF distribution
of [llumina INDELSs showed a significantly higher number of mutations at VAF 0.9 or above, and
many mutations were also found in the 0.6-0.8 range, indicating relatively high VAF values
compared to SNVs. (Figure 9A) In contrast, the distribution of Ultima Genomics INDELs was left-
skewed, with a predominance of mutations having low VAF values. (Figure 9B) While the number
of INDELs identified in Illumina was approximately 680,000, Ultima Genomics recorded
approximately 2.4 million to a maximum of 2.7 million, nearly four times as many.

Specifically, mutations with VAF values of 0.2 or lower were considered likely false positives,
prompting additional analysis. A Venn diagram was also created for the INDEL variants from both
platforms, excluding germline mutations detected across all eight samples. This analysis revealed
that the number of INDEL mutations uniquely detected by Ultima Genomics was approximately 20
times higher than those detected by Illumina, indicating a clear difference in INDEL detection
characteristics between the platforms. (Figure 10)

In order to analyze the characteristics of the INDEL mutations identified above more precisely,
additional analysis was performed by dividing INDELs into homopolymer INDELs and non-
homopolymer INDELs. Homopolymer INDELs are defined as insertion or deletion mutations
consisting of repeated identical bases. In this study, an INDEL was classified as homopolymer if its
length was 3 bp or longer, and one base (A, T, G, or C) constituted 80% or more of the total length
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within the INDEL region.

As a result of the analysis (Table 2), PolyA and PolyT were observed more frequently than PolyC
and PolyG in homopolymer INDELs on both the Illumina and Ultima Genomics platforms,
suggesting an asymmetric tendency of occurrence depending on base composition. In addition, the
overall number of homopolymer INDELSs was slightly higher on the Ultima Genomics platform than
on the Illumina platform, indicating that this difference may result from platform-specific
differences in base insertion/deletion processing. (Figure 11)

On the other hand, for non-homopolymer INDELs—excluding homopolymer INDELs—the
number of mutations detected on Ultima Genomics was found to be approximately four times higher
than that on Illumina. This suggests that beyond simple technical differences, there may be unique
error patterns or artificial mutation artifacts specific to the Ultima Genomics platform.

Therefore, these results imply that when analyzing INDEL mutations using the Ultima Genomics
platform, it is essential to employ a filtering method that accounts for the potential presence of false
positives, particularly in non-homopolymer regions. Establishing an analysis strategy that
incorporates platform-specific characteristics is crucial, and the development of appropriate
validation and correction methodologies will be necessary in future studies.

Mutation signature analysis was performed to compare the biological signals and technical
characteristics of mutations detected on different sequencing platforms. The analysis included
common mutations identified only on both Illumina and Ultima Genomics platforms in the same
cell, and platform-specific mutations detected exclusively on each platform. Mutations commonly
observed in four DNAs were excluded as germline mutations, and mutations observed only on one
of the platforms were analyzed separately. Mutations shared by two or three DNA samples, as well
as unique mutations detected in only one DNA sample, were considered somatic mutations and
subjected to analysis.

Mutation signature analysis results for commonly detected mutations showed very high similarity
with cosine similarity of 0.99 and correlation of 0.989, indicating excellent agreement between the
original data and the modeled signature. Considering that the sample was skin fibroblast, SBS1 and
SBSS5, which are clock-like signatures that accumulate over time, stood out along with SBS7a and
SBS7b signatures induced by UV, and some SBS58 signatures were suggested to be due to
sequencing errors. This confirmed that biological mutation signals were consistently well restored
on both platforms. (Figure 12)

Analysis targeting mutations detected specifically on the Illumina platform showed relatively high
similarity with cosine similarity of 0.949 and correlation of 0.889, and SBS5, SBS58, and SBS96
contributed as major signatures. In particular, signatures related to the action of AID enzymes related
to immune response were also observed, suggesting biological significance. However, the
reproducibility of some signatures was limited due to the relatively high L1/L2 error and KL
divergence values, which may reflect the possibility of technical bias unique to the platform. (Figure
13A)

On the other hand, the signature analysis of mutations observed only on the Ultima Genomics
platform showed the lowest similarity among the analyses so far, with cosine similarity of 0.76 and
correlation of 0.46. In addition, the L1/L2 error was 50~66% and the KL divergence was very high
at 0.237, suggesting that the reproducibility of the original signature was low. Although SBS96 and
SBSS5 were identified as major signatures, SBS96 had limitations in interpretation as its biological
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function has not been clearly known to date. Overall, the signature pattern was not clear and was
dispersed, raising the possibility of platform-specific error characteristics or bias in the analysis
process. (Figure 13B)

In summary, while the signature based on common mutations stably restored biological signals,
different signature patterns appeared when targeting only platform-specific mutations, and this
tendency was observed more clearly on the Ultima Genomics platform. This suggests that platform-
specific technical characteristics have an impact on mutation signature analysis, and demonstrates
the need to consider platform-specific biases in future sequencing-based mutation interpretation.

Table 2. Comparison of Homopolymer and Non-Homopolymer INDEL Counts

Hom Non-
Variant Counts polyA polyT polyC polyG omo homo
polymer
polymer
ALL_Fbl-
Gt 14,930 13,523 375 335 20163 | 607317
ALL_Fb13- 14.860 13.417 381 341 28999 | 603,660
4.G71
Illumina
ARL_Fb12- 14.856 13,496 368 354 29074 | 605704
2 H6_1
ARL_FbS- 15,160 13,840 393 336 29729 | 615257
4.C21
ALL_Fbl-
3 GiLU 19,125 15,960 272 269 35.626 | 2.654.955
ALL_Fb13-
seru 15,913 13,485 222 240 29.860 | 2,418,196
Ultima
Genomics
ARL_Fb12-
2 6 U 15,978 13,432 221 214 20.845 | 2.347.992
AfLC—zF‘I’JS' 16,230 13,709 224 231 30394 | 2,378,122
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3.3 Identification of Platform-Specific Variants Through Variant
Annotation

Variant annotation was performed for further analysis of the variant call set. The variant annotation
process involves evaluating the pathological relevance of each variant, its functional impact at the
protein level, and other factors by utilizing various genome and disease-related databases based on
sequencing data. Since the medical records of the cadaver donor used in this study confirmed a
history of breast cancer, annotation was carried out to identify mutations strongly associated with
breast cancer. However, as the samples were derived from normal cells rather than tumor tissue, the
analysis focused on germline mutations instead of somatic mutations. After integrating the VCF files
generated from all eight samples, mutations in breast cancer-related gene regions, including BRCA1
and BRCA2, were filtered. During this process, mutations classified as ‘IMPACT = HIGH—
indicating a significant effect on protein structure or function—were prioritized. Additionally, the
ClinVar database was used to annotate the disease types and pathological implications associated
with each mutation. (Figure 14)

As a result, mutations at three genetic loci were classified as ‘Pathogenic,” and all were confirmed
to be related to breast-ovarian cancer. These mutations were marked as ‘ORIGIN = 1” in the ClinVar
database, indicating that they are germline-derived. All three mutations were INDELSs caused by the
deletion of a single nucleotide, and were therefore interpreted as having a high potential to alter
protein structure. (Table 3)

Notably, the first and third mutations were not detected in the Illumina platform data but were
observed exclusively in the Ultima Genomics platform data. In contrast, the second mutation was
identified by both platforms and may serve as an example of cross-platform detection consistency.
Finally, to verify whether the variants identified through variant calling represented true mutations,
visual inspection of aligned reads was performed using the BAM files for each sample. (Figure 15)

Additionally, to verify whether the variants identified at the three loci were true variants, validation
was performed using Sanger sequencing as an orthogonal method. The Sanger sequencing results
revealed that the INDELSs detected exclusively in the Ultima Genomics platform at the first and third
loci were not present in any of the four DNA samples, indicating that they were false positives. In
contrast, the variant at the second locus was consistently observed in all four DNA samples,
confirming it as a true variant. (Figure 16)

These findings suggest that INDELs frequently observed specifically in the Ultima Genomics
platform may include a high rate of false positives. Therefore, a platform-specific filtration strategy
for INDEL variants is necessary.
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Table 3. Annotation of Selected BRCA1/BRCA2 Mutations

CHROM POS REF ALT GENE  IMPACT ORIGIN CLNDN CLNSIG
13 32,363,371 TG T BRCA2 HIGH 1 Breast-ovarian_cancer,_familial,_susceptibility_to,_2|Hereditary_breast_ovarian_cancer_syndrome Pathogenic
17 43,045,763 TC T BRCA1  HIGH 1 Hereditary_breast_ovarian_cancer_syndrome Pathogenic
17 43,091,999 TA T BRCA1 HIGH 1 not_provided|Breast-ovarian_cancer,_familial,_susceptibility_to,_1 Pathogenic

3.4 Comparison of CNV Profiles Between Sequencing Platforms

Next, we performed an analysis of CNV (Copy Number Variation) for structural mutation analysis
at the whole genome level. The CNVKkit tool was used for the analysis, which is a tool that can
visualize copy number variability in the entire genome based on the Read Depth of the sequencing
data. The graph presented in the figure was generated using CNVkit and shows the variation in Read
Depth observed in the sequencing data of each platform.

Copy number variants (CNVs) were analyzed using CNVKkit, and both Illumina and Ultima
Genomics platforms produced consistent and stable copy number profiles. While minor fluctuations
in read depth were observed in some regions, these did not lead to significant differences in the
segmented CNV calls between platforms. No platform-specific artifacts or signal distortions were
detected, indicating that CN'Vkit performs robustly across different sequencing technologies when
using the same analysis conditions. (Figure 17)

3.5 Comparison of SV Profiles Between Sequencing Platforms

Finally, we performed an analysis on structural variants (SVs). SVs were derived from data
produced by each sequencing platform (=Illumina and Ultima Genomics), and the analysis included
various types such as inversion, translocation, and large insertion/deletion using an SV detection
tool. However, due to the nature of SVs, the precise definition of breakpoints or variant lengths can
vary across sequencing platforms and analysis tools, making direct comparison and relevance
evaluation, unlike single nucleotide variants (SNVs), challenging.

Accordingly, in this study, we utilized the SURVIVOR tool to comprehensively analyze the SV
detection results and compare the similarity between samples. SURVIVOR provides a pairwise
comparison function that can quantitatively calculate the SV similarity between two samples after
merging SVs detected in different samples based on criteria. Through this, SV-based correlation
analysis was performed on a total of 8 sequencing data. (Figure 18)

The analysis results showed that the SV similarity between data generated on the same platform
tended to be higher than that between data generated on different platforms derived from the same
sample. In particular, the correlation between data produced on the Ultima Genomics platform was
observed to be slightly higher than that between Illumina platforms. This suggests that the analysis
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results of Ultima Genomics may show higher reproducibility and consistency within the platform.
These results show that there is a batch effect due to the technical characteristics of each platform

and suggest caution in interpretation that may occur when directly comparing platforms. In future

analyses, it is judged that a follow-up strategy to correct such platform-specific bias is necessary.

3.6 Branch confirmation for 8 data based on previous Lineage Tracing
studies

Based on the Early Embryonic Mutations (EEM) information confirmed in previous analyses, we
inferred the lineage (branch) of the newly sequenced data by comparing it with the lineage tree
presented in a previous study [10]. This was done by defining the lineage position of each sample
by confirming whether the corresponding mutations exist in the newly generated sample, if the
branch-defining mutations obtained in the previous study can be used as a reliable reference point.

As a result of the analysis, the newly sequenced data showed a pattern of branching in a 3:1 ratio
overall, which is consistent with the major occurrence branching pattern confirmed in the previous
study. In particular, the results were clearly distinguished through comparison with the data produced
by the existing [llumina platform, and it was possible to precisely classify which branch each sample
belongs to base on whether it had an EEM.

This lineage structure was visualized through (Figure 19), and the lineage of the newly analyzed
sample was indicated by a red line to clearly distinguish its position in the existing lineage tree. Each
sample was placed in the appropriate branch based on the presence or absence of EEM, which
allowed for visual verification of lineage consistency between data from the two sequencing
platforms.

The phylogenetic analysis confirmed that the new sequence data can be logically connected to the
existing phylogenetic branch structure, supporting that mutation-based lineage tracing is a
reproducible analysis strategy regardless of the platform. Furthermore, this suggests that single-cell-
derived genome information provides sufficient reliability and resolution to be utilized for
developmental phylogenetic analysis, and it is expected to function as a core base data for more
expanded analyses in the future.
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4. DISCUSSION

This study is significant in that it performed whole-genome sequencing on single-cell clones
derived from normal tissues and compared the characteristics and mutation detection performance
of the [llumina and Ultima Genomics platforms. However, several limitations should be considered
when interpreting the results.

First, the number of single-cell clone samples analyzed was limited to four, which made it difficult
to detect private mutations unique to individual cells and ultimately reduced the resolution of the
subclonal structure. To achieve high-resolution lineage tracing in single-cell genome analysis, a
larger number of clones should be secured, and expanding the sample size in future studies would
allow for more precise identification of genetic differences between cells.

Second, as the study was based solely on normal cells, it was not possible to identify mutations
specific to tumor cells. Since tumor-derived mutations provide critical insights into clonal evolution
and tumor heterogeneity, applying the same analysis to tumor-derived single-cell clones in future
studies is expected to enable richer biological interpretation.

Third, for certain additional analyses such as structural variant (SV) detection and short tandem
repeat (STR) profiling, the analysis tools used were not fully compatible with the Ultima Genomics
platform. Ultima Genomics produces output data in CRAM format by default, which differs from
the standard FASTQ-based pipelines, necessitating additional preprocessing and parameter
adjustments. This introduced complexity to the analysis workflow and limited the scope of
downstream analyses.

Finally, a variant filtering model specifically optimized for the Ultima Genomics platform was not
applied in this study. The platform utilizes a flow-based sequencing method that detects base
incorporation by measuring signal intensity as specific nucleotides are flowed over the DNA
template. However, in homopolymer regions—where the same base is repeated (e.g., AAAAA or
TTTT)—this method struggles to accurately quantify the number of incorporated bases due to the
non-linear and saturable nature of signal intensities.

As a result, insertion/deletion (INDEL) errors are more frequent, increasing the likelihood of false
positives. Recently, a machine learning—based filtering model has been developed to address this
issue by learning the platform-specific error patterns and distinguishing true variants from
sequencing artifacts. Although this model was not implemented in the current study, applying it in
future work is expected to significantly improve INDEL detection accuracy and enhance the overall
reliability of analyses performed using the Ultima Genomics platform.
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5. CONCLUSION

This study conducted a comparative analysis with the current standard technology, the Illumina
platform, to evaluate the applicability of the new sequencing platform, Ultima Genomics, to somatic
mutation-based lineage tracing research. In terms of overall sequencing quality indicators, Ultima
Genomics showed slightly lower or similar performance compared to Illumina, and SNV mutation
concordance exhibited similar patterns between the two platforms.

On the other hand, the correlation between platforms was low for INDEL mutations, and it was
identified that there was a platform-specific bias due to the unique technical characteristics of Ultima
Genomics. In particular, there were cases where small deletion INDELs of 1 bp that were not
identified in [llumina data were detected in Ultima Genomics data, and it is judged that confirmation
of data including IGV for the corresponding mutations and validation through other cross-methods
are necessary.

In CNV analysis, No clear differences were observed between the two platform. However, further
evaluation using tumor-specific samples with copy number amplifications or deletions is needed to
more clearly assess potential differences between the platforms. However, in SV analysis, the
concordance between platforms was low, which is interpreted as a result of differences in analysis
tools and technology.

Finally, Ultima Genomics is judged to provide sufficient resolution for capturing branch structures
in single-cell-based lineage tracing. However, for precise interpretation of detailed lineage structures,
a correction strategy for platform-specific variation characteristics, along with a larger number of
samples, should be implemented.
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Figure 1. Overall workflow and underlying principle of the study
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(A) Experimental design for lineage tracing. Skin tissues were obtained from a postmortem donor
via warm autopsy and subjected to primary culture, single-cell isolation, clonal expansion, and
whole-genome sequencing. (B) Sampling location: anterior regions of both lower legs. (C)
Comparison of sequencing workflows between [llumina and Ultima Genomics platforms. While the
initial data formats and processing steps differ, all downstream analyses were standardized using a

unified Snakemake pipeline.
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Figure 2. Comparison of Base Call Quality Between Sequencing Platforms

Prior to variant analysis, sequencing data quality was evaluated, including base call quality, mapping
rate, deduplication rate, GC content, and coverage distribution. [llumina showed higher base call
accuracy than Ultima Genomics, with 3.03% higher Q20 and 7.48% higher Q30 metrics on average
across samples.
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Figure 3. Comparison of Alignment Statistics Between Sequencing Platforms

(A) The Mapped Read Rate represents the proportion of reads successfully aligned to the reference
genome. Ultima Genomics samples showed a slightly higher average rate (~0.4%) compared to
[llumina, although this difference is likely within the margin of error. (B) The Deduplicated Read
Rate, indicating the percentage of reads remaining after PCR duplicate removal, showed no notable
difference between platforms, suggesting that variation is more sample-dependent than platform-

dependent.
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Average GC Content Distribution by Platform
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Figure 4. GC Content Distribution of Sequencing Read Count

The fourth quality metric evaluated was the average GC content distribution. Ultima Genomics
showed a sharp peak near 40% GC content, indicating a narrow distribution of reads. This suggests
reduced sequencing efficiency in high or low GC regions, which may affect coverage uniformity
and downstream variant detection sensitivity.
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Average Genome Coverage Distribution by Platform
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Figure 5. Genome-wide fraction coverage at varying sequencing depths

This figure illustrates the average genome coverage fraction across varying sequencing depths for
eight datasets. The x-axis represents sequencing depth, and the y-axis indicates the percentage of
the genome covered at or above each depth. Both Illumina and Ultima Genomics platforms showed
similar patterns of coverage decay as depth increased, with no platform-specific differences
observed. These results suggest that genome coverage is more influenced by sequencing yield than
by platform characteristics.
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Figure 6. VAF Distribution of Total Called Variants Across Sequencing Platforms

(A) Illumina showed a typical bell-shaped VAF distribution with a peak near 0.5 and some high-
frequency variants. (B) Ultima Genomics exhibited a broader spread with more low-frequency
variants and a greater total variant count.
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Figure 7. VAF Distribution of SNV Across Sequencing Platforms

(A) The VAF distribution of SNVs from Illumina data shows a typical bell-shaped curve with a
stable variant count. (B) The Ultima Genomics platform also exhibited a similar distribution pattern
and comparable total SNV counts to Illumina.
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Figure 8. Venn Diagrams of SNVs Detected by Each Sequencing Platform Across Four
Samples

Venn diagrams visualize the overlap and platform-specific detection of SNVs between Illumina and
Ultima Genomics. Variants commonly identified in all eight samples (germline) were excluded from
the comparison. While Illumina-specific SNVs appeared slightly more numerous, the overall variant
patterns were similar across platforms.
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Figure 9. VAF Distribution of INDELSs Across Sequencing Platforms

(A) Illumina data show a typical INDEL VAF distribution with peaks around 0.6-0.9. (B) Ultima
Genomics data show left-skewed distribution, indicating a high number of low-VAF INDELs, with
total INDEL counts 3—4 times higher than Illumina.
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Figure 10. Venn Diagrams of INDELs Detected by Each Sequencing Platform Across Four
Samples

Venn diagrams show platform-specific and shared INDELs between Illumina and Ultima Genomics
for each sample. Germline variants identified across all eight datasets were excluded. The number
of INDELSs uniquely detected by Ultima Genomics was approximately 20 times higher than that of
[llumina.
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Figure 11. Comparison of Homopolymer and Non-Homopolymer INDEL Counts Across
Sequencing Platforms

INDEL variants were classified into homopolymer and non-homopolymer types based on base
repetition criteria (=3 bp and >80% single-base content). (A) Ultima Genomics showed a slightly
higher count of homopolymer INDELSs than I[llumina. (B) For non-homopolymer INDELs, Ultima
Genomics showed ~4-fold higher counts, indicating the need for platform-specific filtering
strategies.
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Figure 12. Shared Somatic Mutation Signatures

Mutation signatures based on somatic variants were detected on both Illumina and Ultima Genomics
platforms. High concordance (cosine similarity = 0.99) supports accurate reconstruction of UV-
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Figure 13. Platform-specific mutation signatures

(A) Mutation signature analysis of Illumina-specific SNVs showed relatively high reproducibility,
with strong contributions from SBS5, SBS58, and immune-related SBS96. (B) In contrast, Ultima
Genomics-specific SNVs yielded low similarity and dispersed patterns, with high L1/L2 error and
KL divergence, indicating potential platform-specific technical artifacts.
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Figure 14. VAF Heatmap of Selected BRCA1/2 Variants Across Samples

Visual representation of allele frequencies for three BRCA1/2 deletion variants across all samples.
Variants only observed in Ultima Genomics or in both platforms are shown, highlighting cross-
platform detection differences.

ALL_Fb1-3_G11 . : J

ALL_Fb13-4_G7

lllumina

ARL_Fb5-4_C2

ARL_Fb12-2_H6

ALL_Fb1-3_G11

ALL_Fb13-4_G7

ARL_Fb5-4_C2

Ultima Genomics

ARL_Fb12-2_H6 =

chr13 32,363,371bp chr17 43,045,763bp chr17 43,091,999bp

Figure 15. IGV Validation of Selected BRCA1/2 Mutations Across Sequencing Platforms

IGV visualizations confirm the presence of three BRCA-related mutations. The first and third
variants are observed only in Ultima Genomics data, while the second is consistently detected in
both Illumina and Ultima Genomics datasets.
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Figure 16. Sanger Sequencing Results for the Three Variant Loci
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To wvalidate the three filtered loci (chrl13:32,363,371; chrl7:43,045,763; chrl17:43,091,999)
identified through annotation, Sanger sequencing was performed as an orthogonal method. The first
and third loci, where INDEL variants were detected only in the Ultima Genomics platform, were
confirmed to be false positives, as no variants were observed in any of the four DNA samples. In
contrast, the second locus showed a deletion consistently detected by both sequencing platforms,
and this result was also confirmed by Sanger sequencing. Additionally, the reverse strand was also

examined to confirm these results.
T G
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Figure 17. Genome-wide CNV Profiles Across Platforms

Copy number variation (CNV) was analyzed using CNVkit. No distinct differences were observed
between the two platforms, although regions with reduced read depth due to sequencing artifacts
were identified in the [llumina data.
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Figure 18. Pairwise Correlation of Structural Variants Across Sequencing Platforms

SVs from each sample were merged and compared using SURVIVOR to assess pairwise correlation.
Higher correlations were observed within platforms, with Ultima Genomics showing slightly
stronger consistency.
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Figure 19. Lineage mapping of the four sequenced samples onto the previously established lineage tree

Samples sequenced on the Ultima Genomics platform were aligned to hgl9 and mapped onto a pre-established lineage tree.
This confirmed that branch assignment is feasible using variants detected by Ultima Genomics data.
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