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ABSTRACT

ECG Arrhythmia Classification Using a Hybrid CNN-BiLSTM: 

Task-Dependent Evaluation of MFCC and Softmax Effectiveness

  This study proposes the application of Mel-Frequency Cepstral Coefficients (MFCC), 

commonly employed in speech signal analysis, to the analysis of ECG (Electrocardiogram) 

signals in order to address limitations found in existing deep learning-based approaches. 

Traditional methods based on FFT or wavelet transforms often suffer from temporal 

information loss or struggle to capture diverse waveform patterns. In contrast, MFCC 

offers the advantage of simultaneously reflecting nonlinear frequency characteristics and 

temporal features.

  Hybrid deep learning architectures, including ConvLSTM and CNN+BiLSTM, were 

designed using MFCC-based inputs. Model performance was evaluated under varying 

conditions, including MFCC application, segment length (2s/3s), and activation functions 

(ReLU/Softmax) in convolutional layers. Notably, the experimental application of the 

Softmax function unconventionally applied to convolutional layers facilitated selective 

emphasis on salient features and contributed to improved performance. The CNN+BiLSTM 

model combining MFCC and Softmax maintained a consistently higher performance than 

models without MFCC.

  In addition, the model's response to different input configurations and classification 

settings was investigated by modifying the number of MFCC filter banks and applying a 

multi-class classification scheme. By excluding Q-waveforms and focusing on clinically 

relevant classes, this study also explored the practical applicability of the approach. These 

findings suggest that MFCC-based ECG classification extends beyond structural 

enhancements and may contribute to real-time clinical decision-making and the development 

of advanced monitoring systems.
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