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Abstract

Development of a Diagnostic Evaluation
Framework of Correlated Biomarkers for Survival
Outcome Using Nested Copula Models

Robust evaluation of biomarker performance for survival outcomes is critical in precision
medicine, particularly when multiple, dependent biomarkers are involved. Traditional regression-
based approaches typically focus on marginal effects and overlook inter-marker dependencies, often
treating them merely as sources of multicollinearity.

To address this limitation, we propose a diagnostic evaluation framework based on fully nested
Archimedean copulas (FNACs), which flexibly model the joint distribution of two dependent
biomarkers and a survival outcome. FNACs accommodate hierarchical, asymmetric dependence,
enabling simultaneous modeling of both inter-marker and marker—outcome relationships within a
unified probabilistic framework. This approach is particularly useful for evaluating the contribution
of a new biomarker in the presence of an already established one.

The framework employs two complementary strategies: conditional evaluation, which quantifies
the added value of a new biomarker given an existing one; and joint evaluation, which assesses their
combined utility using an and-classifier that defines positive cases as those exceeding predefined
thresholds for both biomarkers. These strategies support tailored interpretation depending on the
clinical objectives and biomarker characteristics.

Simulation studies across varying censoring levels, prediction time horizons, and copula families
(Frank, Clayton, Gumbel) demonstrate the framework’s accuracy in estimating performance metrics
and recovering the true dependence structure. Application to the Mayo Clinic PBC dataset further
illustrates its practical utility in real-world clinical settings.

Keyword: Nested copula models, Biomarker performance evaluation, Time-dependent AUC,
Survival Analysis
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1. Introduction
1.1. Background

Accurate evaluation of biomarkers for survival outcomes is fundamental, especially in the
era of precision medicine, where risk stratification and early diagnosis rely heavily on
quantitative measures derived from biological indicators. In many real-world clinical
scenarios, a new biomarker is assessed not in isolation but in the context of one or more
pre-established biomarkers. These biomarkers often exhibit non-negligible
interdependence due to shared biological pathways, overlapping measurement mechanisms,
or underlying disease processes(Heagerty & Zheng, 2005). However, traditional modeling
approaches often incorporate these biomarkers as fixed covariates in regression-based
frameworks, with an emphasis on estimating their marginal effects on survival. Within this
paradigm, the intrinsic dependencies among biomarkers are typically ignored or regarded
as sources of multicollinearity, which can result in biased or inefficient estimates of
diagnostic performance and potentially undermine the clinical interpretability of the model.

Two complementary approaches can be considered when evaluating a new biomarker
in the presence of an established one. First, the conditional evaluation assesses the
diagnostic value of the new biomarker, given the information contained in the existing ones;
for example, assessing the utility of CA19-9 after adjusting for CEA in pancreatic cancer
prognosis. Second, the joint evaluation approach considers the combination of multiple
markers using a logical structure, such as an and-classifier, which may better reflect the
clinical decision-making process when multiple criteria are required to define a high-risk
subject. These complementary strategies provide flexibility in evaluating biomarker utility,
whether incrementally or in combination, depending on clinical objectives.

To formally quantify the added value of a new biomarker, summary indices such as
the Net Reclassification Improvement (NRI) and Integrated Discrimination Improvement
(IDI) have been widely used. These measures compare a baseline model and an extended
model incorporating the new biomarker, focusing on improvements in risk classification
and discrimination. However, it is important to note that the NRI and IDI do not assess the
intrinsic predictive performance of the biomarker itself. Rather, they assess the incremental
contribution of a biomarker when added to a specific prediction model. Moreover, both
NRI and IDI are highly sensitive to the choice of baseline model, which can substantially
influence the magnitude and interpretation of the estimated improvement. Numerous
studies have emphasized that these measures should be interpreted with caution to avoid



conflating model improvement with the marker’s inherent diagnostic capacity(Cook, 2007;
Pencina et al., 2008; Pepe & Janes, 2011; Pepe et al., 2004).

Several extensions of the ROC curve have been proposed to capture covariate-specific
diagnostic accuracy. For example, conditional ROC curves estimate performance at fixed
values of a covariate, and covariate-adjusted ROC curves are obtained by averaging
conditional ROCs across the distribution of the covariate. These approaches have been
particularly useful in settings involving population heterogeneity, such as multicenter
studies or matched case-control designs (Pepe et al., 2013).

In this study, we define conventional diagnostic tools—such as the ROC curve and
risk function—as functionals of the joint distribution derived from a copula model. By
doing so, we propose a copula-based diagnostic framework that provides greater flexibility
in modeling complex covariate structures. Copula models are particularly advantageous in
this context, as they allow for the separate modeling of marginal distributions and
dependence structures, yielding several methodological benefits. First, copulas allow each
biomarker to retain its own marginal distribution, including skewness and heavy tails, by
independently modeling the margins. Second, they can flexibly accommodate complex and
asymmetric dependence structures, which are often present in biomedical data but poorly
captured by standard regression models(Joe, 1997; Nelsen, 2006). Third, once a joint
distribution is specified through a copula, conditional distributions and key probabilities
can be derived analytically, enabling the direct estimation of diagnostic quantities, such as
risk functions and ROC-related metrics, without full access to empirical data.

Recent studies have explored the use of copula models in evaluating diagnostic
performance. For instance, Escarela et al. (2023) applied copula-based modeling to capture
the joint distribution of a single biomarker and survival time, enabling estimation of ROC
and predictiveness curves under censoring. Melo et al. (2020) employed copulas to analyze
paired diagnostic tests, allowing for flexible modeling of inter-test dependence and
accurate AUC estimation. Zhang and Shao (2020) further extended copula approaches by
employing vine structures to simulate high-dimensional dependencies among multiple
markers. While these studies demonstrate the feasibility of copula-based evaluation, they
are limited in scope: either addressing only bivariate associations or requiring extensive
simulation to approximate realistic joint structures.

Building on these developments, the present study proposes a diagnostic evaluation
framework based on fully nested Archimedean copulas (FNACs), which allows for



hierarchical and non-exchangeable modeling of the joint distribution among two dependent
biomarkers and a survival outcome. This approach simultaneously captures intra-marker
dependence and biomarker-to-survival associations within a unified probabilistic structure,
offering a theoretically grounded and computationally tractable means to evaluate
biomarker performance under censoring.



1.2. Objective and Outline

The primary objective of this study is to develop a diagnostic evaluation framework that
leverages fully nested Archimedean copulas (FNACs) to flexibly model the joint
distribution of two correlated biomarkers and a right-censored survival outcome. FNACs
are particularly well suited for this purpose as they enable the modeling of hierarchical,
non-exchangeable dependence structures, reflecting realistic scenarios where biomarker-
to-survival associations differ in strength from biomarker-to-biomarker dependencies.
Within this framework, we implement two distinct evaluation strategies:

*  Conditional evaluation, which quantifies the diagnostic value of a new
biomarker given the information from an existing one; and

* Joint evaluation, which assesses the combined discriminatory ability of
multiple biomarkers using an and-classifier strategy.

To achieve these aims, the paper is organized as follows. First, we introduce the
theoretical foundations of nested copulas, focusing on the structure and properties of fully
nested Archimedean constructions. We then specify the joint distribution of the two
biomarkers and survival time using a nested copula formulation and define marginal
distributions to ensure model identifiability. Model parameters are estimated via maximum
likelihood estimation (MLE), and model adequacy is evaluated through goodness-of-fit
criteria such as AIC and BIC to guide copula family selection.

We define a set of diagnostic performance measures—including conditional and joint
versions of the time-dependent true and false positive rates and the risk function—derived
directly from the estimated joint distribution. These measures are designed to reflect both
discrimination and predictiveness in a manner that is robust to censoring and complex
dependence. The framework is evaluated through simulation studies involving 1,000
replicated datasets (n = 250) under various copula types (Clayton, Frank, Gumbel) and
censoring levels (20%, 50%, 80%). Performance is assessed via bias and Mean Squared
Error (MSE) at clinically relevant time quantiles (25th, 50th, and 75th percentiles of
survival time).

To demonstrate the practical applicability of our method, we apply the proposed
framework to the Mayo Clinic Primary Biliary Cirrhosis (PBC) dataset. This real-data
application illustrates how the model can be implemented in clinical settings and how the
resulting diagnostic measures can support medical decision-making.



In summary, this study contributes a unified, interpretable, and computationally
feasible diagnostic evaluation framework that extends conventional tools by accounting for
complex dependence and censoring. By embedding conditional and joint assessment
strategies within a copula-based joint modeling approach, our method offers a promising
tool for biomarker validation in modern survival analysis.



2. Literature Review
2.1. Fully Nested Archimedean Copulas

Copula functions offer a flexible and theoretically grounded framework for modeling the
joint distribution of multiple random variables while separately accounting for their
marginal behaviors and their mutual dependencies. According to Sklar’s theorem(Sklar,
1959), any multivariate cumulative distribution function F (x4, ...,x,) with continuous
marginals F; (xy), ..., F,(x,) can be uniquely expressed using a copula function C as

F(Xl, ---'xn) = C(Fl(xl)) e Fn(xn)) = C(ul’ ---run)

where u, = F,(x;) €[0,1] foreachk =1,..n . Thus, Copula C captures the
dependence structure among the variables, independent of their marginal distributions.

This formulation implies exchangeability among variables; that is, the dependence is
symmetric and invariant under permutations. However, this assumption imposes a
significant limitation in many applied settings, where variables (e.g., biomarkers) may
exhibit asymmetric or hierarchical dependencies. Therefore, modeling all variables under
a single homogeneous dependence function can be overly restrictive and unrealistic.

To address this issue, researchers have proposed fully nested or asymmetric copulas
as a generalization of standard copulas(Embrechts et al., 2003; Joe, 1997; Nelsen, 2006;
Whelan, 2004), which accommodate nonexchangeable structures. A fully nested copula
with n variables is defined recursively as

C(ul, ey un) = Cl(ul, Cz(uz, Cn_l(un_l,un)) )

where Cj, ..., C,_4 1is itself a copula, resulting in a total of n — 1 nested copulas for an
n-dimensional model.

When each component copula is chosen from the Archimedean family, the
construction can be expressed in the following functional form (Equation (1)), which
defines a Fully Nested Archimedean Copula (FNAC).



Cy(uy, €2 () oo Cpey (Up_q, up)) )
= @g, M (9o, (W) + @g, (9o, (‘Pez () + -+ @, 7" (€09n_1(un—1) + €09n_1(un)) ) ¢y

Each Archimedean copula is typically expressed as

C(u,v; 0) = 9o~ (9o (W) + 0o (V)) (2)
where @g:[0,1] - [0, ] is a convex decreasing function.

Thus, a FNAC with n variables involve n — 1 dependence parameters 6, ..., 0,,_1
corresponding to Cy, ..., C,_1. To ensure the validity of the hierarchical structure, these
parameters must satisfy a strict ordering constraint(Nelsen, 2006):

91 < A < 971—1' (3)

This constraint preserves the complete monotonicity of the composite generator
functions and ensures that more deeply nested variable pairs exhibit a stronger dependence.
If this condition is violated, the composite generator may become non-invertible, making
it mathematically impossible to define a valid joint distribution. Therefore, it is essential to
incorporate this constraint during the parameter estimation.

For three variables U,, U,, U3 € [0,1], FNAC takes the form, representing the three-
dimensional structure implied by Equation (1):

C1(u1» G (uz'u3)) = q’el_l ((Pel(lh) + ‘P61°<P62_1 (‘Pez (uz) + @, (u3))) (4)

which corresponds to the nesting order [1,2,3], meaning U2 and U3 are first grouped and
then joined with U1. In the trivariate case, three valid nesting structures exist— [1,2,3],
[2,1,3], and [3,1,2]—each of which encodes a distinct dependence hierarchy. These
alternatives allow flexibility in specifying which variable pairs are more strongly associated,
and the appropriate structure can be selected based on the model fit criteria or prior domain
knowledge.



2.2. Archimedean Copulas and Their Derivatives

The Archimedean copula is widely used because of its tractability and closed-form
structure. In this study, we employ three copula families from the Archimedean class—
Clayton, Gumbel, and Frank—to construct fully nested Archimedean copulas (FNACsS).
Each of these families is characterized by a distinct generator function @g(t), which
governs the dependence structure, including aspects such as tail dependence, asymmetry,
and Kendall’s t(Table 1)(Nelsen, 2006).

Each of these generators satisfies the required properties for Archimedean
copulas: @ (0) = o, @g(1) = 0, strict monotonicity, and a convex decreasing function
with parameter 6.

To compute the copula density and perform likelihood-based inference, we require
the first and second derivatives of the copula function in equation (2) with respect to u and
v. These derivatives depend on the generator function and its inverses, which are given in
closed form for the three Archimedean Copulas(Genest & MacKay, 1986; Schmitz, 2003).

Table 1. Families of Archimedean Copulas

Clayton Frank Gumbel
Parameter 6=0 6+0 6=1
Generator 8 exp(—6t) — 1
t™" —1, -1 — —logt)?
Po(t) (exp(—@) -1 (~logt)
1
- - ——1 —t -0 1
0e1(6) (t+ 1)1/ g 108 (exp(—t) (exp(—6) exp (—t7)
-1D+1)
] 4 4 (9 ¢ 1
Kendall’s T — 1—=-4+—=| ——dt -—
e 9+2 9+92f0 et —1 1-5
Tail Strong Symmetr Strong
Dependence on the lower tail Y Y on the upper tail




3. Proposed Method

3.1. Notation
First, we define a general setting and notation for our method. Let M1 and M2 denote
two continuous biomarkers, and let T represent the true survival time, which is subject to
right-censoring. The marginal cumulative distribution functions (CDFs) are defined as
follows
Fy1(ml) = P(M1 < ml),Fy,(m2) = P(M2 < m2),F;(t) = P(T <t),
and the corresponding survival function is given by S;(t) = 1 — F;(t). Then let
ul = FMl(ml),uZ = FMz(mZ),u3 = ST(t)
The corresponding probability density functions (PDFs) are as follows
fu1(m1) = dFy;(m1)/dml
fuz(m2) = dFy,(m2)/dm2
fe(@) = dF(t)/dt.
Suppose we observe n independent subjects. For each subject i =1,..,n, let
(m1;, m2;) be the observed two biomarker values, and T; denote the true survival time.

Let W; denote an independent right-censored time. Then the observed time X; and event
indicator §; can be obtained as

X; = min(W;, T;), 8; = I(T; = X;). (5)

For a bivariate copula Cg(u,v) = @5~ (@g(w) + @p(v)), we denote its partial

derivatives as
cMy(u,v) = dCy(u,v)/0u

c Uy (u,v) = 0%C, (u,v)/0udv



C[Z]g(u, v) = 02Co(u,v)/0%u

93Cy(u,v)

[1,2] _

These derivative terms are used to derive diagnostic measures and likelihood-based
estimations.

10



3.2. Model Specification

/ Co, (") <
N F

Co, ()

Figure 1. FNAC model structure

We propose a diagnostic evaluation framework for a new biomarker in the presence of an
existing one using a fully nested Archimedean copula (FNAC). Building on the general
FNAC formulation defined in Equation (4), we specify the joint distribution of the two
biomarkers and survival time by incorporating the hierarchical dependence structure
illustrated in Figure 1. Accordingly, the joint distribution function of (M1,M2,T) is given
by

H(m1,m2,t) = Pr(M1 < m1,M2 <m2,T >t)

= Co, (le(ml),ng (Fpnz (m2), St(t))) = Cp, (u1,cgz (u2,u3)). (6)

The child copula Cq, captures the dependence between biomarker M2 and survival
time T, whereas the parent copula Cy, models the dependence between biomarker M1
and joint value (M2, T). This formulation reflects the clinical assumption that higher
biomarker values are associated with shorter survival and supports the use of popular
copula families that are well suited for modeling positive dependence(Chaieb et al., 2006).

Valid nesting requires 6,<8,, reflecting the general condition in Equation (3), which
ensures that the inner(child) copula exhibits a stronger dependence than the outer(parent)
copula. This structural constraint, where the inner copula must capture a stronger
dependence than the outer one, plays a central role in our modeling strategy. We assigned
Marker 2 (M2) as a known strong biomarker owing to its direct and strong association with

11



survival outcomes. Thus, the child copula Cg, is used to capture this high dependence. On
the other hand, Marker 1 (M1) is regarded as a new or candidate marker, whose diagnostic
value is to be evaluated in the presence of M2. This design enables us to explicitly assess
the diagnostic value of a new biomarker in the presence of an established biomarker within
a coherent probabilistic framework that accounts for complex dependence structures.

To complete the joint model specification, we specified the marginal distributions of
the biomarkers and survival time. To accommodate potential asymmetry and skewness in
biomarker measurements(Van Domelen et al., 2021), we assumed that M1 and M2 each
followed a skew-normal distribution. Specifically, the probability density function (PDF)
of M1 and M2 is given by(Azzalini, 1985)

o (m150) = - () [ ()| %

> w>

Fram2i) = — ¢ ("2 s (M) ®

ar 2

where (m1,m2) € R?, w = (wq, w,, w3), & = (ay,ay, a3) with (w,,a;) € (—o, )2,
(w4, @) € (0,0)? and (w3, a3) € (—oo,0)?, representing the location, scale, and shape
parameters, respectively. Here, ¢(-) denotes the standard normal probability density
function.

For the survival time T, we assume a Weibull distribution, which is widely used in

survival analysis because of its flexibility in modeling hazard shapes. The cumulative
distribution function (CDF) of the Weibull distribution is defined as follows

Fo(t; ) =1-— exp{ (;2)/11} 9

where t € (0,00), A, € (0,0) is the shape parameter, and A, € (0,00) is the scale
parameter.
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3.3. Maximum Likelihood Estimation

Under the assumed fully nested Archimedean copula model and specified marginal
distributions, the observed likelihood function is given by(Lawless, 2003):

03H(x, 0*H(x,y,2) %
L(G W, o, )k) = 1_[ axayaz |(x,y,z):(m1i,m2i,xi)

62H(x,y,z) 1-§;
“|Tayaz  wva=tmmain

Here, the parameters are defined as
0: dependence parameters in Equation (6),

w, o: parameters of the skew-normal distributions for two biomarkers in Equation (7)
and (8), respectively,

A : parameters of the Weibull distribution for survival time in Equation (9).

For censored observations (8; = 0), the likelihood contribution involves the joint
probability of survival beyond t and observed biomarkers:

9%H(m1,m2,t) _0°Ce, (le(ml),Cez (sz(mZ),St(t)))
omlom2 - omlom2

(96, (Fna (D, C, (Fra (), S10)) 9o, (Fira (m2), Se0)
am1 9Cg, (Finz(m2),S,(1)) oF, (mz) Jm2(m2)

_ 0%Cy, (le(ml), Co, (Fmz(m2), St(t))) 9C, (Frmz(m2), S, ()
~ 9Co,(Fmz(m2),5:(0))0Fp1 (m1) 0Fnz(m2)

fml (ml)fmz (mZ)

= €085, (Fpy (m1), Co, (Finz (2), 8¢ (9)) ) C™Mg, (Finz(n2), 5,(6)) fona (1) finz (m2)
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For an uncensored observation (§; = 1), the likelihood contribution involves the joint
density obtained as the third-order partial derivative, as follows

03H(m1,m2,t)
omlom2dt

= €12 (Fpy (m1), Co, (Fnz(m2), 5.(1)) ) €W, (Fyup(2), 5, (9) frns (1) frnz (m2) £, (1)
+ C[l'l]el (le (ml): CBZ (sz (mZ), St (t))) C[Lllez (sz (mZ), St (t))fml (ml)fmz (mz)ft (t)

The model parameters were estimated by minimizing the negative log-likelihood
function —logL(0, w, &, &), and the standard errors (SEs) were derived from the observed
information matrix, which is the negative of the Hessian matrix of the log-likelihood
function evaluated at the MLEs. Specifically, the SE is computed as the square root of the
diagonal entries in the inverse of the observed information matrix.

In the estimation process, we reparameterized the parameters with natural constraints.
Specifically, Parameters k constrained to (0,) and (1,00) are expressed as exp (k)
and exp (k) + 1, respectively.
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3.4. Joint Diagnostic Measures

First, we assessed the joint discriminatory performance of the two biomarkers, M1 and
M?2. This is relevant when both markers are used simultaneously in classification, such as
in an and-classifier.

Given thresholds (m1, m2), we define the joint dynamic false positive rate (FPR) at
time t as

FPR(m1,m2,t) = Pr(M1 > m1,M2 > m2|T > t).
It can be shown under FNAC model given by Equation (6) that
FPR(m1,m2,t)

Pr(M1 < m1,T>t) + Pr(M2 < m2,T > t) — Pr(M1 < m1,M2 < m2,T > t)
Pr(T > t)

_ Co, (Fm1(m1), S, (1)) + Cg, (Fnz(m2),S,(t)) — H(n1,m2,¢)
Se ()

=1

which represents the probability of incorrectly classifying a subject as high-risk based
on both markers when they survive beyond time t.

We define the corresponding cumulative true positive rate (TPR®) and incident True
positive rate (TPRY) at time t as

TPR¢(m1,m2,t) = Pr(M1 > m1,M2 > m2|T <t) and
TPR/(m1,m2,t) = Pr(M1 > m1,M2 > m2|T = t), respectively.
These also can be shown under FNAC model given by Equation (6) that

TPR¢(m1, m2,t)

=1- [le (m1) — C91 (le(ml):st(t)) + Frpp(m2) — CGZ (sz (m2),St(t))
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—Cp, (Fm1(m1), Fpp(m2)) + H(m1,m2,t)]|/F(t)
and TPR!(m1, m2,t)
=1—CMy (S¢(©), Fppa (m1)) = CMg, (S¢(1), Frpz (m2))

+CMy (Cq, (Fmz(m2),S:(D), Fpy (m1), )C1Hy (S,(0), Fpp(m2)).

These definitions follow the framework proposed by (Wang & Li, 2012) and (Melo et
al., 2020), which extend ROC analysis to the bivariate marker setting using dynamic
definitions suited for censored survival outcomes.

Unlike in the univariate case, where the ROC curve is a function mapping FPR to TPR
via an invertible relationship, in the bivariate case, the function FPR(m1, m2,t) is not
one-to-one in general. That is, multiple threshold pairs (m1, m2) may yield the same FPR,
leading to non-uniqueness of the corresponding TPR. Consequently, the traditional ROC
function TPR(FPR™1(q)) is not well-defined.

To address this issue, (Wang & Li, 2012) proposed the concept of the bivariate ROC
function by averaging the TPR values over all threshold pairs that yield a given FPR level.
Specifically, we consider the inverse set:

By(q) = {(m1y, m2,): FPR(m1,, m2,,t) = q}, 0<g=<1

Then, the bivariate cumulative/dynamic and incident/dynamic ROC functions are
defined as

ROC¢/P(q,t) = E[TPR®(m1y, m2y,t)|[FPR(m1,, m2,,t) = q] and
ROC!/P(q,t) = E[TPR!(m1,, m2,,t)|FPR(m1y, m2,,t) = q], respectively.
Because the distribution of FPR values is not uniform over the threshold space

(m1,m2), (Wang & Li, 2012) further proposed the use of a weighted ROC (WROC) curve
that accounts for the probability distribution of FPR values.
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Let Qo = FPR(m1,, m2,t) and Hy(x) denote the cumulative distribution function
(CDF) of Q,, with corresponding density function hy(x) = %HO (x) . Then the

cumulative/dynamic and incident/dynamic WROC curve functions are defined as
WROC¢/P(q,t) = ROC¢/P(q,t)hy(q) and
WROC!/P (q,t) = ROCP(q, t)hy(q), respectively.
The corresponding weighted area under the curves (AUCs) are given by

WAUCC/P(t) = [, ROCE/P (x, )ho(x)dx and

WAUCYP(t) = | 01 ROC!/P (x,t)hy(x)dx, respectively

which provide scalar summaries of the joint discriminatory ability across the entire
FPR spectrum, while accounting for the distributional structure of the bivariate threshold
space.

We now consider the combined predictiveness of both Marker 1 and Marker 2. The
joint risk function is defined as

Risk(m1, m2,t) = Pr(T < t|M1 = m1,M2 = m2).
It can be shown under FNAC model given by Equation (7) that

0%2H(m1,m2,t)/0m1om2

RISk 02,0 = = 52 (1), Freg(m2))/m10m2

€Uy, (Fyua (1), Cg, (Finz(M2), 5,(0) ) €W, (Fp (m2), S, (1))

=1-
€11y (Fppy(m1), Fpp(m2))

10)

02H(m1,m2,t)

in
Since — oz

= €0y, (Fyy (1), Co, (Frz(m2), 5,(9) ) €W, (Fnz (2), 5, (8) frna (1) finz (m2).
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The time-dependent predictiveness surface at time t is defined as
R(ul,u2,t) = Pr (T < t|M1 = F,, " }(ul),M2 = sz_l(uZ)) (11)

where and F,; *(*), Fpz () denote the quantile function corresponding to the
marginal CDFs.

This quantity captures how both biomarkers jointly inform the individual-level risk
probability at time t.

To quantify the overall predictiveness of the bivariate marker combination, we
employed the Total Gain (TG), defined as TG(t) = [|R(u,t) — Pr (T < t)| du for the
univariate case. High total gain values were obtained when the predictiveness curve was
steep, indicating a strong predictive ability. We now apply these definitions to evaluate the
predictiveness of the bivariate marker combination. The total gain for joint combination of
Marker 1 and Marker 2 is defined as

TG(t) = f |IR(ul,u2,t) — Pr (T <t)| duldu?2.

This measure reflects the average absolute deviation of the joint conditional risk from
the marginal risk across the entire distribution of biomarker values. The TG achieves its
maximum value of 2S(t)[1 — S(t)] when the risk estimates perfectly stratify individuals
into extreme low- and high-risk groups(Bura & Gastwirth, 2001).

An alternative summary quantification of predictiveness is the time-varying overall
standardized total gain defined by

STG(t) =TG(®)/{2SMH[1 — SO}
which normalizes the total gain to lie between 0 and 1. Higher values of STG(t)

indicate steeper predictiveness curves and thus a stronger predictiveness of the joint
biomarker model.
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3.5. Conditional Diagnostic Measures

In clinical decision-making, evaluating the discriminatory ability of a new biomarker
(Marker 1) in the presence of an existing validated biomarker (Marker 2) is often of
particular interest, especially when Marker 2 is a controllable or clinically actionable factor.
When Marker 2 is fixed at a given value m2, the performance of Marker 1 can be assessed
using conditional time-dependent discrimination metrics.

The conditional dynamic false positive rate (FPR) at time t, for a threshold m1,
conditional on M2 = m2, denoted by Marker 2-specific FPR, is defined as

FPR(m1,t|m2) = Pr(M1 > m1|M2 = m2,T > t)
=1—-Pr(M1 <ml1|M2 =m2,T > t).
It can be shown under FNAC model given by Equation (7) that

0H(m1, m2,t)/dm2

FPR(m1,tjm2) =1 — dCe, (sz (mz),St(t))/amz

C[l]gl (ng (sz (m2), S; (t)), F (ml)) clil 0, (sz (m2),S; (t))
Cllg (Fipz(m2),S: (1)) |

=1-

The corresponding conditional Cumulative True positive rate (TPR®) and Incident
True positive rate (TPR!) can be defined as

TPR¢(m1,t/m2) = Pr(M1 > m1|M2 = m2, T <t) and
TPR!(m1,tjm2) = Pr(M1 > m1|M2 = m2,T = t)
which are denoted as the marker 2-specific TPR® and TPR!, respectively.
Based on the survival copula € given in (Nelsen, 2006) as

COwv)=ut+v—1+C1-—ul1-v)
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where (u,v) € [0,1] x [0,1], we can derive the expressions for TPR¢ and TPR!
under the FNAC model in Equation (6) as

9 (cg1 (Fpa (m1), Frpp(m2)) — H(m1,m2,t))/am2

TPR¢(m1,tm2) = 1 —
0 (Fnz(m2) — Cg, (S (t), Fz(m2)) )/0m2

¢y, (Fmz(m2),Fpy (m1))~C g, (o, (Fnz (12),5¢(9),Fma (m1) ) Mg, (Finza (m2),5,()

— 1 — 1_6[1]92 (sz(mZ),St(t))

and

9 (c(,1 (Fpp1 (1), Fypz (m2)) — H(m1, mz,t)) /dm2 dmt

) (sz (n2) — Co, (Se(V), Fnz (m2))) /dm2 dmt

TPR!(m1,tim2) = 1 —

=1 - [c,, (Co, (Fna(m2), 5,(6)), Fyny (1)) €M, (Fri(m2), S.(1)) €W, (S,(0), Fnz(m2))

+C Mg, (Co, (Fnz(m2), 5¢(8)), Fyua (1)) €, (Fynp(m2), 5,(9)] /€1 g, (S (), Fyna (m2)).

Two main definitions of time-dependent ROC curves have been proposed in the
survival analysis literature (Heagerty and Zheng, 2005). The Marker 2-specific
cumulative/dynamic ROC curve at time t is defined as the plot of

[FPR(m1,t|m2), TPR¢(m1,t|m2)],{m1,m2} € R
and the corresponding Marker 2-specific cumulative/dynamic ROC function is
ROC¢/P(q,tjm2) = TPRC[FPR™!(q, t|m2), tjm2],

where FPR™1(q,tim2) = inf,,,{m1: FP(m1,t|m2) < q}.

Similarly, the Marker 2-specific incident/dynamic ROC curve at time t is defined as
the plot of

[FPR(m1,t|m2), TPR/(m1,t|m2)], {m1,m2} € R
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and the corresponding Marker 2-specific incident/dynamic ROC function is
ROC!/P(q,tjm2) = TPR!/[FPR(q, t|m2), t|m2].

The area under each curve is given by

AUCE/P (tm2) = [ ROCE/P (x, tim2)dx and

1
AU (tm2) = | ROCP (, thm2)dx.
0

These ROC and AUC metrics represent the discrimination ability of Marker 1 when
Marker 2 is fixed at a specific value m2, that is, in a Marker 2- specific population.

If the marginal distribution of Marker 2, given the survival status, is known or can be
estimated, then Marker2-adjusted discrimination measures can be obtained. The adjusted
ROC(AROC) is defined as the average Marker 2-specific ROC function by integrating over
the distribution of M2.

The adjusted dynamic FPR at time t is

AFPR(m1,t) = [ FPR(m1,t|m2) dF, 7 (m2),
The adjusted cumulative TPR at time t is
ATPR¢(m1,t) = [ TPR®(m1, t|m2) dFpz r< (m2),
and the adjusted incident TPR at time t is
ATPR'(m1,t) = [ TPR'(m1, t|m2) dFp ;7= (m2).
Using these, the adjusted cumulative/dynamic ROC function and AUC are:
AROC®/P(q,t) = ATPRC[AFPR™'(q,t),t] and

AAUCC/P (t) = fol AROCY/P (x, t)dx, respectively.
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The adjusted incident/dynamic ROC function and AUC are as follows
AROC!/P(q,t) = ATPR!/[AFPR™(q,t),t] and
AAUC'P (t) = [ AROC!/P (x, t)dx, respectively.

Based on the definition of the time-dependent joint risk function and predictiveness
surface in Equations (10) and (11), we consider the conditional predictiveness of Marker 1
given Marker 2. If the marginal distribution of Marker 2 is known, the adjusted risk
function for Marker 1 at time t can be computed by averaging with respect to the
distribution of Marker 2 across Marker 2 levels as follows

ARisk(m1,t) = fRisk(ml,mZ, t) dF,,,(m2).
The corresponding adjusted predictiveness curve at time t is defined as
AR(ul,t) = j R(ul,u2,t) du2.
We now consider the total gain for Marker 1 given Marker 2 which is defined as

TG(tlm2) = JlP(T < t|M1 =ml1,M2 =m2) — P(T < t|M2 = m2)| dF,,;(m1)

= flR(ul, u2,t) — R(u2,t)| dul
where R(u2,t) =P (T < t|M2 = sz_l(uZ)).
Similarly, we define the adjusted total gain for Marker 1 by Marker 2 as
ATG(t) = fIAR(ul, t) — AR(t)| dul

where AR(t) = [ R(u2,t) du2 denotes the cumulative density function averaged
over the Marker 2 distribution.
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The corresponding standardized total gain is as follows
ASTG(t) = ATG(t) / {2(1 — AR(t))AR(t)}

where 1 — AR(t) represents the survival function averaged over the Marker 2
distribution.
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3.6. Goodness-of-fit Evaluation

To assess the goodness-of-fit of the proposed copula model and guide the selection of an
appropriate dependence structure, we employ both Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) (Joe, 2015). These metrics quantify the trade-off
between model fit and complexity:

AIC = =21(Y) + 2k (12)
BIC = =21(¥) + klog(n) (13)

where l(lf)) is the log-likelihood based on the estimated model parameters 1, k is
the number of model parameters, and n is the sample size. Lower values of AIC or BIC
indicate better fit, and thus these criteria are used to compare alternative copula families
fitted to the same dataset.

In addition to these quantitative criteria, residual-based visual diagnostics can be used
to assess model adequacy. These diagnostics are derived from the conditional distributions
implied by the fitted copula model and allow for graphical evaluation of potential model
misspecification. We first can consider residuals for assessing distribution of survival time
T given biomarkers M1 and M2. Let

A; = —log[S(t:IM1 = m1;, M2 = m2))]

denote the estimated conditional cumulative hazard given the two biomarkers,
evaluated at the observed time t; with

S(tIM1 = m1,M2 = m2)
€1, (Fpy (1), Co, (P2, 5,(0) ) €1, (P (m2), ,(0)

¢l 0, (ﬁml(ml): sz (mZ))

If S\(A) denotes the Kaplan-Meier for the transformed cumulative hazards A;, then
a plot of log[—logS‘A(lA\i)] versus log(Ki) should lie approximately on a straight line
under correct model specification.(Cox & Snell, 1968)
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Next, we assess two types of the conditional Residuals of the biomarkers: Residuals
of M1|M2, T and Residuals of M2|M1, T.

These are defined according to the censoring status §;, as follows:
Tyamz,r (M1, m2;, t;)
= §;P(M1 < m1;|M2 =m2,T =t;)

+ (1 -6)P(M1 < m1;|M2 =m2,,T > t;)

azH(mli,mZi,ti)/amZiati_l_ 1 s BH(mli,mZi,ti)/amZi
¢ 62C92(m2i,ti)/6m2i6ti ( L) 6C92(m2i,tl-)/6m2i

Tmzma,r (M1, m2;, t;)
+ (1 - 61)ﬁ(M2 < mzllMl = mli’T > ti)

OZH(mli,mZi,ti)/amliati_l_ 1 s GH(mli,mZi,ti)/amli
7 92Cy, (M1, t;)/0m1,0t, 1=3) 0Cp, (m1;,t;)/dm1;

Following the method of (Dunn & Smyth, 1996), we compute normalized quantile
residuals:

o1 (rM1|M2,T(m1i: m2;, ti)) ) o1 (TM2|M1,T(m1i; m2;, ti))

where @~ is the inverse standard normal CDF. These residuals should follow a
standard normal distribution under correct model specification. Accordingly, Q—Q plots
can be used to visually assess whether the fitted model adequately captures the conditional
distributions.
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4. Simulation study

4.1. Simulation Design

To evaluate the proposed copula-based framework for discrimination and predictiveness
assessment, we conducted comprehensive simulation studies under various conditions.
Specifically, we aimed to (i) assess the ability of the model selection criteria to correctly
identify the true copula family, (ii) evaluate the accuracy and robustness of model-based
performance measures under correct model specification, and (iii) compare the proposed
FNAC-based estimators with conventional approaches under both correctly and mis-
specified dependence structures.

We examined combinations of data-generating copula families (Clayton, Frank,
Gumbel), and censoring rates (20%, 50%, 80%). Each scenario was replicated 1,000 times
with a sample size of n=250. The simulation process consisted of the following four steps:

Step 1: Data Generation from FNAC

We generated a random vector {(ul;,u2;u3;) € [0,1]3,i = 1,...,250} from a fully
nested Archimedean copula (FNAC) using one of the copula families: Frank, Clayton, or
Gumbel(Hofert, 2011; McNeil, 2008). The FNAC structure adheres to the hierarchical
form described in Equation (6).

The dependence parameters 6; and 6, were chosen such that the corresponding
Kendall’s tau values were approximately 0.5 (parent copula) and 0.8 (child copula),
respectively, representing moderate to strong dependence.

Step 2: Transformation to Original Scale

The uniform samples were transformed using the inverse CDFs of the specified
marginals:

ml; = FMl_l(uli)
m2; = FMZ_l(uzi)
t; = Fr ' (1—u3)
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Fy1(ml)and Fy,(m2) were taken as the skewed-normal distribution characterized
in Equation (7) and (8) with parameters w = (w1, w,, w3) = (1,1,5), a = (ay, @y, a3) =
(2,2,4), respectively. Fr(t) was taken as the Weibull represented in Equation (9) with
parameters 4 = (14,4,) = (2,1).

Step 3: Incorporation of Random Censoring

Right-censoring was imposed by generating censoring time W~Weibull(14,43),
where A3 was calibrated to achieve target censoring rates of 20%, 50%, and 80%. The
observed time and event indicator defined in Equation (5) can be obtained.

Step 4: Model Fitting and Performance Evaluation

Each simulated dataset was fitted using the proposed FNAC model via maximum
likelihood estimation (MLE), incorporating known marginals. Based on the estimated
model parameters 1), we computed the following time-dependent diagnostic measures, all
of which were evaluated at survival time quantiles of 0.25, 0.5, and 0.75.

*  Conditional and joint ROC functions (C/D and /D)
*  Area under the curve (AUC)

*  Conditional and joint risk functions

*  Standardized Total Gain (STG)

For model selection, the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) represented in Equations (12) and (13) were used to identify
the copula family. Bias or Relative bias and mean squared error (MSE) were computed for
all measures.

In our comparative analyses with existing approaches, the primary focus was placed
on estimating predictiveness function R(ul,u2,t) for evaluating predictiveness and the
time-dependent ROC function FP(ul,u2,t) and TP¢(ul,u2,t) defined under the
cumulative/dynamic  (C/D) framework. There are defined as FP(ul,u2,t) =

FPR(le_l(ul),sz_l(uz)) and TP (ul,u2,t) = TPRC(Fpy ~*(ul), Fz ~(u2)) .

For comparison of the risk functions, we used two standard regression-based approaches:
the Cox proportional hazards model, which estimates hazard ratios under the
proportionality assumption and provides baseline survival estimates through partial
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likelihood; and the parametric Weibull regression model, which directly models the
survival time distribution using a Weibull hazard function. For both models, the estimated
survival probabilities were used to compute time-dependent risk curves across the quantiles
of marker values. Two standard nonparametric estimators were used for the comparison of
ROC functions: the Kaplan—Meier-based method by Heagerty et al. (2000) and the IPCW
estimator(Uno et al., 2007), both designed to handle right-censored survival data.
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4.2, Simulation Results

The simulation results were summarized across the three copula families, varying
censoring levels, and prediction time quantiles. As shown in Table 2, copula selection was
perfect (100%) when the true model was either Clayton or Gumbel across all censoring
levels. In contrast, under 20% censoring, only 41.6% of the datasets generated under the
Frank copula were correctly identified, with 58.4% misclassified, mainly as Gumbel.
Specifically, for the mis-specified FNAC with Gumbel, 771 out of 1,000 replicates resulted
in boundary estimates for the dependence parameter, effectively reducing to the
independence copula. This indicates that the symmetric dependence structure inherent to
the Frank copula was either poorly detected or estimated to be very weak in the presence
of light censoring. As the censoring increased to 50% and 80%, the selection accuracy for
Frank improved to 100%.

When the copula model was correctly specified [Tables 3—11], the proposed FNAC
framework consistently achieved low relative bias and MSE in estimating both
predictiveness and discrimination measures. For both the Clayton and Frank models, the
predictiveness measures such as R, AR,STG and ASTG demonstrated strong robustness
regardless of the censoring proportion or prediction horizon. However, the Gumbel-based
estimation showed a slightly inflated bias in certain scenarios. For example, in Table 9,
under 20% censoring, AR(0.5,t = 0.75) had a relative bias of 0.082, and STG had a
relative bias of 0.405 at t = 0.75, highlighting the difficulty of capturing upper-tail
dependence under scenarios with light right censoring. Discrimination measures including
AROC,AAUC, WROC, and WAUC, were also accurately estimated under correct model
specification, with relative Bias and MSE generally below 0.05 for Clayton and Frank
models. However, under Gumbel, the adjusted and the weighted indices showed greater
variability. For example, in Table 9, under 20% censoring, WROC 1/D(0.25,t=0.5) had a
relative bias of -0.108 and WROC C/D(0.5,t=0.75) exhibited a relative bias of 0.161, once
again reflecting the sensitivity of upper-tail dependent structures to right censoring.

Tables [12, 15, 18, 21, 24, 27, 30, 33, 36] present the bias and mean squared error (MSE)
of the estimated predictiveness function values for each methodological approach under
each simulation scenario. In contrast, Tables [13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29,
31, 32, 34, 35, 37, 38] summarize the bias and MSE associated with the ROC function
estimation. The FNAC model with a correctly specified copula unsurprisingly
outperformed across all settings, yielding the lowest bias and MSE for both the predictive
and ROC functions. For risk estimation, the FNAC approach yielded particularly accurate
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results for both the Clayton and Frank copula structures. Even under the Gumbel family
with 20% censoring, FNAC outperformed the parametric methods, and its accuracy
remained the highest at higher censoring levels (=50%). Regarding ROC function
estimation, FNAC achieved comparable or improved performance relative to standard
nonparametric methods, including Kaplan—-Meier (KM) and inverse probability of
censoring weighting (IPCW), particularly with substantial censoring.

In the mis-specified setting, the performance of the FNAC models varied depending on
the true underlying copula structure. When the true model was Clayton, the FNAC model
mis-specified with the Frank copula still exhibited relatively low bias and MSE—often
outperforming the Cox and Weibull models in estimating the risk function. However, the
Gumbel-based FNAC frequently failed to converge to a valid copula structure, reverting to
the independence copula owing to boundary parameter estimates (e.g., 932 out of 1,000
cases under Clayton with 20% censoring and 691 out of 1,000 under Frank with 50%
censoring). This indicates that Gumbel-based models under these settings failed to capture
or only weakly captured the dependence inherent in the actual structure. Consequently,
their performance under the independence copula assumption deteriorated and closely
resembled that of the Cox and Weibull models, which do not account for inter-marker
dependence. Similar patterns were observed when the true copula was Frank. Mis-specified
FNAC models using Clayton performed relatively well, but Gumbel reverted to
independence, yielding unstable estimates. Interestingly, when Gumbel was the true copula,
the performance difference between the correct and mis-specified models was not
substantial. However, the discrimination performance was generally inferior to that of the
KM and IPCW estimators under copula mis-specification, highlighting the importance of
correct copula selection when focusing on ROC-based classification.
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Table 2. Copula Selection Accuracy (%)

Clayton Frank Gumbel
20% censoring 100 41.6 100
50% censoring 100 98.1 100
80% censoring 100 100 100
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Table 3. Bias and MSE of Discrimination and Predictiveness Measures under Clayton FNAC Model (n = 250, 20% Censoring)

10.25 t0.5 t0.75

True Relative MSE True Relative MSE True Relative MSE

value bias value bias value bias
Predictiveness measures
AR(0.25,t) 0.168 -0.012 0.000 0.387 -0.004 0.001 0.653 0.002 0.001
AR (0.5,t) 0.188 -0.011 0.000 0.414 -0.002 0.001 0.669 0.002 0.001
ASTG(t) 0.069 0.012 0.000 0.046 0.015 0.000 0.028 0.015 0.000
STG(t) 0.693 0.001 0.000 0.782 0.001 0.000 0.862 0.002 0.000
Discrimination measures
AROC 1I/D(0.25,t) 0.297 0.009 0.006 0.269 -0.008 0.005 0.203 -0.002 0.005
AROC I/D(0.5,t) 0.474 -0.002 0.006 0.417 0.001 0.008 0.308 -0.016 0.007
AROC C/D(0.25,t) 0.342 0.008 0.007 0.386 -0.006 0.007 0.431 0.001 0.008
AROC C/D(0.5,t) 0.517 -0.002 0.006 0.528 0.000 0.007 0.528 -0.006 0.006
AAUC I/D(t) 0.738 0.002 0.000 0.739 0.002 0.000 0.732 0.004 0.000
AAUC C/D(t) 0.758 0.003 0.000 0.799 0.003 0.000 0.852 0.003 0.000
WROC I/D(0.25,t) 0.864 0.001 0.013 0.556 -0.006 0.006 0.223 -0.001 0.001
WROC I/D(0.5,t) 0.573 0.000 0.007 0.323 -0.002 0.004 0.114 -0.010 0.001
WROC C/D(0.25,t) 0.927 0.000 0.015 0.644 -0.006 0.007 0.284 -0.001 0.002
WROC C/D(0.5,t) 0.583 0.000 0.008 0.335 -0.002 0.004 0.120 -0.010 0.001
WAUC I/D(t) 0.543 0.001 0.000 0.359 0.001 0.000 0.154 -0.003 0.000
WAUC C/D(t) 0.615 0.000 0.000 0.532 -0.001 0.000 0.431 -0.002 0.000
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Table 4. Bias and MSE of Discrimination and Predictiveness Measures under Clayton FNAC Model (n = 250, 50% Censoring)

10.25 t0.5 t0.75

True Relative MSE True Relative MSE True Relative MSE

value bias value bias value bias
Predictiveness measures
AR(0.25,t) 0.104 -0.013 0.000 0.250 -0.007 0.000 0.466 -0.002 0.001
AR (0.5,t) 0.118 -0.013 0.000 0.275 -0.006 0.000 0.492 -0.001 0.001
ASTG(t) 0.077 0.005 0.000 0.060 0.007 0.000 0.039 0.010 0.000
STG(t) 0.661 0.004 0.001 0.730 0.003 0.001 0.808 0.003 0.000
Discrimination measures
AROC 1I/D(0.25,t) 0.302 -0.007 0.006 0.290 0.001 0.006 0.247 0.001 0.006
AROC I/D(0.5,t) 0.487 0.003 0.006 0.451 0.000 0.007 0.388 0.019 0.007
AROC C/D(0.25,t) 0.328 -0.006 0.006 0.360 0.001 0.007 0.393 0.000 0.008
AROC C/D(0.5,t) 0.512 0.003 0.006 0.518 0.000 0.006 0.526 0.013 0.006
AAUC I/D(t) 0.734 0.003 0.000 0.740 0.002 0.000 0.738 0.003 0.000
AAUC C/D(t) 0.744 0.003 0.000 0.774 0.003 0.000 0.814 0.003 0.000
WROC I/D(0.25,t) 0.955 -0.003 0.014 0.747 -0.001 0.010 0.452 0.001 0.004
WROC I/D(0.5,t) 0.666 0.004 0.011 0.472 0.002 0.007 0.251 0.022 0.003
WROC C/D(0.25,t) 1.001 -0.004 0.015 0.825 -0.003 0.012 0.538 0.000 0.006
WROC C/D(0.5,t) 0.673 0.004 0.011 0.483 0.002 0.007 0.261 0.022 0.003
WAUC I/D(t) 0.596 0.001 0.000 0.474 0.001 0.000 0.294 0.001 0.000
WAUC C/D(t) 0.639 0.000 0.000 0.584 0.000 0.000 0.502 -0.001 0.000
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Table 5. Bias and MSE of Discrimination and Predictiveness Measures under Clayton FNAC Model (n = 250, 80% Censoring)

10.25 t0.5 t0.75

True Relative MSE True Relative MSE True Relative MSE

value bias value bias value bias
Predictiveness measures
AR(0.25,t) 0.041 -0.012 0.000 0.099 -0.009 0.000 0.200 -0.005 0.001
AR (0.5,t) 0.047 -0.014 0.000 0.113 -0.011 0.000 0.222 -0.006 0.001
ASTG(t) 0.085 -0.005 0.000 0.078 -0.006 0.000 0.066 -0.006 0.000
STG(t) 0.626 0.010 0.001 0.658 0.009 0.001 0.708 0.008 0.001
Discrimination measures
AROC 1I/D(0.25,t) 0.302 -0.005 0.007 0.304 -0.004 0.005 0.294 0.011 0.004
AROC I/D(0.5,t) 0.502 -0.004 0.008 0.490 0.004 0.005 0.463 0.001 0.006
AROC C/D(0.25,t) 0.312 -0.005 0.008 0.329 -0.004 0.006 0.348 0.011 0.005
AROC C/D(0.5,t) 0.511 -0.004 0.008 0.513 0.004 0.004 0.516 0.001 0.005
AAUC I/D(t) 0.725 0.004 0.000 0.733 0.003 0.000 0.739 0.003 0.000
AAUC C/D(t) 0.728 0.004 0.000 0.743 0.004 0.000 0.764 0.003 0.000
WROC I/D(0.25,t) 1.041 0.005 0.020 0.967 0.005 0.018 0.814 0.008 0.013
WROC I/D(0.5,t) 0.767 0.001 0.013 0.673 0.002 0.010 0.534 0.004 0.008
WROC C/D(0.25,t) 1.062 0.004 0.020 1.011 0.004 0.019 0.884 0.007 0.015
WROC C/D(0.5,t) 0.771 0.001 0.013 0.680 0.002 0.011 0.545 0.003 0.009
WAUC I/D(t) 0.646 0.001 0.000 0.600 0.001 0.000 0.517 0.001 0.000
WAUC C/D(t) 0.662 0.001 0.000 0.640 0.001 0.000 0.603 0.000 0.000
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Table 6. Bias and MSE of Discrimination and Predictiveness Measures under Frank FNAC Model (n = 250, 20% Censoring)

10.25 t0.5 t0.75

True Relative MSE True Relative MSE True Relative MSE

value bias value bias value bias
Predictiveness measures
AR(0.25,t) 0.174 -0.009 0.000 0.394 -0.004 0.000 0.652 0.000 0.000
AR (0.5,t) 0.183 -0.009 0.000 0.415 -0.003 0.000 0.675 0.000 0.000
ASTG(t) 0.062 0.015 0.000 0.040 0.016 0.000 0.040 0.010 0.000
STG(t) 0.777 0.003 0.000 0.820 0.003 0.000 0.820 0.004 0.000
Discrimination measures
AROC 1I/D(0.25,t) 0.347 0.008 0.008 0.238 0.011 0.004 0.140 -0.011 0.003
AROC I/D(0.5,t) 0.530 -0.011 0.008 0.382 0.013 0.008 0.234 0.015 0.009
AROC C/D(0.25,t) 0.449 0.007 0.008 0.443 0.006 0.005 0.418 -0.004 0.006
AROC C/D(0.5,t) 0.612 -0.008 0.007 0.566 0.009 0.006 0.510 0.009 0.008
AAUC I/D(t) 0.779 0.004 0.000 0.722 0.006 0.000 0.630 0.010 0.000
AAUC C/D(t) 0.817 0.005 0.000 0.829 0.005 0.000 0.822 0.007 0.000
WROC I/D(0.25,t) 0.906 0.000 0.011 0.504 0.005 0.003 0.193 0.000 0.000
WROC I/D(0.5,t) 0.575 0.001 0.004 0.297 -0.002 0.001 0.103 0.005 0.000
WROC C/D(0.25,t) 0.981 -0.001 0.012 0.607 0.003 0.004 0.280 -0.003 0.001
WROC C/D(0.5,t) 0.586 0.001 0.004 0.314 -0.002 0.001 0.119 0.004 0.000
WAUC I/D(t) 0.563 0.001 0.000 0.323 0.001 0.000 0.128 -0.001 0.000
WAUC C/D(t) 0.679 0.000 0.000 0.556 0.000 0.000 0.434 -0.002 0.000
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Table 7. Bias and MSE of Discrimination and Predictiveness Measures under Frank FNAC Model (n = 250, 50% Censoring)

10.25 t0.5 t0.75

True Relative MSE True Relative MSE True Relative MSE

value bias value bias value bias
Predictiveness measures
AR(0.25,t) 0.107 -0.010 0.000 0.259 -0.006 0.000 0.471 -0.003 0.000
AR (0.5,t) 0.113 -0.010 0.000 0.273 -0.006 0.000 0.494 -0.002 0.001
ASTG(t) 0.076 0.010 0.000 0.050 0.012 0.000 0.038 0.011 0.000
STG(t) 0.749 0.004 0.000 0.800 0.004 0.000 0.824 0.004 0.000
Discrimination measures
AROC 1I/D(0.25,t) 0.383 0.007 0.007 0.304 -0.004 0.010 0.204 -0.006 0.003
AROC I/D(0.5,t) 0.569 0.003 0.006 0.466 0.002 0.006 0.338 -0.006 0.007
AROC C/D(0.25,t) 0.446 0.006 0.007 0.451 -0.005 0.010 0.435 -0.002 0.004
AROC C/D(0.5,t) 0.617 0.003 0.005 0.591 0.002 0.004 0.554 -0.003 0.007
AAUC I/D(t) 0.790 0.004 0.000 0.759 0.005 0.000 0.697 0.007 0.000
AAUC C/D(t) 0.806 0.005 0.000 0.824 0.005 0.000 0.829 0.006 0.000
WROC I/D(0.25,t) 1.062 -0.004 0.018 0.740 0.004 0.006 0.397 0.005 0.002
WROC I/D(0.5,t) 0.686 0.004 0.006 0.453 0.010 0.003 0.225 0.000 0.001
WROC C/D(0.25,t) 1.116 -0.005 0.019 0.831 0.002 0.007 0.500 0.002 0.003
WROC C/D(0.5,t) 0.694 0.004 0.006 0.467 0.010 0.003 0.242 -0.001 0.001
WAUC I/D(t) 0.646 0.000 0.000 0.463 0.001 0.000 0.255 0.001 0.000
WAUC C/D(t) 0.719 0.000 0.000 0.630 0.000 0.000 0.517 -0.001 0.000
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Table 8. Bias and MSE of Discrimination and Predictiveness Measures under Frank FNAC Model (n = 250, 80% Censoring)

t0.25 t0.5 t0.75

True Relative MSE True Relative MSE True Relative MSE

value bias value bias value bias
Predictiveness measures
AR(0.25,t) 0.040 -0.013 0.000 0.102 -0.012 0.000 0.207 -0.009 0.000
AR (0.5,t) 0.043 -0.014 0.000 0.107 -0.013 0.000 0.218 -0.009 0.000
ASTG(t) 0.094 0.006 0.000 0.077 0.008 0.000 0.057 0.013 0.000
STG(t) 0.706 0.007 0.001 0.746 0.006 0.001 0.788 0.005 0.001
Discrimination measures
AROC 1/D(0.25,t) 0.417 0.002 0.007 0.388 0.004 0.008 0.326 0.008 0.006
AROC I/D(0.5,t) 0.612 0.005 0.005 0.573 0.004 0.005 0.503 0.000 0.008
AROC C/D(0.25,t) 0.439 0.003 0.007 0.448 0.004 0.008 0.447 0.006 0.006
AROC C/D(0.5,t) 0.624 0.006 0.005 0.617 0.004 0.004 0.603 0.000 0.006
AAUC I/D(t) 0.787 0.006 0.000 0.791 0.005 0.000 0.772 0.005 0.000
AAUC C/D(t) 0.785 0.007 0.000 0.805 0.006 0.000 0.820 0.005 0.000
WROC I/D(0.25,t) 1.227 -0.007 0.025 1.069 0.002 0.018 0.840 0.000 0.011
WROC 1I/D(0.5,t) 0.825 0.002 0.009 0.696 0.005 0.006 0.524 0.005 0.004
WROC C/D(0.25,t) 1.252 -0.007 0.026 1.121 0.001 0.019 0.922 -0.002 0.012
WROC C/D(0.5,t) 0.829 0.002 0.009 0.704 0.005 0.006 0.537 0.005 0.004
WAUC I/D(t) 0.731 0.000 0.000 0.652 0.001 0.000 0.523 0.002 0.000
WAUC C/D(t) 0.759 0.000 0.000 0.722 0.000 0.000 0.660 0.000 0.000
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Table 9. Bias and MSE of Discrimination and Predictiveness Measures under Gumbel FNAC Model (n =250, 20% Censoring)

10.25 t0.5 t0.75

True Relative MSE True Relative MSE True Relative MSE

value bias value bias value bias
Predictiveness measures
AR(0.25,t) 0.185 0.021 0.000 0.396 0.059 0.001 0.651 0.073 0.003
AR (0.5,t) 0.190 0.036 0.000 0.417 0.084 0.002 0.676 0.082 0.004
ASTG(t) 0.042 0.437 0.000 0.043 0.417 0.000 0.047 0.405 0.000
STG(t) 0.830 -0.045 0.002 0.792 -0.054 0.002 0.770 -0.052 0.002
Discrimination measures
AROC 1I/D(0.25,t) 0.304 -0.066 0.008 0.186 -0.108 0.007 0.128 -0.056 0.002
AROC I/D(0.5,t) 0.484 -0.036 0.010 0.315 -0.055 0.009 0.231 -0.060 0.009
AROC C/D(0.25,t) 0.525 -0.036 0.008 0.431 -0.044 0.010 0.386 -0.024 0.006
AROC C/D(0.5,t) 0.661 -0.021 0.007 0.545 -0.025 0.007 0.487 -0.026 0.008
AAUC I/D(t) 0.767 -0.011 0.000 0.679 -0.013 0.000 0.611 -0.012 0.000
AAUC C/D(t) 0.851 -0.002 0.000 0.816 -0.002 0.000 0.791 0.002 0.000
WROC I/D(0.25,t) 0.861 -0.069 0.016 0.467 -0.069 0.004 0.207 -0.009 0.001
WROC I/D(0.5,t) 0.535 0.044 0.006 0.283 0.068 0.002 0.113 0.121 0.001
WROC C/D(0.25,t) 0.972 -0.050 0.017 0.597 -0.022 0.005 0.311 0.067 0.002
WROC C/D(0.5,t) 0.556 0.050 0.007 0.307 0.087 0.003 0.131 0.161 0.001
WAUC I/D(t) 0.527 -0.010 0.000 0.294 -0.005 0.000 0.134 0.021 0.000
WAUC C/D(t) 0.716 -0.013 0.000 0.553 -0.016 0.000 0.428 -0.009 0.000
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Table 10. Bias and MSE of Discrimination and Predictiveness Measures under Gumbel FNAC Model (n = 250, 50% Censoring)

10.25 t0.5 t0.75

True Relative MSE True Relative MSE True Relative MSE

value bias value bias value bias
Predictiveness measures
AR(0.25,t) 0.119 0.015 0.000 0.266 0.029 0.001 0.471 0.041 0.001
AR (0.5,t) 0.121 0.019 0.000 0.276 0.042 0.001 0.496 0.055 0.002
ASTG(t) 0.042 0.276 0.000 0.042 0.266 0.000 0.044 0.256 0.000
STG(t) 0.847 -0.021 0.001 0.813 -0.026 0.001 0.784 -0.028 0.001
Discrimination measures
AROC 1I/D(0.25,t) 0.391 -0.015 0.007 0.245 -0.033 0.004 0.165 -0.011 0.006
AROC I/D(0.5,t) 0.581 -0.007 0.008 0.403 -0.026 0.008 0.286 -0.016 0.006
AROC C/D(0.25,t) 0.585 -0.003 0.006 0.480 -0.009 0.005 0.414 0.004 0.009
AROC C/D(0.5,t) 0.718 -0.001 0.006 0.608 -0.008 0.005 0.524 0.001 0.005
AAUC I/D(t) 0.811 0.001 0.000 0.727 -0.001 0.000 0.657 -0.001 0.000
AAUC C/D(t) 0.865 0.006 0.000 0.836 0.004 0.000 0.807 0.005 0.000
WROC I/D(0.25,t) 1.054 -0.033 0.017 0.678 -0.033 0.006 0.376 -0.026 0.002
WROC I/D(0.5,t) 0.648 0.030 0.006 0.422 0.042 0.003 0.223 0.040 0.001
WROC C/D(0.25,t) 1.144 -0.029 0.019 0.802 -0.018 0.007 0.503 0.003 0.003
WROC C/D(0.5,t) 0.664 0.031 0.006 0.446 0.046 0.003 0.246 0.050 0.001
WAUC I/D(t) 0.638 0.000 0.000 0.421 -0.004 0.000 0.238 -0.006 0.000
WAUC C/D(t) 0.787 -0.001 0.000 0.644 -0.003 0.000 0.511 -0.004 0.000
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Table 11. Bias and MSE of Discrimination and Predictiveness Measures under Gumbel FNAC Model (n = 250, 80% Censoring)

10.25 t0.5 t0.75

True Relative MSE True Relative MSE True Relative MSE

value bias value bias value bias
Predictiveness measures
AR(0.25,t) 0.048 0.036 0.000 0.114 0.023 0.000 0.218 0.016 0.000
AR (0.5,t) 0.048 0.036 0.000 0.115 0.024 0.000 0.224 0.018 0.001
ASTG(t) 0.043 0.074 0.000 0.042 0.073 0.000 0.042 0.071 0.000
STG(t) 0.860 -0.002 0.000 0.848 -0.002 0.000 0.823 -0.001 0.001
Discrimination measures
AROC 1I/D(0.25,t) 0.586 0.004 0.009 0.401 0.007 0.008 0.281 -0.007 0.005
AROC I/D(0.5,t) 0.742 0.007 0.005 0.590 0.008 0.008 0.448 -0.002 0.005
AROC C/D(0.25,t) 0.683 0.006 0.006 0.591 0.009 0.006 0.508 0.005 0.005
AROC C/D(0.5,t) 0.782 0.007 0.002 0.722 0.006 0.006 0.638 0.003 0.004
AAUC I/D(t) 0.881 0.005 0.000 0.815 0.007 0.000 0.750 0.008 0.000
AAUC C/D(t) 0.864 0.006 0.000 0.866 0.007 0.000 0.844 0.008 0.000
WROC I/D(0.25,t) 1.332 0.002 0.025 1.069 -0.002 0.012 0.781 0.002 0.006
WROC I/D(0.5,t) 0.794 0.018 0.008 0.658 0.017 0.005 0.488 0.017 0.003
WROC C/D(0.25,t) 1.381 0.001 0.026 1.156 -0.003 0.014 0.898 0.002 0.007
WROC C/D(0.5,t) 0.802 0.018 0.008 0.673 0.016 0.005 0.510 0.016 0.003
WAUC I/D(t) 0.802 0.003 0.000 0.648 0.003 0.000 0.481 0.002 0.000
WAUC C/D(t) 0.887 0.003 0.000 0.793 0.004 0.000 0.685 0.005 0.000
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Table 12. Comparison of Bias and MSE of Risk function (True model: Clayton, n=250, 20% censoring)

FNAC

True Semi-parametric Parametric (Correctly FNAC FNAC
value (Cox PH) (Weibull) specified) (Frank) (Gumbelt)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
R(0.25,0.25,t)  t0.25 0.000 0.018 0.000 0.028 0.001 0.000 0.000 0.000 0.000 0.014 0.000
R(0.5,0.25,t) 0.000 0.023 0.001 0.034 0.001 0.000 0.000 0.000 0.000 0.018 0.000
R(0.25,0.5,t) 0.020 0.022 0.001 0.041 0.002 0.000 0.000 -0.014 0.000 0.025 0.001
R(0.5,0.5,t) 0.025 0.028 0.001 0.049 0.003 0.000 0.000 -0.017 0.000 0.040 0.002
R(0.25,0.25,t) 0.5 0.002 0.100 0.011 0.140 0.021 0.000 0.000 0.001 0.000 0.113 0.014
R(0.5,0.25,¢) 0.002 0.123 0.016 0.167 0.029 0.000 0.000 0.001 0.000 0.139 0.021
R(0.25,0.5,¢) 0.229 0.000 0.003 0.065 0.007 -0.004 0.001 -0.065 0.005 0.069 0.007
R(0.5,0.5,t) 0.277 0.000 0.004 0.066 0.007 -0.004 0.001 -0.070 0.006 0.122 0.017
R(0.25,0.25,t)  t0.75 0.121 0.289 0.087 0.325 0.108 -0.002 0.001 0.054 0.004 0.333 0.113
R(0.5,0.25,¢) 0.142 0.343 0.122 0.369 0.140 -0.002 0.001 0.073 0.006 0.381 0.148
R(0.25,0.5,) 0.949 -0.223 0.053 -0.208 0.045 0.001 0.000 -0.031 0.001 -0.216 0.047
R(0.5,0.5,¢t) 0.975 -0.172 0.031 -0.170 0.030 0.001 0.000 -0.013 0.000 -0.138 0.019

+In 932 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 13. Comparison of Bias and MSE of FPR (True model: Clayton, n=250, 20% censoring)

Heagerty Uno FNAC
True (Kaplan Meier) (IPCW) (Coqectly (l;ljﬁlg) ( Gililjl?g )
value specified)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
FP(0.25,0.25,¢t) t0.25 0.597 0.001 0.001 0.001 0.001 0.002 0.001 -0.111 0.013 0.003 0.001
FP(0.5,0.25,t) 0.384 0.001 0.001 0.001 0.001 0.001 0.000 -0.076 0.006 0.005 0.001
FP(0.25,0.5,t) 0.348 0.001 0.001 0.001 0.001 0.001 0.000 -0.071 0.005 0.028 0.001
FP(0.5,0.5,¢) 0.257 0.001 0.001 0.001 0.001 0.001 0.000 -0.046 0.002 0.013 0.001
FP(0.25,0.25,t) t0.5 0.462 0.001 0.002 0.001 0.002 0.002 0.001 -0.101 0.011 0.005 0.001
FP(0.5,0.25,t) 0.254 -0.001 0.001 -0.001 0.002 0.001 0.000 -0.067 0.005 0.004 0.001
FP(0.25,0.5,t) 0.146 0.000 0.001 0.001 0.001 0.001 0.000 -0.035 0.001 0.065 0.005
FP(0.5,0.5,t) 0.096  -0.001 0.001 -0.001 0.001 0.001 0.000 -0.024 0.001 0.032 0.001
FP(0.25,0.25,t) t0.75 0.175 0.002 0.002 0.003 0.002 0.000 0.000 -0.045 0.002 0.107 0.013
FP(0.5,0.25,t) 0.072 0.001 0.001 0.001 0.001 0.000 0.000 -0.024 0.001 0.059 0.004
FP(0.25,0.5,t) 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.078 0.006
FP(0.5,0.5,¢) 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.002

+1In 932 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 14. Comparison of Bias and MSE of TPR (True model: Clayton, n=250, 20% censoring)

Heagerty. Uno FNAC FNAC FNAC
True (Kaplan Meier) (IPCW) (Cor?ectly (Frank) (Gumbelt)
value specified)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
TP(0.25,0.25,t) t0.25 0.977 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 -0.013 0.000
TP(0.5,0.25,¢) 0.838 0.000 0.003 0.001 0.003 0.001 0.000 0.057 0.004 0.050 0.003
TP(0.25,0.5,¢) 0.971 0.001 0.001 0.001 0.001 0.000 0.000 0.005 0.000 -0.031 0.001
TP(0.5,0.5,t) 0.834 0.000 0.003 0.001 0.003 0.001 0.000 0.060 0.004 0.039 0.002
TP(0.25,0.25,t) t0.5 0.964 0.000 0.000 0.001 0.000 0.000 0.000 -0.007 0.000 -0.049 0.003
TP(0.5,0.25,¢) 0.781 0.003 0.002 0.005 0.002 0.001 0.001 0.034 0.002 -0.007 0.001
TP(0.25,0.5,t) 0.925 0.001 0.001 0.003 0.001 0.001 0.000 0.000 0.000 -0.097 0.010
TP(0.5,0.5,t) 0.756 0.003 0.002 0.006 0.002 0.001 0.001 0.039 0.002 -0.035 0.002
TP(0.25,0.25,t) t0.75 0.925 0.001 0.001 0.005 0.001 0.000 0.000 -0.040 0.002 -0.089 0.008
TP(0.5,0.25,¢t) 0.680 0.001 0.002 0.012 0.002 0.000 0.000 -0.021 0.001 -0.026 0.001
TP(0.25,0.5,¢) 0.714 0.001 0.001 0.023 0.002 -0.001 0.000 -0.046 0.002 -0.036 0.002
TP(0.5,0.5,t) 0.564 0.001 0.002 0.022 0.002 0.000 0.000 -0.016 0.001 0.001 0.001

+In 932 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 15. Comparison of Bias and MSE of Risk function (True model: Clayton, n=250, 50% censoring)

True Semi-parametric Parametric ( CFOIjrtSIy FNAC FNAC
value (Cox PH) (Weibull) specified) (Frank) (Gumbelt)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
R(0.25,0.25,t)  t0.25 0.000 0.012 0.000 0.016 0.000 0.000 0.000 0.000 0.000 0.007 0.000
R(0.5,0.25,¢) 0.000 0.015 0.000 0.019 0.000 0.000 0.000 0.000 0.000 0.009 0.000
R(0.25,0.5,t) 0.008 0.018 0.000 0.026 0.001 0.000 0.000 -0.005 0.000 0.011 0.000
R(0.5,0.5,t) 0.010 0.021 0.001 0.030 0.001 0.000 0.000 -0.006 0.000 0.018 0.000
R(0.25,0.25,t) 0.5 0.000 0.047 0.003 0.071 0.005 0.000 0.000 0.001 0.000 0.046 0.002
R(0.5,0.25,¢) 0.000 0.058 0.004 0.084 0.008 0.000 0.000 0.001 0.000 0.058 0.004
R(0.25,0.5,¢) 0.054 0.051 0.003 0.092 0.009 -0.002 0.000 -0.021 0.001 0.067 0.005
R(0.5,0.5,t) 0.067 0.059 0.004 0.105 0.012 -0.002 0.000 -0.022 0.001 0.108 0.012
R(0.25,0.25,t)  t0.75 0.006 0.177 0.033 0.211 0.046 0.000 0.000 0.012 0.000 0.182 0.035
R(0.5,0.25,t) 0.007 0.213 0.047 0.247 0.063 0.000 0.000 0.016 0.000 0.225 0.053
R(0.25,0.5,t) 0.459 -0.086 0.016 -0.047 0.009 -0.004 0.002 -0.066 0.006 -0.061 0.009
R(0.5,0.5,t) 0.534 -0.099 0.018 -0.065 0.010 -0.004 0.002 -0.046 0.004 -0.010 0.006

+1In 943 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 16. Comparison of Bias and MSE of FPR (True model: Clayton, n=250, 50% censoring)

Heagerty. Uno FNAC FNAC FNAC
True (Kaplan Meier) (IPCW) (Coqectly (Frank) (Gumbelt)
value specified)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
FP(0.25,0.25,t) t0.25 0.629 0.001 0.001 0.001 0.001 0.001 0.001 -0.089 0.009 -0.020 0.001
FP(0.5,0.25,t) 0.420 0.000 0.001 0.000 0.001 0.000 0.000 -0.062 0.004 -0.005 0.001
FP(0.25,0.5,t) 0.400 0.000 0.001 0.000 0.001 0.001 0.000 -0.059 0.004 0.010 0.001
FP(0.5,0.5,t) 0.303 0.001 0.001 0.001 0.001 0.000 0.000 -0.038 0.002 0.006 0.000
FP(0.25,0.25,t) t0.5 0.552 0.002 0.001 0.002 0.002 0.002 0.001 -0.088 0.009 -0.028 0.002
FP(0.5,0.25,t) 0.337 0.001 0.001 0.001 0.002 0.001 0.000 -0.063 0.004 -0.017 0.001
FP(0.25,0.5,t) 0.277 0.002 0.001 0.002 0.002 0.001 0.000 -0.044 0.002 0.018 0.001
FP(0.5,0.5,t) 0.197 0.002 0.001 0.002 0.001 0.001 0.000 -0.031 0.001 0.003 0.000
FP(0.25,0.25,t) t0.75 0.396 0.001 0.003 0.001 0.004 0.001 0.001 -0.078 0.007 0.003 0.001
FP(0.5,0.25,t) 0.203 0.000 0.002 0.000 0.003 0.000 0.000 -0.053 0.003 0.009 0.001
FP(0.25,0.5,t) 0.077 0.001 0.001 0.001 0.001 0.000 0.000 -0.010 0.000 0.091 0.009
FP(0.5,0.5,¢) 0.047 0.000 0.001 0.000 0.001 0.000 0.000 -0.008 0.000 0.049 0.003

+1In 943 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 17. Comparison of Bias and MSE of TPR (True model: Clayton, n=250, 50% censoring)

Heagerty. Uno FNAC FNAC FNAC
True (Kaplan Meier) (IPCW) (Coqectly (Frank) (Gumbelt)
value specified)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
TP(0.25,0.25,t) t0.25 0.980 0.001 0.001 0.001 0.001 0.000 0.000 0.002 0.000 -0.004 0.000
TP(0.5,0.25,¢) 0.852  -0.001 0.004 0.000 0.007 0.000 0.000 0.059 0.004 0.072 0.006
TP(0.25,0.5,t) 0.976 0.001 0.001 0.001 0.001 0.000 0.000 0.004 0.000 -0.015 0.000
TP(0.5,0.5,t) 0.849 0.000 0.004 0.000 0.007 0.000 0.000 0.060 0.004 0.065 0.005
TP(0.25,0.25,¢) t0.5 0.973 0.001 0.001 0.002 0.001 0.000 0.000 -0.002 0.000 -0.028 0.001
TP(0.5,0.25,¢) 0.818 0.003 0.003 0.006 0.004 0.001 0.001 0.048 0.003 0.027 0.001
TP(0.25,0.5,t) 0.961 0.002 0.001 0.003 0.001 0.000 0.000 0.000 0.000 -0.066 0.005
TP(0.5,0.5,t) 0.810 0.003 0.003 0.007 0.004 0.001 0.001 0.050 0.003 0.003 0.001
TP(0.25,0.25,t) t0.75 0.957 0.002 0.001 0.005 0.001 0.000 0.000 -0.016 0.000 -0.063 0.004
TP(0.5,0.25,¢t) 0.755 0.003 0.002 0.018 0.004 0.000 0.001 0.015 0.001 -0.010 0.001
TP(0.25,0.5,¢) 0.881 0.004 0.002 0.023 0.002 0.001 0.000 -0.019 0.001 -0.097 0.010
TP(0.5,0.5,t) 0.709 0.004 0.003 0.028 0.004 0.001 0.001 0.017 0.001 -0.030 0.002

+1In 943 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 18. Comparison of Bias and MSE of Risk function (True model: Clayton, n=250, 80% censoring)

True Semi-parametric Pararpetric ( CF(EréSly FNAC FNAC
value (Cox PH) (Weibull) specified) (Frank) (Gumbelf)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
R(0.25,0.25,t)  t0.25 0.000 0.005 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.002 0.000
R(0.5,0.25,t) 0.000 0.006 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.003 0.000
R(0.25,0.5,¢) 0.002 0.009 0.000 0.010 0.000 0.000 0.000 -0.001 0.000 0.003 0.000
R(0.5,0.5,t) 0.003 0.010 0.000 0.012 0.000 0.000 0.000 -0.001 0.000 0.005 0.000
R(0.25,0.25,6) 0.5 0.000 0.016 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.010 0.000
R(0.5,0.25,t) 0.000 0.019 0.000 0.024 0.001 0.000 0.000 0.000 0.000 0.013 0.000
R(0.25,0.5,t) 0.008 0.025 0.001 0.034 0.001 0.000 0.000 -0.002 0.000 0.015 0.000
R(0.5,0.5,t) 0.010 0.029 0.001 0.039 0.002 0.000 0.000 -0.001 0.000 0.027 0.001
R(0.25,0.25,t)  t0.75 0.000 0.043 0.002 0.054 0.003 0.000 0.000 0.001 0.000 0.034 0.001
R(0.5,0.25,¢) 0.000 0.051 0.003 0.063 0.004 0.000 0.000 0.002 0.000 0.044 0.002
R(0.25,0.5,t) 0.031 0.059 0.004 0.077 0.007 -0.001 0.000 -0.005 0.000 0.045 0.002
R(0.5,0.5,t) 0.038 0.067 0.005 0.087 0.008 -0.001 0.000 -0.001 0.000 0.079 0.007

+1In 899 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 19. Comparison of Bias and MSE of FPR (True model: Clayton, n=250, 80% censoring)

Heagerty Uno FNAC
True (Kaplan Meier) (IPCW) (Coqectly (l;ljﬁlg) ( Gililjl?g )
value specified)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
FP(0.25,0.25,¢t) t0.25 0.658 0.001 0.001 0.001 0.001 0.001 0.001 -0.075 0.006 -0.040 0.002
FP(0.5,0.25,t) 0.455 0.000 0.001 0.000 0.001 0.000 0.001 -0.051 0.003 -0.012 0.001
FP(0.25,0.5,t) 0.448 0.001 0.001 0.001 0.001 0.000 0.001 -0.050 0.003 -0.007 0.001
FP(0.5,0.5,t) 0.348 0.001 0.001 0.001 0.001 0.000 0.000 -0.029 0.001 0.000 0.000
FP(0.25,0.25,t) t0.5 0.631 0.001 0.001 0.000 0.002 0.001 0.001 -0.077 0.007 -0.049 0.003
FP(0.5,0.25,t) 0.423 0.001 0.001 0.001 0.002 0.000 0.001 -0.054 0.003 -0.025 0.001
FP(0.25,0.5,t) 0.404 0.001 0.001 0.000 0.002 0.000 0.001 -0.047 0.003 -0.013 0.001
FP(0.5,0.5,t) 0.307 0.001 0.001 0.000 0.002 0.000 0.000 -0.030 0.001 -0.012 0.001
FP(0.25,0.25,t) t0.75 0.580 0.002 0.002 0.000 0.004 0.001 0.001 -0.079 0.007 -0.049 0.003
FP(0.5,0.25,t) 0.366 0.001 0.002 0.001 0.004 0.000 0.001 -0.058 0.004 -0.027 0.001
FP(0.25,0.5,t) 0.322 0.002 0.002 0.002 0.003 0.001 0.000 -0.040 0.002 0.002 0.001
FP(0.5,0.5,¢) 0.234 0.002 0.001 0.002 0.003 0.000 0.000 -0.028 0.001 -0.005 0.000

+1In 899 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 20. Comparison of Bias and MSE of TPR (True model: Clayton, n=250, 80% censoring)

Heagerty. Uno FNAC FNAC FNAC
True (Kaplan Meier) (IPCW) (Coqectly (Frank) (Gumbelt)
value specified)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
TP(0.25,0.25,t) t0.25 0.982 0.001 0.002 0.000 0.005 0.000 0.000 0.003 0.000 0.004 0.000
TP(0.5,0.25,¢) 0.865 0.002 0.010 0.002 0.022 0.000 0.000 0.062 0.004 0.094 0.009
TP(0.25,0.5,t) 0.979 0.002 0.002 0.000 0.005 0.000 0.000 0.003 0.000 -0.001 0.000
TP(0.5,0.5,t) 0.863 0.003 0.010 0.002 0.023 0.000 0.000 0.062 0.004 0.090 0.009
TP(0.25,0.25,t) t0.5 0.980 0.002 0.001 0.001 0.003 0.000 0.000 0.002 0.000 -0.006 0.000
TP(0.5,0.25,¢) 0.853 0.000 0.005 0.003 0.016 0.000 0.001 0.059 0.004 0.071 0.006
TP(0.25,0.5,¢t) 0.976 0.003 0.002 0.001 0.003 0.000 0.000 0.001 0.000 -0.023 0.001
TP(0.5,0.5,t) 0.850 0.001 0.006 0.003 0.016 0.000 0.001 0.059 0.004 0.060 0.004
TP(0.25,0.25,t) t0.75 0.976 0.003 0.002 0.003 0.002 0.000 0.000 -0.001 0.000 -0.022 0.001
TP(0.5,0.25,¢t) 0.830 0.004 0.005 0.014 0.013 0.001 0.001 0.052 0.003 0.043 0.003
TP(0.25,0.5,¢) 0.967 0.006 0.004 0.005 0.002 0.000 0.000 -0.004 0.000 -0.057 0.004
TP(0.5,0.5,t) 0.825 0.007 0.006 0.015 0.013 0.001 0.001 0.051 0.003 0.021 0.001

+1In 899 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 21. Comparison of Bias and MSE of Risk function (True model: Frank, n=250, 20% censoring)

True Semi-parametric Pararpetric ( CF(EréSly FNAC FNAC
value (Cox PH) (Weibull) specified) (Gumbelf) (Clayton)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
R(0.25,0.25,t) t0.25 0.000 0.010 0.000 0.018 0.000 0.000 0.000 0.007 0.000 0.001 0.000
R(0.5,0.25,t) 0.000 0.013 0.000 0.021 0.001 0.000 0.000 0.008 0.000 0.001 0.000
R(0.25,0.5,t) 0.004 0.028 0.001 0.045 0.002 0.000 0.000 0.025 0.001 0.032 0.001
R(0.5,0.5,t) 0.005 0.034 0.001 0.054 0.003 0.000 0.000 0.035 0.001 0.040 0.002
R(0.25,0.25,t) t0.5 0.003 0.083 0.008 0.105 0.012 0.000 0.000 0.074 0.006 0.007 0.000
R(0.5,0.25,t) 0.004 0.102 0.011 0.126 0.017 0.000 0.000 0.090 0.009 0.008 0.000
R(0.25,0.5,t) 0.176 0.077 0.009 0.107 0.013 -0.003 0.001 0.101 0.011 0.076 0.007
R(0.5,0.5,t) 0.218 0.084 0.010 0.114 0.015 -0.002 0.001 0.139 0.021 0.089 0.010
R(0.25,0.25,t) t0.75 0.194 0.202 0.044 0.204 0.044 -0.001 0.001 0.211 0.046 -0.024 0.002
R(0.5,0.25,t) 0.233 0.231 0.058 0.228 0.056 -0.001 0.001 0.231 0.056 -0.034 0.003
R(0.25,0.5,t) 0.920 -0.114 0.016 -0.144 0.023 0.001 0.000 -0.165 0.028 -0.053 0.004
R(0.5,0.5,t) 0.960 -0.092 0.010 -0.122 0.016 0.001 0.000 -0.116 0.014 -0.039 0.002

+In 771 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 22. Comparison of Bias and MSE of FPR (True model: Frank, n=250, 20% censoring)

Heagerty. Uno FNAC FNAC FNAC
VT;:; (Kaplan Meier) (IPCW) (Siggfeicet(li})l (Gumbelt) (Clayton)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
FP(0.25,0.25,¢t) t0.25 0.562 0.000 0.001 0.001 0.001 0.001 0.001 0.042 0.002 0.010 0.001
FP(0.5,0.25,t) 0.359 0.000 0.001 0.000 0.001 0.001 0.000 0.028 0.001 0.023 0.001
FP(0.25,0.5,t) 0.338 0.001 0.001 0.001 0.001 0.000 0.000 0.037 0.002 0.023 0.001
FP(0.5,0.5,¢) 0.253 0.000 0.001 0.000 0.001 0.001 0.000 0.013 0.000 0.013 0.001
FP(0.25,0.25,t) t0.5 0.421 0.001 0.002 0.001 0.002 0.001 0.001 0.054 0.004 0.007 0.001
FP(0.5,0.25,t) 0.216 0.000 0.001 0.000 0.001 0.000 0.000 0.043 0.002 0.032 0.001
FP(0.25,0.5,t) 0.130 0.001 0.001 0.001 0.001 0.000 0.000 0.070 0.005 0.033 0.001
FP(0.5,0.5,t) 0.082 0.000 0.001 0.000 0.001 0.000 0.000 0.039 0.002 0.026 0.001
FP(0.25,0.25,t) t0.75 0.168 -0.001 0.002 0.000 0.002 -0.001 0.000 0.110 0.013 0.014 0.001
FP(0.5,0.25,t) 0.063 -0.001 0.001 0.000 0.001 -0.001 0.000 0.065 0.004 0.023 0.001
FP(0.25,0.5,t) 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.060 0.004 0.010 0.000
FP(0.5,0.5,¢) 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.001 0.006 0.000

+In 771 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 23. Comparison of Bias and MSE of TPR (True model: Frank, n=250, 20% censoring)

True (K;;f;f ?\/[rtzier) (HL’ISSV) (Ciljrjzc(ily FNAC FNAC
value specified) (Gumbelf) (Clayton)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
TP(0.25,0.25,t) t0.25 0.980 0.000 0.000 0.000 0.000 0.000 0.000 -0.015 0.000 -0.007 0.000
TP(0.5,0.25,¢) 0.901 0.004 0.002 0.005 0.002 0.001 0.000 -0.019 0.001 -0.055 0.004
TP(0.25,0.5,t) 0.979 0.000 0.000 0.000 0.000 0.000 0.000 -0.029 0.001 -0.014 0.000
TP(0.5,0.5,t) 0.900 0.004 0.002 0.005 0.002 0.001 0.000 -0.028 0.001 -0.059 0.004
TP(0.25,0.25,¢) t0.5 0.956  -0.001 0.001 0.001 0.000 0.000 0.000 -0.038 0.002 0.002 0.000
TP(0.5,0.25,¢) 0.815 0.002 0.002 0.006 0.002 0.001 0.000 -0.049 0.003 -0.020 0.001
TP(0.25,0.5,t) 0.930 -0.001 0.001 0.001 0.001 0.001 0.000 -0.087 0.008 -0.008 0.000
TP(0.5,0.5,t) 0.799 0.001 0.002 0.006 0.002 0.002 0.000 -0.078 0.007 -0.028 0.002
TP(0.25,0.25,t) t0.75 0.888 0.000 0.001 0.008 0.001 0.001 0.000 -0.048 0.003 0.036 0.002
TP(0.5,0.25,¢t) 0.674 0.001 0.002 0.018 0.002 0.001 0.000 -0.030 0.001 0.044 0.003
TP(0.25,0.5,¢) 0.702 0.001 0.001 0.024 0.002 -0.001 0.000 -0.025 0.001 0.079 0.007
TP(0.5,0.5,t) 0.579 0.001 0.002 0.026 0.003 0.000 0.000 -0.025 0.001 0.055 0.004

+In 771 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 24. Comparison of Bias and MSE of Risk function (True model: Frank, n=250, 50% censoring)

True Semi-parametric Pararpetric ( CF(EréSly FNAC FNAC
value (Cox PH) (Weibull) specified) (Gumbelf) (Clayton)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
R(0.25,0.25,t)  t0.25 0.000 0.005 0.000 0.008 0.000 0.000 0.000 0.002 0.000 0.000 0.000
R(0.5,0.25,t) 0.000 0.006 0.000 0.010 0.000 0.000 0.000 0.003 0.000 0.000 0.000
R(0.25,0.5,¢) 0.001 0.012 0.000 0.020 0.000 0.000 0.000 0.008 0.000 0.006 0.000
R(0.5,0.5,t) 0.001 0.015 0.000 0.024 0.001 0.000 0.000 0.011 0.000 0.007 0.000
R(0.25,0.25,6) 0.5 0.000 0.031 0.001 0.045 0.002 0.000 0.000 0.023 0.001 0.000 0.000
R(0.5,0.25,t) 0.000 0.038 0.002 0.054 0.003 0.000 0.000 0.028 0.001 0.000 0.000
R(0.25,0.5,t) 0.021 0.070 0.005 0.099 0.010 0.000 0.000 0.070 0.005 0.026 0.001
R(0.5,0.5,t) 0.026 0.085 0.008 0.117 0.014 0.000 0.000 0.099 0.011 0.030 0.001
R(0.25,0.25,t)  t0.75 0.012 0.142 0.022 0.161 0.028 0.000 0.000 0.126 0.017 -0.004 0.000
R(0.5,0.25,¢) 0.015 0.172 0.032 0.192 0.039 0.000 0.000 0.153 0.025 -0.006 0.000
R(0.25,0.5,t) 0.427 -0.025 0.009 -0.010 0.006 -0.001 0.002 -0.020 0.005 -0.001 0.002
R(0.5,0.5,t) 0.507 -0.036 0.009 -0.026 0.006 0.000 0.002 0.008 0.005 -0.022 0.003

+In 691 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 25. Comparison of Bias and MSE of FPR (True model: Frank, n=250, 50% censoring)

True (K;;f;f ?\/[rtzier) (HL’ISSV) (Ciljrjzc(ily FNAC FNAC
value specified) (Gumbelf) (Clayton)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
FP(0.25,0.25,¢t) t0.25 0.596 0.001 0.001 0.001 0.001 0.000 0.001 0.017 0.001 0.033 0.002
FP(0.5,0.25,t) 0.401 0.001 0.001 0.002 0.001 0.000 0.000 0.012 0.001 0.039 0.002
FP(0.25,0.5,t) 0.390 0.001 0.001 0.001 0.001 0.000 0.000 0.020 0.001 0.036 0.002
FP(0.5,0.5,¢) 0.304 0.001 0.001 0.001 0.001 0.000 0.000 0.002 0.000 0.023 0.001
FP(0.25,0.25,t) t0.5 0.514 0.001 0.001 0.001 0.002 0.000 0.001 0.016 0.001 0.031 0.002
FP(0.5,0.25,t) 0.304 0.000 0.001 0.001 0.002 0.000 0.000 0.014 0.001 0.047 0.003
FP(0.25,0.5,t) 0.263 0.001 0.001 0.001 0.001 0.000 0.000 0.025 0.001 0.030 0.001
FP(0.5,0.5,t) 0.187 0.000 0.001 0.001 0.001 0.000 0.000 0.007 0.000 0.026 0.001
FP(0.25,0.25,t) t0.75 0.356 0.000 0.002 0.001 0.004 0.000 0.001 0.039 0.002 0.030 0.002
FP(0.5,0.25,t) 0.167 0.000 0.002 0.002 0.002 0.000 0.000 0.038 0.002 0.049 0.003
FP(0.25,0.5,t) 0.065 0.000 0.001 0.001 0.001 -0.001 0.000 0.078 0.006 0.023 0.001
FP(0.5,0.5,¢) 0.038 0.001 0.001 0.001 0.001 0.000 0.000 0.044 0.002 0.019 0.000

+In 691 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 26. Comparison of Bias and MSE of TPR (True model: Frank, n=250, 50% censoring)

True (K;;f;f ?\/[rtzier) (HL’ISSV) (Ciljrjzc(ily FNAC FNAC
value specified) (Gumbelf) (Clayton)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
TP(0.25,0.25,t) t0.25 0.984 -0.001 0.001 0.000 0.001 0.000 0.000 -0.006 0.000 -0.009 0.000
TP(0.5,0.25,¢) 0.920 0.002 0.002 0.003 0.004 0.000 0.000 0.004 0.000 -0.067 0.005
TP(0.25,0.5,t) 0.983 -0.001 0.001 0.000 0.001 0.000 0.000 -0.013 0.000 -0.011 0.000
TP(0.5,0.5,t) 0.919 0.002 0.003 0.003 0.004 0.000 0.000 0.000 0.000 -0.068 0.005
TP(0.25,0.25,¢) t0.5 0.973 0.000 0.001 0.001 0.001 0.000 0.000 -0.023 0.001 -0.006 0.000
TP(0.5,0.25,¢) 0.872 0.004 0.002 0.008 0.003 0.001 0.000 -0.030 0.001 -0.051 0.003
TP(0.25,0.5,t) 0.969 0.001 0.001 0.001 0.001 0.000 0.000 -0.054 0.003 -0.009 0.000
TP(0.5,0.5,t) 0.870 0.004 0.002 0.009 0.003 0.001 0.000 -0.049 0.003 -0.054 0.004
TP(0.25,0.25,t) t0.75 0.943 0.001 0.001 0.008 0.001 0.000 0.000 -0.044 0.002 0.008 0.000
TP(0.5,0.25,¢t) 0.776 0.003 0.002 0.028 0.004 0.001 0.000 -0.040 0.002 -0.009 0.001
TP(0.25,0.5,¢) 0.877 0.003 0.002 0.024 0.002 0.001 0.000 -0.082 0.007 0.019 0.001
TP(0.5,0.5,t) 0.739 0.003 0.002 0.037 0.005 0.002 0.000 -0.064 0.005 -0.006 0.001

+In 691 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 27. Comparison of Bias and MSE of Risk function (True model: Frank, n=250, 80% censoring)

True Semi-parametric Parametric ( CFOIjrtSIy FNAC FNAC
value (Cox PH) (Weibull) specified) (Gumbelt) (Clayton)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
R(0.25,0.25,t)  t0.25 0.000 0.002 0.000 0.003 0.000 0.000 0.000 0.001 0.000 0.000 0.000
R(0.5,0.25,¢) 0.000 0.002 0.000 0.003 0.000 0.000 0.000 0.001 0.000 0.000 0.000
R(0.25,0.5,t) 0.000 0.005 0.000 0.006 0.000 0.000 0.000 0.002 0.000 0.000 0.000
R(0.5,0.5,t) 0.000 0.006 0.000 0.007 0.000 0.000 0.000 0.003 0.000 0.000 0.000
R(0.25,0.25,t) 0.5 0.000 0.007 0.000 0.011 0.000 0.000 0.000 0.004 0.000 0.000 0.000
R(0.5,0.25,¢) 0.000 0.009 0.000 0.013 0.000 0.000 0.000 0.005 0.000 0.000 0.000
R(0.25,0.5,¢) 0.001 0.017 0.000 0.025 0.001 0.000 0.000 0.011 0.000 0.000 0.000
R(0.5,0.5,t) 0.001 0.021 0.001 0.030 0.001 0.000 0.000 0.017 0.000 0.000 0.000
R(0.25,0.25,t)  t0.75 0.000 0.026 0.001 0.034 0.001 0.000 0.000 0.018 0.000 0.000 0.000
R(0.5,0.25,t) 0.000 0.032 0.001 0.041 0.002 0.000 0.000 0.023 0.001 0.000 0.000
R(0.25,0.5,t) 0.008 0.059 0.004 0.075 0.006 0.000 0.000 0.047 0.003 -0.001 0.000
R(0.5,0.5,t) 0.011 0.072 0.006 0.089 0.009 0.001 0.000 0.071 0.006 -0.002 0.000

+In 625 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 28. Comparison of Bias and MSE of FPR (True model: Frank, n=250, 80% censoring)

Heagerty. Uno FNAC FNAC FNAC
VT;:; (Kaplan Meier) (IPCW) (Siggfeicet(li})l (Gumbelt) (Clayton)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
FP(0.25,0.25,¢t) t0.25 0.629 0.000 0.001 0.000 0.001 0.000 0.001 -0.008 0.001 0.043 0.002
FP(0.5,0.25,t) 0.443 0.001 0.001 0.001 0.001 0.000 0.000 -0.003 0.000 0.042 0.002
FP(0.25,0.5,t) 0.440 0.001 0.001 0.000 0.001 -0.001 0.000 -0.001 0.001 0.042 0.002
FP(0.5,0.5,¢) 0.355 0.001 0.001 0.001 0.001 0.000 0.000 -0.011 0.001 0.023 0.001
FP(0.25,0.25,¢) t0.5 0.599 0.001 0.001 0.000 0.002 0.001 0.001 -0.012 0.001 0.044 0.003
FP(0.5,0.25,t) 0.404 0.001 0.001 0.001 0.002 0.001 0.000 -0.007 0.000 0.049 0.003
FP(0.25,0.5,t) 0.394 0.001 0.001 0.000 0.002 0.000 0.000 -0.004 0.000 0.041 0.002
FP(0.5,0.5,t) 0.308 0.001 0.001 0.001 0.002 0.001 0.000 -0.015 0.001 0.027 0.001
FP(0.25,0.25,t) t0.75 0.544 0.001 0.001 0.001 0.004 0.001 0.001 -0.008 0.001 0.046 0.003
FP(0.5,0.25,t) 0.337 0.001 0.001 0.002 0.003 0.001 0.000 0.001 0.000 0.058 0.004
FP(0.25,0.5,t) 0.309 0.001 0.001 0.001 0.003 0.000 0.000 0.008 0.001 0.038 0.002
FP(0.5,0.5,¢) 0.227 0.001 0.001 0.000 0.003 0.001 0.000 -0.004 0.000 0.031 0.001

+In 625 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 29. Comparison of Bias and MSE of TPR (True model: Frank, n=250, 80% censoring)

True (K;;f;f ?\/[rtzier) (HL’ISSV) (Ciljrjzc(ily FNAC FNAC
value specified) (Gumbelf) (Clayton)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
TP(0.25,0.25,t) t0.25 0.987 0.000 0.001 0.003 0.001 0.000 0.000 0.001 0.000 -0.013 0.000
TP(0.5,0.25,¢) 0.936 0.002 0.005 0.005 0.011 0.000 0.000 0.026 0.001 -0.081 0.007
TP(0.25,0.5,t) 0.987 0.001 0.001 0.003 0.001 0.000 0.000 -0.002 0.000 -0.013 0.000
TP(0.5,0.5,t) 0.936 0.003 0.005 0.005 0.011 0.000 0.000 0.024 0.001 -0.081 0.007
TP(0.25,0.25,t) t0.5 0.984 0.000 0.001 0.001 0.002 0.000 0.000 -0.007 0.000 -0.012 0.000
TP(0.5,0.25,¢) 0.921 0.002 0.004 0.005 0.009 0.001 0.000 0.005 0.000 -0.078 0.007
TP(0.25,0.5,t) 0.984 0.001 0.002 0.001 0.002 0.000 0.000 -0.018 0.000 -0.012 0.000
TP(0.5,0.5,t) 0.921 0.003 0.004 0.005 0.009 0.001 0.000 -0.002 0.000 -0.078 0.007
TP(0.25,0.25,t) t0.75 0.977 0.001 0.002 0.003 0.001 0.000 0.000 -0.019 0.000 -0.010 0.000
TP(0.5,0.25,¢t) 0.890 0.005 0.004 0.013 0.009 0.001 0.000 -0.018 0.001 -0.068 0.005
TP(0.25,0.5,¢) 0.975 0.004 0.003 0.004 0.002 0.000 0.000 -0.048 0.003 -0.009 0.000
TP(0.5,0.5,t) 0.889 0.007 0.005 0.014 0.009 0.001 0.000 -0.035 0.002 -0.068 0.005

+In 625 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary.
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Table 30. Comparison of Bias and MSE of Risk function (True model: Gumbel, n=250, 20% censoring)

True Semi-parametric Pararpetric ( CF(EréSly FNAC FNAC
value (Cox PH) (Weibull) specified) (Frank) (Clayton)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
R(0.25,0.25,t) t0.25 0.000 0.003 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.001 0.000
R(0.5,0.25,t) 0.000 0.004 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.001 0.000
R(0.25,0.5,¢) 0.004 0.015 0.000 0.021 0.001 0.003 0.000 0.000 0.000 0.030 0.001
R(0.5,0.5,t) 0.004 0.018 0.000 0.025 0.001 0.004 0.000 0.000 0.000 0.038 0.002
R(0.25,0.25,6) 0.5 0.012 0.025 0.001 0.035 0.001 0.010 0.000 -0.008 0.000 -0.002 0.000
R(0.5,0.25,t) 0.014 0.031 0.001 0.043 0.002 0.012 0.000 -0.009 0.000 -0.002 0.000
R(0.25,0.5,t) 0.201 0.006 0.002 0.038 0.003 0.016 0.001 -0.019 0.001 0.046 0.003
R(0.5,0.5,t) 0.245 -0.001 0.002 0.040 0.003 0.030 0.002 -0.016 0.001 0.057 0.005
R(0.25,0.25,t)  t0.75 0.263 -0.006 0.003 0.010 0.002 0.042 0.003 -0.058 0.005 -0.095 0.010
R(0.5,0.25,¢) 0.303 -0.001 0.004 0.020 0.003 0.049 0.004 -0.056 0.005 -0.106 0.013
R(0.25,0.5,t) 0.864 -0.024 0.004 -0.026 0.003 -0.027 0.001 0.051 0.003 0.007 0.001
R(0.5,0.5,t) 0.916 -0.026 0.002 -0.025 0.002 -0.013 0.000 0.043 0.002 0.007 0.000
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Table 31. Comparison of Bias and MSE of FPR (True model: Gumbel, n=250, 20% censoring)

Heagerty. Uno FNAC FNAC FNAC
VT;:; (Kaplan Meier) (IPCW) (Siggfeicet(li})l (Frank) (Clayton)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
FP(0.25,0.25,¢t) t0.25 0.549 0.000 0.001 0.001 0.001 0.052 0.004 0.019 0.001 0.015 0.001
FP(0.5,0.25,t) 0.343 0.001 0.001 0.001 0.001 0.029 0.001 0.020 0.001 0.034 0.002
FP(0.25,0.5,t) 0.327 0.000 0.001 0.000 0.001 0.040 0.002 0.026 0.001 0.029 0.001
FP(0.5,0.5,¢) 0.235 0.000 0.001 0.000 0.001 0.026 0.001 0.030 0.001 0.030 0.001
FP(0.25,0.25,¢) t0.5 0.415 0.000 0.002 0.000 0.002 0.051 0.003 -0.001 0.001 0.002 0.001
FP(0.5,0.25,t) 0.216 0.000 0.001 0.000 0.001 0.022 0.001 -0.008 0.000 0.027 0.001
FP(0.25,0.5,t) 0.136 0.000 0.001 0.000 0.001 0.030 0.001 -0.007 0.000 0.022 0.001
FP(0.5,0.5,t) 0.082  -0.001 0.001 -0.001 0.001 0.016 0.000 -0.002 0.000 0.023 0.001
FP(0.25,0.25,t) t0.75 0.189 0.001 0.002 0.001 0.002 0.042 0.002 -0.025 0.001 -0.014 0.001
FP(0.5,0.25,t) 0.080 0.001 0.001 0.001 0.001 0.015 0.000 -0.019 0.001 0.003 0.000
FP(0.25,0.5,t) 0.015 0.000 0.000 0.000 0.000 0.011 0.000 -0.009 0.000 -0.001 0.000
FP(0.5,0.5,¢) 0.007 0.000 0.000 0.000 0.000 0.005 0.000 -0.004 0.000 0.001 0.000
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Table 32. Comparison of Bias and MSE of TPR (True model: Gumbel, n=250, 20% censoring)

Heagerty. Uno FNAC FNAC FNAC
VT;:; (Kaplan Meier) (IPCW) (Siggfeicet(li})l (Frank) (Clayton)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
TP(0.25,0.25,t) t0.25 0.976 0.000 0.000 0.001 0.000 0.000 0.000 0.008 0.000 -0.002 0.000
TP(0.5,0.25,¢) 0.909 0.001 0.002 0.002 0.002 -0.003 0.000 0.011 0.000 -0.056 0.004
TP(0.25,0.5,¢) 0.975 0.001 0.001 0.001 0.000 -0.002 0.000 0.008 0.000 -0.008 0.000
TP(0.5,0.5,t) 0.909 0.001 0.002 0.002 0.002 -0.004 0.000 0.012 0.000 -0.060 0.004
TP(0.25,0.25,¢) t0.5 0.938 0.001 0.001 0.003 0.001 0.000 0.000 0.024 0.001 0.022 0.001
TP(0.5,0.25,¢) 0.790 0.002 0.002 0.007 0.002 -0.007 0.001 0.046 0.003 0.012 0.001
TP(0.25,0.5,t) 0.901 0.000 0.001 0.004 0.001 -0.009 0.000 0.039 0.002 0.025 0.001
TP(0.5,0.5,t) 0.768 0.001 0.002 0.008 0.002 -0.011 0.001 0.055 0.004 0.012 0.001
TP(0.25,0.25,t) t0.75 0.860 0.001 0.001 0.010 0.001 0.000 0.000 0.040 0.002 0.066 0.005
TP(0.5,0.25,¢t) 0.649 0.002 0.001 0.019 0.002 -0.006 0.001 0.057 0.004 0.077 0.007
TP(0.25,0.5,¢) 0.683 0.001 0.001 0.025 0.002 0.003 0.001 0.059 0.004 0.104 0.012
TP(0.5,0.5,t) 0.556 0.001 0.002 0.025 0.002 -0.002 0.001 0.070 0.006 0.089 0.009
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Table 33. Comparison of Bias and MSE of Risk function (True model: Gumbel, n=250, 50% censoring)

True Semi-parametric Pararpetric ( CF(EréSly FNAC FNAC
value (Cox PH) (Weibull) specified) (Frank) (Clayton)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
R(0.25,0.25,t)  t0.25 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R(0.5,0.25,t) 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R(0.25,0.5,¢) 0.000 0.004 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.006 0.000
R(0.5,0.5,t) 0.000 0.004 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.007 0.000
R(0.25,0.25,6) 0.5 0.001 0.006 0.000 0.009 0.000 0.001 0.000 -0.001 0.000 -0.001 0.000
R(0.5,0.25,t) 0.001 0.007 0.000 0.011 0.000 0.001 0.000 -0.001 0.000 -0.001 0.000
R(0.25,0.5,t) 0.025 0.022 0.001 0.035 0.002 0.006 0.000 -0.009 0.000 0.019 0.001
R(0.5,0.5,¢t) 0.031 0.026 0.001 0.042 0.002 0.009 0.000 -0.010 0.000 0.022 0.001
R(0.25,0.25,t)  t0.75 0.034 0.023 0.001 0.031 0.001 0.012 0.000 -0.022 0.001 -0.026 0.001
R(0.5,0.25,t) 0.041 0.029 0.001 0.040 0.002 0.015 0.001 -0.025 0.001 -0.031 0.001
R(0.25,0.5,t) 0.417 -0.074 0.012 -0.061 0.008 0.000 0.002 0.024 0.004 0.001 0.003
R(0.5,0.5,t) 0.490 -0.090 0.014 -0.071 0.009 0.012 0.002 0.030 0.004 -0.012 0.003
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Table 34. Comparison of Bias and MSE of FPR (True model: Gumbel, n=250, 50% censoring)

Heagerty. Uno FNAC FNAC FNAC
VT;:; (Kaplan Meier) (IPCW) (Siggfeicet(li})l (Frank) (Clayton)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
FP(0.25,0.25,¢t) t0.25 0.583 0.000 0.001 0.000 0.001 0.027 0.002 0.025 0.002 0.035 0.002
FP(0.5,0.25,t) 0.385 0.001 0.001 0.001 0.001 0.017 0.001 0.029 0.001 0.049 0.003
FP(0.25,0.5,t) 0.379 0.000 0.001 0.000 0.001 0.024 0.001 0.033 0.002 0.047 0.003
FP(0.5,0.5,¢) 0.285 0.000 0.001 0.000 0.001 0.017 0.001 0.038 0.002 0.043 0.002
FP(0.25,0.25,¢) t0.5 0.503 0.000 0.001 -0.001 0.002 0.026 0.002 0.012 0.001 0.026 0.001
FP(0.5,0.25,t) 0.293 0.000 0.001 0.000 0.002 0.012 0.001 0.009 0.001 0.047 0.003
FP(0.25,0.5,t) 0.257 -0.002 0.001 -0.002 0.002 0.019 0.001 0.013 0.001 0.034 0.002
FP(0.5,0.5,t) 0.173 -0.002 0.001 -0.002 0.001 0.011 0.000 0.017 0.001 0.037 0.002
FP(0.25,0.25,t) t0.75 0.356 0.000 0.002 -0.001 0.004 0.021 0.001 -0.008 0.001 0.012 0.001
FP(0.5,0.25,t) 0.174 0.000 0.002 0.000 0.002 0.006 0.000 -0.014 0.001 0.031 0.001
FP(0.25,0.5,t) 0.080 -0.001 0.001 0.000 0.001 0.012 0.000 -0.019 0.000 0.006 0.000
FP(0.5,0.5,¢) 0.045 -0.001 0.001 -0.001 0.001 0.005 0.000 -0.010 0.000 0.010 0.000
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Table 35. Comparison of Bias and MSE of TPR (True model: Gumbel, n=250, 50% censoring)

Heagerty. Uno FNAC FNAC FNAC
VT;:; (Kaplan Meier) (IPCW) (Siggfeicet(li})l (Frank) (Clayton)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
TP(0.25,0.25,t) t0.25 0.986 0.010 0.000 0.000 0.001 0.001 0.000 0.002 0.000 -0.009 0.000
TP(0.5,0.25,¢) 0.944  -0.107 0.012 0.003 0.002 0.002 0.000 -0.005 0.000 -0.080 0.007
TP(0.25,0.5,t) 0.985 -0.047 0.002 0.001 0.001 0.001 0.000 0.002 0.000 -0.011 0.000
TP(0.5,0.5,t) 0.944 -0.191 0.037 0.003 0.002 0.002 0.000 -0.005 0.000 -0.081 0.007
TP(0.25,0.25,t) t0.5 0.963 0.033 0.001 0.002 0.001 0.002 0.000 0.014 0.000 0.005 0.000
TP(0.5,0.25,¢) 0.864 -0.028 0.001 0.009 0.003 0.002 0.000 0.028 0.001 -0.033 0.002
TP(0.25,0.5,t) 0.957 -0.019 0.000 0.003 0.001 0.000 0.000 0.018 0.000 0.005 0.000
TP(0.5,0.5,t) 0.861 -0.108 0.012 0.009 0.003 0.001 0.000 0.030 0.001 -0.034 0.002
TP(0.25,0.25,t) t0.75 0.920 0.076 0.006 0.013 0.001 0.002 0.000 0.030 0.001 0.032 0.001
TP(0.5,0.25,¢t) 0.748 0.089 0.009 0.034 0.004 0.000 0.001 0.052 0.003 0.029 0.002
TP(0.25,0.5,¢) 0.844 0.094 0.010 0.030 0.003 -0.003 0.000 0.052 0.003 0.059 0.004
TP(0.5,0.5,t) 0.705 0.048 0.003 0.043 0.005 -0.002 0.001 0.065 0.005 0.042 0.003
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Table 36. Comparison of Bias and MSE of Risk function (True model: Gumbel, n=250, 80% censoring)

True Semi-parametric Pararpetric ( CF(EréSly FNAC FNAC
value (Cox PH) (Weibull) specified) (Frank) (Clayton)
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
R(0.25,0.25,t) t0.25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R(0.5,0.25,t) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R(0.25,0.5,¢) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R(0.5,0.5,t) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R(0.25,0.25,6) 0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R(0.5,0.25,t) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R(0.25,0.5,t) 0.000 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R(0.5,0.5,t) 0.000 0.002 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R(0.25,0.25,t)  t0.75 0.000 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R(0.5,0.25,¢) 0.000 0.002 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R(0.25,0.5,t) 0.009 0.007 0.000 0.010 0.000 0.001 0.000 -0.007 0.000 -0.006 0.000
R(0.5,0.5,¢t) 0.011 0.008 0.000 0.012 0.000 0.001 0.000 -0.008 0.000 -0.008 0.000
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Table 37. Comparison of Bias and MSE of FPR (True model: Gumbel, n=250, 80% censoring)

Heagerty. Uno FNAC FNAC FNAC
VT;:; (Kaplan Meier) (IPCW) (Siggfeicet(li})l (Frank) (Clayton)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
FP(0.25,0.25,¢t) t0.25 0.616 0.001 0.001 0.000 0.001 0.005 0.001 0.027 0.002 0.043 0.003
FP(0.5,0.25,t) 0.429 0.001 0.001 0.001 0.001 0.005 0.001 0.032 0.002 0.048 0.003
FP(0.25,0.5,t) 0.429 0.000 0.001 0.000 0.001 0.005 0.001 0.035 0.002 0.048 0.003
FP(0.5,0.5,¢) 0.338 0.000 0.001 0.000 0.001 0.006 0.000 0.041 0.002 0.036 0.002
FP(0.25,0.25,¢) t0.5 0.586 0.000 0.001 0.000 0.002 0.005 0.001 0.022 0.001 0.041 0.003
FP(0.5,0.25,t) 0.388 0.001 0.001 0.001 0.002 0.003 0.000 0.026 0.001 0.052 0.003
FP(0.25,0.5,t) 0.383 0.000 0.001 0.000 0.002 0.005 0.001 0.027 0.001 0.043 0.003
FP(0.5,0.5,t) 0.289 0.000 0.001 0.000 0.002 0.004 0.000 0.033 0.001 0.038 0.002
FP(0.25,0.25,t) t0.75 0.531 0.000 0.001 -0.001 0.004 0.004 0.001 0.015 0.001 0.038 0.002
FP(0.5,0.25,t) 0.323 0.000 0.001 0.000 0.004 0.002 0.000 0.015 0.001 0.056 0.004
FP(0.25,0.5,t) 0.300 -0.001 0.002 -0.002 0.003 0.003 0.000 0.016 0.001 0.035 0.002
FP(0.5,0.5,¢) 0.210 -0.001 0.001 -0.001 0.002 0.002 0.000 0.021 0.001 0.037 0.002
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Table 38. Comparison of Bias and MSE of TPR (True model: Gumbel, n=250, 80% censoring)

Heagerty. Uno FNAC FNAC FNAC
VT;:; (Kaplan Meier) (IPCW) (Siggfeicet(li})l (Frank) (Clayton)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
TP(0.25,0.25,t) t0.25 0.994 -0.012 0.000 0.000 0.001 0.000 0.000 0.000 0.001 -0.020 0.001
TP(0.5,0.25,¢) 0.978  -0.093 0.009 0.001 0.004 0.001 0.000 0.001 0.004 -0.123 0.016
TP(0.25,0.5,¢) 0.994 0.021 0.000 0.000 0.001 0.000 0.000 0.000 0.001 -0.020 0.001
TP(0.5,0.5,t) 0.978 -0.080 0.006 0.001 0.004 0.001 0.000 0.001 0.004 -0.123 0.016
TP(0.25,0.25,¢) t0.5 0.986  -0.003 0.000 0.002 0.001 0.001 0.000 0.002 0.001 -0.015 0.000
TP(0.5,0.25,¢) 0.946 -0.062 0.004 0.009 0.004 0.003 0.000 0.009 0.004 -0.104 0.012
TP(0.25,0.5,t) 0.986 0.029 0.001 0.002 0.001 0.001 0.000 0.002 0.001 -0.015 0.000
TP(0.5,0.5,t) 0.946  -0.048 0.002 0.009 0.004 0.003 0.000 0.009 0.004 -0.104 0.012
TP(0.25,0.25,t) t0.75 0.971 0.012 0.000 0.006 0.002 0.002 0.000 0.006 0.002 -0.006 0.000
TP(0.5,0.25,¢t) 0.891 -0.007 0.000 0.024 0.008 0.005 0.000 0.024 0.008 -0.071 0.006
TP(0.25,0.5,¢) 0.969 0.047 0.002 0.007 0.002 0.001 0.000 0.007 0.002 -0.004 0.000
TP(0.5,0.5,t) 0.890 0.009 0.000 0.024 0.008 0.005 0.000 0.024 0.008 -0.069 0.006
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5. Hlustration : Application to PBC data

To illustrate the practical applicability of the proposed framework, we applied our model
to data from the Mayo Clinic trial in Primary Biliary Cirrhosis (PBC), conducted between
1974 and 1984. This dataset, available in the ‘survival’ package, consists of 312 patients
diagnosed with PBC, a progressive autoimmune liver disease that often requires liver
transplantation as a definitive treatment. Thus, the ability to accurately identify high-risk
patients is critical for clinical decision-making related to transplantation.

Previous work by Bansal and Heagerty (2019) developed two linear predictors using
Cox regression models. The first, referred to as 4-cov, included orthogonal polynomials of
degree 1 for albumin and age, the natural logarithm of prothrombin time, and a binary
edema status variable (indicating the presence of edema despite diuretic therapy). The
second predictor, mayo, augments the 4-cov model by including the natural logarithm of
bilirubin, thereby aligning with the original Mayo risk score.

In this application, we used the 4-cov score as an established biomarker (denoted M2)
and evaluated the discriminative and predictive ability of the natural logarithm of bilirubin
as a new candidate biomarker (M1). This setup allowed us to assess the diagnostic
performance of bilirubin in the presence of the 4-cov score using our copula-based
conditional and joint evaluation framework.

Among the 312 patients, 125 (40%) died during follow-up, and 19 underwent liver
transplantation. To evaluate biomarker performance in predicting mortality, transplanted
patients were treated as censored at the time of transplantation. The median survival time
was 3,395 days, and the Kaplan—Meier estimates of survival at 1, 4, and 6 years were 92.9%,
75.2%, and 67.7%, respectively.

Table 39. Comparison of Goodness-of-fit

Frank Clayton Gumbel

Log-likelihood 1928.315 1971.42 1877.759
AIC -3836.63 -3924.84 -3739.52

BIC -3832.65 -3921.26 -3736.33
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Figure 2. Conditional residual plots under Gumbel-based FNAC

Table 40. MLE estimates under Gumbel-based FNAC

Estimates SE
0, 1.345 0.233
6, 1.489 0.243
W, -0.710 0.061
log (w3) 0.236 0.049
W5 5.926 1.245
a, 8.857 0.062
log () 0.224 0.048
as 4.611 0.771
log (4,) 0.060 0.073
log (1) 3.596 0.078

We fitted the proposed fully nested Archimedean copula (FNAC) model using each of
the following copula families: Frank, Clayton, and Gumbel. The marginals were modeled
using skew-normal distributions for the biomarkers and a Weibull distribution for survival
time. Model fitting was conducted via maximum likelihood estimation, and model
comparison based on the AIC and BIC indicated that the Gumbel copula provided the best
fit among the candidates (Table 40). Residual diagnostic plots were examined to visually
assess the goodness-of-fit of the model under Gumbel (Figure 2), which indicated an

69




adequate model fit. Parameter estimates under the Gumbel-based FNAC model were
obtained as shown in Table 41. Kendall’s tau were estimated based on the dependence
parameters with 7; = 0.257,7, = 0.328 . This suggests moderate intra-marker
dependence and slightly weaker marker-to-outcome dependence, both of which are
appropriately accommodated within the nested copula structure.
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Figure 3. Estimate of adjusted ROC I/D and AUC of bilirubin with 95%CI
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Figure 4. Estimate of adjusted ROC C/D and AUC of bilirubin with 95%CI
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Figure 5. Estimate of adjusted Predictive curve and STG of bilirubin with 95%CI

Adjusted ROC curves and associated AUC values were estimated under both the
incident/dynamic (I/D) and cumulative/dynamic (C/D) frameworks (Figures 3, 4). Under
the I/D framework, the AUC at year 1 was relatively high but it decreased over time. In
contrast, the C/D framework yielded consistently higher AUC values across all time points,
with an AUC of 0.768 (95% CI: 0.687—0.803) at year 1, decreasing to 0.678 (95% CI:
0.615-0.713) at year 6.

We also evaluated the adjusted predictiveness function ( AR ) and the adjusted
standardized total gain (ASTG), which summarizes the global predictiveness. As shown in
Figure 5, the adjusted STG values at years 1, 4, and 6 were 0.226 (95% CI: 0.218-0.326),
0.176 (95% CI: 0.154-0.257), and 0.164 (95% CI: 0.140-0.238), respectively. This
decreasing trend suggests a diminishing prognostic value of bilirubin as the follow-up time
increases, consistent with the AUC patterns.

We further evaluated joint discrimination and predictiveness using an and classifier that
combined M1 and M2. Under the I/D framework (Figure 6), the joint model provided
limited gain compared to the univariate ROC based on the 4-cov model, with AUC values
consistently lower across the 1-year, 4-year, and 6-year horizons.
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Figure 6. Estimate of weighted ROC I/D and AUC of 4-cov and bilirubin

However, under the C/D framework (Figure 7), the joint ROC curves showed an
improvement in the high-specificity region. In this region, the partial AUCs suggested an
enhanced discriminative ability.

For joint predictiveness, the STG values were estimated as 0.415, 0.335, and 0.316 at 1,
4, and 6 years, respectively (Figure 8), showing a declining trend consistent with previous
findings. These results demonstrate the significant predictive value of the ‘and’ combined
marker, especially during early follow-up.
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Figure 7. Estimate of weighted ROC C/D and AUC of 4-cov and bilirubin

The FNAC framework flexibly yields diagnostic measures that incorporate complex
dependence structures that capture both intra-marker and marker-to-outcome dependence.
As a result, bilirubin contributed to early risk stratification after adjusting for the 4-cov
score. In addition, when evaluated in conjunction with the 4-cov model using an and-
combination rule, bilirubin helped identify individuals who would be misclassified as high-

risk.
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6. Conclusion and Discussion

In this study, we proposed a diagnostic evaluation framework for survival outcomes
involving two dependent biomarkers using fully nested Archimedean copulas (FNACs).
The model captures both intra-marker and marker-to-survival dependencies within a
unified joint probabilistic structure and allows two complementary evaluation strategies:
conditional and joint. Through simulation studies conducted across various censoring
levels and copula families, as well as an application to real-world clinical data, we
demonstrated the practical utility and interpretability of the copula-based framework for
biomarker evaluation under complex dependency structures.

The proposed FNAC framework showed strong performance in identifying the correct
copula structure based on the AIC and BIC. In nearly all simulation scenarios, the true
copula family was identified with perfect accuracy (100%), except in cases where the
model failed to adequately capture the dependence structure and was reduced to an
independence copula. Performance, in terms of bias and Mean Squared Error(MSE), was
optimal when the copula family was correctly specified. However, under Gumbel models
with moderate censoring, FNAC-Gumbel exhibited slightly inflated bias and MSE. This
appears to stem from the inherent difficulty of estimating upper-tail dependence under
right-censoring, which effectively truncates the survival distribution’s upper tail.
Addressing this limitation may require alternative tail modeling or censoring-robust
estimation strategies.

We further examined the estimation performance of key diagnostic quantities—
specifically, the risk function and the time-dependent ROC function. FNAC models
correctly specified with the true copula family consistently outperformed standard methods
across all scenarios, even under the more challenging Gumbel setting. Interestingly, even
mis-specified FNAC models yielded competitive results in estimating the risk function
when the dependence structure was at least partially captured. In contrast, time-dependent
ROC estimation was more sensitive to model misspecification, often resulting in
diminished accuracy. This discrepancy likely arises because risk estimation is largely
influenced by marginal distributions, while ROC-based discrimination depends more
critically on the precision of conditional distributions.
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Model misspecification had further implications in the Gumbel scenarios. FNAC models
often failed to converge to a valid dependence structure and instead reverted to an
independence copula. Consequently, the estimates in such cases resembled those from
conventional approaches, such as Cox regression or Weibull models, which assume no
explicit dependence between markers. This convergence pattern reinforces the importance
of modeling dependence, even when the copula family is not precisely specified, to avoid
misleading or oversimplified diagnostic conclusions.

The nested nature of the FNAC model, while structurally elegant, imposes important
constraints. The nesting condition, which requires that the inner copula (linking biomarker
and outcome) have stronger dependence than the outer copula (between biomarkers), may
limit its applicability. In settings where the added biomarker demonstrates substantially
weaker diagnostic value than the existing one, this assumption may be violated.
Nevertheless, such situations are relatively uncommon in practice, as most novel
biomarkers are proposed based on preliminary evidence suggesting at least moderate utility.
In this context, the FNAC structure remains a practical choice for many real-world
applications.

To ensure identifiability and analytic tractability, we implemented the FNAC model
using three well-known Archimedean copula families—Clayton, Frank, and Gumbel.
These families were chosen for their ability to represent a range of tail dependencies and
their mathematical convenience. We limited our analysis to homogeneous nesting
structures (e.g., Clayton—Clayton), which are well defined and computationally stable.
While extensions to heterogeneous or asymmetric copula structures have been proposed in
the literature, these present substantial challenges. Many combinations are not
mathematically valid or lead to near-independence structures, and the complexity of
modeling margins under censoring further compounds these difficulties. As shown by Joe
(1997) and Serinaldi and Grimaldi (2007), asymmetric and mixture copula models offer
promising theoretical generalizations, but practical implementation remains nontrivial,
especially in censored survival data settings.

Despite these challenges, our framework provides several notable advantages. First, both
conditional and joint diagnostic measures can be derived from a single joint model without
the need for constructing linear predictors. This allows the evaluation of biomarkers on
their original measurement scale. Second, our approach retains all marker values and all
event or censoring times, avoiding the loss of information often encountered in
conventional regression-based summaries. Third, all diagnostic quantities—such as risk
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and ROC functions—are derived directly from the joint distribution of the biomarkers and
the outcome. No normality assumption is imposed on the biomarkers, and their non-
Gaussian, flexible distributions contribute meaningfully to the interpretation of their
diagnostic performance.

In summary, the proposed FNAC-based framework provides a unified and flexible
methodology for evaluating biomarkers in the presence of censoring and inter-marker
dependence. Our findings underscore the critical importance of capturing dependence
structures, particularly for accurate risk estimation, and highlight the potential of nested
copula models to enhance diagnostic accuracy in survival analysis. Although the model
imposes structural constraints and relies on a limited set of copula families, it remains
computationally feasible and interpretable in practice. As methodological developments in
nested and mixture copula modeling continue to advance, the practical scope of such
frameworks is expected to expand, offering valuable tools for biomarker evaluation in
clinical and epidemiological research.
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Appendix

This appendix provides general formulas for the derivatives of Archimedean copula
functions and their generators, which are essential for constructing likelihood contributions
in parametric copula models. These expressions are also relevant for deriving diagnostic
measures based on the FNAC model.

A.1l. General Derivatives of the Inverse Generator

Let @g(t) be a generator of an Archimedean copula with an inverse @g~1(t). The

following identities describe the derivatives of @y~ ! with respect to t:

1

0 1,y
2?0 (0= oS

—@g! (g1 (1))

ik -1 _
oz 0 (t) = (®e' (9o~ (D))3
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A.2. Derivatives of the Bivariate Archimedean Copula

Recall that C(w,v) is defined in Equation (2) as an Archimedean copula with a
generator ¢g. The first-order partial derivative of the copula with respect to u is obtained
by applying the chain rule as follows

®g' (1)

C(u,v)
- 9e' (C(u,v))

> =" (0o (W) + 9o (V) o' (W) =

The second-order derivative with respect to u is derived as

0%C(u, " /
% =@ " (po(w) + §09(V))(<P9'(u))2 + 907" (9o() + 9o (v))pe" (u)

_ 90" (C)(9g' @) 9p”(w)
{po'(Clw, V) ®o' (Cu, v))’

81



The mixed second-order partial derivative with respect to u and v is similarly derived
as

" (C(w,v))pg' (W)pg' (v)
{po’' (C(u,v)}?

9C(u,v)
oudv

0o " (pg(W) + @ (M) pg' Wy’ (V) = —

Continuing this process, the third-order mixed derivative with respect to u and twice
with respect to v is expressed as follows

azc ’ nr 2 "
au(;vz) = 0ot (o) + 9o (V) oo’ W (0’ @) + 0™t (0 (W) + @a(v))py' Wp" (v)
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A.3. Derivatives of Generator Functions for the three copula types

We summarize the symbolic derivatives of the generator functions ¢@g(t) for three
commonly used Archimedean families: Clayton, Frank and Gumbel.

For the Clayton copula, the generator is given by

po(®) =t7% — 1, where 6 > 0.
Differentiating this expression, we obtain the first derivative as

Po' () = (=)™,

the second derivative as

9" () = (=6)(=6 — )t~°72,
and the third derivative as

9o (1) = (=6)(—6 — 1)(=6 — 2)t 773,

For the Frank copula, the generator is defined as
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exp(—6t)—1

exp(—9)—1)’ where 6 # 0.

P(t) = —log (

The first derivative with respect to t is given by

0 exp(—6t)

Po' (1) = exp(—60t) — 1’

Taking the second derivative, we obtain

62 exp(—6t)

"o =
o (exp(—0t) — 1)?

and the third derivative is

03 exp(—6t) (exp(—6t) + 1)
(exp(—0¢t) — 1)3

Pe"'() =

For the Gumbel copula, the generator takes the form
e (t) = (—logt)?, where 6 > 1.
The first derivative is derived as
9o’ () = (=6/t)(~log)°~".
Differentiating one more, we obtain the second derivative

" 6(6-1 _ 2] _
9o" (1) =222 (=10 )9% + 2 (— log 1),

and the third derivative is given by

0(6-1)(6-2)
-——

Pe"" () =
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(—logt)?—3 — % (—logt)?2 — i—f (—logt)?~1.
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