
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

Development of a Diagnostic Evaluation 

Framework of Correlated Biomarkers for Survival 

Outcome Using Nested Copula Models  

Kim, Nayoung 

Department of Biostatistics and Computing 

Graduate School 

Yonsei University 



 
Development of a Diagnostic Evaluation  

Framework of Correlated Biomarkers for Survival 

Outcome Using Nested Copula Models 

Advisor Nam, Chung Mo 

 

  

 

A Dissertation Submitted 

to the Department of Biostatistics and Computing 

and the Committee on Graduate School 

of Yonsei University in partial fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy in Biostatistics and Computing 

Kim, Nayoung 

 

 
 

June 2025 

 



Development of a Diagnostic Evaluation  

Framework of Correlated Biomarkers for Survival  

Outcome Using Nested Copula Models 

This Certifies that the Dissertation 

of Kim, Nayoung is Approved 

    

 Committee Chair Jung, Inkyung 

 

 

    

 
Committee Member Nam, Chung Mo 

 

 

    

 
Committee Member Park, Sohee 

 

 

    

 
Committee Member Han, Kyunghwa 

 

 

 
   

 
Committee Member Yun, Sung Cheol 

 

 

 

Department of Biostatistics and Computing  

Graduate School 

Yonsei University 

June 2025 



i 

 

Table of Contents 

List of Figures ................................................................................................................................ iii 

List of Tables .................................................................................................................................. iv 

Abstract ......................................................................................................................................... vii 

1. Introduction  ........................................................................................................................... 1 

1.1. Background ................................................................................................................... 1 

1.2. Objective and Outline ................................................................................................... 4 

2. Literature Review  .................................................................................................................. 6 

2.1. Fully Nested Archimedean Copulas ............................................................................. 6 

2.2. Archimedean Copulas and Their Derivatives  ............................................................. 8 

3. Proposed Method ..................................................................................................................... 9 

3.1. Notation ........................................................................................................................ 9 

3.2. Model Specification ..................................................................................................... 11 

3.3. Maximum Likelihood Estimation ............................................................................... 13 

3.4. Joint Diagnostic Measures .......................................................................................... 15 

3.5. Conditional Diagnostic Measures  ............................................................................. 19 

3.6. Goodness-of-fit Evaluation ......................................................................................... 24 

4. Simulation study .................................................................................................................... 26 

4.1. Simulation Design ....................................................................................................... 26 

4.2. Simulation Results ...................................................................................................... 29 

5. Illustration: Application to PBC data .................................................................................. 68 



ii 

 

6. Conclusion and Discussion .................................................................................................... 75 

Reference ....................................................................................................................................... 78 

Appendix ........................................................................................................................................ 81 

Abstract in Korean ....................................................................................................................... 84 

  



iii 

 

List of Figures  

Figure 1. FNAC model structure .................................................................................................... 11 

Figure 2. Conditional residual plots under Gumbel-based FNAC .................................................. 69 

Figure 3. Estimate of adjusted ROC I/D and AUC of bilirubin with 95%CI .................................. 70 

Figure 4. Estimate of adjusted ROC C/D and AUC of bilirubin with 95%CI ................................ 70 

Figure 5. Estimate of adjusted Predictive curve and STG of bilirubin with 95%CI ....................... 71 

Figure 6. Estimate of weighted ROC I/D and AUC of 4-cov and bilirubin .................................... 72 

Figure 7. Estimate of weighted ROC C/D and AUC of 4-cov and bilirubin................................... 73 

Figure 8. Estimate of Predictiveness surface of 4-cov and bilirubin ............................................... 74 

 

  



iv 

 

List of Tables 

Table 1. Families of Archimedean Copulas ...................................................................................... 8 

Table 2. Copula Selection Accuracy (%) ........................................................................................ 31 

Table 3. Bias and MSE of Discrimination and Predictiveness Measures under Clayton FNAC 

Model (n = 250, 20% Censoring) .......................................................................................... 32 

Table 4. Bias and MSE of Discrimination and Predictiveness Measures under Clayton FNAC 

Model (n = 250, 50% Censoring) .......................................................................................... 33 

Table 5. Bias and MSE of Discrimination and Predictiveness Measures under Clayton FNAC 

Model (n = 250, 80% Censoring) .......................................................................................... 34 

Table 6. Bias and MSE of Discrimination and Predictiveness Measures under Frank FNAC Model 

(n = 250, 20% Censoring) ..................................................................................................... 35 

Table 7. Bias and MSE of Discrimination and Predictiveness Measures under Frank FNAC Model 

(n = 250, 50% Censoring) ..................................................................................................... 36 

Table 8. Bias and MSE of Discrimination and Predictiveness Measures under Frank FNAC Model 

(n = 250, 80% Censoring) ..................................................................................................... 37 

Table 9. Bias and MSE of Discrimination and Predictiveness Measures under Gumbel FNAC 

Model (n = 250, 20% Censoring) .......................................................................................... 38 

Table 10. Bias and MSE of Discrimination and Predictiveness Measures under Gumbel FNAC 

Model (n = 250, 50% Censoring) .......................................................................................... 39 

Table 11. Bias and MSE of Discrimination and Predictiveness Measures under Gumbel FNAC 

Model (n = 250, 80% Censoring) .......................................................................................... 40 

Table 12. Comparison of Bias and MSE of Risk function (True model: Clayton, n=250, 20% 

censoring) .............................................................................................................................. 41 

Table 13. Comparison of Bias and MSE of FPR (True model: Clayton, n=250, 20% censoring) .. 42 

Table 14. Comparison of Bias and MSE of TPR (True model: Clayton, n=250, 20% censoring) . 43 

Table 15. Comparison of Bias and MSE of Risk function (True model: Clayton, n=250, 50% 

censoring) .............................................................................................................................. 44 



v 

 

Table 16. Comparison of Bias and MSE of FPR (True model: Clayton, n=250, 50% censoring) .. 45 

Table 17. Comparison of Bias and MSE of TPR (True model: Clayton, n=250, 50% censoring) . 46 

Table 18. Comparison of Bias and MSE of Risk function (True model: Clayton, n=250, 80% 

censoring) .............................................................................................................................. 47 

Table 19. Comparison of Bias and MSE of FPR (True model: Clayton, n=250, 80% censoring) .. 48 

Table 20. Comparison of Bias and MSE of TPR (True model: Clayton, n=250, 80% censoring) . 49 

Table 21. Comparison of Bias and MSE of Risk function (True model: Frank, n=250, 20% 

censoring) .............................................................................................................................. 50 

Table 22. Comparison of Bias and MSE of FPR (True model: Frank, n=250, 20% censoring) ..... 51 

Table 23. Comparison of Bias and MSE of TPR (True model: Frank, n=250, 20% censoring) ..... 52 

Table 24. Comparison of Bias and MSE of Risk function (True model: Frank, n=250, 50% 

censoring) .............................................................................................................................. 53 

Table 25. Comparison of Bias and MSE of FPR (True model: Frank, n=250, 50% censoring) ..... 54 

Table 26. Comparison of Bias and MSE of TPR (True model: Frank, n=250, 50% censoring) ..... 55 

Table 27. Comparison of Bias and MSE of Risk function (True model: Frank, n=250, 80% 

censoring) .............................................................................................................................. 56 

Table 28. Comparison of Bias and MSE of FPR (True model: Frank, n=250, 80% censoring) ..... 57 

Table 29. Comparison of Bias and MSE of TPR (True model: Frank, n=250, 80% censoring) ..... 58 

Table 30. Comparison of Bias and MSE of Risk function (True model: Gumbel, n=250, 20% 

censoring) .............................................................................................................................. 59 

Table 31. Comparison of Bias and MSE of FPR (True model: Gumbel, n=250, 20% censoring) . 60 

Table 32. Comparison of Bias and MSE of TPR (True model: Gumbel, n=250, 20% censoring) . 61 

Table 33. Comparison of Bias and MSE of Risk function (True model: Gumbel, n=250, 50% 

censoring) .............................................................................................................................. 62 



vi 

 

Table 34. Comparison of Bias and MSE of FPR (True model: Gumbel, n=250, 50% censoring) . 63 

Table 35. Comparison of Bias and MSE of TPR (True model: Gumbel, n=250, 50% censoring) . 64 

Table 36. Comparison of Bias and MSE of Risk function (True model: Gumbel, n=250, 80% 

censoring) .............................................................................................................................. 65 

Table 37. Comparison of Bias and MSE of FPR (True model: Gumbel, n=250, 80% censoring) . 66 

Table 38. Comparison of Bias and MSE of TPR (True model: Gumbel, n=250, 80% censoring) . 67 

Table 39. Comparison of Goodness-of-fit ...................................................................................... 68 

Table 40. MLE estimates under Gumbel-based FNAC .................................................................. 69 

 

  



vii 

 

Abstract 

 

Development of a Diagnostic Evaluation  

Framework of Correlated Biomarkers for Survival  

Outcome Using Nested Copula Models  

 

 

Robust evaluation of biomarker performance for survival outcomes is critical in precision 

medicine, particularly when multiple, dependent biomarkers are involved. Traditional regression-

based approaches typically focus on marginal effects and overlook inter-marker dependencies, often 

treating them merely as sources of multicollinearity. 

To address this limitation, we propose a diagnostic evaluation framework based on fully nested 

Archimedean copulas (FNACs), which flexibly model the joint distribution of two dependent 

biomarkers and a survival outcome. FNACs accommodate hierarchical, asymmetric dependence, 

enabling simultaneous modeling of both inter-marker and marker–outcome relationships within a 

unified probabilistic framework. This approach is particularly useful for evaluating the contribution 

of a new biomarker in the presence of an already established one. 

The framework employs two complementary strategies: conditional evaluation, which quantifies 

the added value of a new biomarker given an existing one; and joint evaluation, which assesses their 

combined utility using an and-classifier that defines positive cases as those exceeding predefined 

thresholds for both biomarkers. These strategies support tailored interpretation depending on the 

clinical objectives and biomarker characteristics. 

Simulation studies across varying censoring levels, prediction time horizons, and copula families 

(Frank, Clayton, Gumbel) demonstrate the framework’s accuracy in estimating performance metrics 

and recovering the true dependence structure. Application to the Mayo Clinic PBC dataset further 

illustrates its practical utility in real-world clinical settings. 

 

Keyword: Nested copula models, Biomarker performance evaluation, Time-dependent AUC, 

Survival Analysis 



1. Introduction 

1.1. Background  

Accurate evaluation of biomarkers for survival outcomes is fundamental, especially in the 

era of precision medicine, where risk stratification and early diagnosis rely heavily on 

quantitative measures derived from biological indicators. In many real-world clinical 

scenarios, a new biomarker is assessed not in isolation but in the context of one or more 

pre-established biomarkers. These biomarkers often exhibit non-negligible 

interdependence due to shared biological pathways, overlapping measurement mechanisms, 

or underlying disease processes(Heagerty & Zheng, 2005). However, traditional modeling 

approaches often incorporate these biomarkers as fixed covariates in regression-based 

frameworks, with an emphasis on estimating their marginal effects on survival. Within this 

paradigm, the intrinsic dependencies among biomarkers are typically ignored or regarded 

as sources of multicollinearity, which can result in biased or inefficient estimates of 

diagnostic performance and potentially undermine the clinical interpretability of the model. 

Two complementary approaches can be considered when evaluating a new biomarker 

in the presence of an established one. First, the conditional evaluation assesses the 

diagnostic value of the new biomarker, given the information contained in the existing ones; 

for example, assessing the utility of CA19-9 after adjusting for CEA in pancreatic cancer 

prognosis. Second, the joint evaluation approach considers the combination of multiple 

markers using a logical structure, such as an and-classifier, which may better reflect the 

clinical decision-making process when multiple criteria are required to define a high-risk 

subject. These complementary strategies provide flexibility in evaluating biomarker utility, 

whether incrementally or in combination, depending on clinical objectives. 

To formally quantify the added value of a new biomarker, summary indices such as 

the Net Reclassification Improvement (NRI) and Integrated Discrimination Improvement 

(IDI) have been widely used. These measures compare a baseline model and an extended 

model incorporating the new biomarker, focusing on improvements in risk classification 

and discrimination. However, it is important to note that the NRI and IDI do not assess the 

intrinsic predictive performance of the biomarker itself. Rather, they assess the incremental 

contribution of a biomarker when added to a specific prediction model. Moreover, both 

NRI and IDI are highly sensitive to the choice of baseline model, which can substantially 

influence the magnitude and interpretation of the estimated improvement. Numerous 

studies have emphasized that these measures should be interpreted with caution to avoid 
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conflating model improvement with the marker’s inherent diagnostic capacity(Cook, 2007; 

Pencina et al., 2008; Pepe & Janes, 2011; Pepe et al., 2004). 

Several extensions of the ROC curve have been proposed to capture covariate-specific 

diagnostic accuracy. For example, conditional ROC curves estimate performance at fixed 

values of a covariate, and covariate-adjusted ROC curves are obtained by averaging 

conditional ROCs across the distribution of the covariate. These approaches have been 

particularly useful in settings involving population heterogeneity, such as multicenter 

studies or matched case-control designs (Pepe et al., 2013). 

In this study, we define conventional diagnostic tools—such as the ROC curve and 

risk function—as functionals of the joint distribution derived from a copula model. By 

doing so, we propose a copula-based diagnostic framework that provides greater flexibility 

in modeling complex covariate structures. Copula models are particularly advantageous in 

this context, as they allow for the separate modeling of marginal distributions and 

dependence structures, yielding several methodological benefits. First, copulas allow each 

biomarker to retain its own marginal distribution, including skewness and heavy tails, by 

independently modeling the margins. Second, they can flexibly accommodate complex and 

asymmetric dependence structures, which are often present in biomedical data but poorly 

captured by standard regression models(Joe, 1997; Nelsen, 2006). Third, once a joint 

distribution is specified through a copula, conditional distributions and key probabilities 

can be derived analytically, enabling the direct estimation of diagnostic quantities, such as 

risk functions and ROC-related metrics, without full access to empirical data. 

Recent studies have explored the use of copula models in evaluating diagnostic 

performance. For instance, Escarela et al. (2023) applied copula-based modeling to capture 

the joint distribution of a single biomarker and survival time, enabling estimation of ROC 

and predictiveness curves under censoring. Melo et al. (2020) employed copulas to analyze 

paired diagnostic tests, allowing for flexible modeling of inter-test dependence and 

accurate AUC estimation. Zhang and Shao (2020) further extended copula approaches by 

employing vine structures to simulate high-dimensional dependencies among multiple 

markers. While these studies demonstrate the feasibility of copula-based evaluation, they 

are limited in scope: either addressing only bivariate associations or requiring extensive 

simulation to approximate realistic joint structures.  

Building on these developments, the present study proposes a diagnostic evaluation 

framework based on fully nested Archimedean copulas (FNACs), which allows for 
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hierarchical and non-exchangeable modeling of the joint distribution among two dependent 

biomarkers and a survival outcome. This approach simultaneously captures intra-marker 

dependence and biomarker-to-survival associations within a unified probabilistic structure, 

offering a theoretically grounded and computationally tractable means to evaluate 

biomarker performance under censoring. 
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1.2. Objective and Outline 

The primary objective of this study is to develop a diagnostic evaluation framework that 

leverages fully nested Archimedean copulas (FNACs) to flexibly model the joint 

distribution of two correlated biomarkers and a right-censored survival outcome. FNACs 

are particularly well suited for this purpose as they enable the modeling of hierarchical, 

non-exchangeable dependence structures, reflecting realistic scenarios where biomarker-

to-survival associations differ in strength from biomarker-to-biomarker dependencies. 

Within this framework, we implement two distinct evaluation strategies: 

 Conditional evaluation, which quantifies the diagnostic value of a new 

biomarker given the information from an existing one; and 

 Joint evaluation, which assesses the combined discriminatory ability of 

multiple biomarkers using an and-classifier strategy. 

To achieve these aims, the paper is organized as follows. First, we introduce the 

theoretical foundations of nested copulas, focusing on the structure and properties of fully 

nested Archimedean constructions. We then specify the joint distribution of the two 

biomarkers and survival time using a nested copula formulation and define marginal 

distributions to ensure model identifiability. Model parameters are estimated via maximum 

likelihood estimation (MLE), and model adequacy is evaluated through goodness-of-fit 

criteria such as AIC and BIC to guide copula family selection. 

We define a set of diagnostic performance measures—including conditional and joint 

versions of the time-dependent true and false positive rates and the risk function—derived 

directly from the estimated joint distribution. These measures are designed to reflect both 

discrimination and predictiveness in a manner that is robust to censoring and complex 

dependence. The framework is evaluated through simulation studies involving 1,000 

replicated datasets (n = 250) under various copula types (Clayton, Frank, Gumbel) and 

censoring levels (20%, 50%, 80%). Performance is assessed via bias and Mean Squared 

Error (MSE) at clinically relevant time quantiles (25th, 50th, and 75th percentiles of 

survival time). 

To demonstrate the practical applicability of our method, we apply the proposed 

framework to the Mayo Clinic Primary Biliary Cirrhosis (PBC) dataset. This real-data 

application illustrates how the model can be implemented in clinical settings and how the 

resulting diagnostic measures can support medical decision-making. 
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In summary, this study contributes a unified, interpretable, and computationally 

feasible diagnostic evaluation framework that extends conventional tools by accounting for 

complex dependence and censoring. By embedding conditional and joint assessment 

strategies within a copula-based joint modeling approach, our method offers a promising 

tool for biomarker validation in modern survival analysis. 

  

  



6 

 

2. Literature Review 

2.1. Fully Nested Archimedean Copulas 

Copula functions offer a flexible and theoretically grounded framework for modeling the 

joint distribution of multiple random variables while separately accounting for their 

marginal behaviors and their mutual dependencies. According to Sklar’s theorem(Sklar, 

1959), any multivariate cumulative distribution function 𝐹(𝑥1, … , 𝑥𝑛) with continuous 

marginals 𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛) can be uniquely expressed using a copula function C as 

F(𝑥1, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛)) = C(𝑢1, … , 𝑢𝑛) 

where 𝑢𝑘 = 𝐹𝑘(𝑥𝑘)  ∈ [0,1] 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 = 1, … 𝑛 . Thus, Copula C captures the 

dependence structure among the variables, independent of their marginal distributions.  

This formulation implies exchangeability among variables; that is, the dependence is 

symmetric and invariant under permutations. However, this assumption imposes a 

significant limitation in many applied settings, where variables (e.g., biomarkers) may 

exhibit asymmetric or hierarchical dependencies. Therefore, modeling all variables under 

a single homogeneous dependence function can be overly restrictive and unrealistic. 

To address this issue, researchers have proposed fully nested or asymmetric copulas 

as a generalization of standard copulas(Embrechts et al., 2003; Joe, 1997; Nelsen, 2006; 

Whelan, 2004), which accommodate nonexchangeable structures. A fully nested copula 

with 𝑛 variables is defined recursively as 

𝐶(𝑢1, … , 𝑢𝑛) = 𝐶1(𝑢1, 𝐶2(𝑢2, … 𝐶𝑛−1(𝑢𝑛−1, 𝑢𝑛)) … ) 

where 𝐶1, … , 𝐶𝑛−1 is itself a copula, resulting in a total of 𝑛 − 1 nested copulas for an 

𝑛-dimensional model. 

When each component copula is chosen from the Archimedean family, the 

construction can be expressed in the following functional form (Equation (1)), which 

defines a Fully Nested Archimedean Copula (FNAC).  
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𝐶1(𝑢1, 𝐶2(𝑢2, … 𝐶𝑛−1(𝑢𝑛−1, 𝑢𝑛)) … )

= 𝜑𝜃1
−1(𝜑𝜃1

(𝑢1) + 𝜑𝜃1
(𝜑𝜃2

−1 (𝜑𝜃2
(𝑢2) + ⋯ + 𝜑𝜃n−1

−1 (𝜑𝜃n−1
(𝑢n−1) + 𝜑𝜃n−1

(𝑢n)) … ) (1)
 

Each Archimedean copula is typically expressed as  

C(𝑢, v; 𝜃) = 𝜑𝜃
−1(𝜑𝜃(u) + 𝜑𝜃(v)) (2) 

where 𝜑𝜃: [0,1] → [0, ∞] is a convex decreasing function. 

Thus, a FNAC with 𝑛 variables involve 𝑛 − 1 dependence parameters 𝜃1, … , 𝜃𝑛−1 

corresponding to 𝐶1, … , 𝐶𝑛−1. To ensure the validity of the hierarchical structure, these 

parameters must satisfy a strict ordering constraint(Nelsen, 2006): 

𝜃1 < ⋯ < 𝜃𝑛−1. (3) 

This constraint preserves the complete monotonicity of the composite generator 

functions and ensures that more deeply nested variable pairs exhibit a stronger dependence. 

If this condition is violated, the composite generator may become non-invertible, making 

it mathematically impossible to define a valid joint distribution. Therefore, it is essential to 

incorporate this constraint during the parameter estimation. 

For three variables 𝑈1, 𝑈2, 𝑈3 ∈ [0,1], FNAC takes the form, representing the three-

dimensional structure implied by Equation (1): 

𝐶1(𝑢1, 𝐶2(𝑢2, 𝑢3)) = 𝜑𝜃1

−1 (𝜑𝜃1
(𝑢1) + 𝜑𝜃1

°𝜑𝜃2

−1 (𝜑𝜃2
(𝑢2) + 𝜑𝜃2

(𝑢3))) (4) 

which corresponds to the nesting order [1,2,3], meaning 𝑈2 and 𝑈3 are first grouped and 

then joined with 𝑈1. In the trivariate case, three valid nesting structures exist— [1,2,3], 

[2,1,3], and [3,1,2]—each of which encodes a distinct dependence hierarchy. These 

alternatives allow flexibility in specifying which variable pairs are more strongly associated, 

and the appropriate structure can be selected based on the model fit criteria or prior domain 

knowledge. 
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2.2. Archimedean Copulas and Their Derivatives 

The Archimedean copula is widely used because of its tractability and closed-form 

structure. In this study, we employ three copula families from the Archimedean class—

Clayton, Gumbel, and Frank—to construct fully nested Archimedean copulas (FNACs). 

Each of these families is characterized by a distinct generator function φ𝜃(t), which 

governs the dependence structure, including aspects such as tail dependence, asymmetry, 

and Kendall’s τ(Table 1)(Nelsen, 2006). 

Each of these generators satisfies the required properties for Archimedean 

copulas: φ𝜃(0) = ∞, φ𝜃(1) = 0, strict monotonicity, and a convex decreasing function 

with parameter 𝜃. 

To compute the copula density and perform likelihood-based inference, we require 

the first and second derivatives of the copula function in equation (2) with respect to 𝑢 and 

𝑣. These derivatives depend on the generator function and its inverses, which are given in 

closed form for the three Archimedean Copulas(Genest & MacKay, 1986; Schmitz, 2003). 

Table 1. Families of Archimedean Copulas 

 Clayton Frank Gumbel 

Parameter 𝜃 ≥ 0 𝜃 ≠ 0 𝜃 ≥ 1 

Generator 

φ𝜃(t) 
𝑡−𝜃 − 1, − log (

exp(−𝜃𝑡) − 1

exp(−𝜃) − 1
) (− log 𝑡)𝜃 

φ𝜃
−1(𝑡) (𝑡 + 1)−1/𝜃 

−
1

𝜃
log (exp(−𝑡) (exp(−𝜃)

− 1) + 1) 
exp (−𝑡

1
𝜃) 

Kendall’s  𝛕 
𝜃

𝜃 + 2
 1 −

4

𝜃
+

4

𝜃2
∫

𝑡

𝑒𝑡 − 1
𝑑𝑡

𝜗

0

 1 −
1

𝜃
 

Tail 

Dependence 

Strong 

on the lower tail 
Symmetry 

Strong 

on the upper tail 
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3. Proposed Method 

3.1. Notation 

First, we define a general setting and notation for our method. Let 𝑀1 and 𝑀2 denote 

two continuous biomarkers, and let T represent the true survival time, which is subject to 

right-censoring. The marginal cumulative distribution functions (CDFs) are defined as 

follows 

F𝑀1(𝑚1) = 𝑃(𝑀1 ≤ 𝑚1), F𝑀2(𝑚2) = 𝑃(𝑀2 ≤ 𝑚2), F𝑇(𝑡) = 𝑃(𝑇 ≤ 𝑡), 

and the corresponding survival function is given by 𝑆𝑡(t) = 1 − F𝑡(𝑡). Then let 

𝑢1 = F𝑀1(𝑚1), 𝑢2 = F𝑀2(𝑚2), 𝑢3 = S𝑇(𝑡). 

The corresponding probability density functions (PDFs) are as follows 

𝑓𝑀1(𝑚1) = 𝑑F𝑀1(𝑚1)/𝑑𝑚1 

𝑓𝑀2(𝑚2) = 𝑑F𝑀2(𝑚2)/𝑑𝑚2 

𝑓𝑡(𝑡) = 𝑑F𝑡(𝑡)/𝑑𝑡. 

Suppose we observe 𝑛  independent subjects. For each subject 𝑖 = 1, … , 𝑛 , let 

(𝑚1𝑖, 𝑚2𝑖) be the observed two biomarker values, and 𝑇𝑖 denote the true survival time. 

Let 𝑊𝑖 denote an independent right-censored time. Then the observed time 𝑋𝑖 and event 

indicator δ𝑖 can be obtained as 

𝑋𝑖 = min(𝑊𝑖 , 𝑇𝑖) , δ𝑖 = 𝐼(𝑇𝑖 = 𝑋𝑖). (5) 

For a bivariate copula 𝐶𝜃(u, v) = 𝜑𝜃
−1(𝜑𝜃(u) + 𝜑𝜃(v)) , we denote its partial 

derivatives as 

𝐶[1]
𝜃(u, v) = 𝜕𝐶𝜃(u, v)/𝜕𝑢 

𝐶[1,1]
𝜃(u, v) = 𝜕2𝐶𝜃(u, v)/𝜕𝑢𝜕𝑣 
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𝐶[2]
𝜃(u, v) = 𝜕2𝐶𝜃(u, v)/𝜕2𝑢 

𝐶[1,2]
𝜃(u, v) =

𝜕3𝐶𝜃(u, v)

𝜕𝑢𝜕2𝑣
.  

These derivative terms are used to derive diagnostic measures and likelihood-based 

estimations. 
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3.2. Model Specification 

 

Figure 1. FNAC model structure 

We propose a diagnostic evaluation framework for a new biomarker in the presence of an 

existing one using a fully nested Archimedean copula (FNAC). Building on the general 

FNAC formulation defined in Equation (4), we specify the joint distribution of the two 

biomarkers and survival time by incorporating the hierarchical dependence structure 

illustrated in Figure 1. Accordingly, the joint distribution function of (M1, M2, T) is given 

by 

H(m1, m2, t) = Pr( M1 ≤ m1, M2 ≤ m2, T > t) 

=  C𝜃1
(𝐹𝑚1(m1), C𝜃2

(𝐹𝑚2(m2), 𝑆𝑡(t))) = 𝐶𝜃1
(𝑢1, 𝐶𝜃2

(𝑢2, 𝑢3)) . (6) 

The child copula C𝜃2
 captures the dependence between biomarker M2 and survival 

time 𝑇, whereas the parent copula C𝜃1
 models the dependence between biomarker M1 

and joint value (M2, T). This formulation reflects the clinical assumption that higher 

biomarker values are associated with shorter survival and supports the use of popular 

copula families that are well suited for modeling positive dependence(Chaieb et al., 2006). 

Valid nesting requires 𝜃1<𝜃2, reflecting the general condition in Equation (3), which 

ensures that the inner(child) copula exhibits a stronger dependence than the outer(parent) 

copula. This structural constraint, where the inner copula must capture a stronger 

dependence than the outer one, plays a central role in our modeling strategy. We assigned 

Marker 2 (M2) as a known strong biomarker owing to its direct and strong association with 

𝑪𝜽𝟏
(∙)

𝑪𝜽𝟐
(∙)

𝑺𝒕

𝑭𝒎𝟐

𝑭𝒎𝟏
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survival outcomes. Thus, the child copula C𝜃2
 is used to capture this high dependence. On 

the other hand, Marker 1 (𝑀1) is regarded as a new or candidate marker, whose diagnostic 

value is to be evaluated in the presence of 𝑀2. This design enables us to explicitly assess 

the diagnostic value of a new biomarker in the presence of an established biomarker within 

a coherent probabilistic framework that accounts for complex dependence structures. 

To complete the joint model specification, we specified the marginal distributions of 

the biomarkers and survival time. To accommodate potential asymmetry and skewness in 

biomarker measurements(Van Domelen et al., 2021), we assumed that 𝑀1 and 𝑀2 each 

followed a skew-normal distribution. Specifically, the probability density function (PDF) 

of 𝑀1 and 𝑀2 is given by(Azzalini, 1985) 

𝑓𝑚1(m1; 𝝎) =
2

𝜔2
𝜙 (

𝑚1 − 𝜔1

𝜔2
) 𝜙 [𝜔3 (

𝑚1 − 𝜔1

𝜔2
)] (7) 

𝑓𝑚2(m2; 𝜶) =
2

𝛼2
𝜙 (

𝑚2 − 𝛼1

𝛼2
) 𝜙 [𝛼3 (

𝑚2 − 𝛼1

𝛼2
)] (8) 

where (m1, m2) ∈ ℝ2, 𝝎 = (𝜔1, 𝜔2, 𝜔3), 𝜶 = (𝛼1, 𝛼2, 𝛼3)  with (𝜔1, 𝛼1) ∈ (−∞, ∞)2, 

(𝜔2, 𝛼2) ∈ (0, ∞)2 𝑎𝑛𝑑 (𝜔3, 𝛼3) ∈ (−∞, ∞)2, representing the location, scale, and shape 

parameters, respectively. Here, 𝜙(∙)  denotes the standard normal probability density 

function. 

For the survival time 𝑇, we assume a Weibull distribution, which is widely used in 

survival analysis because of its flexibility in modeling hazard shapes. The cumulative 

distribution function (CDF) of the Weibull distribution is defined as follows 

F𝑡(𝑡; 𝝀) = 1 − exp {− (
𝑡

𝜆2
)

𝜆1

} (9) 

where t ∈ (0, ∞) ,  𝜆1 ∈ (0, ∞)  is the shape parameter, and 𝜆2 ∈ (0, ∞)  is the scale 

parameter.  
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3.3. Maximum Likelihood Estimation 

Under the assumed fully nested Archimedean copula model and specified marginal 

distributions, the observed likelihood function is given by(Lawless, 2003): 

L(𝛉, 𝛚, 𝛂, 𝛌) = ∏ [−
𝜕3𝐻(𝑥, 𝑦, 𝑧)

𝜕𝑥𝜕𝑦𝜕𝑧
|(𝑥,𝑦,𝑧)=(𝑚1𝑖,𝑚2𝑖,𝑥𝑖)]

𝛿𝑖𝑛

𝑖=1

× [
𝜕2𝐻(𝑥, 𝑦, 𝑧)

𝜕𝑦𝜕𝑧
|(𝑥,𝑦,𝑧)=(𝑚1𝑖,𝑚2𝑖,𝑥𝑖)]

1−𝛿𝑖

 

Here, the parameters are defined as 

𝛉: dependence parameters in Equation (6), 

𝛚, 𝛂: parameters of the skew-normal distributions for two biomarkers in Equation (7) 

and (8), respectively, 

𝛌 : parameters of the Weibull distribution for survival time in Equation (9). 

For censored observations (𝛿𝑖 = 0), the likelihood contribution involves the joint 

probability of survival beyond t and observed biomarkers: 

𝜕2𝐻(𝑚1, 𝑚2, 𝑡)

𝜕𝑚1𝜕𝑚2
=

𝜕2C𝜃1
(𝐹𝑚1(m1), C𝜃2

(𝐹𝑚2(m2), 𝑆𝑡(t))) 

𝜕𝑚1𝜕𝑚2
 

=
𝜕

𝜕𝑚1
(

𝜕C𝜃1
(𝐹𝑚1(m1), C𝜃2

(𝐹𝑚2(m2), 𝑆𝑡(t)))

𝜕C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))

𝜕C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))

𝜕𝐹𝑚2(m2)
𝑓𝑚2(m2)) 

=
𝜕2C𝜃1

(𝐹𝑚1(m1), C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))) 

𝜕C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))𝜕𝐹𝑚1(m1)

𝜕C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))

𝜕𝐹𝑚2(m2)
𝑓𝑚1(m1)𝑓𝑚2(m2) 

= 𝐶[1,1]
𝜃1

(𝐹𝑚1(m1), C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))) 𝐶[1]

𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))𝑓𝑚1(m1)𝑓𝑚2(m2) 
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For an uncensored observation (𝛿𝑖 = 1), the likelihood contribution involves the joint 

density obtained as the third-order partial derivative, as follows 

−
𝜕3𝐻(𝑚1, 𝑚2, 𝑡)

𝜕𝑚1𝜕𝑚2𝜕𝑡
 

= 𝐶[1,2]
𝜃1

(𝐹𝑚1(m1), C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))) 𝐶[1]

𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))𝑓𝑚1(m1)𝑓𝑚2(m2)𝑓𝑡(t)

+ 𝐶[1,1]
𝜃1

(𝐹𝑚1(m1), C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))) 𝐶[1,1]

𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))𝑓𝑚1(m1)𝑓𝑚2(m2)𝑓𝑡(t). 

The model parameters were estimated by minimizing the negative log-likelihood 

function −logL(𝛉, 𝛚, 𝛂, 𝛌), and the standard errors (SEs) were derived from the observed 

information matrix, which is the negative of the Hessian matrix of the log-likelihood 

function evaluated at the MLEs. Specifically, the SE is computed as the square root of the 

diagonal entries in the inverse of the observed information matrix.  

In the estimation process, we reparameterized the parameters with natural constraints. 

Specifically, Parameters κ constrained to (0, ∞) and (1, ∞) are expressed as exp (κ) 

and exp (κ) + 1, respectively. 
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3.4. Joint Diagnostic Measures  

First, we assessed the joint discriminatory performance of the two biomarkers, 𝑀1 and 

𝑀2. This is relevant when both markers are used simultaneously in classification, such as 

in an and-classifier. 

Given thresholds (m1, m2), we define the joint dynamic false positive rate (FPR) at 

time 𝑡 as 

FPR(m1, m2, t) = Pr(M1 > m1, M2 > m2|T > t). 

It can be shown under FNAC model given by Equation (6) that  

        FPR(m1, m2, t) 

          = 1 −
Pr(M1 ≤ m1, T > t) + Pr(M2 ≤ m2, T > t) − Pr(M1 ≤ m1, M2 ≤ m2, T > t)

Pr(T > t)
 

          = 1 −
C𝜃1

(𝐹𝑚1(m1), 𝑆𝑡(t)) + C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t)) − 𝐻(𝑚1, 𝑚2, 𝑡)

𝑆𝑡(t)
 

which represents the probability of incorrectly classifying a subject as high-risk based 

on both markers when they survive beyond time 𝑡. 

We define the corresponding cumulative true positive rate (TPR𝐶) and incident True 

positive rate (TPR𝐼) at time 𝑡 as 

TPR𝐶(m1, m2, t) = Pr(M1 > m1, M2 > m2|T ≤ t) and 

TPR𝐼(m1, m2, t) = Pr(M1 > m1, M2 > m2|T = t), respectively. 

These also can be shown under FNAC model given by Equation (6) that  

         TPR𝐶(m1, m2, t) 

= 1 − [𝐹𝑚1(m1) − C𝜃1
(𝐹𝑚1(m1), 𝑆𝑡(t)) + 𝐹𝑚2(m2) − C𝜃2

(𝐹𝑚2(m2), 𝑆𝑡(t)) 
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         −C𝜃1
(𝐹𝑚1(m1), 𝐹𝑚2(m2)) + 𝐻(𝑚1, 𝑚2, 𝑡)] 𝐹𝑡(t)⁄  

and TPR𝐼(m1, m2, t) 

         = 1 − 𝐶[1]
𝜃1

(𝑆𝑡(t), 𝐹𝑚1(m1)) − 𝐶[1]
𝜃2

(𝑆𝑡(t), 𝐹𝑚2(m2)) 

         +𝐶[1]
𝜃1

(C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t)), 𝐹𝑚1(m1), )𝐶[1]

𝜃2
(𝑆𝑡(t), 𝐹𝑚2(m2)). 

These definitions follow the framework proposed by (Wang & Li, 2012) and (Melo et 

al., 2020), which extend ROC analysis to the bivariate marker setting using dynamic 

definitions suited for censored survival outcomes. 

Unlike in the univariate case, where the ROC curve is a function mapping FPR to TPR 

via an invertible relationship, in the bivariate case, the function FPR(m1, m2, t) is not 

one-to-one in general. That is, multiple threshold pairs (m1, m2) may yield the same FPR, 

leading to non-uniqueness of the corresponding TPR. Consequently, the traditional ROC 

function TPR(FPR−1(q)) is not well-defined. 

To address this issue, (Wang & Li, 2012) proposed the concept of the bivariate ROC 

function by averaging the TPR values over all threshold pairs that yield a given FPR level. 

Specifically, we consider the inverse set: 

𝐵0(𝑞) = {(m10, m20): FPR(m10, m20, t) = 𝑞}, 0 ≤ 𝑞 ≤ 1 

Then, the bivariate cumulative/dynamic and incident/dynamic ROC functions are 

defined as 

ROC𝐶/𝐷(q, t) = E[TPR𝐶(m10, m20, t)|FPR(m10, m20, t) = 𝑞] and 

 ROC𝐼/𝐷(q, t) = E[TPR𝐼(m10, m20, t)|FPR(m10, m20, t) = 𝑞], respectively. 

Because the distribution of FPR values is not uniform over the threshold space 

(𝑚1, 𝑚2), (Wang & Li, 2012) further proposed the use of a weighted ROC (WROC) curve 

that accounts for the probability distribution of FPR values. 
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Let 𝑄0 = FPR(m10, m20, t) and 𝐻0(𝑥) denote the cumulative distribution function 

(CDF) of 𝑄0 , with corresponding density function ℎ0(𝑥) =
𝑑

𝑑𝑥
𝐻0(𝑥) . Then the 

cumulative/dynamic and incident/dynamic WROC curve functions are defined as 

WROC𝐶/𝐷(q, t) = ROC𝐶/𝐷(q, t)ℎ0(𝑞) and 

WROC𝐼/𝐷(q, t) = ROC𝐼/𝐷(q, t)ℎ0(𝑞), respectively. 

The corresponding weighted area under the curves (AUCs) are given by 

𝑊𝐴𝑈𝐶𝐶/𝐷(t) = ∫ ROC𝐶/𝐷(x, t)ℎ0(𝑥)𝑑𝑥
1

0
 and 

𝑊𝐴𝑈𝐶𝐼/𝐷(t) = ∫ ROC𝐼/𝐷(x, t)ℎ0(𝑥)𝑑𝑥
1

0
, respectively 

which provide scalar summaries of the joint discriminatory ability across the entire 

FPR spectrum, while accounting for the distributional structure of the bivariate threshold 

space. 

We now consider the combined predictiveness of both Marker 1 and Marker 2. The 

joint risk function is defined as 

Risk(m1, m2, t) = Pr(T ≤ t|M1 = m1, M2 = m2). 

It can be shown under FNAC model given by Equation (7) that  

Risk(m1, m2, t) = 1 −
𝜕2𝐻(𝑚1, 𝑚2, 𝑡)/𝜕𝑚1𝜕𝑚2

𝜕2C𝜃1
(𝐹𝑚1(m1), 𝐹𝑚2(m2))/𝜕𝑚1𝜕𝑚2

 

                      = 1 −
𝐶[1,1]

𝜃1
(𝐹𝑚1(m1), C𝜃2

(𝐹𝑚2(m2), 𝑆𝑡(t))) 𝐶[1]
𝜃2

(𝐹𝑚2(m2), 𝑆𝑡(t))

𝐶[1,1]
𝜃1

(𝐹𝑚1(m1), 𝐹𝑚2(m2))
(10) 

Since  
𝜕2𝐻(𝑚1,𝑚2,𝑡)

𝜕𝑚1𝜕𝑚2
 

= 𝐶[1,1]
𝜃1

(𝐹𝑚1(m1), C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))) 𝐶[1]

𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))𝑓𝑚1(m1)𝑓𝑚2(m2). 
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The time-dependent predictiveness surface at time 𝑡 is defined as 

R(u1, u2, t) = Pr (T ≤ t|M1 = 𝐹𝑚1
−1(u1), M2 = 𝐹𝑚2

−1(u2)) (11) 

where and 𝐹𝑚1
−1(∙), 𝐹𝑚2

−1(∙) denote the quantile function corresponding to the 

marginal CDFs. 

This quantity captures how both biomarkers jointly inform the individual-level risk 

probability at time 𝑡. 

To quantify the overall predictiveness of the bivariate marker combination, we 

employed the Total Gain (TG), defined as TG(t) = ∫|𝑅(u, t) − Pr (𝑇 ≤ 𝑡)| 𝑑𝑢 for the 

univariate case. High total gain values were obtained when the predictiveness curve was 

steep, indicating a strong predictive ability. We now apply these definitions to evaluate the 

predictiveness of the bivariate marker combination. The total gain for joint combination of 

Marker 1 and Marker 2 is defined as 

𝑇𝐺(t) = ∬|𝑅(𝑢1, 𝑢2, 𝑡) − Pr (𝑇 ≤ 𝑡)| 𝑑𝑢1𝑑𝑢2. 

This measure reflects the average absolute deviation of the joint conditional risk from 

the marginal risk across the entire distribution of biomarker values. The TG achieves its 

maximum value of 2S(t)[1 −  S(t)] when the risk estimates perfectly stratify individuals 

into extreme low- and high-risk groups(Bura & Gastwirth, 2001). 

An alternative summary quantification of predictiveness is the time-varying overall 

standardized total gain defined by 

𝑆𝑇𝐺(t) = 𝑇𝐺(t) {2S(t)[1 −  S(t)]}⁄  

which normalizes the total gain to lie between 0 and 1. Higher values of 𝑆𝑇𝐺(t) 

indicate steeper predictiveness curves and thus a stronger predictiveness of the joint 

biomarker model. 
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3.5. Conditional Diagnostic Measures 

In clinical decision-making, evaluating the discriminatory ability of a new biomarker 

(Marker 1) in the presence of an existing validated biomarker (Marker 2) is often of 

particular interest, especially when Marker 2 is a controllable or clinically actionable factor. 

When Marker 2 is fixed at a given value m2, the performance of Marker 1 can be assessed 

using conditional time-dependent discrimination metrics. 

The conditional dynamic false positive rate (FPR) at time 𝑡, for a threshold 𝑚1, 

conditional on 𝑀2 = 𝑚2, denoted by Marker 2-specific FPR, is defined as 

FPR(m1, t|m2) = Pr(M1 > m1|M2 = m2, T > t) 

= 1 − Pr(M1 ≤ m1|M2 = m2, T > t). 

It can be shown under FNAC model given by Equation (7) that 

FPR(m1, t|m2) = 1 −
∂H(m1, m2, t) ∂m2⁄

∂C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t)) ∂m2⁄

  

= 1 −
𝐶[1]

𝜃1
(C𝜃2

(𝐹𝑚2(m2), 𝑆𝑡(t)), 𝐹𝑚1(𝑚1)) 𝐶[1]
𝜃2

(𝐹𝑚2(m2), 𝑆𝑡(t))

𝐶[1]
𝜃2

(𝐹𝑚2(m2), 𝑆𝑡(t) )
.  

The corresponding conditional Cumulative True positive rate (TPR𝐶) and Incident 

True positive rate (TPR𝐼) can be defined as 

TPR𝐶(m1, t|m2) = Pr(M1 > m1|M2 = m2, T ≤ t) and 

TPR𝐼(m1, t|m2) = Pr(M1 > m1|M2 = m2, T = t) 

which are denoted as the marker 2-specific TPR𝐶 and TPR𝐼, respectively. 

Based on the survival copula 𝐶(𝑆) given in (Nelsen, 2006) as 

𝐶(𝑆)(𝑢, 𝑣) = 𝑢 + 𝑣 − 1 + 𝐶(1 − 𝑢, 1 − 𝑣) 
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where (𝑢, 𝑣) ∈ [0,1] × [0,1], we can derive the expressions for TPR𝐶  and TPR𝐼 

under the FNAC model in Equation (6) as 

TPR𝐶(m1, t|m2) = 1 −
∂ (C𝜃1

(𝐹𝑚1(m1), 𝐹𝑚2(m2)) − H(m1, m2, t)) ∂m2⁄

∂ (𝐹𝑚2(m2) − C𝜃2
(𝑆𝑡(t), 𝐹𝑚2(m2))) ∂m2⁄

  

= 1 −
𝐶[1]

𝜃1(𝐹𝑚2(m2),𝐹𝑚1(m1))−𝐶[1]
𝜃1(C𝜃2(𝐹𝑚2(m2),𝑆𝑡(t)),𝐹𝑚1(m1))𝐶[1]

𝜃2(𝐹𝑚2(m2),𝑆𝑡(t))

1−𝐶[1]
𝜃2(𝐹𝑚2(m2),𝑆𝑡(t))

  

and 

TPR𝐼(m1, t|m2) = 1 −
∂ (C𝜃1

(𝐹𝑚1(m1), 𝐹𝑚2(m2)) − H(m1, m2, t)) ∂m2 ∂mt⁄

∂ (𝐹𝑚2(m2) − C𝜃2
(𝑆𝑡(t), 𝐹𝑚2(m2))) ∂m2⁄ ∂mt

  

= 1 − [𝐶[2]
𝜃1

(C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(𝑡)), 𝐹𝑚1(m1)) 𝐶[1]

𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t)) 𝐶[1]

𝜃2
(𝑆𝑡(t), 𝐹𝑚2(m2)) 

+𝐶[1]
𝜃1

(C𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(𝑡)), 𝐹𝑚1(m1)) 𝐶[1,1]

𝜃2
(𝐹𝑚2(m2), 𝑆𝑡(t))]/𝐶[1,1]

𝜃2
(𝑆𝑡(t), 𝐹𝑚2(m2)). 

Two main definitions of time-dependent ROC curves have been proposed in the 

survival analysis literature (Heagerty and Zheng, 2005). The Marker 2-specific 

cumulative/dynamic ROC curve at time 𝑡 is defined as the plot of 

[FPR(m1, t|m2), TPR𝐶(m1, t|m2)], {𝑚1, 𝑚2} ∈ ℝ 

and the corresponding Marker 2-specific cumulative/dynamic ROC function is 

ROC𝐶/𝐷(q, t|m2) = TPR𝐶[FPR−1(q, t|m2), t|m2], 

where FPR−1(q, t|m2) = 𝑖𝑛𝑓𝑚1{𝑚1: 𝐹𝑃(𝑚1, 𝑡|𝑚2) < 𝑞}. 

Similarly, the Marker 2-specific incident/dynamic ROC curve at time 𝑡 is defined as 

the plot of 

[FPR(m1, t|m2), TPR𝐼(m1, t|m2)], {𝑚1, 𝑚2} ∈ ℝ 
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and the corresponding Marker 2-specific incident/dynamic ROC function is 

ROC𝐼/𝐷(q, t|m2) = TPR𝐼[FPR−1(q, t|m2), t|m2]. 

The area under each curve is given by  

𝐴𝑈𝐶𝐶/𝐷(t|m2) = ∫ ROC𝐶/𝐷(x, t|m2)𝑑𝑥
1

0
 and 

𝐴𝑈𝐶𝐼/𝐷(t|m2) = ∫ ROC𝐼/𝐷(x, t|m2)𝑑𝑥
1

0

. 

These ROC and AUC metrics represent the discrimination ability of Marker 1 when 

Marker 2 is fixed at a specific value m2, that is, in a Marker 2- specific population. 

If the marginal distribution of Marker 2, given the survival status, is known or can be 

estimated, then Marker2-adjusted discrimination measures can be obtained. The adjusted 

ROC(AROC) is defined as the average Marker 2-specific ROC function by integrating over 

the distribution of 𝑀2.  

The adjusted dynamic FPR at time 𝑡 is 

𝐴𝐹𝑃𝑅(m1, t) = ∫ FPR(m1, t|m2) d𝐹𝑚2|𝑇≥𝑡(m2), 

The adjusted cumulative TPR at time 𝑡 is  

𝐴TPR𝐶(m1, t) = ∫ TPR𝐶(m1, t|m2) d𝐹𝑚2|𝑇<𝑡(m2), 

and the adjusted incident TPR at time 𝑡 is 

ATPR𝐼(m1, t) = ∫ TPR𝐼(m1, t|m2) d𝐹𝑚2|𝑇=𝑡(m2). 

Using these, the adjusted cumulative/dynamic ROC function and AUC are: 

AROC𝐶/𝐷(q, t) = ATPR𝐶[AFPR−1(q, t), t] and 

𝐴𝐴𝑈𝐶𝐶/𝐷(t) = ∫ AROC𝐶/𝐷(x, t)𝑑𝑥
1

0
, respectively. 
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The adjusted incident/dynamic ROC function and AUC are as follows 

AROC𝐼/𝐷(q, t) = ATPR𝐼[AFPR−1(q, t), t] and 

𝐴𝐴𝑈𝐶𝐼/𝐷(t) = ∫ AROC𝐼/𝐷(x, t)𝑑𝑥
1

0
, respectively. 

Based on the definition of the time-dependent joint risk function and predictiveness 

surface in Equations (10) and (11), we consider the conditional predictiveness of Marker 1 

given Marker 2. If the marginal distribution of Marker 2 is known, the adjusted risk 

function for Marker 1 at time 𝑡  can be computed by averaging with respect to the 

distribution of Marker 2 across Marker 2 levels as follows 

ARisk(m1, t) = ∫ Risk(m1, m2, t) d𝐹𝑚2(m2). 

The corresponding adjusted predictiveness curve at time 𝑡 is defined as 

AR(u1, t) = ∫ R(u1, u2, t) du2. 

We now consider the total gain for Marker 1 given Marker 2 which is defined as 

TG(t|m2) = ∫|𝑃(𝑇 ≤ 𝑡|𝑀1 = 𝑚1, 𝑀2 = 𝑚2) − 𝑃(𝑇 ≤ 𝑡|𝑀2 = 𝑚2)| 𝑑𝐹𝑚1(m1) 

                         = ∫|𝑅(u1, u2, t) − 𝑅(u2, t)| 𝑑𝑢1 

where 𝑅(u2, t) = 𝑃 (𝑇 ≤ 𝑡|M2 = 𝐹𝑚2
−1(u2)). 

Similarly, we define the adjusted total gain for Marker 1 by Marker 2 as 

ATG(t) = ∫|𝐴𝑅(u1, t) − AR(t)| 𝑑𝑢1 

where AR(t) = ∫ 𝑅(u2, t) du2  denotes the cumulative density function averaged 

over the Marker 2 distribution.  
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The corresponding standardized total gain is as follows 

ASTG(t) = ATG(t) ∕ {2(1 − AR(t))AR(t)} 

where 1 − AR(t)  represents the survival function averaged over the Marker 2 

distribution.  

  



24 

 

3.6. Goodness-of-fit Evaluation 

To assess the goodness-of-fit of the proposed copula model and guide the selection of an 

appropriate dependence structure, we employ both Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) (Joe, 2015). These metrics quantify the trade-off 

between model fit and complexity: 

𝐴𝐼𝐶 = −2𝑙(𝜓̂) + 2𝑘 (12) 

𝐵𝐼𝐶 = −2𝑙(𝜓̂) + 𝑘𝑙𝑜𝑔(𝑛) (13) 

where 𝑙(𝜓̂) is the log-likelihood based on the estimated model parameters 𝜓̂, k is 

the number of model parameters, and n is the sample size. Lower values of AIC or BIC 

indicate better fit, and thus these criteria are used to compare alternative copula families 

fitted to the same dataset.  

In addition to these quantitative criteria, residual-based visual diagnostics can be used 

to assess model adequacy. These diagnostics are derived from the conditional distributions 

implied by the fitted copula model and allow for graphical evaluation of potential model 

misspecification. We first can consider residuals for assessing distribution of survival time 

𝑇 given biomarkers 𝑀1 and 𝑀2. Let  

Λ̂i = −𝑙𝑜𝑔[𝑆̂(𝑡𝑖|𝑀1 = 𝑚1𝑖 , 𝑀2 = 𝑚2𝑖)] 

denote the estimated conditional cumulative hazard given the two biomarkers, 

evaluated at the observed time 𝑡𝑖 with  

𝑆̂(𝑡|𝑀1 = 𝑚1, 𝑀2 = 𝑚2)

=
𝐶[1,1]

𝜃1
(𝐹̂𝑚1(m1), C𝜃2

(𝐹̂𝑚2(m2), 𝑆̂𝑡(t))) 𝐶[1]
𝜃2

(𝐹̂𝑚2(m2), 𝑆̂𝑡(t))

𝐶[1,1]
𝜃1

(𝐹̂𝑚1(𝑚1), 𝐹̂𝑚2(𝑚2))
 

If 𝑆̂Λ(Λ) denotes the Kaplan-Meier for the transformed cumulative hazards Λ̂i, then 

a plot of log[−log𝑆̂Λ(Λ̂i)]  versus log(Λ̂i) should lie approximately on a straight line 

under correct model specification.(Cox & Snell, 1968)  
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Next, we assess two types of the conditional Residuals of the biomarkers:  Residuals 

of 𝑀1|𝑀2, 𝑇 and Residuals of 𝑀2|𝑀1, 𝑇. 

These are defined according to the censoring status 𝛿𝑖, as follows:  

𝑟𝑀1|𝑀2,𝑇(𝑚1𝑖, 𝑚2𝑖, 𝑡𝑖)

= 𝛿𝑖𝑃̂(𝑀1 ≤  𝑚1𝑖|𝑀2 = 𝑚2𝑖, 𝑇 = 𝑡𝑖)

+ (1 − 𝛿𝑖)𝑃̂(𝑀1 ≤  𝑚1𝑖|𝑀2 = 𝑚2𝑖, 𝑇 > 𝑡𝑖) 

= 𝛿𝑖

𝜕2𝐻(𝑚1𝑖, 𝑚2𝑖, 𝑡𝑖)/𝜕𝑚2𝑖𝜕𝑡𝑖

𝜕2𝐶𝜃2
(𝑚2𝑖, 𝑡𝑖)/𝜕𝑚2𝑖𝜕𝑡𝑖

+ (1 − 𝛿𝑖)
𝜕𝐻(𝑚1𝑖, 𝑚2𝑖, 𝑡𝑖)/𝜕𝑚2𝑖

𝜕𝐶𝜃2
(𝑚2𝑖, 𝑡𝑖)/𝜕𝑚2𝑖

 

𝑟𝑀2|𝑀1,𝑇(𝑚1𝑖, 𝑚2𝑖, 𝑡𝑖)

= 𝛿𝑖𝑃̂(𝑀2 ≤  𝑚2𝑖|𝑀1 = 𝑚1𝑖, 𝑇 = 𝑡𝑖)

+ (1 − 𝛿𝑖)𝑃̂(𝑀2 ≤  𝑚2𝑖|𝑀1 = 𝑚1𝑖, 𝑇 > 𝑡𝑖) 

= 𝛿𝑖

𝜕2𝐻(𝑚1𝑖, 𝑚2𝑖, 𝑡𝑖)/𝜕𝑚1𝑖𝜕𝑡𝑖

𝜕2𝐶𝜃1
(𝑚1𝑖, 𝑡𝑖)/𝜕𝑚1𝑖𝜕𝑡𝑖

+ (1 − 𝛿𝑖)
𝜕𝐻(𝑚1𝑖, 𝑚2𝑖, 𝑡𝑖)/𝜕𝑚1𝑖

𝜕𝐶𝜃1
(𝑚1𝑖, 𝑡𝑖)/𝜕𝑚1𝑖

 

Following the method of (Dunn & Smyth, 1996), we compute normalized quantile 

residuals: 

Φ−1 (𝑟𝑀1|𝑀2,𝑇(𝑚1𝑖, 𝑚2𝑖, 𝑡𝑖)) , Φ−1 (𝑟𝑀2|𝑀1,𝑇(𝑚1𝑖, 𝑚2𝑖, 𝑡𝑖)) 

where Φ−1 is the inverse standard normal CDF. These residuals should follow a 

standard normal distribution under correct model specification. Accordingly, Q–Q plots 

can be used to visually assess whether the fitted model adequately captures the conditional 

distributions. 
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4. Simulation study 

4.1. Simulation Design 

To evaluate the proposed copula-based framework for discrimination and predictiveness 

assessment, we conducted comprehensive simulation studies under various conditions. 

Specifically, we aimed to (i) assess the ability of the model selection criteria to correctly 

identify the true copula family, (ii) evaluate the accuracy and robustness of model-based 

performance measures under correct model specification, and (iii) compare the proposed 

FNAC-based estimators with conventional approaches under both correctly and mis-

specified dependence structures. 

We examined combinations of data-generating copula families (Clayton, Frank, 

Gumbel), and censoring rates (20%, 50%, 80%). Each scenario was replicated 1,000 times 

with a sample size of n=250. The simulation process consisted of the following four steps: 

Step 1: Data Generation from FNAC 

We generated a random vector {(𝑢1𝑖, 𝑢2𝑖, 𝑢3𝑖) ∈ [0,1]3, i = 1, … ,250} from a fully 

nested Archimedean copula (FNAC) using one of the copula families: Frank, Clayton, or 

Gumbel(Hofert, 2011; McNeil, 2008). The FNAC structure adheres to the hierarchical 

form described in Equation (6).  

The dependence parameters 𝜃1  and 𝜃2 were chosen such that the corresponding 

Kendall’s tau values were approximately 0.5 (parent copula) and 0.8 (child copula), 

respectively, representing moderate to strong dependence. 

Step 2: Transformation to Original Scale 

The uniform samples were transformed using the inverse CDFs of the specified 

marginals: 

𝑚1𝑖 = 𝐹𝑀1
−1(𝑢1𝑖) 

𝑚2𝑖 =  𝐹𝑀2
−1(𝑢2𝑖) 

𝑡𝑖 =  𝐹𝑇
−1(1 − 𝑢3𝑖) 
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𝐹𝑀1(𝑚1)and 𝐹𝑀2(𝑚2) were taken as the skewed-normal distribution characterized 

in Equation (7) and (8) with parameters 𝝎 = (𝜔1, 𝜔2, 𝜔3) = (1,1,5), 𝜶 = (𝛼1, 𝛼2, 𝛼3) =

(2,2,4), respectively. 𝐹𝑇(𝑡) was taken as the Weibull represented in Equation (9) with 

parameters 𝝀 = (𝜆1, 𝜆2) = (2,1). 

Step 3: Incorporation of Random Censoring 

Right-censoring was imposed by generating censoring time W~Weibull(𝜆1, 𝜆3) , 

where  𝜆3  was calibrated to achieve target censoring rates of 20%, 50%, and 80%. The 

observed time and event indicator defined in Equation (5) can be obtained. 

Step 4: Model Fitting and Performance Evaluation 

Each simulated dataset was fitted using the proposed FNAC model via maximum 

likelihood estimation (MLE), incorporating known marginals. Based on the estimated 

model parameters 𝜓̂, we computed the following time-dependent diagnostic measures, all 

of which were evaluated at survival time quantiles of 0.25, 0.5, and 0.75. 

 Conditional and joint ROC functions (C/D and I/D) 

 Area under the curve (AUC) 

 Conditional and joint risk functions 

 Standardized Total Gain (STG) 

For model selection, the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC) represented in Equations (12) and (13) were used to identify 

the copula family. Bias or Relative bias and mean squared error (MSE) were computed for 

all measures.  

In our comparative analyses with existing approaches, the primary focus was placed 

on estimating predictiveness function 𝑅(𝑢1, 𝑢2, 𝑡) for evaluating predictiveness and the 

time-dependent ROC function 𝐹𝑃(𝑢1, 𝑢2, 𝑡) and TP𝐶(𝑢1, 𝑢2, 𝑡)  defined under the 

cumulative/dynamic (C/D) framework. There are defined as 𝐹𝑃(𝑢1, 𝑢2, 𝑡) =

FPR (𝐹𝑚1
−1(u1), 𝐹𝑚2

−1(u2)) and  TP𝐶(𝑢1, 𝑢2, 𝑡) = TPR𝐶(𝐹𝑚1
−1(u1), 𝐹𝑚2

−1(u2)) . 

For comparison of the risk functions, we used two standard regression-based approaches: 

the Cox proportional hazards model, which estimates hazard ratios under the 

proportionality assumption and provides baseline survival estimates through partial 



28 

 

likelihood; and the parametric Weibull regression model, which directly models the 

survival time distribution using a Weibull hazard function. For both models, the estimated 

survival probabilities were used to compute time-dependent risk curves across the quantiles 

of marker values. Two standard nonparametric estimators were used for the comparison of 

ROC functions: the Kaplan–Meier–based method by Heagerty et al. (2000) and the IPCW 

estimator(Uno et al., 2007), both designed to handle right-censored survival data. 
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4.2. Simulation Results 

The simulation results were summarized across the three copula families, varying 

censoring levels, and prediction time quantiles. As shown in Table 2, copula selection was 

perfect (100%) when the true model was either Clayton or Gumbel across all censoring 

levels. In contrast, under 20% censoring, only 41.6% of the datasets generated under the 

Frank copula were correctly identified, with 58.4% misclassified, mainly as Gumbel. 

Specifically, for the mis-specified FNAC with Gumbel, 771 out of 1,000 replicates resulted 

in boundary estimates for the dependence parameter, effectively reducing to the 

independence copula. This indicates that the symmetric dependence structure inherent to 

the Frank copula was either poorly detected or estimated to be very weak in the presence 

of light censoring. As the censoring increased to 50% and 80%, the selection accuracy for 

Frank improved to 100%. 

When the copula model was correctly specified [Tables 3–11], the proposed FNAC 

framework consistently achieved low relative bias and MSE in estimating both 

predictiveness and discrimination measures. For both the Clayton and Frank models, the 

predictiveness measures such as 𝑅, 𝐴𝑅, 𝑆𝑇𝐺 and 𝐴𝑆𝑇𝐺 demonstrated strong robustness 

regardless of the censoring proportion or prediction horizon. However, the Gumbel-based 

estimation showed a slightly inflated bias in certain scenarios. For example, in Table 9, 

under 20% censoring, 𝐴𝑅(0.5, 𝑡 = 0.75) had a relative bias of 0.082, and STG had a 

relative bias of 0.405 at t = 0.75, highlighting the difficulty of capturing upper-tail 

dependence under scenarios with light right censoring. Discrimination measures including 

𝐴𝑅𝑂𝐶, 𝐴𝐴𝑈𝐶, 𝑊𝑅𝑂𝐶, and 𝑊𝐴𝑈𝐶, were also accurately estimated under correct model 

specification, with relative Bias and MSE generally below 0.05 for Clayton and Frank 

models. However, under Gumbel, the adjusted and the weighted indices showed greater 

variability. For example, in Table 9, under 20% censoring, 𝑊𝑅𝑂𝐶 I/D(0.25,t=0.5) had a 

relative bias of -0.108 and 𝑊𝑅𝑂𝐶 C/D(0.5,t=0.75) exhibited a relative bias of 0.161, once 

again reflecting the sensitivity of upper-tail dependent structures to right censoring. 

Tables [12, 15, 18, 21, 24, 27, 30, 33, 36] present the bias and mean squared error (MSE) 

of the estimated predictiveness function values for each methodological approach under 

each simulation scenario. In contrast, Tables [13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 

31, 32, 34, 35, 37, 38] summarize the bias and MSE associated with the ROC function 

estimation. The FNAC model with a correctly specified copula unsurprisingly 

outperformed across all settings, yielding the lowest bias and MSE for both the predictive 

and ROC functions. For risk estimation, the FNAC approach yielded particularly accurate 
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results for both the Clayton and Frank copula structures. Even under the Gumbel family 

with 20% censoring, FNAC outperformed the parametric methods, and its accuracy 

remained the highest at higher censoring levels (≥50%). Regarding ROC function 

estimation, FNAC achieved comparable or improved performance relative to standard 

nonparametric methods, including Kaplan–Meier (KM) and inverse probability of 

censoring weighting (IPCW), particularly with substantial censoring. 

In the mis-specified setting, the performance of the FNAC models varied depending on 

the true underlying copula structure. When the true model was Clayton, the FNAC model 

mis-specified with the Frank copula still exhibited relatively low bias and MSE—often 

outperforming the Cox and Weibull models in estimating the risk function. However, the 

Gumbel-based FNAC frequently failed to converge to a valid copula structure, reverting to 

the independence copula owing to boundary parameter estimates (e.g., 932 out of 1,000 

cases under Clayton with 20% censoring and 691 out of 1,000 under Frank with 50% 

censoring). This indicates that Gumbel-based models under these settings failed to capture 

or only weakly captured the dependence inherent in the actual structure. Consequently, 

their performance under the independence copula assumption deteriorated and closely 

resembled that of the Cox and Weibull models, which do not account for inter-marker 

dependence. Similar patterns were observed when the true copula was Frank. Mis-specified 

FNAC models using Clayton performed relatively well, but Gumbel reverted to 

independence, yielding unstable estimates. Interestingly, when Gumbel was the true copula, 

the performance difference between the correct and mis-specified models was not 

substantial. However, the discrimination performance was generally inferior to that of the 

KM and IPCW estimators under copula mis-specification, highlighting the importance of 

correct copula selection when focusing on ROC-based classification. 
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Table 2. Copula Selection Accuracy (%) 

  
 Clayton Frank Gumbel 

20% censoring 100 41.6 100 

50% censoring 100 98.1 100 

80% censoring 100 100 100 
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Table 3. Bias and MSE of Discrimination and Predictiveness Measures under Clayton FNAC Model (n = 250, 20% Censoring)  
t0.25 t0.5 t0.75 

 
True 

value 

Relative 

bias 

MSE True 

value 

Relative 

bias 

MSE True 

value 

Relative 

bias 

MSE 

Predictiveness measures 
         

AR(0.25,t) 0.168 -0.012 0.000 0.387 -0.004 0.001 0.653 0.002 0.001 

AR (0.5,t) 0.188 -0.011 0.000 0.414 -0.002 0.001 0.669 0.002 0.001 

ASTG(t) 0.069 0.012 0.000 0.046 0.015 0.000 0.028 0.015 0.000 

STG(t) 0.693 0.001 0.000 0.782 0.001 0.000 0.862 0.002 0.000 

Discrimination measures 
         

AROC I/D(0.25,t) 0.297 0.009 0.006 0.269 -0.008 0.005 0.203 -0.002 0.005 

AROC I/D(0.5,t) 0.474 -0.002 0.006 0.417 0.001 0.008 0.308 -0.016 0.007 

AROC C/D(0.25,t) 0.342 0.008 0.007 0.386 -0.006 0.007 0.431 0.001 0.008 

AROC C/D(0.5,t) 0.517 -0.002 0.006 0.528 0.000 0.007 0.528 -0.006 0.006 

AAUC I/D(t) 0.738 0.002 0.000 0.739 0.002 0.000 0.732 0.004 0.000 

AAUC C/D(t) 0.758 0.003 0.000 0.799 0.003 0.000 0.852 0.003 0.000 

WROC I/D(0.25,t) 0.864 0.001 0.013 0.556 -0.006 0.006 0.223 -0.001 0.001 

WROC I/D(0.5,t) 0.573 0.000 0.007 0.323 -0.002 0.004 0.114 -0.010 0.001 

WROC C/D(0.25,t) 0.927 0.000 0.015 0.644 -0.006 0.007 0.284 -0.001 0.002 

WROC C/D(0.5,t) 0.583 0.000 0.008 0.335 -0.002 0.004 0.120 -0.010 0.001 

WAUC I/D(t) 0.543 0.001 0.000 0.359 0.001 0.000 0.154 -0.003 0.000 

WAUC C/D(t) 0.615 0.000 0.000 0.532 -0.001 0.000 0.431 -0.002 0.000 
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Table 4. Bias and MSE of Discrimination and Predictiveness Measures under Clayton FNAC Model (n = 250, 50% Censoring)  
t0.25 t0.5 t0.75 

 
True 

value 

Relative 

bias 

MSE True 

value 

Relative 

bias 

MSE True 

value 

Relative 

bias 

MSE 

Predictiveness measures 
         

AR(0.25,t) 0.104  -0.013  0.000  0.250  -0.007  0.000  0.466  -0.002  0.001  

AR (0.5,t) 0.118  -0.013  0.000  0.275  -0.006  0.000  0.492  -0.001  0.001  

ASTG(t) 0.077  0.005  0.000  0.060  0.007  0.000  0.039  0.010  0.000  

STG(t) 0.661  0.004  0.001  0.730  0.003  0.001  0.808  0.003  0.000  

Discrimination measures 
         

AROC I/D(0.25,t) 0.302  -0.007  0.006  0.290  0.001  0.006  0.247  0.001  0.006  

AROC I/D(0.5,t) 0.487  0.003  0.006  0.451  0.000  0.007  0.388  0.019  0.007  

AROC C/D(0.25,t) 0.328  -0.006  0.006  0.360  0.001  0.007  0.393  0.000  0.008  

AROC C/D(0.5,t) 0.512  0.003  0.006  0.518  0.000  0.006  0.526  0.013  0.006  

AAUC I/D(t) 0.734  0.003  0.000  0.740  0.002  0.000  0.738  0.003  0.000  

AAUC C/D(t) 0.744  0.003  0.000  0.774  0.003  0.000  0.814  0.003  0.000  

WROC I/D(0.25,t) 0.955  -0.003  0.014  0.747  -0.001  0.010  0.452  0.001  0.004  

WROC I/D(0.5,t) 0.666  0.004  0.011  0.472  0.002  0.007  0.251  0.022  0.003  

WROC C/D(0.25,t) 1.001  -0.004  0.015  0.825  -0.003  0.012  0.538  0.000  0.006  

WROC C/D(0.5,t) 0.673  0.004  0.011  0.483  0.002  0.007  0.261  0.022  0.003  

WAUC I/D(t) 0.596  0.001  0.000  0.474  0.001  0.000  0.294  0.001  0.000  

WAUC C/D(t) 0.639  0.000  0.000  0.584  0.000  0.000  0.502  -0.001  0.000  
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Table 5. Bias and MSE of Discrimination and Predictiveness Measures under Clayton FNAC Model (n = 250, 80% Censoring)  
t0.25 t0.5 t0.75 

 
True 

value 

Relative 

bias 

MSE True 

value 

Relative 

bias 

MSE True 

value 

Relative 

bias 

MSE 

Predictiveness measures 
         

AR(0.25,t) 0.041 -0.012 0.000 0.099 -0.009 0.000 0.200 -0.005 0.001 

AR (0.5,t) 0.047 -0.014 0.000 0.113 -0.011 0.000 0.222 -0.006 0.001 

ASTG(t) 0.085 -0.005 0.000 0.078 -0.006 0.000 0.066 -0.006 0.000 

STG(t) 0.626 0.010 0.001 0.658 0.009 0.001 0.708 0.008 0.001 

Discrimination measures 
         

AROC I/D(0.25,t) 0.302 -0.005 0.007 0.304 -0.004 0.005 0.294 0.011 0.004 

AROC I/D(0.5,t) 0.502 -0.004 0.008 0.490 0.004 0.005 0.463 0.001 0.006 

AROC C/D(0.25,t) 0.312 -0.005 0.008 0.329 -0.004 0.006 0.348 0.011 0.005 

AROC C/D(0.5,t) 0.511 -0.004 0.008 0.513 0.004 0.004 0.516 0.001 0.005 

AAUC I/D(t) 0.725 0.004 0.000 0.733 0.003 0.000 0.739 0.003 0.000 

AAUC C/D(t) 0.728 0.004 0.000 0.743 0.004 0.000 0.764 0.003 0.000 

WROC I/D(0.25,t) 1.041 0.005 0.020 0.967 0.005 0.018 0.814 0.008 0.013 

WROC I/D(0.5,t) 0.767 0.001 0.013 0.673 0.002 0.010 0.534 0.004 0.008 

WROC C/D(0.25,t) 1.062 0.004 0.020 1.011 0.004 0.019 0.884 0.007 0.015 

WROC C/D(0.5,t) 0.771 0.001 0.013 0.680 0.002 0.011 0.545 0.003 0.009 

WAUC I/D(t) 0.646 0.001 0.000 0.600 0.001 0.000 0.517 0.001 0.000 

WAUC C/D(t) 0.662 0.001 0.000 0.640 0.001 0.000 0.603 0.000 0.000 
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Table 6. Bias and MSE of Discrimination and Predictiveness Measures under Frank FNAC Model (n = 250, 20% Censoring)  
t0.25 t0.5 t0.75 

 
True 

value 

Relative 

bias 

MSE True 

value 

Relative 

bias 

MSE True 

 value 

Relative 

 bias 

MSE 

Predictiveness measures 
         

AR(0.25,t) 0.174 -0.009 0.000 0.394 -0.004 0.000 0.652 0.000 0.000 

AR (0.5,t) 0.183 -0.009 0.000 0.415 -0.003 0.000 0.675 0.000 0.000 

ASTG(t) 0.062 0.015 0.000 0.040 0.016 0.000 0.040 0.010 0.000 

STG(t) 0.777 0.003 0.000 0.820 0.003 0.000 0.820 0.004 0.000 

Discrimination measures 
         

AROC I/D(0.25,t) 0.347 0.008 0.008 0.238 0.011 0.004 0.140 -0.011 0.003 

AROC I/D(0.5,t) 0.530 -0.011 0.008 0.382 0.013 0.008 0.234 0.015 0.009 

AROC C/D(0.25,t) 0.449 0.007 0.008 0.443 0.006 0.005 0.418 -0.004 0.006 

AROC C/D(0.5,t) 0.612 -0.008 0.007 0.566 0.009 0.006 0.510 0.009 0.008 

AAUC I/D(t) 0.779 0.004 0.000 0.722 0.006 0.000 0.630 0.010 0.000 

AAUC C/D(t) 0.817 0.005 0.000 0.829 0.005 0.000 0.822 0.007 0.000 

WROC I/D(0.25,t) 0.906 0.000 0.011 0.504 0.005 0.003 0.193 0.000 0.000 

WROC I/D(0.5,t) 0.575 0.001 0.004 0.297 -0.002 0.001 0.103 0.005 0.000 

WROC C/D(0.25,t) 0.981 -0.001 0.012 0.607 0.003 0.004 0.280 -0.003 0.001 

WROC C/D(0.5,t) 0.586 0.001 0.004 0.314 -0.002 0.001 0.119 0.004 0.000 

WAUC I/D(t) 0.563 0.001 0.000 0.323 0.001 0.000 0.128 -0.001 0.000 

WAUC C/D(t) 0.679 0.000 0.000 0.556 0.000 0.000 0.434 -0.002 0.000 

 

 



36 

 

Table 7. Bias and MSE of Discrimination and Predictiveness Measures under Frank FNAC Model (n = 250, 50% Censoring)  
t0.25 t0.5 t0.75 

 
True 

value 

Relative 

bias 

MSE True 

 value 

Relative 

 bias 

MSE True 

 value 

Relative 

bias 

MSE 

Predictiveness measures 
         

AR(0.25,t) 0.107 -0.010 0.000 0.259 -0.006 0.000 0.471 -0.003 0.000 

AR (0.5,t) 0.113 -0.010 0.000 0.273 -0.006 0.000 0.494 -0.002 0.001 

ASTG(t) 0.076 0.010 0.000 0.050 0.012 0.000 0.038 0.011 0.000 

STG(t) 0.749 0.004 0.000 0.800 0.004 0.000 0.824 0.004 0.000 

Discrimination measures 
         

AROC I/D(0.25,t) 0.383 0.007 0.007 0.304 -0.004 0.010 0.204 -0.006 0.003 

AROC I/D(0.5,t) 0.569 0.003 0.006 0.466 0.002 0.006 0.338 -0.006 0.007 

AROC C/D(0.25,t) 0.446 0.006 0.007 0.451 -0.005 0.010 0.435 -0.002 0.004 

AROC C/D(0.5,t) 0.617 0.003 0.005 0.591 0.002 0.004 0.554 -0.003 0.007 

AAUC I/D(t) 0.790 0.004 0.000 0.759 0.005 0.000 0.697 0.007 0.000 

AAUC C/D(t) 0.806 0.005 0.000 0.824 0.005 0.000 0.829 0.006 0.000 

WROC I/D(0.25,t) 1.062 -0.004 0.018 0.740 0.004 0.006 0.397 0.005 0.002 

WROC I/D(0.5,t) 0.686 0.004 0.006 0.453 0.010 0.003 0.225 0.000 0.001 

WROC C/D(0.25,t) 1.116 -0.005 0.019 0.831 0.002 0.007 0.500 0.002 0.003 

WROC C/D(0.5,t) 0.694 0.004 0.006 0.467 0.010 0.003 0.242 -0.001 0.001 

WAUC I/D(t) 0.646 0.000 0.000 0.463 0.001 0.000 0.255 0.001 0.000 

WAUC C/D(t) 0.719 0.000 0.000 0.630 0.000 0.000 0.517 -0.001 0.000 
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Table 8. Bias and MSE of Discrimination and Predictiveness Measures under Frank FNAC Model (n = 250, 80% Censoring)  
t0.25 t0.5 t0.75 

 
True 

value 

Relative 

 bias 

MSE True 

value 

Relative 

bias 

MSE True 

value 

Relative 

 bias 

MSE 

Predictiveness measures 
         

AR(0.25,t) 0.040 -0.013 0.000 0.102 -0.012 0.000 0.207 -0.009 0.000 

AR (0.5,t) 0.043 -0.014 0.000 0.107 -0.013 0.000 0.218 -0.009 0.000 

ASTG(t) 0.094 0.006 0.000 0.077 0.008 0.000 0.057 0.013 0.000 

STG(t) 0.706 0.007 0.001 0.746 0.006 0.001 0.788 0.005 0.001 

Discrimination measures 
         

AROC I/D(0.25,t) 0.417 0.002 0.007 0.388 0.004 0.008 0.326 0.008 0.006 

AROC I/D(0.5,t) 0.612 0.005 0.005 0.573 0.004 0.005 0.503 0.000 0.008 

AROC C/D(0.25,t) 0.439 0.003 0.007 0.448 0.004 0.008 0.447 0.006 0.006 

AROC C/D(0.5,t) 0.624 0.006 0.005 0.617 0.004 0.004 0.603 0.000 0.006 

AAUC I/D(t) 0.787 0.006 0.000 0.791 0.005 0.000 0.772 0.005 0.000 

AAUC C/D(t) 0.785 0.007 0.000 0.805 0.006 0.000 0.820 0.005 0.000 

WROC I/D(0.25,t) 1.227 -0.007 0.025 1.069 0.002 0.018 0.840 0.000 0.011 

WROC I/D(0.5,t) 0.825 0.002 0.009 0.696 0.005 0.006 0.524 0.005 0.004 

WROC C/D(0.25,t) 1.252 -0.007 0.026 1.121 0.001 0.019 0.922 -0.002 0.012 

WROC C/D(0.5,t) 0.829 0.002 0.009 0.704 0.005 0.006 0.537 0.005 0.004 

WAUC I/D(t) 0.731 0.000 0.000 0.652 0.001 0.000 0.523 0.002 0.000 

WAUC C/D(t) 0.759 0.000 0.000 0.722 0.000 0.000 0.660 0.000 0.000 
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Table 9. Bias and MSE of Discrimination and Predictiveness Measures under Gumbel FNAC Model (n = 250, 20% Censoring)  
t0.25 t0.5 t0.75 

 
True 

value 

Relative 

 bias 

MSE True 

value 

Relative 

 bias 

MSE True 

value 

Relative 

 bias 

MSE 

Predictiveness measures 
         

AR(0.25,t) 0.185 0.021 0.000 0.396 0.059 0.001 0.651 0.073 0.003 

AR (0.5,t) 0.190 0.036 0.000 0.417 0.084 0.002 0.676 0.082 0.004 

ASTG(t) 0.042 0.437 0.000 0.043 0.417 0.000 0.047 0.405 0.000 

STG(t) 0.830 -0.045 0.002 0.792 -0.054 0.002 0.770 -0.052 0.002 

Discrimination measures 
         

AROC I/D(0.25,t) 0.304 -0.066 0.008 0.186 -0.108 0.007 0.128 -0.056 0.002 

AROC I/D(0.5,t) 0.484 -0.036 0.010 0.315 -0.055 0.009 0.231 -0.060 0.009 

AROC C/D(0.25,t) 0.525 -0.036 0.008 0.431 -0.044 0.010 0.386 -0.024 0.006 

AROC C/D(0.5,t) 0.661 -0.021 0.007 0.545 -0.025 0.007 0.487 -0.026 0.008 

AAUC I/D(t) 0.767 -0.011 0.000 0.679 -0.013 0.000 0.611 -0.012 0.000 

AAUC C/D(t) 0.851 -0.002 0.000 0.816 -0.002 0.000 0.791 0.002 0.000 

WROC I/D(0.25,t) 0.861 -0.069 0.016 0.467 -0.069 0.004 0.207 -0.009 0.001 

WROC I/D(0.5,t) 0.535 0.044 0.006 0.283 0.068 0.002 0.113 0.121 0.001 

WROC C/D(0.25,t) 0.972 -0.050 0.017 0.597 -0.022 0.005 0.311 0.067 0.002 

WROC C/D(0.5,t) 0.556 0.050 0.007 0.307 0.087 0.003 0.131 0.161 0.001 

WAUC I/D(t) 0.527 -0.010 0.000 0.294 -0.005 0.000 0.134 0.021 0.000 

WAUC C/D(t) 0.716 -0.013 0.000 0.553 -0.016 0.000 0.428 -0.009 0.000 
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Table 10. Bias and MSE of Discrimination and Predictiveness Measures under Gumbel FNAC Model (n = 250, 50% Censoring)  
t0.25 t0.5 t0.75 

 
True 

value 

Relative 

 bias 

MSE True 

value 

Relative 

 bias 

MSE True 

value 

Relative 

 bias 

MSE 

Predictiveness measures 
         

AR(0.25,t) 0.119 0.015 0.000 0.266 0.029 0.001 0.471 0.041 0.001 

AR (0.5,t) 0.121 0.019 0.000 0.276 0.042 0.001 0.496 0.055 0.002 

ASTG(t) 0.042 0.276 0.000 0.042 0.266 0.000 0.044 0.256 0.000 

STG(t) 0.847 -0.021 0.001 0.813 -0.026 0.001 0.784 -0.028 0.001 

Discrimination measures 
         

AROC I/D(0.25,t) 0.391 -0.015 0.007 0.245 -0.033 0.004 0.165 -0.011 0.006 

AROC I/D(0.5,t) 0.581 -0.007 0.008 0.403 -0.026 0.008 0.286 -0.016 0.006 

AROC C/D(0.25,t) 0.585 -0.003 0.006 0.480 -0.009 0.005 0.414 0.004 0.009 

AROC C/D(0.5,t) 0.718 -0.001 0.006 0.608 -0.008 0.005 0.524 0.001 0.005 

AAUC I/D(t) 0.811 0.001 0.000 0.727 -0.001 0.000 0.657 -0.001 0.000 

AAUC C/D(t) 0.865 0.006 0.000 0.836 0.004 0.000 0.807 0.005 0.000 

WROC I/D(0.25,t) 1.054 -0.033 0.017 0.678 -0.033 0.006 0.376 -0.026 0.002 

WROC I/D(0.5,t) 0.648 0.030 0.006 0.422 0.042 0.003 0.223 0.040 0.001 

WROC C/D(0.25,t) 1.144 -0.029 0.019 0.802 -0.018 0.007 0.503 0.003 0.003 

WROC C/D(0.5,t) 0.664 0.031 0.006 0.446 0.046 0.003 0.246 0.050 0.001 

WAUC I/D(t) 0.638 0.000 0.000 0.421 -0.004 0.000 0.238 -0.006 0.000 

WAUC C/D(t) 0.787 -0.001 0.000 0.644 -0.003 0.000 0.511 -0.004 0.000 
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Table 11. Bias and MSE of Discrimination and Predictiveness Measures under Gumbel FNAC Model (n = 250, 80% Censoring)  
t0.25 t0.5 t0.75 

 
True 

value 

Relative 

bias 

MSE True 

value 

Relative 

 bias 

MSE True 

value 

Relative 

bias 

MSE 

Predictiveness measures 
         

AR(0.25,t) 0.048 0.036 0.000 0.114 0.023 0.000 0.218 0.016 0.000 

AR (0.5,t) 0.048 0.036 0.000 0.115 0.024 0.000 0.224 0.018 0.001 

ASTG(t) 0.043 0.074 0.000 0.042 0.073 0.000 0.042 0.071 0.000 

STG(t) 0.860 -0.002 0.000 0.848 -0.002 0.000 0.823 -0.001 0.001 

Discrimination measures 
         

AROC I/D(0.25,t) 0.586 0.004 0.009 0.401 0.007 0.008 0.281 -0.007 0.005 

AROC I/D(0.5,t) 0.742 0.007 0.005 0.590 0.008 0.008 0.448 -0.002 0.005 

AROC C/D(0.25,t) 0.683 0.006 0.006 0.591 0.009 0.006 0.508 0.005 0.005 

AROC C/D(0.5,t) 0.782 0.007 0.002 0.722 0.006 0.006 0.638 0.003 0.004 

AAUC I/D(t) 0.881 0.005 0.000 0.815 0.007 0.000 0.750 0.008 0.000 

AAUC C/D(t) 0.864 0.006 0.000 0.866 0.007 0.000 0.844 0.008 0.000 

WROC I/D(0.25,t) 1.332 0.002 0.025 1.069 -0.002 0.012 0.781 0.002 0.006 

WROC I/D(0.5,t) 0.794 0.018 0.008 0.658 0.017 0.005 0.488 0.017 0.003 

WROC C/D(0.25,t) 1.381 0.001 0.026 1.156 -0.003 0.014 0.898 0.002 0.007 

WROC C/D(0.5,t) 0.802 0.018 0.008 0.673 0.016 0.005 0.510 0.016 0.003 

WAUC I/D(t) 0.802 0.003 0.000 0.648 0.003 0.000 0.481 0.002 0.000 

WAUC C/D(t) 0.887 0.003 0.000 0.793 0.004 0.000 0.685 0.005 0.000 
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Table 12. Comparison of Bias and MSE of Risk function (True model: Clayton, n=250, 20% censoring)   

True 

value 

Semi-parametric 

(Cox PH) 

Parametric 

(Weibull) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Gumbel†) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

R(0.25,0.25,t) t0.25 0.000 0.018 0.000 0.028 0.001 0.000 0.000 0.000 0.000 0.014 0.000 

R(0.5,0.25,t) 
 

0.000 0.023 0.001 0.034 0.001 0.000 0.000 0.000 0.000 0.018 0.000 

R(0.25,0.5,t) 
 

0.020 0.022 0.001 0.041 0.002 0.000 0.000 -0.014 0.000 0.025 0.001 

R(0.5,0.5,t) 
 

0.025 0.028 0.001 0.049 0.003 0.000 0.000 -0.017 0.000 0.040 0.002 

R(0.25,0.25,t) t0.5 0.002 0.100 0.011 0.140 0.021 0.000 0.000 0.001 0.000 0.113 0.014 

R(0.5,0.25,t) 
 

0.002 0.123 0.016 0.167 0.029 0.000 0.000 0.001 0.000 0.139 0.021 

R(0.25,0.5,t) 
 

0.229 0.000 0.003 0.065 0.007 -0.004 0.001 -0.065 0.005 0.069 0.007 

R(0.5,0.5,t) 
 

0.277 0.000 0.004 0.066 0.007 -0.004 0.001 -0.070 0.006 0.122 0.017 

R(0.25,0.25,t) t0.75 0.121 0.289 0.087 0.325 0.108 -0.002 0.001 0.054 0.004 0.333 0.113 

R(0.5,0.25,t) 
 

0.142 0.343 0.122 0.369 0.140 -0.002 0.001 0.073 0.006 0.381 0.148 

R(0.25,0.5,t) 
 

0.949 -0.223 0.053 -0.208 0.045 0.001 0.000 -0.031 0.001 -0.216 0.047 

R(0.5,0.5,t) 
 

0.975 -0.172 0.031 -0.170 0.030 0.001 0.000 -0.013 0.000 -0.138 0.019 

†In 932 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 13. Comparison of Bias and MSE of FPR (True model: Clayton, n=250, 20% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Gumbel†) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

FP(0.25,0.25,t) t0.25 0.597 0.001  0.001  0.001  0.001  0.002  0.001  -0.111  0.013  0.003  0.001  

FP(0.5,0.25,t) 
 

0.384 0.001  0.001  0.001  0.001  0.001  0.000  -0.076  0.006  0.005  0.001  

FP(0.25,0.5,t) 
 

0.348 0.001  0.001  0.001  0.001  0.001  0.000  -0.071  0.005  0.028  0.001  

FP(0.5,0.5,t) 
 

0.257 0.001  0.001  0.001  0.001  0.001  0.000  -0.046  0.002  0.013  0.001  

FP(0.25,0.25,t) t0.5 0.462 0.001  0.002  0.001  0.002  0.002  0.001  -0.101  0.011  0.005  0.001  

FP(0.5,0.25,t) 
 

0.254 -0.001  0.001  -0.001  0.002  0.001  0.000  -0.067  0.005  0.004  0.001  

FP(0.25,0.5,t) 
 

0.146 0.000  0.001  0.001  0.001  0.001  0.000  -0.035  0.001  0.065  0.005  

FP(0.5,0.5,t) 
 

0.096 -0.001  0.001  -0.001  0.001  0.001  0.000  -0.024  0.001  0.032  0.001  

FP(0.25,0.25,t) t0.75 0.175 0.002  0.002  0.003  0.002  0.000  0.000  -0.045  0.002  0.107  0.013  

FP(0.5,0.25,t) 
 

0.072 0.001  0.001  0.001  0.001  0.000  0.000  -0.024  0.001  0.059  0.004  

FP(0.25,0.5,t) 
 

0.004 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.078  0.006  

FP(0.5,0.5,t) 
 

0.002 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.038  0.002  

†In 932 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 14. Comparison of Bias and MSE of TPR (True model: Clayton, n=250, 20% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Gumbel†) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

TP(0.25,0.25,t) t0.25 0.977  0.000  0.001  0.000  0.000  0.000  0.000  0.001  0.000  -0.013  0.000  

TP(0.5,0.25,t) 
 

0.838  0.000  0.003  0.001  0.003  0.001  0.000  0.057  0.004  0.050  0.003  

TP(0.25,0.5,t) 
 

0.971  0.001  0.001  0.001  0.001  0.000  0.000  0.005  0.000  -0.031  0.001  

TP(0.5,0.5,t) 
 

0.834  0.000  0.003  0.001  0.003  0.001  0.000  0.060  0.004  0.039  0.002  

TP(0.25,0.25,t) t0.5 0.964  0.000  0.000  0.001  0.000  0.000  0.000  -0.007  0.000  -0.049  0.003  

TP(0.5,0.25,t) 
 

0.781  0.003  0.002  0.005  0.002  0.001  0.001  0.034  0.002  -0.007  0.001  

TP(0.25,0.5,t) 
 

0.925  0.001  0.001  0.003  0.001  0.001  0.000  0.000  0.000  -0.097  0.010  

TP(0.5,0.5,t) 
 

0.756  0.003  0.002  0.006  0.002  0.001  0.001  0.039  0.002  -0.035  0.002  

TP(0.25,0.25,t) t0.75 0.925  0.001  0.001  0.005  0.001  0.000  0.000  -0.040  0.002  -0.089  0.008  

TP(0.5,0.25,t) 
 

0.680  0.001  0.002  0.012  0.002  0.000  0.000  -0.021  0.001  -0.026  0.001  

TP(0.25,0.5,t) 
 

0.714  0.001  0.001  0.023  0.002  -0.001  0.000  -0.046  0.002  -0.036  0.002  

TP(0.5,0.5,t) 
 

0.564  0.001  0.002  0.022  0.002  0.000  0.000  -0.016  0.001  0.001  0.001  

†In 932 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 15. Comparison of Bias and MSE of Risk function (True model: Clayton, n=250, 50% censoring)   

True 

value 

Semi-parametric 

(Cox PH) 

Parametric 

(Weibull) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Gumbel†) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

R(0.25,0.25,t) t0.25 0.000 0.012 0.000 0.016 0.000 0.000 0.000 0.000 0.000 0.007 0.000 

R(0.5,0.25,t) 
 

0.000 0.015 0.000 0.019 0.000 0.000 0.000 0.000 0.000 0.009 0.000 

R(0.25,0.5,t) 
 

0.008 0.018 0.000 0.026 0.001 0.000 0.000 -0.005 0.000 0.011 0.000 

R(0.5,0.5,t) 
 

0.010 0.021 0.001 0.030 0.001 0.000 0.000 -0.006 0.000 0.018 0.000 

R(0.25,0.25,t) t0.5 0.000 0.047 0.003 0.071 0.005 0.000 0.000 0.001 0.000 0.046 0.002 

R(0.5,0.25,t) 
 

0.000 0.058 0.004 0.084 0.008 0.000 0.000 0.001 0.000 0.058 0.004 

R(0.25,0.5,t) 
 

0.054 0.051 0.003 0.092 0.009 -0.002 0.000 -0.021 0.001 0.067 0.005 

R(0.5,0.5,t) 
 

0.067 0.059 0.004 0.105 0.012 -0.002 0.000 -0.022 0.001 0.108 0.012 

R(0.25,0.25,t) t0.75 0.006 0.177 0.033 0.211 0.046 0.000 0.000 0.012 0.000 0.182 0.035 

R(0.5,0.25,t) 
 

0.007 0.213 0.047 0.247 0.063 0.000 0.000 0.016 0.000 0.225 0.053 

R(0.25,0.5,t) 
 

0.459 -0.086 0.016 -0.047 0.009 -0.004 0.002 -0.066 0.006 -0.061 0.009 

R(0.5,0.5,t) 
 

0.534 -0.099 0.018 -0.065 0.010 -0.004 0.002 -0.046 0.004 -0.010 0.006 

†In 943 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 16. Comparison of Bias and MSE of FPR (True model: Clayton, n=250, 50% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Gumbel†) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

FP(0.25,0.25,t) t0.25 0.629  0.001  0.001  0.001  0.001  0.001  0.001  -0.089  0.009  -0.020  0.001  

FP(0.5,0.25,t) 
 

0.420  0.000  0.001  0.000  0.001  0.000  0.000  -0.062  0.004  -0.005  0.001  

FP(0.25,0.5,t) 
 

0.400  0.000  0.001  0.000  0.001  0.001  0.000  -0.059  0.004  0.010  0.001  

FP(0.5,0.5,t) 
 

0.303  0.001  0.001  0.001  0.001  0.000  0.000  -0.038  0.002  0.006  0.000  

FP(0.25,0.25,t) t0.5 0.552  0.002  0.001  0.002  0.002  0.002  0.001  -0.088  0.009  -0.028  0.002  

FP(0.5,0.25,t) 
 

0.337  0.001  0.001  0.001  0.002  0.001  0.000  -0.063  0.004  -0.017  0.001  

FP(0.25,0.5,t) 
 

0.277  0.002  0.001  0.002  0.002  0.001  0.000  -0.044  0.002  0.018  0.001  

FP(0.5,0.5,t) 
 

0.197  0.002  0.001  0.002  0.001  0.001  0.000  -0.031  0.001  0.003  0.000  

FP(0.25,0.25,t) t0.75 0.396  0.001  0.003  0.001  0.004  0.001  0.001  -0.078  0.007  0.003  0.001  

FP(0.5,0.25,t) 
 

0.203  0.000  0.002  0.000  0.003  0.000  0.000  -0.053  0.003  0.009  0.001  

FP(0.25,0.5,t) 
 

0.077  0.001  0.001  0.001  0.001  0.000  0.000  -0.010  0.000  0.091  0.009  

FP(0.5,0.5,t) 
 

0.047  0.000  0.001  0.000  0.001  0.000  0.000  -0.008  0.000  0.049  0.003  

†In 943 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 17. Comparison of Bias and MSE of TPR (True model: Clayton, n=250, 50% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Gumbel†) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

TP(0.25,0.25,t) t0.25 0.980  0.001  0.001  0.001  0.001  0.000  0.000  0.002  0.000  -0.004  0.000  

TP(0.5,0.25,t) 
 

0.852  -0.001  0.004  0.000  0.007  0.000  0.000  0.059  0.004  0.072  0.006  

TP(0.25,0.5,t) 
 

0.976  0.001  0.001  0.001  0.001  0.000  0.000  0.004  0.000  -0.015  0.000  

TP(0.5,0.5,t) 
 

0.849  0.000  0.004  0.000  0.007  0.000  0.000  0.060  0.004  0.065  0.005  

TP(0.25,0.25,t) t0.5 0.973  0.001  0.001  0.002  0.001  0.000  0.000  -0.002  0.000  -0.028  0.001  

TP(0.5,0.25,t) 
 

0.818  0.003  0.003  0.006  0.004  0.001  0.001  0.048  0.003  0.027  0.001  

TP(0.25,0.5,t) 
 

0.961  0.002  0.001  0.003  0.001  0.000  0.000  0.000  0.000  -0.066  0.005  

TP(0.5,0.5,t) 
 

0.810  0.003  0.003  0.007  0.004  0.001  0.001  0.050  0.003  0.003  0.001  

TP(0.25,0.25,t) t0.75 0.957  0.002  0.001  0.005  0.001  0.000  0.000  -0.016  0.000  -0.063  0.004  

TP(0.5,0.25,t) 
 

0.755  0.003  0.002  0.018  0.004  0.000  0.001  0.015  0.001  -0.010  0.001  

TP(0.25,0.5,t) 
 

0.881  0.004  0.002  0.023  0.002  0.001  0.000  -0.019  0.001  -0.097  0.010  

TP(0.5,0.5,t) 
 

0.709  0.004  0.003  0.028  0.004  0.001  0.001  0.017  0.001  -0.030  0.002  

†In 943 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 18. Comparison of Bias and MSE of Risk function (True model: Clayton, n=250, 80% censoring)   

True 

value 

Semi-parametric 

(Cox PH) 

Parametric 

(Weibull) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Gumbel†) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

R(0.25,0.25,t) t0.25 0.000 0.005 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.002 0.000 

R(0.5,0.25,t) 
 

0.000 0.006 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.003 0.000 

R(0.25,0.5,t) 
 

0.002 0.009 0.000 0.010 0.000 0.000 0.000 -0.001 0.000 0.003 0.000 

R(0.5,0.5,t) 
 

0.003 0.010 0.000 0.012 0.000 0.000 0.000 -0.001 0.000 0.005 0.000 

R(0.25,0.25,t) t0.5 0.000 0.016 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.010 0.000 

R(0.5,0.25,t) 
 

0.000 0.019 0.000 0.024 0.001 0.000 0.000 0.000 0.000 0.013 0.000 

R(0.25,0.5,t) 
 

0.008 0.025 0.001 0.034 0.001 0.000 0.000 -0.002 0.000 0.015 0.000 

R(0.5,0.5,t) 
 

0.010 0.029 0.001 0.039 0.002 0.000 0.000 -0.001 0.000 0.027 0.001 

R(0.25,0.25,t) t0.75 0.000 0.043 0.002 0.054 0.003 0.000 0.000 0.001 0.000 0.034 0.001 

R(0.5,0.25,t) 
 

0.000 0.051 0.003 0.063 0.004 0.000 0.000 0.002 0.000 0.044 0.002 

R(0.25,0.5,t) 
 

0.031 0.059 0.004 0.077 0.007 -0.001 0.000 -0.005 0.000 0.045 0.002 

R(0.5,0.5,t) 
 

0.038 0.067 0.005 0.087 0.008 -0.001 0.000 -0.001 0.000 0.079 0.007 

†In 899 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 19. Comparison of Bias and MSE of FPR (True model: Clayton, n=250, 80% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Gumbel†) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

FP(0.25,0.25,t) t0.25 0.658  0.001  0.001  0.001  0.001  0.001  0.001  -0.075  0.006  -0.040  0.002  

FP(0.5,0.25,t) 
 

0.455  0.000  0.001  0.000  0.001  0.000  0.001  -0.051  0.003  -0.012  0.001  

FP(0.25,0.5,t) 
 

0.448  0.001  0.001  0.001  0.001  0.000  0.001  -0.050  0.003  -0.007  0.001  

FP(0.5,0.5,t) 
 

0.348  0.001  0.001  0.001  0.001  0.000  0.000  -0.029  0.001  0.000  0.000  

FP(0.25,0.25,t) t0.5 0.631  0.001  0.001  0.000  0.002  0.001  0.001  -0.077  0.007  -0.049  0.003  

FP(0.5,0.25,t) 
 

0.423  0.001  0.001  0.001  0.002  0.000  0.001  -0.054  0.003  -0.025  0.001  

FP(0.25,0.5,t) 
 

0.404  0.001  0.001  0.000  0.002  0.000  0.001  -0.047  0.003  -0.013  0.001  

FP(0.5,0.5,t) 
 

0.307  0.001  0.001  0.000  0.002  0.000  0.000  -0.030  0.001  -0.012  0.001  

FP(0.25,0.25,t) t0.75 0.580  0.002  0.002  0.000  0.004  0.001  0.001  -0.079  0.007  -0.049  0.003  

FP(0.5,0.25,t) 
 

0.366  0.001  0.002  0.001  0.004  0.000  0.001  -0.058  0.004  -0.027  0.001  

FP(0.25,0.5,t) 
 

0.322  0.002  0.002  0.002  0.003  0.001  0.000  -0.040  0.002  0.002  0.001  

FP(0.5,0.5,t) 
 

0.234  0.002  0.001  0.002  0.003  0.000  0.000  -0.028  0.001  -0.005  0.000  

†In 899 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 20. Comparison of Bias and MSE of TPR (True model: Clayton, n=250, 80% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Gumbel†) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

TP(0.25,0.25,t) t0.25 0.982  0.001  0.002  0.000  0.005  0.000  0.000  0.003  0.000  0.004  0.000  

TP(0.5,0.25,t) 
 

0.865  0.002  0.010  0.002  0.022  0.000  0.000  0.062  0.004  0.094  0.009  

TP(0.25,0.5,t) 
 

0.979  0.002  0.002  0.000  0.005  0.000  0.000  0.003  0.000  -0.001  0.000  

TP(0.5,0.5,t) 
 

0.863  0.003  0.010  0.002  0.023  0.000  0.000  0.062  0.004  0.090  0.009  

TP(0.25,0.25,t) t0.5 0.980  0.002  0.001  0.001  0.003  0.000  0.000  0.002  0.000  -0.006  0.000  

TP(0.5,0.25,t) 
 

0.853  0.000  0.005  0.003  0.016  0.000  0.001  0.059  0.004  0.071  0.006  

TP(0.25,0.5,t) 
 

0.976  0.003  0.002  0.001  0.003  0.000  0.000  0.001  0.000  -0.023  0.001  

TP(0.5,0.5,t) 
 

0.850  0.001  0.006  0.003  0.016  0.000  0.001  0.059  0.004  0.060  0.004  

TP(0.25,0.25,t) t0.75 0.976  0.003  0.002  0.003  0.002  0.000  0.000  -0.001  0.000  -0.022  0.001  

TP(0.5,0.25,t) 
 

0.830  0.004  0.005  0.014  0.013  0.001  0.001  0.052  0.003  0.043  0.003  

TP(0.25,0.5,t) 
 

0.967  0.006  0.004  0.005  0.002  0.000  0.000  -0.004  0.000  -0.057  0.004  

TP(0.5,0.5,t) 
 

0.825  0.007  0.006  0.015  0.013  0.001  0.001  0.051  0.003  0.021  0.001  

†In 899 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 21. Comparison of Bias and MSE of Risk function (True model: Frank, n=250, 20% censoring) 

  
True 

value 

Semi-parametric 

(Cox PH) 

Parametric 

(Weibull) 

FNAC 

(Correctly 

specified) 

FNAC 

(Gumbel†) 

FNAC 

(Clayton) 

  Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

R(0.25,0.25,t) t0.25 0.000 0.010 0.000 0.018 0.000 0.000 0.000 0.007 0.000 0.001 0.000 

R(0.5,0.25,t)  0.000 0.013 0.000 0.021 0.001 0.000 0.000 0.008 0.000 0.001 0.000 

R(0.25,0.5,t)  0.004 0.028 0.001 0.045 0.002 0.000 0.000 0.025 0.001 0.032 0.001 

R(0.5,0.5,t)  0.005 0.034 0.001 0.054 0.003 0.000 0.000 0.035 0.001 0.040 0.002 

R(0.25,0.25,t) t0.5 0.003 0.083 0.008 0.105 0.012 0.000 0.000 0.074 0.006 0.007 0.000 

R(0.5,0.25,t)  0.004 0.102 0.011 0.126 0.017 0.000 0.000 0.090 0.009 0.008 0.000 

R(0.25,0.5,t)  0.176 0.077 0.009 0.107 0.013 -0.003 0.001 0.101 0.011 0.076 0.007 

R(0.5,0.5,t)  0.218 0.084 0.010 0.114 0.015 -0.002 0.001 0.139 0.021 0.089 0.010 

R(0.25,0.25,t) t0.75 0.194 0.202 0.044 0.204 0.044 -0.001 0.001 0.211 0.046 -0.024 0.002 

R(0.5,0.25,t)  0.233 0.231 0.058 0.228 0.056 -0.001 0.001 0.231 0.056 -0.034 0.003 

R(0.25,0.5,t)  0.920 -0.114 0.016 -0.144 0.023 0.001 0.000 -0.165 0.028 -0.053 0.004 

R(0.5,0.5,t)  0.960 -0.092 0.010 -0.122 0.016 0.001 0.000 -0.116 0.014 -0.039 0.002 

†In 771 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 22. Comparison of Bias and MSE of FPR (True model: Frank, n=250, 20% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Gumbel†) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

FP(0.25,0.25,t) t0.25 0.562 0.000  0.001  0.001  0.001  0.001  0.001  0.042  0.002  0.010  0.001  

FP(0.5,0.25,t) 
 

0.359 0.000  0.001  0.000  0.001  0.001  0.000  0.028  0.001  0.023  0.001  

FP(0.25,0.5,t) 
 

0.338 0.001  0.001  0.001  0.001  0.000  0.000  0.037  0.002  0.023  0.001  

FP(0.5,0.5,t) 
 

0.253 0.000  0.001  0.000  0.001  0.001  0.000  0.013  0.000  0.013  0.001  

FP(0.25,0.25,t) t0.5 0.421 0.001  0.002  0.001  0.002  0.001  0.001  0.054  0.004  0.007  0.001  

FP(0.5,0.25,t) 
 

0.216 0.000  0.001  0.000  0.001  0.000  0.000  0.043  0.002  0.032  0.001  

FP(0.25,0.5,t) 
 

0.130 0.001  0.001  0.001  0.001  0.000  0.000  0.070  0.005  0.033  0.001  

FP(0.5,0.5,t) 
 

0.082 0.000  0.001  0.000  0.001  0.000  0.000  0.039  0.002  0.026  0.001  

FP(0.25,0.25,t) t0.75 0.168 -0.001  0.002  0.000  0.002  -0.001  0.000  0.110  0.013  0.014  0.001  

FP(0.5,0.25,t) 
 

0.063 -0.001  0.001  0.000  0.001  -0.001  0.000  0.065  0.004  0.023  0.001  

FP(0.25,0.5,t) 
 

0.006 0.000  0.000  0.000  0.000  0.000  0.000  0.060  0.004  0.010  0.000  

FP(0.5,0.5,t) 
 

0.002 0.000  0.000  0.000  0.000  0.000  0.000  0.030  0.001  0.006  0.000  

†In 771 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 23. Comparison of Bias and MSE of TPR (True model: Frank, n=250, 20% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Gumbel†) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

TP(0.25,0.25,t) t0.25 0.980 0.000  0.000  0.000  0.000  0.000  0.000  -0.015  0.000  -0.007  0.000  

TP(0.5,0.25,t) 
 

0.901 0.004  0.002  0.005  0.002  0.001  0.000  -0.019  0.001  -0.055  0.004  

TP(0.25,0.5,t) 
 

0.979 0.000  0.000  0.000  0.000  0.000  0.000  -0.029  0.001  -0.014  0.000  

TP(0.5,0.5,t) 
 

0.900 0.004  0.002  0.005  0.002  0.001  0.000  -0.028  0.001  -0.059  0.004  

TP(0.25,0.25,t) t0.5 0.956 -0.001  0.001  0.001  0.000  0.000  0.000  -0.038  0.002  0.002  0.000  

TP(0.5,0.25,t) 
 

0.815 0.002  0.002  0.006  0.002  0.001  0.000  -0.049  0.003  -0.020  0.001  

TP(0.25,0.5,t) 
 

0.930 -0.001  0.001  0.001  0.001  0.001  0.000  -0.087  0.008  -0.008  0.000  

TP(0.5,0.5,t) 
 

0.799 0.001  0.002  0.006  0.002  0.002  0.000  -0.078  0.007  -0.028  0.002  

TP(0.25,0.25,t) t0.75 0.888 0.000  0.001  0.008  0.001  0.001  0.000  -0.048  0.003  0.036  0.002  

TP(0.5,0.25,t) 
 

0.674 0.001  0.002  0.018  0.002  0.001  0.000  -0.030  0.001  0.044  0.003  

TP(0.25,0.5,t) 
 

0.702 0.001  0.001  0.024  0.002  -0.001  0.000  -0.025  0.001  0.079  0.007  

TP(0.5,0.5,t) 
 

0.579 0.001  0.002  0.026  0.003  0.000  0.000  -0.025  0.001  0.055  0.004  

†In 771 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 

  



53 

 

Table 24. Comparison of Bias and MSE of Risk function (True model: Frank, n=250, 50% censoring)   

True 

value 

Semi-parametric 

(Cox PH) 

Parametric 

(Weibull) 

FNAC 

(Correctly 

specified) 

FNAC 

(Gumbel†) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

R(0.25,0.25,t) t0.25 0.000 0.005 0.000 0.008 0.000 0.000 0.000 0.002 0.000 0.000 0.000 

R(0.5,0.25,t) 
 

0.000 0.006 0.000 0.010 0.000 0.000 0.000 0.003 0.000 0.000 0.000 

R(0.25,0.5,t) 
 

0.001 0.012 0.000 0.020 0.000 0.000 0.000 0.008 0.000 0.006 0.000 

R(0.5,0.5,t) 
 

0.001 0.015 0.000 0.024 0.001 0.000 0.000 0.011 0.000 0.007 0.000 

R(0.25,0.25,t) t0.5 0.000 0.031 0.001 0.045 0.002 0.000 0.000 0.023 0.001 0.000 0.000 

R(0.5,0.25,t) 
 

0.000 0.038 0.002 0.054 0.003 0.000 0.000 0.028 0.001 0.000 0.000 

R(0.25,0.5,t) 
 

0.021 0.070 0.005 0.099 0.010 0.000 0.000 0.070 0.005 0.026 0.001 

R(0.5,0.5,t) 
 

0.026 0.085 0.008 0.117 0.014 0.000 0.000 0.099 0.011 0.030 0.001 

R(0.25,0.25,t) t0.75 0.012 0.142 0.022 0.161 0.028 0.000 0.000 0.126 0.017 -0.004 0.000 

R(0.5,0.25,t) 
 

0.015 0.172 0.032 0.192 0.039 0.000 0.000 0.153 0.025 -0.006 0.000 

R(0.25,0.5,t) 
 

0.427 -0.025 0.009 -0.010 0.006 -0.001 0.002 -0.020 0.005 -0.001 0.002 

R(0.5,0.5,t) 
 

0.507 -0.036 0.009 -0.026 0.006 0.000 0.002 0.008 0.005 -0.022 0.003 

†In 691 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 25. Comparison of Bias and MSE of FPR (True model: Frank, n=250, 50% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Gumbel†) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

FP(0.25,0.25,t) t0.25 0.596 0.001  0.001  0.001  0.001  0.000  0.001  0.017  0.001  0.033  0.002  

FP(0.5,0.25,t) 
 

0.401 0.001  0.001  0.002  0.001  0.000  0.000  0.012  0.001  0.039  0.002  

FP(0.25,0.5,t) 
 

0.390 0.001  0.001  0.001  0.001  0.000  0.000  0.020  0.001  0.036  0.002  

FP(0.5,0.5,t) 
 

0.304 0.001  0.001  0.001  0.001  0.000  0.000  0.002  0.000  0.023  0.001  

FP(0.25,0.25,t) t0.5 0.514 0.001  0.001  0.001  0.002  0.000  0.001  0.016  0.001  0.031  0.002  

FP(0.5,0.25,t) 
 

0.304 0.000  0.001  0.001  0.002  0.000  0.000  0.014  0.001  0.047  0.003  

FP(0.25,0.5,t) 
 

0.263 0.001  0.001  0.001  0.001  0.000  0.000  0.025  0.001  0.030  0.001  

FP(0.5,0.5,t) 
 

0.187 0.000  0.001  0.001  0.001  0.000  0.000  0.007  0.000  0.026  0.001  

FP(0.25,0.25,t) t0.75 0.356 0.000  0.002  0.001  0.004  0.000  0.001  0.039  0.002  0.030  0.002  

FP(0.5,0.25,t) 
 

0.167 0.000  0.002  0.002  0.002  0.000  0.000  0.038  0.002  0.049  0.003  

FP(0.25,0.5,t) 
 

0.065 0.000  0.001  0.001  0.001  -0.001  0.000  0.078  0.006  0.023  0.001  

FP(0.5,0.5,t) 
 

0.038 0.001  0.001  0.001  0.001  0.000  0.000  0.044  0.002  0.019  0.000  

†In 691 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 26. Comparison of Bias and MSE of TPR (True model: Frank, n=250, 50% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Gumbel†) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

TP(0.25,0.25,t) t0.25 0.984  -0.001  0.001  0.000  0.001  0.000  0.000  -0.006  0.000  -0.009  0.000  

TP(0.5,0.25,t) 
 

0.920  0.002  0.002  0.003  0.004  0.000  0.000  0.004  0.000  -0.067  0.005  

TP(0.25,0.5,t) 
 

0.983  -0.001  0.001  0.000  0.001  0.000  0.000  -0.013  0.000  -0.011  0.000  

TP(0.5,0.5,t) 
 

0.919  0.002  0.003  0.003  0.004  0.000  0.000  0.000  0.000  -0.068  0.005  

TP(0.25,0.25,t) t0.5 0.973  0.000  0.001  0.001  0.001  0.000  0.000  -0.023  0.001  -0.006  0.000  

TP(0.5,0.25,t) 
 

0.872  0.004  0.002  0.008  0.003  0.001  0.000  -0.030  0.001  -0.051  0.003  

TP(0.25,0.5,t) 
 

0.969  0.001  0.001  0.001  0.001  0.000  0.000  -0.054  0.003  -0.009  0.000  

TP(0.5,0.5,t) 
 

0.870  0.004  0.002  0.009  0.003  0.001  0.000  -0.049  0.003  -0.054  0.004  

TP(0.25,0.25,t) t0.75 0.943  0.001  0.001  0.008  0.001  0.000  0.000  -0.044  0.002  0.008  0.000  

TP(0.5,0.25,t) 
 

0.776  0.003  0.002  0.028  0.004  0.001  0.000  -0.040  0.002  -0.009  0.001  

TP(0.25,0.5,t) 
 

0.877  0.003  0.002  0.024  0.002  0.001  0.000  -0.082  0.007  0.019  0.001  

TP(0.5,0.5,t) 
 

0.739  0.003  0.002  0.037  0.005  0.002  0.000  -0.064  0.005  -0.006  0.001  

†In 691 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 27. Comparison of Bias and MSE of Risk function (True model: Frank, n=250, 80% censoring)   

True 

value 

Semi-parametric 

(Cox PH) 

Parametric 

(Weibull) 

FNAC 

(Correctly 

specified) 

FNAC 

(Gumbel†) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

R(0.25,0.25,t) t0.25 0.000 0.002 0.000 0.003 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

R(0.5,0.25,t) 
 

0.000 0.002 0.000 0.003 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

R(0.25,0.5,t) 
 

0.000 0.005 0.000 0.006 0.000 0.000 0.000 0.002 0.000 0.000 0.000 

R(0.5,0.5,t) 
 

0.000 0.006 0.000 0.007 0.000 0.000 0.000 0.003 0.000 0.000 0.000 

R(0.25,0.25,t) t0.5 0.000 0.007 0.000 0.011 0.000 0.000 0.000 0.004 0.000 0.000 0.000 

R(0.5,0.25,t) 
 

0.000 0.009 0.000 0.013 0.000 0.000 0.000 0.005 0.000 0.000 0.000 

R(0.25,0.5,t) 
 

0.001 0.017 0.000 0.025 0.001 0.000 0.000 0.011 0.000 0.000 0.000 

R(0.5,0.5,t) 
 

0.001 0.021 0.001 0.030 0.001 0.000 0.000 0.017 0.000 0.000 0.000 

R(0.25,0.25,t) t0.75 0.000 0.026 0.001 0.034 0.001 0.000 0.000 0.018 0.000 0.000 0.000 

R(0.5,0.25,t) 
 

0.000 0.032 0.001 0.041 0.002 0.000 0.000 0.023 0.001 0.000 0.000 

R(0.25,0.5,t) 
 

0.008 0.059 0.004 0.075 0.006 0.000 0.000 0.047 0.003 -0.001 0.000 

R(0.5,0.5,t) 
 

0.011 0.072 0.006 0.089 0.009 0.001 0.000 0.071 0.006 -0.002 0.000 

†In 625 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 28. Comparison of Bias and MSE of FPR (True model: Frank, n=250, 80% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Gumbel†) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

FP(0.25,0.25,t) t0.25 0.629  0.000  0.001  0.000  0.001  0.000  0.001  -0.008  0.001  0.043  0.002  

FP(0.5,0.25,t) 
 

0.443  0.001  0.001  0.001  0.001  0.000  0.000  -0.003  0.000  0.042  0.002  

FP(0.25,0.5,t) 
 

0.440  0.001  0.001  0.000  0.001  -0.001  0.000  -0.001  0.001  0.042  0.002  

FP(0.5,0.5,t) 
 

0.355  0.001  0.001  0.001  0.001  0.000  0.000  -0.011  0.001  0.023  0.001  

FP(0.25,0.25,t) t0.5 0.599  0.001  0.001  0.000  0.002  0.001  0.001  -0.012  0.001  0.044  0.003  

FP(0.5,0.25,t) 
 

0.404  0.001  0.001  0.001  0.002  0.001  0.000  -0.007  0.000  0.049  0.003  

FP(0.25,0.5,t) 
 

0.394  0.001  0.001  0.000  0.002  0.000  0.000  -0.004  0.000  0.041  0.002  

FP(0.5,0.5,t) 
 

0.308  0.001  0.001  0.001  0.002  0.001  0.000  -0.015  0.001  0.027  0.001  

FP(0.25,0.25,t) t0.75 0.544  0.001  0.001  0.001  0.004  0.001  0.001  -0.008  0.001  0.046  0.003  

FP(0.5,0.25,t) 
 

0.337  0.001  0.001  0.002  0.003  0.001  0.000  0.001  0.000  0.058  0.004  

FP(0.25,0.5,t) 
 

0.309  0.001  0.001  0.001  0.003  0.000  0.000  0.008  0.001  0.038  0.002  

FP(0.5,0.5,t) 
 

0.227  0.001  0.001  0.000  0.003  0.001  0.000  -0.004  0.000  0.031  0.001  

†In 625 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 29. Comparison of Bias and MSE of TPR (True model: Frank, n=250, 80% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Gumbel†) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

TP(0.25,0.25,t) t0.25 0.987  0.000  0.001  0.003  0.001  0.000  0.000  0.001  0.000  -0.013  0.000  

TP(0.5,0.25,t) 
 

0.936  0.002  0.005  0.005  0.011  0.000  0.000  0.026  0.001  -0.081  0.007  

TP(0.25,0.5,t) 
 

0.987  0.001  0.001  0.003  0.001  0.000  0.000  -0.002  0.000  -0.013  0.000  

TP(0.5,0.5,t) 
 

0.936  0.003  0.005  0.005  0.011  0.000  0.000  0.024  0.001  -0.081  0.007  

TP(0.25,0.25,t) t0.5 0.984  0.000  0.001  0.001  0.002  0.000  0.000  -0.007  0.000  -0.012  0.000  

TP(0.5,0.25,t) 
 

0.921  0.002  0.004  0.005  0.009  0.001  0.000  0.005  0.000  -0.078  0.007  

TP(0.25,0.5,t) 
 

0.984  0.001  0.002  0.001  0.002  0.000  0.000  -0.018  0.000  -0.012  0.000  

TP(0.5,0.5,t) 
 

0.921  0.003  0.004  0.005  0.009  0.001  0.000  -0.002  0.000  -0.078  0.007  

TP(0.25,0.25,t) t0.75 0.977  0.001  0.002  0.003  0.001  0.000  0.000  -0.019  0.000  -0.010  0.000  

TP(0.5,0.25,t) 
 

0.890  0.005  0.004  0.013  0.009  0.001  0.000  -0.018  0.001  -0.068  0.005  

TP(0.25,0.5,t) 
 

0.975  0.004  0.003  0.004  0.002  0.000  0.000  -0.048  0.003  -0.009  0.000  

TP(0.5,0.5,t) 
 

0.889  0.007  0.005  0.014  0.009  0.001  0.000  -0.035  0.002  -0.068  0.005  

†In 625 out of 1,000 replications, the Gumbel copula estimation defaulted to the independence copula due to the parameter reaching the boundary. 
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Table 30. Comparison of Bias and MSE of Risk function (True model: Gumbel, n=250, 20% censoring)   

True 

value 

Semi-parametric 

(Cox PH) 

Parametric 

(Weibull) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

R(0.25,0.25,t) t0.25 0.000 0.003 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.001 0.000 

R(0.5,0.25,t) 
 

0.000 0.004 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.001 0.000 

R(0.25,0.5,t) 
 

0.004 0.015 0.000 0.021 0.001 0.003 0.000 0.000 0.000 0.030 0.001 

R(0.5,0.5,t) 
 

0.004 0.018 0.000 0.025 0.001 0.004 0.000 0.000 0.000 0.038 0.002 

R(0.25,0.25,t) t0.5 0.012 0.025 0.001 0.035 0.001 0.010 0.000 -0.008 0.000 -0.002 0.000 

R(0.5,0.25,t) 
 

0.014 0.031 0.001 0.043 0.002 0.012 0.000 -0.009 0.000 -0.002 0.000 

R(0.25,0.5,t) 
 

0.201 0.006 0.002 0.038 0.003 0.016 0.001 -0.019 0.001 0.046 0.003 

R(0.5,0.5,t) 
 

0.245 -0.001 0.002 0.040 0.003 0.030 0.002 -0.016 0.001 0.057 0.005 

R(0.25,0.25,t) t0.75 0.263 -0.006 0.003 0.010 0.002 0.042 0.003 -0.058 0.005 -0.095 0.010 

R(0.5,0.25,t) 
 

0.303 -0.001 0.004 0.020 0.003 0.049 0.004 -0.056 0.005 -0.106 0.013 

R(0.25,0.5,t) 
 

0.864 -0.024 0.004 -0.026 0.003 -0.027 0.001 0.051 0.003 0.007 0.001 

R(0.5,0.5,t) 
 

0.916 -0.026 0.002 -0.025 0.002 -0.013 0.000 0.043 0.002 0.007 0.000 
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Table 31. Comparison of Bias and MSE of FPR (True model: Gumbel, n=250, 20% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

FP(0.25,0.25,t) t0.25 0.549 0.000  0.001  0.001  0.001  0.052  0.004  0.019  0.001  0.015  0.001  

FP(0.5,0.25,t) 
 

0.343 0.001  0.001  0.001  0.001  0.029  0.001  0.020  0.001  0.034  0.002  

FP(0.25,0.5,t) 
 

0.327 0.000  0.001  0.000  0.001  0.040  0.002  0.026  0.001  0.029  0.001  

FP(0.5,0.5,t) 
 

0.235 0.000  0.001  0.000  0.001  0.026  0.001  0.030  0.001  0.030  0.001  

FP(0.25,0.25,t) t0.5 0.415 0.000  0.002  0.000  0.002  0.051  0.003  -0.001  0.001  0.002  0.001  

FP(0.5,0.25,t) 
 

0.216 0.000  0.001  0.000  0.001  0.022  0.001  -0.008  0.000  0.027  0.001  

FP(0.25,0.5,t) 
 

0.136 0.000  0.001  0.000  0.001  0.030  0.001  -0.007  0.000  0.022  0.001  

FP(0.5,0.5,t) 
 

0.082 -0.001  0.001  -0.001  0.001  0.016  0.000  -0.002  0.000  0.023  0.001  

FP(0.25,0.25,t) t0.75 0.189 0.001  0.002  0.001  0.002  0.042  0.002  -0.025  0.001  -0.014  0.001  

FP(0.5,0.25,t) 
 

0.080 0.001  0.001  0.001  0.001  0.015  0.000  -0.019  0.001  0.003  0.000  

FP(0.25,0.5,t) 
 

0.015 0.000  0.000  0.000  0.000  0.011  0.000  -0.009  0.000  -0.001  0.000  

FP(0.5,0.5,t) 
 

0.007 0.000  0.000  0.000  0.000  0.005  0.000  -0.004  0.000  0.001  0.000  
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Table 32. Comparison of Bias and MSE of TPR (True model: Gumbel, n=250, 20% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

TP(0.25,0.25,t) t0.25 0.976 0.000  0.000  0.001  0.000  0.000  0.000  0.008  0.000  -0.002  0.000  

TP(0.5,0.25,t) 
 

0.909 0.001  0.002  0.002  0.002  -0.003  0.000  0.011  0.000  -0.056  0.004  

TP(0.25,0.5,t) 
 

0.975 0.001  0.001  0.001  0.000  -0.002  0.000  0.008  0.000  -0.008  0.000  

TP(0.5,0.5,t) 
 

0.909 0.001  0.002  0.002  0.002  -0.004  0.000  0.012  0.000  -0.060  0.004  

TP(0.25,0.25,t) t0.5 0.938 0.001  0.001  0.003  0.001  0.000  0.000  0.024  0.001  0.022  0.001  

TP(0.5,0.25,t) 
 

0.790 0.002  0.002  0.007  0.002  -0.007  0.001  0.046  0.003  0.012  0.001  

TP(0.25,0.5,t) 
 

0.901 0.000  0.001  0.004  0.001  -0.009  0.000  0.039  0.002  0.025  0.001  

TP(0.5,0.5,t) 
 

0.768 0.001  0.002  0.008  0.002  -0.011  0.001  0.055  0.004  0.012  0.001  

TP(0.25,0.25,t) t0.75 0.860 0.001  0.001  0.010  0.001  0.000  0.000  0.040  0.002  0.066  0.005  

TP(0.5,0.25,t) 
 

0.649 0.002  0.001  0.019  0.002  -0.006  0.001  0.057  0.004  0.077  0.007  

TP(0.25,0.5,t) 
 

0.683 0.001  0.001  0.025  0.002  0.003  0.001  0.059  0.004  0.104  0.012  

TP(0.5,0.5,t) 
 

0.556 0.001  0.002  0.025  0.002  -0.002  0.001  0.070  0.006  0.089  0.009  
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Table 33. Comparison of Bias and MSE of Risk function (True model: Gumbel, n=250, 50% censoring)   

True 

value 

Semi-parametric 

(Cox PH) 

Parametric 

(Weibull) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

R(0.25,0.25,t) t0.25 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R(0.5,0.25,t) 
 

0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R(0.25,0.5,t) 
 

0.000 0.004 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.006 0.000 

R(0.5,0.5,t) 
 

0.000 0.004 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.007 0.000 

R(0.25,0.25,t) t0.5 0.001 0.006 0.000 0.009 0.000 0.001 0.000 -0.001 0.000 -0.001 0.000 

R(0.5,0.25,t) 
 

0.001 0.007 0.000 0.011 0.000 0.001 0.000 -0.001 0.000 -0.001 0.000 

R(0.25,0.5,t) 
 

0.025 0.022 0.001 0.035 0.002 0.006 0.000 -0.009 0.000 0.019 0.001 

R(0.5,0.5,t) 
 

0.031 0.026 0.001 0.042 0.002 0.009 0.000 -0.010 0.000 0.022 0.001 

R(0.25,0.25,t) t0.75 0.034 0.023 0.001 0.031 0.001 0.012 0.000 -0.022 0.001 -0.026 0.001 

R(0.5,0.25,t) 
 

0.041 0.029 0.001 0.040 0.002 0.015 0.001 -0.025 0.001 -0.031 0.001 

R(0.25,0.5,t) 
 

0.417 -0.074 0.012 -0.061 0.008 0.000 0.002 0.024 0.004 0.001 0.003 

R(0.5,0.5,t) 
 

0.490 -0.090 0.014 -0.071 0.009 0.012 0.002 0.030 0.004 -0.012 0.003 
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Table 34. Comparison of Bias and MSE of FPR (True model: Gumbel, n=250, 50% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

FP(0.25,0.25,t) t0.25 0.583 0.000  0.001  0.000  0.001  0.027  0.002  0.025  0.002  0.035  0.002  

FP(0.5,0.25,t) 
 

0.385 0.001  0.001  0.001  0.001  0.017  0.001  0.029  0.001  0.049  0.003  

FP(0.25,0.5,t) 
 

0.379 0.000  0.001  0.000  0.001  0.024  0.001  0.033  0.002  0.047  0.003  

FP(0.5,0.5,t) 
 

0.285 0.000  0.001  0.000  0.001  0.017  0.001  0.038  0.002  0.043  0.002  

FP(0.25,0.25,t) t0.5 0.503 0.000  0.001  -0.001  0.002  0.026  0.002  0.012  0.001  0.026  0.001  

FP(0.5,0.25,t) 
 

0.293 0.000  0.001  0.000  0.002  0.012  0.001  0.009  0.001  0.047  0.003  

FP(0.25,0.5,t) 
 

0.257 -0.002  0.001  -0.002  0.002  0.019  0.001  0.013  0.001  0.034  0.002  

FP(0.5,0.5,t) 
 

0.173 -0.002  0.001  -0.002  0.001  0.011  0.000  0.017  0.001  0.037  0.002  

FP(0.25,0.25,t) t0.75 0.356 0.000  0.002  -0.001  0.004  0.021  0.001  -0.008  0.001  0.012  0.001  

FP(0.5,0.25,t) 
 

0.174 0.000  0.002  0.000  0.002  0.006  0.000  -0.014  0.001  0.031  0.001  

FP(0.25,0.5,t) 
 

0.080 -0.001  0.001  0.000  0.001  0.012  0.000  -0.019  0.000  0.006  0.000  

FP(0.5,0.5,t) 
 

0.045 -0.001  0.001  -0.001  0.001  0.005  0.000  -0.010  0.000  0.010  0.000  
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Table 35. Comparison of Bias and MSE of TPR (True model: Gumbel, n=250, 50% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

TP(0.25,0.25,t) t0.25 0.986 0.010  0.000  0.000  0.001  0.001  0.000  0.002  0.000  -0.009  0.000  

TP(0.5,0.25,t) 
 

0.944 -0.107  0.012  0.003  0.002  0.002  0.000  -0.005  0.000  -0.080  0.007  

TP(0.25,0.5,t) 
 

0.985 -0.047  0.002  0.001  0.001  0.001  0.000  0.002  0.000  -0.011  0.000  

TP(0.5,0.5,t) 
 

0.944 -0.191  0.037  0.003  0.002  0.002  0.000  -0.005  0.000  -0.081  0.007  

TP(0.25,0.25,t) t0.5 0.963 0.033  0.001  0.002  0.001  0.002  0.000  0.014  0.000  0.005  0.000  

TP(0.5,0.25,t) 
 

0.864 -0.028  0.001  0.009  0.003  0.002  0.000  0.028  0.001  -0.033  0.002  

TP(0.25,0.5,t) 
 

0.957 -0.019  0.000  0.003  0.001  0.000  0.000  0.018  0.000  0.005  0.000  

TP(0.5,0.5,t) 
 

0.861 -0.108  0.012  0.009  0.003  0.001  0.000  0.030  0.001  -0.034  0.002  

TP(0.25,0.25,t) t0.75 0.920 0.076  0.006  0.013  0.001  0.002  0.000  0.030  0.001  0.032  0.001  

TP(0.5,0.25,t) 
 

0.748 0.089  0.009  0.034  0.004  0.000  0.001  0.052  0.003  0.029  0.002  

TP(0.25,0.5,t) 
 

0.844 0.094  0.010  0.030  0.003  -0.003  0.000  0.052  0.003  0.059  0.004  

TP(0.5,0.5,t) 
 

0.705 0.048  0.003  0.043  0.005  -0.002  0.001  0.065  0.005  0.042  0.003  
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Table 36. Comparison of Bias and MSE of Risk function (True model: Gumbel, n=250, 80% censoring)   

True 

value 

Semi-parametric 

(Cox PH) 

Parametric 

(Weibull) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

R(0.25,0.25,t) t0.25 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

R(0.5,0.25,t) 
 

0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

R(0.25,0.5,t) 
 

0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

R(0.5,0.5,t) 
 

0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

R(0.25,0.25,t) t0.5 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

R(0.5,0.25,t) 
 

0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

R(0.25,0.5,t) 
 

0.000  0.001  0.000  0.002  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

R(0.5,0.5,t) 
 

0.000  0.002  0.000  0.003  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

R(0.25,0.25,t) t0.75 0.000  0.001  0.000  0.002  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

R(0.5,0.25,t) 
 

0.000  0.002  0.000  0.003  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

R(0.25,0.5,t) 
 

0.009  0.007  0.000  0.010  0.000  0.001  0.000  -0.007  0.000  -0.006  0.000  

R(0.5,0.5,t) 
 

0.011  0.008  0.000  0.012  0.000  0.001  0.000  -0.008  0.000  -0.008  0.000  
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Table 37. Comparison of Bias and MSE of FPR (True model: Gumbel, n=250, 80% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

FP(0.25,0.25,t) t0.25 0.616  0.001  0.001  0.000  0.001  0.005  0.001  0.027  0.002  0.043  0.003  

FP(0.5,0.25,t) 
 

0.429  0.001  0.001  0.001  0.001  0.005  0.001  0.032  0.002  0.048  0.003  

FP(0.25,0.5,t) 
 

0.429  0.000  0.001  0.000  0.001  0.005  0.001  0.035  0.002  0.048  0.003  

FP(0.5,0.5,t) 
 

0.338  0.000  0.001  0.000  0.001  0.006  0.000  0.041  0.002  0.036  0.002  

FP(0.25,0.25,t) t0.5 0.586  0.000  0.001  0.000  0.002  0.005  0.001  0.022  0.001  0.041  0.003  

FP(0.5,0.25,t) 
 

0.388  0.001  0.001  0.001  0.002  0.003  0.000  0.026  0.001  0.052  0.003  

FP(0.25,0.5,t) 
 

0.383  0.000  0.001  0.000  0.002  0.005  0.001  0.027  0.001  0.043  0.003  

FP(0.5,0.5,t) 
 

0.289  0.000  0.001  0.000  0.002  0.004  0.000  0.033  0.001  0.038  0.002  

FP(0.25,0.25,t) t0.75 0.531  0.000  0.001  -0.001  0.004  0.004  0.001  0.015  0.001  0.038  0.002  

FP(0.5,0.25,t) 
 

0.323  0.000  0.001  0.000  0.004  0.002  0.000  0.015  0.001  0.056  0.004  

FP(0.25,0.5,t) 
 

0.300  -0.001  0.002  -0.002  0.003  0.003  0.000  0.016  0.001  0.035  0.002  

FP(0.5,0.5,t) 
 

0.210  -0.001  0.001  -0.001  0.002  0.002  0.000  0.021  0.001  0.037  0.002  
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Table 38. Comparison of Bias and MSE of TPR (True model: Gumbel, n=250, 80% censoring)   

True 

value 

Heagerty 

(Kaplan Meier) 

Uno 

(IPCW) 

FNAC 

(Correctly 

specified) 

FNAC 

(Frank) 

FNAC 

(Clayton) 

    Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

TP(0.25,0.25,t) t0.25 0.994 -0.012  0.000  0.000  0.001  0.000  0.000  0.000  0.001  -0.020  0.001  

TP(0.5,0.25,t) 
 

0.978 -0.093  0.009  0.001  0.004  0.001  0.000  0.001  0.004  -0.123  0.016  

TP(0.25,0.5,t) 
 

0.994 0.021  0.000  0.000  0.001  0.000  0.000  0.000  0.001  -0.020  0.001  

TP(0.5,0.5,t) 
 

0.978 -0.080  0.006  0.001  0.004  0.001  0.000  0.001  0.004  -0.123  0.016  

TP(0.25,0.25,t) t0.5 0.986 -0.003  0.000  0.002  0.001  0.001  0.000  0.002  0.001  -0.015  0.000  

TP(0.5,0.25,t) 
 

0.946 -0.062  0.004  0.009  0.004  0.003  0.000  0.009  0.004  -0.104  0.012  

TP(0.25,0.5,t) 
 

0.986 0.029  0.001  0.002  0.001  0.001  0.000  0.002  0.001  -0.015  0.000  

TP(0.5,0.5,t) 
 

0.946 -0.048  0.002  0.009  0.004  0.003  0.000  0.009  0.004  -0.104  0.012  

TP(0.25,0.25,t) t0.75 0.971 0.012  0.000  0.006  0.002  0.002  0.000  0.006  0.002  -0.006  0.000  

TP(0.5,0.25,t) 
 

0.891 -0.007  0.000  0.024  0.008  0.005  0.000  0.024  0.008  -0.071  0.006  

TP(0.25,0.5,t) 
 

0.969 0.047  0.002  0.007  0.002  0.001  0.000  0.007  0.002  -0.004  0.000  

TP(0.5,0.5,t) 
 

0.890 0.009  0.000  0.024  0.008  0.005  0.000  0.024  0.008  -0.069  0.006  
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5. Illustration : Application to PBC data 

To illustrate the practical applicability of the proposed framework, we applied our model 

to data from the Mayo Clinic trial in Primary Biliary Cirrhosis (PBC), conducted between 

1974 and 1984. This dataset, available in the ‘survival’ package, consists of 312 patients 

diagnosed with PBC, a progressive autoimmune liver disease that often requires liver 

transplantation as a definitive treatment. Thus, the ability to accurately identify high-risk 

patients is critical for clinical decision-making related to transplantation. 

Previous work by Bansal and Heagerty (2019) developed two linear predictors using 

Cox regression models. The first, referred to as 4-cov, included orthogonal polynomials of 

degree 1 for albumin and age, the natural logarithm of prothrombin time, and a binary 

edema status variable (indicating the presence of edema despite diuretic therapy). The 

second predictor, mayo, augments the 4-cov model by including the natural logarithm of 

bilirubin, thereby aligning with the original Mayo risk score. 

In this application, we used the 4-cov score as an established biomarker (denoted 𝑀2) 

and evaluated the discriminative and predictive ability of the natural logarithm of bilirubin 

as a new candidate biomarker ( 𝑀1). This setup allowed us to assess the diagnostic 

performance of bilirubin in the presence of the 4-cov score using our copula-based 

conditional and joint evaluation framework. 

Among the 312 patients, 125 (40%) died during follow-up, and 19 underwent liver 

transplantation. To evaluate biomarker performance in predicting mortality, transplanted 

patients were treated as censored at the time of transplantation. The median survival time 

was 3,395 days, and the Kaplan–Meier estimates of survival at 1, 4, and 6 years were 92.9%, 

75.2%, and 67.7%, respectively. 

Table 39. Comparison of Goodness-of-fit 

 Frank Clayton Gumbel 

Log-likelihood 1928.315 1971.42 1877.759 

AIC -3836.63 -3924.84 -3739.52 

BIC -3832.65 -3921.26 -3736.33 
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Figure 2. Conditional residual plots under Gumbel-based FNAC 

 

Table 40. MLE estimates under Gumbel-based FNAC 

 Estimates SE 

𝜃1 1.345 0.233 

𝜃2 1.489 0.243 

𝜔1 -0.710 0.061 

log (𝜔2) 0.236 0.049 

𝜔3 5.926 1.245 

𝛼1 8.857 0.062 

log (𝛼2) 0.224 0.048 

𝛼3 4.611 0.771 

log (𝜆1) 0.060 0.073 

log (𝜆2) 3.596 0.078 

We fitted the proposed fully nested Archimedean copula (FNAC) model using each of 

the following copula families: Frank, Clayton, and Gumbel. The marginals were modeled 

using skew-normal distributions for the biomarkers and a Weibull distribution for survival 

time. Model fitting was conducted via maximum likelihood estimation, and model 

comparison based on the AIC and BIC indicated that the Gumbel copula provided the best 

fit among the candidates (Table 40). Residual diagnostic plots were examined to visually 

assess the goodness-of-fit of the model under Gumbel (Figure 2), which indicated an 
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adequate model fit. Parameter estimates under the Gumbel-based FNAC model were 

obtained as shown in Table 41. Kendall’s tau were estimated based on the dependence 

parameters with 𝜏1 = 0.257, 𝜏2 = 0.328 . This suggests moderate intra-marker 

dependence and slightly weaker marker-to-outcome dependence, both of which are 

appropriately accommodated within the nested copula structure. 

 

 

Figure 3. Estimate of adjusted ROC I/D and AUC of bilirubin with 95%CI   

 

 

Figure 4. Estimate of adjusted ROC C/D and AUC of bilirubin with 95%CI  
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Figure 5. Estimate of adjusted Predictive curve and STG of bilirubin with 95%CI 

Adjusted ROC curves and associated AUC values were estimated under both the 

incident/dynamic (I/D) and cumulative/dynamic (C/D) frameworks (Figures 3, 4). Under 

the I/D framework, the AUC at year 1 was relatively high but it decreased over time. In 

contrast, the C/D framework yielded consistently higher AUC values across all time points, 

with an AUC of 0.768 (95% CI: 0.687–0.803) at year 1, decreasing to 0.678 (95% CI: 

0.615–0.713) at year 6.  

We also evaluated the adjusted predictiveness function ( 𝐴𝑅 ) and the adjusted 

standardized total gain (𝐴𝑆𝑇𝐺), which summarizes the global predictiveness. As shown in 

Figure 5, the adjusted STG values at years 1, 4, and 6 were 0.226 (95% CI: 0.218–0.326), 

0.176 (95% CI: 0.154–0.257), and 0.164 (95% CI: 0.140–0.238), respectively. This 

decreasing trend suggests a diminishing prognostic value of bilirubin as the follow-up time 

increases, consistent with the AUC patterns. 

We further evaluated joint discrimination and predictiveness using an and classifier that 

combined 𝑀1 and 𝑀2. Under the I/D framework (Figure 6), the joint model provided 

limited gain compared to the univariate ROC based on the 4-cov model, with AUC values 

consistently lower across the 1-year, 4-year, and 6-year horizons. 
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Figure 6. Estimate of weighted ROC I/D and AUC of 4-cov and bilirubin 

However, under the C/D framework (Figure 7), the joint ROC curves showed an 

improvement in the high-specificity region. In this region, the partial AUCs suggested an 

enhanced discriminative ability. 

For joint predictiveness, the STG values were estimated as 0.415, 0.335, and 0.316 at 1, 

4, and 6 years, respectively (Figure 8), showing a declining trend consistent with previous 

findings. These results demonstrate the significant predictive value of the ‘and’ combined 

marker, especially during early follow-up. 
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Figure 7. Estimate of weighted ROC C/D and AUC of 4-cov and bilirubin 

The FNAC framework flexibly yields diagnostic measures that incorporate complex 

dependence structures that capture both intra-marker and marker-to-outcome dependence. 

As a result, bilirubin contributed to early risk stratification after adjusting for the 4-cov 

score. In addition, when evaluated in conjunction with the 4-cov model using an and-

combination rule, bilirubin helped identify individuals who would be misclassified as high-

risk. 
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Figure 8. Estimate of Predictiveness surface of 4-cov and bilirubin 
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6. Conclusion and Discussion 

In this study, we proposed a diagnostic evaluation framework for survival outcomes 

involving two dependent biomarkers using fully nested Archimedean copulas (FNACs). 

The model captures both intra-marker and marker-to-survival dependencies within a 

unified joint probabilistic structure and allows two complementary evaluation strategies: 

conditional and joint. Through simulation studies conducted across various censoring 

levels and copula families, as well as an application to real-world clinical data, we 

demonstrated the practical utility and interpretability of the copula-based framework for 

biomarker evaluation under complex dependency structures. 

The proposed FNAC framework showed strong performance in identifying the correct 

copula structure based on the AIC and BIC. In nearly all simulation scenarios, the true 

copula family was identified with perfect accuracy (100%), except in cases where the 

model failed to adequately capture the dependence structure and was reduced to an 

independence copula. Performance, in terms of bias and Mean Squared Error(MSE), was 

optimal when the copula family was correctly specified. However, under Gumbel models 

with moderate censoring, FNAC-Gumbel exhibited slightly inflated bias and MSE. This 

appears to stem from the inherent difficulty of estimating upper-tail dependence under 

right-censoring, which effectively truncates the survival distribution’s upper tail. 

Addressing this limitation may require alternative tail modeling or censoring-robust 

estimation strategies.  

We further examined the estimation performance of key diagnostic quantities—

specifically, the risk function and the time-dependent ROC function. FNAC models 

correctly specified with the true copula family consistently outperformed standard methods 

across all scenarios, even under the more challenging Gumbel setting. Interestingly, even 

mis-specified FNAC models yielded competitive results in estimating the risk function 

when the dependence structure was at least partially captured. In contrast, time-dependent 

ROC estimation was more sensitive to model misspecification, often resulting in 

diminished accuracy. This discrepancy likely arises because risk estimation is largely 

influenced by marginal distributions, while ROC-based discrimination depends more 

critically on the precision of conditional distributions. 
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Model misspecification had further implications in the Gumbel scenarios. FNAC models 

often failed to converge to a valid dependence structure and instead reverted to an 

independence copula. Consequently, the estimates in such cases resembled those from 

conventional approaches, such as Cox regression or Weibull models, which assume no 

explicit dependence between markers. This convergence pattern reinforces the importance 

of modeling dependence, even when the copula family is not precisely specified, to avoid 

misleading or oversimplified diagnostic conclusions. 

The nested nature of the FNAC model, while structurally elegant, imposes important 

constraints. The nesting condition, which requires that the inner copula (linking biomarker 

and outcome) have stronger dependence than the outer copula (between biomarkers), may 

limit its applicability. In settings where the added biomarker demonstrates substantially 

weaker diagnostic value than the existing one, this assumption may be violated. 

Nevertheless, such situations are relatively uncommon in practice, as most novel 

biomarkers are proposed based on preliminary evidence suggesting at least moderate utility. 

In this context, the FNAC structure remains a practical choice for many real-world 

applications. 

To ensure identifiability and analytic tractability, we implemented the FNAC model 

using three well-known Archimedean copula families—Clayton, Frank, and Gumbel. 

These families were chosen for their ability to represent a range of tail dependencies and 

their mathematical convenience. We limited our analysis to homogeneous nesting 

structures (e.g., Clayton–Clayton), which are well defined and computationally stable. 

While extensions to heterogeneous or asymmetric copula structures have been proposed in 

the literature, these present substantial challenges. Many combinations are not 

mathematically valid or lead to near-independence structures, and the complexity of 

modeling margins under censoring further compounds these difficulties. As shown by Joe 

(1997) and Serinaldi and Grimaldi (2007), asymmetric and mixture copula models offer 

promising theoretical generalizations, but practical implementation remains nontrivial, 

especially in censored survival data settings. 

Despite these challenges, our framework provides several notable advantages. First, both 

conditional and joint diagnostic measures can be derived from a single joint model without 

the need for constructing linear predictors. This allows the evaluation of biomarkers on 

their original measurement scale. Second, our approach retains all marker values and all 

event or censoring times, avoiding the loss of information often encountered in 

conventional regression-based summaries. Third, all diagnostic quantities—such as risk 
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and ROC functions—are derived directly from the joint distribution of the biomarkers and 

the outcome. No normality assumption is imposed on the biomarkers, and their non-

Gaussian, flexible distributions contribute meaningfully to the interpretation of their 

diagnostic performance. 

In summary, the proposed FNAC-based framework provides a unified and flexible 

methodology for evaluating biomarkers in the presence of censoring and inter-marker 

dependence. Our findings underscore the critical importance of capturing dependence 

structures, particularly for accurate risk estimation, and highlight the potential of nested 

copula models to enhance diagnostic accuracy in survival analysis. Although the model 

imposes structural constraints and relies on a limited set of copula families, it remains 

computationally feasible and interpretable in practice. As methodological developments in 

nested and mixture copula modeling continue to advance, the practical scope of such 

frameworks is expected to expand, offering valuable tools for biomarker evaluation in 

clinical and epidemiological research.  



78 

 

References 

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal 

of statistics, 171-178.  

Bansal, A., & Heagerty, P. J. (2019). A comparison of landmark methods and time-dependent ROC 

methods to evaluate the time-varying performance of prognostic markers for survival 

outcomes. Diagnostic and prognostic research, 3, 1-13.  

Bura, E., & Gastwirth, J. L. (2001). The binary regression quantile plot: assessing the importance of 

predictors in binary regression visually. Biometrical Journal: Journal of Mathematical 

Methods in Biosciences, 43(1), 5-21.  

Chaieb, L. L., Rivest, L.-P., & Abdous, B. (2006). Estimating survival under a dependent truncation. 

Biometrika, 93(3), 655-669.  

Cook, N. R. (2007). Use and misuse of the receiver operating characteristic curve in risk prediction. 

Circulation, 115(7), 928-935.  

Cox, D. R., & Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical 

Society: Series B (Methodological), 30(2), 248-265.  

Dunn, P. K., & Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational and 

graphical statistics, 5(3), 236-244.  

Embrechts, P., Lindskog, F., & McNeil, A. (2003). Modelling dependence with copulas and 

applications to risk management. Handbook of heavy tailed distributions in finance, 8(1), 

329-384.  

Escarela, G., Vásquez, A. R., González-Farías, G., & Márquez-Urbina, J. U. (2023). Copula 

modeling for the estimation of measures of marker classification and predictiveness 

performance with survival outcomes. Statistical Methods in Medical Research, 32(6), 

1203-1216.  

Genest, C., & MacKay, J. (1986). The joy of copulas: Bivariate distributions with uniform marginals. 

The American Statistician, 40(4), 280-283.  

Heagerty, P. J., & Zheng, Y. (2005). Survival Model Predictive Accuracy and ROC Curves. 

Biometrics, 61(1), 92-105.  

Hofert, M. (2011). Efficiently sampling nested Archimedean copulas. Computational Statistics & 

Data Analysis, 55(1), 57-70.  

Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC press.  



79 

 

Joe, H. (2015). Dependence modeling with copulas. CRC Press, Taylor & Francis Group.  

Lawless, J. F. (2003). Statistical models and methods for lifetime data (2nd ed.). Wiley-Interscience.  

McNeil, A. J. (2008). Sampling nested Archimedean copulas. Journal of Statistical Computation 

and Simulation, 78(6), 567-581.  

Melo, L. C. B., Yela, J. P., & Cuevas, J. R. T. (2020). Using Copula Functions to Estimate The AUC 

for Two Dependent Diagnostic Tests. Revista Colombiana de Estadística, 43(2), 315-344.  

Nelsen, R. B. (2006). An introduction to copulas. Springer.  

Pencina, M. J., D' Agostino Sr, R. B., D' Agostino Jr, R. B., & Vasan, R. S. (2008). Evaluating the 

added predictive ability of a new marker: From area under the ROC curve to reclassification 

and beyond. Statistics in medicine, 27(2), 157-172.  

Pepe, M. S., Fan, J., & Seymour, C. W. (2013). Estimating the receiver operating characteristic curve 

in studies that match controls to cases on covariates. Academic radiology, 20(7), 863-873.  

Pepe, M. S., & Janes, H. (2011). Commentary: Reporting standards are needed for evaluations of 

risk reclassification. International journal of epidemiology, 40(4), 1106-1108.  

Pepe, M. S., Janes, H., Longton, G., Leisenring, W., & Newcomb, P. (2004). Limitations of the odds 

ratio in gauging the performance of a diagnostic, prognostic, or screening marker. American 

journal of epidemiology, 159(9), 882-890.  

Schmitz, V. (2003). Copulas and stochastic processes Bibliothek der RWTH Aachen].  

Serinaldi, F., & Grimaldi, S. (2007). Fully nested 3-copula: procedure and application on 

hydrological data. Journal of Hydrologic Engineering, 12(4), 420-430.  

Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Annales de l'ISUP,  

Uno, H., Cai, T., Tian, L., & Wei, L.-J. (2007). Evaluating prediction rules for t-year survivors with 

censored regression models. Journal of the American Statistical Association, 102(478), 

527-537.  

Van Domelen, D. R., Mitchell, E. M., Perkins, N. J., Schisterman, E. F., Manatunga, A. K., Huang, 

Y., & Lyles, R. H. (2021). Gamma models for estimating the odds ratio for a skewed 

biomarker measured in pools and subject to errors. Biostatistics, 22(2), 250-265.  

Wang, M.-C., & Li, S. (2012). Bivariate marker measurements and ROC analysis. Biometrics, 68(4), 

1207-1218.  

Whelan, N. (2004). Sampling fromArchimedean copulas. Quantitative finance, 4(3), 339.  



80 

 

Zhang, Y., & Shao, Y. (2020). A numerical strategy to evaluate performance of predictive scores via 

a copula‐based approach. Statistics in medicine, 39(20), 2671-2684.  

 



81 

 

Appendix 

This appendix provides general formulas for the derivatives of Archimedean copula 

functions and their generators, which are essential for constructing likelihood contributions 

in parametric copula models. These expressions are also relevant for deriving diagnostic 

measures based on the FNAC model. 

A.1. General Derivatives of the Inverse Generator 

Let 𝜑𝜃(𝑡) be a generator of an Archimedean copula with an inverse 𝜑𝜃
−1(𝑡). The 

following identities describe the derivatives of 𝜑𝜃
−1 with respect to 𝑡: 

𝜕

𝜕𝑡
𝜑𝜃

−1(𝑡) =
1

𝜑𝜃
′(𝜑𝜃

−1(𝑡))
  

𝜕2

𝜕𝑡2 𝜑𝜃
−1(𝑡) =

−𝜑𝜃′′(𝜑𝜃
−1(𝑡))

(𝜑𝜃
′(𝜑𝜃

−1(𝑡)))3  

𝜕3

𝜕𝑡3 𝜑𝜃
−1(𝑡) =

−𝜑𝜃
′′′(𝜑𝜃

−1(𝑡))𝜑′(𝜑𝜃
−1(𝑡))+3{𝜑𝜃

′′(𝜑𝜃
−1(𝑡))}

2

{𝜑𝜃
′(𝜑𝜃

−1(𝑡))}
5 . 

A.2. Derivatives of the Bivariate Archimedean Copula 

Recall that C(𝑢, v) is defined in Equation (2) as an Archimedean copula with a 

generator 𝜑𝜃. The first-order partial derivative of the copula with respect to 𝑢 is obtained 

by applying the chain rule as follows 

∂C(u, v)

∂𝑢
 = 𝜑𝜃

−1′
(𝜑𝜃(u) + 𝜑𝜃(v))𝜑𝜃

′(𝑢) =
𝜑𝜃

′(𝑢)

𝜑𝜃
′(C(𝑢, v))

. 

The second-order derivative with respect to u is derived as 

∂2C(u, v)

∂𝑢2
= 𝜑𝜃

−1′′
(𝜑𝜃(u) + 𝜑𝜃(v))(𝜑𝜃

′(𝑢))
2

+ 𝜑𝜃
−1′

(𝜑𝜃(u) + 𝜑𝜃(v))𝜑𝜃
′′(𝑢) 

                         = −
𝜑𝜃

′′(C(𝑢, v))(𝜑𝜃
′(𝑢))

2

{𝜑𝜃
′(C(𝑢, v))}3

+
𝜑𝜃

′′(𝑢)

𝜑𝜃
′(C(𝑢, v))

. 
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The mixed second-order partial derivative with respect to u and v is similarly derived 

as 

∂C(u, v)

∂𝑢 ∂𝑣
= 𝜑𝜃

−1′′
(𝜑𝜃(u) + 𝜑𝜃(v))𝜑𝜃

′(𝑢)𝜑𝜃
′(𝑣) = −

𝜑𝜃
′′(C(𝑢, v))𝜑𝜃

′(𝑢)𝜑𝜃
′(𝑣)

{𝜑𝜃
′(C(𝑢, v))}3

. 

Continuing this process, the third-order mixed derivative with respect to u and twice 

with respect to v is expressed as follows 

∂2C(u, v)

∂𝑢 ∂v2
= 𝜑𝜃

−1′′′
(𝜑𝜃(u) + 𝜑𝜃(v))𝜑𝜃

′(𝑢)(𝜑𝜃
′(𝑣))

2
+ 𝜑𝜃

−1′′
(𝜑𝜃(u) + 𝜑𝜃(v))𝜑𝜃

′(𝑢)𝜑𝜃
′′(𝑣) 

=
−𝜑𝜃

′′′(C(𝑢, v))𝜑𝜃
′(C(𝑢, v)) + 3{𝜑𝜃′′(C(𝑢, v))}2

{𝜑𝜃
′(C(𝑢, v))}5 𝜑𝜃

′(𝑢) (𝜑𝜃
′(𝑣))

2
−

𝜑𝜃′′(C(𝑢, v))𝜑𝜃
′(𝑢)𝜑𝜃

′′(𝑣)

{𝜑𝜃
′(C(𝑢, v))}3 . 

A.3. Derivatives of Generator Functions for the three copula types 

We summarize the symbolic derivatives of the generator functions 𝜑𝜃(𝑡) for three 

commonly used Archimedean families: Clayton, Frank and Gumbel.  

For the Clayton copula, the generator is given by 

𝜑𝜃(t) = 𝑡−𝜃 − 1, where 𝜃 ≥ 0. 

Differentiating this expression, we obtain the first derivative as 

𝜑𝜃′(t) = (−𝜃)𝑡−𝜃−1, 

the second derivative as 

𝜑𝜃′′(t) = (−𝜃)(−𝜃 − 1)𝑡−𝜃−2, 

and the third derivative as 

𝜑𝜃′′′(t) = (−𝜃)(−𝜃 − 1)(−𝜃 − 2)𝑡−𝜃−3. 

For the Frank copula, the generator is defined as 
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𝜑𝜃(t) = −log (
exp(−𝜃𝑡)−1

exp(−𝜃)−1
), where 𝜃 ≠ 0. 

The first derivative with respect to t is given by 

𝜑𝜃′(t) =
𝜃 exp(−𝜃𝑡)

exp(−𝜃𝑡) − 1
. 

Taking the second derivative, we obtain 

𝜑𝜃
′′(t) =

𝜃2 exp(−𝜃𝑡)

(exp(−𝜃𝑡) − 1)2
 

and the third derivative is 

𝜑𝜃′′′(t) =
𝜃3 exp(−𝜃𝑡) (exp(−𝜃𝑡) + 1)

(exp(−𝜃𝑡) − 1)3
. 

For the Gumbel copula, the generator takes the form 

𝜑𝜃(t) = (− log 𝑡)𝜃, where 𝜃 ≥ 1. 

The first derivative is derived as 

𝜑𝜃′(t) = (−𝜃/𝑡)(− log 𝑡)𝜃−1. 

Differentiating one more, we obtain the second derivative 

𝜑𝜃
′′(t) =

𝜃(𝜃−1)

𝑡2
(− log 𝑡)𝜃−2 +

𝜃

𝑡2
(− log 𝑡)𝜃−1, 

and the third derivative is given by 

𝜑𝜃
′′′(t) = −

𝜃(𝜃−1)(𝜃−2)

𝑡3
(− log 𝑡)𝜃−3 −

3𝜃(𝜃−1)

𝑡3
(− log 𝑡)𝜃−2 −

2𝜃

𝑡3
(− log 𝑡)𝜃−1. 
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Abstract in Korean 

 

네스티드 코퓰라 모형을 이용한 상관 바이오마커의  

생존 예후 진단 성능 평가 체계 개발 

 

 

정밀의료에서 생존 예후를 예측하기 위한 바이오마커의 성능을 정밀하게 평가하는 

것은 매우 중요하며, 특히 상호 종속적인 다중 바이오마커가 포함된 경우 그 

중요성이 더욱 부각된다. 기존의 회귀 기반 접근법은 일반적으로 주변 효과(marginal 

effect)에 초점을 맞추고 바이오 마커 간 종속성을 단순한 다중공선성의 원인으로 

간주하여 이를 무시하는 경향이 있다. 

이러한 한계를 극복하기 위해, 본 연구에서는 두 개의 상호 종속적인 바이오 

마커와 생존시간의 공동 분포를 유연하게 모델링할 수 있는 완전 중첩 아키메디언 

코퓰라(FNAC: Fully Nested Archimedean Copulas) 기반의 진단 평가 프레임워크를 

제안한다. 이 프레임워크는 위계적(hierarchical), 비대칭적(asymmetric) 종속성을 수용할 

수 있어, 바이오 마커 간 및 바이오 마커–생존시간 간의 관계를 하나의 통합된 확률 

모델 내에서 동시에 반영할 수 있다. 이에, 기존 바이오 마커가 존재하는 상황에서 

새로운 마커의 추가적인 진단 가치를 평가하는 데 특히 적합하다. 

프레임워크는 두 가지 보완적인 전략으로 구성된다. 첫째, 조건부 평가(conditional 

evaluation)는 기존 마커가 주어진 상황에서 새로운 마커의 추가 기여도를 정량화한다. 

둘째, 공동 평가(joint evaluation)는 두 마커가 모두 사전에 정의된 임계값을 초과할 

때만 양성으로 판단하는 ‘AND-분류기’를 기반으로 두 마커의 결합된 진단 성능을 

평가한다. 이러한 전략은 임상적 목표와 마커 특성에 따라 유연한 해석을 가능하게 

한다. 

Frank, Clayton, Gumbel 코퓰라를 포함한 다양한 종속 구조, 중도절단 비율, 예측 

시점을 고려한 시뮬레이션을 통해 본 모델이 성능 지표를 정확하게 추정하고 참된 

종속 구조를 복원하는 능력이 있음을 확인하였다. 마지막으로, Mayo Clinic 의 PBC 

데이터를 적용한 실제 사례 분석을 통해 본 프레임워크의 실제 활용 가능성과 임상적 

적용 잠재력을 입증하였다. 

 

주요용어: 네스티드 코퓰라 모형, 바이오마커 평가, 시간종속 AUC, 생존분석 

 


