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ABSTRACT

Sirtuin 1 Activator Can Induce Proliferative Erythroblasts from
Induced Pluripotent Stem Cells

Induced pluripotent stem cells (iPSCs) are a promising cell source for regenerative medicine.
Clinical applications require a large number of functional red blood cells (RBCs), making it essential
to ensure the proliferation of actively dividing, nucleated erythroblasts derived from iPSCs. Small
molecules can enhance the efficiency and frequency of iPSC-derived cell differentiation. Sirtuin 1,
a key enzyme in multiple biological processes, has been implicated in enhancing iPSC-derived cell
differentiation. However, the specific effects of Sirtuin 1 on erythroblast proliferation from iPSCs
remain unclear. Here, we developed a protocol to examine the effects of Sirtuin 1 on erythroblasts
after endothelial-to-hematopoietic transition (EHT). We found that Sirtuin 1 activation increased the
frequency of CD717CD235a" erythroblasts at the early stage after EHT, suggesting a role for Sirtuin
1 in the proliferation of these specified erythroblasts. These findings reveal that Sirtuin 1 activation
benefits erythroblast proliferation and could be considered for translational application in large-scale
RBC culture.

Key words : Induced Pluripotent Stem Cell, Sirtuin 1, CD71*CD235a" erythroblasts,
Erythropoiesis



1. Introduction

Cerdan et al. ! attempted to differentiate erythropoietic cells from embryonic stem cells (ESCs),
and since then, many studies have reported the successful differentiation of functional RBCs from
mouse and human induced pluripotent stem cells (iPSCs) 9. Human pluripotent stem cells (hPSCs),
including iPSCs, are a promising therapeutic cell source, and the clinical need for their derivatives,
red blood cells (RBCs), is rapidly increasing in regenerative medicine and for hematologic
malignancies % >7). Recent single-cell transcriptomic profiling of human embryos and yolk sacs (YS)
has revealed the ontogeny of erythropoiesis, identifying three developmental waves: primitive
erythropoiesis in the Y'S, hemogenic endothelium (HE)-derived definitive erythropoiesis in the fetal
liver, and hematopoietic stem cell-derived erythropoiesis in the bone marrow (BM) ® ?. HE,
characterized by the CD34%mCXCR4-CD73- phenotype, possesses the bipotent capability to
differentiate into endothelial cells and hematopoietic lineage cells, and its specification is crucial for
acquiring functional RBCs '%!2), The large requirement of approximately 2 x 10'2 RBCs for clinical
applications has driven research to improve ex vivo production methods by achieving a high yield
of CD71*CD235a" erythroblasts !¥. Because enucleated RBCs cannot proliferate, obtaining a large

number of nucleated erythroblasts is essential for advancing clinical applications '% 14-10),

Several small molecules, in conjunction with key hematopoietic cytokines, can promote the
differentiation of hematopoietic cells, including mature RBCs 2%, Sirtuin 1, a histone deacetylase,
is involved in cellular activity, aging, and cell differentiation 2!-?¥, Studies on cell therapeutic
approaches have demonstrated biological mechanisms of Sirtuin 1 in aging and its effects on the
differentiation of PSC-derived cells, including beta cell-like cells, neuronal progenitors,
mesenchymal stem cells, and hematopoietic lineage cells 2!:232%, Ou et al. 2® clearly showed defects
in hematopoiesis in Sirtuin 1 knockout mice, with delayed development of hematopoiesis in both
embryonic and adult stages. Notably, they observed that the low frequency and delayed development
of hemangioblasts affected hematopoietic cells but not endothelial cells, suggesting a role for Sirtuin
1 in hematopoiesis. In contrast, Cha et al. 2 demonstrated that high Sirtuin 1 expression in hPSCs
helps maintain stem cell pluripotency by silencing differentiation-promoting genes, and Han et al.
30 showed that Sirtuin 1 regulates Nanog expression in ESCs, uncovering a close relationship
between Sirtuin 1 and PSC properties.

Therefore, the effects of Sirtuin 1 vary depending on factors such as cell type, developmental
stage, and physiological conditions. Sirtuin 1 appears to have functional diversity within cells,
promoting both cell differentiation in PSCs and maintenance of stem cell pluripotency. However,
there is no clear evidence for the effects of Sirtuin 1 on erythropoiesis using iPSC-derived
erythroblasts. To address this gap, we investigated the effects of Sirtuin 1 on the differentiation of
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erythroblasts from iPSCs, focusing on the erythroblast stage after EHT. We found that Sirtuin 1
significantly promoted the proliferation of CD71*CD235a" erythroblasts at an early stage. These
findings may contribute to establishing a protocol for using Sirtuin 1 to generate clinically applicable
RBCs.



2. Materials and methods

2.1. Human PSCs culture into differentiated erythropoietic cells

The human induced pluripotent stem cell (iPSC) line N11 was seeded onto Matrigel-coated
plates in mTeSR™1 medium (Stem Cell Technologies, 85850) for differentiation into erythropoietic
cells. To induce mesodermal differentiation, cells were cultured in Apel 2 medium (Stem Cell
Technologies, 5275) supplemented with 3 uM CHIR-99021 (Selleck Chemicals, S2924), 20 ng/mL
vascular endothelial growth factor (VEGF)165 (PeproTech, 100-20), and 25 ng/mL HumanKine®
BMP-4 (Proteintech Group Inc., HZ-1045) for 2 days. To induce the formation of HE, cells were
treated with Apel 2 medium supplemented with 250 ng/mL stem cell factor (SCF) (PeproTech, 300-
07), 20 ng/mL VEGF165 (PeproTech, 100-20) and 25 ng/mL HumanKine® BMP-4 (Proteintech
Group Inc., HZ-1045), FMS-like tyrosine kinase 3 (F1t3)-ligand (PeproTech, 300-19), 100 ng/mL
Thrombopoietin (TPO) (Peprotech, 300-18), 20 ng/mL erythropoietin (EPO) (PeproTech, 100-64),
50 ng/mL of IGF-1 (Peprotech, AF-100-11), 400 ng/mL of ferric ion (Merck, F3388), 50 ng/mL of
transferrin (Roche, 10652202001), and 50 ng/mL of folic acid (Merck, F8758) as described in the
previous study. To treat the cells with the Sirtuin 1 activator, SRT2104 (Selleck Chemicals, S7792)
was first diluted to a concentration of 3 uM in DMSO and used. (Stem Cell Technologies, 5275) The
treatment was applied to the cells from day 8 to day 20, spanning 12 days, as described in a previous
study 123139,

2.2. Human PSCs culture into differentiated erythropoietic cells

To investigate the frequency of hemogenic endothelium and erythroblasts derived from human
iPSCs, harvested cells were incubated in MACS buffer (Miltenyi Biotec, 130-092-987) with specific
antibodies and analyzed using a BD Versel flow cytometer (BD Biosciences). The antibodies used
in this study were as follows: FITC-conjugated mouse anti-human CD34 (BD Biosciences, 348053),
PE-conjugated mouse anti-human CXCR4 (BD Pharmingen™, 555974), APC-conjugated mouse
anti-human CD73 (BioLegend, 344006), APC-conjugated mouse anti-human CD45 (BD
Pharmingen™, 555485), FITC-conjugated mouse anti-human CD71 (BD Pharmingen™, 555536),
and PE-Cy™?7-conjugated mouse anti-human CD235a (BD Pharmingen™, 563666).



2.3. Immunocytochemistry

Human iPSCs and hemogenic endothelium were fixed with 2% PFA and permeabilized with
0.2% Triton X-100 for 30 minutes at room temperature. The cells were then washed with PBS, and
non-specific antibody binding was blocked with 10% FBS for 30 minutes at room temperature.
Following this, the cells were incubated with primary antibodies, followed by secondary antibodies.
The primary antibodies were rat anti- human SRY-Box Transcription Factor 2 (SOX2) (Invitrogen,
A24759), mouse anti-human Tumor-related Antigen-1-60 (TRA-1-60) (Invitrogen, A24868),
Insulin-like growth factor II (IGF2) (Santa Cruz Biotechnology, sc-515805) and rabbit anti-human
Runt-related transcription factor 1 (RUNX1) (Abcam, ab35962). Nuclei were stained with 4',6-
diamidino-2-phenylindole (DAPI) (VectorLabs, H-1200), and the cells were visualized using a
fluorescent microscope (IX73 fluorescent microscope (Olympus) or LSM780 confocal microscope
(Carl Zeiss) with LSM780 Image software.

2.4. Blast-forming unit (BFU) and colony-forming unit (CFU) assay

We investigated whether the floating cells collected on days 10 possess the functionality or
potential to generate erythropoietic progenitors by incubating 2 x 104 floating cells derived from
human iPSCs in 200 pL of MethoCult™ medium (Stem Cell Technologies, H4434) for 7 days. The
cells were visualized using an IX73 fluorescent microscope (Olympus), and colony formation was
evaluated using a CKX53 microscope (Olympus).

2.5. Quantitative (q) RT-PCR

Total RNA was extracted from human iPSCs using TRIzol™ reagent (Invitrogen™, 15-596-
026) following the manufacturer’s instructions . ¢cDNA was then synthesized using the
SensiFAST™ cDNA Synthesis Kit (Meridian Bioscience, BIO-65054). Fragments were amplified
by qRT-PCR using specific primers (Table 1), GoTaq® qPCR Master Mix (Promega, A6001), and
the QuantStudio™ 3 System (Thermo Fisher Scientific). The relative mRNA expression of target
genes was calculated using the comparative CT method, with all target genes normalized to GAPDH
in multiplexed triplicate reactions. Differences in CT values were calculated for each target mRNA
by subtracting the mean value of GAPDH. (relative expression = 2—ACT)



2.6. Statistical analysis

All results are presented as mean + s.e.m. Statistical analyses were performed with the Mann-
Whitney U tests for comparisons between 2 groups using GraphPad Prism v.9 (GraphPad Software
Inc). Values with p < 0.05 were considered to denote statistically significant.



3. Results

3.1. Differential Expression of IGF2 and its receptor IGF1R
in iPSC lines

To confirm that the generated iPSCs possessed the properties of pluripotent stem cells, we
performed immunocytochemistry and qRT-PCR on the iPSC cell lines. As shown in Figure 1, iPSC
colonies were detected, and markers for PSCs, including SOX2, TRA-1-60, NANOG, and OCT4,
were strongly expressed in these colonies (Figure 1, 2). These results confirm the successful
establishment of iPSCs from mononuclear cells.

A major concern in lineage-specific cell differentiation from iPSCs is the variability in their
differentiation capacity into specific lineages. Blood cells are particularly sensitive to this variability.
Given a previous study that reported a correlation between high IGF2 expression and the
hematopoietic commitment capacity of human pluripotent stem cells 3%, we sought to identify an
iPSC line with high /GF?2 expression for efficient differentiation into erythroblasts. To this end, we
performed qRT-PCR and immunocytochemistry on the N7, N9, N11, and N12 iPSC lines. The N11
cell line exhibited the highest levels of IGF2 protein (Figure. 3) and transcript levels of both /GF?2
and its receptor, /GF'IR (Figure 4) and also showed the highest expression of pluripotency markers,
despite qualitative expression across most iPSC lines. Therefore, we selected the N11 iPSC line for
differentiation into RBCs.

3.2. Hemogenic Endothelium Generation from iPSCs

To investigate the generation of hemogenic endothelium (HE), which serves as a reservoir for
blood lineage cells from the mesodermal stage, we examined the frequency of CD34%™ HE. The
differentiation protocol for HE and erythroblasts with Sirtuin 1 treatment is shown in Figure 5. HE
with the CD344™CXCR4°CD73" phenotype generated after the mesodermal stage, and FACS
analysis was performed on cells 1.5 days after mesoderm induction. FACS data showed that CD34*
cells were divided into dim and bright populations: CD34%™ HE (6.2+0.2%) and CD34%" HE
(5.9+0.4%). Both populations contained CXCR4'CD73- undifferentiated cells (CD34%™ HE,
30.3£8.7%; CD34%ieh HE, 20.8+5.5%) (Figure. 6). These results indicate the successful generation
of HE with the CD34%™CXCR4 CD73 phenotype under our defined culture conditions. While the
role of CD73" mesenchymal stromal cells in generating blood cells remains unclear, our protocol
successfully generated an optimized HE population for erythroblast differentiation from N11 iPSCs.



SOX2 TRA-1-60

Figure 1. Protein expression of pluripotency markers in hiPSCs. Representative
immunofluorescence images showing the expression of pluripotency markers SOX2
(green) and TRA-1-60 (red) in iPSC lines N7, N9, N11, and N12, as determined by
immunocytochemistry. Nuclei were counterstained with DAPI (blue). Images were
observed under a confocal microscope. Scale bar =200 pm.
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Figure 2. Gene expression of pluripotency markers NANOG and OCT4 in hiPSC.
The mRNA expression levels of pluripotency marker, Nanog and OCT4 in hiPSC lines
N7, N9, Nl1, and N12 were determined by qRT-PCR. GAPDH was used as a

housekeeping gene. Data are presented as mean + s.e.m. from 3 independent
experiments (n = 3).
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Figure 3. Protein expression of hematopoietic markers in hiPSCs. Representative
immunofluorescence images showing the expression of the hematopoietic marker IGF2
(green) in hiPSCs, as determined by immunocytochemistry. Nuclei were counterstained
with DAPI (blue). Images were observed under a fluorescence microscope. Scale bar =
200 pm, and 100 pm
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Figure 4. Gene expression of hematopoietic markers IGF2 and its receptor IGFIR
in hiPSCs. The mRNA expression levels of insulin-like growth factor 2 (IGF2) and its
receptor, insulin-like growth factor 1 receptor (IGFIR), in hiPSC lines N7, N9, N11, and
N12 were determined by qRT-PCR. GAPDH was used as a housekeeping gene. Data are
presented as mean =+ s.e.m. from 3 independent experiments (n = 3).
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Table 1. Primers used in qRT-PCR

Human Forward primer Reverse primer
human GAPDH GGT GGT CTC CTC TGACTT CAACA GTG GTC GTT GAG GGC AAT G
human NANOG TGAACC TCA GCT ACAAAC AG TGG TGG TAG GAA GAG TAAAG
human OCT4 GAA CCG AGT GAG AGG CAA CCT TCT GCT GCAGTG TGG GTT TC
human IGF2 GAT GCT GGT GCT TCT CAC CT CAG ACG AAC TGG AGG GTG TC
human IGF1R ACG TCC TCG ACAACC AGAAC CGT CAC TTT CAC AGG AGG CT
human ETV2 CTC AGC TCT CAC CGT TTG CT ATG GGA CCT CGG TGG TTAGT
human SOX17 ACG CTT TCATGG TGT GGG CTAAG GTCAGC GCC TTC CAC GAC TTG
human MEIS1 ATG ACA CGG CAT CTACTC GTT C TGT CCAAGC CAT CAC CTT GCT
human CD34 AAATCC TCT TCC TCT GAG GCT GGA  AAG AGG CAG CTG GTG ATAAGG GTT
human RUNX1 GTATCC CCG TAG ATG CCA GC TCG GAAAAG GAC AAG CTC CC
human CD71 ATC GGT TGG TGC CAC TGAATG G ACAACA GTG GGC TGG CAG AAA C
human CD235a ATA TGC AGC CAC TCC TAG AGC TC CTG GTT CAG AGAAAT GAT GGG CA

human GATA1

ATC ACA CTG AGC TTG CCA CA

CAG GCC AGG GAACTC CA

11
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Figure 5. Schematic representation of HE and RBC differentiation. A schematic
illustration depicting the differentiation process from iPSCs HE to RBCs. The diagram
outlines key stages including mesoderm, HE, Pre-RBC and RBC. The schematic also
indicates the stages where hemogenic endothelium and RBCs are generated, with

cytokines used at each step specified.
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3.3. Upregulation of Mature Erythroid Cell Markers in Floating Cells by
Sirtuin 1 Activator

To examine whether the Sirtuin 1 activator can promote erythroblast differentiation from iPSCs,
RBC differentiation via HE was induced using hematopoietic growth factors. For this purpose,
SRT2104, a selective activator of Sirtuin 1, was used. Consistent with a previous study (12), no
morphological differences were observed in the differentiating cells from the early stage through
day 14, regardless of SRT2104 treatment. However, the proliferation of reddish erythroblasts
appeared earlier in the Sirtuin 1-treated group on day 18, while few clonal expansions of reddish
erythroblasts were observed in the control group until day 20 (Figure 7). To determine if Sirtuin 1
affects HE, qRT-PCR was performed on HE at days 14 and 20. The qRT-PCR data showed that the
expression of the mesodermal marker, £7V2, was consistently maintained in the presence of Sirtuin
1. The expression of pre-HE and HE markers, such as SOX17, MEISI, and CD34, did not increase
over time, indicating no effect of Sirtuin 1 on HE (Figure 8).

Next, the expression of erythropoiesis-related genes, including RUNXI, GATAl, CD71, and
CD235a, was examined in HE and floating erythroblasts at day 14. RUNXI, a key transcription
factor for both hematopoietic cells and HE, was expressed in both cell types. However, RUNXI
expression was higher in floating cells treated with Sirtuin 1 compared to HE, suggesting that Sirtuin
1 strongly influences commitment to hematopoietic lineages. At the transcript level, the expression
of the mature RBC marker, CD235a, was significantly increased in floating cells compared to HE
under SRT2104 treatment (Figure 9). This result indicates a stronger association of Sirtuin 1 with
floating erythroid cells than with HE.

To investigate RUNX1 functionality, immunocytochemistry was performed on HE and floating
cells. Although only qualitative images were obtained, strong RUNX1 expression was detected in
both cell types, regardless of Sirtuin 1 treatment. Together, our protocol successfully develops RBCs
from iPSCs and can provide a platform to study the effects of Sirtuin 1 on erythroblast differentiation
(Figure 10).

3.4. Sirtuin 1 Activator Promotes CD71°CD235a* Erythroblasts

To further investigate the functional role of Sirtuin 1 in RUNXI™ floating erythroblasts, we
performed burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E)
assays using floating cells after EHT on day 10. BFU-E represents an early stage in RBC
commitment with high proliferative capacity, while CFU-E is more specialized for RBC
differentiation 7. Cells differentiated with SRT2104 showed no significant differences in BFU-E
and CFU-E colony numbers compared to the control group. Although the number of BFU-E colonies
appeared lower with SRT2104 treatment at day 7 (no SRT2104, 30.1+£5.5%; SRT2104, 18.4+3.8%),

14



SRT2104-

SRT2104+

Figure 7. Changes in morphology during differentiation of iPSC-derived HE and
erythroblasts with or without SRT2104 treatment. Representative images showing
morphological changes during the differentiation of iPSC-derived HE and erythroblasts
from day 2 to day 20. Cells were cultured either without (SRT2104", top) or with SRT2104
(SRT2104*, bottom), added from day 8. Scale bars: 200 pm, 100 pm.
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Figure 8. Gene expression of HE markers in HE with or without SRT2104 treatment.
The mRNA expression levels of ETV2, SOX17, MEIS1, CD34 in day14, and day 20 HE were
determined by qRT-PCR. GAPDH was used as a housekeeping gene. Data are presented as
mean + s.e.m. from 4-5 independent experiments (n = 1-5).
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Figure 9. Gene expression of hematopoietic and erythroblast markers in HE and
erythroblast with SRT2104 treatment. The mRNA expression levels of RUNXI GATAI,
CD71, CD235a in day14 HE and erythroblast were determined by qRT-PCR. GAPDH was

used as a housekeeping gene. Data are presented as mean + s.e.m. from 5 independent
experiments (n = 2-5).
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Figure 10. Protein expression of hematopoietic markers in HE and erythroblasts.
Representative immunofluorescence images showing the expression of the hematopoietic
marker RUNX1 (green) in HE and erythroblast, as determined by immunocytochemistry.
Nuclei were counterstained with DAPI (blue). Images were observed under a fluorescence
microscope. Scale bar =200 um, and 100 pm
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this difference was not statistically significant. Similarly, while CFU-E colony numbers showed
a trend of increase with SRT2104 treatment (no SRT2104, 27.1+4.7%; SRT2104, 35.7+£8.3%), this
difference also did not reach statistical significance (Figure 11). These results suggest that Sirtuin 1
does not play a significant role in the early developmental stages of BFU-E and CFU-E formation.

Next, to investigate whether the Sirtuin 1 activator can increase the frequency of erythroblasts,
FACS analysis was performed on differentiated cells at day 14. Cells were gated into two
populations, Pl (mature erythroblasts) and P2 (immature erythroblasts) (12). No significant
differences were observed in the CD45  mature erythroid cell population between control and
SRT2104 treated group (P1: no SRT2104, 93.6+£1.4%; SRT2104, 90.5+2.8%; P2: no SRT2104,
78.842.4%; SRT2104, 84.9+4.0%) indicating that SRT2104 treatment did not affect the maturation
of CD45" erythroid cells (Figure 12). The frequency of CD45" progenitor cells also showed no
significant differences (data not shown).

To examine the effects of Sirtuin 1 on progenitor stages in detail, FACS analysis was performed
using CD71 and CD235a markers to analyze the frequency of RBC progenitors within the P1 and
P2 populations. The FACS data displayed all stages of human erythropoiesis based on CD71 and
CD235a expression. In the P1 population, the frequencies of CD71"CD235a’, CD71*CD235a", and
CD71-CD235a" erythroblasts were not significantly increased by SRT2104 at day 14. However, in
the immature population P2, the frequency of CD71°CD235a" erythroid progenitors was
significantly increased by SRT2104 at day 14 (CD717CD235a" cells: no SRT2104, 77.9+6.8%;
SRT2104, 88.84+4.3%) (Figure 13). This demonstrates an effective role of Sirtuin 1 in promoting
CD717CD235a" erythroblasts at day 14. Based on our data, we conclude that Sirtuin 1 does not
significantly affect the early stages of erythropoiesis and HE, but it significantly promotes the
expansion of CD717CD235a" erythroblasts following EHT.
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Figure 11. CFU assay of iPSC-derived erythroid cells with or without SRT2104
treatment. Cells were harvested on day 10 and plated in methylcellulose medium.
Colonies were assessed after 7 days. Representative images and colony count of CFU-
E and BFU-E are shown. Cells were cultured with or without SRT2104 from day 8.
Data are presented as mean = s.e.m. from 2 independent experiments (n = 3-4).
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4. Disccussion

Sirtuin 1, a NAD*-dependent histone deacetylase, modulates gene expression and cellular
activity, emerging as a promising epigenetic target with activators like resveratrol and SRT2104 in
clinical use 3449, To investigate the effects of the Sirtuin 1 activator SRT2104 on erythropoiesis, we
employed a simplified differentiation protocol encompassing both primitive and definitive
erythropoiesis. Primitive erythropoiesis, crucial for early embryonic cardiovascular development 4,
and definitive erythropoiesis from CD34%mMCXCR4-CD73- HE were concurrently induced in our
system. While the precise ontogeny of the generated erythroblasts remains to be fully elucidated, we
observed a significant increase in erythroblast frequency at differentiation day 14 upon Sirtuin 1
activation. This was further supported by the enhanced proportion of mature erythroblasts
(CD71*CD235a"), which represent polychromatic and orthochromatic stages > 4. This suggests
that erythroblasts, which exhibit reduced mitotic capacity, from basophilic- to polychromatic
erythroblasts can be stimulated to proliferate by SRT2104, representing a potentially significant
finding.

Numerous studies have indicated the role of Sirtuin 1 in suppressing cellular senescence and
regulating gene expression through chromatin stabilization * 45, However, the multifaceted
functions of the sirtuin family, including Sirtuin 1, have led to ongoing debate *©. Similarly,
conflicting views exist regarding the role of Sirtuin 1 in iPSC differentiation. Some studies suggest
it maintains stemness by promoting self-renewal in embryonic stem cells and delaying
hematopoietic stem cell aging 2*2% 3044470 while a growing body of evidence highlights its critical
role in lineage-specific differentiation from PSCs by supporting cell fate determination %49, Our
objective investigation into the effects of a Sirtuin 1 activator on erythroid differentiation from PSCs
revealed that erythroblasts were significantly induced after commitment to the RBC lineage,
suggesting a promotion of RBC differentiation, consistent with some previous findings 2> 2. The
effects of Sirtuin 1 were prominent at differentiation day 14, a stage characterized by predominantly
immature erythroblasts and a limited number of CD235a* mature RBCs. This suggests that Sirtuin
1 may mitigate cellular senescence and enhance cell proliferation in the early stages following
erythroid lineage commitment. In contrast to erythroid cells, Sirtuin 1 minimally or did not affect
the frequency of HE, the reservoir for blood cells. This observation supports the hypothesis that the
effects of Sirtuin 1 are cell type and developmental stage-dependent.

Clonal variation in PSCs is known to significantly influence iPSC properties, including
hematopoietic potential and pluripotency maintenance 3%, These variations can arise from genetic
and epigenetic differences linked to donor-specific properties and the origin cells. Nishizawa et al.
39 reported that iPSC differentiation capacity varies between clones, identifying IGF2 as a key factor
promoting CD43" hematopoietic lineage specification via epigenetic modifications. Mills et al. >
emphasized the importance of selecting iPSC lines with inherent potential for hematopoietic
development. Consistent with these findings, we selected the N11 iPSC line, which exhibits high
IGF2 and its receptor expression, along with stable stem cell properties, and demonstrated
reproducible erythroblast differentiation. However, establishing standardized criteria for lineage
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specification selection remains an ongoing challenge. Our observation that Sirtuin 1 treatment from
days 3 to 8 had no effect on early-stage cells (mesodermal cells or HE; data not shown) further
supports a stage-specific role. Instead, Sirtuin 1 significantly enhanced EHT occurrence and the
presence of floating erythroid cells at later stages, suggesting a supportive role in RBC
differentiation from HE. However, further research is needed to determine if Sirtuin 1 universally
promotes RBC differentiation across different cell lines and clonal variations, highlighting the
importance of optimizing the timing and duration of Sirtuin 1 treatment to target the proliferative
phase of erythroblasts.

For large-scale GMP-compliant RBC production, obtaining erythroblasts capable of mitotic
division is crucial. Since proliferation requires a nucleus, focusing on erythroblasts that can
proliferate significantly with iron supplementation is necessary. Additionally, achieving a substantial
quantity of CD717CD235a" mature erythroblasts is critical for overall RBC production, even with
relatively reduced proliferation. Our findings indicate that Sirtuin 1 selectively promotes
erythroblast proliferation after EHT without affecting HE. Furthermore, we acknowledge the major
challenges in large-scale RBC production and suggest that our approach using Sirtuin 1 activation
holds promising potential for developing functional RBCs from PSCs for clinical applications and
for generating RBC progenitors to support a universal blood bank system.
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5. Conclusion

In this study, we demonstrated that activation of Sirtuin 1 positively influences the proliferation
of erythroblasts derived from induced pluripotent stem cells (iPSCs). Specifically, Sirtuin 1
activation led to a significant increase in the frequency of CD71"CD235a* double-positive
erythroblasts at the early stage following the endothelial-to-hematopoietic transition (EHT),
suggesting a critical role of Sirtuin 1 in promoting erythroblast expansion during early hematopoietic
differentiation.

Sirtuin 1 is a well-known enzyme involved in various physiological processes, and our findings
extend its functional relevance to iPSC-derived erythroid differentiation. Treatment with SRT2104,
a Sirtuin 1 activator, enhanced the generation of proliferative erythroblasts more efficiently than
conventional protocols, thereby providing a stronger foundation for subsequent maturation into
functional red blood cells.

These results suggest that Sirtuin 1 activation could serve as a useful regulatory strategy for
improving the scalability and efficiency of erythroid differentiation from iPSCs. Further
investigation into the underlying mechanisms of Sirtuin 1 activation, as well as its long-term safety
and reproducibility under extended culture conditions, will be crucial for establishing a robust and
clinically applicable platform for large-scale red blood cell production.
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