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ABSTRACT

Prediction of coronary revascularization by exercise stress
electrocardiography using an explainable artificial intelligence

Background: Exercise stress electrocardiography (EXECG) is widely used for
coronary artery disease evaluation, but its interpretation remains challenging due to
variable diagnostic accuracy. I aimed to develop and validate an explainable artificial
intelligence (AI) model to enhance the prediction of coronary revascularization need
based on EXECG findings.

Methods: The study included 20,534 patients who underwent EXECG using the
modified Bruce protocol. I developed an explainable Al framework that first extracted
clinically relevant ECG features using variational autoencoders and then trained a
prediction model for coronary revascularization within 90 days after ExXECG. Model
performance was compared against clinicians and Duke Treadmill Score.

Results: The pre-trained VAE model extracted clinically relevant ECG features by
representing high-dimensional EXECG data with a small number of latent variables
across exercise Stages (13—17 per Stage). The Al model demonstrated superior
performance with an area under the receiver operating characteristic curve of 0.84 (95%
CI: 0.80-0.88) compared to clinicians (AUROC, 0.75; 95% CI 0.71-0.80), and the Duke
Treadmill Score (AUROC, 0.78; 95% CI 0.73-0.82). The odds ratio of coronary
revascularization cases defined by Al was 12.37 (8.43-18.49), whereas the odds ratios
determined by Duke Treadmill Score and physician diagnosis were 5.65 (3.02-9.40) and
19.65 (13.56-28.65). The model identified ST-segment depression in the mid-recovery
phase as the most significant predictor of coronary revascularization need.

Conclusion: I developed and validated an explainable artificial intelligence to
predict coronary revascularization by using large-scale EXECG. By integrating advanced
Al predictions with interpretable ECG feature analysis, my model may improve the
diagnostic utility of EXECG in clinical practice.

Key words: Exercise stress electrocardiography, Artificial Intelligence, Variational autoencoder,
Coronary revascularization



1. Introduction

1.1. Research background

Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide,
accounting for nearly 18.6 million deaths in 2019 (95% uncertainty interval: 17.1-19.7
million)'*. Most commonly, coronary artery disease (CAD) involves the development of
atherosclerotic plaques within epicardial coronary arteries, which can result in myocardial
ischemia®. Coronary revascularization, such as percutaneous coronary intervention (PCI)
or coronary artery bypass grafting (CABQG), is recommended when these plaques
significantly restrict coronary blood flow to prevent adverse outcomes, including
myocardial infarction and death?.

Exercise stress electrocardiography (EXECG) is a widely used noninvasive
diagnostic tool for detecting CAD>. EXECG evaluates cardiac function by gradually
increasing physical workload while monitoring using a 12-lead ECG. EXECG has the
advantage of detecting abnormal patterns that may not be apparent under normal
conditions’. According to recent cardiology guidelines, EXECG should not be used
exclusively because of low diagnostic accuracy and unacceptable false positive and
negative rate®'?. Due to the high false-positive rate, unnecessary invasive coronary
angiography procedures are recommended, which raise healthcare costs and can even
cause risk''. However, EXECG remains widely used as the initial diagnostic test for CAD
in routine clinical practice due to its widespread availability, ease of use, and low cost. It
is therefore necessary to develop methods for utilizing EXECG more effectively. Several
traditional scoring systems, such as the Duke Treadmill Score (DTS)'*"*, have been
developed to enhance the prognostic utility of EXECG. While such scoring models offer
structured frameworks for the risk stratification of patients, it only reflects a limited
number of parameters, not the full spectrum of ECG morphological changes that occur
during exercise. Consequently, the need for more advanced analytical methods capable of
integrating diverse ECG features (such as subtle morphological changes over time) across
different phases of EXECG is increasingly recognized.

Recent advances in artificial intelligence (AI) and machine learning have enabled the
prediction of cardiovascular disease, aging, and mortality from only resting 12-lead ECGs



by detecting abnormal patterns'*"®. In the detection of different cardiac arrhythmias, DL
systems have reached levels of accuracy comparable to cardiologist diagnoses®. It is
possible that Al-based analysis could enhance the detection of clinically significant
abnormalities in EXECG by utilizing comprehensive waveform data from multiple leads
throughout different exercise Stages.

Developing Al models based on EXECG presents unique and formidable challenges
that distinguish it from standard resting ECG analysis. First, EXECG datasets are
substantially smaller than those available for standard 12-lead resting ECGs, as exercise
stress testing is performed only on patients with specific clinical indications, resulting in
limited training data for robust model development®'. Second, EXECG signals are
temporally extensive, typically spanning 10-15 minutes across multiple exercise Stages
compared to the standard 10-second resting ECG recordings. This creates a classic high-
dimensional, small-sample-size problem (p >> n)**, where the feature space dramatically
exceeds the number of available samples. Third, the interpretability of EXECG analysis
remains limited, as conventional approaches focus on isolated parameters such as ST-
segment changes or exercise duration, failing to capture the complex temporal dynamics
and morphological variations that occur throughout the exercise protocol.

In the medical domain, where labeled data are inherently scarce, transfer learning
has emerged as a powerful solution, enabling models to leverage knowledge from large,
related datasets through feature pre-training and subsequent fine-tuning®. Furthermore,
the development of transparent and interpretable AI models is crucial to address the
"black box" nature of deep learning”***, which fundamentally hinders clinical trust and
adoption in medical decision-making. Previous groundbreaking studies by van de Leur et
al. (2022) and Wouters et al. (2023) demonstrated the potential of explainable Al
approaches using variational autoencoders (VAE)**?’. By pre-training VAE models to
capture fundamental factors governing median beat ECG morphology, they successfully
fine-tuned these models to predict clinical outcomes including reduced ejection fraction,
all-cause mortality, and cardiac resynchronization therapy (CRT) response. Notably, their
approach proved effective even for CRT outcome prediction, where labeled datasets are
inherently limited due to the relatively small population of patients eligible for this
specialized therapy. Critically, their latent representation framework enabled quantitative
interpretation of morphological features associated with each predictive task, bridging the
gap between Al performance and clinical understanding.



1.2. Related literatures

Previously, Lee et al. (2022)*® developed a machine learning (ML) model to improve
ExXECG diagnostic performance for detecting obstructive CAD. The study consisted of
2,325 patients who underwent both treadmill exercise testing (TET) and coronary
angiography (CAG) within a 1-year interval. A significant obstructive CAD was defined
as 70% narrowing in the left anterior descending (LAD), left circumflex arteries (LCA),
or right coronary arteries (RCA) or their major branches; or > 50% narrowing in the left
main coronary artery (LMCA). The dataset was randomly divided into a training set
(70%) and a testing set (30%) after exclusion criteria (e.g., prior PCI, inadequate heart
rate achievement, missing data). Two feature groups were used for model development:
(1) TET30, which was composed of 30 features selected from an initial set of 93 TET
features by recursive elimination of features; and (2) TET30+Clinical, which included the
TET30 along with hypertension, diabetes, dyslipidemia, smoking status, height, weight,
and the Framingham risk score. For the development of models, five machine learning
algorithms were used: logistic regression, support vector machine (SVM), k-nearest
neighbor (KNN), random forest (RF), and extreme gradient boosting (XGBoost). The
model thresholds were selected according to 85% sensitivity, in accordance with the
conventional interpretation of the TET. Based on TET30 and clinical features, RF
achieved the best performance with an AUROC of 0.74, reducing false positives from
76.3% (conventional TET) to 55%. There was only marginal improvement with clinical
features, showing that most of the predictive information can be extracted directly from
the TET. The subgroup analysis revealed better performance in men, and higher AUCs in
patients under 60 years of age. Compared to the DTS, the machine learning model
demonstrated higher sensitivity (0.85 % 0.06 vs. 0.27 & 0.05) but lower specificity
(0.43£0.05 vs 0.86 = 0.03). The study demonstrates that machine learning models based
on treadmill exercise test data can be used to detect obstructive coronary artery disease.
However, it emphasizes the need for external validation to ensure generalizability. It was
also shown that the model relied heavily on signal-derived features from the waveform,
which may have overlooked important morphological characteristics of the ECG.
Additionally, "work-up bias" can lead to an overestimated sensitivity and underestimated
specificity since EXECG results affect the operation of the CAG.

Yilmaz et al. (2023)* developed a ML model that improved the diagnostic accuracy
of the EXECG for predicting obstructive CAD using signal features such as P, QRS, and
T waves in the TET report. In this study, 294 TET report of patients with DTS of -10 less



and underwent invasive CAG were reviewed, and 23 ECG features were manually
extracted from the V5 lead. According to the RCA, LMCA, LAD, and LCA, an
obstruction of 70% or more was an obstruction CAD. A total of 94 patients (31.9%) in
this dataset had obstruction CAD. There were five ML models (XGBoost, KNN, SVM,
MLP, and gaussian process classifier) trained and tested using a 75:25 data split and five-
fold cross-validation. XGBoost demonstrated the best accuracy, specificity, sensitivity,
and area under the ROC curve (AUC) with an accuracy of 80.9%, 84.6%, 67.2%, and
0.78. The performance of 17 cardiologists evaluated for the V5 signals was lower
(accuracy: 41.8%, specificity: 32.4%, sensitivity: 73.3%). This study shows that ML
models based on ECG waveform features can detect obstructive CAD. The study was
conducted at a single center with a relatively small sample size, which may limit the
generalizability of the model. It was also shown that the model relied heavily on signal-
derived features from the waveform, which may have overlooked important
morphological characteristics of the ECG.

Bock et al. (2024)*° developed ML models to improve the identification of
functionally relevant coronary artery disease (fCAD) using clinical variables and
EXECGs. The study included 3,522 patients who underwent stress myocardial perfusion
imaging (MPI-SPECT). f{CAD was defined as stress-induced ischemia determined from
MPI-SPECT, and the final diagnosis was based on MPI-SPECT and angiography or FFR
findings. There were three models developed to predict f{CAD and compared
cardiologists’ reading. First, CARPEclin was a random forest model that was trained
using eight clinical variables (age, sex, height, weight, blood pressure, resting heart rate,
and CAD history). Second, CARPEecg was a deep learning model trained on the same
clinical variables and raw 12-lead ECG time-series data. Lastly, CARPEcoll is a logistic
regression model based on the ensemble model and deep learning approach with the
cardiologist's post-test judgement. In this study, held-out temporal tests and external
validations from two Israeli centers (n = 906) were used to assess generalizability.
CARPEecg achieved AUROCs of 0.71 on internal testing and 0.80 on external validation,
outperforming both post-test judgement by a cardiologist (AUROC: 0.64). CARPEcoll.
improved diagnostic performance (mean AUROC: 0.74) than CARPEecg and
CARPECclin. CARPEclin reduced unnecessary MPI by 15-17% at a 15% risk threshold
without increasing false negatives, providing greater net benefits than the cardiologist.
This study developed the deep learning model by combining EXECG morphology with
clinical variables to predict f{CAD. Deep learning models were trained on segmented ECG
sequences using a 2-6-2 slicing method. Specifically, 2 seconds from the pre-stress phase,



6 seconds from the stress phase, and 2 seconds from the recovery phase were sampled
and concatenated multiple times per patient. Because of the slicing strategy, the model
may have difficulty capturing the full temporal dynamics and morphological changes
over the entire course of the stress ECG test. The explainability approach highlights
temporal regions without specifying the precise morphological features (e.g., R-wave
amplitude vs. QRS shape) that drive predictions®'. Consequently, they provide only
limited, case-specific insights and lack general interpretability.



1.3. Objective

Using a transfer learning framework, this study aims to develop an explainable Al
model for predicting coronary revascularization. The overall study design is presented in
Figure 1. The first step is to construct a pre-trained VAE model base on a large dataset of
EXECGs to capture informative latent representations of ECG morphology. Secondly,
latent features are used to fine-tune a predictive model for patients who may require
coronary revascularization. The morphological features of coronary revascularization are
interpreted based on latent representation. To ensure generalizability, external validation
is conducted using datasets from independent institutions. Clinical validation is
performed by providing the visual explanations that highlight key morphological features
contributing to individual predictions.
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Figure 1. Schematic representation of the series of algorithms and processes

Abbreviations: Conv, Convolution; DNN, deep learning network; ECG,
electrocardiogram; EXECG, exercise electrocardiogram; BP, blood pressure; XGBOOST,
extreme gradient boosting decision tree; VAE, variational autoencoder.



2. Materials and Methods

2.1. Data sources and preprocessing

This study included 23,033 ExECG records from 18,998 patients who underwent at
least one EXECG test using the Bruce protocol at Severance Hospital, a large tertiary
referral center in South Korea, between June 23, 2020, and February 10, 2024. All raw
12-lead EXECGs were exported from GE Healthcare’s MUSE Cardiology Information
System*’. Median beat ECGs of EXECGs were derived by aligning all QRS complexes
during the 10 to 30 second ECG and then generating a representative QRS complex by
taking the median voltage. Approximately 250 to 310 beats were measured in the median
beat ECG. Afterwards, the median beat ECGs were preprocessed by padding or trimming
to 300 beats. According to the Bruce protocol, median beat ECGs were mapped according
to exercise times according to pretest, stress phases (Stage 1 through Stage 4), and
recovery phases. Specifically, the recovery phase was subdivided into three intervals: the
first 2 minutes were defined as the early-recovery phase, the subsequent 2 minutes as the
mid-recovery phase, and the remaining duration as the late-recovery phase.

2.1.1. Data for pre-trained model development and testing

For the training and validation of the VAE, 633,340 median beat ECGs were
obtained from 16,150 EXECGs from 13,997 patients who underwent EXECG between
June 23, 2020, and February 9, 2023, were used (Figure 3). The pre-trained models were
developed separately for each Stage based on the median beat ECG measurements
corresponding to Stages 1, Stage 2, Stage 3, Stage 4, early recovery, and mid-recovery
phases. The dataset was randomly divided into three sets, training (80%), validation
(10%), and hold-out (10%) splits by participants. Labeling was not used for training the
VAE model.

2.1.2. Data for coronary artery revascularization prediction model

To ensure robust model development and validation, the dataset was divided into
subsets based on specific time periods. The coronary revascularization prediction model



was trained using 16,132 EXECGs obtained between June 23, 2020, and February 9,
2023. Testing and clinical validation were conducted using a separate subset of 6,431
ExECGs collected between February 10, 2023, and February 9, 2024 (Figure 4).

The performance of the prediction model was compared with that of both physician
interpretation and the DTS. For DTS calculation'?, exercise duration, maximal net ST-
segment deviation, and the angina index were extracted from the EXECG raw file. DTS
was calculated as Duke Treadmill Score = duration of exercise, minutes — (5 X maximal
net ST-segment deviation during or after exercise®, millimeters) — (4 % treadmill angina
index).

For development and testing of prediction model, only EXECGs in which patients
reached at least Stage 1—ensuring interpretable results—were included in the analysis.
The ExECGs with insufficient information to calculate the DTS or without physician
reading were excluded.

The coronary revascularization was defined by the percutaneous transluminal
coronary angioplasty (PTCA) report and CABG surgery records within 90 days following
the EXECG, which were retrieved from electronic medical record (EMR) databases. Each
ExECG was subsequently labeled according to the occurrence of coronary
revascularization.

2.1.3. Data for external validation

To evaluate the generalizability of the coronary revascularization prediction model,
external validation was performed using an independent dataset collected from Yongin
Severance Hospital (YSH), a secondary care hospital in South Korea. A total of 1,889 12-
lead EXECG records from YSH were exported by the MUSE Cardiology Information
System of GE Healthcare from January 2023 to June 2024 (Figure 5). The occurrence of
coronary revascularization was labeled with EXECG utilizing the same criteria as applied
to the Severance hospital.



23,033 EXECGs from 18,998 patients eligible from
2020-06-23 to 2024-02-10

EXECGs from EXECGs from
2020-06-23 to 2023-02-09 2023-02-10 to 2024-02-10

!

Data extraction, exclusion

Data extraction, exclusion,
and labeling processes

Data extraction, exclusion,
and labeling processes

Pretraining dataset
16,150 EXECGs from
13,997 patients

Downstream task
development dataset
16,132 EXECGs from

13,984 patients

Downstream task
test dataset
6,431 EXECGs from
6,298 patients

Figure 2. Data flow diagram (overview)

Abbreviations: EXECG, exercise electrocardiogram




16,278 EXECGs from 14,041 patients eligible from
2020-06-23 to 2023-02-09

128 EXECGs failed to extract median beat ECG excluded

16,150 EXECGs from 13,997 patients

1,609 EXECGs from 1,401 patients included in the test dataset excluded

Model development dataset
14,541 EXECGs from 12,596 patients

l l

Training dataset Validation dataset
12,941 EXECGs from 1,600 EXECGs from
11,196 patients 1,400 patients

Figure 3. Data flow diagram for the development of pre-trained model

Abbreviations: EXECG, exercise electrocardiogram
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23,033 EXECGs from 18,998 patients eligible from
2020-06-23 to 2024-02-10

148 EXECGs failed to extract median beat ECG were excluded

60 EXECGs without interpretable exercise were excluded

22,824 EXECGs from 18,834 patients

EXECGs from
2020-06-23 to 2023-02-09

EXECGs from
2023-02-10 to 2024-02-10

261 EXECGs without physician reading or Duke
Treadmill Score were excluded

Model development dataset
16,132 EXECGs from
13,984 patients

Test dataset
6,431 EXECGs from
6,298 patients

Figure 4. Data flow diagram for the development of prediction model for

coronary revascularization

Abbreviations: EXECG, exercise electrocardiogram

11



1,889 ExECGs from 1,860 patients eligible from
2023-01-01 to 2024-06-30

8 ExXECGs failed to extract median beat ECG excluded
14 ExECGs without interpretable exercise were excluded

1,867 EXECGs from 1,841 patients

Figure 5. Data flow diagram for the external validation of prediction model for
coronary revascularization

Abbreviations: EXECG, exercise electrocardiogram
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2.2. Development and Validation of pre-trained model

The beta-variational autoencoder (B-VAE)*, which used a weighted Kullback-
Leibler Divergence (KLD) term in the loss function to enforce disentanglement and
encode ECG data into a low-dimensional latent space, has been demonstrated to be
effective in previous studies®.

Figure 6 demonstrates the overview of model architecture. The encoder receives 300
median beat ECG data points (12x300) and structures eight 1D causal convolution blocks
containing 1D causal convolution, weight normalization, leaky ReLU activations, and
residual connections to transform the input into a 64x300-dimensional feature map.
Adaptive max pooling reduces the temporal dimension, creating a 64-dimensional feature
vector. Finally, two parallel 64-to-32 linear layers map the feature vector to mean and
standard deviation parameters for a latent Gaussian distribution, with SoftPlus activation
and a small constant (€ = 0.001) applied to the standard deviation. The decoder mirrors
the encoder to reconstruct lower-dimensional representations of the original
electrocardiograms with continuous outputs. An initial 32-dimension vector z is
transformed into a 64-dimension vector using a linear layer and subsequently reshaped
into a 64x300 matrix using a second linear transformation. The output (12x300) is
flattened into a vector, and two parallel linear layers map it to the mean and standard
deviation for a Gaussian distribution, with SoftPlus activation and a small constant (¢ =
0.001) applied to the standard deviation. The final ECG reconstruction is reshaped back
to 12x300.

The number of latent variables and the p-value, identified as the two most important
hyperparameters in the B-VAE, were derived from a previous study®®. The VAE model
was trained on the entire VAE train set, using the Adam optimizer with a learning rate of
0.001, and batch size was set at 128*. Each model was trained over 200 epochs, and the
model achieving the lowest evaluation loss was selected as the final model.

To identify the latent dimensions essential for ECG signal reconstruction, latent
traversals were performed. Each individual ECG latent value was varied between -3
(represented in blue) and 3 (represented in red), while the other latent values remained
constant, allowing visualization of a distinct median beat ECG morphology for each
latent.
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2.3. Development and validation of coronary revascularization
prediction model

For the prediction of coronary revascularization, XGBoost models*® was trained using
the significant latent values derived from the encoder of each VAE model, along with
relative systolic and diastolic blood pressure measurements at each Stage compared with
the resting blood pressures. The predictive performance for coronary revascularization
was compared between cases where the physician diagnosis was positive and cases where
the DTS was less than -10'2,

To ensure model-level interpretability, Shapley Additive Explanations (SHAP) were
employed to elucidate the contribution of individual variables to specific predictions and
to identify the most influential features across all variables**. Based on the SHAP value,
predictors and ECG latent values were obtained at the patient level. The selected ECG
latent variables were then visualized in relation to the median beat ECG morphology.

2.4. Clinical validation

As part of the diagnostic evaluation, a randomized cross-over trial was conducted to
compare the diagnostic performance of physicians with and without assistance from the
Al model. In the test set, 100 EXECG records were randomly selected with non-
diagnostic or borderline findings that were considered indeterminate. All reports were
independently interpreted by four cardiologists. The reports were blinded to patient
information, including age, sex, and clinical history. A cross-over design was employed,
in which the physicians were randomly and evenly divided into two groups. Physicians
were instructed to assign a binary label for the negative or positive of coronary
revascularization. The model assistant indicated whether coronary revascularization was
negative or positive, along with a probability and visual representation. Initially, group 1
read the examinations without a model assistant, and group 2 read the examinations with
a model assistant. After a 7-day washout period, the test sets were randomly reordered.
Subsequently, Group 1 interpreted the reports with model assistance, whereas Group 2
did so without.

15



2.5. Statistical analysis

The baseline characteristics were presented as mean + SD or median with interquartile
range for continuous variables, and as number with corresponding percentages for
categorical variables. Continuous variables were compared using one-way analysis of
variance or the Kruskal-Wallis test, and categorical variables using Pearson’s chi-square
test or Fisher’s exact test. The discriminatory performance of the models was evaluated in
the test sets using the area under the receiver operating curve (AUROC), sensitivity,
specificity, negative predictive value (NPV), positive predictive value (PPV), balanced
accuracy and area under the precision-recall curve (AUPRC). To compare the AUROCs
statistically, DeLong’s test was performed. To estimate 95% confidence interval (CI),
1,000 bootstrap resamples were generated.

The risk stratification for coronary revascularization using Al-based models was
assessed by comparing models using physician diagnosis and DTS. Based on a
probability cutoff value that was optimized during internal validation, the Al model
assigned patients to high- or low-risk groups. Physician assessed the EXECG into three
levels: positive, equivocal, and negative. For risk stratification, "positive" readings were
categorized as high risk, while "equivocal" and "negative" readings were categorized as
low risk. For DTS, under —10 was defined as high risk, and scores above —10 were
considered low risk. In each method, odds ratios with 95% CI were calculated by
comparing the high-risk group with the low-risk group.

Additionally, subgroup analyses were conducted within the test datasets. There were
subgroups according to sex, age (under 60 years and 60 and older), and final exercise
Stage (Stage 1, Stage 2, Stage 3, Stage 4), as well as previous coronary artery
revascularizations. The prediction performance of coronary artery revascularization and
risk stratification performance were compared for each subgroup of Al, physician, and
DTS.

All analyses were performed using Python version 3.8.12 (Python Software
Foundation, http://www.python.org) and R version 4.3.1 (the R Foundation, www.R-
project.org).
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3. Results

3.1. Baseline characteristics

3.1.1 Severance hospital

The development dataset for the coronary revascularization prediction model included
16,132 EXECGs from 13,894 patients and the test dataset included 6,431 EXECGs from
6,298 patients (Figures 4). Baseline characteristics of the development and test datasets
are summarized in Table 1. In both datasets, 1.9% of cases underwent coronary
revascularization.

Patients with coronary revascularization were significantly older than those without
(development dataset: 64 [59—69] vs. 61 [50-68] years, p<0.001; test dataset: 64 [58—70]
vs. 61 [50-68] years, p<0.001). More male patients underwent coronary revascularization
than female patients (development: 84.2% vs. 64.1%, p<0.001; test: 94.3% vs. 64.3%,
p<0.001). Neither the development nor the test dataset found a significant difference
between patients with histories of coronary revascularization and those without
(development: 2.5% vs. 0.6%, p=0.220; test: 16.5% vs. 14.6%, p=0.373). In the
development dataset, patients undergoing coronary revascularization were less likely to
reach higher exercise Stages. Only 42.6% of revascularized patients reached Stage 4 with
66.5% of non-revascularized patients did Stage 4 (p<<0.001). It was also observed in the
test dataset that the proportion of patient who achieved Stage 4 was significantly lower in
the coronary revascularization group (43.9 vs 73.1%, p<0.001).

Among comorbidities, hypertension and diabetes were more prevalent in the coronary
revascularization group in the development dataset (hypertension: 47.1% vs. 40.6%,
p=0.025; diabetes: 33.2% vs. 21.4%, p<0.001). In the test dataset, only diabetes showed a
significant difference between group (28.5% vs. 19.2%, p=0.014). Other comorbidities,
including dyslipidemia, myocardial infarction, heart failure, peripheral artery disease,
ischemic stroke, and atrial fibrillation, did not show significant differences between the
groups in either dataset.
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3.1.2 Yongin Severance hospital

The external validation dataset from YSH included 1,867 EXECGs from 1,841 patients
(Figures 5). Among the 1,867 patients in the external validation dataset, 38 patients (2%)
underwent coronary revascularization following EXECG.

Table 2 shows the characteristics of the external validation dataset. Patients with
coronary revascularization were significantly older (59 [55-67] years vs. 51 [37-62] years,
p=0.001), and the majority were males (84.2% vs. 58.2%, p=0.002). Coronary
revascularization patients were less likely to reach higher exercise Stages, although the
differences did not reach statistical significance (Stage 4: 60.5% vs. 74.4%, p=0.081;
Stage 3: 36.8% vs. 22.1%, p=0.050). None of the coronary revascularization patients had
undergone prior coronary revascularization.

The coronary revascularization group was more likely to suffer from comorbid
conditions such as hypertension (55.3% vs. 29.6%, p0.001), diabetes (36.8% vs. 13.7%,
p0.001), and dyslipidemia (81.6% vs. 35.4%, p0.001). Atrial fibrillation was also
significantly more frequent among patients with coronary revascularization (13.2% vs.
4.2%, p=0.011).
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Table 2. Clinical characteristics of development and test dataset

Development dataset Test dataset
Revascularization Revascularization
Negative Positive  P-value* Negative Positive P-value*
No. of cases 15822 310 6308 123
61 64 61 64
Age, years ;s0-68] [59-60] OO soes) [ss70; <000
Sex
10136 261 4054 116
0,
Male, n (%) (64.1) (84.2) <0.001 (64.3) (943) <0.001
History of
coronary
revascularization
At least one 401 1043 18
time, 7 (%) s 206 0220 o5 46 0373
Prior  Cardiac
Imaging
Angiography, n 738 31 220 16
(%) @6)  (100) 0001 35 (439 <0001
834 421 13
0,
Heart CT, n (%) (5.3) 29 (9.4) 0.002 6.7) (10.5) 0.128
Post Cardiac
Imaging
Angiography, n 717 296 171 123
%) @5 (955 0001 oay (0g) <0001
1268 85 445 39
0,
Heart CT, n (%) (8.0) (27.4) <0.001 7.1) (31.7) <0.001
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Achieved
exercise Stage

Stage 1

Stage 2

Stage 3

Stage 4

Comorbidities

Hypertension,
n (%)

Diabetes, n (%)

Dyslipidemia,
n (%)

Previous
myocardial
infarction,
n (%)

Heart failure,
n (%)

Peripheral
arterial disease,
n (%)

Ischemic stroke,
n (%)

138
(0.8)

526
(3.3)

4634
(29.3)

10524
(66.5)

6426

(40.6)

3383
(21.4)

7450
(47.1)

1233

(7.8)

1351
(8.5)

506
(3.2)

302
(1.9)

3(0.9)

44
(14.2)

131
(42.3)

132
(42.6)

146
47.1)

103
(33.2)

158
(51.0)

21

(6.7)

24
(7.7)
10

(3.2)

20

1.000

<0.001

<0.001

<0.001

0.025

<0.001

0.194

0.578

0.693

1.000

0.562

16 (0.3)

63 (1.0)

1619
(25.7)

4610
(73.1)

2483

(39.4)

1209
(19.2)

2816
(44.6)

396
(6.3)

557
(8.8)

230
(3.6)

93

1(0.8)

19
(15.4)

49
(39.8)

54
(43.9)

54

(43.1)

35
(28.5)

62
(50.4)

1
(8.9)

12
(9.8)

(4.9)

0.757

<0.001

0.001

<0.001

0.457

0.014

0.237

0.310

0.843

0.633

0.832



(1.3) (1.5) (1.0)

Atrial 173 16 475 9
fibrillation, (14) 0.164 1.000
n (%) ' (5.2) (1.5) (7.3)

The comorbidities were identified based on ICD-10 codes, including hypertension (110,
111, 112, 113, 115), diabetes mellitus (E10-E14), dyslipidemia (E78), previous myocardial
infarction (121, 122, 125.2), heart failure (I111.0, 150, 197.1), peripheral arterial disease
(170, I71), ischemic stroke (163, 164), and atrial fibrillation (148). Continuous variables
are presented as median [Q1-Q3] and categorical variables are presented as number
(percentage).

* P-values were derived using Pearson’s chi-squared test for categorical variables and
the Wilcoxon rank-sum test for continuous numeric variables.
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Table 2. Clinical characteristics of external validation dataset

Negativg for. Positive‘for. P-value*
Revascularization Revascularization
No. of cases 1,829 38
Age, years 51 [37-62] 59 [55-67] <0.001
Sex
Male, n (%) 1,064 (58.2) 32 (84.2) 0.002
History of coronary
revascularization
At least one time, n (%) 74 (4.0) 0(0.0) 0.398
Achieved exercise Stage
Stage 1 11 (0.6) 0(0.0) 1.000
Stage 2 53(2.9) 1(2.6) 1.000
Stage 3 404 (22.1) 14 (36.8) 0.050
Stage 4 1361 (74.4) 23 (60.5) 0.081
Comorbidities
Hypertension, n (%) 541 (29.6) 21 (55.3) <0.001
Diabetes, n (%) 250 (13.7) 14 (36.8) <0.001
Dyslipidemia, n (%) 647 (35.4) 31 (81.6) <0.001
Er;%;ous myocardial infarction, 69 (3.8) 4(10.5) 0.054
Heart failure, n (%) 236 (12.9) 4 (10.5) 1.000
ze(roi/gheral arterial disease, 54 (3.0) 0(0.0) 0.614
Ischemic stroke, n (%) 15 (0.8) 0(0.0) 1.000
Atrial fibrillation, n (%) 76 (4.2) 5(13.2) 0.011
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The comorbidities was identified based on ICD-10 codes, including hypertension (110,
111, 112, 113, 115), diabetes mellitus (E10-E14), dyslipidemia (E78), previous myocardial
infarction (121, 122, 125.2), heart failure (I111.0, 150, 197.1), peripheral arterial disease
(170, I71), ischemic stroke (163, 164), and atrial fibrillation (I48). Continuous variables
are presented as median [Q1-Q3] and categorical variables are presented as number
(percentage).

* P-values were derived using Pearson’s chi-squared test for categorical variables and
the Wilcoxon rank-sum test for continuous numeric variables.
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3.2. Performance of the variational auto-encoder

The training dataset consisted of 12-lead median beat ECGs, which were distributed as
follows: 65,808 samples for the Stage 1 VAE model, 65,185 for the Stage 2 VAE model,
59,130 for the Stage 3 VAE model, 31,467 for the Stage 4 VAE model, and 105,706 for
the recovery phase VAE model.

The performance of VAE models in reconstructing median beat ECGs was evaluated.
Based on the Stage 1 VAE model, Pearson correlation coefficient was 0.935 (P < 0.001).
Furthermore, the Stage 2 VAE model showed a correlation of 0.933 (P < 0.001), while
the Stage 3 and Stage 4 VAE models both achieved a correlation of 0.934 (P < 0.001).
The recovery phases VAE model had the highest reconstruction accuracy with a mean
Pearson correlation coefficient of 0.940 (P <0.001). These results indicate a high level of
reconstruction performance across all VAE models.

The results indicate that only a subset of the 32 latent variables is actively utilized for
reconstruction at each Stage VAE. Specifically, 16 latent variables were utilized in Stage
1, 14 latent variables in both Stage 2 and Stage 3, 13 latent variables in Stage 4, and 17
latent variables in the recovery Stage. Latent traversals for these variables are illustrated
in Figures 2-8.
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(C) Lead V4
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Figure 7. Latent traversals of all the ECG factors from Stage 1 pre-trained model
(lead I, lead V3, and lead V4)

latent traversals of a subset of the 16 ECG factors (latent number 2, 5, 6, 9, 13, 14, 18,
22,23,24,25, 26,27, 29, 30, 31) that hold significant information for correctly
reconstructing electrocardiograms.

Abbreviations: ECG, electrocardiogram.

26



B A A A B B
B A A A
| ALAA&AAAAA&AA&A%A
S DA A A A D
S B SR SR R A e e
rErTe T T T e
RO SR SinSln sln ol ni o
nensincasnnntnsEs

27



(C) Lead V4
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Figure 8. Latent traversals of all the ECG factors from Stage 2 pre-trained model
(lead I, lead V3, and lead V4)

—
<>

latent traversals of a subset of the 14 ECG factors (latent number 1, 5, 8, 9, 12, 13, 14,
19, 21, 22, 23, 24, 25, 28, 29) that hold significant information for correctly
reconstructing electrocardiograms.

Abbreviations: ECG, electrocardiogram.
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(C) Lead V4
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Figure 9. Latent traversals of all the ECG factors from Stage 3 pre-trained model
(lead I, lead V3, and lead V4)

latent traversals of a subset of the 14 ECG factors (latent number 2, 8, 9, 10, 11, 12,
13, 14, 19, 20, 21, 24, 25, 30) that hold significant information for correctly
reconstructing electrocardiograms.

Abbreviations: ECG, electrocardiogram.
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Figure 10. Latent traversals of all the ECG factors from Stage 4 pre-trained
model (lead II, lead V3, and lead V4)

latent traversals of a subset of the 13 ECG factors (latent number 1, 2, 6, 7,9, 11, 14,
15, 23, 25, 29, 30, 31) that hold significant information for correctly reconstructing

electrocardiograms.

Abbreviations: ECG, electrocardiogram.
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(C) Lead V4
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Figure 11. Latent traversals of all the ECG factors from Recovery phase pre-
trained model (lead II, lead V3, and lead V4)

latent traversals of a subset of the 17 ECG factors (latent number 2, 6,11, 12, 14, 15,
17,18, 19, 21, 23, 24, 25, 26, 28, 29, 32) that hold significant information for correctly

reconstructing electrocardiograms.

Abbreviations: ECG, electrocardiogram.
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3.3. Performance of coronary artery revascularization prediction
model

Based on the latent variables derived from the VAE models, machine learning models
were developed and tested to predict coronary revascularization. Accordingly, latent
variables were extracted from Stage 1 (16 variables), Stage 2 (14 variables), Stage 3 (14
variables), Stage 4 (13 variables), and both early-recovery and mid-recovery phases (17
variables each). The model also included 12 variables indicating changes in systolic and
diastolic blood pressure during each exercise phase. A total of 103 variables were used to
train and evaluate the XGBoost model.

The Al-based prediction model achieved an AUROC of 0.84 (95% CI: 0.80-0.89) and
an AUPRC of 0.25 (0.18-0.33) in the test dataset. The performance of the physician and
the DTS was AUROC: 0.80 (95% CI: 0.76-0.85) and AUPRC: 0.11 (95% CI: 0.08-0.14),
and AUROC: 0.78 (95% CI: 0.73—0.82) and AUPRC: 0.07 (95% CI: 0.05-0.09),
respectively. (Figure 3 and Figure 4). According to DeLong's test, the AUROC of Al-
based prediction model was significantly higher than that of DTS (DeLong test [unpaired,
two-sided], Al vs. Physician P =0.141, Al vs. DTS P = 0.002, and Physician vs. DTS P =
0.171). Table 3 shows the performance metrics of models. In Al-based prediction model,
0.068 was selected as a threshold of similar sensitivity as physicians.

Table 4 summarizes the odds ratios of coronary revascularization for the three methods
in high-risk groups. According to the Al model, the OR for the high-risk group was 19.06
(95% CI: 13.18-27.76). Positive physician-assessed results were associated with a similar
OR of 19.85 (95% CI: 13.72-28.90), whereas the DTS high-risk group had a lower OR of
8.14 (95% CI: 5.07-12.65).

The most important global ECG latent variables for the prediction of coronary
revascularization were high values for latent 26 and 18 of Mid-recovery, latent 2 of Stage
2 and latent 4 of Stage 25. (Figure 3)
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Figure 12. ROC curves of Al model, Physician, and DTS

Abbreviations: ROC, eceiver operating curve; Al, artificial intelligence; DTS, duke
treadmill score.
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Figure 13. PR curves of Al model, Physician, and DTS

Abbreviations: PR, precision-recall; Al, artificial intelligence; DTS, duke treadmill
score.
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Table 3. Comparison of Al performance with existing criteria and validation

*

Al Physician DTS
Sensitivity 0.59 0.58 0.14
Specificity 0.93 0.94 0.97
F1-score 0.23 0.24 0.11
PPV 0.14 0.15 0.09
NPV 0.99 0.99 0.98
Balanced Accuracy 0.76 0.76 0.56

*The Al model’s cut-off value is 0.068 which was selected as the cutoff value, which
yielded similar sensitivity as physician.

Abbreviations: DTS, duke treadmill score; PPV, positive predictive value; NPV,
negative predictive value.
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Table 4. Odds ratio of coronary revascularization according to risk stratification

by Al model and existing criteria

Outcome/ Odds ratio
Analysis Risk group N (N=6,431) (95% CI)
1.00
51/5,924
(under cut-off*) (reference)
Al
19.06
72/507
(over cut-off*) (13.18-27.76)
. 1.00
Negative & 52/5.954
(reference)
Physician
19.85
71/477
(13-72-28.90)
1.00
Low-Medium 97/6,204
(reference)
DTS
8.14
26/227
(5.07-12.65)

* For internal validation, 0.068 was selected as the cutoff value, which yielded similar

sensitivity as physician.

Abbreviations: Al, artificial intelligence; CI, confidence interval; DTS, duke treadmill

SCore
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Figure 14. Explanations for the coronary artery revascularization using Shapley
Additive exPlanations values

In the figure, F followed by a number represents the sequential position of the latent
feature. Early recovery is defined as the first two minutes of recovery and the next two
minutes as the mid-phase.

Abbreviations: BP, blood pressure; SHAP value, Shapley Additive exPlanations
values.
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3.4 Performance of coronary artery revascularization prediction
model in the external validations

The external validations showed AUROCs of 0.74 and 0.62 and AUPRCs of 0.06 and
0.04 in the Al model and DTS model, respectively. Table 5 shows the performance
metrics of models. The same threshold of 0.068, derived from the internal tests, was used
for external validation. The odds ratios of Al model and DTS in high-risk groups are
shown in Table 6. Al model showed an OR of 5.87 (95% CI: 1.94-15.52) for the high-
risk group, whereas DTS showed a higher OR of 7.24 (95% CI: 3.25-14.93).

Table 5. Comparison of Al performance in internal and external validation

Internal External
Al model DTS Al model DTS
AUROC 0.84 0.78 0.74 0.62
(95%CT) (0.80-0.89) (0.73-0.82) (0.66-0.81) (0.52-0.73)
AUPRC 0.25 0.07 0.06 0.05
(95%CI) (0.17-0.33) (0.05-0.09) (0.03-0.11) (0.03-0.09)
Sensitivity 0.59 0.14 0.13 0.26
Specificity 0.93 0.97 0.98 0.95
Fl-score 0.23 0.11 0.11 0.15
PPV 0.14 0.09 0.10 0.10
NPV 0.99 0.98 0.98 0.988
Balanced
Accuracy 0.76 0.56 0.55 0.61

* The same threshold of 0.068, derived from the internal tests, was used for external
validation.

Abbreviations: Al, artificial intelligence; DTS, duke treadmill score; AUROC, the area
under the receiver operating curve; AUPRC, the area under the precision recall curve; CI,
confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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Table 6. Odds ratio of coronary revascularization according to risk stratification
by Al model and duke treadmill score in external validation

Outcome/N Odds ratio
Analysis Risk group (N=1,867) (95% CI)
Low risk 1.00
Al (under cut-off") 46/1,829 (reference)
High risk 5/38 5.87
(over cut-off’) (1.94-14.52)
Low-Medium 86/1,829 (e fle}Q;?lce)
bTS 7.24
High 10738 (3.25-14.93)

The same threshold of 0.068, derived from the internal tests, was used for external
validation.

Abbreviations: Al, artificial intelligence; DTS, duke treadmill score; CI, confidence
interval.
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3.5. Subgroup analysis

Figure 9 presents subgroup analyses according to gender, age, achieved exercise Stage,
and history of coronary revascularization for the prediction of coronary revascularization.
For each model (Al, physician, and DTS), interaction P-values were calculated to
determine whether their predictive performance differed significantly by subgroup.

There was a relatively better performance from all three models in predicting coronary
revascularization in males than in female. The AUROC:Ss of 0.83, 0.80, and 0.75 and
AUPRC:s 0f 0.28, 0.13, and 0.08 in Al model, physician, and DTS, respectively. The
AUROC of DTS was significantly lower than that of Al model and physician (DeLong
test [unpaired, two-sided], Al vs. Physician P =0.211, Al vs. DTS P < 0.001, and
Physician vs. DTS P = 0.042).

For young group, Al model outperformed than two models. For young people, all three
models performed better than for older people in predicting coronary revascularization. In
the young group, the AUROCSs for Al model, physician, and DTS were 0.92, 0.83, and
0.80; and the AUPRCs were 0.33, 0.14, and 0.07. Al model had a significantly higher
AUROC than physician and DTS (DeLong test [unpaired, two-sided], Al vs. Physician P
=0.002, Al vs. DTS P <0.001, and Physician vs. DTS P = 0.311).

According to the achieved exercise Stage, the Stage 1 & 2 group showed the best
performance in both AUROC and AUPRC. The AUROCs were 0.88, 0.81, and 0.85,
respectively, and the AUPRCs were 0.73, 0.44, and 0.49. There were no statistical
differences between the models (DeLong test [unpaired, two-sided]: Al vs. Physician, P =
0.174; Al vs. DTS, P = 0.513; Physician vs. DTS, P = 0.530). In Stage 4 group, the
AUROC:s for Al model, physician, and DTS were 0.81, 0.80, and 0.72; and the AUPRCs
were 0.10, 0.08, and 0.03. The AUROC of DTS was significantly lower than that of Al
model and physician (DeLong test [unpaired, two-sided], Al vs. Physician P = 0.732, Al
vs. DTS P =0.014, and Physician vs. DTS P =0.014).

Patients without a history of coronary revascularization had AUROCS of 0.84, 0.80,
and 0.78, respectively, while AUPRCs were 0.26, 0.12, and 0.07, respectively. The
AUROC of DTS was significantly lower than that of Al model and physician (DeLong
test [unpaired, two-sided], Al vs. Physician P = 0.158, Al vs. DTS P =0.003, and
Physician vs. DTS P = 0.301). With at least one prior revascularization, the AUROC
values for the Al model, physician, and DTS were 0.84, 0.80, and 0.74, respectively; and
the AUPRC values were 0.23, 0.08, and 0.08. There were no statistical differences
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between the models (DeLong test [unpaired, two-sided]: Al vs. Physician, P = 0.567; Al
vs. DTS, P = 0.194; Physician vs. DTS, P =0.273).

The interaction P-values were greater than 0.05 in most subgroups, indicating that
performance differences were generally consistent regardless of subgroup characteristics.
However, for the age subgroup in Al the interaction P-value was less than 0.01,
demonstrating statistically significant differences in model performance by age.

45



Analysis AUROC (95% Cl) AUPRC (95% Cl)  OR (95% Cl)  value for
Gender
Al (Male) 0.83(0.790.87)  0.28 (0.19-0.35) 15.81 (10.77-23.42) .
Al (Female) 0.71(0.500.92)  0.10(0.00-0.38)  11.01 (1.56-51.96) = 068
Physician (Male) 0.80(0.750.84)  0.13(0.10-0.17) 15.48 (10.55-22.87) -
Physician (Female) 0.76 (0.56-0.96)  0.03 (0.00-0.08) 24.86 (4.82-114.95) . 0.5
DTS (Male) 0.75(0.71-0.80)  0.08 (0.06-0.10)  4.23 (2.39-7.08)
DTS (Female) 0.73 (0.50-0.97) - - o7
Age
Al (< 60) 0.92(0.87-0.96)  0.33 (0.20-0.46) 59.23 (31.42-114.26) .
Al (2 60) 078 (0.720.84)  0.25 (0.16-0.34)  11.62 (7.34-18.56) . oo
Physician (< 60) 0.83(0.76-0.90)  0.14 (0.08-0.20) 29.29 (15.85-54.81) . o2
Physician (> 60) 0.79(0.730.84)  0.11(0.07-0.14)  15.78 (9.94-25.37) s
DTS (< 60) 0.80 (0.72:0.87)  0.07 (0.04-0.10)  5.09 (2.04-11.01)
DTS (2 60) 0.76 (0.70-0.82)  0.07 (0.05-0.10)  6.49 (3.04-12.55) 068
Achieved exercise stage
Al (Stage 182) 0.88(0.790.97)  0.73 (0.52-0.89)  13.22 (3.49-86.85) .
Al (Stage 3) 0.79(0.72:0.86)  0.21(0.11-0.33)  12.77 (6.98-24.48) a 0.84
Al (Stage 4) 0.81(0.75:0.87)  0.10 (0.05-0.16)  16.47 (9.13-29.00) -
Physician (Stage 182)  0.81(0.73-0.90)  0.44 (0.28-0.59)  16.72 (4.99-77.16) o
Physician (Stage 3) 0.76 (0.69-0.83)  0.12(0.07-0.17)  11.00 (6.11-19.87) . 0.31
Physician (Stage 4) 0.72(0.64-0.79)  0.03(0.02-0.04) 20.58 (11.88-35.90) -
DTS (Stage 182) 0.85(0.77-0.93)  0.49 (0.29-0.73)  6.25 (1.49-27.97)
DTS (Stage 3) 0.77 (0.70-0.84)  0.11(0.07-0.15)  4.49 (1.49-10.97) 0.93
DTS (Stage 4) 0.80(0.73-0.86)  0.08 (0.05-0.11)  5.05 (2.05-10.69)
History of coronary artery revascularization
Al (None) 0.84(0.80-0.88)  0.26 (0.18-0.35) 21.79 (14.59-32.80) . oo
Al (At least one) 0.84(0.76:0.93)  0.23 (0.05-0.44)  12.09 (4.67-33.41) .
Physician (None) 0.80 (0.76-0.85)  0.12(0.09-0.16) 21.31 (14.27-32.04) .
Physician (At leastone) ~ 0.80 (0.70-0.91)  0.08 (0.04-0.14)  15.50 (6.00-43.01) . 058
DTS (None) 0.78 (0.74-0.83)  0.07 (0.050.09)  4.40(2.25-7.90)
DTS (At least one) 0.74 (0.60-0.89)  0.08 (0.03-0.15)  15.04 (4.56-43.26) 0.08
I T T
: X 5

Odd Ratio (95% CI)

Figure 16. Subgroup analysis

The numbers of subjects in each subgroup are as follows: Male (N=4,170), Female
(N=2,261), age < 60 years (N=2,829), age > 60 years (N=3,552), Stage 1&2 (N=99),
Stage 3 (N=1,668), Stage 4 (N=4,664), no comorbidities (N=5,370), and at least one
comorbidity (N=1,061).

Abbreviations: Al, artificial intelligence; DTS, duke treadmill score; AUROC, the area
under the receiver operating curve; AUPRC, the area under the precision recall curve; CI,
confidence interval.
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3.6. Evaluation of clinical validation

Without Al assisted, physicians achieved a microaveraged sensitivity of 0.75 (95% ClI,
0.59-0.91), specificity of 0.38 (95% CI, 0.34-0.43), and an accuracy of 0.41 (95% CI,
0.36-0.46). With Al assisted, the physicians achieved a microaveraged sensitivity of 0.43
(95% CI, 0.25-0.61), specificity of 0.66 (95% CI, 0.61-0.71), and an accuracy of 0.64
(95% CI, 0.60-0.69). The underlying model had a sensitivity of 0.57 (95% CI, 0.21-0.94),
specificity of 87 (95% CI, 0.80-0.94), and accuracy of 0.85 (95% CI, 0.78-0.92).
Performance improvements across clinicians are detailed in the Table 3.

Table 7. Clinical Performance Metrics with and without AI assisted

. . Al assisted Mean Increase
Metric Physicians ..
physicians (95% CI)
-0.323
Sensitivit 0.750 0.429
enstvity (-0.963-0.318)
0.278
Specificit 0.384 0.659
pecthetty (-0.161-0.716)
0.233
A 41 .64
ccuracy 0.410 0.643 (-0.182-0.647)
0.022
PPV 0.094 0.116
(-0.123-0.167
-0.013
NPV 0.959 0.946
(-0.123- 0.098)
-0.024
F1-score 0.162 0.139 0.0

(-0.177-0.129)

Abbreviations: Al, artificial intelligent; CI, confidence interval; PPV, positive
predictive value; NPV, negative predictive value.

47



4. Discussion

In this study, EXECG pre-trained VAE model was developed by using large-scale
ExXECG data for the first time compared to a prior study. The explainable Al model that
utilizes ECG morphological features across a variety of exercise Stages have
demonstrated strong prediction performance for coronary revascularization. In the test
dataset, the model achieved AUROCSs of 0.84 and AUPRCs of 0.25, outperforming both
physician interpretation (AUROCs: 0.80, AUPRCs: 0.11), and DTS (AUROC:s: 0.78,
AUPRC:S: 0.07). Incorporating SHAP and latent traversal into the Al model supports
model interpretability, fostering clinical trust and adoption. Importantly, the Al identified
important ECG markers, including subtle ST-segment deviations and heart rate recovery
patterns, which were strongly associated with significant coronary disease. The findings
in this study demonstrate that Al assisted EXECG can be used to improve risk
stratification in coronary revascularization.

4.1. Pre-trained ExXECG Model based on VAE

Several studies have demonstrated that VAE are effective for ECG compression,
augmentation, clustering, and feature extraction, with several factors sufficient to encode
a single or median beat ECG *"*'. In addition, Van de Leur et al. (2022) demonstrated
ECG morphology by a limited number of underlying factors and the median beat ECG
can be encoded effectively using 21 continuous latent factors®. They improved the
clinical utility and interpretability of VAE-derived features by relating them to
established ECG measurements, integrating visualization tools, and validating them in
predictive tasks.

The VAE approach was applied to EXECG in the present study to extract latent
explanatory factors corresponding to each exercise Stage. Based on the modeling of
dynamic morphological changes across phases of EXECG, each Stage-specific VAE
model demonstrated high reconstruction accuracy, with Pearson correlation coefficients
ranging from 0.933 to 0.940 (P < 0.001). This suggests that high-dimensional EXECG
data can be effectively represented using only a small number of latent variables.
Specifically, 16 latent variables were used in Stage 1, 14 in both Stage 2 and Stage 3, 13
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in Stage 4, and 17 during recovery, indicating that ECG morphology can be well captured
by a limited set of underlying factors (Figure 7-11).

4.2. Explainable Al for ExXECG Interpretation

The present study extends EXECG Al research by using ECG morphological features
and introducing explainable Al, which can provide deeper insights into signal
interpretation and improve transparency in clinical prediction. Unlike conventional post
hoc explainability methods commonly used to address the “black box™ nature of deep
learning in ECG analysis®', the VAE-based approach in this study enables reliable and
quantitative characterization of morphological changes in the ECG, rather than merely
highlighting their temporal locations'”'**. To improve transparency and clinical
applicability, the SHAP framework was employed. SHAP provides quantitative
attribution of individual feature contributions to model predictions and has demonstrated
superior consistency and generalizability across diverse medical datasets compared to
earlier interpretability methods***. This method is particularly useful in EXECG, where
transient ECG changes occur dynamically across different exercise Stages.

The most significant predictor of coronary revascularization according to SHAP-based
analysis was ST-segment depression during the mid-recovery phase. The recovery phase
latent waveform features have been previously under-recognized as predictive markers
for myocardial ischemia. The findings demonstrate the potential of explainable Al to
provide both accurate prediction and physiologically relevant insights, thereby enhancing
EXECG-based risk stratification.

4.3. Al-based ExXECG Prediction of Coronary Revascularization

Using Al-based EXECG interpretation, this study provides direct evidence that
prediction on coronary revascularization is comparable or even superior to interpretation
of physician. Traditionally, physician rely on established criteria to assess EXECG
signals, with an AUROC of 0.80, whereas my Al model achieved an AUROC of 0.84,
thereby extracting greater predictive information from EXECG signals. Nevertheless,
external validation indicated limited generalizability across institutional settings. This
discrepancy may be attributed to heterogeneity in data acquisition protocols, population
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characteristics, or underlying clinical workflows across institutions. Notably, even the
DTS—a traditional risk stratification tool based on fixed, well-defined parameters and
using the same revascularization outcome—also exhibited decreased performance in the
external validation dataset. This indicates that the observed performance drop is not
solely due to the complexity or overfitting of the Al model. Rather, it reflects the
variability across institutions like patient selection, or clinical decision-making may
significantly impact outcome labeling and model generalizability****. While the Al-based
model showed reduced performance in the external validation, it consistently
outperformed the traditional DTS-based approach. Accordingly, the model captures
subtle morphological and dynamic features in EXECG that conventional scoring systems
may ignore, making it an effective tool for detecting disease across a variety of clinical
environments.

Diagnostic performance of Al was better in men compared with women. There were
also gender differences in the conventional treadmill test algorithm*®. There may be a
reason for the gender differences observed in this study, since many of the features of the
present model were associated with ST-segment depression. The diagnostic performance
of ST-segment depression during TET is lower for women***’. Previous studies have
reported a relatively high prevalence of recovery-only ST-segment depression among
asymptomatic, apparently healthy individuals*, which may explain the superior model
performance observed in younger patients (under 60 years). The interaction P-value
below 0.01 indicates a significant performance difference by age, suggesting that the Al
model may be especially effective in younger patients. By achieved exercise Stage, the
prediction performance was highest in STAGE 1 and STAGE 2 subgroups compared to
STAGE 3 and STAGE 4. Clinically, exercise tolerance during EXECG is an important
indicator of underlying CAD'>*". Therefore, lower achieved Stages may reflect reduced
functional capacity or the presence of CAD. The model appears to capture these clinical
characteristics well and contributes to risk estimation.

4.4. Al-Based EXECG vs. Traditional Physician Interpretation

Al assistance in clinical decision-making substantially improved physician specificity
(from 0.38 to 0.66) while reducing sensitivity (from 0.75 to 0.43). There is a possibility
that the Al model prioritized specificity over sensitivity, resulting in fewer positive
classifications. The threshold selection should reflect the intended clinical purpose of the
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model. In screening, sensitivity should be maximized to detect as many true positives as
possible, whereas in diagnostic settings, specificity should be prioritized to minimize
false positives and avoid unnecessary interventions'>*>'. Since the primary purpose of
this study was to evaluate an explainable Al framework and compare its predictive
capability with physician interpretations, the threshold was chosen to reflect this
objective. The thresholds of Al model may be revised according to their intended clinical
use-diagnoses or screening decisions. Physicians also may have underutilized Al
recommendations, particularly in borderline positive cases. The degree to which
physicians accept Al recommendations is often determined by the transparency of the Al
system, its interpretability, and the extent to which it is incorporated into the clinical
workflow™2. When physicians do not have enough information or do not trust the Al's
performance, they may disregard Al recommendations and rely instead on their own
clinical judgment®. In this study, physicians were not informed about the Al model's
validated performance; as a result, they may have been reluctant to override their initial
clinical judgment when Al predictions contradicted their expectations.

4.5. Limitations

Despite promising findings, this study has several limitations. Even though external
validation was conducted, further studies, including multicenter validation and
prospective trials, are required to ensure that the model is applicable and generalizable
across diverse ethnic groups and populations. Due to its clinical relevance and
retrospective design, coronary revascularization was selected as the primary endpoint,
even though not all patients underwent invasive angiography. It could have missed cases
of true ischemia in patients who were not revascularized, thereby underestimating its
diagnostic accuracy. Furthermore, future research should explore the potential clinical
utility of EXECG Al framework by exploring its application in other relevant contexts,
including early detection of autonomic dysfunction, longitudinal monitoring, and risk
stratification for major cardiovascular events. To ensure safe and effective
implementation of Al assisted EXECG analysis into routine clinical practice, a
comprehensive physician education program, clear regulatory pathways, and efficient
workflow integration strategies are needed to ensure that it is safe and effective.
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5. Conclusion

Based on a large-scale dataset of EXECG signals, this study presents the first pre-
trained model designed to extract and represent EXECG signal characteristics, enabling
task-specific, explainable Al frameworks. The framework improved prediction
performance for coronary revascularization and reduced interobserver variability by
providing visualization. Specifically, the dynamic morphological and temporal patterns of
EXECG have been captured in the model, and they are showing strong alignment with
clinically relevant features. The integration of explainable Al into clinical workflows
could represent a significant advance in cardiovascular diagnostics, improving patient
outcomes through more precise and personalized risk assessment. There will be a need
for further validation and integration efforts to ensure successful clinical deployment and
widespread adoption.

52



References

10

11

12

13

14

15

16

Roth, G. A. ef al. Global burden of cardiovascular diseases and risk factors, 1990-2019:
update from the GBD 2019 study. Journal of the American college of cardiology 76, 2982-
3021 (2020).

Lee, H.-H. et al. Korea heart disease fact sheet 2020: analysis of nationwide data. Korean
circulation journal 51, 495-503 (2021).

Herman, A. Coronary artery disease: The plaque plague. Nursing made Incredibly Easy 11,
34-43 (2013).

Members, W. C. et al. 2021 ACC/AHA/SCAI guideline for coronary artery
revascularization: a report of the American College of Cardiology/American Heart
Association Joint Committee on Clinical Practice Guidelines. Journal of the American
College of Cardiology 79, €21-¢129 (2022).

Cassar, A., Holmes Jr, D. R., Rihal, C. S. & Gersh, B. J. in Mayo Clinic Proceedings.
1130-1146 (Elsevier).

Cagle, S. D. & Cooperstein, N. Coronary artery disease: diagnosis and management.
Primary Care: Clinics in Office Practice 45, 45-61 (2018).

Members, C. et al. ACC/AHA 2002 guideline update for exercise testing: summary article:
a report of the American College of Cardiology/American Heart Association Task Force on
Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Journal
of the American College of Cardiology 40, 1531-1540 (2002).

Knuuti, J. et al. 2019 ESC Guidelines for the diagnosis and management of chronic
coronary syndromes: The Task Force for the diagnosis and management of chronic
coronary syndromes of the European Society of Cardiology (ESC). European heart journal
41, 407-477 (2020).

Members, W. C. ef al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for
the evaluation and diagnosis of chest pain: a report of the American College of
Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.
Journal of the American College of Cardiology 78, e187-¢285 (2021).

Banerjee, A., Newman, D. R., Van den Bruel, A. & Heneghan, C. Diagnostic accuracy of
exercise stress testing for coronary artery disease: a systematic review and meta-analysis
of prospective studies. International journal of clinical practice 66, 477-492 (2012).
Knuuti, J. et al. The performance of non-invasive tests to rule-in and rule-out significant
coronary artery stenosis in patients with stable angina: a meta-analysis focused on post-test
disease probability. European heart journal 39, 3322-3330 (2018).

Mark DB, H. M., Harrell FE Jr, Lee KL, Califf RM, Pryor DB. Exercise Treadmill Score
for Predicting Prognosis in Coronary Artery Disease. Annals of Internal Medicine 106, 793-
800 (1987). https://doi.org/10.7326/0003-4819-106-6-793 %m 3579066

Mark, D. B. et al. Prognostic value of a treadmill exercise score in outpatients with
suspected coronary artery disease. New England Journal of Medicine 325, 849-853 (1991).
Ribeiro, A. H. ef al. Automatic diagnosis of the 12-lead ECG using a deep neural network.
Nature communications 11, 1760 (2020).

Attia, Z. 1. et al. An artificial intelligence-enabled ECG algorithm for the identification of
patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome
prediction. The Lancet 394, 861-867 (2019).

Raghunath, S. et al. Deep neural networks can predict mortality from 12-lead

53



17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

electrocardiogram voltage data. arXiv preprint arXiv:1904.07032 (2019).

Raghunath, S. ef al. Prediction of mortality from 12-lead electrocardiogram voltage data
using a deep neural network. Nature medicine 26, 886-891 (2020).

Hempel, P. et al. Explainable Al associates ECG aging effects with increased
cardiovascular risk in a longitudinal population study. npj Digital Medicine 8, 25 (2025).
Cho, S. ef al. Artificial intelligence—derived electrocardiographic aging and risk of atrial
fibrillation: a multi-national study. European heart journal 46, 839-852 (2025).

Hannun, A. Y. et al. Cardiologist-level arrhythmia detection and classification in
ambulatory electrocardiograms using a deep neural network. Nature medicine 25, 65-69
(2019).

Bailly, A. et al. Effects of dataset size and interactions on the prediction performance of
logistic regression and deep learning models. Computer Methods and Programs in
Biomedicine 213, 106504 (2022).

Fan, J. & Li, R. in Proceedings of the international Congress of Mathematicians. 595-
622 (European Mathematical Society Zurich).

Kim, H. E. et al. Transfer learning for medical image classification: a literature review.
BMC medical imaging 22, 69 (2022).

Arrieta, A. B. et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible Al. Information fusion 58, 82-115 (2020).
Yang, G., Ye, Q. & Xia, J. Unbox the black-box for the medical explainable Al via multi-
modal and multi-centre data fusion: A mini-review, two showcases and beyond.
Information Fusion 77, 29-52 (2022).

van de Leur, R. R. et al. Improving explainability of deep neural network-based
electrocardiogram interpretation using variational auto-encoders. European Heart Journal-
Digital Health 3, 390-404 (2022).

Wouters, P. C. et al. Electrocardiogram-based deep learning improves outcome prediction
following cardiac resynchronization therapy. European heart journal 44, 680-692 (2023).
Lee, Y.-H. et al. Machine learning of treadmill exercise test to improve selection for testing
for coronary artery disease. Atherosclerosis 340, 23-27 (2022).

Yilmaz, A. et al. Machine learning approach on high risk treadmill exercise test to predict
obstructive coronary artery disease by using P, QRS, and T waves’ features. Current
Problems in Cardiology 48, 101482 (2023).

Bock, C. et al. Enhancing the diagnosis of functionally relevant coronary artery disease
with machine learning. Nature Communications 15, 5034 (2024).

Rudin, C. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature machine intelligence 1, 206-215 (2019).
Healthcare, G. Marquette 12SL ECG Analysis Program: Physician’s Guide. GE Healthcare:
Chicago, IL, USA4 (2008).

Kingma, D. P. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).
Snoek, J., Larochelle, H. & Adams, R. P. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems 25 (2012).

Chen, T. & Guestrin, C. in Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining. 785-794.

Lundberg, S. A unified approach to interpreting model predictions. arXiv preprint
arXiv:1705.07874 (2017).

Yildirim, O., San Tan, R. & Acharya, U. R. An efficient compression of ECG signals using
deep convolutional autoencoders. Cognitive Systems Research 52, 198-211 (2018).

54



38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Kuznetsov, V., Moskalenko, V., Gribanov, D. & Zolotykh, N. Y. Interpretable feature
generation in ECG using a variational autoencoder. Frontiers in genetics 12, 638191 (2021).
Jang, J.-H., Kim, T. Y., Lim, H.-S. & Yoon, D. Unsupervised feature learning for
electrocardiogram data using the convolutional variational autoencoder. PLoS One 16,
€0260612 (2021).

Singh, P. & Sharma, A. Attention-based convolutional denoising autoencoder for two-lead
ECG denoising and arrhythmia classification. [EEE Transactions on Instrumentation and
Measurement 71, 1-10 (2022).

Arslan, N. N., Ozdemir, D. & Temurtas, H. ECG heartbeats classification with dilated
convolutional autoencoder. Signal, Image and Video Processing 18, 417-426 (2024).
Ayano, Y. M., Schwenker, F., Dufera, B. D. & Debelee, T. G. Interpretable machine learning
techniques in ECG-based heart disease classification: a systematic review. Diagnostics 13,
111 (2022).

Anand, A., Kadian, T., Shetty, M. K. & Gupta, A. Explainable Al decision model for ECG
data of cardiac disorders. Biomedical Signal Processing and Control 75, 103584 (2022).
Ramspek, C. L., Jager, K. J., Dekker, F. W., Zoccali, C. & van Diepen, M. External
validation of prognostic models: what, why, how, when and where? Clinical kidney journal
14, 49-58 (2021).

Van Calster, B., Steyerberg, E. W., Wynants, L. & Van Smeden, M. There is no such thing
as a validated prediction model. BMC medicine 21, 70 (2023).

Kwok, Y., Kim, C., Grady, D., Segal, M. & Redberg, R. Meta-analysis of exercise testing
to detect coronary artery disease in women. The American journal of cardiology 83, 660-
666 (1999).

Gibbons, R. J. et al. ACC/AHA guidelines for exercise testing. A report of the American
College of Cardiology/American Heart Association task force on practice guidelines
(Committee on Exercise Testing). Journal of the American College of Cardiology 30, 260-
311 (1997).

Lanza, G. et al. Diagnostic and prognostic value of ST segment depression limited to the
recovery phase of exercise stress test. Heart 90, 1417-1421 (2004).

Vijan, S., Hofer, T. P. & Hayward, R. A. Cost-utility analysis of screening intervals for
diabetic retinopathy in patients with type 2 diabetes mellitus. Jama 283, 889-896 (2000).
Areia, M. et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a
modelling study. The Lancet Digital Health 4, e436-e444 (2022).

Wang, Y. et al. Economic evaluation for medical artificial intelligence: accuracy vs. cost-
effectiveness in a diabetic retinopathy screening case. NPJ Digital Medicine 7, 43 (2024).
Rosenbacke, R., Melhus, A., McKee, M. & Stuckler, D. How Explainable Artificial
Intelligence Can Increase or Decrease Clinicians’ Trust in Al Applications in Health Care:
Systematic Review. JMIR Al 3, €53207 (2024).

Zheng, R. et al. Investigating Clinicians’ Intentions and Influencing Factors for Using an
Intelligence-Enabled Diagnostic Clinical Decision Support System in Health Care Systems:
Cross-Sectional Survey. Journal of Medical Internet Research 27, €62732 (2025).

55



ABSTRACT IN KOREAN

AR AAFIAAE S UEYT ML dF: +5F3}H4AA
= Ad e 2l 73
W7 S5 AAEEECGE HAENAS Hotel del ALHAW, Ay 4
]

AelM = et A=
)

s
SYEY APBEe] VLY BAZ ST & A AP AT ATASAI
el
=

N
:Oé
1%
=2
2
)
o
o
%0,
ui
re

PR - f4

Mo gt
offt X

o
1o oft 8 Hz

Wy BRs I2EIZS AR e AR FHARES W 20,5349
o2 AFE FYPolr). W 9 E QI T (variational autoencoder)E -8l
© Aw BAS U4 Sed F, eERE AAE A4 oF

o ool AlgE A3 P (PCl) EE AW 9-3]4(CABG)S #HAt

& oz A St wde) 4se 9%

—_—

A3 B pde F=az 5
0.80-0.88)%2 -7 s BHom, o] #2075 (AE 3 95% , 0.71-0.80),
Duke Treadmill Score> 0.78 (21 & 7F 95%, 0.73-0.82) B3Itk Al 7]%ke] #d5 Ad
e D PTY =M= 12.37(8.43-18.49)%1 HHH, Duke Treadmill Score9} 9] A} et o
2 7|wre o =nH] 77} 5.65(3.02-9.40)¢F 19.65(13.56-28.65)°] Ut E3], 3|E7] =7t
Aol A o] STEA o] s Adst Fadol 7Hg 583 oF dAAS
Halt

AE: 9BV AAES BEelel BIEY AYRES dSE 4P 5E Q)
A5 mde Adsn Assasyth nEsE Al 53 4 bed AdE
54 ANFOEM, Y AP 2FRF AAEY AUH F8S FIND 5
e Aoz A




