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ABSTRACT 

 

Prediction of coronary revascularization by exercise stress 
electrocardiography using an explainable artificial intelligence 

 

Background: Exercise stress electrocardiography (ExECG) is widely used for 
coronary artery disease evaluation, but its interpretation remains challenging due to 
variable diagnostic accuracy. I aimed to develop and validate an explainable artificial 
intelligence (AI) model to enhance the prediction of coronary revascularization need 
based on ExECG findings. 

Methods: The study included 20,534 patients who underwent ExECG using the 
modified Bruce protocol. I developed an explainable AI framework that first extracted 
clinically relevant ECG features using variational autoencoders and then trained a 
prediction model for coronary revascularization within 90 days after ExECG. Model 
performance was compared against clinicians and Duke Treadmill Score.  

Results: The pre-trained VAE model extracted clinically relevant ECG features by 
representing high-dimensional ExECG data with a small number of latent variables 
across exercise Stages (13–17 per Stage). The AI model demonstrated superior 
performance with an area under the receiver operating characteristic curve of 0.84 (95% 
CI: 0.80–0.88) compared to clinicians (AUROC, 0.75; 95% CI 0.71-0.80), and the Duke 
Treadmill Score (AUROC, 0.78; 95% CI 0.73-0.82). The odds ratio of coronary 
revascularization cases defined by AI was 12.37 (8.43-18.49), whereas the odds ratios 
determined by Duke Treadmill Score and physician diagnosis were 5.65 (3.02-9.40) and 
19.65 (13.56-28.65). The model identified ST-segment depression in the mid-recovery 
phase as the most significant predictor of coronary revascularization need. 

Conclusion: I developed and validated an explainable artificial intelligence to 
predict coronary revascularization by using large-scale ExECG. By integrating advanced 
AI predictions with interpretable ECG feature analysis, my model may improve the 
diagnostic utility of ExECG in clinical practice. 

                                                                                

Key words: Exercise stress electrocardiography, Artificial Intelligence, Variational autoencoder, 
Coronary revascularization
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1. Introduction 
 

1.1. Research background 

 

Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, 
accounting for nearly 18.6 million deaths in 2019 (95% uncertainty interval: 17.1–19.7 
million)1,2. Most commonly, coronary artery disease (CAD) involves the development of 
atherosclerotic plaques within epicardial coronary arteries, which can result in myocardial 
ischemia3. Coronary revascularization, such as percutaneous coronary intervention (PCI) 
or coronary artery bypass grafting (CABG), is recommended when these plaques 
significantly restrict coronary blood flow to prevent adverse outcomes, including 
myocardial infarction and death4.  

Exercise stress electrocardiography (ExECG) is a widely used noninvasive 
diagnostic tool for detecting CAD5,6. ExECG evaluates cardiac function by gradually 
increasing physical workload while monitoring using a 12-lead ECG. ExECG has the 
advantage of detecting abnormal patterns that may not be apparent under normal 
conditions7. According to recent cardiology guidelines, ExECG should not be used 
exclusively because of low diagnostic accuracy and unacceptable false positive and 
negative rate8-10. Due to the high false-positive rate, unnecessary invasive coronary 
angiography procedures are recommended, which raise healthcare costs and can even 
cause risk11. However, ExECG remains widely used as the initial diagnostic test for CAD 
in routine clinical practice due to its widespread availability, ease of use, and low cost. It 
is therefore necessary to develop methods for utilizing ExECG more effectively. Several 
traditional scoring systems, such as the Duke Treadmill Score (DTS)12,13, have been 
developed to enhance the prognostic utility of ExECG. While such scoring models offer 
structured frameworks for the risk stratification of patients, it only reflects a limited 
number of parameters, not the full spectrum of ECG morphological changes that occur 
during exercise. Consequently, the need for more advanced analytical methods capable of 
integrating diverse ECG features (such as subtle morphological changes over time) across 
different phases of ExECG is increasingly recognized. 

Recent advances in artificial intelligence (AI) and machine learning have enabled the 
prediction of cardiovascular disease, aging, and mortality from only resting 12-lead ECGs 
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by detecting abnormal patterns14-19. In the detection of different cardiac arrhythmias, DL 
systems have reached levels of accuracy comparable to cardiologist diagnoses20. It is 
possible that AI-based analysis could enhance the detection of clinically significant 
abnormalities in ExECG by utilizing comprehensive waveform data from multiple leads 
throughout different exercise Stages.  

Developing AI models based on ExECG presents unique and formidable challenges 
that distinguish it from standard resting ECG analysis. First, ExECG datasets are 
substantially smaller than those available for standard 12-lead resting ECGs, as exercise 
stress testing is performed only on patients with specific clinical indications, resulting in 
limited training data for robust model development21. Second, ExECG signals are 
temporally extensive, typically spanning 10-15 minutes across multiple exercise Stages 
compared to the standard 10-second resting ECG recordings. This creates a classic high-
dimensional, small-sample-size problem (p >> n)22, where the feature space dramatically 
exceeds the number of available samples. Third, the interpretability of ExECG analysis 
remains limited, as conventional approaches focus on isolated parameters such as ST-
segment changes or exercise duration, failing to capture the complex temporal dynamics 
and morphological variations that occur throughout the exercise protocol. 

In the medical domain, where labeled data are inherently scarce, transfer learning 
has emerged as a powerful solution, enabling models to leverage knowledge from large, 
related datasets through feature pre-training and subsequent fine-tuning23. Furthermore, 
the development of transparent and interpretable AI models is crucial to address the 
"black box" nature of deep learning24,25, which fundamentally hinders clinical trust and 
adoption in medical decision-making. Previous groundbreaking studies by van de Leur et 
al. (2022) and Wouters et al. (2023) demonstrated the potential of explainable AI 
approaches using variational autoencoders (VAE)26,27. By pre-training VAE models to 
capture fundamental factors governing median beat ECG morphology, they successfully 
fine-tuned these models to predict clinical outcomes including reduced ejection fraction, 
all-cause mortality, and cardiac resynchronization therapy (CRT) response. Notably, their 
approach proved effective even for CRT outcome prediction, where labeled datasets are 
inherently limited due to the relatively small population of patients eligible for this 
specialized therapy. Critically, their latent representation framework enabled quantitative 
interpretation of morphological features associated with each predictive task, bridging the 
gap between AI performance and clinical understanding. 
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1.2. Related literatures 

Previously, Lee et al. (2022)28 developed a machine learning (ML) model to improve 
ExECG diagnostic performance for detecting obstructive CAD. The study consisted of 
2,325 patients who underwent both treadmill exercise testing (TET) and coronary 
angiography (CAG) within a 1-year interval. A significant obstructive CAD was defined 
as 70% narrowing in the left anterior descending (LAD), left circumflex arteries (LCA), 
or right coronary arteries (RCA) or their major branches; or > 50% narrowing in the left 
main coronary artery (LMCA). The dataset was randomly divided into a training set 
(70%) and a testing set (30%) after exclusion criteria (e.g., prior PCI, inadequate heart 
rate achievement, missing data). Two feature groups were used for model development: 
(1) TET30, which was composed of 30 features selected from an initial set of 93 TET 
features by recursive elimination of features; and (2) TET30+Clinical, which included the 
TET30 along with hypertension, diabetes, dyslipidemia, smoking status, height, weight, 
and the Framingham risk score. For the development of models, five machine learning 
algorithms were used: logistic regression, support vector machine (SVM), k-nearest 
neighbor (KNN), random forest (RF), and extreme gradient boosting (XGBoost). The 
model thresholds were selected according to 85% sensitivity, in accordance with the 
conventional interpretation of the TET. Based on TET30 and clinical features, RF 
achieved the best performance with an AUROC of 0.74, reducing false positives from 
76.3% (conventional TET) to 55%. There was only marginal improvement with clinical 
features, showing that most of the predictive information can be extracted directly from 
the TET. The subgroup analysis revealed better performance in men, and higher AUCs in 
patients under 60 years of age. Compared to the DTS, the machine learning model 
demonstrated higher sensitivity (0.85 ± 0.06 vs. 0.27 ± 0.05) but lower specificity 
(0.43 ± 0.05 vs 0.86 ± 0.03). The study demonstrates that machine learning models based 
on treadmill exercise test data can be used to detect obstructive coronary artery disease. 
However, it emphasizes the need for external validation to ensure generalizability. It was 
also shown that the model relied heavily on signal-derived features from the waveform, 
which may have overlooked important morphological characteristics of the ECG. 
Additionally, "work-up bias" can lead to an overestimated sensitivity and underestimated 
specificity since ExECG results affect the operation of the CAG. 

 

Yilmaz et al. (2023)29 developed a ML model that improved the diagnostic accuracy 
of the ExECG for predicting obstructive CAD using signal features such as P, QRS, and 
T waves in the TET report. In this study, 294 TET report of patients with DTS of -10 less 
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and underwent invasive CAG were reviewed, and 23 ECG features were manually 
extracted from the V5 lead. According to the RCA, LMCA, LAD, and LCA, an 
obstruction of 70% or more was an obstruction CAD. A total of 94 patients (31.9%) in 
this dataset had obstruction CAD. There were five ML models (XGBoost, KNN, SVM, 
MLP, and gaussian process classifier) trained and tested using a 75:25 data split and five-
fold cross-validation. XGBoost demonstrated the best accuracy, specificity, sensitivity, 
and area under the ROC curve (AUC) with an accuracy of 80.9%, 84.6%, 67.2%, and 
0.78. The performance of 17 cardiologists evaluated for the V5 signals was lower 
(accuracy: 41.8%, specificity: 32.4%, sensitivity: 73.3%). This study shows that ML 
models based on ECG waveform features can detect obstructive CAD. The study was 
conducted at a single center with a relatively small sample size, which may limit the 
generalizability of the model. It was also shown that the model relied heavily on signal-
derived features from the waveform, which may have overlooked important 
morphological characteristics of the ECG. 

 

Bock et al. (2024)30 developed ML models to improve the identification of 
functionally relevant coronary artery disease (fCAD) using clinical variables and 
ExECGs. The study included 3,522 patients who underwent stress myocardial perfusion 
imaging (MPI-SPECT). fCAD was defined as stress-induced ischemia determined from 
MPI-SPECT, and the final diagnosis was based on MPI-SPECT and angiography or FFR 
findings. There were three models developed to predict fCAD and compared 
cardiologists’ reading. First, CARPEclin was a random forest model that was trained 
using eight clinical variables (age, sex, height, weight, blood pressure, resting heart rate, 
and CAD history). Second, CARPEecg was a deep learning model trained on the same 
clinical variables and raw 12-lead ECG time-series data. Lastly, CARPEcoll is a logistic 
regression model based on the ensemble model and deep learning approach with the 
cardiologist's post-test judgement. In this study, held-out temporal tests and external 
validations from two Israeli centers (n = 906) were used to assess generalizability. 
CARPEecg achieved AUROCs of 0.71 on internal testing and 0.80 on external validation, 
outperforming both post-test judgement by a cardiologist (AUROC: 0.64). CARPEcoll. 
improved diagnostic performance (mean AUROC: 0.74) than CARPEecg and 
CARPEclin. CARPEclin reduced unnecessary MPI by 15–17% at a 15% risk threshold 
without increasing false negatives, providing greater net benefits than the cardiologist. 
This study developed the deep learning model by combining ExECG morphology with 
clinical variables to predict fCAD. Deep learning models were trained on segmented ECG 
sequences using a 2-6-2 slicing method. Specifically, 2 seconds from the pre-stress phase, 
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6 seconds from the stress phase, and 2 seconds from the recovery phase were sampled 
and concatenated multiple times per patient. Because of the slicing strategy, the model 
may have difficulty capturing the full temporal dynamics and morphological changes 
over the entire course of the stress ECG test. The explainability approach highlights 
temporal regions without specifying the precise morphological features (e.g., R-wave 
amplitude vs. QRS shape) that drive predictions31. Consequently, they provide only 
limited, case-specific insights and lack general interpretability. 
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1.3. Objective 

Using a transfer learning framework, this study aims to develop an explainable AI 
model for predicting coronary revascularization. The overall study design is presented in 
Figure 1. The first step is to construct a pre-trained VAE model base on a large dataset of 
ExECGs to capture informative latent representations of ECG morphology. Secondly, 
latent features are used to fine-tune a predictive model for patients who may require 
coronary revascularization. The morphological features of coronary revascularization are 
interpreted based on latent representation. To ensure generalizability, external validation 
is conducted using datasets from independent institutions. Clinical validation is 
performed by providing the visual explanations that highlight key morphological features 
contributing to individual predictions.  

 

 

Figure 1. Schematic representation of the series of algorithms and processes 

Abbreviations: Conv, Convolution; DNN, deep learning network; ECG, 
electrocardiogram; ExECG, exercise electrocardiogram; BP, blood pressure; XGBOOST, 
extreme gradient boosting decision tree; VAE, variational autoencoder.  
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2. Materials and Methods 

 

2.1. Data sources and preprocessing 

This study included 23,033 ExECG records from 18,998 patients who underwent at 
least one ExECG test using the Bruce protocol at Severance Hospital, a large tertiary 
referral center in South Korea, between June 23, 2020, and February 10, 2024. All raw 
12-lead ExECGs were exported from GE Healthcare’s MUSE Cardiology Information 
System32. Median beat ECGs of ExECGs were derived by aligning all QRS complexes 
during the 10 to 30 second ECG and then generating a representative QRS complex by 
taking the median voltage. Approximately 250 to 310 beats were measured in the median 
beat ECG. Afterwards, the median beat ECGs were preprocessed by padding or trimming 
to 300 beats. According to the Bruce protocol, median beat ECGs were mapped according 
to exercise times according to pretest, stress phases (Stage 1 through Stage 4), and 
recovery phases. Specifically, the recovery phase was subdivided into three intervals: the 
first 2 minutes were defined as the early-recovery phase, the subsequent 2 minutes as the 
mid-recovery phase, and the remaining duration as the late-recovery phase.  

 

2.1.1. Data for pre-trained model development and testing 

For the training and validation of the VAE, 633,340 median beat ECGs were 
obtained from 16,150 ExECGs from 13,997 patients who underwent ExECG between 
June 23, 2020, and February 9, 2023, were used (Figure 3). The pre-trained models were 
developed separately for each Stage based on the median beat ECG measurements 
corresponding to Stages 1, Stage 2, Stage 3, Stage 4, early recovery, and mid-recovery 
phases. The dataset was randomly divided into three sets, training (80%), validation 
(10%), and hold-out (10%) splits by participants. Labeling was not used for training the 
VAE model.  

 

2.1.2. Data for coronary artery revascularization prediction model  

To ensure robust model development and validation, the dataset was divided into 
subsets based on specific time periods. The coronary revascularization prediction model 
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was trained using 16,132 ExECGs obtained between June 23, 2020, and February 9, 
2023. Testing and clinical validation were conducted using a separate subset of 6,431 
ExECGs collected between February 10, 2023, and February 9, 2024 (Figure 4).  

The performance of the prediction model was compared with that of both physician 
interpretation and the DTS. For DTS calculation12, exercise duration, maximal net ST-
segment deviation, and the angina index were extracted from the ExECG raw file. DTS 
was calculated as Duke Treadmill Score = duration of exercise, minutes – (5 × maximal 
net ST-segment deviation during or after exercise*, millimeters) – (4 × treadmill angina 
index). 

For development and testing of prediction model, only ExECGs in which patients 
reached at least Stage 1—ensuring interpretable results—were included in the analysis. 
The ExECGs with insufficient information to calculate the DTS or without physician 
reading were excluded. 

The coronary revascularization was defined by the percutaneous transluminal 
coronary angioplasty (PTCA) report and CABG surgery records within 90 days following 
the ExECG, which were retrieved from electronic medical record (EMR) databases. Each 
ExECG was subsequently labeled according to the occurrence of coronary 
revascularization. 

 

2.1.3. Data for external validation  

To evaluate the generalizability of the coronary revascularization prediction model, 
external validation was performed using an independent dataset collected from Yongin 
Severance Hospital (YSH), a secondary care hospital in South Korea. A total of 1,889 12-
lead ExECG records from YSH were exported by the MUSE Cardiology Information 
System of GE Healthcare from January 2023 to June 2024 (Figure 5). The occurrence of 
coronary revascularization was labeled with ExECG utilizing the same criteria as applied 
to the Severance hospital. 
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Figure 2. Data flow diagram (overview) 

Abbreviations: ExECG, exercise electrocardiogram 

  

23,033 ExECGs from 18,998 patients eligible from 
2020-06-23 to 2024-02-10

Pretraining dataset
16,150 ExECGs from 

13,997 patients

ExECGs from 
2020-06-23 to 2023-02-09

Downstream task
development dataset
16,132 ExECGs from 

13,984 patients

ExECGs from 
2023-02-10 to 2024-02-10

Data extraction, exclusion Data extraction, exclusion, 
and labeling processes

Data extraction, exclusion, 
and labeling processes

Downstream task
test dataset

6,431 ExECGs from 
6,298 patients
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Figure 3. Data flow diagram for the development of pre-trained model 

Abbreviations: ExECG, exercise electrocardiogram 

  

16,278 ExECGs from 14,041 patients eligible from 
2020-06-23 to 2023-02-09

Training dataset
12,941 ExECGs from 

11,196 patients

Validation dataset
1,600 ExECGs from 

1,400 patients

16,150 ExECGs from 13,997 patients

128 ExECGs failed to extract median beat ECG excluded 

1,609 ExECGs from 1,401 patients included in the test dataset excluded

Model development dataset
14,541 ExECGs from 12,596 patients
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Figure 4. Data flow diagram for the development of prediction model for 
coronary revascularization 

Abbreviations: ExECG, exercise electrocardiogram 

23,033 ExECGs from 18,998 patients eligible from 
2020-06-23 to 2024-02-10

22,824 ExECGs from 18,834 patients

148 ExECGs failed to extract median beat ECG were excluded
60 ExECGs without interpretable exercise were excluded

Model development dataset
16,132 ExECGs from 

13,984 patients

ExECGs from 
2020-06-23 to 2023-02-09

Test dataset
6,431 ExECGs from 

6,298 patients

ExECGs from 
2023-02-10 to 2024-02-10

261 ExECGs without physician reading or Duke 
Treadmill Score were excluded
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Figure 5. Data flow diagram for the external validation of prediction model for 
coronary revascularization 

Abbreviations: ExECG, exercise electrocardiogram 

  

1,889 ExECGs from 1,860 patients eligible from 
2023-01-01 to 2024-06-30

1,867 ExECGs from 1,841 patients

8 ExECGs failed to extract median beat ECG excluded
14 ExECGs without interpretable exercise were excluded
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2.2. Development and Validation of pre-trained model 

The beta-variational autoencoder (β-VAE)33, which used a weighted Kullback-
Leibler Divergence (KLD) term in the loss function to enforce disentanglement and 
encode ECG data into a low-dimensional latent space, has been demonstrated to be 
effective in previous studies26. 

Figure 6 demonstrates the overview of model architecture. The encoder receives 300 
median beat ECG data points (12x300) and structures eight 1D causal convolution blocks 
containing 1D causal convolution, weight normalization, leaky ReLU activations, and 
residual connections to transform the input into a 64x300-dimensional feature map. 
Adaptive max pooling reduces the temporal dimension, creating a 64-dimensional feature 
vector. Finally, two parallel 64-to-32 linear layers map the feature vector to mean and 
standard deviation parameters for a latent Gaussian distribution, with SoftPlus activation 
and a small constant (ϵ = 0.001) applied to the standard deviation. The decoder mirrors 
the encoder to reconstruct lower-dimensional representations of the original 
electrocardiograms with continuous outputs. An initial 32-dimension vector z is 
transformed into a 64-dimension vector using a linear layer and subsequently reshaped 
into a 64x300 matrix using a second linear transformation. The output (12x300) is 
flattened into a vector, and two parallel linear layers map it to the mean and standard 
deviation for a Gaussian distribution, with SoftPlus activation and a small constant (𝜖 = 
0.001) applied to the standard deviation. The final ECG reconstruction is reshaped back 
to 12x300.  

The number of latent variables and the β-value, identified as the two most important 
hyperparameters in the β-VAE, were derived from a previous study26. The VAE model 
was trained on the entire VAE train set, using the Adam optimizer with a learning rate of 
0.001, and batch size was set at 12834. Each model was trained over 200 epochs, and the 
model achieving the lowest evaluation loss was selected as the final model.  

To identify the latent dimensions essential for ECG signal reconstruction, latent 
traversals were performed. Each individual ECG latent value was varied between -3 
(represented in blue) and 3 (represented in red), while the other latent values remained 
constant, allowing visualization of a distinct median beat ECG morphology for each 
latent. 
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Figure 6. Overview of the VAE architecture: (a) Encoder and (b) Decoder 

Abbreviations: VAE, variational autoencoder 
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2.3. Development and validation of coronary revascularization 
prediction model 

For the prediction of coronary revascularization, XGBoost models35 was trained using 
the significant latent values derived from the encoder of each VAE model, along with 
relative systolic and diastolic blood pressure measurements at each Stage compared with 
the resting blood pressures. The predictive performance for coronary revascularization 
was compared between cases where the physician diagnosis was positive and cases where 
the DTS was less than -1012.  

 To ensure model-level interpretability, Shapley Additive Explanations (SHAP) were 
employed to elucidate the contribution of individual variables to specific predictions and 
to identify the most influential features across all variables36. Based on the SHAP value, 
predictors and ECG latent values were obtained at the patient level. The selected ECG 
latent variables were then visualized in relation to the median beat ECG morphology.  

 

2.4. Clinical validation 

As part of the diagnostic evaluation, a randomized cross-over trial was conducted to 
compare the diagnostic performance of physicians with and without assistance from the 
AI model. In the test set, 100 ExECG records were randomly selected with non-
diagnostic or borderline findings that were considered indeterminate. All reports were 
independently interpreted by four cardiologists. The reports were blinded to patient 
information, including age, sex, and clinical history. A cross-over design was employed, 
in which the physicians were randomly and evenly divided into two groups. Physicians 
were instructed to assign a binary label for the negative or positive of coronary 
revascularization. The model assistant indicated whether coronary revascularization was 
negative or positive, along with a probability and visual representation. Initially, group 1 
read the examinations without a model assistant, and group 2 read the examinations with 
a model assistant. After a 7-day washout period, the test sets were randomly reordered. 
Subsequently, Group 1 interpreted the reports with model assistance, whereas Group 2 
did so without. 
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2.5. Statistical analysis 

The baseline characteristics were presented as mean + SD or median with interquartile 
range for continuous variables, and as number with corresponding percentages for 
categorical variables. Continuous variables were compared using one-way analysis of 
variance or the Kruskal–Wallis test, and categorical variables using Pearson’s chi-square 
test or Fisher’s exact test. The discriminatory performance of the models was evaluated in 
the test sets using the area under the receiver operating curve (AUROC), sensitivity, 
specificity, negative predictive value (NPV), positive predictive value (PPV), balanced 
accuracy and area under the precision-recall curve (AUPRC). To compare the AUROCs 
statistically, DeLong’s test was performed. To estimate 95% confidence interval (CI), 
1,000 bootstrap resamples were generated.  

The risk stratification for coronary revascularization using AI-based models was 
assessed by comparing models using physician diagnosis and DTS. Based on a 
probability cutoff value that was optimized during internal validation, the AI model 
assigned patients to high- or low-risk groups. Physician assessed the ExECG into three 
levels: positive, equivocal, and negative. For risk stratification, "positive" readings were 
categorized as high risk, while "equivocal" and "negative" readings were categorized as 
low risk. For DTS, under –10 was defined as high risk, and scores above –10 were 
considered low risk. In each method, odds ratios with 95% CI were calculated by 
comparing the high-risk group with the low-risk group. 

Additionally, subgroup analyses were conducted within the test datasets. There were 
subgroups according to sex, age (under 60 years and 60 and older), and final exercise 
Stage (Stage 1, Stage 2, Stage 3, Stage 4), as well as previous coronary artery 
revascularizations. The prediction performance of coronary artery revascularization and 
risk stratification performance were compared for each subgroup of AI, physician, and 
DTS. 

All analyses were performed using Python version 3.8.12 (Python Software 
Foundation, http://www.python.org) and R version 4.3.1 (the R Foundation, www.R-
project.org). 
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3. Results 

3.1. Baseline characteristics  

3.1.1 Severance hospital 

The development dataset for the coronary revascularization prediction model included 
16,132 ExECGs from 13,894 patients and the test dataset included 6,431 ExECGs from 
6,298 patients (Figures 4). Baseline characteristics of the development and test datasets 
are summarized in Table 1. In both datasets, 1.9% of cases underwent coronary 
revascularization. 

Patients with coronary revascularization were significantly older than those without 
(development dataset: 64 [59–69] vs. 61 [50–68] years, p<0.001; test dataset: 64 [58–70] 
vs. 61 [50–68] years, p<0.001). More male patients underwent coronary revascularization 
than female patients (development: 84.2% vs. 64.1%, p<0.001; test: 94.3% vs. 64.3%, 
p<0.001). Neither the development nor the test dataset found a significant difference 
between patients with histories of coronary revascularization and those without 
(development: 2.5% vs. 0.6%, p=0.220; test: 16.5% vs. 14.6%, p=0.373). In the 
development dataset, patients undergoing coronary revascularization were less likely to 
reach higher exercise Stages. Only 42.6% of revascularized patients reached Stage 4 with 
66.5% of non-revascularized patients did Stage 4 (p<0.001). It was also observed in the 
test dataset that the proportion of patient who achieved Stage 4 was significantly lower in 
the coronary revascularization group (43.9 vs 73.1%, p<0.001). 

Among comorbidities, hypertension and diabetes were more prevalent in the coronary 
revascularization group in the development dataset (hypertension: 47.1% vs. 40.6%, 
p=0.025; diabetes: 33.2% vs. 21.4%, p<0.001). In the test dataset, only diabetes showed a 
significant difference between group (28.5% vs. 19.2%, p=0.014). Other comorbidities, 
including dyslipidemia, myocardial infarction, heart failure, peripheral artery disease, 
ischemic stroke, and atrial fibrillation, did not show significant differences between the 
groups in either dataset. 
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3.1.2 Yongin Severance hospital 

The external validation dataset from YSH included 1,867 ExECGs from 1,841 patients 
(Figures 5). Among the 1,867 patients in the external validation dataset, 38 patients (2%) 
underwent coronary revascularization following ExECG.  

Table 2 shows the characteristics of the external validation dataset. Patients with 
coronary revascularization were significantly older (59 [55-67] years vs. 51 [37-62] years, 
p=0.001), and the majority were males (84.2% vs. 58.2%, p=0.002). Coronary 
revascularization patients were less likely to reach higher exercise Stages, although the 
differences did not reach statistical significance (Stage 4: 60.5% vs. 74.4%, p=0.081; 
Stage 3: 36.8% vs. 22.1%, p=0.050). None of the coronary revascularization patients had 
undergone prior coronary revascularization. 

The coronary revascularization group was more likely to suffer from comorbid 
conditions such as hypertension (55.3% vs. 29.6%, p0.001), diabetes (36.8% vs. 13.7%, 
p0.001), and dyslipidemia (81.6% vs. 35.4%, p0.001). Atrial fibrillation was also 
significantly more frequent among patients with coronary revascularization (13.2% vs. 
4.2%, p=0.011). 
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Table 2. Clinical characteristics of development and test dataset  

  Development dataset Test dataset 
Revascularization Revascularization 

Negative Positive P-value∗ Negative Positive P-value∗	
No. of cases 15822  310  6308 123  

Age, years 61 
[50-68] 

64  
[59-69] <0.001 61 

[50-68] 
64 

[58-70] <0.001 

Sex         

Male, n (%) 10136 
(64.1) 

261 
(84.2) <0.001 4054 

(64.3) 
116 

(94.3) <0.001 

History of 
coronary 
revascularization 

      

At least one 
time, n (%) 

401 
(2.5) 2 (0.6) 0.220 1043 

(16.5) 
18 

(14.6) 0.373 

Prior Cardiac 
Imaging       

Angiography, n 
(%) 

738 
(4.6) 

31 
(10.0) <0.001 220 

(3.5) 
16 

(13.0) <0.001 

Heart CT, n (%) 834 
(5.3) 29 (9.4) 0.002 421 

(6.7) 
13 

(10.5) 0.128 

Post Cardiac 
Imaging       

Angiography, n 
(%) 

717 
(4.5) 

296 
(95.5) <0.001 171 

(2.7) 
123 

(100) <0.001 

Heart CT, n (%) 1268 
(8.0) 

85 
(27.4) <0.001 445 

(7.1) 
39 

(31.7) <0.001 
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Achieved 
exercise Stage       

Stage 1 138 
(0.8) 3 (0.9) 1.000 16 (0.3) 1 (0.8) 0.757 

Stage 2 526 
(3.3) 

44 
(14.2) <0.001 63 (1.0) 19 

(15.4) <0.001 

Stage 3 4634 
(29.3) 

131 
(42.3) <0.001 1619 

(25.7) 
49 

(39.8) 0.001 

Stage 4 10524 
(66.5) 

132 
(42.6) <0.001 4610 

(73.1) 
54 

(43.9) <0.001 

Comorbidities         

Hypertension,  
n (%) 

6426 
(40.6) 

146 
(47.1) 0.025 2483 

(39.4) 
54 

(43.1) 0.457 

Diabetes, n (%) 3383 
(21.4) 

103  

(33.2) 
<0.001 1209 

(19.2) 
35 

 (28.5) 0.014 

Dyslipidemia, 
n (%) 

7450 
(47.1) 

158 
(51.0) 0.194 2816 

(44.6) 
62 

(50.4) 0.237 

Previous 
myocardial 
infarction,  
n (%) 

1233  

(7.8) 

21  

(6.7) 
0.578 396  

(6.3) 
11 

(8.9) 0.310 

Heart failure, 
n (%) 

1351 
(8.5) 

24  

(7.7) 
0.693 557  

(8.8) 
12  

(9.8) 0.843 

Peripheral 
 arterial disease, 
n (%) 

506  
(3.2) 

10  

(3.2) 
1.000 230  

(3.6) 
6 

(4.9) 0.633 

Ischemic stroke, 
n (%) 

302  
(1.9) 4  0.562 93  1  0.832 
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(1.3) (1.5) (1.0) 

Atrial 
fibrillation, 
n (%) 

1173 
(7.4) 

16  

(5.2) 
0.164 

475  

(7.5) 

9  

(7.3) 
1.000 

 

The comorbidities were identified based on ICD-10 codes, including hypertension (I10, 
I11, I12, I13, I15), diabetes mellitus (E10–E14), dyslipidemia (E78), previous myocardial 
infarction (I21, I22, I25.2), heart failure (I11.0, I50, I97.1), peripheral arterial disease 
(I70, I71), ischemic stroke (I63, I64), and atrial fibrillation (I48). Continuous variables 
are presented as median [Q1-Q3] and categorical variables are presented as number 
(percentage). 

∗ P-values were derived using Pearson’s chi-squared test for categorical variables and 
the Wilcoxon rank-sum test for continuous numeric variables. 
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Table 2. Clinical characteristics of external validation dataset 
 

Negative for 
Revascularization  

Positive for 
Revascularization P-value∗ 

No. of cases 1,829  38  

Age, years 51 [37-62] 59 [55-67] <0.001 

Sex    

Male, n (%) 1,064 (58.2) 32 (84.2) 0.002 

History of coronary 
revascularization    

At least one time, n (%) 74 (4.0) 0 (0.0) 0.398 

Achieved exercise Stage    

Stage 1 11 (0.6) 0 (0.0) 1.000 

Stage 2 53 (2.9) 1 (2.6) 1.000 

Stage 3 404 (22.1) 14 (36.8) 0.050 

Stage 4 1361 (74.4) 23 (60.5) 0.081 

Comorbidities    

Hypertension, n (%) 541 (29.6) 21 (55.3) <0.001 

Diabetes, n (%) 250 (13.7) 14 (36.8) <0.001 

Dyslipidemia, n (%) 647 (35.4) 31 (81.6) <0.001 

Previous myocardial infarction,  
n (%) 69 (3.8) 4 (10.5) 0.054 

Heart failure, n (%) 236 (12.9) 4 (10.5) 1.000 

Peripheral arterial disease,  
n (%) 54 (3.0) 0 (0.0) 0.614 

Ischemic stroke, n (%) 15 (0.8) 0 (0.0) 1.000 

Atrial fibrillation, n (%) 76 (4.2) 5 (13.2) 0.011 
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The comorbidities was identified based on ICD-10 codes, including hypertension (I10, 
I11, I12, I13, I15), diabetes mellitus (E10–E14), dyslipidemia (E78), previous myocardial 
infarction (I21, I22, I25.2), heart failure (I11.0, I50, I97.1), peripheral arterial disease 
(I70, I71), ischemic stroke (I63, I64), and atrial fibrillation (I48). Continuous variables 
are presented as median [Q1-Q3] and categorical variables are presented as number 
(percentage). 

∗ P-values were derived using Pearson’s chi-squared test for categorical variables and 
the Wilcoxon rank-sum test for continuous numeric variables. 
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3.2. Performance of the variational auto-encoder 

The training dataset consisted of 12-lead median beat ECGs, which were distributed as 
follows: 65,808 samples for the Stage 1 VAE model, 65,185 for the Stage 2 VAE model, 
59,130 for the Stage 3 VAE model, 31,467 for the Stage 4 VAE model, and 105,706 for 
the recovery phase VAE model.  

The performance of VAE models in reconstructing median beat ECGs was evaluated. 
Based on the Stage 1 VAE model, Pearson correlation coefficient was 0.935 (P < 0.001). 
Furthermore, the Stage 2 VAE model showed a correlation of 0.933 (P < 0.001), while 
the Stage 3 and Stage 4 VAE models both achieved a correlation of 0.934 (P < 0.001). 
The recovery phases VAE model had the highest reconstruction accuracy with a mean 
Pearson correlation coefficient of 0.940 (P < 0.001). These results indicate a high level of 
reconstruction performance across all VAE models. 

The results indicate that only a subset of the 32 latent variables is actively utilized for 
reconstruction at each Stage VAE. Specifically, 16 latent variables were utilized in Stage 
1, 14 latent variables in both Stage 2 and Stage 3, 13 latent variables in Stage 4, and 17 
latent variables in the recovery Stage. Latent traversals for these variables are illustrated 
in Figures 2–8.   
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Figure 7. Latent traversals of all the ECG factors from Stage 1 pre-trained model 
(lead II, lead V3, and lead V4)  

latent traversals of a subset of the 16 ECG factors (latent number 2, 5, 6, 9, 13, 14, 18, 
22, 23, 24,25, 26, 27, 29, 30, 31) that hold significant information for correctly 
reconstructing electrocardiograms. 

Abbreviations: ECG, electrocardiogram. 
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(C) Lead V4 

 
 

Figure 8. Latent traversals of all the ECG factors from Stage 2 pre-trained model 
(lead II, lead V3, and lead V4)  

latent traversals of a subset of the 14 ECG factors (latent number 1, 5, 8, 9, 12, 13, 14, 
19, 21, 22, 23, 24, 25, 28, 29) that hold significant information for correctly 
reconstructing electrocardiograms. 

Abbreviations: ECG, electrocardiogram. 
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(C) Lead V4 

 
 

Figure 9. Latent traversals of all the ECG factors from Stage 3 pre-trained model 
(lead II, lead V3, and lead V4)  

latent traversals of a subset of the 14 ECG factors (latent number 2, 8, 9, 10, 11, 12, 
13, 14, 19, 20, 21, 24, 25, 30) that hold significant information for correctly 
reconstructing electrocardiograms. 

Abbreviations: ECG, electrocardiogram. 

  



 31 

(A) Lead II 

 
 

(B) Lead V3 
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(C) Lead V4 

 
 

Figure 10. Latent traversals of all the ECG factors from Stage 4 pre-trained 
model (lead II, lead V3, and lead V4)  

latent traversals of a subset of the 13 ECG factors (latent number 1, 2, 6, 7, 9, 11, 14, 
15, 23, 25, 29, 30, 31) that hold significant information for correctly reconstructing 
electrocardiograms. 

Abbreviations: ECG, electrocardiogram. 
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(C) Lead V4 

 
 

Figure 11. Latent traversals of all the ECG factors from Recovery phase pre-
trained model (lead II, lead V3, and lead V4)  

latent traversals of a subset of the 17 ECG factors (latent number 2, 6,11, 12, 14, 15, 
17, 18, 19, 21, 23, 24, 25, 26, 28, 29, 32) that hold significant information for correctly 
reconstructing electrocardiograms. 

Abbreviations: ECG, electrocardiogram. 
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3.3. Performance of coronary artery revascularization prediction 
model 

Based on the latent variables derived from the VAE models, machine learning models 
were developed and tested to predict coronary revascularization. Accordingly, latent 
variables were extracted from Stage 1 (16 variables), Stage 2 (14 variables), Stage 3 (14 
variables), Stage 4 (13 variables), and both early-recovery and mid-recovery phases (17 
variables each). The model also included 12 variables indicating changes in systolic and 
diastolic blood pressure during each exercise phase. A total of 103 variables were used to 
train and evaluate the XGBoost model.  

The AI-based prediction model achieved an AUROC of 0.84 (95% CI: 0.80-0.89) and 
an AUPRC of 0.25 (0.18-0.33) in the test dataset. The performance of the physician and 
the DTS was AUROC: 0.80 (95% CI: 0.76–0.85) and AUPRC: 0.11 (95% CI: 0.08–0.14), 
and AUROC: 0.78 (95% CI: 0.73–0.82) and AUPRC: 0.07 (95% CI: 0.05–0.09), 
respectively. (Figure 3 and Figure 4). According to DeLong's test, the AUROC of AI-
based prediction model was significantly higher than that of DTS (DeLong test [unpaired, 
two-sided], AI vs. Physician P = 0.141, AI vs. DTS P = 0.002, and Physician vs. DTS P = 
0.171). Table 3 shows the performance metrics of models. In AI-based prediction model, 
0.068 was selected as a threshold of similar sensitivity as physicians. 

Table 4 summarizes the odds ratios of coronary revascularization for the three methods 
in high-risk groups. According to the AI model, the OR for the high-risk group was 19.06 
(95% CI: 13.18–27.76). Positive physician-assessed results were associated with a similar 
OR of 19.85 (95% CI: 13.72–28.90), whereas the DTS high-risk group had a lower OR of 
8.14 (95% CI: 5.07–12.65). 

The most important global ECG latent variables for the prediction of coronary 
revascularization were high values for latent 26 and 18 of Mid-recovery, latent 2 of Stage 
2 and latent 4 of Stage 25. (Figure 3)  
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Figure 12. ROC curves of AI model, Physician, and DTS 

Abbreviations: ROC, eceiver operating curve; AI, artificial intelligence; DTS, duke 
treadmill score. 
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Figure 13. PR curves of AI model, Physician, and DTS  

Abbreviations: PR, precision-recall; AI, artificial intelligence; DTS, duke treadmill 
score. 
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Table 3. Comparison of AI performance with existing criteria and validation 

 AI * Physician DTS 

Sensitivity 0.59 0.58 0.14 

Specificity 0.93 0.94 0.97 

F1-score 0.23 0.24 0.11 

PPV 0.14 0.15 0.09 

NPV 0.99 0.99 0.98 

Balanced Accuracy 0.76 0.76 0.56 
* The AI model’s cut-off value is 0.068 which was selected as the cutoff value, which 

yielded similar sensitivity as physician. 

Abbreviations: DTS, duke treadmill score; PPV, positive predictive value; NPV, 
negative predictive value. 
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Table 4. Odds ratio of coronary revascularization according to risk stratification 
by AI model and existing criteria 

 

Analysis Risk group 

Outcome/ 

N (N=6,431) 

Odds ratio 

(95% CI) 

AI 

Low risk  

(under cut-off*) 
51/5,924 

1.00  

(reference) 

High risk  

(over cut-off*) 
72/507 

19.06 

(13.18-27.76) 

Physician 

Negative & 
Equivocal 52/5,954 

1.00  

(reference) 

Positive 71/477 
19.85 

(13-72-28.90) 

DTS 

Low-Medium 97/6,204 
1.00  

(reference) 

High 26/227 
8.14 

(5.07-12.65) 

* For internal validation, 0.068 was selected as the cutoff value, which yielded similar 
sensitivity as physician. 

Abbreviations: AI, artificial intelligence; CI, confidence interval; DTS, duke treadmill 
score 
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Figure 14. Explanations for the coronary artery revascularization using Shapley 
Additive exPlanations values 

In the figure, F followed by a number represents the sequential position of the latent 
feature. Early recovery is defined as the first two minutes of recovery and the next two 
minutes as the mid-phase.  

Abbreviations: BP, blood pressure; SHAP value, Shapley Additive exPlanations 
values. 
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Figure 15. Latent traversals of Top 10 latent from coronary revascularization 
prediction model 
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3.4 Performance of coronary artery revascularization prediction 
model in the external validations  

The external validations showed AUROCs of 0.74 and 0.62 and AUPRCs of 0.06 and 
0.04 in the AI model and DTS model, respectively. Table 5 shows the performance 
metrics of models. The same threshold of 0.068, derived from the internal tests, was used 
for external validation. The odds ratios of AI model and DTS in high-risk groups are 
shown in Table 6. AI model showed an OR of 5.87 (95% CI: 1.94–15.52) for the high-
risk group, whereas DTS showed a higher OR of 7.24 (95% CI: 3.25–14.93). 

 

Table 5. Comparison of AI performance in internal and external validation 

 Internal External 
 AI model DTS AI model DTS 

AUROC 
(95%CI) 

0.84  
(0.80-0.89) 

0.78 
(0.73-0.82) 

0.74 
(0.66-0.81) 

0.62 
(0.52-0.73) 

AUPRC 
(95%CI) 

0.25  
(0.17-0.33) 

0.07 
(0.05-0.09) 

0.06 
(0.03-0.11) 

0.05 
(0.03-0.09) 

Sensitivity 0.59 0.14 0.13 0.26 

Specificity 0.93 0.97 0.98 0.95 

F1-score 0.23 0.11 0.11 0.15 

PPV 0.14 0.09 0.10 0.10 

NPV 0.99 0.98 0.98 0.988 

Balanced 
Accuracy 0.76 0.56 0.55 0.61 

* The same threshold of 0.068, derived from the internal tests, was used for external 
validation. 

Abbreviations: AI, artificial intelligence; DTS, duke treadmill score; AUROC, the area 
under the receiver operating curve; AUPRC, the area under the precision recall curve; CI, 
confidence interval; PPV, positive predictive value; NPV, negative predictive value. 
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Table 6. Odds ratio of coronary revascularization according to risk stratification 
by AI model and duke treadmill score in external validation 

 
Analysis Risk group 

Outcome/N  
(N=1,867) 

Odds ratio 
(95% CI) 

AI 

Low risk  
(under cut-off*) 46/1,829 1.00  

(reference) 
High risk  

(over cut-off*) 5/38 5.87 
 (1.94-14.52) 

DTS 
Low-Medium 86/1,829 1.00  

(reference) 

High 10/38 7.24 
(3.25-14.93) 

The same threshold of 0.068, derived from the internal tests, was used for external 
validation. 

Abbreviations: AI, artificial intelligence; DTS, duke treadmill score; CI, confidence 
interval. 
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3.5. Subgroup analysis  

Figure 9 presents subgroup analyses according to gender, age, achieved exercise Stage, 
and history of coronary revascularization for the prediction of coronary revascularization. 
For each model (AI, physician, and DTS), interaction P-values were calculated to 
determine whether their predictive performance differed significantly by subgroup.  

There was a relatively better performance from all three models in predicting coronary 
revascularization in males than in female. The AUROCs of 0.83, 0.80, and 0.75 and 
AUPRCs of 0.28, 0.13, and 0.08 in AI model, physician, and DTS, respectively. The 
AUROC of DTS was significantly lower than that of AI model and physician (DeLong 
test [unpaired, two-sided], AI vs. Physician P = 0.211, AI vs. DTS P < 0.001, and 
Physician vs. DTS P = 0.042).  

For young group, AI model outperformed than two models. For young people, all three 
models performed better than for older people in predicting coronary revascularization. In 
the young group, the AUROCs for AI model, physician, and DTS were 0.92, 0.83, and 
0.80; and the AUPRCs were 0.33, 0.14, and 0.07. AI model had a significantly higher 
AUROC than physician and DTS (DeLong test [unpaired, two-sided], AI vs. Physician P 
= 0.002, AI vs. DTS P < 0.001, and Physician vs. DTS P = 0.311).  

According to the achieved exercise Stage, the Stage 1 & 2 group showed the best 
performance in both AUROC and AUPRC. The AUROCs were 0.88, 0.81, and 0.85, 
respectively, and the AUPRCs were 0.73, 0.44, and 0.49. There were no statistical 
differences between the models (DeLong test [unpaired, two-sided]: AI vs. Physician, P = 
0.174; AI vs. DTS, P = 0.513; Physician vs. DTS, P = 0.530). In Stage 4 group, the 
AUROCs for AI model, physician, and DTS were 0.81, 0.80, and 0.72; and the AUPRCs 
were 0.10, 0.08, and 0.03. The AUROC of DTS was significantly lower than that of AI 
model and physician (DeLong test [unpaired, two-sided], AI vs. Physician P = 0.732, AI 
vs. DTS P = 0.014, and Physician vs. DTS P = 0.014).  

Patients without a history of coronary revascularization had AUROCs of 0.84, 0.80, 
and 0.78, respectively, while AUPRCs were 0.26, 0.12, and 0.07, respectively. The 
AUROC of DTS was significantly lower than that of AI model and physician (DeLong 
test [unpaired, two-sided], AI vs. Physician P = 0.158, AI vs. DTS P = 0.003, and 
Physician vs. DTS P = 0.301). With at least one prior revascularization, the AUROC 
values for the AI model, physician, and DTS were 0.84, 0.80, and 0.74, respectively; and 
the AUPRC values were 0.23, 0.08, and 0.08. There were no statistical differences 
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between the models (DeLong test [unpaired, two-sided]: AI vs. Physician, P = 0.567; AI 
vs. DTS, P = 0.194; Physician vs. DTS, P = 0.273). 

The interaction P-values were greater than 0.05 in most subgroups, indicating that 
performance differences were generally consistent regardless of subgroup characteristics. 
However, for the age subgroup in AI, the interaction P-value was less than 0.01, 
demonstrating statistically significant differences in model performance by age. 
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Figure 16. Subgroup analysis 

The numbers of subjects in each subgroup are as follows: Male (N=4,170), Female 
(N=2,261), age < 60 years (N=2,829), age ≥ 60 years (N=3,552), Stage 1&2 (N=99), 
Stage 3 (N=1,668), Stage 4 (N=4,664), no comorbidities (N=5,370), and at least one 
comorbidity (N=1,061). 

Abbreviations: AI, artificial intelligence; DTS, duke treadmill score; AUROC, the area 
under the receiver operating curve; AUPRC, the area under the precision recall curve; CI, 
confidence interval. 
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3.6. Evaluation of clinical validation 

Without AI assisted, physicians achieved a microaveraged sensitivity of 0.75 (95% CI, 
0.59-0.91), specificity of 0.38 (95% CI, 0.34-0.43), and an accuracy of 0.41 (95% CI, 
0.36-0.46). With AI assisted, the physicians achieved a microaveraged sensitivity of 0.43 
(95% CI, 0.25-0.61), specificity of 0.66 (95% CI, 0.61-0.71), and an accuracy of 0.64 
(95% CI, 0.60-0.69). The underlying model had a sensitivity of 0.57 (95% CI, 0.21-0.94), 
specificity of 87 (95% CI, 0.80-0.94), and accuracy of 0.85 (95% CI, 0.78-0.92). 
Performance improvements across clinicians are detailed in the Table 3. 

 

Table 7. Clinical Performance Metrics with and without AI assisted 

Metric Physicians 
AI assisted 
physicians 

Mean Increase 
(95% CI) 

Sensitivity 0.750 0.429 
-0.323 

(-0.963-0.318) 

Specificity 0.384 0.659 
0.278 

(-0.161-0.716) 

Accuracy 0.410 0.643 
0.233 

(-0.182-0.647) 

PPV 0.094 0.116 
0.022 

(-0.123-0.167 

NPV 0.959 0.946 
-0.013 

(-0.123- 0.098) 

F1-score 0.162 0.139 
-0.024  

(-0.177-0.129) 
Abbreviations: AI, artificial intelligent; CI, confidence interval; PPV, positive 

predictive value; NPV, negative predictive value. 
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4. Discussion 

 
In this study, ExECG pre-trained VAE model was developed by using large-scale 

ExECG data for the first time compared to a prior study. The explainable AI model that 
utilizes ECG morphological features across a variety of exercise Stages have 
demonstrated strong prediction performance for coronary revascularization. In the test 
dataset, the model achieved AUROCs of 0.84 and AUPRCs of 0.25, outperforming both 
physician interpretation (AUROCs: 0.80, AUPRCs: 0.11), and DTS (AUROCs: 0.78, 
AUPRCs: 0.07). Incorporating SHAP and latent traversal into the AI model supports 
model interpretability, fostering clinical trust and adoption. Importantly, the AI identified 
important ECG markers, including subtle ST-segment deviations and heart rate recovery 
patterns, which were strongly associated with significant coronary disease. The findings 
in this study demonstrate that AI assisted ExECG can be used to improve risk 
stratification in coronary revascularization. 

 

4.1. Pre-trained ExECG Model based on VAE 

Several studies have demonstrated that VAE are effective for ECG compression, 
augmentation, clustering, and feature extraction, with several factors sufficient to encode 
a single or median beat ECG 37-41. In addition, Van de Leur et al. (2022) demonstrated 
ECG morphology by a limited number of underlying factors and the median beat ECG 
can be encoded effectively using 21 continuous latent factors26. They improved the 
clinical utility and interpretability of VAE-derived features by relating them to 
established ECG measurements, integrating visualization tools, and validating them in 
predictive tasks.  

The VAE approach was applied to ExECG in the present study to extract latent 
explanatory factors corresponding to each exercise Stage. Based on the modeling of 
dynamic morphological changes across phases of ExECG, each Stage-specific VAE 
model demonstrated high reconstruction accuracy, with Pearson correlation coefficients 
ranging from 0.933 to 0.940 (P < 0.001). This suggests that high-dimensional ExECG 
data can be effectively represented using only a small number of latent variables. 
Specifically, 16 latent variables were used in Stage 1, 14 in both Stage 2 and Stage 3, 13 
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in Stage 4, and 17 during recovery, indicating that ECG morphology can be well captured 
by a limited set of underlying factors (Figure 7-11). 

 

4.2. Explainable AI for ExECG Interpretation 

The present study extends ExECG AI research by using ECG morphological features 
and introducing explainable AI, which can provide deeper insights into signal 
interpretation and improve transparency in clinical prediction. Unlike conventional post 
hoc explainability methods commonly used to address the “black box” nature of deep 
learning in ECG analysis31, the VAE-based approach in this study enables reliable and 
quantitative characterization of morphological changes in the ECG, rather than merely 
highlighting their temporal locations17-19,26. To improve transparency and clinical 
applicability, the SHAP framework was employed. SHAP provides quantitative 
attribution of individual feature contributions to model predictions and has demonstrated 
superior consistency and generalizability across diverse medical datasets compared to 
earlier interpretability methods42,43. This method is particularly useful in ExECG, where 
transient ECG changes occur dynamically across different exercise Stages.  

The most significant predictor of coronary revascularization according to SHAP-based 
analysis was ST-segment depression during the mid-recovery phase. The recovery phase 
latent waveform features have been previously under-recognized as predictive markers 
for myocardial ischemia. The findings demonstrate the potential of explainable AI to 
provide both accurate prediction and physiologically relevant insights, thereby enhancing 
ExECG-based risk stratification. 

 

4.3. AI-based ExECG Prediction of Coronary Revascularization 

Using AI-based ExECG interpretation, this study provides direct evidence that 
prediction on coronary revascularization is comparable or even superior to interpretation 
of physician. Traditionally, physician rely on established criteria to assess ExECG 
signals, with an AUROC of 0.80, whereas my AI model achieved an AUROC of 0.84, 
thereby extracting greater predictive information from ExECG signals. Nevertheless, 
external validation indicated limited generalizability across institutional settings. This 
discrepancy may be attributed to heterogeneity in data acquisition protocols, population 
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characteristics, or underlying clinical workflows across institutions. Notably, even the 
DTS—a traditional risk stratification tool based on fixed, well-defined parameters and 
using the same revascularization outcome—also exhibited decreased performance in the 
external validation dataset. This indicates that the observed performance drop is not 
solely due to the complexity or overfitting of the AI model. Rather, it reflects the 
variability across institutions like patient selection, or clinical decision-making may 
significantly impact outcome labeling and model generalizability44,45. While the AI-based 
model showed reduced performance in the external validation, it consistently 
outperformed the traditional DTS-based approach. Accordingly, the model captures 
subtle morphological and dynamic features in ExECG that conventional scoring systems 
may ignore, making it an effective tool for detecting disease across a variety of clinical 
environments. 

Diagnostic performance of AI was better in men compared with women. There were 
also gender differences in the conventional treadmill test algorithm46. There may be a 
reason for the gender differences observed in this study, since many of the features of the 
present model were associated with ST-segment depression. The diagnostic performance 
of ST-segment depression during TET is lower for women46,47. Previous studies have 
reported a relatively high prevalence of recovery-only ST-segment depression among 
asymptomatic, apparently healthy individuals48, which may explain the superior model 
performance observed in younger patients (under 60 years). The interaction P-value 
below 0.01 indicates a significant performance difference by age, suggesting that the AI 
model may be especially effective in younger patients. By achieved exercise Stage, the 
prediction performance was highest in STAGE 1 and STAGE 2 subgroups compared to 
STAGE 3 and STAGE 4. Clinically, exercise tolerance during ExECG is an important 
indicator of underlying CAD12,47. Therefore, lower achieved Stages may reflect reduced 
functional capacity or the presence of CAD. The model appears to capture these clinical 
characteristics well and contributes to risk estimation.  

 

4.4. AI-Based ExECG vs. Traditional Physician Interpretation 

AI assistance in clinical decision-making substantially improved physician specificity 
(from 0.38 to 0.66) while reducing sensitivity (from 0.75 to 0.43). There is a possibility 
that the AI model prioritized specificity over sensitivity, resulting in fewer positive 
classifications. The threshold selection should reflect the intended clinical purpose of the 
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model. In screening, sensitivity should be maximized to detect as many true positives as 
possible, whereas in diagnostic settings, specificity should be prioritized to minimize 
false positives and avoid unnecessary interventions15,49-51. Since the primary purpose of 
this study was to evaluate an explainable AI framework and compare its predictive 
capability with physician interpretations, the threshold was chosen to reflect this 
objective. The thresholds of AI model may be revised according to their intended clinical 
use-diagnoses or screening decisions. Physicians also may have underutilized AI 
recommendations, particularly in borderline positive cases. The degree to which 
physicians accept AI recommendations is often determined by the transparency of the AI 
system, its interpretability, and the extent to which it is incorporated into the clinical 
workflow52. When physicians do not have enough information or do not trust the AI's 
performance, they may disregard AI recommendations and rely instead on their own 
clinical judgment53. In this study, physicians were not informed about the AI model's 
validated performance; as a result, they may have been reluctant to override their initial 
clinical judgment when AI predictions contradicted their expectations. 

 

4.5. Limitations 

Despite promising findings, this study has several limitations. Even though external 
validation was conducted, further studies, including multicenter validation and 
prospective trials, are required to ensure that the model is applicable and generalizable 
across diverse ethnic groups and populations. Due to its clinical relevance and 
retrospective design, coronary revascularization was selected as the primary endpoint, 
even though not all patients underwent invasive angiography. It could have missed cases 
of true ischemia in patients who were not revascularized, thereby underestimating its 
diagnostic accuracy. Furthermore, future research should explore the potential clinical 
utility of ExECG AI framework by exploring its application in other relevant contexts, 
including early detection of autonomic dysfunction, longitudinal monitoring, and risk 
stratification for major cardiovascular events. To ensure safe and effective 
implementation of AI assisted ExECG analysis into routine clinical practice, a 
comprehensive physician education program, clear regulatory pathways, and efficient 
workflow integration strategies are needed to ensure that it is safe and effective.   
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5. Conclusion 
Based on a large-scale dataset of ExECG signals, this study presents the first pre-

trained model designed to extract and represent ExECG signal characteristics, enabling 
task-specific, explainable AI frameworks. The framework improved prediction 
performance for coronary revascularization and reduced interobserver variability by 
providing visualization. Specifically, the dynamic morphological and temporal patterns of 
ExECG have been captured in the model, and they are showing strong alignment with 
clinically relevant features. The integration of explainable AI into clinical workflows 
could represent a significant advance in cardiovascular diagnostics, improving patient 
outcomes through more precise and personalized risk assessment. There will be a need 
for further validation and integration efforts to ensure successful clinical deployment and 
widespread adoption. 
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관상동맥 혈관재형성술 예측 네트워크 개발 연구: 운동부하심전

도 사전 학습 모델 구축 
 
배경: 운동부하 심전도(ExECG)는 관상동맥질환 평가에 널리 사용되지만, 진단 정확

도의 변동성이 커 해석에 어려움이 있다. 본 연구에서는 운동부하 심전도 기반으로 
관상동맥 재혈관술이 필요한 환자를 예측할 수 있는 설명 가능한 인공지능(AI) 모델
을 개발하고 검증하고자 한다. 

 
방법: 브루스 프로토콜을 사용한 운동부하 심전도 검사를 받은 20,534명의 환자를 

대상으로 연구를 수행하였다. 변분 오토인코더(variational autoencoder)를 활용해 운동부
하 심전도 상 중요한 심전도 특징을 먼저 학습한 후, 운동부하 심전도 검사 이후 90
일 이내에 시행된 경피적 관상동맥중재술(PCI) 또는 관상동맥우회술(CABG)을 ‘관상동
맥 재혈관술’로 정의하여 이에 대한 예측 모델을 학습하였다. 모델의 성능은 임상의 
판단과 Duke Treadmill Score와 비교 평가하였다. 

 
결과: 본 모델은 수신자 조작 특성 곡선 아래 면적(AUROC)은 0.84 (신뢰구간 95%, 

0.80–0.88)로 우수한 성능을 보였으며, 임상의 판단은  0.75 (신뢰구간 95% , 0.71–0.80), 
Duke Treadmill Score은 0.78 (신뢰구간 95% , 0.73–0.82) 보였다. AI 기반의 관상동맥 재혈
관술 고위험군의 오즈비는 12.37(8.43-18.49)인 반면, Duke Treadmill Score와 의사 진단으
로 기반으 오즈비 각각 5.65(3.02-9.40)와 19.65(13.56-28.65)이었다. 특히, 회복기 중간 
단계에서의 ST분절 하강이 관상동맥 재혈관화 필요성의 가장 중요한 예측 인자임을 
보였다. 

 
결론: 운동부하 심전도를 활용하여 관상동맥 재혈관술을 예측하는 설명 가능한 인

공지능 모델을 개발하고 검증하였습니다. 고도화된 AI 예측력과 해석 가능한 심전도 
특징 제시함으로써, 임상 현장에서 운동부하 심전도의 진단적 유용성을 향상시킬 수 
있을 것으로 기대된다. 
 
 
 
 
                                                                                

핵심되는 말: 운동부하 심전도, 인공지능, 변분 오토인코더, 관상동맥 재혈관술 


