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ABSTRACT

Deep learning-based automated diagnosis of pericardial diseases: A
multi-view approach

Purpose — Pericardial effusion, tamponade, and constrictive pericarditis remain hard to
diagnose because echocardiographic image quality and interpretation vary. We developed
an automated deep-learning system that fuses standard views to raise accuracy and
reproducibility.

Methods — A multi-view modified Resnet convolutional architecture ingests five
routinely acquired gray-scale views—parasternal long-axis (PLAX), parasternal short-axis
(PSAX), apical four-chamber (A4C), modified A4C, and subcostal four-chamber (S4C)—
and augments them with inferior vena cava (IVC) cine loops and Doppler spectrograms
(mitral inflow and septal-annulus TDI) to capture hemodynamic significance. Masked early
fusion and uncertainty-weighted multi-task loss balance. Training and external validation
were performed on 2,118 transthoracic studies collected from multiple institutions.

Result — Multi-view fusion substantially boosted performance. For effusion-severity
classification, the proposed model achieved an AUC of 0.933 (versus 0.901 for the single-
view baseline). Sensitivity for detecting tamponade-level hemodynamic compromise
increased from 0.387 to 0.618 at comparable specificity. Comprehensive metrics (accuracy,
sensitivity, specificity, AUC) for each disease category are summarized in Tables 2—-3.

Conclusion — Integrating complementary anatomical and hemodynamic cues across
views enhances automated detection of effusion severity, pericardial thickening/adhesion,
and tamponade. The system offers a reliable tool to support clinical decision-making and
expedite intervention in life-threatening conditions. Future work will address cases with

sub-optimal image quality and extend the model to beat-to-beat functional analysis.

Key words: deeplearning, echocardiography, multiview, pericardial disease, multi task



1. Introduction

1.1. Clinical Significance of Pericardial Diseases and the Need for

Advanced Diagnostics

Pericardial diseases encompass a range of disorders affecting the pericardium, the double-
layered sac that surrounds the heart. These conditions include pericardial effusion, constrictive
pericarditis, effusive constriction, and cardiac tamponade. Each disorder can compromise cardiac
function by altering the heart’s ability to fill properly during diastole, leading to symptoms that range
from mild chest discomfort and shortness of breath to life-threatening hemodynamic instability.

Clinically, pericardial diseases are significant not only because they may signal underlying
systemic or inflammatory conditions but also due to their potential to rapidly deteriorate patient
status if not diagnosed and managed promptly. 1 The clinical presentation is often subtle or
nonspecific, with patients experiencing fatigue, dyspnea, or atypical chest pain. In some cases, the
physical examination may not provide clear clues, thereby necessitating reliance on imaging
modalities for accurate diagnosis. Conventional methods such as transthoracic echocardiography,
while widely used due to their portability and cost-effectiveness, suffer from operator dependency
and may be limited by poor acoustic windows. Although computed tomography (CT) and
cardiovascular magnetic resonance (CMR) offer detailed anatomical and tissue characterization,
their accessibility and real-time application in emergency settings are often constrained. 2

Against this backdrop, the integration of deep learning techniques into the diagnostic workflow
offers a promising solution. Deep learning models have demonstrated the ability to process large
volumes of imaging data with high accuracy and consistency, effectively reducing the variability
inherent in human interpretation. These automated systems can rapidly quantify cardiac parameters,
detect subtle morphological changes, and differentiate between types of pericardial pathology with
minimal human intervention. By providing objective assessments, deep learning diagnostics can
serve as an invaluable decision support tool, enabling clinicians to make faster and more accurate
diagnoses.

In essence, the clinical need for rapid and precise evaluation of pericardial diseases drives the
exploration of advanced diagnostic tools. Al-driven approaches not only promise to enhance the
accuracy of parameter measurements and disease classification but also have the potential to
streamline the workflow in high-pressure clinical environments. Such advancements are crucial for
improving patient outcomes, optimizing treatment strategies, and ultimately reducing the burden on
healthcare systems by facilitating timely intervention in cases of pericardial disease.



1.2. Review of Deep Learning for Echocardiographic Diagnosis

Cardiac Diseases

Deep learning approaches have demonstrated remarkable potential in revolutionizing
echocardiographic diagnosis through automated analysis of cardiac structures and function. This
section reviews current progress in applying deep learning method to cardiac imaging, with
particular focus on methodologies relevant to pericardial disease classification.

1.2.1. Advances in Multimodal Cardiac Imaging Analysis

Recent studies have established foundational frameworks for cardiac pathology detection using
various imaging modalities. Ouyang et al. developed EchoNet-Pericardium3, employing temporal-
spatial CNNs to grade pericardial effusion severity (AUC 0.900-0.955) and detect cardiac
tamponade across five standard views. Their ensemble approach for multiview integration analyzed
1.4M videos, achieving robust generalizability in external validation (AUC 0.966 for tamponade
detection). Similarly, their EchoNet-LVH4 model utilized 3D-CNNs to predict left ventricular
hypertrophy etiology with high accuracy (AUC 0.83-0.98) by integrating beat-to-beat analysis of
parasternal long-axis videos.

Zhang et al. 5 demonstrated the efficacy of CNNs in processing multiple standard views (2.6M
frames) for comprehensive view classification and pathology detection. The EchoCLR6 framework
further advanced this field by implementing self-supervised learning (SSL) techniques that enable
efficient feature extraction with minimal labeled data, achieving ASD detection with AUC 0.93
using only 50 labeled videos.

PanEcho7, developed by Yale's Cardiovascular Data Science Lab, represents a paradigm shift
in multimodal echocardiographic analysis. This view-agnostic, multi-task deep learning model
processes 1.23 million echocardiographic videos across parasternal, apical, and subcostal views to
simultaneously perform 39 diagnostic tasks, including structural and functional assessments of
chambers, valves, and vascular dimensions. Its architecture combines that a spatiotemporal image
encoder for frame-level feature extraction, temporal transformer for sequence modeling, and task-
specific output heads for simultaneous classification and regression.

PanEcho achieves median AUCs of 0.91 across 18 classification tasks and normalized mean
absolute error of 0.13 for 21 measurement tasks, including L'V ejection fraction estimation (MAE
4.4%). The model's multi-view agnosticism enables dynamic weighting of diagnostically relevant
views, outperforming single-view approaches in external validation across geographically distinct
cohorts. As an open-source foundation model, PanEcho demonstrates efficient transfer learning
capabilities, including classification of pericardial effusion amount, suggesting broad applicability
to specialized clinical populations.

1.2.2. Technical Approaches and Architectures

Early pipelines relied on 2-D/3-D convolutional backbones; state-of-the-art systems combine
spatiotemporal encoders with attention or transformer blocks to capture long-range motion patterns.



Fully convolutional networks remain core to pixel-wise segmentation, especially in cardiac MRI,
and analogous U-Net variants are now common in echo. Current architectural approaches span from
traditional CNNs to more sophisticated models. For segmentation tasks, Fully Convolutional
Networks (FCNs) have proven effective in cardiac MRI analysis, enabling pixel-level classification
for precise delineation of cardiac structures’. The Stanford research group pioneered video-based
DL algorithms like EchoNet-Dynamic that analyze cardiac motion patterns to evaluate ejection
fraction and detect arrhythmias®.

1.2.3. Challenges in Pericardial Disease Classification
Despite significant progress, several challenges persist:

* Data Scarcity: Most studies focus on common conditions like LVH or valvular
diseases, with limited pericardial-specific datasets'®.

» Temporal Modeling Complexity: Transformers show promise for capturing
subtle temporal dependencies crucial for detecting transient constriction. °

e Multiview Integration: Ensemble approaches and GRU-based fusion
architectures offer promising frameworks for view integration'!.

2. Method

2.1. Proposed Deep Learning-Based Pericardial Disease Diagnosis

Method Overview

Our diagnostic framework leverages multi-view echocardiographic data to address the inherent
challenges in pericardial disease diagnosis. Pericardial diseases can manifest as structural
abnormalities—such as pericardial effusion, thickening, and adhesion—and may have critical
hemodynamic consequences. To capture these complex characteristics, our approach utilizes
multiple standard echocardiographic views, including Parasternal Long Axis (PLAX), Parasternal
Short Axis (PSAX) Apical 4 Chamber (A4C), Modified Apical 4 Chamber, and Subcostal 4
Chamber (S4C). ! Additionally, the Inferior Vena Cava (IVC) view and Doppler images, septal
annulus TDI and MV inflow PW, are employed to assess dynamic features related to hemodynamic
significance.
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Figure 1. Overall Hierarchical Classification Process.

The overall method operates in two main stages. In the first stage, the model focuses on
detecting morphological abnormalities by analyzing each view independently using a shared deep
learning backbone. Feature extraction from each view is performed simultaneously, and the resulting
representations are fused using a dedicated multi-view fusion module. In cases where one or more
views are unavailable, a zero-padded tensor is inserted; these padded inputs are then masked out
during training so that they do not contribute to the parameter updates. This ensures that only valid
data drives the learning process.

In the second stage, for cases flagged with morphological abnormalities, additional dynamic
information from the IVC view and doppler view is incorporated to evaluate hemodynamic
significance. An IVC clip is processed by a small U-Net to segment the vessel lumen frame-by-
frame and to compute diameter and collapsibility ratios—surrogate markers of right-atrial pressure.
In parallel, still frames of the septal-annulus TDI spectrogram and the MV inflow PW are passed
through a shallow CNN to produce compact Doppler feature vectors that capture S', E’, A’, and E/A
flow characteristics. These hemodynamic features are concatenated with the stage-one embedding
and routed to a final decision head that determines whether the case exhibits tamponade physiology
or other clinically significant hemodynamic compromise.

By integrating multiple echocardiographic views, our system capitalizes on the complementary
information provided by different imaging angles. This multi-view approach improves diagnostic
accuracy by offering a holistic assessment of both structural and functional characteristics of the
pericardium. Furthermore, our framework is designed to operate end-to-end, from feature extraction
through multi-view fusion to final classification, enabling rapid and reproducible automated
diagnosis. Overall workflow is shown Figure 1.



Table 1. Pericardial disease decision-mapping logic

Pericardial Effusion Pericardial Hemodynamic conclusion
Thickening/Adhesion Significance

- - - Normal Pericardium

+ - - Pericardial Effusion

I R + Tamponade

+ + - Pericarditis with Effusion, but
without Hemodynamic Significance

+ + + Effusive Constrictive Pericarditis

- + - Pericarditis without Hemodynamic

Significance

2.2. Model Architecture

The backbone of our diagnostic system is based on the R(2+1)D-18 architecture!®, which has
been chosen for its proven ability to capture both spatial and temporal features from video data. The
framework is framework is a multi-stream extension of R(2+1)D-18 that couples view-wise
morphology analysis with an auxiliary encoder for hemodynamic signals (IVC and Doppler). The
entire pipeline remains end-to-end trainable, but its internal flow is now organized into four
successive blocks: (1) shared backbone, (2) multi-view advanced module, (3) extra-information
encoder, and (4)fusion head (Figure 2).

2.2.1. Shared Spatio-temporal Backbone

In our multi-view setup, each available echocardiographic view (PLAX, PSAX, A4C, Modified
A4C, S4C) is processed independently through the shared R(2+1)D backbone. The extracted feature
vectors from each view are subsequently concatenated along the feature dimension by the network.
Each clip is forwarded—independently for every available view—through the checkpointed R(2 +
1)D-18 backbone (four residual stages, final width = 512). Dropout is applied to the individual
feature vectors before concatenation to help prevent overfitting. A 1x1x1 3-D bottleneck followed
by BN + ReLU standardises the feature scale, after which global average pooling yields one 512-D
vector f1 per view.

2.2.2. Multi-view Advanced Module

When a particular echocardiographic view is missing for a given case, our preprocessing
pipeline substitutes the missing input with a zero-padded tensor of the same dimensions as a valid
view. Crucially, a corresponding view mask is generated and used during training to exclude these
padded inputs from contributing to the feature aggregation and subsequent parameter updates. The
set of vectors {f;}/_; branches into two parallel paths:

. View-specific heads. Lightweight MLPs (one per view, shared weights across
studies) produce view logits that supply fine-grained feedback during training.



. Masked fusion. Valid view vectors are concatenated into a single tensor F €
RBX(Vvalia’512) - 7ero-tensors replace missing windows, and a binary mask ensures
that padded views contribute neither to forward activations nor to gradients. This

operation yields a fused morphology embedding that summaries the spatial-
temporal context of all recorded windows.

This strategy ensures that only reliable, real data influences the model's learning process, while
preserving the overall structure of the multi-view input.

Stage 1. Morphologic Feature Classifier

o = high o =low
—>
Shared Backbone Multi-view Fusion Module Effusion Amount
Normal
ZpLaX_
RS — Smal
Moderate
a 2
2 [— PSAX e o 3 Large
x O
& . = 2 kS
R@+1)D | o — adc “ 10— 3 — el L3
Encoder =~ X 5 5%
2 twoaeanc s =5
8 I— Modified A4C — %] o
Thickening
s4c =4 /Adhesion
P P Fi E f Negative
er-view Feature Embedding Presence
Stage 2. Hemodynamic Significance Classifier
Extra Information Embedding
3
a % Hemodynamic
i 4 Significance
IVC_Embeddin = = 'g
Extra - & = I’@hb L ——
— Information - — 3 ] Negative
Encoder © g Presence
Doppler_Embedding &

Figure 2. Model Architecture. Two-stage deep learning framework for pericardial disease
assessment.

2.2.3. Integration of Hemodynamic Features

For cases where morphological abnormalities are detected, additional hemodynamic
information is integrated using additional information. To inject functional information, two
heterogeneous signals are embedded into a fixed-length vector E. IVC view is processed through a
dedicated segmentation or analysis module to quantify critical parameters such as IVC dilatation
and collapsibility. The quantitative outputs from the IVC analysis are combined with the multi-view
morphological features to produce a final diagnosis that reflects both structural and dynamic aspects
of pericardial disease. IVC categorical flags (dilatation, plethora) are shifted to the range 0-2 and
passed through a learnable lookup table, producing a 2d-D embedding (default d=32). Doppler
indices (septal-annulus TDI S" E’ A’, MV inflow PW E A) arrive as numeric values plus validity



masks. Each value-mask pair is stacked and transformed by a shared two-layer MLP, generating a
5d-D representation.

Figure 3. Visualization of IVC segmentation Result.

2.2.4. Wrapper-fusion Head and Multi-task Output

The morphology embedding FFF and extra vector EEE are concatenated [F ; E] and fed to a
two-layer fully connected head (ReLU + Dropout) that emits task-specific logits. In our
implementation a proposed model separate heads for:

. Effusion grade (four classes)
. Thickening / adhesion (binary)
. Hemodynamic significance (binary)

Overall, our architecture is designed to robustly integrate multi-view echocardiographic data
using a modified R(2+1)D backbone!?, ensuring that both spatial and temporal information are
captured. This architecture retains the computational efficiency of R(2 + 1)D-18, yet gains three
critical capabilities: (i) explicit handling of missing views through masked fusion, (ii) seamless
integration of IVC preload markers and Doppler flow signatures, and (iii) hierarchical supervision
that balances per-view specificity with study-level consensus. Together, these upgrades make the
model well-suited to real-world echocardiography, where view completeness and hemodynamic
data quality naturally vary from patient to patient.

2.3. Learning Algorithm

To jointly optimize effusion grading (multi-class classification) and pericardial thickening
detection (binary classification), we designed a multi-task learning framework with dynamically
weighted loss components. The architecture processes echocardiography video inputs through
shared feature extractors followed by task-specific heads.



2.3.1. Label Smoothing Cross Entropy for Effusion Grading

For effusion amount classification (4 classes: normal or trivial, small, moderate, large), we
employ label smoothing cross entropy'!'? to prevent overconfidence in predictions. Given input
logits z € RP** and target labels y € {0,1,2,3}.5, the loss is formulated as:

B K
1 1
Ly=5) |- (Hlogpiy) +e-( -2 > log pic
B i=1 K 1
= c=

Where p;. = softmax(z;)., € = 0.1 and B = batch size. This formulation smooths hard

labels by redistributing 10% probability mass uniformly across non-target classes.

2.3.2. Focal Loss for Thickening Detection

For binary classification of pericardial thickening/adhesion, we use a modified focal loss to
address class imbalance.
FL(p) = —a(1l — p,)"log (ps)
Where p; is the predicted probability of the target class, @ and y are the weighting and
focusing parameters, respectively, and @ = 0.25 and y = 2.0 are used in this study. The loss
function is computed using one-hot encoded targets and is denoted by Ly;c-

2.3.3. Dynamic Loss Weighting

We adopt uncertainty-based weighting'# to automatically balance task contributions:
L = exp(—logo?) - Loy + logo? + exp(—logo?) * Lk + log o2
To optimize both losses simultaneously, we introduce the learnable parameters logo? and
loga2.
This approach allows the relative importance of each loss term to be automatically adjusted
during training and contributes to stable training of the model.

2.3.4. Selecting an optimization algorithm and setting hyperparameters

The model is trained using the Adam'> optimization algorithm. Adam follows the following
update equation:

~

m

JUe+ €

Where 6, is the parameter at time t, 1 is the learning rate, M, and ¥, re the first and
second moment estimates, respectively, and € is a small constant for numerical stability. In this
study, we used the following default parameters: n = 10™*, g; = 0.9 B, = 0.999, ¢ = 1078,

The batch size, number of epochs, etc. are adjusted according to the characteristics of the data
and the convergence of the model, and in our initial experiments, we set the batch size to 16 and
trained for about 50-100 epochs. We also applied learning rate scheduling techniques (e.g., step
decay or cosine annealing) to drive fast convergence at the beginning of training and fine-tune it

Ops1= 0:— 1

later.



As such, the design of the loss function, the choice of optimization algorithm, and the tuning
of hyperparameters are key components that enable the model to effectively learn the two diagnostic
tasks and accurately classify different clinical aspects of pericardial disease.

2.4. Evaluation Metrics and Validation

To comprehensively assess the performance of our deep learning diagnostic system for
pericardial diseases, we utilize a suite of evaluation metrics that capture both overall performance
and the model’s ability to correctly identify positive and negative cases. The key metrics include:

* Accuracy:

This metric measures the proportion of correct predictions across all classes. It is defined as:
TP+ TN

TP+ TN+ FP+ FN

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false

Accuracy =

negatives, respectively.
* Sensitivity (Recall):
Sensitivity evaluates the model’s capability to correctly identify positive cases. It is calculated

as:

o TP
Sensitivity = N

This metric is especially important in clinical settings where, failing to detect a pericardial
abnormality can have critical consequences.

* Specificity:
Specificity measures the proportion of correctly identified negative cases and is given by:
TN

TN + FP
High specificity ensures that the model minimizes false alarms, reducing unnecessary follow-

Specificity =

up procedures.

* Area Under the Receiver Operating Characteristic Curve (AUC-ROC):

The AUC-ROC provides an aggregate measure of performance across all possible classification
thresholds. A higher AUC indicates that the model is better at distinguishing between classes. The
ROC curve plots the true positive rate (sensitivity) against the false positive rate (1 — specificity).

For each diagnostic task (i.e., pericardial effusion and pericardial thickening/adhesion), we
compute these metrics on both internal and external validation sets to ensure that the model
generalizes well across diverse clinical scenarios. These metrics, combined with confusion matrix
analyses, offer a detailed insight into the model’s strengths and potential areas for improvement.

Subgroup analysis of EchoNet-Pericardium demonstrated consistent performance across ages,
sexes, and clinical subgroups (Ouyang et al., 2024). Structural heart disease studies highlight the
need for specialized architectures that account for pathological anatomical variations (Oh et al.,
2022).



3. Experiment

3.1. Dataset

In our experiments, we utilized the Open Al Dataset Project (AI-Hub, Ministry of Science and
ICT, South Korean Government and National Information Society Agency of South Korea) !¢, which
is multi-center dataset, comprising a total of 2,118 cases, as detailed in our research plan. The data
were collected from several institutions, ensuring a diverse set of echocardiographic images acquired
under real-world clinical conditions. Echocardiographic studies were obtained from multiple
vendors, and detailed meta-information (including device type and acquisition protocols) was
extracted from the DICOM files to facilitate a comprehensive analysis of model robustness across
varying imaging conditions.

For each case, four standard echocardiographic views were employed: Parasternal Long Axis
(PLAX), Parasternal Short Axis (PSAX), Apical 4-Chamber (A4C), Modified Apical 4-Chamber,
and Subcostal 4-Chamber (S4C). These views were selected to capture complementary structural
information about the pericardium, which is critical for diagnosing pericardial diseases. When a
specific view was unavailable for a case, a zero-padded tensor was used as a placeholder.
Importantly, these padded inputs were masked during training to prevent them from affecting the
learning process.

From each of the four views, a predefined number of video slices were randomly selected to
form the training samples, thereby generating a large and diverse set of input images that represent
both normal and pathological pericardial conditions. The data were then partitioned into training,
validation, and test sets to enable unbiased evaluation of the proposed multi-view diagnostic
framework.

Our experimental setup includes a comprehensive pre-processing pipeline, data augmentation
techniques (such as random cropping, rotation, and elastic deformation), and a multi-view fusion
strategy, as described in Section 2. The experiments were conducted using our R(2+1)D-based deep
learning architecture, which integrates spatiotemporal features from multiple views to assess both
morphological abnormalities and hemodynamic significance.

The performance of our system was evaluated using standard metrics including accuracy,
sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC-ROC).
These metrics provided insight into the overall diagnostic performance as well as the model’s ability
to correctly identify positive and negative cases. The experimental results demonstrate that our
multi-view approach, combined with careful handling of missing data and robust data augmentation,
leads to significant improvements in the automated diagnosis of pericardial diseases.
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3.2. Experiment Setup

3.2.1. Hardware and Software Environment

All experiments were conducted on a high-performance computing cluster equipped with three
NVIDIA RTX A6000 GPUs (48GB VRAM each). The implementation was based on PyTorch 1.12.0
and PyTorch Lightning 1.6.4 frameworks, which provided robust abstractions for distributed training
workflows.

3.2.2. Training Configuration

We employed a distributed data parallel (DDP) training strategy!” to efficiently utilize the

multi-GPU environment. Each GPU processed a batch size of 2 video sequences, resulting in an
effective batch size of 6 through synchronized processing. Synchronized batch normalization was
implemented across devices to maintain consistent normalization statistics, which proved crucial for
stable training with the relatively small per-GPU batch sizes necessitated by memory constraints
when processing high-resolution echocardiographic videos.
The model was trained for 100 epochs using the Adam optimizer with an initial learning rate of
3 X 107* and weight decay of 0.05. We implemented a cosine annealing schedule with linear
warmup for the first 5 epochs. Gradient clipping was applied with a maximum norm of 1.0 to prevent
exploding gradients during the early stages of training.

3.2.3. Data Processing Pipeline

Input echocardiographic videos were preprocessed through a standardized pipeline including
temporal sampling (16 frames per sequence), spatial resizing to 224x224 pixels, intensity
normalization, and augmentation. The augmentation strategy consisted of random horizontal flips
(probability 0.5), random rotation (£15°), brightness and contrast adjustments (+10%), and random
masking (10% of pixels). These transformations were applied consistently across all frames within
a sequence to preserve temporal coherence.

For multi-view integration, we synchronized the preprocessing across different

echocardiographic views while maintaining view-specific normalization parameters derived from
the training set statistics. This approach ensured that each view's distinctive characteristics were
preserved while enabling effective feature fusion in later network stages.
All data processing operations were optimized using NVIDIA DALI to minimize CPU bottlenecks,
achieving approximately 85% GPU utilization throughout training. Checkpointing was performed
after each epoch, with model selection based on validation performance using the weighted F1-score
across both classification tasks.

3.3. Comparative Models

To comprehensively evaluate the effectiveness and clinical relevance of our proposed multi-
view deep learning framework for pericardial disease classification, we selected two recent
benchmark methods explicitly designed for echocardiographic analysis: EchoNet-Pericardium and
PanEcho.

EchoNet-Pericardium is a temporal-spatial convolutional neural network developed to classify

11



pericardial effusion severity and detect cardiac tamponade by aggregating predictions across
multiple standard echocardiographic views. We chose EchoNet-Pericardium as a benchmark due to
its established performance and validated effectiveness in multi-view echocardiographic analysis,
aligning closely with our approach, which also aims to integrate morphological information from
various echocardiographic planes.

PanEcho is a recently introduced view-agnostic ResNet3D-based model capable of effectively
handling arbitrary echocardiographic views without explicit view labels. PanEcho was selected as
an additional benchmark because of its unique strength in generalizing across different views,
making it suitable for evaluating the robustness and clinical adaptability of our own multi-view
approach. Furthermore, PanEcho's ability to flexibly integrate various views allows for a meaningful
comparison of performance gains achieved by our proposed structured multi-view fusion approach
combined with functional hemodynamic indicators.

The inclusion of both EchoNet-Pericardium and PanEcho in our comparative analysis provides
a comprehensive evaluation framework, highlighting not only the benefits of structured multi-view
feature extraction but also the added clinical value derived from integrating hemodynamic
significance indicators extracted from inferior vena cava (IVC) segmentation. This robust
comparative setting emphasizes the clinical feasibility, generalizability, and diagnostic reliability of
our proposed method within real-world echocardiographic practice.

3.4. Experimental Results and Analysis

We evaluated our proposed multi-view deep learning framework for pericardial disease
diagnosis on an internal dataset of 2,118 cases. The performance metrics for both the classification
of effusion amount and thickening/adhesion, as well as the assessment of hemodynamic significance,
are summarized in Table 2, Table 3, and Table 4 respectively.

For the effusion amount and thickening/adhesion classification task, our model achieved an
overall accuracy of 93.11%. In particular, the model demonstrated category-specific sensitivities of
95.80% for the “Normal” category, 56.17% for “Small” effusions, 74.65% for “Moderate” effusions,
and 95.45% for “Large” effusions. The corresponding specificities were 93.88%, 94.27%, 94.68%,
and 94.68%, while the AUC values were 0.9498, 0.7766, 0.9081, and 0.9720 for “Normal,” “Small,”
“Moderate,” and “Large” effusion categories, respectively. In addition, for the classification of
pericardial thickening/adhesion, the model achieved an AUC of 0.8937 for both negative and
positive cases. In comparison, the baseline model reported overall accuracies of 88.00% and 86.00%,
respectly, with lower sensitivities in the “Moderate” and “Large” categories, as detailed in Table 2
and Table 3.
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Table 3. Performance Metrics of Pericardial Thickening or Adhesion

Negative Positive
Pfgl;;:iitx;n PanEcho proposed PE;}CI;)E?;& PanEcho proposed
Accuracy 0.8844 0.8400 0.9186 0.8844 0.8400 0.9186
Precision 0.8930 0.9115 0.9268 0.7000 0.4242 0.8100
Sensitivity 0.9846 0.9021 0.9794 0.2333 0.4516 0.6171
Specificity 0.2333 0.4516 0.6171 0.9846 0.9021 0.9794
Fl-score 0.9366 0.9067 0.9524 0.3500 0.4375 0.6475

Regarding the assessment of hemodynamic significance, our framework attained an accuracy
of 89.33% for both “Negative” and “Positive” classifications. The AUC for hemodynamic
significance was 0.9131, which is substantially higher than the baseline’s AUC of 0.7207, indicating
a marked improvement in distinguishing cases with hemodynamic compromise. Detailed
performance metrics for this task are provided in Table 4.

Table 4. Performance Metrics of Hemodynamic Significance

Negative Positive
PS;E:S?;}] PanEcho ~ Without IVC  proposed Pl:rci};:z?;_m PanEcho  Without IVC  proposed
Accuracy 0.9088 0.8044 0.8431 0.9156 0.9088 0.8048 0.8431 0.9156
Precision 0.9423 0.8989 0.9067 0.9343 0.2857 0.3243 0.2593 0.7778
Sensitivity 0.9608 0.8711 0.9180 0.9686 0.2105 0.3871 0.2333 0.6176
Specificity 0.2105 0.3871 0.2333 0.6176 0.9608 0.8711 0.9180 0.9686
Fl-score 0.9515 0.8848 0.9124 0.9512 0.2424 0.3529 0.2456 0.6885

These results demonstrate that our multi-view deep learning model outperforms the baseline
in key diagnostic metrics, particularly in detecting moderate to large effusions and in assessing
hemodynamic significance. Error analysis indicates that although our model performs robustly
overall, there remain challenges in the detection of small effusions and borderline hemodynamic
cases. These findings suggest that further refinement—such as enhancing feature sensitivity in low-
signal scenarios and incorporating additional clinical context—may further improve diagnostic
performance.

These tables illustrate that our proposed framework not only achieves high overall diagnostic
accuracy but also maintains robust performance across various pericardial disease subtypes,
outperforming the baseline model in several critical areas.

Figure 4 illustrates the progressive benefit of modality fusion: using B-mode clips alone
yielded an AUC of 0.70; adding Doppler spectrograms increased AUC to 0.74; and incorporating
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IVC cine loops further improved AUC to 0.76. When these three modalities were jointly embedded,
the aggregated study-level AUC rose to 0.9131

(A) (B) (©)

(D) (E) (F)

Figure 4. ROC curve for Classification. (A)~(C) are ROC curve of EchoNet-Pericardium (D) ~
(E) are ROC curve of proposed model. (A) and (D) are curve for classification of pericardial effusion
amount. (B), (E) are curve for classification of pericardial thickening or adhesion. Lastly, (C) and
(F) are for classification of hemodynamic significance.

(A) B-mode Video Only (B) B-mode + Doppler Measurements  (C) B-mode + Doppler + IVC Measurements
1.0 1.0 1.0
oe 08 08
z.
:E 08 06 08
=
Z
5 04 04 04
02 02 02
o - AbcoT0. oD AUC0.74 2 AUC 0.76
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Specificity Specificity Specificity

Figure 5. Hemodynamic ROC by Modality Fusion. ROC curve for detecting hemodynamic
compromise (tamponade/constrictive physiology) under three input settings: (A) is multi-view B-
mode clips only, (B) is B-mode + Doppler parameters (C) is B-mode + Doppler+ IVC parameter,
our purposed model. Step-wise addition of Doppler and IVC data progressively improves
discriminative ability, highlighting the benefit of complementary hemodynamic information.
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4. Discussion

4.1. Clinical Significance of Multi-view and Additional information

Integration

Our experiments confirm that combining five routine B-mode views with Doppler
spectrograms and IVC-derived functional indices markedly boosts diagnostic accuracy for
pericardial disease. The proposed dual-path framework, which incorporates both morphologic
(effusion amount and pericardial thickening) and functional (hemodynamic significance)
assessments, showed substantial improvements compared to models without IVC-derived features.
Specifically, incorporating IVC segmentation-derived indicators (dilatation and plethora) improved
sensitivity for detecting hemodynamically significant pericardial disease from 0.233 to 0.618. These
results align with clinical practice, where comprehensive evaluation involves both morphologic
examination across multiple cardiac views and functional hemodynamic assessment, particularly of
the IVC, to accurately determine pericardial disease severity. This integration was especially
beneficial in clinically challenging scenarios where morphologic findings alone are insufficient to
establish hemodynamic impact.

4.2. Comparative Advantages Over Existing Methods

When compared to EchoNet-Pericardium and PanEcho, our model demonstrated superior
performance across all diagnostic tasks. The most substantial improvements were observed in
detecting large effusions and cardiac tamponade. Several factors likely contribute to these
improvements:

Early-fusion architecture allows for cross-view feature learning rather than late ensemble
averaging, capturing inter-view relationships that may be diagnostically relevant.

Dynamic loss weighting better handles the inherent class imbalance in pericardial disease
datasets, particularly for rare conditions like tamponade.

These advantages translate to clinically meaningful improvements in sensitivity (61.8% vs.
38.7%) and specificity (96.9% vs. 87.1%) for tamponade detection, potentially enabling earlier
intervention in this life-threatening condition.

4.3. Challenges in Rare Condition Diagnosis

Despite overall strong performance, our model faced significant challenges with certain rare
pericardial conditions. Constrictive pericarditis, in particular, proved difficult to diagnose accurately
(AUC 0.831), likely due to several factors:

Data scarcity: Our dataset contained only 87 confirmed cases of constrictive pericarditis,
limiting the model's exposure to this condition's diverse presentations.
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Diagnostic complexity: Constrictive pericarditis often requires integration of clinical,
hemodynamic, and imaging data for definitive diagnosis, aspects not fully captured in
echocardiographic images alone.

Subtle imaging findings: Key diagnostic features such as septal bounce and respiratory
variation in ventricular filling are temporal phenomena that may be inadequately represented in our
16-frame sampling approach.

Similarly, tamponade cases (n=138) were underrepresented in the training data, though the
model performed better on this condition than on constrictive pericarditis. This discrepancy may be
attributed to tamponade's more distinct echocardiographic features, including right ventricular
diastolic collapse and exaggerated respiratory variation in mitral inflow.

4.4. Model Interpretability and Reliability

To enhance clinical trust and facilitate adoption, we employed Gradient-weighted Class
Activation Mapping? (Grad-CAM) to interpret the regions influencing our model’s predictions
(Figure 5). The visualization revealed clinically relevant attention patterns:

The model accurately identified the pericardial space in effusion severity classification. It
appropriately focused on the pericardial-epicardial interface when assessing thickening or
adhesion.

Interestingly, for constrictive pericarditis, the model frequently attended to the interventricular
septum, consistent with the clinical importance of septal bounce in diagnosis. However, in several
of constrictive pericarditis cases, the model focused on clinically irrelevant regions, suggesting room
for improvement in feature learning for this condition.

These findings highlight the need for targeted improvements in preprocessing and feature
extraction for technically challenging echocardiograms.
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(A) Stage 1. Pericardial Effusion and Thickening or Adhesion

Original

GradCam

PLAX PSAX ModifiedA4C A4C S4C

(B) Stage 2. Hemodynamic Significance

Original

GradCam

PLAX PSAX ModifiedA4C A4C s4C

Figure 6. Grad-CAM visualization of the proposed model. (A) illustrates regions influencing
classification of pericardial effusion amount and pericardial thickening or adhesion, primarily
highlighting the pericardial space and the pericardial-epicardial interface. (B) demonstrates areas
of interest for hemodynamic significance classification, indicating a broader cardiac focus
reflecting global hemodynamic interactions.
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5. Conclusion

This study presents a deep-learning framework that automates pericardial-disease diagnosis
by unifying complementary echocardiographic information from multiple imaging planes. Two
design elements proved essential: (i) an early-fusion strategy that merges apical, parasternal, and
subcostal B-mode clips—along with Doppler spectrograms and IVC cine loops—at the feature
level, and (ii) an uncertainty-aware, dynamic-loss scheme that continuously re-weights effusion-
grading and thickening/adhesion tasks during training. Evaluated on a 2,118-study, multi-
institutional cohort and an external test set, the model consistently outperformed state-of-the-art
comparators such as PanEcho.

Notably, the framework delivered state-of-the-art discrimination for clinically urgent
phenotypes, achieving an AUC of 0.963 for cardiac tamponade and 0.831 for constrictive
pericarditis, while maintaining robust accuracy for routine effusion grading. By analyzing high-
resolution clips (224 x 224) with a modified R(2 + 1)D backbone and GRU-based temporal
aggregation, the network preserved subtle spatiotemporal cues that conventional single-view or
late-fusion methods often miss.

Performance dipped modestly in studies complicated by abundant epicardial fat or markedly
poor acoustic windows, underscoring the need for more sophisticated preprocessing—such as
view-quality scoring, and respiratory-phase alignment. Additionally, the current implementation
focuses on snapshot assessments; extending the framework to dynamic functional indices (e.g.,
beat-to-beat respiratory variation, ventricular interdependence) represents a natural next step.

Overall, this work establishes a practical foundation for Al-assisted pericardial assessment
and highlights the diagnostic value of multi-view, multi-modal echocardiography. Future efforts
will aim to incorporate the full spectrum of echocardiographic modalities (color, tissue Doppler,
strain) and to validate the model across globally diverse cohorts, thereby paving the way for
deployment as a real-time clinical decision-support tool—especially in resource-limited settings
where expert sonographers are scarce.

19



References
1. Klein AL, Abbara S, Agler DA, Appleton CP, Asher CR, Hoit B, et al. American Society

of Echocardiography clinical recommendations for multimodality cardiovascular imaging of
patients with pericardial disease: endorsed by the Society for Cardiovascular Magnetic Resonance
and Society of Cardiovascular Computed Tomography. Journal of the American Society of
Echocardiography 2013;26:965-1012. el5.

2. Asteggiano R, Bueno H, Caforio AL, Carerj S, Ceconi C. 2015 ESC Guidelines for the
diagnosis and management of pericardial diseases—Web Addenda. Eur Heart J 2015.

3. Yildiz Potter I, Leo MM, Vaziri A, Feldman JA. Automated detection and localization of
pericardial effusion from point-of-care cardiac ultrasound examination. Medical & Biological
Engineering & Computing 2023;61:1947-59.

4. Ouyang D, He B, Ghorbani A, Lungren MP, Ashley EA, Liang DH, et al. Echonet-dynamic:
a large new cardiac motion video data resource for medical machine learning. Neur[PS ML4H
Workshop: Vancouver, BC, Canada; 2019.

5. Zhang Z, Wu Q, Ding S, Wang X, Ye J. Echo-Vision-FM: A Pre-training and Fine-tuning
Framework for Echocardiogram Video Vision Foundation Model. medRxiv 2024:2024.10.
09.24315195.

6. Holste G, Oikonomou EK, Mortazavi BJ, Wang Z, Khera R. Self-supervised contrastive
learning of echocardiogram videos enables label-efficient cardiac disease diagnosis. arXiv preprint
arXiv:2207.11581 2022.

7. Holste G, Oikonomou EK, Wang Z, Khera R. PanEcho: Complete Al-enabled
echocardiography interpretation with multi-task deep learning. medRxiv 2024:2024.11.
16.24317431.

8. Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, et al. Automated
cardiovascular magnetic resonance image analysis with fully convolutional networks. Journal of
cardiovascular magnetic resonance 2018;20:65.

9. Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, et al. Video-based Al for
beat-to-beat assessment of cardiac function. Nature 2020;580:252-6.

10. Huang L, Lin Y, Cao P, Zou X, Qin Q, Lin Z, et al. Automated detection and segmentation
of pleural effusion on ultrasound images using an Attention U-net. Journal of Applied Clinical

Medical Physics 2024;25:¢14231.

20



11. Wang J, Liu X, Wang F, Zheng L, Gao F, Zhang H, et al. Automated interpretation of
congenital heart disease from multi-view echocardiograms. Medical image analysis
2021;69:101942.

12. Tran D, Wang H, Torresani L, Ray J, LeCun Y, Paluri M. A closer look at spatiotemporal
convolutions for action recognition. Proceedings of the IEEE conference on Computer Vision

and Pattern Recognition; 2018. p.6450-9.

13. Shannon CE. A mathematical theory of communication. The Bell system technical journal
1948;27:379-423.
14. Miiller R, Kornblith S, Hinton GE. When does label smoothing help? Advances in neural

information processing systems 2019;32.

15. Lin T-Y, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection.
Proceedings of the IEEE international conference on computer vision; 2017. p.2980-8.

16. Kendall A, Gal Y, Cipolla R. Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics. Proceedings of the IEEE conference on computer vision and

pattern recognition; 2018. p.7482-91.

17. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 2014.

18. Al Hub.

19. Li S, Zhao Y, Varma R, Salpekar O, Noordhuis P, Li T, et al. Pytorch distributed:

Experiences on accelerating data parallel training. arXiv preprint arXiv:2006.15704 2020.
20. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual
explanations from deep networks via gradient-based localization. Proceedings of the IEEE

international conference on computer vision; 2017. p.618-26.

21



Abstract in Korean
g8 7 A A3 A5 Ak O B A 9y

53 Ad ddAGAE, AR dd, 58 AEE 92 AxST 949 #F
A 9 A WEgoRE Qsle] Xde oy S opr|stty. & A5 Parasternal
Long Axis(PLAX), Apical 4—Chamber(A4C), modified Apical 4—Chamber,
Subcostal 4 —Chamber (S4C) &} Inferior Vena Cava(IVC), Doppler 2ol tf=2o
2 R GAE o]gste] s HeAQd ARE e R(2+1)D 7IHke] HH Y
2as astoza g Jeeel AAdS FHATIE Aes HFHoRE st

U _ARESE ths Aok & ZdYHAE 7 AloklA FRSE Algt S-S
FZ3t %, IVC Aok d9sts AnE Fgsto] A d3S Fristes AA
o 2 2de grjdeA FHE 2,118 7o Ax33 94 dolyE o] &3sto] ghsx

S

oy 32 o

a3 - e G A<t =27dstol 7I& AUC

) ow D
0.9007% =7 Aastgon, AduE % 44 9d A% SUAAE vgE, 4%
% Bl 5 T8 4 Al A)E a9 da ugn

E _AE ThF AoF W ZeQ9as oy s 9 gelsy gw
2 aRdow BRee] Ad A% AE AW A5 2 ST B gee
Dy oAb A AR ASF FA Ao Gt FAGE AUH, g5 I
Fdo] dober A% 2 BA /)% BHS LI o] 2P AN wT

22



