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ABSTRACT 

 

Deep learning-based automated diagnosis of pericardial diseases: A 

multi-view approach 
 
 

Purpose – Pericardial effusion, tamponade, and constrictive pericarditis remain hard to 

diagnose because echocardiographic image quality and interpretation vary. We developed 

an automated deep-learning system that fuses standard views to raise accuracy and 

reproducibility. 

Methods – A multi-view modified Resnet convolutional architecture ingests five 

routinely acquired gray-scale views—parasternal long-axis (PLAX), parasternal short-axis 

(PSAX), apical four-chamber (A4C), modified A4C, and subcostal four-chamber (S4C)—

and augments them with inferior vena cava (IVC) cine loops and Doppler spectrograms 

(mitral inflow and septal-annulus TDI) to capture hemodynamic significance. Masked early 

fusion and uncertainty-weighted multi-task loss balance. Training and external validation 

were performed on 2,118 transthoracic studies collected from multiple institutions. 

Result – Multi-view fusion substantially boosted performance. For effusion-severity 

classification, the proposed model achieved an AUC of 0.933 (versus 0.901 for the single-

view baseline). Sensitivity for detecting tamponade-level hemodynamic compromise 

increased from 0.387 to 0.618 at comparable specificity. Comprehensive metrics (accuracy, 

sensitivity, specificity, AUC) for each disease category are summarized in Tables 2–3. 

Conclusion – Integrating complementary anatomical and hemodynamic cues across 

views enhances automated detection of effusion severity, pericardial thickening/adhesion, 

and tamponade. The system offers a reliable tool to support clinical decision-making and 

expedite intervention in life-threatening conditions. Future work will address cases with 

sub-optimal image quality and extend the model to beat-to-beat functional analysis. 

                                                                                

Key words: deeplearning, echocardiography, multiview, pericardial disease, multi task 
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1. Introduction  

 

1.1. Clinical Significance of Pericardial Diseases and the Need for 

Advanced Diagnostics 

Pericardial diseases encompass a range of disorders affecting the pericardium, the double-

layered sac that surrounds the heart. These conditions include pericardial effusion, constrictive 

pericarditis, effusive constriction, and cardiac tamponade. Each disorder can compromise cardiac 

function by altering the heart’s ability to fill properly during diastole, leading to symptoms that range 

from mild chest discomfort and shortness of breath to life-threatening hemodynamic instability. 

Clinically, pericardial diseases are significant not only because they may signal underlying 

systemic or inflammatory conditions but also due to their potential to rapidly deteriorate patient 

status if not diagnosed and managed promptly. 1 The clinical presentation is often subtle or 

nonspecific, with patients experiencing fatigue, dyspnea, or atypical chest pain. In some cases, the 

physical examination may not provide clear clues, thereby necessitating reliance on imaging 

modalities for accurate diagnosis. Conventional methods such as transthoracic echocardiography, 

while widely used due to their portability and cost-effectiveness, suffer from operator dependency 

and may be limited by poor acoustic windows. Although computed tomography (CT) and 

cardiovascular magnetic resonance (CMR) offer detailed anatomical and tissue characterization, 

their accessibility and real-time application in emergency settings are often constrained. 2 

Against this backdrop, the integration of deep learning techniques into the diagnostic workflow 

offers a promising solution. Deep learning models have demonstrated the ability to process large 

volumes of imaging data with high accuracy and consistency, effectively reducing the variability 

inherent in human interpretation. These automated systems can rapidly quantify cardiac parameters, 

detect subtle morphological changes, and differentiate between types of pericardial pathology with 

minimal human intervention. By providing objective assessments, deep learning diagnostics can 

serve as an invaluable decision support tool, enabling clinicians to make faster and more accurate 

diagnoses. 

In essence, the clinical need for rapid and precise evaluation of pericardial diseases drives the 

exploration of advanced diagnostic tools. AI-driven approaches not only promise to enhance the 

accuracy of parameter measurements and disease classification but also have the potential to 

streamline the workflow in high-pressure clinical environments. Such advancements are crucial for 

improving patient outcomes, optimizing treatment strategies, and ultimately reducing the burden on 

healthcare systems by facilitating timely intervention in cases of pericardial disease. 
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1.2. Review of Deep Learning for Echocardiographic Diagnosis 

Cardiac Diseases 

Deep learning approaches have demonstrated remarkable potential in revolutionizing 

echocardiographic diagnosis through automated analysis of cardiac structures and function. This 

section reviews current progress in applying deep learning method to cardiac imaging, with 

particular focus on methodologies relevant to pericardial disease classification.  

 

1.2.1. Advances in Multimodal Cardiac Imaging Analysis   

Recent studies have established foundational frameworks for cardiac pathology detection using 

various imaging modalities. Ouyang et al. developed EchoNet-Pericardium3, employing temporal-

spatial CNNs to grade pericardial effusion severity (AUC 0.900–0.955) and detect cardiac 

tamponade across five standard views. Their ensemble approach for multiview integration analyzed 

1.4M videos, achieving robust generalizability in external validation (AUC 0.966 for tamponade 

detection). Similarly, their EchoNet-LVH4 model utilized 3D-CNNs to predict left ventricular 

hypertrophy etiology with high accuracy (AUC 0.83–0.98) by integrating beat-to-beat analysis of 

parasternal long-axis videos. 

Zhang et al. 5 demonstrated the efficacy of CNNs in processing multiple standard views (2.6M 

frames) for comprehensive view classification and pathology detection. The EchoCLR6 framework 

further advanced this field by implementing self-supervised learning (SSL) techniques that enable 

efficient feature extraction with minimal labeled data, achieving ASD detection with AUC 0.93 

using only 50 labeled videos. 

PanEcho7, developed by Yale's Cardiovascular Data Science Lab, represents a paradigm shift 

in multimodal echocardiographic analysis. This view-agnostic, multi-task deep learning model 

processes 1.23 million echocardiographic videos across parasternal, apical, and subcostal views to 

simultaneously perform 39 diagnostic tasks, including structural and functional assessments of 

chambers, valves, and vascular dimensions. Its architecture combines that a spatiotemporal image 

encoder for frame-level feature extraction, temporal transformer for sequence modeling, and task-

specific output heads for simultaneous classification and regression. 

PanEcho achieves median AUCs of 0.91 across 18 classification tasks and normalized mean 

absolute error of 0.13 for 21 measurement tasks, including LV ejection fraction estimation (MAE 

4.4%). The model's multi-view agnosticism enables dynamic weighting of diagnostically relevant 

views, outperforming single-view approaches in external validation across geographically distinct 

cohorts. As an open-source foundation model, PanEcho demonstrates efficient transfer learning 

capabilities, including classification of pericardial effusion amount, suggesting broad applicability 

to specialized clinical populations. 

 

1.2.2. Technical Approaches and Architectures   

Early pipelines relied on 2-D/3-D convolutional backbones; state-of-the-art systems combine 

spatiotemporal encoders with attention or transformer blocks to capture long-range motion patterns. 
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Fully convolutional networks remain core to pixel-wise segmentation, especially in cardiac MRI, 

and analogous U-Net variants are now common in echo. Current architectural approaches span from 

traditional CNNs to more sophisticated models. For segmentation tasks, Fully Convolutional 

Networks (FCNs) have proven effective in cardiac MRI analysis, enabling pixel-level classification 

for precise delineation of cardiac structures7. The Stanford research group pioneered video-based 

DL algorithms like EchoNet-Dynamic that analyze cardiac motion patterns to evaluate ejection 

fraction and detect arrhythmias8. 

 

1.2.3. Challenges in Pericardial Disease Classification   

Despite significant progress, several challenges persist: 

• Data Scarcity: Most studies focus on common conditions like LVH or valvular 

diseases, with limited pericardial-specific datasets10. 

• Temporal Modeling Complexity: Transformers show promise for capturing 

subtle temporal dependencies crucial for detecting transient constriction. 5 

• Multiview Integration: Ensemble approaches and GRU-based fusion 

architectures offer promising frameworks for view integration11. 

 

 

2. Method 

 

2.1. Proposed Deep Learning-Based Pericardial Disease Diagnosis 

Method Overview  

Our diagnostic framework leverages multi-view echocardiographic data to address the inherent 

challenges in pericardial disease diagnosis. Pericardial diseases can manifest as structural 

abnormalities—such as pericardial effusion, thickening, and adhesion—and may have critical 

hemodynamic consequences. To capture these complex characteristics, our approach utilizes 

multiple standard echocardiographic views, including Parasternal Long Axis (PLAX), Parasternal 

Short Axis (PSAX) Apical 4 Chamber (A4C), Modified Apical 4 Chamber, and Subcostal 4 

Chamber (S4C). 1 Additionally, the Inferior Vena Cava (IVC) view and Doppler images, septal 

annulus TDI and MV inflow PW, are employed to assess dynamic features related to hemodynamic 

significance. 
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Figure 1. Overall Hierarchical Classification Process. 

 
The overall method operates in two main stages. In the first stage, the model focuses on 

detecting morphological abnormalities by analyzing each view independently using a shared deep 

learning backbone. Feature extraction from each view is performed simultaneously, and the resulting 

representations are fused using a dedicated multi-view fusion module. In cases where one or more 

views are unavailable, a zero-padded tensor is inserted; these padded inputs are then masked out 

during training so that they do not contribute to the parameter updates. This ensures that only valid 

data drives the learning process. 

In the second stage, for cases flagged with morphological abnormalities, additional dynamic 

information from the IVC view and doppler view is incorporated to evaluate hemodynamic 

significance. An IVC clip is processed by a small U-Net to segment the vessel lumen frame-by-

frame and to compute diameter and collapsibility ratios—surrogate markers of right-atrial pressure. 

In parallel, still frames of the septal-annulus TDI spectrogram and the MV inflow PW are passed 

through a shallow CNN to produce compact Doppler feature vectors that capture S′, E′, A′, and E/A 

flow characteristics. These hemodynamic features are concatenated with the stage-one embedding 

and routed to a final decision head that determines whether the case exhibits tamponade physiology 

or other clinically significant hemodynamic compromise.  

By integrating multiple echocardiographic views, our system capitalizes on the complementary 

information provided by different imaging angles. This multi-view approach improves diagnostic 

accuracy by offering a holistic assessment of both structural and functional characteristics of the 

pericardium. Furthermore, our framework is designed to operate end-to-end, from feature extraction 

through multi-view fusion to final classification, enabling rapid and reproducible automated 

diagnosis. Overall workflow is shown Figure 1. 
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Table 1. Pericardial disease decision-mapping logic 

Pericardial Effusion 
Pericardial 

Thickening/Adhesion 

Hemodynamic 

Significance 
conclusion 

- - - Normal Pericardium 

+ - - Pericardial Effusion 

+ - + Tamponade 

+ + - Pericarditis with Effusion, but 

without Hemodynamic Significance 

+ + + Effusive Constrictive Pericarditis 

- + - Pericarditis without Hemodynamic 

Significance 

 

2.2. Model Architecture  

The backbone of our diagnostic system is based on the R(2+1)D-18 architecture10, which has 

been chosen for its proven ability to capture both spatial and temporal features from video data. The 

framework is framework is a multi-stream extension of R(2+1)D-18 that couples view-wise 

morphology analysis with an auxiliary encoder for hemodynamic signals (IVC and Doppler). The 

entire pipeline remains end-to-end trainable, but its internal flow is now organized into four 

successive blocks: (1) shared backbone, (2) multi-view advanced module, (3) extra-information 

encoder, and (4)fusion head (Figure 2). 

 

2.2.1. Shared Spatio-temporal Backbone 

In our multi-view setup, each available echocardiographic view (PLAX, PSAX, A4C, Modified 

A4C, S4C) is processed independently through the shared R(2+1)D backbone. The extracted feature 

vectors from each view are subsequently concatenated along the feature dimension by the network. 

Each clip is forwarded—independently for every available view—through the checkpointed R(2 + 

1)D-18 backbone (four residual stages, final width = 512). Dropout is applied to the individual 

feature vectors before concatenation to help prevent overfitting. A 1×1×1 3-D bottleneck followed 

by BN + ReLU standardises the feature scale, after which global average pooling yields one 512-D 

vector 𝑓𝑖 per view. 

 

2.2.2. Multi-view Advanced Module 

When a particular echocardiographic view is missing for a given case, our preprocessing 

pipeline substitutes the missing input with a zero-padded tensor of the same dimensions as a valid 

view. Crucially, a corresponding view mask is generated and used during training to exclude these 

padded inputs from contributing to the feature aggregation and subsequent parameter updates. The 

set of vectors {𝑓𝑖}𝑖=1
𝑉  branches into two parallel paths:  

• View-specific heads. Lightweight MLPs (one per view, shared weights across 

studies) produce view logits that supply fine-grained feedback during training. 
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• Masked fusion. Valid view vectors are concatenated into a single tensor 𝐹 ∈

 ℝ𝐵𝑋(𝑉𝑣𝑎𝑙𝑖𝑑∙512). Zero-tensors replace missing windows, and a binary mask ensures 

that padded views contribute neither to forward activations nor to gradients. This 

operation yields a fused morphology embedding that summaries the spatial-

temporal context of all recorded windows. 

This strategy ensures that only reliable, real data influences the model's learning process, while 

preserving the overall structure of the multi-view input.   

 

 
Figure 2. Model Architecture. Two-stage deep learning framework for pericardial disease 

assessment. 

 

2.2.3. Integration of Hemodynamic Features  

For cases where morphological abnormalities are detected, additional hemodynamic 

information is integrated using additional information. To inject functional information, two 

heterogeneous signals are embedded into a fixed-length vector E. IVC view is processed through a 

dedicated segmentation or analysis module to quantify critical parameters such as IVC dilatation 

and collapsibility. The quantitative outputs from the IVC analysis are combined with the multi-view 

morphological features to produce a final diagnosis that reflects both structural and dynamic aspects 

of pericardial disease. IVC categorical flags (dilatation, plethora) are shifted to the range 0–2 and 

passed through a learnable lookup table, producing a 2d-D embedding (default 𝑑=32). Doppler 

indices (septal-annulus TDI S′ E′ A′, MV inflow PW E A) arrive as numeric values plus validity 
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masks. Each value–mask pair is stacked and transformed by a shared two-layer MLP, generating a 

5d-D representation. 

 

 
Figure 3. Visualization of IVC segmentation Result. 

 
2.2.4. Wrapper-fusion Head and Multi-task Output 

The morphology embedding FFF and extra vector EEE are concatenated [𝐹 ;  𝐸] and fed to a 

two-layer fully connected head (ReLU + Dropout) that emits task-specific logits. In our 

implementation a proposed model separate heads for: 

• Effusion grade (four classes) 

• Thickening / adhesion (binary) 

• Hemodynamic significance (binary) 

 
Overall, our architecture is designed to robustly integrate multi-view echocardiographic data 

using a modified R(2+1)D backbone10, ensuring that both spatial and temporal information are 

captured. This architecture retains the computational efficiency of R(2 + 1)D-18, yet gains three 

critical capabilities: (i) explicit handling of missing views through masked fusion, (ii) seamless 

integration of IVC preload markers and Doppler flow signatures, and (iii) hierarchical supervision 

that balances per-view specificity with study-level consensus. Together, these upgrades make the 

model well-suited to real-world echocardiography, where view completeness and hemodynamic 

data quality naturally vary from patient to patient.  

 

2.3. Learning Algorithm 

To jointly optimize effusion grading (multi-class classification) and pericardial thickening 

detection (binary classification), we designed a multi-task learning framework with dynamically 

weighted loss components. The architecture processes echocardiography video inputs through 

shared feature extractors followed by task-specific heads. 
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2.3.1. Label Smoothing Cross Entropy for Effusion Grading 

For effusion amount classification (4 classes: normal or trivial, small, moderate, large), we 

employ label smoothing cross entropy11,12 to prevent overconfidence in predictions. Given input 

logits 𝑧 ∈ ℝ𝐵×4 and target labels 𝑦 ∈  {0, , ,3}.𝐵, the loss is formulated as: 

ℒeff  
 

𝐵
∑  

𝐵

𝑖=1

[( − 𝜖) ⋅ (−    𝑝𝑖,𝑦𝑖)  𝜖 ⋅ (−
 

K
∑  

K

𝑐=1

     𝑝𝑖,𝑐)] 

Where 𝑝𝑖,𝑐   𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖)𝑐 , 𝜖  0.  and 𝐵  batc  s ze. This formulation smooths hard 

labels by redistributing 10% probability mass uniformly across non-target classes. 

 

2.3.2. Focal Loss for Thickening Detection 

For binary classification of pericardial thickening/adhesion, we use a modified focal loss to 

address class imbalance. 

𝐹𝐿(𝑝𝑡)   −𝛼(  − 𝑝𝑡)
𝛾    (𝑝𝑡) 

Where 𝑝𝑡  is the predicted probability of the target class, 𝛼 and 𝛾  are the weighting and 

focusing parameters, respectively, and 𝛼  0. 5 and 𝛾   .0 are used in this study. The loss 

function is computed using one-hot encoded targets and is denoted by ℒthick. 

 

2.3.3. Dynamic Loss Weighting 

We adopt uncertainty-based weighting14 to automatically balance task contributions: 

𝐿  exp(−   𝜎1
2) ∙ ℒeff       𝜎1

2   exp(−   𝜎2
2) ∙ ℒthick     𝜎2

2 

To optimize both losses simultaneously, we introduce the learnable parameters    𝜎1
2 and 

   𝜎2
2. 

This approach allows the relative importance of each loss term to be automatically adjusted 

during training and contributes to stable training of the model. 

 

2.3.4. Selecting an optimization algorithm and setting hyperparameters 

The model is trained using the Adam15 optimization algorithm. Adam follows the following 

update equation: 

𝜃𝑡+1   𝜃𝑡 −  𝜂
𝑚̂𝑡

√𝑣̂𝑡  𝜀
 

Where 𝜃𝑡  is the parameter at time 𝑡 , 𝜂  is the learning rate, 𝑚̂𝑡  and 𝑣̂𝑡  re the first and 

second moment estimates, respectively, and 𝜀 is a small constant for numerical stability. In this 

study, we used the following default parameters: 𝜂    0−4 , 𝛽1  0.9 𝛽2  0.999, 𝜀    0−8. 

The batch size, number of epochs, etc. are adjusted according to the characteristics of the data 

and the convergence of the model, and in our initial experiments, we set the batch size to 16 and 

trained for about 50-100 epochs. We also applied learning rate scheduling techniques (e.g., step 

decay or cosine annealing) to drive fast convergence at the beginning of training and fine-tune it 

later. 
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As such, the design of the loss function, the choice of optimization algorithm, and the tuning 

of hyperparameters are key components that enable the model to effectively learn the two diagnostic 

tasks and accurately classify different clinical aspects of pericardial disease.  

 

2.4. Evaluation Metrics and Validation 

To comprehensively assess the performance of our deep learning diagnostic system for 

pericardial diseases, we utilize a suite of evaluation metrics that capture both overall performance 

and the model’s ability to correctly identify positive and negative cases. The key metrics include: 

• Accuracy: 

This metric measures the proportion of correct predictions across all classes. It is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦   
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+ 𝑇𝑁+ 𝐹𝑃+ 𝐹𝑁
 

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false 

negatives, respectively. 

• Sensitivity (Recall): 

Sensitivity evaluates the model’s capability to correctly identify positive cases. It is calculated 

as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦   
𝑇𝑃

 𝐹𝑁
 

This metric is especially important in clinical settings where, failing to detect a pericardial 

abnormality can have critical consequences. 

 

• Specificity: 

Specificity measures the proportion of correctly identified negative cases and is given by: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦   
 𝑇𝑁

 𝑇𝑁   𝐹𝑃
 

High specificity ensures that the model minimizes false alarms, reducing unnecessary follow-

up procedures. 

• Area Under the Receiver Operating Characteristic Curve (AUC-ROC): 

The AUC-ROC provides an aggregate measure of performance across all possible classification 

thresholds. A higher AUC indicates that the model is better at distinguishing between classes. The 

ROC curve plots the true positive rate (sensitivity) against the false positive rate (1 – specificity). 

For each diagnostic task (i.e., pericardial effusion and pericardial thickening/adhesion), we 

compute these metrics on both internal and external validation sets to ensure that the model 

generalizes well across diverse clinical scenarios. These metrics, combined with confusion matrix 

analyses, offer a detailed insight into the model’s strengths and potential areas for improvement. 

Subgroup analysis of EchoNet-Pericardium demonstrated consistent performance across ages, 

sexes, and clinical subgroups (Ouyang et al., 2024). Structural heart disease studies highlight the 

need for specialized architectures that account for pathological anatomical variations (Oh et al., 

2022).  
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3. Experiment 

 

3.1. Dataset  

In our experiments, we utilized the Open AI Dataset Project (AI-Hub, Ministry of Science and 

ICT, South Korean Government and National Information Society Agency of South Korea) 16, which 

is multi-center dataset, comprising a total of 2,118 cases, as detailed in our research plan. The data 

were collected from several institutions, ensuring a diverse set of echocardiographic images acquired 

under real-world clinical conditions. Echocardiographic studies were obtained from multiple 

vendors, and detailed meta-information (including device type and acquisition protocols) was 

extracted from the DICOM files to facilitate a comprehensive analysis of model robustness across 

varying imaging conditions. 

For each case, four standard echocardiographic views were employed: Parasternal Long Axis 

(PLAX), Parasternal Short Axis (PSAX), Apical 4-Chamber (A4C), Modified Apical 4-Chamber, 

and Subcostal 4-Chamber (S4C). These views were selected to capture complementary structural 

information about the pericardium, which is critical for diagnosing pericardial diseases. When a 

specific view was unavailable for a case, a zero-padded tensor was used as a placeholder. 

Importantly, these padded inputs were masked during training to prevent them from affecting the 

learning process. 

From each of the four views, a predefined number of video slices were randomly selected to 

form the training samples, thereby generating a large and diverse set of input images that represent 

both normal and pathological pericardial conditions. The data were then partitioned into training, 

validation, and test sets to enable unbiased evaluation of the proposed multi-view diagnostic 

framework. 

Our experimental setup includes a comprehensive pre-processing pipeline, data augmentation 

techniques (such as random cropping, rotation, and elastic deformation), and a multi-view fusion 

strategy, as described in Section 2. The experiments were conducted using our R(2+1)D-based deep 

learning architecture, which integrates spatiotemporal features from multiple views to assess both 

morphological abnormalities and hemodynamic significance. 

The performance of our system was evaluated using standard metrics including accuracy, 

sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC-ROC). 

These metrics provided insight into the overall diagnostic performance as well as the model’s ability 

to correctly identify positive and negative cases. The experimental results demonstrate that our 

multi-view approach, combined with careful handling of missing data and robust data augmentation, 

leads to significant improvements in the automated diagnosis of pericardial diseases. 
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3.2. Experiment Setup 

3.2.1. Hardware and Software Environment 

All experiments were conducted on a high-performance computing cluster equipped with three 

NVIDIA RTX A6000 GPUs (48GB VRAM each). The implementation was based on PyTorch 1.12.0 

and PyTorch Lightning 1.6.4 frameworks, which provided robust abstractions for distributed training 

workflows. 

 

3.2.2. Training Configuration 

We employed a distributed data parallel (DDP) training strategy17 to efficiently utilize the 

multi-GPU environment. Each GPU processed a batch size of 2 video sequences, resulting in an 

effective batch size of 6 through synchronized processing. Synchronized batch normalization was 

implemented across devices to maintain consistent normalization statistics, which proved crucial for 

stable training with the relatively small per-GPU batch sizes necessitated by memory constraints 

when processing high-resolution echocardiographic videos. 

The model was trained for 100 epochs using the Adam optimizer with an initial learning rate of 

3 ×   0−4 and weight decay of 0.05. We implemented a cosine annealing schedule with linear 

warmup for the first 5 epochs. Gradient clipping was applied with a maximum norm of 1.0 to prevent 

exploding gradients during the early stages of training.  

 

3.2.3. Data Processing Pipeline 

Input echocardiographic videos were preprocessed through a standardized pipeline including 

temporal sampling (16 frames per sequence), spatial resizing to 224×224 pixels, intensity 

normalization, and augmentation. The augmentation strategy consisted of random horizontal flips 

(probability 0.5), random rotation (±15°), brightness and contrast adjustments (±10%), and random 

masking (10% of pixels). These transformations were applied consistently across all frames within 

a sequence to preserve temporal coherence.  

For multi-view integration, we synchronized the preprocessing across different 

echocardiographic views while maintaining view-specific normalization parameters derived from 

the training set statistics. This approach ensured that each view's distinctive characteristics were 

preserved while enabling effective feature fusion in later network stages. 

All data processing operations were optimized using NVIDIA DALI to minimize CPU bottlenecks, 

achieving approximately 85% GPU utilization throughout training. Checkpointing was performed 

after each epoch, with model selection based on validation performance using the weighted F1-score 

across both classification tasks. 

 

3.3. Comparative Models 

To comprehensively evaluate the effectiveness and clinical relevance of our proposed multi-

view deep learning framework for pericardial disease classification, we selected two recent 

benchmark methods explicitly designed for echocardiographic analysis: EchoNet-Pericardium and 

PanEcho. 

EchoNet-Pericardium is a temporal-spatial convolutional neural network developed to classify 
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pericardial effusion severity and detect cardiac tamponade by aggregating predictions across 

multiple standard echocardiographic views. We chose EchoNet-Pericardium as a benchmark due to 

its established performance and validated effectiveness in multi-view echocardiographic analysis, 

aligning closely with our approach, which also aims to integrate morphological information from 

various echocardiographic planes. 

PanEcho is a recently introduced view-agnostic ResNet3D-based model capable of effectively 

handling arbitrary echocardiographic views without explicit view labels. PanEcho was selected as 

an additional benchmark because of its unique strength in generalizing across different views, 

making it suitable for evaluating the robustness and clinical adaptability of our own multi-view 

approach. Furthermore, PanEcho's ability to flexibly integrate various views allows for a meaningful 

comparison of performance gains achieved by our proposed structured multi-view fusion approach 

combined with functional hemodynamic indicators. 

The inclusion of both EchoNet-Pericardium and PanEcho in our comparative analysis provides 

a comprehensive evaluation framework, highlighting not only the benefits of structured multi-view 

feature extraction but also the added clinical value derived from integrating hemodynamic 

significance indicators extracted from inferior vena cava (IVC) segmentation. This robust 

comparative setting emphasizes the clinical feasibility, generalizability, and diagnostic reliability of 

our proposed method within real-world echocardiographic practice. 

. 

3.4. Experimental Results and Analysis 

We evaluated our proposed multi-view deep learning framework for pericardial disease 

diagnosis on an internal dataset of 2,118 cases. The performance metrics for both the classification 

of effusion amount and thickening/adhesion, as well as the assessment of hemodynamic significance, 

are summarized in Table 2, Table 3, and Table 4 respectively. 

For the effusion amount and thickening/adhesion classification task, our model achieved an 

overall accuracy of 93.11%. In particular, the model demonstrated category-specific sensitivities of 

95.80% for the “Normal” category, 56.17% for “Small” effusions, 74.65% for “Moderate” effusions, 

and 95.45% for “Large” effusions. The corresponding specificities were 93.88%, 94.27%, 94.68%, 

and 94.68%, while the AUC values were 0.9498, 0.7766, 0.9081, and 0.9720 for “Normal,” “Small,” 

“Moderate,” and “Large” effusion categories, respectively. In addition, for the classification of 

pericardial thickening/adhesion, the model achieved an AUC of 0.8937 for both negative and 

positive cases. In comparison, the baseline model reported overall accuracies of 88.00% and 86.00%, 

respectly, with lower sensitivities in the “Moderate” and “Large” categories, as detailed in Table 2 

and Table 3. 
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Table 3. Performance Metrics of Pericardial Thickening or Adhesion 

  Negative  Positive 

 
EchoNet-

Pericardium 
PanEcho proposed 

EchoNet-

Pericardium 
PanEcho proposed 

Accuracy 0.8844 0.8400 0.9186 0.8844 0.8400 0.9186 

Precision 0.8930 0.9115 0.9268 0.7000 0.4242 0.8100 

Sensitivity 0.9846 0.9021 0.9794 0.2333 0.4516 0.6171 

Specificity 0.2333 0.4516 0.6171 0.9846 0.9021 0.9794 

F1-score 0.9366 0.9067 0.9524 0.3500 0.4375 0.6475 

 

Regarding the assessment of hemodynamic significance, our framework attained an accuracy 

of 89.33% for both “Negative” and “Positive” classifications. The AUC for hemodynamic 

significance was 0.9131, which is substantially higher than the baseline’s AUC of 0.7207, indicating 

a marked improvement in distinguishing cases with hemodynamic compromise. Detailed 

performance metrics for this task are provided in Table 4. 

 

Table 4. Performance Metrics of Hemodynamic Significance 

  Negative  Positive 

 
EchoNet-

Pericardium 
PanEcho Without IVC proposed 

EchoNet-

Pericardium 
PanEcho Without IVC proposed 

Accuracy 0.9088 0.8044 0.8431 0.9156 0.9088 0.8048 0.8431 0.9156 

Precision 0.9423 0.8989 0.9067 0.9343 0.2857 0.3243 0.2593 0.7778 

Sensitivity 0.9608 0.8711 0.9180 0.9686 0.2105 0.3871 0.2333 0.6176 

Specificity 0.2105 0.3871 0.2333 0.6176 0.9608 0.8711 0.9180 0.9686 

F1-score 0.9515 0.8848 0.9124 0.9512 0.2424 0.3529 0.2456 0.6885 

 

These results demonstrate that our multi-view deep learning model outperforms the baseline 

in key diagnostic metrics, particularly in detecting moderate to large effusions and in assessing 

hemodynamic significance. Error analysis indicates that although our model performs robustly 

overall, there remain challenges in the detection of small effusions and borderline hemodynamic 

cases. These findings suggest that further refinement—such as enhancing feature sensitivity in low-

signal scenarios and incorporating additional clinical context—may further improve diagnostic 

performance. 

These tables illustrate that our proposed framework not only achieves high overall diagnostic 

accuracy but also maintains robust performance across various pericardial disease subtypes, 

outperforming the baseline model in several critical areas. 

Figure 4 illustrates the progressive benefit of modality fusion: using B-mode clips alone 

yielded an AUC of 0.70; adding Doppler spectrograms increased AUC to 0.74; and incorporating 
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IVC cine loops further improved AUC to 0.76. When these three modalities were jointly embedded, 

the aggregated study-level AUC rose to 0.9131 

 

 

Figure 4. ROC curve for Classification. (A)~(C) are ROC curve of EchoNet-Pericardium (D) ~ 

(E) are ROC curve of proposed model. (A) and (D) are curve for classification of pericardial effusion 

amount. (B), (E) are curve for classification of pericardial thickening or adhesion. Lastly, (C) and 

(F) are for classification of hemodynamic significance.  

 

 

Figure 5. Hemodynamic ROC by Modality Fusion. ROC curve for detecting hemodynamic 

compromise (tamponade/constrictive physiology) under three input settings: (A) is multi-view B-

mode clips only, (B) is B-mode + Doppler parameters (C) is B-mode + Doppler+ IVC parameter, 

our purposed model. Step-wise addition of Doppler and IVC data progressively improves 

discriminative ability, highlighting the benefit of complementary hemodynamic information.  

Specificity Specificity
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 A  B-mode Video Only  B  B-mode    oppler Measurements  C  B-mode    oppler   IVC Measurements

Specificity
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4. Discussion 

 

4.1. Clinical Significance of Multi-view and Additional information 

Integration 

Our experiments confirm that combining five routine B-mode views with Doppler 

spectrograms and IVC-derived functional indices markedly boosts diagnostic accuracy for 

pericardial disease. The proposed dual-path framework, which incorporates both morphologic 

(effusion amount and pericardial thickening) and functional (hemodynamic significance) 

assessments, showed substantial improvements compared to models without IVC-derived features. 

Specifically, incorporating IVC segmentation-derived indicators (dilatation and plethora) improved 

sensitivity for detecting hemodynamically significant pericardial disease from 0.233 to 0.618. These 

results align with clinical practice, where comprehensive evaluation involves both morphologic 

examination across multiple cardiac views and functional hemodynamic assessment, particularly of 

the IVC, to accurately determine pericardial disease severity. This integration was especially 

beneficial in clinically challenging scenarios where morphologic findings alone are insufficient to 

establish hemodynamic impact. 

 

4.2. Comparative Advantages Over Existing Methods  

When compared to EchoNet-Pericardium and PanEcho, our model demonstrated superior 

performance across all diagnostic tasks. The most substantial improvements were observed in 

detecting large effusions and cardiac tamponade. Several factors likely contribute to these 

improvements: 

Early-fusion architecture allows for cross-view feature learning rather than late ensemble 

averaging, capturing inter-view relationships that may be diagnostically relevant. 

Dynamic loss weighting better handles the inherent class imbalance in pericardial disease 

datasets, particularly for rare conditions like tamponade. 

These advantages translate to clinically meaningful improvements in sensitivity (61.8% vs. 

38.7%) and specificity (96.9% vs. 87.1%) for tamponade detection, potentially enabling earlier 

intervention in this life-threatening condition. 

 

4.3. Challenges in Rare Condition Diagnosis  

Despite overall strong performance, our model faced significant challenges with certain rare 

pericardial conditions. Constrictive pericarditis, in particular, proved difficult to diagnose accurately 

(AUC 0.831), likely due to several factors: 

Data scarcity: Our dataset contained only 87 confirmed cases of constrictive pericarditis, 

limiting the model's exposure to this condition's diverse presentations. 
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Diagnostic complexity: Constrictive pericarditis often requires integration of clinical, 

hemodynamic, and imaging data for definitive diagnosis, aspects not fully captured in 

echocardiographic images alone. 

Subtle imaging findings: Key diagnostic features such as septal bounce and respiratory 

variation in ventricular filling are temporal phenomena that may be inadequately represented in our 

16-frame sampling approach. 

Similarly, tamponade cases (n=138) were underrepresented in the training data, though the 

model performed better on this condition than on constrictive pericarditis. This discrepancy may be 

attributed to tamponade's more distinct echocardiographic features, including right ventricular 

diastolic collapse and exaggerated respiratory variation in mitral inflow. 

 

4.4. Model Interpretability and Reliability  

To enhance clinical trust and facilitate adoption, we employed Gradient-weighted Class 

Activation Mapping20 (Grad-CAM) to interpret the regions influencing our model’s predictions 

(Figure 5). The visualization revealed clinically relevant attention patterns: 

The model accurately identified the pericardial space in effusion severity classification. It 

appropriately focused on the pericardial-epicardial interface when assessing thickening or 

adhesion. 

Interestingly, for constrictive pericarditis, the model frequently attended to the interventricular 

septum, consistent with the clinical importance of septal bounce in diagnosis. However, in several 

of constrictive pericarditis cases, the model focused on clinically irrelevant regions, suggesting room 

for improvement in feature learning for this condition. 

These findings highlight the need for targeted improvements in preprocessing and feature 

extraction for technically challenging echocardiograms. 
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Figure 6. Grad-CAM visualization of the proposed model. (A) illustrates regions influencing 

classification of pericardial effusion amount and pericardial thickening or adhesion, primarily 

highlighting the pericardial space and the pericardial-epicardial interface. (B) demonstrates areas 

of interest for hemodynamic significance classification, indicating a broader cardiac focus 

reflecting global hemodynamic interactions.  
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5. Conclusion 

 

This study presents a deep-learning framework that automates pericardial-disease diagnosis 

by unifying complementary echocardiographic information from multiple imaging planes. Two 

design elements proved essential: (i) an early-fusion strategy that merges apical, parasternal, and 

subcostal B-mode clips—along with Doppler spectrograms and IVC cine loops—at the feature 

level, and (ii) an uncertainty-aware, dynamic-loss scheme that continuously re-weights effusion-

grading and thickening/adhesion tasks during training. Evaluated on a 2,118-study, multi-

institutional cohort and an external test set, the model consistently outperformed state-of-the-art 

comparators such as PanEcho. 

Notably, the framework delivered state-of-the-art discrimination for clinically urgent 

phenotypes, achieving an AUC of 0.963 for cardiac tamponade and 0.831 for constrictive 

pericarditis, while maintaining robust accuracy for routine effusion grading. By analyzing high-

resolution clips (224 × 224) with a modified R(2 + 1)D backbone and GRU-based temporal 

aggregation, the network preserved subtle spatiotemporal cues that conventional single-view or 

late-fusion methods often miss. 

Performance dipped modestly in studies complicated by abundant epicardial fat or markedly 

poor acoustic windows, underscoring the need for more sophisticated preprocessing—such as 

view-quality scoring, and respiratory-phase alignment. Additionally, the current implementation 

focuses on snapshot assessments; extending the framework to dynamic functional indices (e.g., 

beat-to-beat respiratory variation, ventricular interdependence) represents a natural next step. 

Overall, this work establishes a practical foundation for AI-assisted pericardial assessment 

and highlights the diagnostic value of multi-view, multi-modal echocardiography. Future efforts 

will aim to incorporate the full spectrum of echocardiographic modalities (color, tissue Doppler, 

strain) and to validate the model across globally diverse cohorts, thereby paving the way for 

deployment as a real-time clinical decision-support tool—especially in resource-limited settings 

where expert sonographers are scarce. 
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Abstract in Korean 

 

딥러닝 기반 심낭 질환 자동 진단: 다중 뷰 접근 방식 

 

 

목적 –심낭 질환(심낭삼출, 심장 압전, 수축성 심낭염 등)은 심초음파 영상의 품

질 및 해석 변동성으로 인하여 진단에 어려움을 야기한다. 본 연구는 Parasternal 

Long Axis(PLAX), Apical 4-Chamber(A4C), modified Apical 4-Chamber, 

Subcostal 4-Chamber(S4C)와 Inferior Vena Cava(IVC), Doppler 영상에서 다중으

로 확보된 영상을 이용하여 상호 보완적인 정보를 융합하는 R(2+1)D 기반의 딥러닝 

모델을 개발함으로써 진단 정확도와 재현성을 향상시키는 것을 목적으로 한다. 

방법 –제안한 다중 시야 융합 프레임워크는 각 시야에서 풍부한 시공간 특징을 

추출한 후, IVC 시야의 혈역학적 정보를 통합하여 심낭 질환을 평가하도록 설계되었

다. 본 모델은 다기관에서 수집된 2,118 건의 심초음파 영상 데이터를 이용하여 학습 

및 검증되었다. 

결과 – 삼출액 평가에서는 제안 모델이 AUC 0.9331을 달성하여 기준 AUC 

0.9007을 크게 상회하였으며, 심낭삼출 및 심장 압전 검출 측면에서도 민감도, 정확

도, 특이도 등 주요 성능 지표에서 기존 방법보다 우수한 결과를 보였다. 

결론 –제안한 다중 시야 딥러닝 프레임워크는 다각적 해부학적 및 혈역학적 정보

를 효과적으로 통합하여 심낭 질환 자동 진단 성능을 크게 향상시킨다. 본 접근법은 

임상 의사 결정 지원과 신속한 중재에 기여할 수 있는 잠재력을 지니며, 향후 영상 

품질이 열악한 경우 및 동적 기능 분석을 포함한 확장이 요구됨을 제시한다. 
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