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ABSTRACT

Attention-based canonical microcircuit model for spiking neural
network

Selective attention allows organisms to prioritize goal-relevant stimuli under
ambiguity. Inspired by neuromodulatory mechanisms—especially cholinergic
modulation—we propose a biologically grounded attention mechanism for spiking neural
networks (SNNs). Our model dynamically regulates neuronal excitability by modulating
firing thresholds using task-driven attention signals.

The network consists of three hidden layers of two-compartment neurons and receives
top-down attention cues that guide focus toward either the front or back digit in
overlapped MNIST images. Training was performed in two stages: pretraining on
standard MNIST digits without attention, and fine-tuning with attention cues on
overlapped digits.

Our results show that the attention model significantly outperformed baseline and
control models, reducing reversed prediction errors and restoring clean internal
representations of target digits. Attention effects were strongest in the deepest hidden
layer (Layer 3), which also showed the most efficient learning and energy optimization.
Additional analysis revealed that attention operated via both excitation and disinhibition,
and that spatial attention was accurately allocated to task-relevant regions.

This study demonstrates the utility of neuromodulatory attention in SNNs and offers a

biologically plausible approach for task-dependent selective processing.

Key words: predictive coding, spiking neural network, attention, multi-compartment neurons,
classification

v



1. Introduction

Selective attention enables organisms to prioritize goal-relevant stimuli while suppressing
irrelevant information, particularly under conditions of sensory ambiguity!. Extensive
research has explored this top-down mechanism, demonstrating that higher-order cognitive
processes can modulate neuronal excitability and exert gain control to enhance sensitivity to
task-relevant inputs '3,

Among the various biological mechanisms underlying attention, neuromodulation plays a
particularly important role*~8. Neuromodulators influence ion channel behavior, synaptic
efficacy, and neurotransmitter release through diverse pathways, thereby regulating neuronal
excitability and shaping the nonlinear dynamics of membrane and synaptic responses*°-11.

In this study, we implemented an attention mechanism in a spiking neural network (SNN)
that regulates neuronal excitability through neuromodulation. We investigated whether this
mechanism enables the network to exhibit appropriate selective attention in response to task-
relevant cue signals under ambiguous visual input conditions. Spiking Neural Networks have
gained traction in both neuroscience and machine learning due to their energy efficiency and
biological plausibility. While recent studies have incorporated attention into SNNs—often
inspired by transformer-based architectures—few have explicitly modeled top-down selective
attention through biologically grounded neuromodulatory processes that directly modulate
the excitability of individual neurons >3,

We present a hierarchical, multi-layer SNN composed of two-compartment neurons, in
which attention is mediated through a slow-acting neuromodulatory signal introduced to
the soma compartment. This modulation adjusts the neuron’s baseline membrane potential,

thereby dynamically controlling its excitability %17

. This design enables a biologically
plausible form of top-down attention and allows the network to flexibly prioritize relevant
features based on contextual information.

The canonical microcircuit model explicitly distinguishes between excitatory and inhibitory
neurons and defines a fundamental functional unit in the hierarchical organization of the
cortex '%19 Our approach adopts a simplified yet effective architecture drawn from this.
Rather than separating excitatory and inhibitory neurons, we allow prediction and error
correction to occur within a single neuron. By employing two-compartment neurons, our
model integrates bottom-up sensory inputs and top-down contextual signals across layers,
enabling the dynamic reduction of prediction error in a biologically inspired manner.

To evaluate the effectiveness of the proposed model, we used input stimuli consisting

of overlapping digits, creating sensory ambiguity. The network successfully learned to



disambiguate and attend to either the front or back digit depending on an external task cue.
Notably, the neuromodulatory mechanism led to measurable changes in firing dynamics,
validating its influence on neuronal activity. Moreover, the attentional effects were most
pronounced in the deepest hidden layers, aligning with biological evidence that top-down
modulation typically emerges in higher-order cortical regions rather than early sensory areas.



2. Materials and methods

2.1. Neuron dynamics and attention model architecture
2.1.1. Network architecture

Our network model adopts a hierarchical architecture in which each hidden layer is
connected through both feedforward and feedback pathways (Figure 1A). Each layer repre-
sents a distinct cortical region and communicates bidirectionally across layers to exchange
bottom-up and top-down input.

The input layer is fully connected to the first hidden layer, delivering forward input in
the form of spikes derived from image data. Using rate-based encoding, the image pixel
intensities are encoded into spike trains over 50 time steps?’. This time-varying spike
representation mimics biological neuronal communication, where information is conveyed
via discrete spikes rather than continuous-valued signals (Figure 1C, 1D.

The first, second, and third hidden layers contain 600, 500, and 500 neurons, respectively.
All hidden layers are interconnected through bidirectional feedforward and feedback con-
nections. The output layer comprises 10 non-spiking point neurons, corresponding to the
number of target classes. It is fully connected to the highest hidden layer (layer 3), receiving
feedforward input from it while sending top-down feedback signals in return. As the final
stage for decision-making, the output prediction is determined by the neuron with the highest
membrane potential.

In addition to the main network, we introduce attention signal neurons that modulate the
excitability of hidden neurons. These signal neurons project to each hidden layer through
trainable attention weights and are divided into two groups (5 neurons each), corresponding
to the ‘front” and ‘back’ task cues. They deliver task-specific signals that dynamically adjust
the baseline membrane potential of target neurons, thereby enhancing selective responses to
task-relevant features in the input.

The attention-modulated spiking activity of each hidden layer is propagated forward to
higher layers. Owing to the bidirectional architecture, these modulated signals also shape the
top-down feedback transmitted to lower layers. By adjusting neuronal excitability, the model
enables task-dependent attention to influence both feedforward and feedback pathways.
As the network is trained to minimize energy loss—defined as the discrepancy between
the apical and somatic membrane potentials—it learns to optimize synaptic weights while
incorporating the effects of attention modulation on neural dynamics.



2.1.2. Neuron dynamics

For the hidden layer neurons, we adopted two-compartment spiking neuron model. They
are composed of distinct somatic and dendritic compartments. The dendritic compartment
corresponds to the apical tuft, which receives top-down inputs from higher layers, while the
somatic compartment integrates bottom-up inputs from lower layers. This neuron model is
based on the architecture proposed by Zhang and Bohte?!, who demonstrated that predictive
coding behavior can emerge through energy optimization, without requiring explicit error
neurons or hard-wired circuits. In their framework, the two-compartment neurons minimize
an energy loss defined as the difference between the membrane potentials of the dendritic
and somatic compartments, thereby effectively reducing prediction error over time. Building
on this simple yet effective architecture, we incorporated a novel attention mechanism into
the model. This hierarchical structure allows the model to adopt top-down attention. The
following section describes the neuron dynamics used in our model.

The behavior of the hidden neurons follows the Adaptive Leaky-Integrate-and-Fire (ALIF)
model, which enhances the standard LIF neuron with adaptive firing mechanisms?2. The

membrane potential dynamics follow:

av'!.
d“al — al ZwFle+l (l)
t
stl,i _ Vsl,i FF ql—1 ! ! [
1 +ZWz‘j S5 (1) + fapicat (Vo i (1)) — bi(1)S; (2) + Otaimi(2) (2)
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Here, th’i and V!; denote the apical and somatic membrane potentials of neuron i in layer
[, with 7, and 1:_v’as their respective time constants. Si-“ is the spikes from the layer / + 1,
and W/ ? is the feedback weights from layer /+ 1 to /. Spiking input from the higher layer
comes into the apical dendritic part of each hidden neuron.

Spikes from the lower layer Si-’l is integrated into the somatic voltage with the feedforward
weights Wl-’; F from layer I — 1 to /. The function f;,c. determines how apical inputs modulate
somatic voltage, defined as:

1 1
fapical(x) = 5 <1+€_x _05> (3)

This function bounds the influence of apical input to the range [-0.25, 0.25]. The adaptive
firing threshold makes the neuron more difficult to fire after they activate and is defined as

bi(t) = binir + BMi(t) 4
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where b;,; = 0.1, B = 1.8, and n;(¢) is an adaptive term governed by:

dn} g
7’ pr— 5
” fudp, +8:(1) (5

This term increases upon spiking and decays over time, raising the firing threshold for
subsequent spikes. T,y ; is the time constant that sets the decay rate of T]il , and Sf (t) denotes
the spikes of neuron i.

0,;m;(t) denotes the attention effect for neuron i and the detailes are explained in the next
section.

As noted in Equation 2, the somatic membrane potential decays with the value of b;(7)
which reflects the adaptive effect, after the neuron spikes. A neuron emits a spike S;(¢) = 1
when the somatic membrane potential VS{i(t) exceeds its firing threshold.

The output neurons evolve according to:

dVI-OW Vout FF ol l
— = W™ S; 6
dt Tout Z ©
Here, V" is the membrane potential, and 7, is its decay constant. As the output neurons
are non-spiking, feedback to layer 3 is computed using the L2 norm of membrane potentials
of the output neurons over time.

2.1.3. Attentional modulation

Inspired by biological attentional modulation processes, we implemented an attention
mechanism by dynamically regulating the baseline membrane potential of hidden layer
neurons, adopting a,,m;(t) term to somatic voltage 2. This modulation enhances the
excitability of neurons associated with relevant features, while suppressing less informative
ones, thereby promoting selective and efficient information processing (Figure 1B).

In 2, the modulation effect m evolves over time according to:

dmﬁ att G
= E + Z WSS ( (7)
Here, m;(¢) is the attentional modulation signal for neuron i, driven by spike inputs SJG(I)
from attention signal neurons. The term 7., (30) controls the temporal decay of the mod-
ulation signal which has a larger value than 7, (15) and 7, (15). Wi‘}” denotes the trainable
synaptic weights projecting from signal neurons to hidden neurons. The influence of m;(t) is
determined by o, (we set Oy = 1.0).



We set m; to represent the regulation of ion flow through the ion channels, enhancing
the excitability of a neuron when it receives attention and lowering the activity of a neuron
when it receives suppression. We designed this attention mechanism to take an effect by
regulating baseline membrane potential of each neuron. When a neuron receives a strong
positive attention from the signal neurons, m;(t) increases, which in turn raises the baseline
membrane potential, thereby making the neuron easier to fire. Conversely, weak or negative
attention signals result in lower baseline membrane potential, making the neuron less likely
to fire.

2.2. Training and tasks
2.2.1. Model train

To train the model, we employed surrogate gradient learning using the Multi-Gaussian
method??, which enables gradient-based optimization for spiking neurons. Training was
performed using Forward Propagation Through Time (FPTT)?*, allowing online weight
updates every K time steps, with both task, energy, E-I ratio, and dynamic regularization
losses.

The loss function followed that defined in previous work2!:
Et = aclfﬁclf,t + (XE»CE,I + O‘EIEEI,t + areglcreg,t (8)

where oy = 1.0, ag = 0.05, og; = 0.01, and 0, = 1.0.
Here, L, is the negative log-likelihood classification loss. Lg; is the energy loss and
defined as:

1
Lg, = NZZ’V;JU) —V!i(1)] )
T

where N is the total number of hidden neurons. This term captures the average prediction
error, as the apical membrane potential V,, represents top-down predictions, while the somatic
membrane potential V; integrates bottom-up sensory evidence. Minimizing this discrepancy
enables the network to reduce prediction errors by focusing on task-relevant features in the
input.

Lgr, softly constrains the overall excitatory/inhibitory balance of the network, encouraging
approximately 20% of the weights to be negative. We approximated this ratio using a
smooth surrogate based on the sigmoid function. Given a weight vector w, we estimated the



proportion of negative weights as:
1 N
=—) o(—kw;
avg neg Ni:EI (—kw;)

where N is the number of weights, ¢ is the sigmoid function, and k is a steepness parameter
(set to 10%) to sharpen the transition around zero. The penalty was defined as the squared
error between this estimated negative ratio and the target value of 0.2:

L = scale - (avg_neg — 0.2)?

where we used scale = 5.
Lyeq 1s the dynamic regularization, for stabilizing learning and preventing overfitting.
We incorporated a dynamic L2-based regularization term that penalizes deviations from a

moving reference value:
1
Lregs = 5 2 (6:(1) = (1))

i
0;(t) is each trainable parameter at time ¢. O ;(r) is adaptively updated at each training
step using an exponential moving average of the current parameter values, along with a
momentum-like term to smooth fluctuations. This dynamic anchoring allows the model to
gradually shift away from the initial parameters while still regularizing excessive changes.

The regularization coefficient 04eq(f) decays over time to allow more flexible adaptation
in later training stages. We applied a cosine decay schedule to gradually reduce the influence
of the regularization term over training epochs. This approach allows the model to benefit
from strong regularization in the early stages while gradually relaxing constraints to facilitate
task-specific adaptation. The decay function is defined as:

Olpeg (1) = OC()'% (l—i-cos (7‘[%))

where 1 is the current training epoch, T is the total number of epochs, and ¢ is the initial
regularization coefficient. This schedule starts at &y = 1.0 and smoothly decays to zero as
training progresses. It helps maintain stability in early epochs while allowing more flexibility
in later stages.

2.2.2. Selective attention learning using overlapped digit inputs

To develop a model capable of prioritizing task-relevant components of the input, we
designed a classification task using overlapped handwritten digit images. We constructed an



overlapped MNIST dataset by superimposing two translucent digits—one positioned in front
and the other behind?>. We adjusted the transparency levels of the front and back digit to
68% and 38%, respectively. This setup was designed to create the simplest possible scenario
that requires selective attention, while ensuring that both digits remain visible without one
completely occluding the other.

The model is trained to selectively attend to the task-relevant digit among the two digits
presented in one image, based on a classification rule signal delivered by the attention signal
neurons. These attention signal neurons provide task-specific cues indicating whether the
model should attend to the front or back digit. If the attention mechanism functions as
intended and the attention weights are properly learned, the model is expected to adjust its
focus accordingly and prioritize the digit corresponding to the instructed classification rule.

Training was conducted in two phases: pretraining and fine-tuning (Figure 2). Both phases
used supervised learning with mini-batches (batch size = 200).

In the pretraining phase, the model was trained on standard single-digit MNIST images.
During this stage, the attention mechanism remained inactive—the attention weights were
frozen at their initial values. The model learned basic digit classification by updating only
the feedforward and feedback weights.

In the fine-tuning phase, the model was trained on the overlapped MNIST dataset, where
each image contained two superimposed digits. Here, the network learned to allocate
attention appropriately based on the target label (front or back). Attention signal neurons
generated Poisson spike trains indicating the task cue, delivering contextual signals to the
hidden layers. These signals modulated the baseline membrane potential of hidden neurons,
dynamically adjusting their excitability to enhance task-relevant information processing.
During this phase, attention weights were trained with a learning rate of 0.001, while the
remaining network parameters were updated at a reduced learning rate (0.5x%).

Both the pretraining and fine-tuning phases used 60,000 training and 10,000 test images.
During fine-tuning, the target digit (front or back) was randomly assigned on a per-sample
basis within each batch.

A full list of training parameters is provided in Table 1 and Table 2.

2.3. Model evaluation and analysis

2.3.1. Classification of overlapped MNIST images

To assess whether the model successfully learned to attend to the task-relevant digit and
perform accurate classification, we first evaluated its performance on the overlapped MNIST



Parameter Values

Hidden layer size 600, 500, 500

Number of attention signal neurons 10 (5 front, 5 back)

Input layer size 784

output layer size 10

Epochs 15 (pretrain), 25 (fine-tuning)
Total parameters (pretrain) 1,588,420

Total parameters (fine-tuning)

1,607,620 (all layers att), 1,594,420 (single L att)

Batch size 200

Input time step 50

Drop out 0.4 (pretrain), 0.3 (fine-tuning)
K step 10

Pretrain learning rate 1073

Fine-tuning learning rate 103 or5x 1074

Oy f 1

(075 0.05

Oreg 1

Table 1. Hyperparameter for training.

Parameter

Values

Attention sigmoid strength o 3

T, 15
T, 15
Tadp 20
Tatt 30
Tout 5

binit 0.1

Table 2. Hyperparameter for neuron dynamics. Initial values are listed in the table.



dataset. In addition to overall accuracy, we examined incorrect predictions to determine
whether the attention mechanism primarily reduced reversed errors—cases in which the
model incorrectly classified the distractor digit (e.g., predicting the front digit when the back
digit was the target). By comparing how frequently such reversed predictions occurred with
and without the attention mechanism, we aimed to determine whether attention effectively
guided the model toward the correct target digit.

2.3.2. Mechanisms of attention in the network

We then investigated how the attention mechanism operates within the network. To
evaluate whether excitability modulation was successfully implemented, we analyzed the
firing activity of hidden layer neurons. Specifically, we examined whether the spiking
patterns evoked by overlapped digit images with attention resembled those elicited by
standard single-digit images. This comparison allowed us to assess whether attention
restored clean representations of task-relevant digits under overlapping conditions.

We also explored how attention interacts with feedback connections by examining changes
in feedback signal patterns. To identify which layer receives attention most effectively, we
conducted ablation experiments in which attention signals were delivered exclusively to
either the first or third hidden layer (L1 or L3), and compared classification performance
across conditions.

2.3.3. Preservation of baseline classification ability

Finally, we evaluated whether the trained attention model retained its baseline ability to
classify single-digit images. Using the standard MNIST test dataset, we tested the model
with fixed synaptic weights and with attention signals turned off. This evaluation ensured
that attention training did not impair the model’s fundamental digit recognition performance.

10



A

Output layer

Hidden L3

Hidden L2

Hidden L1

Input layer

N

Y OPe®

\/\/< \,\/\)\,\/\

QVF B
WA 1t

NN

A Y ) N
L A A ) (\

\/\\/\\/\ &/\/\ 4

Attention gating
neurons

O
© o

_ Front

/\
v/
© ¢

N Back
A A 4

D

Attention
Excitability

Suppression
Excitability ¥

Overlapped

: Rate encoding
image

\ |
1 1 il ‘ \“| \M\
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dataset.
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Fig 2. Two training phases. The model undergoes two stages of supervised training to
learn selective attention and digit classification. (Left) In the pretraining phase, the model
is trained on standard MNIST images containing a single digit. During this stage, only
the feedforward and feedback weights are updated, while the attention mechanism remains
inactive. (Right) In the fine-tuning phase, the model is trained on overlapped MNIST images.
Attention signal neurons become active and provide task-specific cues (front or back). The
model learns to focus on the task-relevant digit by updating attention weights, while other
weights continue to be updated with a lower learning rate.
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3. Results

3.1. The model could selectively attend to the proper target of ambigu-
ous input

3.1.1. Classification performance and improvement of reversed prediciton in attention model

We first asses the model’s classification performance (Figure 3). During the pretraining
phase, the model achieved 96.99% classification accuracy after 15 epochs, on standard
black-and-white MNIST dataset which contains single digit per image (Figure 3A).

With this pretrained model, we compared the following three models for the fine-tuning
phase:

1. Attention model: The attention model presented in this work. Excitability of neurons
are modulated, attention signals are presented, and attention weights are properly
learned.

2. Random-attention model: Basic frame of the attention model is maintained and
attention weights are also learned, but the signal neurons fired randomly, independent
of the task cue.

3. Baseline model: No attention mechanism was used; neither signal inputs nor attention
were applied.

After fine-tuning phase, the baseline and random-attention attention models reached
57.76%, 57.99% of the best test accuracy respectively, and the attention model achieved
81.67% accuracy (Figure 3B. Compared to the pretrain accuracy, if attention is not applied,
the model accuracy drops drastically when overlapped images are presented.

We further examined the reason of incorrect prediction across models. In order to check if
attention model has mainly improved its accuracy by choosing the correct digit, we checked
how often the model had incorrect prediction is due to focusing on the opposite digit (reversed
prediction, e.g., choosing the back digit when the front digit was the target).

The result showed that the main reason for incorrect predictions was due to the reversed
prediction for random-attention model and the baseline model. During front-digit classifi-
cation, the ratio of total incorrect cases was 40.70+0.01% and 33.57+0.01%, and the total
reversed prediction ratio was 29.25+0.01% and 28.14+0.01% for the random-attention and

baseline model, respectively (Figure 3C). When the back digit was the target, the ratio of total

13
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Fig 3. Classification performance for overlapped MNIST dataset. Attention improves
recognition of proper target digit for current cue. (A) Test accuracy during pretrain. Normal
(un-overlapped) black and white MNIST dataset was given as input. In this phase, model
learns basic digit patterns. (B) Test accuracy during fine-tuning. Attention model is compared
with other two settings. Overlapped digit images are given as input. Red line indicates the
accuracy of attention model, light blue line indicates accuracy of random-attention model,
and gray line indicates accuracy of the baseline model (no attention mechanism implemented).
(C) Types of incorrect predictions for models, front label. (D) Types of incorrect predictions
for models, back label (C, D) Light blue bar indicates the rate of reversed prediction, dark
blue bar indicates the rate of incorrect predictions with not reversed predictions, and the mint
color bar is the rate of total incorrect predictions. The reversed prediction (prediction of the
opposite digit, e.g. predicting for the back digit when front one is the target) tends to be the
main cause of wrong predictions. Attention model significantly improves these errors.
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Attention model Baseline model
Relaxed Accuracy 88.84 £ 0.22% 91.62 + 0.49%
True Accuracy (Front digit) 86.94 +£0.15%  59.88 £ 1.96%
True Accuracy (Back digit) 66.63 + 0.55% 29.71 £ 1.03%

Table 3. Classification performance in a relaxed condition, regarding correct if the model
predicted either digit on front or back.

incorrect cases was 70.71£0.5% and 71.42+0.5%, and the ratio of reversed prediction was
59.19+0.02% and 65.99+0.01% for the random-attention and baseline model, respectively
(Figure 3D). Taken together, for front digit classification, the ratio of reversed predictions
among the total incorrect predictions was 71.87+0.76%, 83.81+0.96% for random-attention
and baseline models. For back digit classification, the ratio of reversed predictions among
the total incorrect predictions took upto 83.65+1.64%, 92.55+1.04% for random-attention
and baseline models.

In contrast, the attention model showed significant improvements on the reversed prediction
(Figure 3C, 3D). When the front digit was the target, the total reversed prediction ratio was
8.56+0.01% and when the back digit was the target, it was 11.57+0.02%.

3.1.2. Basic digit recognition ability in a relaxed condition

To validate the basic classification capability of the baseline model, we also tested them
in a relaxed condition where predicting either digit (front or back) was considered correct
(Table 3). This helped confirm that the poor performance in the standard setting was primarily
due to incorrect attention allocation, not a general failure to recognize digits. Baseline model
achieved 91.62 + 0.49% of relaxed accuracy, and the true accuracy for the front digit (when
front digit was the target and the model predicted for the front digit) was 59.88 + 1.96%.
True accuracy for the back digit was 29.71 + 1.03%. Attention model has a relatively lower
relaxed accuracy of 88.84 + 0.22%. But the model could predict the front digit correctly by
86.94 + 0.15%, and back digit by 66.63 £ 0.55%.

We next examined if the attention model could preserve its ability to classify single-digit
MNIST dataset. The model could predict with the accuracy of 97.02 + 0.09%, which is
similar to the pretrained state, indicating that its basic classification ability is not impaired.
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3.2. The model was able to generate internal representation of the
correct target input.

3.2.1. Attention model could generate representation of the target digit

We explored how the attention mechanism functions within the network by analyzing
neuronal firing in the hidden layer. To determine if excitability modulation was achieved, we
looked at whether spiking patterns from each layers matched in two settings—when standard
single-digit images are presented and when overlapping digit images are presented along
with attention.

We conducted representational similarity analysis (RSA) by computing cosign similarity
of the firing patterns of each layer between the two conditions. Figure 4A shows the
firing patterns of the attention model has a meaningful similarity between two conditions,
successfully generating internal representations of the target digit. The representational
similarity for the correct digits tended to get more distinct for deeper layer.

3.2.2. Attention operates with feedback connections

Additionally, we studied the interaction of attention with the feedback connections. When
we excluded the feedback signals coming to each hidden layer, the RSA matrices showed
less distinct similarity patterns (Figure 4B). In our network architecture, the attention-altered
firing patterns are delivered to the superior layers. Therefore, we questioned if it effects the
feedback signals, altering the feedback input received in each hidden layer. We assessed
changes in feedback signal patterns by calculating L2 norm difference of apical voltage (V)
patterns in two settings (Figure 4C).

First, we calculated difference between when attention is on and off. In both cases when
front digit is the target and the back digit is the target, V, patterns differed between when
attention is on and attention is off. This results show that attention has really changed how
hidden layers receive feedback signals. Second, we calculated difference between when
attention is on and when attention signals comes along with random noise. In this setting,
attention neurons fired indicating the correct sample, but at the same time, the opposite set of
the signal neurons also fired with smaller firing probabilities (e.g. when the front digit was
the answer, the front signal neurons mainly fired but the back signal neurons also generated
weak spike trains). V, patterns also differed in this setting, showing less difference than
when the patterns were compared with or without attention.
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Fig 4. Attention improves representational similarities by altering firing patterns and
feedback signals are altered by attention (A, B) Representational similarity matrices,
situation between when normal MNIST dataset is given and when overlapped MNIST dataset
is given with proper attention signals. All RSA are calculated with attention model which
has finished fine-tune training. (A) Attention and feedback signals. (B) Ablation of feedback
signals. (C) L2 norm difference of apical voltage patterns. Top: front digit target, Bottom:
back digit target. Mint color bars indicate the difference between when attention is on and
off. Purple bars indicate the difference between when attention is on and when attention
signals comes along with random noise.

17



3.3. The deepest layer was the most effective target of attention
3.3.1. Attention Weights Focus on Layer 3

We first examined how attention weights evolved during the fine-tuning phase. Figure 5
attention weight matrices of each layer across training epochs. As training progressed, the
connection patterns from the front and back signal neurons began to diverge, suggesting
that the model was learning to differentiate attention signals based on task demands. This
divergence was most pronounced in layer 3, the deepest hidden layer, indicating that it played
a central role in modulating neural activity according to the task cues. The distinct separation
in weight patterns suggests that layer 3 played a key role in task-specific modulation and
served as providing top-down attention signals to the shallower layers.

3.3.2. Layer-wise Impact of Attention on Neural Activity

We further investigated whether the impact of attention on neural firing patterns also
varied across layers. To do this, we compared hidden layer activity in the attention model
under two conditions: when the correct attention signal was provided versus when an
incorrect (reversed) attention signal was given. Figure 6A (right) presents the L2 norm of
the difference in firing patterns between these two conditions. For both front and back digit
tasks, the discrepancy increased progressively from layer 1 to layer 3, suggesting that deeper
layers were more strongly modulated by attention. We also examined the effect of noisy
attention signals—when the attention cue was randomly corrupted. As shown in Figure 6A
(left), although the difference between the correct and noisy conditions was smaller than in
the reversed condition, the same trend persisted: layer 3 consistently exhibited the largest
changes in firing patterns, indicating a greater sensitivity to attention signals.

In Figure 6B, we quantified the layer-wise difference in firing rates as a signed difference
between the attention-on and attention-off conditions. In both the false and noisy attention
cases, the deviation in firing rate became larger in deeper layers, again supporting the idea
that attention exerts a progressively stronger influence toward layer 3.

3.3.3. Layer 3 Attention Yields Most Efficient Learning

To determine which layer benefits most from attention, we conducted an ablation study
in which attention was applied exclusively to either layer 1 or layer 3. Figure 6C compares
the energy loss during fine-tuning for three models: one with attention applied to all hidden
layers, one with attention only to layer 3 (L3-attention model), and one with attention only
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Fig 7. Attention map. Attention via threshold modulation enables the model to selectively
focus on the task-relevant digit. The first row displays the input images. The second row
shows the raw attention maps. The third row overlays thresholded attention maps (> 0.3)
onto the inputs. The fourth row overlays the same maps with alpha=0.5 for visualization.
(A) Task requires attending to the front digit. (B) Task requires attending to the back digit.

to layer 1 (L1-attention model). The L3-attention model achieved the lowest final energy
loss, suggesting that directing attention to layer 3 yields the most efficient learning outcome.

3.4. Spatial Localization of Attention

To understand how attention was spatially distributed during fine-tuning, we visualized
the attention maps generated by the model. Figure 7 shows both the standalone attention
maps and the same maps overlaid on the corresponding input images.

The attention model effectively allocated its focus to the digit region relevant to the current
task label—either the front or back digit—demonstrating that the attentional modulation was
both spatially selective and task-dependent. Positive attention was concentrated on the target
digit while suppressing focus on irrelevant background areas.

One limitation we observed was a tendency for the model to focus disproportionately on
the front digit when it was a ‘1’, even in tasks where the back digit was the correct target.
Nevertheless, even in such cases, the model still assigned weak but meaningful attention to
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the correct digit and was able to make accurate predictions.
The attention maps were computed using the spike-firing-rate (SFR) method. See Appen-
dicies 3 for details.
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4. Discussion

In this study, we investigated how neuromodulatory principles—particularly inspired
by cholinergic attentional modulation—can be effectively integrated into a spiking neural
network (SNN) using dynamic threshold control. By implementing task-dependent attention
gating neurons, we enabled the model to adaptively regulate neuronal excitability across
hidden layers, leading to enhanced classification of ambiguous, overlapped visual stimuli.

4.1. Attention improves task-relevant representation under ambiguity

Our results show that the attention model significantly outperformed the baseline and
random-attention models in classifying overlapped digit images. Notably, the main source
of errors in non-attention models was the reversed prediction—choosing the distractor digit
instead of the task-relevant one. This pattern was drastically reduced in the attention model,
suggesting that the implemented attention mechanism effectively directed the model’s focus
to the appropriate digit, in line with the intended top-down cue. These findings support the
view that attentional modulation enables more accurate resolution of perceptual ambiguity
by biasing internal processing toward task-relevant features.

4.2. Attention shapes internal representations and feedback dynamics

We further observed that attentional modulation induced meaningful changes in neuronal
firing patterns across layers. Representational similarity analysis (RSA) demonstrated that
the attention model’s responses to overlapped inputs resembled those for clean, single-
digit inputs, particularly in deeper layers. This implies that attention helped the network
reconstruct or emphasize the target digit’s internal representation despite the presence of
distractors.

Additionally, we found that attention altered feedback signals transmitted via the apical
dendrites. Apical membrane potentials changed significantly depending on the attention
condition (on vs. off, or true vs. noisy signal), indicating that top-down feedback itself was
modulated by attention. This dynamic interaction between attention and feedback supports
the predictive coding framework, wherein top-down signals are shaped to reduce prediction
errors and refine perception.
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4.3. Layer 3 is the most effective site for attentional modulation

A layer-wise analysis revealed that attention exerted the strongest influence in the deepest
hidden layer (layer 3). Attention weight matrices showed the most prominent separation
between front and back gating signals in layer 3, and firing rate modulation due to attention
was also greatest in this layer. Furthermore, when attention was restricted to a single layer,
models with attention applied only to layer 3 achieved the lowest energy loss and better
performance than those with attention applied to earlier layers. This suggests that deeper
layers are more receptive to attentional signals and more capable of integrating them into
meaningful modulation of network activity.

This finding resonates with biological evidence suggesting that higher cortical areas (e.g.,
prefrontal cortex) play a central role in attention control by sending task-specific modulatory
signals to earlier sensory areas. In our model, layer 3 may serve a similar role by acting
as an internal “attention hub” that integrates task cues and distributes attentional influence
downstream through both feedforward and feedback pathways.

4.4. Limitations and future directions

While our attention model successfully improved classification under ambiguous con-
ditions, certain limitations remain. The model occasionally exhibited a bias toward more
salient digits, such as the digit ‘1’ when presented in the front, regardless of the task cue.
This suggests a possible imbalance in the saliency-driven bottom-up input that may com-
pete with top-down modulation. Addressing such biases may require integrating additional
mechanisms such as normalization, inhibitory control, or uncertainty-based attention scaling.

Moreover, although our attention mechanism mimics biological principles through dy-
namic threshold modulation, it does not yet incorporate more complex neuromodulatory
dynamics, such as context-sensitive gain control or interactions between multiple neurotrans-
mitter systems. Future work could explore more biologically grounded attention circuits, or
implement learning rules that adapt attention weights in a task-specific and energy-efficient
manner.

Finally, extending this model to naturalistic or sequential data, and evaluating generaliz-
ability beyond synthetic overlapping digits, would help assess the broader applicability of
the attention mechanism.
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5. Conclusion

This study proposed a biologically inspired attention mechanism for spiking neural net-
works (SNNs), implemented via dynamic modulation of neuronal firing thresholds. By
drawing on neuromodulatory principles—particularly those associated with cholinergic atten-
tional control—we designed a task-driven attention gating system that selectively regulated
the excitability of hidden neurons.

Through experiments using overlapped digit classification, we demonstrated that the atten-
tion model substantially outperformed baseline and random-attention models, particularly by
reducing errors caused by misdirected attention. The model exhibited improved focus on
the task-relevant digit and showed enhanced internal representations that closely resembled
clean inputs. Layer-wise analyses revealed that the deepest hidden layer (layer 3) served as
the most effective site for attention integration, showing the greatest modulation in firing
patterns and energy optimization.

These findings highlight the computational benefits of integrating biologically grounded
attention mechanisms into hierarchical SNN architectures. Our work bridges predictive cod-
ing principles with neuromodulatory attention control, and provides a promising framework
for building more flexible and context-sensitive spiking models. Future directions include
extending this model to naturalistic inputs, exploring multi-modal attention systems, and
developing learning rules that dynamically adapt attentional gain based on task uncertainty

and context.
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Abstract in Korean
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