
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

Integration of unpaired transcriptome and 

epigenome data of mouse whole brain and 

computational analysis for finding clues of aging  

Han, Se-Eun 

Department of Medical Science 

Graduate School 

Yonsei University 



 

Integration of unpaired transcriptome and epigenome 

data of mouse whole brain and computational analysis for 

finding clues of aging 
 

         

Advisor Hwang, Byungjin  

 

A Master’s Thesis Submitted 

to the Department of Medical Science 

and the Committee on Graduate School  

of Yonsei University in Partial Fulfillment of the 

Requirements for the Degree of 

Master of Medical Science  

Han, Se-Eun 
 

 

June 2025  
  



This certifies that the Master’s Thesis 

of Se-Eun Han is approved. 

 

 [signature]  

Thesis Supervisor Byungjin Hwang 

 

    

 
[signature] 

 

Thesis Committee Member  Jinhyuk Bhin  

 [signature]  

Thesis Committee Member  Hyobin Jeong  

 

 

 

  

 

 

 

 

 

 

The Graduate School 
Yonsei University 

 
June 2025 



ACKNOWLEDGEMENTS 

 

I would like to thank my dissertation advisor, Professor Byungjin 

Hwang, not only for his invaluable instruction of experimental skills 

and data analysis, but also for his practical and enduring encouragement 

that supported me during my studies. I am also thankful to Professor 

Eosu Kim from Severance Hospital for his insightful contribution 

drawn from both clinical experience and professional knowledge in the 

field of neurodegeneration. I also wish to thank Dr. Hyunjeong Kim for 

her enthusiastic reviewing numerous papers and tireless dedication, 

which greatly enriched this research, from which I have learned 

tremendously. 

I appreciate the help of Dr.Su-Hyeon Lee who provided practical 

discussion and heartfelt encouragement throughout this research. 

Thanks to Subin Park and Eunchae Kim, who walked this journey 

together, supporting each other and encouraging to stay strong. I would 

also like to extend my appreciation to all the members of our lab, who 

have been with me since its inception.  

Finally, I am sincerely grateful to my family and my husband for 

their unwavering support, both emotionally and financially, and their 

strong belief in me. I gratefully acknowledge the financial support 

provided by the BK21 Scholarship Foundation, which enabled me to 

pursue my studies without financial constraints. 

Soli Deo Gloria. 



i 

 

TABLE OF CONTENTS 

 

LIST OF FIGURES ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ⅲ 

ABSTRACT IN ENGLISH ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ i 

 
1. INTRODUCTION ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 1 

1.1. The study of aging ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 1 

1.2. Aging-related disease in brain ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 10 

1.3. The role of cell types in brain and the changes with aging  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 12 

1.4. Single cell sequencing analysis and multi-omics  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 14 

2. MATERIALS AND METHODS ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18 

2.1. Sample collection and preparation ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18 

2.2. Single-cell RNA sequencing ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18 

2.3. Single-nucleus RNA sequencing ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 19 

2.4. Single-nucleus ATAC sequencing ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20 

2.5. Transcriptomic data preprocessing ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20 

2.6. Epigenomic data preprocessing ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 21 

2.7. Data Integration ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 22 

2.8. Downstream analysis  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 22 

3. RESULTS ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 25 

3.1. Multi-omics analysis of the aging mouse brain ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 25 

3.2. Identification of cell-type composition in multi-modalities  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 29 

3.3. Gene expression alters in major cell types with aging  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 35 

3.4. Aging microglia associate with inflammatory response ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 40 

3.5. Capillary endothelial cells show high senescent signatures ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 44 



ii 

 

3.6. Aging-related Meis2 high expressing GABAergic neurons  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 48 

3.7. Meis2+ Rarb+ GABAergic neurons associated with cognition ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 52 

3.8. Epigenetic and transcriptional signatures of GABAergic neurons   ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 59 

3.9. Interaction shifts with microglia can lead pathlogy phenotype ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 61 

4. DISCUSSION ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 67 

5. CONCLUSION ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 70 

REFERENCES ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙

∙ 

71 

ABSTRACT IN KOREAN ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 77 

 

  



iii 

 

LIST OF FIGURES 

 

Figure 1. C López-Otín. (2023) Cell. The Hallmarks of aging ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 2 

Figure 2. Schumacher (2021) Nature. The central role of DNA damage in aging ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 3 

Figure 3. Rossiello (2022) Nat Cell Biol. Telomere dysfunction and aging    ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 4 

Figure 4. Wang (2022) Sig Transduct Target Ther. Epigenetic regulation of aging ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 5 

Figure 5. Son JM (2019) BMB Rep. Mitochondria as regulators of organismal aging ∙∙∙∙∙∙∙∙∙ 7 

Figure 6. Knopman (2021) Nat Rev Dis Primers. Age-related brain diseases  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 11 

Figure 7. Kwon S (2020) NeuTher. Proteinpathy and aging associated neurodegeneration ∙∙ 12 

Figure 8. Anatomy of glial cells and neurons ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 13 

Figure 9. 10x Chromium single cell transcriptomic and epigenomic sequencing ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 16 

Figure 10. ATAC-seq ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 17 

Figure 11. Schematic Overview of study ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 25 

Figure 12. UMAP plot of each modality, color representing cell types. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 26 

Figure 13. Violin plot depicting expression level of canonical cell type markers ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 27 

Figure 14. Accessibility of the promoters of cell type specific marker genes ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 28 

Figure 15. Coembedded UMAP of three different modalities of whole mouse brain ∙∙∙∙∙∙∙∙∙ 29 

Figure 16. Integrated transcriptional datasest (snRNA-seq and scRNA-seq) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 31 

Figure 17. Comparing captured cell types in each modality ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 32 

Figure 18. Correlation between nuclei- gene expression and gene activity ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 32 

Figure 19. Comparing captured cell types in all situation (age,modality)  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 33 

Figure 20. Cell type proportion comparing young and old brain  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 34 

Figure 21. Overlaps of experimental and public age-related genes ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 36 

Figure 22. Enrichment analysis with each modality, pathways upregulated with aging ∙∙∙∙∙∙∙∙∙ 37 

Figure 23. DEGs of aging in each major cell types ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 38 

Figure 24. Gene set enrichment analysis of aging signals in each major cell types ∙∙∙∙∙∙∙∙∙∙∙ 39 

Figure 25. Subclustering of microglia  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 41 

Figure 26. Marker genes of three microglia subtypes ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 42 

Figure 27. Row-scaled pseudobulk expression of genes in microglia subtypes  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 42 

Figure 28. Pseudotime trajectory of microglia  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 43 

Figure 29. Pseudotemporal gene expression of microglia ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 43 



iv 

 

Figure 30. Subclustering of endothelial cells ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 45 

Figure 31. Marker genes of four endothelial subtypes  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 45 

Figure 32. Normalized pseudobulk expression of genes in endothelial cell subclusters ∙∙∙∙∙∙∙∙ 46 

Figure 33. Normalized gene expression levels of genes in endothelial cell subclusters ∙∙∙∙∙∙∙∙ 46 

Figure 34. Pseudotime trajectory of capillary endothelial cells ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 47 

Figure 35. Pseudotemporal gene expression of capillary endothelial cells ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 47 

Figure 36. Subclustering of GABAergic neurons and shifts in composition with aging ∙∙∙∙∙∙∙∙ 48 

Figure 37. Marker genes of ten GABAergic neurons subclusters ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 49 

Figure 38. Proportional changes in GABAergic neurons with aging  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 50 

Figure 39. Ttrajectory and pseudotemporal gene expression in GABA neurons ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 51 

Figure 40. UMAP plot as Figure 36 and ABC label transfered UMAP  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 52 

Figure 41. Allen brain cell (ABC) atlas and marker genes of Meis2 high population ∙ 53 

Figure 42. Expression level of SPN marker genes(Drd1 and Drd2) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 54 

Figure 43. Differential motif scores of GABA clusters based on chromatin accessibility ∙∙∙ 56 

Figure 44. KEGG and GO analysis of Rarb+Meis2+ GABAergic neurons ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 57 

Figure 45. Enriched pathways and phenotype in Rarb+Meis2+ GABAneurons ∙∙∙∙∙∙∙∙∙ 58 

Figure 46. Outgoing and incoming signals from both young and old brain ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 62 

Figure 47. GRN and RELN signaling pathways in young and old mouse brain  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 63 

Figure 48. Signaling from microglia to neurons in young and old brains ∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 64 

Figure 49. Row-scaled pseudobulk gene expression in GABA and GLUT neurons ∙∙∙ 64 

Figure 50. Comparing gene expression of Grn (ligand) and Sort1 (receptor). ∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 65 

Figure 51. Signaling from neurons to capillary endothelial cells ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 66 

 

  



v 

 

ABSTRACT 

 

Integration of unpaired transcriptome and epigenome data of mouse 

whole brain and computational analysis for finding clues of aging 

 

 
 

Aging is associated with changes in cellular composition and signaling pathways in the brain, 

leading to an increased risk of neurodegenerative diseases. While the risk factors of specific aged 

cell types or the changes in the specific brain regions related to disease are well-studied, little is 

known about the intrinsic features of whole mouse brain aging.  

We performed single-nucleus RNA sequencing (snRNA-seq), single-cell RNA sequencing 

(scRNA-seq), and single-nucleus ATAC sequencing (snATAC-seq) and integrated an unpaired 

multiomics dataset to explore the transcriptional and epigenomic alterations in the aged mouse 

brain. Focusing on alterations within cell types, we uncovered age-related populations, such as 

age-related microglia (Micro-3), age-related capillary endothelial cells (Endo-C2), and Meis2 

high-expression GABAergic neurons. Our findings also revealed significant shifts in intracellular 

interaction and signaling pathways, including GRN (Granulin) and RELN (Reelin), which show 

increased neuronal involvement in the aged brain. Notably, Meis2 high GABAergic neurons and 

ENDO-C2 endothelial cells exhibit prominent alterations in signal reception and transmission, 

correlating with upregulated inflammatory markers and compromised vascular integrity.  

All of these changes highlight the critical roles of inflammatory microglia and signaling between 

neurons and endothelial cells in aging-related neurodegeneration, providing potential markers of 

cognitive decline and brain diseases. 

 

 

 

                                                                                

Key words: aging, brain, multiomics, single cell transcriptomics, single cell epigenomics, 

integration, microglia, endothelial cells, GABAergic neurons, neurodegenerative disease 
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1. Introduction 

 

1.1. The Study of Aging  

While human lifespan has increased dramatically in recent years, improvements in 

healthspan, the period of life in which a person is disease-free, have been more modest.1 

Aging is a complex and multifaceted process characterized by a progressive decline in 

organic function, an increased vulnerability to disease and death. Aging is driven by 

specific hallmarks that fulfill the following three criteria: (1) they exhibit changes 

associated with aging, (2) their experimental enhancement accelerates aging, and (3) 

therapeutic interventions targeting them can decelerate, halt or even reverse aging. Based 

on these criteria, twelve hallmarks of aging have been proposed: genomic instability, 

telomere shortening, epigenetic alterations, loss of proteostasis, disabled macroautophagy, 

dysregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell 

exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. 2 

These hallmarks are interconnected and also related to the hallmarks of health, which 

encompass features such as spatial compartmentalization, homeostasis maintenance, and 

proper stress responses. [Figure 1] 

 
 

1.1.1.  Genomic Instability  

Genomic instability refers to the increased tendency of the genome to acquire mutations 

and alterations over time. This process is fundamental to aging and occurs due to various 

factors : 1) DNA damage from external sources like UV radiation or chemical exposure, 2) 

interal sources of damage like ROS, and 3) errors in DNA replication and repair 

mechanisms. As we age, the accumulation of these genomic alterations can lead to cellular 

dysfunction, senescence, or cancerous transformations. Research has shown that 

interventions targeting DNA repair mechanisms can potentially show down the aspect of 

aging.3,4[Figure 2] 
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Figure 1. The Hallmarks of aging. 
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Figure 2.  The central role of DNA damage in aging. 
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1.1.2.  Telomere shorteneing  

Telomeres are repetitive nucleotide sequences at the ends of chromosomes that protect 

them from degradation.Key points include : 1) telomeres shorten with each cell division 

due to the end-replication problem, 2) when telomeres reach a criticalll length, cells enter 

senescence or undergo apoptosis, and 3) telomere length is considered a biomarker of 

cellular aging. Studies have demonstrated that telomere shortening is associated with 

various age-related diseases and that telomerase activation can potentially reverse some 

aspects of cellular aging. 5,6 [Figure 3] 

 

 

Figure 3.  Telomere dysfunction and aging. 
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1.1.3.  Epigenetic Alterations  

Epigenetic changes involve modifications to gene expression and protein translation that 

don't affect the DNA sequence itself. These include :1) DNA methylation patters, 2) histone 

modifications, and 3) chromatin structure modifications. With age, there is a general trend 

towards global DNA hypomethylation and site-specific hypermethylation. These changes 

can lead to altered gene expression profiles associated with aging. Researches have shown 

that epigenetic reprogramming can potentially reverse age-associated epigenetic marks.7 

[Figure 4] 

 

 

Figure 4.  Epigenetic regulation of aging. 
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1.1.4.  Loss of Proteostasis  

Proteostasis, or protein homeostasis, refers to the cell's ability to maintain the proteome 

through regulation of protein synthesis, folding, trafficking and degradation. Age-related 

decline in proteostasis includes : 1) Decreased efficiency of chaperone proteins, 2) reduced 

activityttt of protein degradation systems(ubiquitin-proteasome and autophagy-lysosome), 

and 3) accumulation of misfolded or aggregated proteins. These can lead to various age-

related pathologies, such as neurodegenerative disease. Some studies showed that 

enhancing proteostasis mechanisms can extend lifespan in model organisms. 8,9 

 

1.1.5.  Disabled Macroautophagy  

Macroautophagy, often simply called autophagy, is a cellular 'recycling’ process that 

degrades and recycles cellular components. With age :1) autophagy efficiencyyy declines, 

2) accumulation of damaged organelles and protein aggregates increases, and 3) cellular 

stress resistance decreases. Impaired autophagy is implicated in various age-related 

diseases. Some has been published to show that stimulating autophagy can extend lifespan 

and healthspannnn in various model organisms. 10 

 

1.1.6.  Dysregulated Nutrient-Sensing 

Nutrient-sensing pathways play crucialll roles in metabolism and energy homeostasis. 

Key pathways are 1) insulin and IGF-1 signaling, 2) mTOR pathway, 3) AMPK and 4) 

Sirtuins. With age, these pathways become less sensitive and dysregulated, leading to 

metabolic imbalances. Some papers have published studies showing that modulation of 

thesepathways particularly through dietary restriction, can extend lifespan in various 

species.11 
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1.1.7.  Mitochondrial Dysfunction 

Mitochondria, known as the powerhouses of cells, become less efficient with age: 1) 

decreased ATP production leads to reduced energy supply for cellular functions, 2) 

increased reactive oxygen species(ROS) can contribute to cell damage through higher 

oxidative stress condition, 3) accumulation of mitochondrial DNA mutations and 4) altered 

mitochondrial dynamics because of the imbalance between fushion and fission processes 

can cause mitochondrial disability. These changes contribute to various age-related disease, 

and some rejuvenation experiments proved that changing old mitochondria to young 

mitochondria slows aging processes. [Figure 5] 12 

  

Figure 5.  Mitochondria as Regulators of Organismal Aging. 
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1.1.8.  Cellular Senescence  

Senescent cells accumulate with age, no longer dividing but remaining metabolically 

active: 1) cell cycle arrest with inhibitor(p16 and p21), 2) morphological changes 

(enlargement and altered nuclear shape), 3) senescence-associated secretory phenotype 

(SASP) such as cytokines, growth factors and proteases, 4) telomere shortening, and 5) 

DNA damage. The accumulation of senescent cells accelerates aging process and impairs 

tissue function, sometimes with chronic inflammation. These days, senolytics which 

remove senescent cells are big interests for aging studies. 13 

 

1.1.9.  Stem Cell Exhaustion 

The regenerative capacity of tissues declines as stem cell function and number decrease 

with age : 1) reduced stem cell pools, 2) impaired self-renewal capacity, 3) altered 

differentiation potential, 4) changes in the the supportive microenvironment for stem cells 

and 5) epigenetic alteration of stem cell. These changes compromise tissue homeostasis 

and repair capacity, fastening the aging rate. Rejuvenating stem cell experimentally 

reversed the aging feature with some studies. 14 

 

 

1.1.10.  Altered Intercellular Communication  

Changes in signaling between cells contribute to tissue dysfunction. In immune system, 

increased infammatory signalling like NF-kB promotes immune cells nearby secreating 

cytokines and induces chronic inflammation. In endocrine system, aged endocrine cells fail 

to control to secreting hormones or become dysfuntional, else responder cells become 

dysfunctional. This can happen in brain, causing neuroendocrine deregulation and leading 

neurodegeneration. Extracellular matrix(ECM) alteration can affect cell-cell interactions 

physically. Modulating intercellular communication pathways can influence aging process, 

so some pathway studies through multiple cell types are important to understand age-

related disease. 15 
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1.1.11.  Chronic Infammation 

Low-grade, chronic infammation, often termed “inflammaging”, increases with aging. 

The elevated level of inflammatory cytokines, like IL-6 and TNF-a, is the hallmark of aging. 

This can enhance oxidative stress by increasing ROS production and decreasing ROS 

clearance. Immune cells changed their proportion and function with aging and can 

influence several organic microenvironment. Furthermore increased autoimmune 

responses by production higher autoantibodies and cause age-related autoimmune disease. 

16 

 

1.1.12.  Dysbiosis  

Changes in gut microbiome composition and function occur with age. The diversity of 

microbiome reduced, changing the ratio of beneficial bacteria and harmful barteria. 

Following this, altered metabolite is producted and influence aging process. Also gut 

microbiome associate immune system and modulate body health. The potential of 

microbiome modification in influencing aging and longevity is shown through several 

reports.17 

 
The process of aging is influenced by complex molecular mechanisms involving 

genetic, epigenetic, and environmental factors that inhibit cell proliferation, alter 

metabolism and gene expression and promote age-related disease.18Many strategies for 

decelerating age-related diseases have been actively studied, including calorie restriction 

through reduced calorie intake and increased exercise19and pharmaceurical treatments 

targeting senescent cells and associated molecules. 20Animal studies, especially mouse 

model, can provide valuable insights into aging-related research by making it easier to 

examine these complex molecular mechanisms in a controlled environment, thereby 

helping to identify potential age-related changes.21 22 

  



１０ 

 

1.2.  Aging-Related Disease in Brain  

In the brain, aging is associated with changes in cellular composition, synaptic plasticity 

and brain structure, which can contribute to declines in cognitive abilities like learning, 

memory and behavioral habits.23 Cellular senescence, hyperexcitability, inflammatory 

response, and alterations in proteolysis are some of the hallmarks of aging that impact both 

neuronal and non-neuronal cells, leading to change the expression or protein level and 

celllular communication.24 

Among these, age-related neurodegenerative diseases such as Alzheimer's disease(AD), 

Parkinson's disease(PD) and frontotemporal dementia(FTD) are widely studied, as they 

lead to progressive cognitive and motor dysfunction. 25 26 27,28 [Figure 6] The pathogenesis 

of these diseases often involves the selective vulnerability of certain neuronal populations, 

accumulation of pathological protein aggregates (e.g., amyloid-beta, tau, TDP-43), and 

widespread neuroinflammation. To elucidate the mechanisms driving these changes, 

several studies of neurodegenerative diseases have explored the cellular and molecular 

landscapes of the brain from genetics to mechanisms. In AD, the hippocampus and cortical 

neurons are predominantly affected, while in PD, the dopaminergic neurons in the 

substantia nigra are primarily impacted. One study showed that accumulation of somatic 

single-nucleotide variants (sSNVs) increase with age.29 For example, SNCA; which is an 

important locus in PD, and APOE; which is a genetic risk of both AD and PD are prevalent 

patients with neurodegenerative disease and it suggests that genomic alterations in brains 

might be linked to neurodegeneration. Some studies showed GRN loss of function with age 

can cause both AD and frontotemporal dementia (FTD), and they are characterized with 

over-accumulation of amyloid-beta, tau or TDP-45 in brain and lead cognitive decline and 

dementia. 30,31 [Figure 7] 

 

 Recent research suggests that aging-related changes in neuronal and glial cell states, as 

well as alterations in brain vasculature, contribute to the disease's progression. Therefore, 

dissecting the specific changes in cellular composition and gene expression profiles 
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associated with brain aging is key to understanding the early molecular events that 

predispose individuals to neurodegenerative conditions.  

 

 

Figure 6.  Age-related brain disease. 
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Figure 7.  Proteinpathy and aging associated neurodegeneration. 

 

 

 

1.3. The Role of Cell Types in Brain and the Changes with Aging 

The brain is made up of various cell types, including neurons and glial cells, each 

playing unique roles. [Figure 8] Neurons are responsible for sending and receiving related 

to thinking, moving and sensory perception signals through synapses. Glial cells, involving 

oligodendrocytes, microglia and astrocytes, support and interact with neurons. 

Oligodendrocytes insulate neurons with the myelin sheath, while microglia act as immune 

cells in brain, cleaning debris and responding to damage. Astrocytes maintain the brain’s 

environment to homeostasis state and support neural signaling. 32 
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Figure 8.  Anatomy of glial cells and neurons. 

 

Understanding the age-associated alterations in different brain cell types, including 

neurons, glial cells, and the vasculature, may shed light on the early events that drive 

neurodegeneration. Microglia are the most extensively studied cells in the context of brain 

aging and neurodegeneration.33
 Advancements in scRNA-seq and snRNA-seq have enabled 

the identification of microglia in different states, deepening our understanding of their roles 

in Alzheimer's disease. In 5×FAD mice, Keren-Shaul et al. discovered disease-associated 

microglia (DAM) involved in clearing Aβ plaques, a finding confirmed in human AD brain 

samples. Additionally, snRNA-seq of the occipital and occipitotemporal cortex in AD 

patients revealed three microglial clusters: homeostatic microglia, AD1-microglia, and 

AD2-microglia.34,35 These findings have advanced our understanding of how microglia 

contribute to age-related brain changes. 

Oligodendrocytes are regarding demyelination. As the brain ages, the efficiency of 

myelin production and maintenance declines, affecting neural signal transmission. Park 

Hanseul et al found that aberrant Erk1/2 signaling is related with disease-associated 

oligodendrocytes(DAOs) and inhibition of Erk1/2 signaling in DAOs rescued axonal 

demyelination and reduced amyloid beta associated pathologies and cognitive decline in 

AD models.36 Studies on oligodendrocyte function and the mechanisms behind 



１４ 

 

demyelination can provide insights into age-related cognitive decline and diseases like 

multiple sclerosis.  

Astrocytes, previously considered merely as support cells, have now been recognized 

for their active role in central nervous system (CNS) health and disease. Recent discoveries 

of disease-associated astrocytes (DAA) and age-related astrocyte subtypes have 

highlighted their contributions to altered brain homeostasis, especially in the aging brain, 

where they may drive or exacerbate neurodegenerative processes.37 Furthermore, 

astrocytes are increasingly implicated in the disruption of the blood-brain barrier (BBB) 

during inflammatory CNS conditions such as multiple sclerosis (MS). Astrocytic 

expression of VEGF-A has been identified as a key factor driving BBB permeability. In 

mouse models, inhibiting astrocytic VEGF-A expression was shown to reduce BBB 

breakdown, lymphocyte infiltration, and neuropathology, suggesting that targeting VEGF-

A signaling in astrocytes could serve as a protective strategy against neuroinflammation 

and CNS disease progression. 38  

 This knowledge can pave the way for the development of therapeutic strategies aimed 

at mitigating or delaying the onset of age-related diseases. 

 

1.4.  Single cell Sequencing Analysis and Multi-omics 

A landmark study from the Ziesel and Hjerling (2015) labs conducted the first large-

scale transcriptomic analysis of cells in the CNS, laying the foundation for understanding 

cellular diversity in the brain.39 Recent technologies, including high-throughput 

transcriptomic, genomic, epigenomic, and spatiotranscriptomic sequencing in single-cell 

resolution methods, have provided unprecedented opportunities to study cellular 

heterogeneity and discover expression level and pathway changes implicated in brain 

aging.40 41,42 In this study, we used transcriptomics sequencing and open chromatin 

accessibility analysis. [Figure 9] 

  



１５ 

 

Transcriptomics 

For detect cellular heterogeneity, droplet-based or plate-based single cell RNA sequencing 

methods have revolutionized transcriptomic analysis. Droplet based, such as Drop-seq, 10x 

Genomics Chromium, inDrop, and Seq-Well, allow high-throughput profiling of thousands 

of individual cells. Plate-based, such as Smart-seq and Smart-seq2, provide high sensitivity 

for detecting low-abundance transcripts. Enabling detailed gene expression analysis at the 

single cell level, researchers capture the transcriptomic profile of diverse cell populations 

within complex tissue like brain. These technologies are actively used to reveal specific 

gene expression patterns across interested cell types and uncover cellular changes in 

specific condition. 

 

Open Chromatin accessibility   

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and single-

nucleus ATAC sequencing, which applies single cell technology to ATAC-seq, are widely 

used methods to assess chromatin accessibility at a genome-wide scale. [Figure.10] ATAC-

seq captures open chromatin regions, often representing active regulatory elements or 

promoters. With snATAC-seq, it is possible to analyze individual nuclei epigenomic and 

gene regulatory changes. This approach is particularly valuable for studying how chromatin 

remodeling contribute to gene regulation in aging condition. 

 

Single-cell transcriptomic technologies continuously upgrade its applification by 

combination with other types of ‘-omics’ approaches such as proteomics(CITE-seq), 

epigenomics(10x Multiomics-Gene expression and ATAC-seq), and 

spatiotranscriptomics(Visium, Slide-seq). Multiple information allows for a more 

comprehensive understanding of the complex interactions and regulatory networks that 

drive aging processes. 43 44 45   



１６ 

 

 

Figure 9.  10x Chromium single cell transcriptomic and epigenomic sequencing. 
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Figure 10. ATAC-seq. 
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2. Materials and Methods 

2.1. Sample Collection and Preparation 

Three young (4 months) and three old (21 month) C57/Bl6 female mice were obtained. 

At the defined day, mice were anaesthetized with 2.5–3% isoflurane and transcardially 

perfused with 10ml cold PBS to remove blood from brain. Following perfusion, the brain 

was dissected quickly, stored in media demonstrated for single cell isolation protocol, while 

immediately flash-frozen for 2 min on dry-ice and then moved to −80 °C for long term 

storage for single nuclei isolation. 

 

2.2. Single-cell RNA sequencing 

Single cells were isolated following a cell-isolation protocol provided by 10x 

Genomics. This method allowed cells to be ready for running on the commercially 

available high-throughput single-cell RNA sequencing technology - droplet-based 10X 

Chromium platform. 46 All GEMs generated were used for cDNA synthesis and library 

preparation using the Chromium Single Cell 3' Library Kit v3.1 (10X Genomics). We 

followed the manufacturer’s instructions (User Guide, CG000315) for cell capture, 

barcoding, reverse transcription, cDNA amplification, and library construction. Libraries 

were quantified using an Agilent Bioanalyzer with a high sensitivity chip (Agilent) and 

were sequenced using the Illumina NovaSeq 6000 S4 platform, using 150-bp paired-end 

sequencing, using the following read lengths: 28 bp Read1, 10 bp I7 Index, 10bp I5 Index 

and 90 bp Read2. The 2 libraries of scRNAseq from young and old mouse brain were 

sequenced at 20,000 reads per cell, respectively. Single cell capture, library preparation, 

and sequencing were performed by Macrogen (www.macrogen.co.kr). 
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2.3. Single-nucleus RNA sequencing 

We isolated nuclei from the cell suspension using a modified protocol provided by 10x 

Genomics (Isolation of Nuclei for Single Cell RNA Sequencing – CG000393). Single-

nucleus suspensions were isolated from flash-frozen mouse brains stored at -80℃. Initially, 

the brains were minced on ice using a pre-chilled razor blade, and the chopped tissue was 

transferred to a tube containing a pre-cooled lysis buffer (LB; 10 mM Tris-HCl pH 7.4, 

146 mM NaCl, 1mM CaCl2, 21 mM MgCl2, and 0.1% NP-40). The tissue was then 

incubated on ice for 15 minutes, during which it was triturated gently. At the end of the 

incubation time, wash buffer (WB; 10mM Tris, 146mM NaCl, 1mM CaCl2, 21 mM MgCl2), 

2% BSA in PBS with 0.2 U/μl RNasin) was added to the mixture, which was then filtered 

through a 40-μm cell strainer and further digested mechanically for debris removal. The 

homogenized tissue was centrifuged at 700g for 10 minutes at 4℃. The supernatant was 

removed carefully to isolate the nuclei pellet.  

A gradient centrifugation step was performed by mixing the nuclei suspension with 1.8M 

sucrose and layering it over a sucrose gradient before centrifuging at 13,000g for 45 min at 

4℃. The nuclei were collected by removing the supernatant and washing the pellet in ST-

SB buffer (2% BSA, 0.02% Tween-20, 10mM Tris, 146mM NaCl, 1mM CaCl2, 21 mM 

MgCl2). We counted the nuclei using a Countess II (Thermo Fisher Scientific).  

This method allowed the nuclei to be ready for running on the 10x Chromium Single 

Cell 3′ v3 platform.  All GEMs generated were used for cDNA synthesis and library 

preparation using the Chromium Single Cell 3' Library Kit v3.1 (10X Genomics). We 

followed the manufacturer’s instructions (User Guide, CG000315) for cell capture, 

barcoding, reverse transcription, cDNA amplification, and library construction. Libraries 

were quantified using an Agilent Bioanalyzer with a high sensitivity chip (Agilent) and 

were sequenced using the Illumina NovaSeq 6000 S4 platform, using 150-bp paired-end 

sequencing, using the following read lengths: 28 bp Read1, 10 bp I7 Index, 10bp I5 Index 

and 90 bp Read2. The two scRNAseq libraries of young and old mouse brain were 



２０ 

 

sequenced at 20,000 reads per cell, respectively. Sequencing was processed by Macrogen. 

 

2.4. Single-nucleus ATAC sequencing 

  For combination method of ATAC-seq and single cell sequencing, scATAC-seq(or 

snATAC-seq)47, we isolated nuclei from the cell suspension following a brain nuclei 

isolation protocol in the reference of 10x Genomics protocol (Nuclei Isolation from Mouse 

Brain Tissue for Single Cell ATAC Sequencing, CG000212). The final nuclei were 

resuspended in Diluted Nuclei Buffer (Chromium Next GEM Single Cell ATAC Reagent 

Kits v2). The composition of the Tris-based Diluted Nuclei Buffer, including Magnesium 

concentration, is optimized for the transposition and barcoding steps in the Single Cell 

ATAC protocol, which is not used in RNA seq protocol.  

After transposition step using transposition mix (Chromium Next GEM Single Cell 

ATAC Reagent Kits v2), we ran on the 10x Chromium Single Cell 3′ v3 platform, generated 

GEM, synthesized cDNA and constructed libraries. Libraries were quantified using an 

Agilent Bioanalyzer with a high sensitivity chip (Agilent) and were sequenced using the 

Illumina NovaSeq 6000 S4 platform, using 150-bp paired-end sequencing, using the 

following read lengths: 50 bp Read1, 8 bp I7 Index, 16bp I5 Index and 50 bp Read2. The 

two scRNAseq libraries of young and old mouse brain were sequenced at 25,000 reads per 

cell, respectively. Single-nucleus capture, library preparation, and sequencing were 

performed by Macrogen (www.macrogen.co.kr). 

 

2.5. Transcriptomic data preprocessing 

FASTQ files of raw reads from scRNA-seq and snRNA-seq were processed using the 

Cell Ranger software suite (v7.2.0, 10x Genomics Inc., USA)46. For gene annotations, reads 

were mapped to the mouse reference genome (GRCm38) with the Ensembl GRCm38 GTF 

file, resulting in production of gene-by-cell count matrices. With count matrices, Seurat 

objects were created by R package Seurat v5.1.048 and used for downstream analysis. 

To filter out low-quality cells, cells with 6000< and 200> nFeature_RNA, 20000< 

http://www.macrogen.co.kr/
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nCount_RNA, and 3%< percent.mt were removed. Each gene expression measurements in 

each cell was then normalized using the SCTransform49 protocol to address variations in 

sequencing depths across cells. We use the top 2000 high variable genes as the default 

training parameter. 

Cells associated with doublets were identified and removed using the scDblFinder 50 

(v1.18.0) R package. To further remove cell-specific biases, cells were clustered using 

Seurat v5 and low-quality clusters visually inspecting outliers in the UMAP plot were 

annotated and excluded for downstream analysis. Using the Leiden algorithm in clustering 

analysis across multiple datasets. Cell embeddings are visualized in UMAP. 

For annotating each cell types, we used label transfering in Seurat R package with 

transcriptomic reference, such as Azimuth51 and Allen Institute Brain Atlas42, and canonical 

marker genes of brain major cell types to fnalize manual annotation for each cell. 

Unassigned cells were reclassified based on expressing marker-genes and the major cell 

type of clusters to which they belong.  

Cells were into 19 clusters using the FindClusters function on the first 30 PCs of high 

variable genes with resolution =1.2, and were visualized in the two-dimensional UMAP 

plot with the RunUMAP functions. For each cluster with >80% of the most abundant cell 

type, unassigned cells were classified into the cluster of major cell type and cells assigned 

to other minor cell types were removed as putative doublets. 

 

2.6. Epigenomic data preprocessing 

 The paired-end sequence read fastq files were aligned to a mouse (mm10) combined 

reference genome (refdata-cellranger-atac-GRCh38-and-mm10-2020-A-2.0.0,10x 

Genomics) using Cell Ranger ATAC software (v2.0.0), including read filteration, 

alignment, barcode count, identification of Tn5 cut sites, detection of accessible chromatin 

peaks, cell calling and count matrix generation for peaks. Based on Signac(v1.14.0)52 R 

package, we did peak-calling with mm10 genome reference and MACS253, annotation and 

quantifying per-cell counts in different genomic regions using EnsDb.Mmusculus.v79, and 
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calculating single-cell QC metrics, such as nucleosome signals, TSS enrichment, were 

processed on generated seurat objects.  

  For normalization, we ran term frequency inverse document frequency (TF-IDF) 

normalization on a matrix, and then ran LSI dimension reduction using RunSVD function. 

The first LSI component often captures sequencing depth rather than biological variation, 

so the component was removed from downstream analysis. Following dimension reduction 

such as UMAP and clustering utilized LSI space.  

  Creating gene activity matrix were done for annotation and validation of expressed 

canonical marker genes in major cell types. To annotate cells with pre annotated 

transcriptomic Seurat object, we utilized methods for cross-modality integration and label 

transfer using Signac package, referred as RNA anchor-based classification.  

 

2.7.  Data Integration 

   After creating gene-activity matrix of snATAC-seq dataset, we merged every 

transcriptomic and epigenomic dataset and performed integration with CCA integration by 

using Seurat v5 function to remove batch effect, such as sequencing depth and 

technological differences, for making possible to compare solely biological differences 

across aging. We processed clustering and dimension reduction again with integrated 

dataset to draw co-embedded UMAP plot of three modalities.     

 

2.8.  Downstream analysis  

  Differential expression analysis  

  Differential expression analysis was conducted using the FindAllMarkers function. 

Differentially expressed genes (DEGs) of aging whole brain and DEGs of aging in each 

cell type were identified, as well as DEGs of different clusters and major cell types. 

Wilcoxon Rank Sum test was used as a default to find DEGs and every DEGs were filtered 

with adjusted p-value<0.05 and |log2FC|>0.5 for significant differences in the number of 

cells.  
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  Gene set enrichment analysis 

  Using the DEGs as input resources, we processed gene-set enrichment test (GSEA) and 

when the p-value < 0.05, a pathway is considered to be significantly associated. The 

enrichment analysis in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways was determined based on the cell type specific aging related 

DEGs.  

 

  Single-cell trajectory analysis 

  Pseudo-time analysis is a great tool for understanding the dynamics and temporal 

trajectories of gene expression within cell types and cellular shifts during aging. Using 

Monocle2 54, cell type-specific CellDataSets were created based on subset seurat objects. 

Next, we reduced dimensionality with default method named 'DDTree', a hybrid decision 

tree-deep neural network. Ordering cells on trajectory of the tree and finding the beginning 

point, we used orderCells function in monocle and specified state which contains most of 

the cells assessed to be time zero. Also, we plotted the expression levels of interested genes 

from DEG lists, all of which show significant changes as a funtion of differentiation, using 

the function plot_genens_in_pseudotime.  

 

  cis-regulatory network  

  For generating cis-regulatory networks and predicting novel cis-regulatory interactions 

from single-cell chromatin accessibility, we used run_cicero function in Cicero55 R 

package which is provided by Monocle 3 and mouse.mm10.genome as a reference genome.  
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  Motif analysis   

We performed DNA sequence motif analysis using ChromVar56 function by finding 

overrepresented motifs in a set of differentially accessible peaks or performing differential 

motif activity analysis based on JASPAR202057 motif position frequency information. We 

calculated a per-cell motif activity score and identified motifs associated with variability in 

chromatin accessibility between cells. Furthermore, footprinting analysis could be 

processed with added motif information. 

 

  GREAT analysis    

We wanted to predict the overall functional changes of differential accessibile regions, 

both coding and non-coding regions. By using genomic regions enrichment of annotations 

tool(GREAT ver. 4.0.4) 58, the function and annotation of differentially open genomic 

regions were predicted by statistical enrichments for associations between genomic regions 

and annotations.  

 

Analysis of intercellular communication 

CellChat(v2)59 is designed for inference and visualization of cell-cell interaction from 

single-cell expression data, and it also serves CellChatDB as a publicly available database 

of literature-supported receptor-ligand interactions. To infer the interactions between cell 

types observed exclusively in one dataset, cellchat was utilized on integrated transcriptomic 

dataset. To identify receptor-ligand interactions, we referred to the STRING database of 

protein-protein interactions. 
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3. Results  

 

3.1. Multi-omics analysis of the aging mouse brain 

We employed snRNA-seq, scRNA-seq and snATAC-seq60 using the 10x Genomics 

Chromium platform version 3(10x v3). We applied both snRNA-seq and scRNA-seq for 

single-cell transcriptomic profiling because of the capture efficiency and the diversity of 

cell types in the mouse brain. Following the protocol from 10xGenomics and the lab-

developed nuclei isolation protocol, we isolated cells and nuclei from the female C57BL/6 

mouse whole brains at 4 months (n=3) for young age and 21 months (n=3) for old age. 

After quality filtering, we obtained 18,622 high-quality cells for scRNA-seq (8,989 and 

9,633 cells from young and aged brain), 28,216 high-quality nuclei for snRNA-seq (19,574 

and 8,642 nuclei from young and aged brain) and 22,915 high-quality nuclei for snATAC-

seq (8,037 and 14,878 nuclei from young and aged brain).[Figure 11] Then we clustered 

and annotated with canonical marker genes. [Figure 12] 

 

Figure 11. Schematic overview of experiment. 

  



２６ 

 

 

Figure 12. UMAP plot of each modality, color representing cell types. 

 

After integrating both transcriptome dataset (scRNAseq and snRNAseq), we classified 

the clusters representing the major cell types of the mouse brain by assessing the expression 

level of canonical cell-type marker genes. [Figure 13] For example, microglia were defined 

by expression by Tmem119, endothelial cells defined by Cldn5 and Flt1, oligodendrocytes 

by Mbp and Plp1 expression, oligodendrocyte progenitor cell by Pdgfra, GABAergic 

neurons by Gad1 and Gad2, Glutamatergic neurons by Slc17a7 and adrenergic neurons by 

Col25a1. Less abundant cell types also observed such as immune cells (Cd8a, Ccl5), 

vascular leptomeningeal cells (Apod, Slc6a13), olfactory ensheathing cells (Sash1), 

neuroblasts (Ntng1), pericytes (Abcc9) ependymal cells (Cfap44), fibroblasts (Col1a2) and 

choroid plexus epithelial cells, however for erasing bias, we removed them.  
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Figure 13. Violin plot depicting expression level of canonical cell type markers. 

 

Next, we employed Seurat’s label-transfer algorithm to annotate and gene-activity 

converged snATAC-seq dataset. we were able to check that main cell types in label-

transfered snATAC were correctly labelled, based on the accessibility of the promoters of 

marker genes within each cell type. [Figure 14] Finally, we performed CCA-integration on 

three datasets to project all cells from three different modalities onto a unified reduced 

dimensional space, resulting in a coembedded UMAP plot. [Figure 15] Some neuronal cells, 

which are presumed to be GABAergic neurons, were located at the center and showed 

significant sparsity, likely due to the effect of the snATAC data.  
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Figure 14. Accessibility of the promoters of cell type specific marker genes. 
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Figure 15. Coembedded UMAP of three different modalities of whole mouse brain. 
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3.2.  Identification of cell-type composition in multi-modalities   

Integrating transcriptome and chromatin accessibility profiles, we left 12 main cell 

types which contain more than 200 cells(nuclei) and further subclustered total 30 cell types 

for further analysis. [Figure 15] Some papers already showed that nuclei are relatively 

uniform in size and morphology, so it is possible to get more cell types from snRNA-seq 

rather than scRNA-seq, because some cell types are more vulnerable to the tissue 

dissociation process. snRNA-seq and scRNA-seq can capture different neuronal types, and 

our study also consistent to this. 45,61[Figure 16]  

Two nucleus-derived sequencing method captured similar cell types when compared 

to the cell-derived sequencing method. [Figure 17] Validate correlation between the two 

nucleus-derived sequencing datasets, we assessed the relationship between average gene 

expression (snRNA-seq) and average gene activity (snATAC-seq). The plot shows a 

correlation with R=0.63 and p-value < 1e-05, indicating a positive relationship. [Figure 18]  

Also, overall proportion of cell types were significant fluctuation between modalities, 

showing increases in some old genes and decreases in others, making it hard to compare 

between young and old brain. [Figure 19] This could be due to loss during the individual 

sample preparation process. Given the characteristics of the brain, it is sensitive to be 

isolated in single cell/nuclei resolution, compared to other tissue. Despite of these difficulty, 

we aimed to explore the potential biological significance from both sequencing behind 

these differences. 
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Figure 16. Integrated transcriptional datasests (snRNA-seq and scRNA-seq). 
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Figure 17. Comparing captured cell types in each modality. 

 

 

Figure 18. Correlation between nuclei- gene expression and gene activity. 
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Figure 19. Comparing captured cell types in all situation (age, modality). 

 

To put it briefly, Glutamatergic (excitatory, GLUT) neurons and GABAergic 

(inhibitory, GABA) neurons were divided 4 and 11 sub-clusters, respectively. GLUT 

neurons were further annotated using references from the Allen Brain Institute, while 

GABA neurons showed significant differences based on the expression of transcription 

factors, as seen in earlier brain-omics studies, and were annotated accordingly using 

relevant genes. Notably, for GABA neurons, we were able to identify well-known clusters 

such as Pvalb, Vip, Lamp4, and Sst expressing neurons, which are frequently reported in 

existing papers62, and the decreased proportion of them with aging was aligned with other 

studies. 63 [Figure 20] We wanted to show the transcriptional and epigenomic modification 

in specific GABA neuron of aged brain for finding clues of aged-related 

neurodegeneration through hyper-excitable signaling.  

Secondly, consistent to previous paper about aged brain endothelial cells’ sequencing 

study64, our data also clustered in venous(V), capillary(C), and arterial(A) cells but 

slightly significant proportion shift showed between young and old brain. Comparing 

capillary endothelial cell type 1(Endo-C1) and type 2(Endo-C2), more Endo-C2 was 
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positioned in aged brain and we assumed that these could be aged-endothelial cell. We 

made hypothesis that aged-endothelial cells make blood brain barrier (BBB) disruption 

and occur immune cells leakage to brain tissue, as our data showed increasing immune 

cells in old brain. Lastly, according to the data, microglia are sub-clustered into three 

groups (Micro-1, Micro-2, and Micro-3), with Micro-3 making up a larger proportion than 

Micro-1 in the aged brain. We thought that Micro-3 are aged microglia and wanted to 

explore their characteristics in more detail through further analysis 

 

 

 

 

Figure 20. Cell type proportion comparing the young and old brain. 
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3.3. Gene expression alters in major cell types with aging  

We next analyzed the differentially expressed genes (DEGs) with age in each major 

cell types of transcriptomic data. To globally understand how expression patterns changes 

with age, we performed differential gene expression analysis in all datasets of each 

modality (padj < 0.05, |log2FC| >0.4) and compared age-related up- or downregulated 

gene lists to age-related gene lists obtained from published studies. [Figure 21] Using this 

method, in both scRNA-seq and snRNA-seq gene lists, the P2ry12 gene, which is a marker 

gene of homeostatic microglia, was consistently down-regulated in our gene expression 

data as well as in public datasets. Additionally, ten genes, including Slc16a1, Vim, Gsn, 

B2m, Cldn5, Id1, Klf2, Klf4, Cxcl12, and Cdkn1a, were found to be commonly up-

regulated across three gene lists from snRNA-seq, scRNA-seq, and public data. 

Interestingly, Vim and Gsn are related to cytoskeletal remodeling or cellular movement 

and claudin-5(Cldn5) is known as an endothelial cell marker gene that roles as a tight 

junction protein to maintain the blood-brain barrier. Additionally, Cxcl12 is a chemokine 

that plays a role in immune cell migration and is involved in stem cell niches. Cdkn1a, 

also known as p21, is a cell cycle regulator involved in mediating cell cycle arrest and is 

one of the famous senescence markers. To find different enriched pathways between 

single cell and nucleus sequencing, we analyzed gene-set enrichment analysis with 

upregulated genes with aging in each modality [Figure 22]. Single-cell based dataset 

showed enriched ‘antigen-presenting’ pathway, while single-nucleus dataset showed 

upregulated ‘neurogenesis’ pathway. This result make sense when we match the yielded 

cell types and enriched pathways in each modality. 
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Figure 21. Overlaps of DEGs with public age-related up/down regulated genes. 
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Figure 22. Enrichment analysis with each modality, pathways upregulated with aging. 

 

Next we investigated differentially expressed genes in each major cell types in 

integrated dataset. [Figure 23] Neurons (GABA, GLUT, adrenergic neurons, Chn2 high 

expressing neurons), oligodendrocytes (ODC), astrocytes (AST), and VLMC (vascular 

leptomeningeal cells) showed the greatest amount of differentially up-regulated genes 

with age. We had a question why Meis2 gene was up-regulated in GABAergic neurons in 

old mouse brain, because the Meis2 coded protein act as an important transcription factor 

in early brain development and had been studied on differentiation of neuronal cells into 

specific neuronal fates. Recently Meis2 expressing GABAergic neurons were discovered 

in the brains of patients with Alzheimer's disease by snRNA-seq.65 This founding led us 

to take an interest in the shift of these GABAergic neurons. In the case of endothelial cells, 

the differentially expressed gene lists overlapped significantly with the previously 

mentioned list, including genes like Cdkn1a, B2m, Klf4, Slc16a1, and Cxcl12. As we 

expected, P2ry12 was significantly decreased in microglia, while neurodegenerative 

disease related gene Apoe extremely up-regulated in microglia. However immune cells 

infiltrated into old brain showed less inflammatory features than young brain. [Figure 

20,23] To demonstrate the gene lists functions, we performed Gene Set Enrichment 

Analysis (GSEA) using the enrich GO. Each cell types showed unique signatures of aging. 

[Figure 24] To sum up, in the case of microglia, they can be explained by the aged 
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microglia seen in previously known disease models, but for GABAergic neurons or 

endothelial cells, there would be additional explanations to consider. 

 

Figure 23. DEGs of aging in each major cell types. 
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Figure 24. Gene set enrichment analysis(GO) of aging signals in each major cell types. 
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3.4. Aging microglia associate with inflammatory response  

To reveal heterogeneity in microglia, we grouped microglia into three classes (Micro-

1, -2, and -3) and compared the ratio of microglia subclasses, as mentioned previously. 

[Figure 25] To identify transcriptional patterns of the subclasses, we conducted 

differentially expressed gene analysis by using the FindAllMarkers funtion in Seurat and 

comparing expression levels of DAM marker genes. [Figure 26-27] According to published 

database66, Micro-1 shared some signatures with homeostatic features, such as high level 

of Tmem119, P2ry12, Hexb, and Cx3cr1, while Micro-3 highly expressed inflammatory 

genes such as Lyz2 and DAM-associated gene, including B2m, Apoe, Lpl, Cst7, Axl, Itgax, 

Spp1, Cd9, Ccl6 and Csf1. Furthermore, in aged brain, these expression pattern showed 

more significantly. Interestingly, Micro-2 in our dataset highly expressed Trem2, referred 

as a signaling marker at stage 1 DAM in previous mentioned paper, and it down-expressed 

in Micro-3 as in Micro-1. We raised the question of why Miro-2 and Miro-3 show different 

signaling patterns, even though Miro-2 has diffused between Miro-1 and Miro-3.  

To capture the molecular dynamics in microglia, we applied trajectory inference 

analysis with monocle2 package. [Figure 28] Along with a MST algorithm, we confirmed 

the lineage transitions between Micro-1 and Micro-3 and intermediated state Micro-2. Also 

Micro-3 formed a distinct branch, representing terminally differentiated stated that diverges 

significantly from Micro-1 and Micro-2. It might be due to unique environmental signals 

or specific gene regulatory networks that push Micro-3 into a distinct functional role. To 

figure out expression dynamics of well-known genes, Apoe and Lyz2 seemed to increase 

with pseudotime, potentially contributing to the distinct identity of Micro-3. [Figure 29] 

Taken together, we identified three microglia subclasses through transcriptomic analysis, 

revealing that Micro-1 exhibited homeostatic characteristics, Micro-3 expressed 

inflammatory and disease-associated markers and Micro-2 acted as an intermediate state 

between two with trajectory analysis. A notable observation was the high expression of 

Trem2 in Micro-2, resembling stage 1 DAM, while Apoe and Lyz2 increased over time in 

Micro-3 especially in aged-mouse brain, solidifying the unique, terminally differentiated 
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identity of Micro-3, like stage 2 DAM. This suggests that unique environmental signals 

and gene regulation could drive the specialization of Micro-3 into its inflammatory role. 

 

 

Figure 25. Subclustering of microglia. 
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Figure 26. Marker genes of three microglia subtypes. 

 

Figure 27. Row-scaled pseudobulk expression of genes in microglia subtypes. 
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Figure 28. Pseudotime trajectory of microglia. 

 

 

Figure 29. Pseudotemporal gene expression of microglia. 
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3.5. Capillary endothelial cells show high senescent signatures 

   As previously mentioned, endothelial cells in mouse brains are organized into distinct 

clusters of venous, capillary and arterial cells, with capillary endothelial cells showing a 

continuous and diffuse pattern between the other two types. To explore the heterogeneity 

of endothelial cells, we classified all subset endothelial cells into four subtypes (Endo-A, 

Endo-C1, Endo-C2, and Endo-V) with marker genes 

of  Bmx (arterial),  Slc16a1 (capillary),  Nr2f2 (venous), and Vcam1 (arterial and venous) 

and compared the proportion of these subtypes across age groups.[Figure 30.31] It was 

intriguing to observe that Endo-C split into two distinct types (Endo-C1 and Endo-C2). In 

the previous transcriptomic analysis of aging brain endothelial cells(BEC) paper63. It was 

visually evident that there were two distinct groups. We discovered that the proportion of 

Endo-C2 increased slightly with aging.  

We performed DEG analysis with single cell dataset and pseudobulk dataset, as same 

way of microglia analysis, to confirm the annotation and characterize the transcriptional 

patterns of each subtype. With aging, more Vcam1 in venous endothelial cells was 

expressed. More interestingly, we discovered that Actg1 and Hspb1 are marker genes of 

Endo-C2 which were also lightly increased with aging. Actin gamma is part of the actin 

cytoskeleton network which makes up the structural framework inside cells. Hspb1 is 

related to hypoxia and stress pathway. Consistent to the previous paper, capillary 

endothelial cells all expressed higher Cxcl12, Ifi27, Acvlr1, B2m and Jun with aging, and 

their expression level were significantly higher in Endo-C2 than Endo-C1. [Figure 32-33] 

Endo-C2 upregulated innated immunity (Cxcl12, Ifi27), antigen processing(B2m), and 

TGF-b signaling(Acvrl1), suggesting that aged capillary endothelial cells show significant 

modifications in upregulating innate immunity, antigen processing, TGF-b signaling and 

oxidative stress response pathways than other vessel segment.  
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Figure 30. Subclustering of endothelial cells. 

 

Figure 31. Marker genes of four endothelial subtypes. 
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Figure 32. Normalized pseudobulk expression of genes in endothelial cell subclusters. 

 

 

Figure 33. Normalized gene expression level of genes in endothelial cell subclusters. 
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Next we traced the pseudotemporal dynamics of mentioned gene expression from 

Endo-C1 to Endo-C2. [Figure 34] Marker genes of Endo-C1 such as Fry, Hmcn1, Mecom 

and Tmtc2 were gradually down-regulated with trajectory, while marker genes of Endo-

C2(Actg1, Hspb1) and publicly mentioned up-regulated genes of aged capillaries(Junb, 

B2m) all gradually up-regulated with trajectory. [Figure 35] In summary, our analysis 

revealed considerable diversity within endothelial cells, with Endo-C2 appears to be more 

stressed and related to immune response, particularly in aged samples. 

 

Figure 34. Pseudotime trajectory of capillary endothelial cells. 

 

Figure 35. Pseudotemporal gene expression of capillary endothelial cells. 
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3.6. Aging-related Meis2-high expressing GABAergic neurons  

By systematically classifying the genes that enriched in the various GABAergic 

neuron clusters, we were able to distinguish subtypes based on gene expression profiles 

except GABA neuron 1 and GABA neuron 2 which had no specific marker genes and 

difficult to distinguish strictly. [Figure 36] The GABAergic neurons were divided into 

three main groups based on marker genes: Meis2-high expressing neurons, highlighted in 

the black-boxed clusters, Sst/Lamp5/Vip/Pvalb neurons, representing specific subtypes of 

GABAergic neurons marked by these genes (as seen in the red-boxed clusters), and 

Meis2-low expressing neurons, represented in the remaining clusters.  

 

 

Figure 36. Subclustering of GABAergic neurons and shifts in composition with aging. 
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As shown in the heatmap in [Figure 37], we observed distinct gene expression patterns 

in these subgroups. Meis2-high neurons were marked by enriched expression of Meis2 

and some part with Rarb, which is highly associated with developmental and regenerative 

processes. On the other hand, Sst/Lamp5/Vip/Pvalb neurons represented well-known 

subtypes of inhibitory neurons, each expressing their respective markers, such as Sst 

(Somatostatin), Lamp5, Vip, and Pvalb (Parvalbumin). The Meis2-low neurons, which 

comprised the remaining clusters, were characterized by reduced Meis2 expression and 

transcriptionally have no marker genes comparing to other groups. 

 

Figure 37. Marker genes of ten GABAergic neuron subclusters. 
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Through the proportional analysis of these neuron types in young and aged brains, we 

found a notable shift with aging. [Figure 38] Meis2-high neurons increased significantly 

in aged samples, indicating that this neuronal subtype may play a more prominent role in 

the aging brain. In contrast, Sst/Lamp5/Vip/Pvalb neurons decreased with age, suggesting 

that the functions of these specific inhibitory neurons might decline in the aging brain. It 

is consistent with other aging related papers.62,65 The proportion of Meis2-low neurons 

remained relatively stable but, comparing with overall ratio of GABA neuron, it showed 

a slight decrease. This overall reduction in the ratio of Meis2-low neurons, along with the 

decline in Sst/Lamp5/Vip/Pvalb neurons, can be interpreted as a general decrease in 

GABAergic neuron populations with aging, potentially contributing to reduced inhibitory 

signaling in the aged brain. 

 

 

 

Figure 38. Proportional changes in GABAergic neurons. 

 

We further performed pseudotemporal ordering of the transcriptional dynamics of the 

GABAergic neuron clusters to capture the molecular trajectory of Meis2-high expressing 

neurons during aging.[Figure 39] With MST analysis, we observed that the Meis2-high 

GABAergic neurons occupied distinct regions along the trajectory, forming two separate 

branches, suggesting that these neurons undergo divergent developmental or functional 
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changes. Specifically, these branches may reflect transitional states leading toward 

different functional subtypes of Meis2-high neurons . In the context of aging, we observed 

that Meis2-high neurons exhibited increased proportions in aged brains, indicating their 

potential role in the aging process. Additionally, we observed that these neurons showed 

pseudo-temporally increasing expression of genes regulating neuron differentiation, 

including Foxp2, Pbx1, and Phactr1, further supporting their involvement in age-related 

neural dynamics. Foxp2 is important for neurogenesis by increasing dendrite length and 

synaptic plasticity and for vocal behaviors, learning and motor function.66 Pre‐B‐cell 

leukemia homeobox 1(Pbx1) is known to control midbrain dopaminergic neuron(mDAn) 

development and related to Parkinson’s disease.67 Phosphatase actin regulator-1(Phactr1) 

encodes a synaptic protein regulating signaling and cell adhesion.  

 

 

Figure 39. Trajectory and pseudotemporal gene expression in GABA neurons. 
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Taken together, our results suggest that Meis2-high GABAergic neurons follow a 

distinct molecular trajectory with aging, characterized by increased expression of 

developmental and aging-associated genes, as well as shifts in their functional roles. These 

findings point to the importance of Meis2-high neurons in maintaining inhibitory neural 

networks during the aging process and suggest they may contribute to the broader 

reorganization of GABAergic circuits in aged brains. 

 

 

3.7. Meis2+ Rarb+ GABAergic neurons associated with cognition 

We wondered if neurons express high Rarb gene exist in public brain atlas, so we 

mapped with reference. Interestingly Rarb+ was highly expressed in CNU-LGE 

GABAergic neuron clusters, which contains striatal and pallidal GABAergic neurons.  

[Figure 40] As concsistent, gene Drd1 and Drd2 also expressed highly in this cluster, 

which are marker genes of dopaminergic striatal projecting neurons(SPN-D1 and D2). 

Same as public data, our Rarb+ high GABA population contained Drd1 and Drd2 high 

cells. [Figure 41,42] 

 

Figure 40. UMAP plot as Figure 36 (left) and ABC label transfered UMAP (right). 
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Figure 41. Allen brain cell (ABC) atlas and marker genes of Meis2 high population. 
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Figure 42. Expression level of SPN marker genes(Drd1 and Drd2). 

To complement our gene expression analysis, we analyzed label transfered snATAC-

seq to identify cell-type specific transcription factor (TF) motifs in GABAergic neurons. 

Transcription factors (TFs) play a crucial role in regulating cell fate and function, 

particularly in neural development and aging-related processes. First, we calculate  

differentially accessible regions (DARs) in our pre-annotated ATAC-seq data of 

GABAergic neurons with FindAllMarkers in Seurat package. Next, we scanned motif 

enrichment within these regions for known TF binding motifs, by using ATAC-seq 

analysis pipelines. With this analysis, we indirectly sought to investigate the regulatory 

elements that might influence the distinct molecular and transcriptional identities of all 

GABAergic neurons. The TF motif enrichment analysis revealved distinct transcriptional 

regulators associated with developmental and functional roles in these unique population. 

[Figure 43] 

 

To find epigenetic changes of aged-GABAergic neurons, we focused on Meis2 high 

GABAergic neurons, characterized by expression of key marker genes such as Pbx1, 

Foxp2, and Rarb. The most noteworthy finding was the differential regulatory signatures 

within the Rarb+ Meis2 high GABAergic neurons. Rarb+ Meis2 high GABAergic 
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neurons, displayed low enrichment of NEUROD1, CTCF, and NEUROG2, similar to 

Foxp2+ neurons, but showed a high enrichment of EGR, FOS, JUN, PKNOX1, GLI2, 

PBX3, TBX18, KLF9, and KLF17 motifs. The presence of EGR, FOS, and JUN further 

implicates this subpopulation in synaptic plasticity and stress response. Moreover, the 

enrichment of PKNOX1, GLI2, and PBX3 suggests additional roles in neuronal 

differentiation and transcriptional regulation of neural identity. The KLF9 and KLF17 

motifs are particularly interesting, as these factors are involved in regulating neuronal 

development and plasticity, possibly linking this subpopulation to cognitive processes and 

adaptation in response to brain aging 

 To confirm the funtional feature of Rarb+ Meis2+ high GABA neuron, we analyzed 

GSEA(KEGG and GO) analysis with top marker genes of transcriptomic data [Figure 44] 

and top differential open regions [Figure 45]. Interestingly Rarb+ Meis2 high neurons 

were significantly enriched in pathways related to cognitive functions(learning and 

memory), and synaptic organization(synaptic structure and activity). It revealed that 

Rarb+ Meis2+ subpopulation is strongly associated with maintaining neural connectivity 

and functionality, particullary in the context of aging. Also, it is crucial to play role in 

compensating for cognitive decline associated with aging, by maintaining or reorganizing 

inhibitory circuits in the brain. All results reinforce the idea that this subpopulation of 

neurons could be central to adaptive responses in the aging brain, offering potential 

therapeutic targets for addressing cognitive deficits in neurodegenerative diseases. 
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Figure 43. Differential motif scores of GABA clusters based on chromatin accessibility. 
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Figure 44. KEGG and GO analysis of Rarb+Meis2+ GABAergic neurons. 
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Figure 45. Enriched pathways and phenotype in Rarb+Meis2+ GABAneurons. 
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3.8. Epigenetic and Transcriptional Signatures of GABAergic 

neurons 

Following the detailed analysis of Section 3.7, expanded our investigation to examine 

other Meis2 high GABAergic neuron subtypes, such as Pbx1+ and Foxp2+ neurons, as 

well as the Meis2 low subpopulations, including GABA neuron 1, GABA neuron 2, and 

Rora+ GABAergic neurons. In Pbx1+ Meis2 high GABAergic neurons, we observed low 

enrichment of NAFIL3, DBP, and HLF, but a high enrichment of FOSL2, FOS::JUNB, 

BATF::JUN, and DLX5 motifs. This suggests that these neurons are more involved in 

transcriptional programs related to neuronal activity and regeneration, given the high 

expression of FOS-JUN family members, which are known to regulate responses to 

neural activity and synaptic plasticity. DLX5, a TF involved in GABAergic neuron 

development, further supports the developmental aspect of this subpopulation.  

 

In contrast, Foxp2+ Meis2 high GABAergic neurons exhibited low levels of 

NEUROD1, CTCF, and NEUROG2 motifs, typically associated with neurodevelopment 

and CNS specification. Instead, they showed a high enrichment of RFX (RFX1-5) family 

motifs, potentially maintaining the sensory ciliary structures necessary for cellular 

signaling. 

 

Meanwhile, in the Meis2 low GABAergic neuron subtypes, GABA neuron 1, GABA 

neuron 2, and Rora+ GABAergic neurons, distinct transcriptional regulation was 

observed. Despite the absence of specific marker genes, GABA neuron 1 and GABA 

neuron 2 exhibited strong enrichment for TF motifs such as NEUROD1, NEUROG2, 

OLIG1/2, and RFX (RFX1-5) family. The presence of NEUROD1 and NEUROG2, key 

regulators of brain development and CNS differentiation, suggests that these neurons may 

represent more immature or plastic populations. The enrichment of OLIG1/2, which are 

traditionally linked to oligodendrocyte development, suggests a potentially novel role in 

neuronal differentiation, particularly in maintaining neuronal plasticity and homeostasis 
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within the CNS68. Additionally, RFX motifs, which regulate ciliary gene expression, may 

indicate a role in neuronal ciliogenesis and the broader regulation of inhibitory signaling 

pathways.  

 

Rora+ GABAergic neurons, another Meis2 low subtype, displayed high enrichment for 

RORA, RORB, ESRRA, and ESRRB motifs, reflecting their known roles in neuronal 

activity regulation and circadian rhythm. The presence of RORA and RORB in these 

neurons suggests a key function in coordinating GABAergic signaling in response to 

environmental cues such as circadian cycles. 

 

Overall, these findings highlight the transcriptional and epigenetic diversity between 

Meis2 high and Meis2 low GABAergic neurons. Across different subclusters, we 

identified key TF motifs associated with differentially open chromatin regions. 
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3.9. Interaction shifts with microglia can lead pathology phenotype 

Recently, it has revealed that specific disease-associated or aging-related cells, such as 

DAM (disease-associated microglia), DAO (disease-associated oligodendrocytes), or 

DAA (disease-associated astrocytes), are implicated in the development of 

neurodegenerative diseases. Even though they were discovered in aged or knockout 

mouse, systematic interactions within the entire aged brain remain underexplored. To 

better understand the potential pathological features associated with these interactions, 

we conducted an cell-cell interaction (CCI) analysis between these mentioned aging 

related-cell populations. 

 

A comprehensive analysis of cell-cell communication in both young and aged brains 

using transcriptional data with cellchat [Figure.46] showed novel signaling patterns in 

aged brain, involving IFN-γ (Interferon-gamma), FASLG (Fas ligand), IL-1 (Interleukin-

1), PD-L1 (Programmed death-ligand 1), BAFF (B-cell activating factor), NKG2D 

(Natural killer group 2, member D), L1CAM (L1 Cell adhesion molecule), NECTIN and 

CLDN (Claudins). These signals are associated with inflammaging (IFN-γ, IL-1), 

regulating apoptosis and killing aged cells (FASLG, NKG2D) and associating BBB or 

cell junction assembly (CLDN, NECTIN). Some pathways including CSPG4, Opioid, 

and SELL were only active in young brain, contributing to neuroprotection, cell mobility, 

and immune response regulation. The decline of these pathways with aging suggests a 

reduced capacity for neural regeneration, immune surveillance, and inflammation control, 

which may contribute to increased susceptibility to neurodegenerative diseases. 
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Figure 46. Outgoing and incoming signals from both young and old brains. 

 

In-depth analysis of the GRN (Granulin) and RELN (Reelin) pathways, both linked 

to neurodegenerative diseases67,69, reveals significant changes in their signaling dynamics 

with aging. [Figure 47] In the young brain, GRN signaling primarily interacted between 

microglia and brain endothelial cells, maintaining immune regulation. However, in the 

aged brain, GRN signaling shifted, with increased interactions directed toward neurons, 

both GABAergic and Glutamatergic neurons, alongside an upregulation of Sort1 

expression [Figure 48-50], indicating enhanced neuronal involvement in the 

inflammatory response. This suggests a growing role for neuronal GRN signaling in 

driving neurodegeneration through both immune and neural pathways. 



６３ 

 

 

Figure 47. GRN and RELN signaling pathways in young and old mouse brain. 
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Figure 48. Signaling from microglia to neurons in young and old brains. 

 

 

Figure 49. Row-scaled pseudobulk gene expression in GABA and GLUT neurons. 
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Figure 50. Comparing gene expression of Grn (ligand) and Sort1 (receptor). 
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For the RELN pathway, a notable shift occured with the emergence of Rarb+ Meis2 

high GABA and Vip GABA neurons as novel signaling sources in the aged brain, while 

endothelial cells showed a reduction in RELN signaling reception, corresponding with 

decreased expression of Itgb1 and Itga3. It is interesting that Endo-C2 has weaker RELN 

incoming signaling than Endo-C1 that refers trajectory of endothelial cells also explain 

the same direction. These changes imply a decline in endothelial function and an 

increased role for neurons in RELN-mediated processes, potentially contributing to 

synaptic disorganization and cognitive decline. [Figure 47,51] 

 

 

Figure 51. Signaling from neurons to capillary endothelial cells.  
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4. Discussion 

  In this study, we employed multi-omics analysis to comprehensively characterize the 

transcriptional, epigenomic, and cell-cell interaction dynamics of the aging mouse brain. 

Through integrating snRNA-seq, scRNA-seq, and snATAC-seq, we elucidated several 

key shifts in cellular populations, signaling pathways, and gene regulation that underpin 

aging-related processes in the brain. Our analysis revealed alterations in some brain cell 

types, highlighting their potential roles in age-associated neurodegeneration and 

suggesting a interplay between transcriptional and epigenetic modifications in aging. 

 

  One of our major findings was the identification of three microglia subtypes (Micro-1, 

Micro-2, and Micro-3), with Micro-3, which showed increased abundance in aged brains, 

representing a pro-inflammatory and disease-associated state. Our pseudotemporal 

analysis suggests that Micro-3 acts as a terminally differentiated form of microglia, 

diverging from the homeostatic Micro-1 via an intermediate Micro-2 state. The trajectory 

analysis, combined with upregulated markers such as Apoe and Lyz2, provides insight 

into how Micro-3 could contribute to neuroinflammation and chronic immune activation, 

consistent with disease-associated microglia (DAM) identified in models of 

neurodegenerative diseases. The increased presence of Micro-3 in the aged brain suggests 

an exacerbation of inflammatory processes that may promote neuronal damage and 

contribute to the overall decline in brain health with aging. 

 

  Endothelial cells in the brain, which are integral components of the blood-brain barrier 

(BBB), also showed significant age-associated changes. We observed distinct clustering 

of endothelial cells into arterial, venous, and capillary subtypes, with a specific increase 

in the aged capillary endothelial subtype (Endo-C2). Endo-C2 exhibited transcriptional 

signatures indicative of increased stress and immune activity, including upregulation of 

genes such as Hspb1 and Actg1. Our pseudotemporal analysis of endothelial cells 

revealed that Endo-C2 is likely a senescent-like state, and its enrichment in aged brains 
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suggests that endothelial dysfunction and BBB disruption may be significant contributors 

to age-related neuroinflammation. The increased expression of inflammatory cytokines 

and adhesion molecules further implies that Endo-C2 endothelial cells may facilitate the 

infiltration of peripheral immune cells into the brain parenchyma, thus contributing to 

brain immune dysregulation and neurodegenerative processes. 

 

  Our analysis of GABAergic neurons uncovered a novel subpopulation of Meis2-high 

expressing neurons, which showed significant increases in abundance in aged samples. 

The Meis2-high subtype, particularly Rarb-positive neurons, displayed gene expression 

patterns associated with developmental and plasticity-related processes, including 

increased expression of transcription factors such as Foxp2, Pbx1, and Phactr1. These 

findings suggest that Meis2-high GABAergic neurons might play a compensatory role in 

maintaining neural circuitry during aging, potentially counteracting the decline of other 

GABAergic neuron populations, such as those expressing Sst, Lamp5, Vip, and  which 

decreased in abundance. Furthermore, label-transfer analysis of snATAC-seq data 

revealed enrichment of transcription factor motifs such as EGR, FOS, and PKNOX1 in 

the Meis2-high neurons, suggesting that epigenomic remodeling in these neurons may 

underlie their plasticity and contribute to the reorganization of inhibitory circuits in the 

aged brain. 

 

  Cell-cell interaction analysis provided insight into the systematic changes in 

intercellular communication occurring during aging. We observed novel signaling 

patterns in aged brains, involving pathways such as IFN-γ, FASLG, and IL-1, all of which 

are associated with inflammaging. The emergence of pro-inflammatory signaling, 

particularly through GRN and RELN pathways, highlights shifts in interactions between 

microglia, endothelial cells, and neurons, which could contribute to synaptic dysfunction 

and neuronal loss. The increased involvement of neurons in GRN signaling, particularly 

GABAergic neurons, suggests a growing neuronal role in perpetuating inflammatory 
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responses in the aged brain, which may exacerbate neurodegenerative processes. 

 

  Notably, the RELN pathway showed a shift in its signaling dynamics, with Rarb+ 

Meis2-high GABAergic neurons emerging as a novel source of RELN signaling in the 

aged brain. This shift in signaling dynamics, coupled with decreased endothelial reception, 

implies a decline in endothelial function and increased neuronal contribution to RELN-

mediated processes, potentially leading to impaired synaptic stability and cognitive 

function. These findings suggest that aging leads to both cellular and systemic shifts in 

intercellular signaling that may collectively drive the progression of neurodegeneration. 

 

  While our study provides valuable insights into the aging brain, it is important to 

acknowledge certain limitations. The relatively small sample size (n=3 per age group) 

limits the statistical power of our findings, and future studies with larger sample sizes are 

needed to validate our observations. Despite this limitation, our integrative approach 

enabled us to capture broad transcriptional and epigenetic changes that would be 

challenging to observe using traditional methods, such as FACS sorting, which may not 

effectively capture the full diversity of cellular states and interactions present in the aging 

brain. 

 

  In summary, our study reveals significant transcriptional, epigenetic, and cell-cell 

interaction changes in the aging mouse brain, highlighting the roles of specific cell 

subtypes in age-associated pathology. Microglia, endothelial cells, and GABAergic 

neurons undergo distinct shifts, with aged microglia exhibiting enhanced pro-

inflammatory states, capillary endothelial cells showing signs of senescence, and Meis2-

high GABAergic neurons potentially acting as compensatory regulators of inhibitory 

signaling. These findings provide insight into the cellular and molecular underpinnings 

of brain aging and highlight potential therapeutic targets to mitigate aging-related 

neurodegeneration. 
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5. Conclusion 

  This study utilized an integrative multi-omics approach to investigate the aging mouse 

brain, revealing complex transcriptional, epigenomic, and intercellular changes across 

different brain cell populations. We identified significant age-related shifts in microglia, 

endothelial cells, and GABAergic neurons, which contribute to neuroinflammatory and 

neurodegenerative processes. Specifically, we characterized the transition of microglia 

into a pro-inflammatory and disease-associated state (Micro-3), which suggests a role in 

promoting chronic inflammation in the aged brain. We also described the emergence of 

an aged-specific capillary endothelial cell subtype (Endo-C2), which displayed stress-

related and immune activation signatures, indicating potential blood-brain barrier 

dysfunction and facilitation of immune cell infiltration. 

 

  Our findings in GABAergic neurons highlight a novel Meis2-high subtype that 

increases in abundance with aging, potentially compensating for the decline of other 

inhibitory neurons. The Meis2-high neurons, particularly those expressing Rarb, showed 

enriched pathways related to plasticity, suggesting they may help maintain inhibitory 

network stability in the aged brain. The shifts in RELN and GRN signaling pathways 

observed in aged brains indicate altered intercellular communication that may drive 

neurodegeneration through both inflammatory and synaptic pathways. 

  Overall, our study provides a comprehensive view of the aging brain, identifying key 

cellular and molecular mechanisms that contribute to neurodegeneration. The 

identification of specific cell populations, such as Micro-3 microglia, Endo-C2 

endothelial cells, and Meis2-high GABAergic neurons, as well as their associated 

signaling pathways, offers potential therapeutic targets for mitigating age-related 

cognitive decline and neurodegenerative diseases. Future studies should focus on 

elucidating the functional roles of these cell populations and their interactions to better 

understand the mechanisms of aging and develop strategies for intervention. 
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Abstract in Korean 

 

전사체 및 후성유전체 데이터 통합 분석을 통한 

 마우스 뇌에서의 노화연구 

 
 

노화는 뇌의 세포 구성과 신호 경로에 변화를 일으키며 알츠하이머와 같은 

신경퇴행성 질환의 위험을 증가시킨다. 최근에는 많은 연구자들이 차세대 시퀀싱 

기술을 뇌 연구에 활용하면서 그동안 밝히기 어려웠던 뇌에 서 중요한 역할을 하는 

다양한 세포 이질성 분석에 크게 기여하고 있다. 특정 노화 세포 유형이나 뇌의 특정 

영역에서의 변화와 관련된 위험요소는 연구되어 왔으나, 전체 마우스 뇌의 노화 

내재적 특성에 대해서는 아직 많이 알려지지 않았다. 

본 연구에서 단일 세포 및 단일 핵 전사체 시퀀싱(scRNA seq, snRNA seq)과 단일 

핵 ATAC 시퀀싱(snATAC seq)을 통합 분석하고자 하였으며 뇌에서의 전사, 후성유

전적, 세포 간 상호작용의 동태를 알아보고자 하였다. 분석 결과, 뇌 내 여러 주요 세

포 유형에서 노화 관련 주요 변화를 확인하였다. 특히 미세아교세포의 염증 유발 및 

질병 연관 상태로의 전이, 노화된 모세혈관 내피세포의 스트레스 및 면역 활성 증가, 

Meis2 발현이 높은 GABA성 뉴런의 보상적 역할이 주요 결과로 도출되었다. 세포 

간 상호작용 분석을 통해 노화된 뇌에서 신경세포를 향하는 염증성 신호 경로의 활성

화가 관찰되었으며, 이러한 변화들이 신경 기능 저하와 관련될 가능성을 시사하였다.  

본 연구는 노화된 뇌의 세포적 및 분자적 기전을 규명하고, 염증성 미세아교세포와 

신경세포 및 내피세포 간 신호가 노화 관련 신경퇴행에 중요한 역할을 한다는 것을 

강조하며 인지 기능 저하와 뇌 질환의 잠재적 표지자로서의 가능성을 시사한다. 나아

가 노화 관련 신경퇴행성 질환을 완화하기 위한 잠재적 치료 표적을 제시한다.  
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핵심되는 말: 노화, 다중 오믹스 분석, 단일세포 전사체, 단일세포 후성유전체, 통합분

석, 미세아교세포, 내피세포, GABA 뉴런, 신경퇴행성질환, 뇌 


