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ABSTRACT

Integration of unpaired transcriptome and epigenome data of mouse
whole brain and computational analysis for finding clues of aging

Aging is associated with changes in cellular composition and signaling pathways in the brain,
leading to an increased risk of neurodegenerative diseases. While the risk factors of specific aged
cell types or the changes in the specific brain regions related to disease are well-studied, little is
known about the intrinsic features of whole mouse brain aging.

We performed single-nucleus RNA sequencing (shRNA-seq), single-cell RNA sequencing
(scRNA-seq), and single-nucleus ATAC sequencing (ShATAC-seq) and integrated an unpaired
multiomics dataset to explore the transcriptional and epigenomic alterations in the aged mouse
brain. Focusing on alterations within cell types, we uncovered age-related populations, such as
age-related microglia (Micro-3), age-related capillary endothelial cells (Endo-C2), and Meis2
high-expression GABAergic neurons. Our findings also revealed significant shifts in intracellular
interaction and signaling pathways, including GRN (Granulin) and RELN (Reelin), which show
increased neuronal involvement in the aged brain. Notably, Meis2 high GABAergic neurons and
ENDO-C2 endothelial cells exhibit prominent alterations in signal reception and transmission,
correlating with upregulated inflammatory markers and compromised vascular integrity.

All of these changes highlight the critical roles of inflammatory microglia and signaling between
neurons and endothelial cells in aging-related neurodegeneration, providing potential markers of

cognitive decline and brain diseases.

Key words: aging, brain, multiomics, single cell transcriptomics, single cell epigenomics,
integration, microglia, endothelial cells, GABAergic neurons, neurodegenerative disease



1. Introduction

1.1. The Study of Aging

While human lifespan has increased dramatically in recent years, improvements in
healthspan, the period of life in which a person is disease-free, have been more modest.*
Aging is a complex and multifaceted process characterized by a progressive decline in
organic function, an increased vulnerability to disease and death. Aging is driven by
specific hallmarks that fulfill the following three criteria: (1) they exhibit changes
associated with aging, (2) their experimental enhancement accelerates aging, and (3)
therapeutic interventions targeting them can decelerate, halt or even reverse aging. Based
on these criteria, twelve hallmarks of aging have been proposed: genomic instability,
telomere shortening, epigenetic alterations, loss of proteostasis, disabled macroautophagy,
dysregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell
exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. 2
These hallmarks are interconnected and also related to the hallmarks of health, which
encompass features such as spatial compartmentalization, homeostasis maintenance, and

proper stress responses. [Figure 1]

1.1.1. Genomic Instability

Genomic instability refers to the increased tendency of the genome to acquire mutations
and alterations over time. This process is fundamental to aging and occurs due to various
factors : 1) DNA damage from external sources like UV radiation or chemical exposure, 2)
interal sources of damage like ROS, and 3) errors in DNA replication and repair
mechanisms. As we age, the accumulation of these genomic alterations can lead to cellular
dysfunction, senescence, or cancerous transformations. Research has shown that
interventions targeting DNA repair mechanisms can potentially show down the aspect of

aging.>*[Figure 2]



Mis ed

0,

Dotumegiiel | Deraiiees®
on n

Figure 1. The Hallmarks of aging.
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Figure 2. The central role of DNA damage in aging.



1.1.2. Telomere shorteneing

Telomeres are repetitive nucleotide sequences at the ends of chromosomes that protect

them from degradation.Key points include : 1) telomeres shorten with each cell division

due to the end-replication problem, 2) when telomeres reach a criticalll length, cells enter

senescence or undergo apoptosis, and 3) telomere length is considered a biomarker of

cellular aging. Studies have demonstrated that telomere shortening is associated with

various age-related diseases and that telomerase activation can potentially reverse some

aspects of cellular aging. *>® [Figure 3]
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1.1.3. Epigenetic Alterations

Epigenetic changes involve modifications to gene expression and protein translation that
don't affect the DNA sequence itself. These include :1) DNA methylation patters, 2) histone
modifications, and 3) chromatin structure modifications. With age, there is a general trend
towards global DNA hypomethylation and site-specific hypermethylation. These changes
can lead to altered gene expression profiles associated with aging. Researches have shown
that epigenetic reprogramming can potentially reverse age-associated epigenetic marks.’
[Figure 4]
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Figure 4. Epigenetic regulation of aging.



1.1.4. Loss of Proteostasis
Proteostasis, or protein homeostasis, refers to the cell's ability to maintain the proteome
through regulation of protein synthesis, folding, trafficking and degradation. Age-related
decline in proteostasis includes : 1) Decreased efficiency of chaperone proteins, 2) reduced
activityttt of protein degradation systems(ubiquitin-proteasome and autophagy-lysosome),
and 3) accumulation of misfolded or aggregated proteins. These can lead to various age-
related pathologies, such as neurodegenerative disease. Some studies showed that

enhancing proteostasis mechanisms can extend lifespan in model organisms. 8°

1.1.5. Disabled Macroautophagy
Macroautophagy, often simply called autophagy, is a cellular 'recycling’ process that
degrades and recycles cellular components. With age :1) autophagy efficiencyyy declines,
2) accumulation of damaged organelles and protein aggregates increases, and 3) cellular
stress resistance decreases. Impaired autophagy is implicated in various age-related
diseases. Some has been published to show that stimulating autophagy can extend lifespan

and healthspannnn in various model organisms. 1

1.1.6. Dysregulated Nutrient-Sensing
Nutrient-sensing pathways play crucialll roles in metabolism and energy homeostasis.
Key pathways are 1) insulin and IGF-1 signaling, 2) mTOR pathway, 3) AMPK and 4)
Sirtuins. With age, these pathways become less sensitive and dysregulated, leading to
metabolic imbalances. Some papers have published studies showing that modulation of
thesepathways particularly through dietary restriction, can extend lifespan in various

species.!



1.1.7. Mitochondrial Dysfunction

Mitochondria, known as the powerhouses of cells, become less efficient with age: 1)
decreased ATP production leads to reduced energy supply for cellular functions, 2)
increased reactive oxygen species(ROS) can contribute to cell damage through higher
oxidative stress condition, 3) accumulation of mitochondrial DNA mutations and 4) altered
mitochondrial dynamics because of the imbalance between fushion and fission processes
can cause mitochondrial disability. These changes contribute to various age-related disease,
and some rejuvenation experiments proved that changing old mitochondria to young

mitochondria slows aging processes. [Figure 5] *2
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Figure 5. Mitochondria as Regulators of Organismal Aging.



1.1.8. Cellular Senescence
Senescent cells accumulate with age, no longer dividing but remaining metabolically
active: 1) cell cycle arrest with inhibitor(pl6 and p21), 2) morphological changes
(enlargement and altered nuclear shape), 3) senescence-associated secretory phenotype
(SASP) such as cytokines, growth factors and proteases, 4) telomere shortening, and 5)
DNA damage. The accumulation of senescent cells accelerates aging process and impairs
tissue function, sometimes with chronic inflammation. These days, senolytics which

remove senescent cells are big interests for aging studies. **

1.1.9. Stem Cell Exhaustion
The regenerative capacity of tissues declines as stem cell function and number decrease
with age : 1) reduced stem cell pools, 2) impaired self-renewal capacity, 3) altered
differentiation potential, 4) changes in the the supportive microenvironment for stem cells
and 5) epigenetic alteration of stem cell. These changes compromise tissue homeostasis
and repair capacity, fastening the aging rate. Rejuvenating stem cell experimentally

reversed the aging feature with some studies. *

1.1.10. Altered Intercellular Communication

Changes in signaling between cells contribute to tissue dysfunction. In immune system,
increased infammatory signalling like NF-kB promotes immune cells nearby secreating
cytokines and induces chronic inflammation. In endocrine system, aged endocrine cells fail
to control to secreting hormones or become dysfuntional, else responder cells become
dysfunctional. This can happen in brain, causing neuroendocrine deregulation and leading
neurodegeneration. Extracellular matrix(ECM) alteration can affect cell-cell interactions
physically. Modulating intercellular communication pathways can influence aging process,
so some pathway studies through multiple cell types are important to understand age-

related disease. °



1.1.11. Chronic Infammation
Low-grade, chronic infammation, often termed “inflammaging”, increases with aging.
The elevated level of inflammatory cytokines, like IL-6 and TNF-a, is the hallmark of aging.
This can enhance oxidative stress by increasing ROS production and decreasing ROS
clearance. Immune cells changed their proportion and function with aging and can
influence several organic microenvironment. Furthermore increased autoimmune

responses by production higher autoantibodies and cause age-related autoimmune disease.
16

1.1.12. Dysbiosis
Changes in gut microbiome composition and function occur with age. The diversity of
microbiome reduced, changing the ratio of beneficial bacteria and harmful barteria.
Following this, altered metabolite is producted and influence aging process. Also gut
microbiome associate immune system and modulate body health. The potential of
microbiome modification in influencing aging and longevity is shown through several

reports.’

The process of aging is influenced by complex molecular mechanisms involving
genetic, epigenetic, and environmental factors that inhibit cell proliferation, alter
metabolism and gene expression and promote age-related disease.!®*Many strategies for
decelerating age-related diseases have been actively studied, including calorie restriction
through reduced calorie intake and increased exercise'’and pharmaceurical treatments
targeting senescent cells and associated molecules. °Animal studies, especially mouse
model, can provide valuable insights into aging-related research by making it easier to
examine these complex molecular mechanisms in a controlled environment, thereby

helping to identify potential age-related changes.?!



1.2. Aging-Related Disease in Brain

In the brain, aging is associated with changes in cellular composition, synaptic plasticity
and brain structure, which can contribute to declines in cognitive abilities like learning,
memory and behavioral habits.?* Cellular senescence, hyperexcitability, inflammatory
response, and alterations in proteolysis are some of the hallmarks of aging that impact both
neuronal and non-neuronal cells, leading to change the expression or protein level and
celllular communication.?*

Among these, age-related neurodegenerative diseases such as Alzheimer's disease(AD),
Parkinson's disease(PD) and frontotemporal dementia(FTD) are widely studied, as they
lead to progressive cognitive and motor dysfunction. 2 2 2728 [Figure 6] The pathogenesis
of these diseases often involves the selective vulnerability of certain neuronal populations,
accumulation of pathological protein aggregates (e.g., amyloid-beta, tau, TDP-43), and
widespread neuroinflammation. To elucidate the mechanisms driving these changes,
several studies of neurodegenerative diseases have explored the cellular and molecular
landscapes of the brain from genetics to mechanisms. In AD, the hippocampus and cortical
neurons are predominantly affected, while in PD, the dopaminergic neurons in the
substantia nigra are primarily impacted. One study showed that accumulation of somatic
single-nucleotide variants (SSNVSs) increase with age.? For example, SNCA,; which is an
important locus in PD, and APOE; which is a genetic risk of both AD and PD are prevalent
patients with neurodegenerative disease and it suggests that genomic alterations in brains
might be linked to neurodegeneration. Some studies showed GRN loss of function with age
can cause both AD and frontotemporal dementia (FTD), and they are characterized with
over-accumulation of amyloid-beta, tau or TDP-45 in brain and lead cognitive decline and

dementia. %3 [Figure 7]
Recent research suggests that aging-related changes in neuronal and glial cell states, as

well as alterations in brain vasculature, contribute to the disease's progression. Therefore,

dissecting the specific changes in cellular composition and gene expression profiles

10



associated with brain aging is key to understanding the early molecular events that

predispose individuals to neurodegenerative conditions.
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Figure 6. Age-related brain disease.
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1.3. The Role of Cell Types in Brain and the Changes with Aging
The brain is made up of various cell types, including neurons and glial cells, each
playing unique roles. [Figure 8] Neurons are responsible for sending and receiving related
to thinking, moving and sensory perception signals through synapses. Glial cells, involving
oligodendrocytes, microglia and astrocytes, support and interact with neurons.
Oligodendrocytes insulate neurons with the myelin sheath, while microglia act as immune
cells in brain, cleaning debris and responding to damage. Astrocytes maintain the brain’s

environment to homeostasis state and support neural signaling.
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Understanding the age-associated alterations in different brain cell types, including
neurons, glial cells, and the vasculature, may shed light on the early events that drive
neurodegeneration. Microglia are the most extensively studied cells in the context of brain
aging and neurodegeneration.® Advancements in SCRNA-seq and snRNA-seq have enabled
the identification of microglia in different states, deepening our understanding of their roles
in Alzheimer's disease. In 5xFAD mice, Keren-Shaul et al. discovered disease-associated
microglia (DAM) involved in clearing AP plaques, a finding confirmed in human AD brain
samples. Additionally, snRNA-seq of the occipital and occipitotemporal cortex in AD
patients revealed three microglial clusters: homeostatic microglia, AD1-microglia, and
AD2-microglia.***® These findings have advanced our understanding of how microglia
contribute to age-related brain changes.

Oligodendrocytes are regarding demyelination. As the brain ages, the efficiency of
myelin production and maintenance declines, affecting neural signal transmission. Park
Hanseul et al found that aberrant Erk1/2 signaling is related with disease-associated
oligodendrocytes(DAOs) and inhibition of Erk1/2 signaling in DAOs rescued axonal
demyelination and reduced amyloid beta associated pathologies and cognitive decline in

AD models.® Studies on oligodendrocyte function and the mechanisms behind

13



demyelination can provide insights into age-related cognitive decline and diseases like
multiple sclerosis.

Astrocytes, previously considered merely as support cells, have now been recognized
for their active role in central nervous system (CNS) health and disease. Recent discoveries
of disease-associated astrocytes (DAA) and age-related astrocyte subtypes have
highlighted their contributions to altered brain homeostasis, especially in the aging brain,
where they may drive or exacerbate neurodegenerative processes.®” Furthermore,
astrocytes are increasingly implicated in the disruption of the blood-brain barrier (BBB)
during inflammatory CNS conditions such as multiple sclerosis (MS). Astrocytic
expression of VEGF-A has been identified as a key factor driving BBB permeability. In
mouse models, inhibiting astrocytic VEGF-A expression was shown to reduce BBB
breakdown, lymphocyte infiltration, and neuropathology, suggesting that targeting VEGF-
A signaling in astrocytes could serve as a protective strategy against neuroinflammation
and CNS disease progression. %

This knowledge can pave the way for the development of therapeutic strategies aimed

at mitigating or delaying the onset of age-related diseases.

1.4. Single cell Sequencing Analysis and Multi-omics

A landmark study from the Ziesel and Hjerling (2015) labs conducted the first large-
scale transcriptomic analysis of cells in the CNS, laying the foundation for understanding
cellular diversity in the brain®* Recent technologies, including high-throughput
transcriptomic, genomic, epigenomic, and spatiotranscriptomic sequencing in single-cell
resolution methods, have provided unprecedented opportunities to study cellular
heterogeneity and discover expression level and pathway changes implicated in brain
aging.“ 442 In this study, we used transcriptomics sequencing and open chromatin

accessibility analysis. [Figure 9]
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Transcriptomics
For detect cellular heterogeneity, droplet-based or plate-based single cell RNA sequencing
methods have revolutionized transcriptomic analysis. Droplet based, such as Drop-seq, 10x
Genomics Chromium, inDrop, and Seg-Well, allow high-throughput profiling of thousands
of individual cells. Plate-based, such as Smart-seq and Smart-seq2, provide high sensitivity
for detecting low-abundance transcripts. Enabling detailed gene expression analysis at the
single cell level, researchers capture the transcriptomic profile of diverse cell populations
within complex tissue like brain. These technologies are actively used to reveal specific
gene expression patterns across interested cell types and uncover cellular changes in

specific condition.

Open Chromatin accessibility
Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and single-
nucleus ATAC sequencing, which applies single cell technology to ATAC-seq, are widely
used methods to assess chromatin accessibility at a genome-wide scale. [Figure.10] ATAC-
seq captures open chromatin regions, often representing active regulatory elements or
promoters. With snATAC-seq, it is possible to analyze individual nuclei epigenomic and
gene regulatory changes. This approach is particularly valuable for studying how chromatin

remodeling contribute to gene regulation in aging condition.

Single-cell transcriptomic technologies continuously upgrade its applification by
combination with other types of ‘-omics’ approaches such as proteomics(CITE-seq),
epigenomics(10x Multiomics-Gene expression and ATAC-seq), and
spatiotranscriptomics(Visium, Slide-seq). Multiple information allows for a more
comprehensive understanding of the complex interactions and regulatory networks that

drive aging processes. 43 44 4

15



Gel Bead
TruSeq Read 1

. Umi PolyldTIVN

Single Cell 3’ ==

Gel Bead

]}

droplet based sequencing
e o000 ae *)

4
o
10x Barcoded

Gel Beads Cells

Gene expression library lr

Figure 9. 10x Chromium single cell transcriptomic and epigenomic sequencing.

16

Single Cell Ps ——

ATAC .
GelBead

10xBarcoded .@..C%
| @ 4

Oilin Well

Transposed e

Nuclei, o
Enzymes \. o 6’/
i o4
Transposition of
Nuclei in bulk

ATAC library

Samole
Inden 6516 Resd 150 IndexN(78)
I I
PUEREELEEE
£ S Rexi™  ingert Read 24
Read 245 8



Closed Open
chromatin chromatin
r . . Adapter 1 Adapter 2
/ MM /\/\J }/ ) Hyperactive

TnS transposase
Chromosome

ta
O]
220D D Dpg By

Cpomra 2 2 2 —° =—= ——

Tagmented DNA fragments DNA fragment purification and PCR amplification

® DIIDAD_D_D_D

mill

Next generation sequencing of PCR product and data analysis q ing peaks corresponding to open chromatin

Peaks (kb)

Figure 10. ATAC-seq.

17



2. Materials and Methods

2.1.Sample Collection and Preparation
Three young (4 months) and three old (21 month) C57/BI6 female mice were obtained.
At the defined day, mice were anaesthetized with 2.5-3% isoflurane and transcardially
perfused with 10ml cold PBS to remove blood from brain. Following perfusion, the brain
was dissected quickly, stored in media demonstrated for single cell isolation protocol, while

immediately flash-frozen for 2 min on dry-ice and then moved to —80 °C for long term

storage for single nuclei isolation.

2.2.Single-cell RNA sequencing

Single cells were isolated following a cell-isolation protocol provided by 10x
Genomics. This method allowed cells to be ready for running on the commercially
available high-throughput single-cell RNA sequencing technology - droplet-based 10X
Chromium platform. *° All GEMs generated were used for cDNA synthesis and library
preparation using the Chromium Single Cell 3' Library Kit v3.1 (10X Genomics). We
followed the manufacturer’s instructions (User Guide, CG000315) for cell capture,
barcoding, reverse transcription, cDNA amplification, and library construction. Libraries
were quantified using an Agilent Bioanalyzer with a high sensitivity chip (Agilent) and
were sequenced using the lllumina NovaSeq 6000 S4 platform, using 150-bp paired-end
sequencing, using the following read lengths: 28 bp Readl, 10 bp 17 Index, 10bp I5 Index
and 90 bp Read2. The 2 libraries of scRNAseq from young and old mouse brain were

sequenced at 20,000 reads per cell, respectively. Single cell capture, library preparation,

and sequencing were performed by Macrogen (www.macrogen.co.kr).
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2.3.Single-nucleus RNA sequencing

We isolated nuclei from the cell suspension using a modified protocol provided by 10x
Genomics (Isolation of Nuclei for Single Cell RNA Sequencing — CG000393). Single-
nucleus suspensions were isolated from flash-frozen mouse brains stored at -80 C. Initially,
the brains were minced on ice using a pre-chilled razor blade, and the chopped tissue was
transferred to a tube containing a pre-cooled lysis buffer (LB; 10 mM Tris-HCI pH 7.4,
146 mM NaCl, ImM CaCl,, 21 mM MgCl,, and 0.1% NP-40). The tissue was then
incubated on ice for 15 minutes, during which it was triturated gently. At the end of the
incubation time, wash buffer (WB; 10mM Tris, 146mM NaCl, 1mM CaCl,, 21 mM MgCl,),
2% BSA in PBS with 0.2 U/ul RNasin) was added to the mixture, which was then filtered
through a 40-um cell strainer and further digested mechanically for debris removal. The
homogenized tissue was centrifuged at 700g for 10 minutes at 4 C. The supernatant was
removed carefully to isolate the nuclei pellet.

A gradient centrifugation step was performed by mixing the nuclei suspension with 1.8M
sucrose and layering it over a sucrose gradient before centrifuging at 13,0009 for 45 min at
4°C. The nuclei were collected by removing the supernatant and washing the pellet in ST-

SB buffer (2% BSA, 0.02% Tween-20, 10mM Tris, 146mM NaCl, 1mM CaCl,, 21 mM
MgCl,). We counted the nuclei using a Countess Il (Thermo Fisher Scientific).

This method allowed the nuclei to be ready for running on the 10x Chromium Single
Cell 3’ v3 platform. All GEMs generated were used for cDNA synthesis and library
preparation using the Chromium Single Cell 3' Library Kit v3.1 (10X Genomics). We
followed the manufacturer’s instructions (User Guide, CG000315) for cell capture,
barcoding, reverse transcription, cONA amplification, and library construction. Libraries
were quantified using an Agilent Bioanalyzer with a high sensitivity chip (Agilent) and
were sequenced using the Hllumina NovaSeq 6000 S4 platform, using 150-bp paired-end
sequencing, using the following read lengths: 28 bp Readl, 10 bp 17 Index, 10bp I5 Index

and 90 bp Read2. The two scRNAseq libraries of young and old mouse brain were
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sequenced at 20,000 reads per cell, respectively. Sequencing was processed by Macrogen.

2.4.Single-nucleus ATAC sequencing

For combination method of ATAC-seq and single cell sequencing, scATAC-seq(or
snATAC-seq)*’, we isolated nuclei from the cell suspension following a brain nuclei
isolation protocol in the reference of 10x Genomics protocol (Nuclei Isolation from Mouse
Brain Tissue for Single Cell ATAC Sequencing, CG000212). The final nuclei were
resuspended in Diluted Nuclei Buffer (Chromium Next GEM Single Cell ATAC Reagent
Kits v2). The composition of the Tris-based Diluted Nuclei Buffer, including Magnesium
concentration, is optimized for the transposition and barcoding steps in the Single Cell
ATAC protocol, which is not used in RNA seq protocol.

After transposition step using transposition mix (Chromium Next GEM Single Cell
ATAC Reagent Kits v2), we ran on the 10x Chromium Single Cell 3' v3 platform, generated
GEM, synthesized cDNA and constructed libraries. Libraries were quantified using an
Agilent Bioanalyzer with a high sensitivity chip (Agilent) and were sequenced using the
[llumina NovaSeq 6000 S4 platform, using 150-bp paired-end sequencing, using the
following read lengths: 50 bp Readl, 8 bp 17 Index, 16bp I5 Index and 50 bp Read2. The
two scRNAseq libraries of young and old mouse brain were sequenced at 25,000 reads per
cell, respectively. Single-nucleus capture, library preparation, and sequencing were

performed by Macrogen (www.macrogen.co.kr).

2.5. Transcriptomic data preprocessing
FASTQ files of raw reads from scRNA-seq and snRNA-seq were processed using the
Cell Ranger software suite (v7.2.0, 10x Genomics Inc., USA)*. For gene annotations, reads
were mapped to the mouse reference genome (GRCm38) with the Ensembl GRCm38 GTF
file, resulting in production of gene-by-cell count matrices. With count matrices, Seurat
objects were created by R package Seurat v5.1.0%% and used for downstream analysis.
To filter out low-quality cells, cells with 6000< and 200> nFeature_ RNA, 20000<
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nCount_RNA, and 3%< percent.mt were removed. Each gene expression measurements in
each cell was then normalized using the SCTransform*® protocol to address variations in
sequencing depths across cells. We use the top 2000 high variable genes as the default
training parameter.

Cells associated with doublets were identified and removed using the scDblFinder °
(v1.18.0) R package. To further remove cell-specific biases, cells were clustered using
Seurat v5 and low-quality clusters visually inspecting outliers in the UMAP plot were
annotated and excluded for downstream analysis. Using the Leiden algorithm in clustering
analysis across multiple datasets. Cell embeddings are visualized in UMAP.

For annotating each cell types, we used label transfering in Seurat R package with
transcriptomic reference, such as Azimuth® and Allen Institute Brain Atlas*?, and canonical
marker genes of brain major cell types to fnalize manual annotation for each cell.
Unassigned cells were reclassified based on expressing marker-genes and the major cell
type of clusters to which they belong.

Cells were into 19 clusters using the FindClusters function on the first 30 PCs of high
variable genes with resolution =1.2, and were visualized in the two-dimensional UMAP
plot with the RunUMAP functions. For each cluster with >80% of the most abundant cell
type, unassigned cells were classified into the cluster of major cell type and cells assigned

to other minor cell types were removed as putative doublets.

2.6. Epigenomic data preprocessing
The paired-end sequence read fastq files were aligned to a mouse (mm210) combined
reference genome (refdata-cellranger-atac-GRCh38-and-mm10-2020-A-2.0.0,10x
Genomics) using Cell Ranger ATAC software (v2.0.0), including read filteration,
alignment, barcode count, identification of Tn5 cut sites, detection of accessible chromatin
peaks, cell calling and count matrix generation for peaks. Based on Signac(v1.14.0)? R
package, we did peak-calling with mm10 genome reference and MACS23, annotation and

quantifying per-cell counts in different genomic regions using EnsDb.Mmusculus.v79, and
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calculating single-cell QC metrics, such as nucleosome signals, TSS enrichment, were
processed on generated seurat objects.

For normalization, we ran term frequency inverse document frequency (TF-IDF)
normalization on a matrix, and then ran LSI dimension reduction using RunSVD function.
The first LSI component often captures sequencing depth rather than biological variation,
so the component was removed from downstream analysis. Following dimension reduction
such as UMAP and clustering utilized LSI space.

Creating gene activity matrix were done for annotation and validation of expressed
canonical marker genes in major cell types. To annotate cells with pre annotated
transcriptomic Seurat object, we utilized methods for cross-modality integration and label

transfer using Signac package, referred as RNA anchor-based classification.

2.7. Data Integration
After creating gene-activity matrix of snATAC-seq dataset, we merged every
transcriptomic and epigenomic dataset and performed integration with CCA integration by
using Seurat v5 function to remove batch effect, such as sequencing depth and
technological differences, for making possible to compare solely biological differences
across aging. We processed clustering and dimension reduction again with integrated

dataset to draw co-embedded UMAP plot of three modalities.

2.8. Downstream analysis
Differential expression analysis
Differential expression analysis was conducted using the FindAllMarkers function.
Differentially expressed genes (DEGs) of aging whole brain and DEGs of aging in each
cell type were identified, as well as DEGs of different clusters and major cell types.
Wilcoxon Rank Sum test was used as a default to find DEGs and every DEGs were filtered
with adjusted p-value<0.05 and |log2FC|>0.5 for significant differences in the number of

cells.
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Gene set enrichment analysis
Using the DEGs as input resources, we processed gene-set enrichment test (GSEA) and
when the p-value <0.05, a pathway is considered to be significantly associated. The
enrichment analysis in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways was determined based on the cell type specific aging related
DEGs.

Single-cell trajectory analysis

Pseudo-time analysis is a great tool for understanding the dynamics and temporal
trajectories of gene expression within cell types and cellular shifts during aging. Using
Monocle2 °*, cell type-specific CellDataSets were created based on subset seurat objects.
Next, we reduced dimensionality with default method named 'DDTree', a hybrid decision
tree-deep neural network. Ordering cells on trajectory of the tree and finding the beginning
point, we used orderCells function in monocle and specified state which contains most of
the cells assessed to be time zero. Also, we plotted the expression levels of interested genes
from DEG lists, all of which show significant changes as a funtion of differentiation, using

the function plot genens in_pseudotime.

cis-regulatory network
For generating cis-regulatory networks and predicting novel cis-regulatory interactions
from single-cell chromatin accessibility, we used run cicero function in Cicero® R

package which is provided by Monocle 3 and mouse.mm10.genome as a reference genome.
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Motif analysis
We performed DNA sequence motif analysis using ChromVar® function by finding
overrepresented motifs in a set of differentially accessible peaks or performing differential
motif activity analysis based on JASPAR2020°" motif position frequency information. We
calculated a per-cell motif activity score and identified motifs associated with variability in
chromatin accessibility between cells. Furthermore, footprinting analysis could be

processed with added motif information.

GREAT analysis
We wanted to predict the overall functional changes of differential accessibile regions,
both coding and non-coding regions. By using genomic regions enrichment of annotations
tool(GREAT ver. 4.0.4) %8, the function and annotation of differentially open genomic
regions were predicted by statistical enrichments for associations between genomic regions

and annotations.

Analysis of intercellular communication
CellChat(v2)®® is designed for inference and visualization of cell-cell interaction from
single-cell expression data, and it also serves CellChatDB as a publicly available database
of literature-supported receptor-ligand interactions. To infer the interactions between cell
types observed exclusively in one dataset, cellchat was utilized on integrated transcriptomic
dataset. To identify receptor-ligand interactions, we referred to the STRING database of

protein-protein interactions.
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3. Results

3.1. Multi-omics analysis of the aging mouse brain

We employed snRNA-seq, scRNA-seq and snATAC-seq® using the 10x Genomics
Chromium platform version 3(10x v3). We applied both snRNA-seq and scRNA-seq for
single-cell transcriptomic profiling because of the capture efficiency and the diversity of
cell types in the mouse brain. Following the protocol from 10xGenomics and the lab-
developed nuclei isolation protocol, we isolated cells and nuclei from the female C57BL/6
mouse whole brains at 4 months (n=3) for young age and 21 months (n=3) for old age.
After quality filtering, we obtained 18,622 high-quality cells for scRNA-seq (8,989 and
9,633 cells from young and aged brain), 28,216 high-quality nuclei for snRNA-seq (19,574
and 8,642 nuclei from young and aged brain) and 22,915 high-quality nuclei for sShnATAC-
seq (8,037 and 14,878 nuclei from young and aged brain).[Figure 11] Then we clustered
and annotated with canonical marker genes. [Figure 12]

(CelliNuclei Isolation ) (Multimodal sequencing )
cell proportion DEG analysis
o || B ]
N [ | _________NENE
scRNA-seq ¥
4 month old | [
Young mouse Brain
open DAR analysis network analysis

“o

21 month old ' ) snRNA-seq
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—

Figure 11. Schematic overview of experiment.
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Figure 12. UMAP plot of each modality, color representing cell types.

After integrating both transcriptome dataset (sScRNAseq and snRNAseq), we classified
the clusters representing the major cell types of the mouse brain by assessing the expression
level of canonical cell-type marker genes. [Figure 13] For example, microglia were defined
by expression by Tmem119, endothelial cells defined by Cldn5 and Flt1, oligodendrocytes
by Mbp and Plpl expression, oligodendrocyte progenitor cell by Pdgfra, GABAergic
neurons by Gadl and Gad2, Glutamatergic neurons by Slc17a7 and adrenergic neurons by
Col25al. Less abundant cell types also observed such as immune cells (Cd8a, Ccl5),
vascular leptomeningeal cells (Apod, Slc6al3), olfactory ensheathing cells (Sashl),
neuroblasts (Ntngl), pericytes (Abcc9) ependymal cells (Cfap44), fibroblasts (Colla2) and

choroid plexus epithelial cells, however for erasing bias, we removed them.

26



Gad1
Gad2
I Col25a1
| Slc17a7

4 | Mbp

|

| Plp1
2> 4 | Chn2

I

|

-

W

| Gfap
Aqp4

o

Slc6a13
Cldn5
Fit1
Abcc9

|

| |
] |
] ]

s s Ttr
| |
] ]
1 1
O

Expression Level
L

o

———i——)-'———i- b—’-

b |

Tmem119

| |

| | Cx3cr1
| I | Ccls
19)

Figure 13. Violin plot depicting expression level of canonical cell type markers.

l
|
|
|
|
4
I
I
L

@ é@

@
4

Next, we employed Seurat’s label-transfer algorithm to annotate and gene-activity
converged snATAC-seq dataset. we were able to check that main cell types in label-
transfered snATAC were correctly labelled, based on the accessibility of the promoters of
marker genes within each cell type. [Figure 14] Finally, we performed CCA-integration on
three datasets to project all cells from three different modalities onto a unified reduced
dimensional space, resulting in a coembedded UMAP plot. [Figure 15] Some neuronal cells,
which are presumed to be GABAergic neurons, were located at the center and showed

significant sparsity, likely due to the effect of the snATAC data.
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3.2. ldentification of cell-type composition in multi-modalities

Integrating transcriptome and chromatin accessibility profiles, we left 12 main cell
types which contain more than 200 cells(nuclei) and further subclustered total 30 cell types
for further analysis. [Figure 15] Some papers already showed that nuclei are relatively
uniform in size and morphology, so it is possible to get more cell types from snRNA-seq
rather than ScCRNA-seq, because some cell types are more vulnerable to the tissue
dissociation process. ShRNA-seq and sScRNA-seq can capture different neuronal types, and
our study also consistent to this. “>$![Figure 16]

Two nucleus-derived sequencing method captured similar cell types when compared
to the cell-derived sequencing method. [Figure 17] Validate correlation between the two
nucleus-derived sequencing datasets, we assessed the relationship between average gene
expression (snRNA-seq) and average gene activity (SnATAC-seq). The plot shows a
correlation with R=0.63 and p-value < 1e-05, indicating a positive relationship. [Figure 18]

Also, overall proportion of cell types were significant fluctuation between modalities,
showing increases in some old genes and decreases in others, making it hard to compare
between young and old brain. [Figure 19] This could be due to loss during the individual
sample preparation process. Given the characteristics of the brain, it is sensitive to be
isolated in single cell/nuclei resolution, compared to other tissue. Despite of these difficulty,
we aimed to explore the potential biological significance from both sequencing behind

these differences.
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To put it briefly, Glutamatergic (excitatory, GLUT) neurons and GABAergic
(inhibitory, GABA) neurons were divided 4 and 11 sub-clusters, respectively. GLUT
neurons were further annotated using references from the Allen Brain Institute, while
GABA neurons showed significant differences based on the expression of transcription
factors, as seen in earlier brain-omics studies, and were annotated accordingly using
relevant genes. Notably, for GABA neurons, we were able to identify well-known clusters
such as Pvalb, Vip, Lamp4, and Sst expressing neurons, which are frequently reported in
existing papers®?, and the decreased proportion of them with aging was aligned with other
studies. ®3 [Figure 20] We wanted to show the transcriptional and epigenomic modification
in specific GABA neuron of aged brain for finding clues of aged-related
neurodegeneration through hyper-excitable signaling.

Secondly, consistent to previous paper about aged brain endothelial cells’ sequencing
study®, our data also clustered in venous(V), capillary(C), and arterial(A) cells but
slightly significant proportion shift showed between young and old brain. Comparing

capillary endothelial cell type 1(Endo-C1) and type 2(Endo-C2), more Endo-C2 was
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positioned in aged brain and we assumed that these could be aged-endothelial cell. We
made hypothesis that aged-endothelial cells make blood brain barrier (BBB) disruption
and occur immune cells leakage to brain tissue, as our data showed increasing immune
cells in old brain. Lastly, according to the data, microglia are sub-clustered into three
groups (Micro-1, Micro-2, and Micro-3), with Micro-3 making up a larger proportion than
Micro-1 in the aged brain. We thought that Micro-3 are aged microglia and wanted to

explore their characteristics in more detail through further analysis
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Figure 20. Cell type proportion comparing the young and old brain.
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3.3. Gene expression alters in major cell types with aging

We next analyzed the differentially expressed genes (DEGs) with age in each major
cell types of transcriptomic data. To globally understand how expression patterns changes
with age, we performed differential gene expression analysis in all datasets of each
modality (padj < 0.05, |log2FC| >0.4) and compared age-related up- or downregulated
gene lists to age-related gene lists obtained from published studies. [Figure 21] Using this
method, in both scRNA-seq and snRNA-seq gene lists, the P2ry12 gene, which is a marker
gene of homeostatic microglia, was consistently down-regulated in our gene expression
data as well as in public datasets. Additionally, ten genes, including Slc16al, Vim, Gsn,
B2m, Cldn5, Id1, KIf2, KIf4, Cxcl12, and Cdknla, were found to be commonly up-
regulated across three gene lists from snRNA-seq, scRNA-seq, and public data.
Interestingly, Vim and Gsn are related to cytoskeletal remodeling or cellular movement
and claudin-5(Cldn5) is known as an endothelial cell marker gene that roles as a tight
junction protein to maintain the blood-brain barrier. Additionally, Cxcl12 is a chemokine
that plays a role in immune cell migration and is involved in stem cell niches. Cdknla,
also known as p21, is a cell cycle regulator involved in mediating cell cycle arrest and is
one of the famous senescence markers. To find different enriched pathways between
single cell and nucleus sequencing, we analyzed gene-set enrichment analysis with
upregulated genes with aging in each modality [Figure 22]. Single-cell based dataset
showed enriched ‘antigen-presenting’ pathway, while single-nucleus dataset showed
upregulated ‘neurogenesis’ pathway. This result make sense when we match the yielded

cell types and enriched pathways in each modality.
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Figure 21. Overlaps of DEGs with public age-related up/down regulated genes.
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Figure 22. Enrichment analysis with each modality, pathways upregulated with aging.

Next we investigated differentially expressed genes in each major cell types in
integrated dataset. [Figure 23] Neurons (GABA, GLUT, adrenergic neurons, Chn2 high
expressing neurons), oligodendrocytes (ODC), astrocytes (AST), and VLMC (vascular
leptomeningeal cells) showed the greatest amount of differentially up-regulated genes
with age. We had a question why Meis2 gene was up-regulated in GABAergic neurons in
old mouse brain, because the Meis2 coded protein act as an important transcription factor
in early brain development and had been studied on differentiation of neuronal cells into
specific neuronal fates. Recently Meis2 expressing GABAergic neurons were discovered
in the brains of patients with Alzheimer's disease by snRNA-seq.®® This founding led us
to take an interest in the shift of these GABAergic neurons. In the case of endothelial cells,
the differentially expressed gene lists overlapped significantly with the previously
mentioned list, including genes like Cdknla, B2m, KIf4, Slc16al, and Cxcl12. As we
expected, P2ry12 was significantly decreased in microglia, while neurodegenerative
disease related gene Apoe extremely up-regulated in microglia. However immune cells
infiltrated into old brain showed less inflammatory features than young brain. [Figure
20,23] To demonstrate the gene lists functions, we performed Gene Set Enrichment
Analysis (GSEA) using the enrich GO. Each cell types showed unique signatures of aging.

[Figure 24] To sum up, in the case of microglia, they can be explained by the aged
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microglia seen in previously known disease models, but for GABAergic neurons or
endothelial cells, there would be additional explanations to consider.
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Figure 23. DEGs of aging in each major cell types.
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Enriched GO of cell-type specific aged related DEG lists
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3.4. Aging microglia associate with inflammatory response

To reveal heterogeneity in microglia, we grouped microglia into three classes (Micro-
1, -2, and -3) and compared the ratio of microglia subclasses, as mentioned previously.
[Figure 25] To identify transcriptional patterns of the subclasses, we conducted
differentially expressed gene analysis by using the FindAlIMarkers funtion in Seurat and
comparing expression levels of DAM marker genes. [Figure 26-27] According to published
database®®, Micro-1 shared some signatures with homeostatic features, such as high level
of Tmem119, P2ry12, Hexb, and Cx3crl, while Micro-3 highly expressed inflammatory
genes such as Lyz2 and DAM-associated gene, including B2m, Apoe, Lpl, Cst7, Axl, Itgax,
Sppl, Cd9, Ccl6 and Csfl. Furthermore, in aged brain, these expression pattern showed
more significantly. Interestingly, Micro-2 in our dataset highly expressed Trem2, referred
as a signaling marker at stage 1 DAM in previous mentioned paper, and it down-expressed
in Micro-3 as in Micro-1. We raised the question of why Miro-2 and Miro-3 show different
signaling patterns, even though Miro-2 has diffused between Miro-1 and Miro-3.

To capture the molecular dynamics in microglia, we applied trajectory inference
analysis with monocle2 package. [Figure 28] Along with a MST algorithm, we confirmed
the lineage transitions between Micro-1 and Micro-3 and intermediated state Micro-2. Also
Micro-3 formed a distinct branch, representing terminally differentiated stated that diverges
significantly from Micro-1 and Micro-2. It might be due to unique environmental signals
or specific gene regulatory networks that push Micro-3 into a distinct functional role. To
figure out expression dynamics of well-known genes, Apoe and Lyz2 seemed to increase
with pseudotime, potentially contributing to the distinct identity of Micro-3. [Figure 29]
Taken together, we identified three microglia subclasses through transcriptomic analysis,
revealing that Micro-1 exhibited homeostatic characteristics, Micro-3 expressed
inflammatory and disease-associated markers and Micro-2 acted as an intermediate state
between two with trajectory analysis. A notable observation was the high expression of
Trem2 in Micro-2, resembling stage 1 DAM, while Apoe and Lyz2 increased over time in

Micro-3 especially in aged-mouse brain, solidifying the unique, terminally differentiated
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identity of Micro-3, like stage 2 DAM. This suggests that unique environmental signals
and gene regulation could drive the specialization of Micro-3 into its inflammatory role.
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Figure 25. Subclustering of microglia.
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Figure 29. Pseudotemporal gene expression of microglia.
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3.5. Capillary endothelial cells show high senescent signatures

As previously mentioned, endothelial cells in mouse brains are organized into distinct
clusters of venous, capillary and arterial cells, with capillary endothelial cells showing a
continuous and diffuse pattern between the other two types. To explore the heterogeneity
of endothelial cells, we classified all subset endothelial cells into four subtypes (Endo-A,
Endo-C1, Endo-C2, and Endo-V) with marker genes
of Bmx (arterial), Slcl6al (capillary), Nr2f2 (venous), and Vcaml (arterial and venous)
and compared the proportion of these subtypes across age groups.[Figure 30.31] It was
intriguing to observe that Endo-C split into two distinct types (Endo-C1 and Endo-C2). In
the previous transcriptomic analysis of aging brain endothelial cells(BEC) paper®. It was
visually evident that there were two distinct groups. We discovered that the proportion of
Endo-C2 increased slightly with aging.

We performed DEG analysis with single cell dataset and pseudobulk dataset, as same
way of microglia analysis, to confirm the annotation and characterize the transcriptional
patterns of each subtype. With aging, more Vcaml in venous endothelial cells was
expressed. More interestingly, we discovered that Actgl and Hspbl are marker genes of
Endo-C2 which were also lightly increased with aging. Actin gamma is part of the actin
cytoskeleton network which makes up the structural framework inside cells. Hspbl is
related to hypoxia and stress pathway. Consistent to the previous paper, capillary
endothelial cells all expressed higher Cxcl12, Ifi27, Acvlrl, B2m and Jun with aging, and
their expression level were significantly higher in Endo-C2 than Endo-C1. [Figure 32-33]
Endo-C2 upregulated innated immunity (Cxcll12, Ifi27), antigen processing(B2m), and
TGF-b signaling(Acvrll), suggesting that aged capillary endothelial cells show significant
modifications in upregulating innate immunity, antigen processing, TGF-b signaling and

oxidative stress response pathways than other vessel segment.
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Figure 30. Subclustering of endothelial cells.
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Figure 33. Normalized gene expression level of genes in endothelial cell subclusters.
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Next we traced the pseudotemporal dynamics of mentioned gene expression from
Endo-C1 to Endo-C2. [Figure 34] Marker genes of Endo-C1 such as Fry, Hmcnl, Mecom
and Tmtc2 were gradually down-regulated with trajectory, while marker genes of Endo-
C2(Actgl, Hspbl) and publicly mentioned up-regulated genes of aged capillaries(Junb,
B2m) all gradually up-regulated with trajectory. [Figure 35] In summary, our analysis
revealed considerable diversity within endothelial cells, with Endo-C2 appears to be more

stressed and related to immune response, particularly in aged samples.

Figure 34. pseudotime trajectory of capillary endothelial cells.
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Figure 35. Pseudotemporal gene expression of capillary endothelial cells.
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3.6. Aging-related Meis2-high expressing GABAergic neurons

By systematically classifying the genes that enriched in the various GABAergic

neuron clusters, we were able to distinguish subtypes based on gene expression profiles

except GABA neuron 1 and GABA neuron 2 which had no specific marker genes and

difficult to distinguish strictly. [Figure 36] The GABAergic neurons were divided into

three main groups based on marker genes: Meis2-high expressing neurons, highlighted in

the black-boxed clusters, Sst/Lamp5/Vip/Pvalb neurons, representing specific subtypes of

GABAergic neurons marked by these genes (as seen in the red-boxed clusters), and

Meis2-low expressing neurons, represented in the remaining clusters.

GABAergic neurons subclusterings

5 Pbx1+ Meis2+ GABA neuron -

o 01 B o
n_' - GABAmneuron 1
= Foxp2+ Meis2+ GABA neuron Sst GA s
= E
2

" " / -

= ) euron «qg“"““'e,
H Pvalb_%% neuron o
-10-

GABA neuron 1
. GABA neuron 2
ﬁ Foxp2+ Meis2+ GABA neurol

Pbx1+ Meis2+ GABA neuron Meis2 low
Rarb+ Meis2+ GABA neuron.
. Rora+ GABA neuron
Vip GABA neuron . .
= Lamp5 GABA neuron Meis2 hlgh
. Pvalb GABA neuron
. Sst GABA neuron

Figure 36. Subclustering of GABAergic neurons and shifts in composition with aging.
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As shown in the heatmap in [Figure 37], we observed distinct gene expression patterns
in these subgroups. Meis2-high neurons were marked by enriched expression of Meis2
and some part with Rarb, which is highly associated with developmental and regenerative
processes. On the other hand, Sst/Lamp5/Vip/Pvalb neurons represented well-known
subtypes of inhibitory neurons, each expressing their respective markers, such as Sst
(Somatostatin), Lamp5, Vip, and Pvalb (Parvalbumin). The Meis2-low neurons, which
comprised the remaining clusters, were characterized by reduced Meis2 expression and

transcriptionally have no marker genes comparing to other groups.

NG o XCXQ’Y‘ Q‘v. (f?
o“’o\u 0‘5)\0 \“@Q ﬁ‘?’v 0? (:Yg?. 0‘9?

e
0‘35“ c:'g;~ & 49& Q9 A\Q &
____-----_

|\|I|I|||:| (Y ||| ‘IIHIIIIIIII‘\
i e :‘ ! ! L'HF"'M‘I"I"J”W I‘H'HIH'“I"'” o gt w1 mmmmm

L LA R \ ”""“l'mh|||||l|||||'IAI|‘ ‘l‘”"‘II ”I:I:\IIIII |'h'|”l‘|\:m|m| \I

‘I I I‘ I Hl‘l L\‘ll‘\l‘ll ‘II H\Iu‘\'l‘l‘l . I‘I"\‘\I”H” II‘I “H [ 1 || ‘I :IHI IIHI 1
et o LY !
IIIII I:II\”I :I‘I HIIII ‘I I HIHII \‘ f I 1

Mt :

A" o, i e e w.&qu.m"m

Hﬂl.u. PRI LR o, il

"l[”ﬂi'dh-r e

|
il ”1 W||‘|'||‘|| I“J‘]

Phactr1 | | | | i u Pl L |
TR TR TR T o T ol RS i
REN Faiin 0 \ﬂ ity | | Em:”""
zﬁ; I ||”\ : R H kT . gyl b |m“|'mﬁ&ﬁ |ﬁ‘|| | |H \: (M i g I'
g’ T I muululmml (TR :
ca‘:'nRa 3 0 | | : (R \IIIIIHIH:\IITI:I\II |”|““‘ I‘II ||‘ [ :
Gf;g;afg (Ot R il il " i |‘|‘|h‘ i I ||:m i
Ceif2 R i L IR T |”'“m i

HI‘\Illll 1 I III‘HIIIII ‘:\Il . ‘ ‘ ‘ l‘ I ‘ ”l ‘ : :‘:”Ij‘lﬁ ! ‘I l ‘I‘ ‘ ‘ 1|\I HI
‘ i ‘H I ‘ ! “ i h I II‘I I : vy ‘l ! III :I ! : II 1 II:'\'\I'I'::"I”:"\I |IlIII I'IL'\:‘I‘I‘III:‘::”"IIIELJ'H! |:| {“
! i III | ! I\II mi :II\ I‘\:I i ‘ LN} II‘IiIIIIIIIIIH . I'“ | HI I‘llhw*“
| L wnnt "‘I‘“ ) ) L . | I \ I *\IIH

GABAergic neurons subclusters marker genes
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Through the proportional analysis of these neuron types in young and aged brains, we
found a notable shift with aging. [Figure 38] Meis2-high neurons increased significantly
in aged samples, indicating that this neuronal subtype may play a more prominent role in
the aging brain. In contrast, Sst/Lamp5/Vip/Pvalb neurons decreased with age, suggesting
that the functions of these specific inhibitory neurons might decline in the aging brain. It
is consistent with other aging related papers.t2% The proportion of Meis2-low neurons
remained relatively stable but, comparing with overall ratio of GABA neuron, it showed
a slight decrease. This overall reduction in the ratio of Meis2-low neurons, along with the
decline in Sst/Lamp5/Vip/Pvalb neurons, can be interpreted as a general decrease in
GABAergic neuron populations with aging, potentially contributing to reduced inhibitory

signaling in the aged brain.
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Figure 38. Proportional changes in GABAergic neurons.

We further performed pseudotemporal ordering of the transcriptional dynamics of the
GABAergic neuron clusters to capture the molecular trajectory of Meis2-high expressing
neurons during aging.[Figure 39] With MST analysis, we observed that the Meis2-high
GABAergic neurons occupied distinct regions along the trajectory, forming two separate

branches, suggesting that these neurons undergo divergent developmental or functional
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changes. Specifically, these branches may reflect transitional states leading toward
different functional subtypes of Meis2-high neurons . In the context of aging, we observed
that Meis2-high neurons exhibited increased proportions in aged brains, indicating their
potential role in the aging process. Additionally, we observed that these neurons showed
pseudo-temporally increasing expression of genes regulating neuron differentiation,
including Foxp2, Pbx1, and Phactrl, further supporting their involvement in age-related
neural dynamics. Foxp2 is important for neurogenesis by increasing dendrite length and
synaptic plasticity and for vocal behaviors, learning and motor function.®® Pre-B-cell
leukemia homeobox 1(Pbx1) is known to control midbrain dopaminergic neuron(mDAnR)
development and related to Parkinson’s disease.®” Phosphatase actin regulator-1(Phactrl)

encodes a synaptic protein regulating signaling and cell adhesion.
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Taken together, our results suggest that Meis2-high GABAergic neurons follow a
distinct molecular trajectory with aging, characterized by increased expression of
developmental and aging-associated genes, as well as shifts in their functional roles. These
findings point to the importance of Meis2-high neurons in maintaining inhibitory neural
networks during the aging process and suggest they may contribute to the broader

reorganization of GABAergic circuits in aged brains.

3.7.Meis2+ Rarb+ GABAergic neurons associated with cognition

We wondered if neurons express high Rarb gene exist in public brain atlas, so we
mapped with reference. Interestingly Rarb+ was highly expressed in CNU-LGE
GABAergic neuron clusters, which contains striatal and pallidal GABAergic neurons.
[Figure 40] As concsistent, gene Drdl and Drd2 also expressed highly in this cluster,
which are marker genes of dopaminergic striatal projecting neurons(SPN-D1 and D2).
Same as public data, our Rarb+ high GABA population contained Drd1 and Drd2 high
cells. [Figure 41,42]
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Figure 40. UMAP plot as Figure 36 (left) and ABC label transfered UMAP (right).
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Figure 42. Expression level of SPN marker genes(Drd1 and Drd2).

To complement our gene expression analysis, we analyzed label transfered SnATAC-
seq to identify cell-type specific transcription factor (TF) motifs in GABAergic neurons.
Transcription factors (TFs) play a crucial role in regulating cell fate and function,
particularly in neural development and aging-related processes. First, we calculate
differentially accessible regions (DARs) in our pre-annotated ATAC-seq data of
GABAergic neurons with FindAllMarkers in Seurat package. Next, we scanned motif
enrichment within these regions for known TF binding motifs, by using ATAC-seq
analysis pipelines. With this analysis, we indirectly sought to investigate the regulatory
elements that might influence the distinct molecular and transcriptional identities of all
GABAergic neurons. The TF motif enrichment analysis revealved distinct transcriptional
regulators associated with developmental and functional roles in these unique population.
[Figure 43]

To find epigenetic changes of aged-GABAergic neurons, we focused on Meis2 high
GABAergic neurons, characterized by expression of key marker genes such as Pbx1,
Foxp2, and Rarb. The most noteworthy finding was the differential regulatory signatures
within the Rarb+ Meis2 high GABAergic neurons. Rarb+ Meis2 high GABAergic
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neurons, displayed low enrichment of NEUROD1, CTCF, and NEUROG?2, similar to
Foxp2+ neurons, but showed a high enrichment of EGR, FOS, JUN, PKNOX1, GLI2,
PBX3, TBX18, KLF9, and KLF17 motifs. The presence of EGR, FOS, and JUN further
implicates this subpopulation in synaptic plasticity and stress response. Moreover, the
enrichment of PKNOX1, GLI2, and PBX3 suggests additional roles in neuronal
differentiation and transcriptional regulation of neural identity. The KLF9 and KLF17
motifs are particularly interesting, as these factors are involved in regulating neuronal
development and plasticity, possibly linking this subpopulation to cognitive processes and
adaptation in response to brain aging

To confirm the funtional feature of Rarb+ Meis2+ high GABA neuron, we analyzed
GSEA(KEGG and GO) analysis with top marker genes of transcriptomic data [Figure 44]
and top differential open regions [Figure 45]. Interestingly Rarb+ Meis2 high neurons
were significantly enriched in pathways related to cognitive functions(learning and
memory), and synaptic organization(synaptic structure and activity). It revealed that
Rarb+ Meis2+ subpopulation is strongly associated with maintaining neural connectivity
and functionality, particullary in the context of aging. Also, it is crucial to play role in
compensating for cognitive decline associated with aging, by maintaining or reorganizing
inhibitory circuits in the brain. All results reinforce the idea that this subpopulation of
neurons could be central to adaptive responses in the aging brain, offering potential

therapeutic targets for addressing cognitive deficits in neurodegenerative diseases.
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Figure 43. Differential motif scores of GABA clusters based on chromatin accessibility.
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Figure 44. KEGG and GO analysis of Rarb+Meis2+ GABAergic neurons.
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Figure 45. Enriched pathways and phenotype in Rarb+Meis2+ GABAneurons.
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3.8. Epigenetic and Transcriptional Signatures of GABAergic

neurons

Following the detailed analysis of Section 3.7, expanded our investigation to examine
other Meis2 high GABAergic neuron subtypes, such as Pbx1+ and Foxp2+ neurons, as
well as the Meis2 low subpopulations, including GABA neuron 1, GABA neuron 2, and
Rora+ GABAergic neurons. In Pbx1+ Meis2 high GABAergic neurons, we observed low
enrichment of NAFIL3, DBP, and HLF, but a high enrichment of FOSL2, FOS::JUNB,
BATF::JUN, and DLX5 motifs. This suggests that these neurons are more involved in
transcriptional programs related to neuronal activity and regeneration, given the high
expression of FOS-JUN family members, which are known to regulate responses to
neural activity and synaptic plasticity. DLX5, a TF involved in GABAergic neuron

development, further supports the developmental aspect of this subpopulation.

In contrast, Foxp2+ Meis2 high GABAergic neurons exhibited low levels of
NEUROD1, CTCF, and NEUROG2 motifs, typically associated with neurodevelopment
and CNS specification. Instead, they showed a high enrichment of RFX (RFX1-5) family
motifs, potentially maintaining the sensory ciliary structures necessary for cellular

signaling.

Meanwhile, in the Meis2 low GABAergic neuron subtypes, GABA neuron 1, GABA
neuron 2, and Rora+ GABAergic neurons, distinct transcriptional regulation was
observed. Despite the absence of specific marker genes, GABA neuron 1 and GABA
neuron 2 exhibited strong enrichment for TF motifs such as NEUROD1, NEUROG?2,
OLIG1/2, and RFX (RFX1-5) family. The presence of NEUROD1 and NEUROG?2, key
regulators of brain development and CNS differentiation, suggests that these neurons may
represent more immature or plastic populations. The enrichment of OLIG1/2, which are
traditionally linked to oligodendrocyte development, suggests a potentially novel role in

neuronal differentiation, particularly in maintaining neuronal plasticity and homeostasis
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within the CNS®. Additionally, RFX motifs, which regulate ciliary gene expression, may
indicate a role in neuronal ciliogenesis and the broader regulation of inhibitory signaling
pathways.

Rora+ GABAergic neurons, another Meis2 low subtype, displayed high enrichment for
RORA, RORB, ESRRA, and ESRRB motifs, reflecting their known roles in neuronal
activity regulation and circadian rhythm. The presence of RORA and RORB in these
neurons suggests a key function in coordinating GABAergic signaling in response to

environmental cues such as circadian cycles.
Overall, these findings highlight the transcriptional and epigenetic diversity between

Meis2 high and Meis2 low GABAergic neurons. Across different subclusters, we

identified key TF motifs associated with differentially open chromatin regions.
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3.9. Interaction shifts with microglia can lead pathology phenotype
Recently, it has revealed that specific disease-associated or aging-related cells, such as
DAM (disease-associated microglia), DAO (disease-associated oligodendrocytes), or
DAA (disease-associated astrocytes), are implicated in the development of
neurodegenerative diseases. Even though they were discovered in aged or knockout
mouse, systematic interactions within the entire aged brain remain underexplored. To
better understand the potential pathological features associated with these interactions,
we conducted an cell-cell interaction (CCI) analysis between these mentioned aging
related-cell populations.

A comprehensive analysis of cell-cell communication in both young and aged brains
using transcriptional data with cellchat [Figure.46] showed novel signaling patterns in
aged brain, involving IFN-y (Interferon-gamma), FASLG (Fas ligand), IL-1 (Interleukin-
1), PD-L1 (Programmed death-ligand 1), BAFF (B-cell activating factor), NKG2D
(Natural killer group 2, member D), LICAM (L1 Cell adhesion molecule), NECTIN and
CLDN (Claudins). These signals are associated with inflammaging (IFN-y, IL-1),
regulating apoptosis and killing aged cells (FASLG, NKG2D) and associating BBB or
cell junction assembly (CLDN, NECTIN). Some pathways including CSPG4, Opioid,
and SELL were only active in young brain, contributing to neuroprotection, cell mobility,
and immune response regulation. The decline of these pathways with aging suggests a
reduced capacity for neural regeneration, immune surveillance, and inflammation control,

which may contribute to increased susceptibility to neurodegenerative diseases.
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Figure 46. outgoing and incoming signals from both young and old brains.

In-depth analysis of the GRN (Granulin) and RELN (Reelin) pathways, both linked
to neurodegenerative diseases®”°, reveals significant changes in their signaling dynamics
with aging. [Figure 47] In the young brain, GRN signaling primarily interacted between
microglia and brain endothelial cells, maintaining immune regulation. However, in the
aged brain, GRN signaling shifted, with increased interactions directed toward neurons,
both GABAergic and Glutamatergic neurons, alongside an upregulation of Sortl
expression [Figure 48-50], indicating enhanced neuronal involvement in the
inflammatory response. This suggests a growing role for neuronal GRN signaling in
driving neurodegeneration through both immune and neural pathways.
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Figure 47. GRN and RELN signaling pathways in young and old mouse brain.
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For the RELN pathway, a notable shift occured with the emergence of Rarb+ Meis2
high GABA and Vip GABA neurons as novel signaling sources in the aged brain, while
endothelial cells showed a reduction in RELN signaling reception, corresponding with
decreased expression of Itgbl and Itga3. It is interesting that Endo-C2 has weaker RELN
incoming signaling than Endo-CL1 that refers trajectory of endothelial cells also explain
the same direction. These changes imply a decline in endothelial function and an
increased role for neurons in RELN-mediated processes, potentially contributing to

synaptic disorganization and cognitive decline. [Figure 47,51]

Signaling from Neurons to Capillary endothelial cells
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Figure 51. signaling from neurons to capillary endothelial cells.
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4. Discussion

In this study, we employed multi-omics analysis to comprehensively characterize the
transcriptional, epigenomic, and cell-cell interaction dynamics of the aging mouse brain.
Through integrating sSnRNA-seq, SCRNA-seq, and snATAC-seq, we elucidated several
key shifts in cellular populations, signaling pathways, and gene regulation that underpin
aging-related processes in the brain. Our analysis revealed alterations in some brain cell
types, highlighting their potential roles in age-associated neurodegeneration and

suggesting a interplay between transcriptional and epigenetic modifications in aging.

One of our major findings was the identification of three microglia subtypes (Micro-1,
Micro-2, and Micro-3), with Micro-3, which showed increased abundance in aged brains,
representing a pro-inflammatory and disease-associated state. Our pseudotemporal
analysis suggests that Micro-3 acts as a terminally differentiated form of microglia,
diverging from the homeostatic Micro-1 via an intermediate Micro-2 state. The trajectory
analysis, combined with upregulated markers such as Apoe and Lyz2, provides insight
into how Micro-3 could contribute to neuroinflammation and chronic immune activation,
consistent with disease-associated microglia (DAM) identified in models of
neurodegenerative diseases. The increased presence of Micro-3 in the aged brain suggests
an exacerbation of inflammatory processes that may promote neuronal damage and

contribute to the overall decline in brain health with aging.

Endothelial cells in the brain, which are integral components of the blood-brain barrier
(BBB), also showed significant age-associated changes. We observed distinct clustering
of endothelial cells into arterial, venous, and capillary subtypes, with a specific increase
in the aged capillary endothelial subtype (Endo-C2). Endo-C2 exhibited transcriptional
signatures indicative of increased stress and immune activity, including upregulation of
genes such as Hspbl and Actgl. Our pseudotemporal analysis of endothelial cells

revealed that Endo-C2 is likely a senescent-like state, and its enrichment in aged brains
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suggests that endothelial dysfunction and BBB disruption may be significant contributors
to age-related neuroinflammation. The increased expression of inflammatory cytokines
and adhesion molecules further implies that Endo-C2 endothelial cells may facilitate the
infiltration of peripheral immune cells into the brain parenchyma, thus contributing to

brain immune dysregulation and neurodegenerative processes.

Our analysis of GABAergic neurons uncovered a novel subpopulation of Meis2-high
expressing neurons, which showed significant increases in abundance in aged samples.
The Meis2-high subtype, particularly Rarb-positive neurons, displayed gene expression
patterns associated with developmental and plasticity-related processes, including
increased expression of transcription factors such as Foxp2, Pbx1, and Phactrl. These
findings suggest that Meis2-high GABAergic neurons might play a compensatory role in
maintaining neural circuitry during aging, potentially counteracting the decline of other
GABAergic neuron populations, such as those expressing Sst, Lamp5, Vip, and which
decreased in abundance. Furthermore, label-transfer analysis of snATAC-seq data
revealed enrichment of transcription factor motifs such as EGR, FOS, and PKNOX1 in
the Meis2-high neurons, suggesting that epigenomic remodeling in these neurons may
underlie their plasticity and contribute to the reorganization of inhibitory circuits in the

aged brain.

Cell-cell interaction analysis provided insight into the systematic changes in
intercellular communication occurring during aging. We observed novel signaling
patterns in aged brains, involving pathways such as IFN-y, FASLG, and IL-1, all of which
are associated with inflammaging. The emergence of pro-inflammatory signaling,
particularly through GRN and RELN pathways, highlights shifts in interactions between
microglia, endothelial cells, and neurons, which could contribute to synaptic dysfunction
and neuronal loss. The increased involvement of neurons in GRN signaling, particularly

GABAergic neurons, suggests a growing neuronal role in perpetuating inflammatory
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responses in the aged brain, which may exacerbate neurodegenerative processes.

Notably, the RELN pathway showed a shift in its signaling dynamics, with Rarb+
Meis2-high GABAergic neurons emerging as a novel source of RELN signaling in the
aged brain. This shift in signaling dynamics, coupled with decreased endothelial reception,
implies a decline in endothelial function and increased neuronal contribution to RELN-
mediated processes, potentially leading to impaired synaptic stability and cognitive
function. These findings suggest that aging leads to both cellular and systemic shifts in

intercellular signaling that may collectively drive the progression of neurodegeneration.

While our study provides valuable insights into the aging brain, it is important to
acknowledge certain limitations. The relatively small sample size (n=3 per age group)
limits the statistical power of our findings, and future studies with larger sample sizes are
needed to validate our observations. Despite this limitation, our integrative approach
enabled us to capture broad transcriptional and epigenetic changes that would be
challenging to observe using traditional methods, such as FACS sorting, which may not
effectively capture the full diversity of cellular states and interactions present in the aging

brain.

In summary, our study reveals significant transcriptional, epigenetic, and cell-cell
interaction changes in the aging mouse brain, highlighting the roles of specific cell
subtypes in age-associated pathology. Microglia, endothelial cells, and GABAergic
neurons undergo distinct shifts, with aged microglia exhibiting enhanced pro-
inflammatory states, capillary endothelial cells showing signs of senescence, and Meis2-
high GABAergic neurons potentially acting as compensatory regulators of inhibitory
signaling. These findings provide insight into the cellular and molecular underpinnings
of brain aging and highlight potential therapeutic targets to mitigate aging-related

neurodegeneration.
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5. Conclusion

This study utilized an integrative multi-omics approach to investigate the aging mouse
brain, revealing complex transcriptional, epigenomic, and intercellular changes across
different brain cell populations. We identified significant age-related shifts in microglia,
endothelial cells, and GABAergic neurons, which contribute to neuroinflammatory and
neurodegenerative processes. Specifically, we characterized the transition of microglia
into a pro-inflammatory and disease-associated state (Micro-3), which suggests a role in
promoting chronic inflammation in the aged brain. We also described the emergence of
an aged-specific capillary endothelial cell subtype (Endo-C2), which displayed stress-
related and immune activation signatures, indicating potential blood-brain barrier

dysfunction and facilitation of immune cell infiltration.

Our findings in GABAergic neurons highlight a novel Meis2-high subtype that
increases in abundance with aging, potentially compensating for the decline of other
inhibitory neurons. The Meis2-high neurons, particularly those expressing Rarb, showed
enriched pathways related to plasticity, suggesting they may help maintain inhibitory
network stability in the aged brain. The shifts in RELN and GRN signaling pathways
observed in aged brains indicate altered intercellular communication that may drive
neurodegeneration through both inflammatory and synaptic pathways.

Overall, our study provides a comprehensive view of the aging brain, identifying key
cellular and molecular mechanisms that contribute to neurodegeneration. The
identification of specific cell populations, such as Micro-3 microglia, Endo-C2
endothelial cells, and Meis2-high GABAergic neurons, as well as their associated
signaling pathways, offers potential therapeutic targets for mitigating age-related
cognitive decline and neurodegenerative diseases. Future studies should focus on
elucidating the functional roles of these cell populations and their interactions to better

understand the mechanisms of aging and develop strategies for intervention.
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