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ABSTRACT 

 
Automatic prediction of TMJ disc displacement  

in CBCT images using machine learning 
 

 
Purpose: The purpose of this study was to develop a machine learning (ML) model 

to predict temporomandibular joint (TMJ) disc displacement using radiomics features 

extracted from cone-beam computed tomography (CBCT) images, without the need for 

magnetic resonance imaging (MRI). 

 

Methods: A total of 247 mandibular condyle datasets from CBCT images of 134 

patients were analyzed in this study. Three experiments were conducted using random 

forest (RF) and extreme gradient boosting (XGBoost) models to classify TMJ disc 

displacement based on radiomics features obtained from the condylar head on CBCT. 

Experiment 1 classified the data into three groups—Normal, disc displacement with 

reduction (DDWR), and disc displacement without reduction (DDWOR)—based on the 

stage of TMJ disc displacement. Experiment 2 focused on differentiating the TMJ disc 

displacement group (DDWR and DDWOR) from the Normal group. Experiment 3 aimed 

to classify Normal and DDWR as a single group, distinguishing them from DDWOR. The 

developed models were evaluated using the area under the receiver operating characteristic 

curve (AUC), accuracy, precision, recall, specificity, and F1-score. 

 

Results: Across all experiments, the RF model outperformed the XGBoost model, 

with the highest accuracy in Experiment 3, followed by Experiments 2 and 1. In Experiment 

3, the RF and XGBoost models classified Normal and DDWR as one group and DDWOR 

as the other, with AUC values of 0.86 and 0.85, respectively. Experiment 2 classified the 

Normal group from the combined group DDWR and DDWOR with AUC values of 0.76 
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for RF and 0.75 for XGBoost. In Experiment 1, which performed the most complex 

classification into three groups, the RF model achieved an accuracy of 0.63, and the 

XGBoost model obtained 0.59. 

 

Conclusions: The ML models developed in this study provide a non-invasive 

approach for predicting TMJ disc displacement using radiomics features extracted from 

CBCT images. These models offer valuable support as a second opinion for dentists 

diagnosing TMJ disc displacement and serve as an assisted diagnostic tool when MRI is 

unavailable. 
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1. INTRODUCTION 
 

The temporomandibular joint (TMJ) is a complicated structure where a portion of the 

temporal bone, the condyle of the mandible, and the articular disc are located (Alomar et 

al., 2007; Ingawale & Goswami, 2009). The disc, composed of avascular fibrous 

connective tissue, is between the mandibular condyle and the glenoid fossa (Al-Ani & Gray, 

2021; Mallya & Lam, 2018). It translates with the mandible during mouth opening, serving 

as a shock absorber, thus playing a critical role in the mandibular movement (E Tanaka & 

Koolstra, 2008; E Tanaka & Van Eijden, 2003). In normal cases, during mouth closing, the 

borderline of the TMJ disc and thick posterior band are positioned directly superior to the 

mandibular condyle head. During mouth opening, the thin center part of the disc stays 

positioned between the condyle head and the articular eminence (Drace & Enzmann, 1990). 

It is essential to diagnose disc position in TMJ disorder (TMD) because disc 

displacement is the common cause of TMD (Young, 2015). Disc displacement can interfere 

with normal joint function or cause pain, and the progress of inflammation in joint space 

leads to TMJ dysfunction. TMD often begins with non-specific symptoms such as clicking 

or joint noises during jaw movement and mild discomfort. As the condition progresses, 

TMJ disc displacement can be accompanied by hard tissue changes along with a limited 

range of motion. According to previous studies, there are almost no bony changes in the 

stage of disc displacement with reduction (DDWR) in which the disc is displaced anteriorly 

when the mouth is closed. Pathologic bony changes only begin to appear in the intermediate 

to late stage of TMJ internal derangement (Wilkes, 1989), a case of disc displacement 

without reduction (DDWOR) in which the disc remains displaced regardless of jaw 

position (Som & Curtin, 2011).  

As TMD progress, limited joint movement leads to dysfunction such as difficulty in 

eating and talking, and reduces synovial fluid cycling, creating conditions conducive to the 

accumulation of inflammatory agents. It can also lead to abnormal forces and inflammation 
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in the joint, resulting in bone changes like flattening, erosion, osteophyte formation, and 

sclerosis, as well as irregular changes in trabecular pattern (Dias et al., 2012; Roh et al., 

2012). Therefore, an accurate diagnosis of disc displacement is important in TMD (Mallya 

& Lam, 2018). 

Panoramic radiograph widely used in dentistry offers a broad coverage of the 

anatomical structures surrounding the TMJ. However, its limitations as a two-dimensional 

imaging modality, such as distortion and superimposition of images make it difficult to 

accurately assess the anatomical structures (Perschbacher, 2012). Cone-beam computed 

tomography (CBCT) is useful for three-dimensional (3D) evaluating pathologic changes of 

the bony component of the TMJ structures, but it cannot visualize soft tissue structures such 

as disc (Honda et al., 2006; Katakami et al., 2008; Mallya & Lam, 2018). Magnetic 

resonance imaging (MRI) is the most accurate and only non-invasive diagnostic tool for 

the position and shape of the disc (Emshoff et al., 2002; Larheim, 2005; Sano & Westesson, 

1995). It can be taken in closed and opened mouth positions, allowing functional evaluation 

of disc movement (Brooks & Westesson, 1993; Katzberg et al., 1986). Since MRI uses a 

large magnet that generates a strong external magnetic field, patients with pacemakers, 

cerebral aneurysm clips, or cochlea implants cannot undergo MRI, and claustrophobia may 

also have difficulty with the scan (Mallya & Lam, 2018). Above all, MRI has the 

disadvantage of being expensive equipment that can only be taken at some hospitals and 

the cost of taking the scan is also very high.  

Due to the limitations of taking an MRI, several studies have attempted to predict TMJ 

disc displacement using CBCT without MRI. These studies have tried the prediction of disc 

displacement through joint space alteration, condylar position, and condylar morphology 

observed on CBCT with clinical symptoms such as pain, sound, and maximum mouth 

opening range (B. Chen & Li, 2024; Choi & Park, 2016). However, these methods were 

unable to establish a definitive correlation with disc displacement or emphasized the 

additional necessity of MRI, and the selection of image slices for evaluation was subjective. 
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Therefore, in this study, we quantitatively attempted to predict TMJ disc displacement 

using radiomics data.  

Medical images contain various image biomarkers that cannot be perceived by 

humans but can be used for diagnostic or predictive purposes by converting image data into 

structured information. Radiomics is one of the image biomarkers frequently used in 

medical imaging, it can objectively and quantitatively analyze the properties such as shape, 

texture, and intensity (Jia et al., 2019; Lambin et al., 2012; Mayerhoefer et al., 2020; 

Rastegar et al., 2020; Tomaszewski & Gillies, 2021). The previous studies, utilized 

radiomics methods to detect cancer and assess osteoporosis in medical images (He et al., 

2019; Jiang et al., 2022; Linning et al., 2019). In the field of dentistry, radiomics features 

have been used for caries detection, cancer diagnosis, and legal age classification (De 

Araujo Faria et al., 2021; Fruehwald-Pallamar et al., 2016; Jeon et al., 2023). This study 

introduces a technique to automatically predict TMJ disc displacement from CBCT images 

without MRI using two machine learning (ML) models.  

Considering the correlation between TMJ disc displacement and changes in the bone 

marrow and cortical bone of the mandibular condyle, we hypothesized that differences in 

radiomics features of the condyle head in CBCT images would vary according to the stage 

of TMJ disc displacement. This study aimed to develop two ML models that utilize only 

CBCT image radiomics features to predict TMJ disc displacement without MRI.
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2. MATERIALS AND METHODS 

 

2.1. Data preparation 

 

This study was approved by the Institutional Review Board (IRB) of Yonsei 

University Dental Hospital (IRB No. 2-2023-0065). The requirement for patient consent 

was waived due to the retrospective nature of the image collection, ethical guidelines, and 

regulations on all methods. All images utilized in the study were anonymized and exported 

in Digital Image Communication in Medicine format.  

Data were collected from patients who visited Yonsei University Dental Hospital from 

December 2018 to December 2022 and underwent both MRI and CBCT scans. MRI scans 

were performed with 3.0 T scanner (Pioneer; GE Healthcare, Waukesha, WI, USA) and 16-

channel flex large coil. Sagittal section views of the condylar head were acquired using 

proton density-weighted sequences in the closed-mouth and open-mouth positions with a 

slice thickness of 2.5 mm. We acquired CBCT scans of each subject using the Alphard 3030 

(Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) machine. The CBCT protocol for TMJ was 

the field of view 154 × 154 mm, voxel size of 0.3 mm3, 80 kVp, 8 mAs, and exposure 

time of 17 s. 

 The criteria for data collection included: (1) adults aged 20 and older; (2) CBCT 

images that clearly allowed the identification of the border between the cortical bone and 

bone marrow of the mandibular condyle; and (3) mandibular condyle of sufficient size to 

enable 3D manual labeling. Exclusion criteria were as follows: (1) patients with fractures, 

tumors, or severe anatomical deformities in the TMJ; and (2) CBCT images with significant 

metal artifacts or severe blurring. 
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2.2. Three experiments according to classification of TMD groups 

 

Three experiments were performed to predict classification in a total of 247 condylar 

heads that were collected from 134 patients. The data were randomly selected and adjusted 

according to group distribution for each experiment (Table 1). An oral radiologist classified 

the groups by identifying the position of the disc using MRI as the gold standard. Fig. 1 

shows examples of TMJ disc positions during the process of opening and closing the mouth 

for groups divided based on TMJ disc displacement.  

(1) Experiment 1: Classification into three groups – Normal vs DDWR vs DDWOR 

(2) Experiment 2: Classification into two groups – Normal vs DDWR and DDWOR 

(3) Experiment 3: Classification into two groups – Normal and DDWR vs DDWOR 

Fig. 2 presents a schema of the proposed study for machine learning-based TMJ disc 

displacement prediction using radiomics features in the condylar head. 
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Table 1. Clinical characteristics of three experiments for classifying TMJ disc displacement 

  Female Male Total 

Experiment 1 

Normal 51 32 83 

DDWR 59 21 80 

DDWOR 60 24 84 

Experiment 2 
Normal 51 32 83 

DDWR and DDWOR 47 37 84 

Experiment 3 
Normal and DDWR 44 39 83 

DDWOR 60 24 84 

DDWR, disc displacement with reduction; DDWOR, disc displacement without reduction.
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Fig. 1 Examples of TMJ disc position during mouth closing and opening. TMJ, 
temporomandibular joint; DDWR, disc displacement with reduction, DDWOR, disc 
displacement without reduction. 
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Fig. 2 Overview of machine learning model development for TMJ disc displacement 
prediction in CBCT images. TMD, temporomandibular joint disorder; TMJ, 
temporomandibular joint; DDWR, disc displacement with reduction; DDWOR, disc 
displacement without reduction. 
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2.3. Segmentation of region of interest in the condylar head in CBCT  

 

The radiomics features were extracted from the CBCT images of the condylar head 

area, focusing on the bone marrow. In mandibular condyles with erosion and osteophyte 

formation, the irregular border between bone marrow and cortical bone creates challenges 

for labeling and can lead to variability among observers. Therefore, the region of interest 

(ROI) was set in 3D to include the condyle neck of the bone marrow excluding the cortical 

bone (Fig. 3). The ROI in the TMJ bone marrow was manually segmented using AVIEW 

research software (Coreline Soft Inc., Seoul, Korea) by an oral radiologist with more than 

25 years of experience. An average of 42 CBCT image slices per person were used for 

condylar head segmentation.
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Fig. 3 Process of defining the bone marrow of the mandibular condyle in CBCT images as 
a three-dimensional region of interest. 
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2.4. Radiomics features extraction 

 

A total of 132 features were obtained by mathematically quantifying 3D radiomics 

features from the segmented ROI on CBCT images. The extracted radiomics features were 

divided into 3 categories: texture, shape, and fractal features (Table 2). The radiomics 

features were automatically computed through AVIEW research software based on 

PyRadiomics (https://PyRadiomics.readthedocs.io/en/latest/). 
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Table 2. Summary of types of radiomics features and descriptions 

Radiomics features Description 

Texture 

Comprise various statistical information about the gray value 

distribution inside the ROI. These features included minimum 

and maximum values of gray level, distribution of voxel 

intensity, difference values from the neighboring voxels, 

quantified gray level dependencies, etc. 

Shape 

Account for geometric properties such as the volume measured 

by counting the voxel units in the ROI, compactness of the ROI, 

maximum diameter, maximum surface along various orthogonal 

directions, and the similarity of the ROI to a sphere, etc. 

Fractal 

Determine heterogeneity between organizations through pattern 

difference analysis. Fractal Dimension is a number that 

quantifies the rate of detailed change due to changes in scale and 

is easily affected by the shape of the ROI. Using the box-

counting slide technique, boxes of various sizes are slid to 

calculate the fractal dimension of each position. The fractal 

dimension is defined as the slope of a line. 
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2.5. Radiomics features normalization 

 

We performed z-score normalization on the extracted feature values for the individual 

features. Various radiomics features have different units and ranges, some are within the 0 

to 1, while others have a much larger range. Without feature normalization, 

disproportionate weights could be assigned during model training based on the distribution 

of feature values. Therefore, we applied z-score normalization to ensure that each feature 

had a relatively consistent range (Fig. 4), and can define it as follows: 

 Normalized Value = 𝑥𝑥−𝜇𝜇
𝜎𝜎

 (1) 
 

where x denotes the value to be normalized in the attribute, μ indicates its mean 

value, and σ is its standard deviation, respectively. 
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Fig. 4 Changes in radiomics feature values distribution following z-score normalization. 
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2.6. Machine learning model for TMJ disc displacement prediction 

 

In this study, random forest (RF) and extreme gradient boosting (XGBoost) classifiers 

were developed to conduct three experiments. These two ML models were implemented 

using Python language with the scikit-learn package (https://scikit-learn.org/). To train the 

model, the dataset was divided by 7:3 ratios based on the data class distribution. In 

Experiment 1, out of 247 condylar heads, 172 were divided as the training data and 75 as 

the test set. In Experiment 2, 167 condylar heads were divided into 115 for training data 

and 52 for the test set to evaluate performance. In Experiment 3, 116 condylar heads were 

used as the training data, and 51 as the test set for the experiment. For both classifiers, we 

tested a range of tree numbers from 1 to 200 to establish which tree had the highest area 

under the receiver operating characteristic curve (AUC) value. In the tree model built to 

obtain the best AUC value, the threshold was adjusted from 0 to 1 to set the parameter to 

obtain the highest accuracy.  

The RF classifier, consisting of several decision trees, mitigates overfitting by training 

each tree on a subset of the entire dataset (Breiman, 2001). The Gini index, which evaluates 

the probability of misclassification for each feature in a node, was computed at each node 

split within RF, reflecting how effectively the data can be categorized within each 

individual tree. In prediction for a new case, each decision tree casts a vote for a group 

class, and the votes of all trees in the forest are accumulated to determine the patient’s class 

probability. 

XGBoost, introduced by Chen and Guestrin, is a decision tree-based ensemble method 

and operates within the gradient boosting framework (T. Chen & Guestrin, 2016). This 

algorithm is an ensemble learning, collecting predictions from multiple weaker learners 

and determining the final model through a voting process. Unlike the RF classifier, 

XGBoost has an advantage in producing a robust classification tree, with the loss gradually 
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decreasing as the weight coefficients for individually weak classifiers are applied to the 

next decision tree. 

 

 

2.7. Performance evaluation for prediction models 

 

We calculated the AUC, accuracy, precision, recall, specificity, and F1 score to 

evaluate the classification performance of RF and XGBoost in predicting TMJ disc 

displacement using radiomics features. The receiver operating characteristic (ROC) curve 

is a graph that shows the true positive rate relative to the false positive rate by varying the 

discriminant threshold, and the AUC refers to the area under this curve. AUC is a value 

ranging from 0 to 1, with values closer to 1 indicating that the model classified the data 

perfectly. Python (Python Software Foundation, Version 3.6.1; Wilmington, DE, USA) was 

utilized to visualize and calculate classification performance. These evaluation 

measurements are defined as follows: 

 Accuracy = TP+TN
TP+TN+FP+FN

 (2) 

 Precision = TP
TP+FP

 (3) 

 Recall = TP
TP+FN

 (4) 

 Specificity = TN
TN+FP

 (5) 

 F1 score = 2*Precision*Recall
Precision+Recall

 (6) 
 

where TP, TN, FP, and FN denote the true positive, true negative, false positive, and 

false negative, respectively. 
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3. RESULTS 
 

Overall, the RF model outperformed XGBoost in all three experiments. In Experiment 

1, RF and XGBoost models classified Normal, DDWR, and DDWOR with accuracies of 

0.63 and 0.59 respectively. The average precision, recall, specificity, and F1 score across 

the three classes for the RF model were 0.65, 0.62, 0.81, and 0.63. For the XGBoost model, 

these values were 0.60, 0.59, 0.79, and 0.59, respectively (Table 3, Fig. 5).  

In Experiment 2, RF and XGBoost classified Normal and the combined group of 

DDWR and DDWOR with AUC values of 0.76 and 0.75. For RF, the evaluation metrics 

were 0.71 (accuracy), 0.72 (precision), 0.69 (recall), 0.73 (specificity), and 0.70 (F1 score), 

while XGBoost was 0.69, 0.67, 0.77, 0.62, and 0.72 for these metrics, respectively (Table 

4, Fig. 6).  

In Experiment 3, which classified Normal and DDWR combined group versus 

DDWOR, both models achieved their highest predictive performance, with all evaluation 

metrics exceeding 0.80. The RF model reached an AUC of 0.86, accuracy of 0.82, precision 

of 0.84, recall of 0.81, specificity of 0.84, and F1 score of 0.82. XGBoost achieved 0.85, 

0.80, 0.81, 0.81, 0.80, and 0.81 for each evaluation metric (Table 5, Fig. 7). 
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Table 3. Prediction performance comparison of two ML models in Experiment 1 

ML model Accuracy Precision Recall Specificity F1score 

RF 0.63 0.65 0.62 0.81 0.63 

XGBoost 0.59 0.60 0.59 0.79 0.59 

ML, machine learning; RF, random forest; XGBoost, extreme gradient boosting. 

Fig. 5 Receiver operating characteristic curve and confusion matrix of Experiment 1. (A) 
Random forest. (B) XGBoost. DDWR, disc displacement with reduction; DDWOR, disc 
displacement without reduction. 
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Table 4. Prediction performance comparison of two ML models in Experiment 2 

ML model AUC Accuracy Precision Recall Specificity F1score 

RF 0.76 0.71 0.72 0.69 0.73 0.70 

XGBoost 0.75 0.69 0.67 0.77 0.62 0.72 

ML, machine learning; RF, random forest; XGBoost, extreme gradient boosting; AUC, area 
under the curves. 

 

Fig. 6 Receiver operating characteristic curve and confusion matrix of Experiment 2. (A) 
Random forest. (B) XGBoost. DDWR, disc displacement with reduction; DDWOR, disc 
displacement without reduction. 
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Table 5. Prediction performance comparison of two ML models in Experiment 3 

ML model AUC Accuracy Precision Recall Specificity F1score 

RF 0.86 0.82 0.84 0.81 0.84 0.82 

XGBoost 0.85 0.80 0.81 0.81 0.80 0.81 

ML, machine learning; RF, random forest; XGBoost, extreme gradient boosting; AUC, area 
under the curves. 

 

Fig. 7 Receiver operating characteristic curve and confusion matrix of Experiment 3. (A) 
Random forest. (B) XGBoost. DDWR, disc displacement with reduction; DDWOR, disc 
displacement without reduction. 
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In Experiment 3, which achieved the highest accuracy among the three experiments, 

feature importance was analyzed for the prediction of TMJ disc displacement groups by 

the two ML models and identified the top 10 features. The features that primarily influenced 

the classification of Normal and DDWR as a single group versus DDWOR were mainly 

shape features, and within the texture features, gray-level co-occurrence matrix (GLCM) 

and gray-level dependence matrix (GLDM) (Fig. 8). 
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Fig. 8 Top 10 important features of Random forest and XGBoost models in Experiment 3. 
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4. DISCUSSION 
 

In this study, we proposed two ML models to predict TMJ disc displacement without 

MRI only using CBCT images. The experimental results demonstrated that the developed 

model was effective and accurate in classifying the stage of TMJ disc displacement using 

radiomics features of TMJ bone marrow. Notably, in Experiment 3, where both models 

showed potential for clinical application in predicting DDWOR among the stages of TMJ 

disc displacement. According to this experiment, the two ML models can provide objective 

second opinions to dentists for diagnosing TMJ disc displacement by utilizing radiomics 

features obtained from the mandibular condyle in CBCT images. Furthermore, these 

models can serve as non-invasive diagnostic support tools in cases where MRI cannot be 

performed.  

TMD is a disease that causes abnormal joint function due to abnormalities in the 

position and shape of the disc (Young, 2015). The normal position of the disc is between 

the mandibular condyle and the articular fossa, but in DDWR, the disc is displaced 

anteriorly when the mouth is closed. If DDWR is not properly managed, it can progress to 

DDWOR. When in a closed state compared to DDWR, the disc can be displaced more 

anteriorly, and when the mouth is opened, the disc does not return to its normal position 

and is still in front (Som & Curtin, 2011). This condition requires management because it 

usually causes functional impairment, including the mouth not opening sufficiently and 

restricting the mandible’s movement, making eating and speaking difficult. The shape of a 

chronically displaced articular disc may become thickened or distorted, and restricted joint 

movement reduces synovial fluid circulation, creating conditions conducive to the 

accumulation of inflammatory substances. Therefore, accurate diagnosis and timely 

management are essential to prevent the progression of the disease. 

To diagnose TMD, it is necessary to identify the position of the disc when opening 

and closing the mouth through MRI (Emshoff et al., 2002; Katzberg et al., 1986). A 
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patient’s clinical symptoms can be varied and sometimes inconsistent, and complex 

etiologic factors exist, MRI that can detect soft tissue pathology is generally essential 

(Larheim, 2005). However, MRI is more expensive to purchase and maintain than other 

dental imaging equipment, so its adoption rate in local hospitals other than university 

hospitals is low. Additionally, MRI obtains images by positioning the patient within a large 

magnet, which can be challenging for individuals with pacemakers or claustrophobia 

(Mallya & Lam, 2018). Therefore, MRI is the most accurate method to diagnose TMJ disc 

displacement, but its accessibility is low compared to other dental imaging.  

Due to the limited accessibility of MRI, previous studies have attempted to diagnose 

TMJ disc displacement using CBCT without MRI. Choi, H. M., et al. aimed to compare 

Normal and TMJ disc displacement by analyzing the size and morphology of the 

mandibular condyle such as condylar height and intercondylar angle on CBCT images 

(Choi & Park, 2016). However, this analysis method could not find a relationship between 

the two groups. Chen, B., & Li, C. et al. attempted to determine the relationship between 

disc position, joint space, and condylar morphology (B. Chen & Li, 2024). However, it was 

difficult to predict disc shape and position using only CBCT images, and the need for MRI 

was mentioned. Moreover, the previously mentioned methods rely on a subjective selection 

of CBCT slices when measuring joint space or condylar angles, which may result in low 

inter-observer reliability. In contrast, this study proposed a method to classify TMJ disc 

displacement as a quantitative value by analyzing radiomics features of CBCT images, 

showing high accuracy with an AUC value of 0.86 to differentiate Normal and DDWR 

groups from the DDWOR group. 

Radiomics enables the quantitative analysis of image features that cannot be observed 

by the human eye in medical images such as CBCT or MRI (Lambin et al., 2012; 

Mayerhoefer et al., 2020). The main advantage of radiomics is that it can noninvasively 

offer valuable information for the diagnosis and prognosis of diseases. This study 

developed an ML model to predict disc displacement from CBCT images without needing 

MRI, utilizing the advantage of the radiomics features. In Experiment 1, we aimed to 
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classify three groups of disc displacement: Normal, DDWR, and DDWOR. The RF and 

XGBoost classified the three groups with 0.63 and 0.59 accuracy, respectively. In 

Experiment 2, the objective was to classify Normal and the combination of DDWR and 

DDWOR, and RF and XGBoost obtained AUC values of 0.76 and 0.75, respectively. In 

Experiment 3, Normal and DDWR were grouped into one group, while DDWOR was 

classified into a separate group. The developed RF and XGBoost classified two groups with 

AUC values of 0.86 and 0.85, respectively.  

Compared with Experiment 3, Experiments 1 and 2 achieved relatively low 

classification accuracies. According to Wilkes’ classification of internal derangement of the 

TMJ shows that no significant changes in hard tissue occur until the middle stage, with 

pathological alterations in hard tissue beginning in the intermediate-to-late stage (Wilkes, 

1989). In this study, the ROI was set in the bone marrow, excluding the cortical bone, to 

extract radiomics features. Considering this, the radiomics features extracted from the bone 

marrow of the mandibular condyle may exhibit differences primarily in the stage of 

DDWOR, which could explain why Experiment 3 achieved the highest accuracy.  

In Experiment 3, an analysis of feature importance influencing the classification of 

Normal and DDWR as one group and DDWOR as the other by two ML models, the top 10 

important features were primarily the shape features and, particularly within the texture 

features, the GLCM and GLDM. The progression of disc displacement from Normal to 

DDWR and then to DDWOR can lead to abnormal forms of the osseous or soft tissue 

structures of the joint, such as bone deformities and remodeling, so it is reasonable to accept 

the influence of shape features. GLCM and GLDM include features that capture the 

relational information about pixels with similar values within an image and quantify gray-

level dependencies between image pixels, respectively. As TMJ disc displacement 

progresses, the trabecular pattern of the bone marrow becomes more irregular, and these 

changes may have affected the two features.  
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The ML models developed in this study demonstrated their potential for clinical 

application by predicting DDWOR with an AUC value of 0.86 through the analysis of 

radiomics features of bone marrow. This approach can be applied to patients who cannot 

undergo MRI and can assist clinicians in treatment planning by providing additional 

information on disc position, beyond bone changes. 

Our model has several considerations that could be improved in future research to 

achieve better performance. First, CBCT images inherently contain more artifacts than 

multi-detector CT images due to the lower energy spectrum used. Additionally, the 

geometric characteristics of image acquisition generate significant scatter radiation, which 

increases noise in the image. Since noise is a crucial factor in determining image quality, 

applying the developed method to images acquired with higher resolution and state-of-the-

art equipment is expected to yield improved results. Second, this study’s data were 

collected from a single institution. Therefore, if future research utilizes multi-institutional 

imaging, a more generalized and reliable model could be developed. Addressing these 

issues could improve the model's accuracy in classifying Normal, DDWR, and DDWOR 

into three groups. 
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5. CONCLUSION 
 

This study developed ML-based models to predict TMJ disc displacement by 

analyzing radiomics features of the condylar head in CBCT images and demonstrated their 

potential for clinical application. These models can offer a second opinion to novice 

dentists diagnosing TMJ disc displacement and can be utilized as an assisted diagnostic 

tool when MRI is not feasible.  
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ABSTRACT IN KOREAN 

 

콘빔전산화단층영상 내 라디오믹스 데이터를 이용한  

턱관절 관절원판 변위 예측 머신러닝 모델 개발 
 

 

연구목적: 본 연구의 목적은 자기공명영상 없이 콘빔전산화단층영상 내 

하악과두에서 획득한 라디오믹스 데이터를 이용하여 턱관절 관절원판 변위를 

예측하는 머신러닝 모델을 개발하고자 한다. 

연구대상 및 방법: 2018 년 12 월부터 2022 년 12 월까지 연세대학교 

치과병원을 내원하여 자기공명영상과 콘빔전산화단층영상을 모두 촬영한 

134 명의 환자로부터 247 개의 하악과두 데이터를 수집했다. 영상치의학 

전문의가 자기공명영상에서 턱관절 관절원판 변위 여부를 판독하여 그룹을 

분류한 후, 콘빔전산화단층영상 내 하악과두의 해면골에서 3 차원으로 

관심영역을 설정하여 132 개의 라디오믹스 데이터를 추출하였다. 추출된 

라디오믹스 데이터를 사용하여 턱관절 관절원판 변위를 예측하기 위해 

머신러닝 모델인 Random forest (RF)와 XGBoost 를 구축하여 세 가지 

실험을 진행하였으며, 각 실험 진행에 따라 그룹별 데이터 분포를 조정하였다. 
 

- 실험 1: 정상, 정복성 관절원판 변위, 비정복성 관절원판 변위 분류 

- 실험 2: 정상 vs 정복성 관절원판 변위 및 비정복성 관절원판 변위 분류 

- 실험 3: 정상 및 정복성 관절원판 변위 vs 비정복성 관절원판 변위 분류 
 

개발된 모델의 턱관절 관절원판 변위 분류 성능 평가를 위해 수신자 조작 

특성 곡선의 아래 면적 값(AUC), 정확도, 정밀도, 재현율, 특이도, F1 점수 

평가지표를 이용하였다. 
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연구결과: 모든 실험에서 RF 모델 성능이 XGBoost 모델보다 우수했으며 

실험 3 에서 정확도가 가장 높았고 실험 2 와 실험 1 의 순으로 성능이 

우수했다. 실험 3 에서 RF 와 XGBoost 모델은 각각 AUC 값 0.86 과 0.85 로 

정상 및 정복성 관절원판 변위 그룹을 비정복성 관절원판 변위 그룹과 

분류하였다. 실험 2 에서는 RF 와 XGBoost 모델이 정상 그룹과 정복성 

관절원판 변위 및 비정복성 관절원판 변위 그룹을 각각 AUC 값 0.76 과 

0.75 로 분류하였다. 분류 클래스 수가 세 그룹으로 가장 많은 실험 1 에서 

RF 모델은 정확도 0.63, XGBoost 모델은 정확도 0.59 를 획득하였다.  

결론: 본 연구에서는 콘빔전산화단층영상 내 하악과두의 해면골에서 

획득한 라디오믹스 데이터 분석을 통해 턱관절 관절원판 변위를 예측할 수 

있는 머신러닝 모델을 개발하고 임상적 활용 가능성을 보여주었다. 그러나 

실험 1 과 실험 2 에서 턱관절 관절원판 변위 분류 정확도는 높지 않았다. 

이는 턱관절 질환의 중, 후기 단계에서 경조직에 병리학적 변화가 발생하는 

점을 고려하였을 때 하악과두 해면골에서 얻은 라디오믹스 데이터는 비정복성 

관절원판 변위 단계에 이르렀을 때 특징 값의 차이가 나타났을 가능성이 

있으며, 이것이 실험 3 의 정확도가 가장 높은 이유로 예상할 수 있다.  

본 연구에서 개발된 머신러닝 모델은 턱관절 관절원판 변위 진단 시 

치과의사에게 객관적인 2 차 의견을 제공할 수 있으며, 자기공명영상 촬영이 

어려운 경우 비침습적인 보조 진단 수단으로 활용될 수 있다. 

 

 

_______________________________________________________________________________ 

핵심되는 말: 인공지능, 머신러닝, 콘빔전산화단층영상, 측두하악관절, 턱관절 

관절원판, 측두하악관절 장애 
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