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ABSTRACT

Automatic prediction of TMJ disc displacement
in CBCT images using machine learning

Purpose: The purpose of this study was to develop a machine learning (ML) model
to predict temporomandibular joint (TMJ) disc displacement using radiomics features
extracted from cone-beam computed tomography (CBCT) images, without the need for

magnetic resonance imaging (MRI).

Methods: A total of 247 mandibular condyle datasets from CBCT images of 134
patients were analyzed in this study. Three experiments were conducted using random
forest (RF) and extreme gradient boosting (XGBoost) models to classify TMJ disc
displacement based on radiomics features obtained from the condylar head on CBCT.
Experiment 1 classified the data into three groups—Normal, disc displacement with
reduction (DDWR), and disc displacement without reduction (DDWOR)—based on the
stage of TMJ disc displacement. Experiment 2 focused on differentiating the TMJ disc
displacement group (DDWR and DDWOR) from the Normal group. Experiment 3 aimed
to classify Normal and DDWR as a single group, distinguishing them from DDWOR. The
developed models were evaluated using the area under the receiver operating characteristic

curve (AUC), accuracy, precision, recall, specificity, and F1-score.

Results: Across all experiments, the RF model outperformed the XGBoost model,
with the highest accuracy in Experiment 3, followed by Experiments 2 and 1. In Experiment
3, the RF and XGBoost models classified Normal and DDWR as one group and DDWOR
as the other, with AUC values of 0.86 and 0.85, respectively. Experiment 2 classified the
Normal group from the combined group DDWR and DDWOR with AUC values of 0.76

v



for RF and 0.75 for XGBoost. In Experiment 1, which performed the most complex
classification into three groups, the RF model achieved an accuracy of 0.63, and the

XGBoost model obtained 0.59.

Conclusions: The ML models developed in this study provide a non-invasive
approach for predicting TMJ disc displacement using radiomics features extracted from
CBCT images. These models offer valuable support as a second opinion for dentists
diagnosing TMIJ disc displacement and serve as an assisted diagnostic tool when MRI is

unavailable.

Key words : Artificial Intelligence, Machine Learning, Cone-Beam Computed
Tomography, = Temporomandibular ~ Joint, = Temporomandibular  Joint  Disc,

Temporomandibular Joint Disorders



1. INTRODUCTION

The temporomandibular joint (TMJ) is a complicated structure where a portion of the
temporal bone, the condyle of the mandible, and the articular disc are located (Alomar et
al., 2007; Ingawale & Goswami, 2009). The disc, composed of avascular fibrous
connective tissue, is between the mandibular condyle and the glenoid fossa (Al-Ani & Gray,
2021; Mallya & Lam, 2018). It translates with the mandible during mouth opening, serving
as a shock absorber, thus playing a critical role in the mandibular movement (E Tanaka &
Koolstra, 2008; E Tanaka & Van Eijden, 2003). In normal cases, during mouth closing, the
borderline of the TMJ disc and thick posterior band are positioned directly superior to the
mandibular condyle head. During mouth opening, the thin center part of the disc stays

positioned between the condyle head and the articular eminence (Drace & Enzmann, 1990).

It is essential to diagnose disc position in TMJ disorder (TMD) because disc
displacement is the common cause of TMD (Young, 2015). Disc displacement can interfere
with normal joint function or cause pain, and the progress of inflammation in joint space
leads to TMJ dysfunction. TMD often begins with non-specific symptoms such as clicking
or joint noises during jaw movement and mild discomfort. As the condition progresses,
TMJ disc displacement can be accompanied by hard tissue changes along with a limited
range of motion. According to previous studies, there are almost no bony changes in the
stage of disc displacement with reduction (DDWR) in which the disc is displaced anteriorly
when the mouth is closed. Pathologic bony changes only begin to appear in the intermediate
to late stage of TMJ internal derangement (Wilkes, 1989), a case of disc displacement
without reduction (DDWOR) in which the disc remains displaced regardless of jaw
position (Som & Curtin, 2011).

As TMD progress, limited joint movement leads to dysfunction such as difficulty in
eating and talking, and reduces synovial fluid cycling, creating conditions conducive to the

accumulation of inflammatory agents. It can also lead to abnormal forces and inflammation
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in the joint, resulting in bone changes like flattening, erosion, osteophyte formation, and
sclerosis, as well as irregular changes in trabecular pattern (Dias et al., 2012; Roh et al.,
2012). Therefore, an accurate diagnosis of disc displacement is important in TMD (Mallya

& Lam, 2018).

Panoramic radiograph widely used in dentistry offers a broad coverage of the
anatomical structures surrounding the TMJ. However, its limitations as a two-dimensional
imaging modality, such as distortion and superimposition of images make it difficult to
accurately assess the anatomical structures (Perschbacher, 2012). Cone-beam computed
tomography (CBCT) is useful for three-dimensional (3D) evaluating pathologic changes of
the bony component of the TMJ structures, but it cannot visualize soft tissue structures such
as disc (Honda et al., 2006; Katakami et al., 2008; Mallya & Lam, 2018). Magnetic
resonance imaging (MRI) is the most accurate and only non-invasive diagnostic tool for
the position and shape of the disc (Emshoff et al., 2002; Larheim, 2005; Sano & Westesson,
1995). It can be taken in closed and opened mouth positions, allowing functional evaluation
of disc movement (Brooks & Westesson, 1993; Katzberg et al., 1986). Since MRI uses a
large magnet that generates a strong external magnetic field, patients with pacemakers,
cerebral aneurysm clips, or cochlea implants cannot undergo MRI, and claustrophobia may
also have difficulty with the scan (Mallya & Lam, 2018). Above all, MRI has the
disadvantage of being expensive equipment that can only be taken at some hospitals and

the cost of taking the scan is also very high.

Due to the limitations of taking an MRI, several studies have attempted to predict TMJ
disc displacement using CBCT without MRI. These studies have tried the prediction of disc
displacement through joint space alteration, condylar position, and condylar morphology
observed on CBCT with clinical symptoms such as pain, sound, and maximum mouth
opening range (B. Chen & Li, 2024; Choi & Park, 2016). However, these methods were
unable to establish a definitive correlation with disc displacement or emphasized the

additional necessity of MRI, and the selection of image slices for evaluation was subjective.



Therefore, in this study, we quantitatively attempted to predict TMJ disc displacement

using radiomics data.

Medical images contain various image biomarkers that cannot be perceived by
humans but can be used for diagnostic or predictive purposes by converting image data into
structured information. Radiomics is one of the image biomarkers frequently used in
medical imaging, it can objectively and quantitatively analyze the properties such as shape,
texture, and intensity (Jia et al., 2019; Lambin et al., 2012; Mayerhoefer et al., 2020;
Rastegar et al.,, 2020; Tomaszewski & Gillies, 2021). The previous studies, utilized
radiomics methods to detect cancer and assess osteoporosis in medical images (He et al.,
2019; Jiang et al., 2022; Linning et al., 2019). In the field of dentistry, radiomics features
have been used for caries detection, cancer diagnosis, and legal age classification (De
Araujo Faria et al., 2021; Fruehwald-Pallamar et al., 2016; Jeon et al., 2023). This study
introduces a technique to automatically predict TMJ disc displacement from CBCT images

without MRI using two machine learning (ML) models.

Considering the correlation between TMJ disc displacement and changes in the bone
marrow and cortical bone of the mandibular condyle, we hypothesized that differences in
radiomics features of the condyle head in CBCT images would vary according to the stage
of TMJ disc displacement. This study aimed to develop two ML models that utilize only
CBCT image radiomics features to predict TMJ disc displacement without MRI.



2. MATERIALS AND METHODS

2.1. Data preparation

This study was approved by the Institutional Review Board (IRB) of Yonsei
University Dental Hospital (IRB No. 2-2023-0065). The requirement for patient consent
was waived due to the retrospective nature of the image collection, ethical guidelines, and
regulations on all methods. All images utilized in the study were anonymized and exported

in Digital Image Communication in Medicine format.

Data were collected from patients who visited Yonsei University Dental Hospital from
December 2018 to December 2022 and underwent both MRI and CBCT scans. MRI scans
were performed with 3.0 T scanner (Pioneer; GE Healthcare, Waukesha, WI, USA) and 16-
channel flex large coil. Sagittal section views of the condylar head were acquired using
proton density-weighted sequences in the closed-mouth and open-mouth positions with a
slice thickness of 2.5 mm. We acquired CBCT scans of each subject using the Alphard 3030
(Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) machine. The CBCT protocol for TMJ was
the field of view 154 X 154 mm, voxel size of 0.3 mm?, 80 kVp, 8 mAs, and exposure

time of 17 s.

The criteria for data collection included: (1) adults aged 20 and older; (2) CBCT
images that clearly allowed the identification of the border between the cortical bone and
bone marrow of the mandibular condyle; and (3) mandibular condyle of sufficient size to
enable 3D manual labeling. Exclusion criteria were as follows: (1) patients with fractures,
tumors, or severe anatomical deformities in the TMJ; and (2) CBCT images with significant

metal artifacts or severe blurring.



2.2. Three experiments according to classification of TMD groups

Three experiments were performed to predict classification in a total of 247 condylar
heads that were collected from 134 patients. The data were randomly selected and adjusted
according to group distribution for each experiment (Table 1). An oral radiologist classified
the groups by identifying the position of the disc using MRI as the gold standard. Fig. 1
shows examples of TMJ disc positions during the process of opening and closing the mouth

for groups divided based on TMJ disc displacement.
(1) Experiment 1: Classification into three groups — Normal vs DDWR vs DDWOR
(2) Experiment 2: Classification into two groups — Normal vs DDWR and DDWOR
(3) Experiment 3: Classification into two groups — Normal and DDWR vs DDWOR

Fig. 2 presents a schema of the proposed study for machine learning-based TMJ disc

displacement prediction using radiomics features in the condylar head.



Table 1. Clinical characteristics of three experiments for classifying TMJ disc displacement

Female Male Total
Normal 51 32 83
Experiment 1 DDWR 59 21 80
DDWOR 60 24 84
Normal 51 32 83
Experiment 2
DDWR and DDWOR 47 37 84
Normal and DDWR 44 39 83
Experiment 3
DDWOR 60 24 84

DDWR, disc displacement with reduction; DDWOR, disc displacement without reduction.
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Fig. 1 Examples of TMJ disc position during mouth closing and opening. TMIJ,
temporomandibular joint; DDWR, disc displacement with reduction, DDWOR, disc
displacement without reduction.



Three experiments according to classification of TMD patient groups
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Fig. 2 Overview of machine learning model development for TMJ disc displacement
prediction in CBCT images. TMD, temporomandibular joint disorder; TMJ,
temporomandibular joint; DDWR, disc displacement with reduction; DDWOR, disc
displacement without reduction.



2.3. Segmentation of region of interest in the condylar head in CBCT

The radiomics features were extracted from the CBCT images of the condylar head
area, focusing on the bone marrow. In mandibular condyles with erosion and osteophyte
formation, the irregular border between bone marrow and cortical bone creates challenges
for labeling and can lead to variability among observers. Therefore, the region of interest
(ROI) was set in 3D to include the condyle neck of the bone marrow excluding the cortical
bone (Fig. 3). The ROI in the TMJ bone marrow was manually segmented using AVIEW
research software (Coreline Soft Inc., Seoul, Korea) by an oral radiologist with more than
25 years of experience. An average of 42 CBCT image slices per person were used for

condylar head segmentation.
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Fig. 3 Process of defining the bone marrow of the mandibular condyle in CBCT images as
a three-dimensional region of interest.
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2.4. Radiomics features extraction

A total of 132 features were obtained by mathematically quantifying 3D radiomics
features from the segmented ROI on CBCT images. The extracted radiomics features were
divided into 3 categories: texture, shape, and fractal features (Table 2). The radiomics
features were automatically computed through AVIEW research software based on

PyRadiomics (https://PyRadiomics.readthedocs.io/en/latest/).
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Table 2. Summary of types of radiomics features and descriptions

Radiomics features

Description

Texture

Comprise various statistical information about the gray value
distribution inside the ROI. These features included minimum
and maximum values of gray level, distribution of voxel
intensity, difference values from the neighboring voxels,

quantified gray level dependencies, etc.

Shape

Account for geometric properties such as the volume measured
by counting the voxel units in the ROI, compactness of the ROI,
maximum diameter, maximum surface along various orthogonal

directions, and the similarity of the ROI to a sphere, etc.

Fractal

Determine heterogeneity between organizations through pattern
difference analysis. Fractal Dimension is a number that
quantifies the rate of detailed change due to changes in scale and
is easily affected by the shape of the ROI. Using the box-
counting slide technique, boxes of various sizes are slid to
calculate the fractal dimension of each position. The fractal

dimension is defined as the slope of a line.
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2.5. Radiomics features normalization

We performed z-score normalization on the extracted feature values for the individual
features. Various radiomics features have different units and ranges, some are within the 0
to 1, while others have a much larger range. Without feature normalization,
disproportionate weights could be assigned during model training based on the distribution
of feature values. Therefore, we applied z-score normalization to ensure that each feature

had a relatively consistent range (Fig. 4), and can define it as follows:

xX—p

. (1)

Normalized Value =

where x denotes the value to be normalized in the attribute, p indicates its mean

value, and o is its standard deviation, respectively.

13
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Fig. 4 Changes in radiomics feature values distribution following z-score normalization.
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2.6. Machine learning model for TMJ disc displacement prediction

In this study, random forest (RF) and extreme gradient boosting (XGBoost) classifiers
were developed to conduct three experiments. These two ML models were implemented
using Python language with the scikit-learn package (https://scikit-learn.org/). To train the
model, the dataset was divided by 7:3 ratios based on the data class distribution. In
Experiment 1, out of 247 condylar heads, 172 were divided as the training data and 75 as
the test set. In Experiment 2, 167 condylar heads were divided into 115 for training data
and 52 for the test set to evaluate performance. In Experiment 3, 116 condylar heads were
used as the training data, and 51 as the test set for the experiment. For both classifiers, we
tested a range of tree numbers from 1 to 200 to establish which tree had the highest area
under the receiver operating characteristic curve (AUC) value. In the tree model built to
obtain the best AUC value, the threshold was adjusted from 0 to 1 to set the parameter to

obtain the highest accuracy.

The RF classifier, consisting of several decision trees, mitigates overfitting by training
each tree on a subset of the entire dataset (Breiman, 2001). The Gini index, which evaluates
the probability of misclassification for each feature in a node, was computed at each node
split within RF, reflecting how effectively the data can be categorized within each
individual tree. In prediction for a new case, each decision tree casts a vote for a group
class, and the votes of all trees in the forest are accumulated to determine the patient’s class

probability.

XGBoost, introduced by Chen and Guestrin, is a decision tree-based ensemble method
and operates within the gradient boosting framework (T. Chen & Guestrin, 2016). This
algorithm is an ensemble learning, collecting predictions from multiple weaker learners
and determining the final model through a voting process. Unlike the RF classifier,

XGBoost has an advantage in producing a robust classification tree, with the loss gradually
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decreasing as the weight coefficients for individually weak classifiers are applied to the

next decision tree.

2.7. Performance evaluation for prediction models

We calculated the AUC, accuracy, precision, recall, specificity, and F1 score to
evaluate the classification performance of RF and XGBoost in predicting TMJ disc
displacement using radiomics features. The receiver operating characteristic (ROC) curve
is a graph that shows the true positive rate relative to the false positive rate by varying the
discriminant threshold, and the AUC refers to the area under this curve. AUC is a value
ranging from 0 to 1, with values closer to 1 indicating that the model classified the data
perfectly. Python (Python Software Foundation, Version 3.6.1; Wilmington, DE, USA) was
utilized to visualize and calculate classification performance. These evaluation

measurements are defined as follows:

TP+TN

Accuracy = TPETNTFPTFN (2)
Precision = TPTJ;P (3)
Recall = TPT+PFN 4)
Specificity = TNEFP (5)

2*Precision*Recall
Fl score = —————— (6)

Precision+Recall

where TP, TN, FP, and FN denote the true positive, true negative, false positive, and

false negative, respectively.
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3. RESULTS

Overall, the RF model outperformed XGBoost in all three experiments. In Experiment
1, RF and XGBoost models classified Normal, DDWR, and DDWOR with accuracies of
0.63 and 0.59 respectively. The average precision, recall, specificity, and F1 score across
the three classes for the RF model were 0.65, 0.62, 0.81, and 0.63. For the XGBoost model,
these values were 0.60, 0.59, 0.79, and 0.59, respectively (Table 3, Fig. 5).

In Experiment 2, RF and XGBoost classified Normal and the combined group of
DDWR and DDWOR with AUC values of 0.76 and 0.75. For RF, the evaluation metrics
were 0.71 (accuracy), 0.72 (precision), 0.69 (recall), 0.73 (specificity), and 0.70 (F1 score),
while XGBoost was 0.69, 0.67, 0.77, 0.62, and 0.72 for these metrics, respectively (Table
4, Fig. 6).

In Experiment 3, which classified Normal and DDWR combined group versus
DDWOR, both models achieved their highest predictive performance, with all evaluation
metrics exceeding 0.80. The RF model reached an AUC of 0.86, accuracy of 0.82, precision
of 0.84, recall of 0.81, specificity of 0.84, and F1 score of 0.82. XGBoost achieved 0.85,
0.80, 0.81, 0.81, 0.80, and 0.81 for each evaluation metric (Table 5, Fig. 7).

17



Table 3. Prediction performance comparison of two ML models in Experiment 1

ML model Accuracy Precision Recall Specificity Flscore
RF 0.63 0.65 0.62 0.81 0.63
XGBoost 0.59 0.60 0.59 0.79 0.59

ML, machine learning; RF, random forest; XGBoost, extreme gradient boosting.
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0.2

0.4 0.6
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Fig. 5 Receiver operating characteristic curve and confusion matrix of Experiment 1. (A)
Random forest. (B) XGBoost. DDWR, disc displacement with reduction; DDWOR, disc
displacement without reduction.
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Table 4. Prediction performance comparison of two ML models in Experiment 2

ML model AUC Accuracy Precision  Recall  Specificity  Flscore

RF 0.76 0.71 0.72 0.69 0.73 0.70
XGBoost 0.75 0.69 0.67 0.77 0.62 0.72

ML, machine learning; RF, random forest; XGBoost, extreme gradient boosting; AUC, area
under the curves.
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o0 | b — RF (AUC=0.76)

Normal DDWR/DDWOR
False Positive Rate Prediction

0.0 0.2 0.4 0.6 0.8 1.0

1.0 4

0.8

Normal

0.6

0.4 -

Ground truth

DDWR/DDWOR

True Positive Rate

10

0.2 4

0.0 | — XGBoost (AUC=0.75)

Normal DDWR/DDWOR
False Positive Rate Prediction

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6 Receiver operating characteristic curve and confusion matrix of Experiment 2. (A)
Random forest. (B) XGBoost. DDWR, disc displacement with reduction; DDWOR, disc
displacement without reduction.
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Table 5. Prediction performance comparison of two ML models in Experiment 3

ML model AUC Accuracy Precision  Recall  Specificity  Flscore

RF 0.86 0.82 0.84 0.81 0.84 0.82
XGBoost 0.85 0.80 0.81 0.81 0.80 0.81

ML, machine learning; RF, random forest; XGBoost, extreme gradient boosting; AUC, area
under the curves.
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Fig. 7 Receiver operating characteristic curve and confusion matrix of Experiment 3. (A)
Random forest. (B) XGBoost. DDWR, disc displacement with reduction; DDWOR, disc
displacement without reduction.
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In Experiment 3, which achieved the highest accuracy among the three experiments,
feature importance was analyzed for the prediction of TMJ disc displacement groups by
the two ML models and identified the top 10 features. The features that primarily influenced
the classification of Normal and DDWR as a single group versus DDWOR were mainly
shape features, and within the texture features, gray-level co-occurrence matrix (GLCM)

and gray-level dependence matrix (GLDM) (Fig. 8).
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Fig. 8 Top 10 important features of Random forest and XGBoost models in Experiment 3.
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4. DISCUSSION

In this study, we proposed two ML models to predict TMJ disc displacement without
MRI only using CBCT images. The experimental results demonstrated that the developed
model was effective and accurate in classifying the stage of TMJ disc displacement using
radiomics features of TMJ bone marrow. Notably, in Experiment 3, where both models
showed potential for clinical application in predicting DDWOR among the stages of TMJ
disc displacement. According to this experiment, the two ML models can provide objective
second opinions to dentists for diagnosing TMJ disc displacement by utilizing radiomics
features obtained from the mandibular condyle in CBCT images. Furthermore, these
models can serve as non-invasive diagnostic support tools in cases where MRI cannot be

performed.

TMD is a disease that causes abnormal joint function due to abnormalities in the
position and shape of the disc (Young, 2015). The normal position of the disc is between
the mandibular condyle and the articular fossa, but in DDWR, the disc is displaced
anteriorly when the mouth is closed. If DDWR is not properly managed, it can progress to
DDWOR. When in a closed state compared to DDWR, the disc can be displaced more
anteriorly, and when the mouth is opened, the disc does not return to its normal position
and is still in front (Som & Curtin, 2011). This condition requires management because it
usually causes functional impairment, including the mouth not opening sufficiently and
restricting the mandible’s movement, making eating and speaking difficult. The shape of a
chronically displaced articular disc may become thickened or distorted, and restricted joint
movement reduces synovial fluid circulation, creating conditions conducive to the
accumulation of inflammatory substances. Therefore, accurate diagnosis and timely

management are essential to prevent the progression of the disease.

To diagnose TMD, it is necessary to identify the position of the disc when opening

and closing the mouth through MRI (Emshoff et al., 2002; Katzberg et al., 1986). A
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patient’s clinical symptoms can be varied and sometimes inconsistent, and complex
etiologic factors exist, MRI that can detect soft tissue pathology is generally essential
(Larheim, 2005). However, MRI is more expensive to purchase and maintain than other
dental imaging equipment, so its adoption rate in local hospitals other than university
hospitals is low. Additionally, MRI obtains images by positioning the patient within a large
magnet, which can be challenging for individuals with pacemakers or claustrophobia
(Mallya & Lam, 2018). Therefore, MRI is the most accurate method to diagnose TMJ disc

displacement, but its accessibility is low compared to other dental imaging.

Due to the limited accessibility of MRI, previous studies have attempted to diagnose
TMJ disc displacement using CBCT without MRI. Choi, H. M., et al. aimed to compare
Normal and TMJ disc displacement by analyzing the size and morphology of the
mandibular condyle such as condylar height and intercondylar angle on CBCT images
(Choi & Park, 2016). However, this analysis method could not find a relationship between
the two groups. Chen, B., & Li, C. et al. attempted to determine the relationship between
disc position, joint space, and condylar morphology (B. Chen & Li, 2024). However, it was
difficult to predict disc shape and position using only CBCT images, and the need for MRI
was mentioned. Moreover, the previously mentioned methods rely on a subjective selection
of CBCT slices when measuring joint space or condylar angles, which may result in low
inter-observer reliability. In contrast, this study proposed a method to classify TMJ disc
displacement as a quantitative value by analyzing radiomics features of CBCT images,
showing high accuracy with an AUC value of 0.86 to differentiate Normal and DDWR
groups from the DDWOR group.

Radiomics enables the quantitative analysis of image features that cannot be observed
by the human eye in medical images such as CBCT or MRI (Lambin et al., 2012;
Mayerhoefer et al., 2020). The main advantage of radiomics is that it can noninvasively
offer valuable information for the diagnosis and prognosis of diseases. This study
developed an ML model to predict disc displacement from CBCT images without needing

MRI, utilizing the advantage of the radiomics features. In Experiment 1, we aimed to
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classify three groups of disc displacement: Normal, DDWR, and DDWOR. The RF and
XGBoost classified the three groups with 0.63 and 0.59 accuracy, respectively. In
Experiment 2, the objective was to classify Normal and the combination of DDWR and
DDWOR, and RF and XGBoost obtained AUC values of 0.76 and 0.75, respectively. In
Experiment 3, Normal and DDWR were grouped into one group, while DDWOR was
classified into a separate group. The developed RF and XGBoost classified two groups with
AUC values of 0.86 and 0.85, respectively.

Compared with Experiment 3, Experiments 1 and 2 achieved relatively low
classification accuracies. According to Wilkes’ classification of internal derangement of the
TMJ shows that no significant changes in hard tissue occur until the middle stage, with
pathological alterations in hard tissue beginning in the intermediate-to-late stage (Wilkes,
1989). In this study, the ROI was set in the bone marrow, excluding the cortical bone, to
extract radiomics features. Considering this, the radiomics features extracted from the bone
marrow of the mandibular condyle may exhibit differences primarily in the stage of

DDWOR, which could explain why Experiment 3 achieved the highest accuracy.

In Experiment 3, an analysis of feature importance influencing the classification of
Normal and DDWR as one group and DDWOR as the other by two ML models, the top 10
important features were primarily the shape features and, particularly within the texture
features, the GLCM and GLDM. The progression of disc displacement from Normal to
DDWR and then to DDWOR can lead to abnormal forms of the osseous or soft tissue
structures of the joint, such as bone deformities and remodeling, so it is reasonable to accept
the influence of shape features. GLCM and GLDM include features that capture the
relational information about pixels with similar values within an image and quantify gray-
level dependencies between image pixels, respectively. As TMJ disc displacement
progresses, the trabecular pattern of the bone marrow becomes more irregular, and these

changes may have affected the two features.
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The ML models developed in this study demonstrated their potential for clinical
application by predicting DDWOR with an AUC value of 0.86 through the analysis of
radiomics features of bone marrow. This approach can be applied to patients who cannot
undergo MRI and can assist clinicians in treatment planning by providing additional

information on disc position, beyond bone changes.

Our model has several considerations that could be improved in future research to
achieve better performance. First, CBCT images inherently contain more artifacts than
multi-detector CT images due to the lower energy spectrum used. Additionally, the
geometric characteristics of image acquisition generate significant scatter radiation, which
increases noise in the image. Since noise is a crucial factor in determining image quality,
applying the developed method to images acquired with higher resolution and state-of-the-
art equipment is expected to yield improved results. Second, this study’s data were
collected from a single institution. Therefore, if future research utilizes multi-institutional
imaging, a more generalized and reliable model could be developed. Addressing these
issues could improve the model's accuracy in classifying Normal, DDWR, and DDWOR

into three groups.
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5. CONCLUSION

This study developed ML-based models to predict TMJ disc displacement by
analyzing radiomics features of the condylar head in CBCT images and demonstrated their
potential for clinical application. These models can offer a second opinion to novice
dentists diagnosing TMJ disc displacement and can be utilized as an assisted diagnostic

tool when MRI is not feasible.
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