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ABSTRACT

Clinical validity and precision of deep learning-
based cone-beam computed tomography automatic

landmarking algorithm

Jung-Eun Park

Department of Dentistry
The Graduate School, Yonsei University
(Directed by Prof. Hyung-Seog Yu, D.D.S., M.S., Ph.D)

This study was performed to assess the clinical validity and accuracy of a deep learning-based
automatic landmarking algorithm for cone-beam computed tomography (CBCT). Three-
dimensional (3D) CBCT head measurements obtained through manual and automatic landmarking

were compared.



A total of 80 CBCT scans were divided into 3 groups: non-surgical (39 cases); surgical without
hardware, namely surgical plates and mini-screws (9 cases); and surgical with hardware (32 cases).
Each CBCT scan was analyzed to obtain 53 measurements, comprising 27 lengths, 21 angles, and 5
ratios, which were determined based on 65 landmarks identified using either a manual or a 3D
automatic landmark detection method.

In comparing measurement values derived from manual and artificial intelligence landmarking,
6 items displayed significant differences: R U6CP-L U6CP, R L3CP-L L3CP, S-N, Or_R-R U3CP,
L1L to Me-GoL, and GoR-Gn/S-N (P<0.05). Of the 3 groups, the surgical scans without hardware
exhibited the lowest error, reflecting the smallest difference in measurements between human- and
artificial intelligence-based landmarking. The time required to identify 65 landmarks was
approximately 40-60 minutes per CBCT volume when done manually, compared to 10.9 seconds
for the artificial intelligence method (PC specifications: GeForce 2080Ti, 64GB RAM, and an Intel
i7 CPU at 3.6 GHz).

There were 4 differences in length, 1 difference in angle, and 1 difference in ratio, and in the
surgical group, there was a significant difference in the measurement errors for length and ratio
depending on the presence or absence of the hardware. It is necessary to re-evaluate whether the
clinical application of the measurement values is meaningful by comparing the differences between
human and between Al and human in the measurement values (length, angle, ratio). In conclusion,
although there are still limitations, there is a clear advantage in terms of efficiency, and it can be

used in the clinical range.

Key Words: Cone-Beam Computed Tomography; Anatomic Landmarks; Cephalometry; Deep

Learning; Orthognathic Surgery
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Clinical validity and precision of deep learning-
based cone-beam computed tomography automatic

landmarking algorithm

Jung-Eun Park

Department of Dentistry
The Graduate School, Yonsei University
(Directed by Prof. Hyung-Seog Yu, D.D.S., M.S., Ph.D)

. Introduction

Cephalometric analysis is essential for diagnosis and treatment planning in orthodontic and
orthognathic surgery. Traditionally, 2-dimensional (2D) cephalometric radiography has been used
to evaluate the craniomaxillofacial (CMF) region. However, this imaging modality projects a 3-
dimensional (3D) CMF structure onto a 2D plane, leading to image distortion. This distortion can
manifest as the overlapping of anatomical structures and the enlargement or reduction of specific
areas (Gribel BF et al., 2011).

Several experts have proposed the use of 3D cephalometric analysis with computed

tomography or cone-beam computed tomography (CBCT) images (Lee SH et al., 2014; Olszewski



R et al., 2006). CBCT enables clinicians to visualize anatomy in 3 dimensions without overlap,
providing comprehensive information on anatomical spatial relationships (Mah JK et al., 2010).

Accurate landmarking is essential for proper diagnosis. However, manual landmarking can be
repetitive and laborious, often yielding inconsistencies between and within practitioners. To
alleviate the challenges associated with manual landmarking, numerous studies have explored the
use of automatic landmark detection systems (Lindner C et al., 2016; Vandaele R et al., 2018).

A wealth of information can be obtained from 3D cephalometry; however, 3D landmarking is
difficult, labor-intensive, time-consuming, and heavily dependent on expertise and experience
(Lagravere MO et al., 2010; Hassan B et al., 2013). The complexity of processing 3D data
contributes to these challenges, as does the substantial effort required to create a 3D labeled dataset.
Furthermore, since no open dataset is available for 3D CMF landmarks, many studies have had to
rely on small datasets and have limited their measurements to landmarks on the bone surface.

As indicated above, research on 2D and 3D automatic landmarking is ongoing. However, few
studies have examined the utility and clinical applicability of cephalometric analysis based on
landmarks identified through automatic processes. The clinically acceptable margin of error for
landmark placement depends on the error value when implemented in a clinical setting (Ghowsi A
etal., 2022). When conducting cephalometric analyses, it is essential to ascertain the impact of errors
in linear, angular, and ratio measurements across all 3 dimensions (X, y, and z coordinates). Accuracy
results reported for most Al models should be re-evaluated to reflect clinical reproducibility.
Because a 1-2 mm deviation in other two measurement points can mostly affect linear and angular
values, and consequently orthodontic diagnosis and treatment. The impact of cephalometric analysis
method on the accuracy of Al landmarking has not yet been studied sufficiently. When selecting

linear and angular measurements of landmarks, it may be useful to evaluate whether Al can achieve



clinically acceptable results in terms of accuracy and whether it can obtain a sufficiently complete
cephalometric analysis for an accurate orthodontic diagnosis (Polizzi A and Leonardi R, 2024).

Jeon and Lee (Jeon S and Lee KC, 2021) compared 26 measurements obtained from a
convolutional neural network (CNN)-based 2D automatic head landmarking system with those
derived from conventional landmarking across 35 lateral head radiographs. Gupta et al. (Gupta A et
al., 2016) compared 51 measurements between a knowledge-based 3D automatic head landmarking
system and manual landmarking for 30 CBCT scans. Both studies concluded that automated
cephalometric analysis is comparable in accuracy to manual calculations (Jeon S and Lee KC, 2021;
Gupta A et al., 2016).

In dentistry, metal artifacts are commonly observed on CBCT images due to materials used in
orthodontics, surgical applications, and dental restorations. The presence of metal artifacts along the
path of the radiation beam causes photon depletion and scattering, resulting in characteristic light
and dark banding artifacts on the CBCT image (Barrett JF and Keat N; 2004). These artifacts obscure
the adjacent anatomy and impede diagnosis; furthermore, they can interfere with the image
segmentation of maxillary and mandibular teeth and bone structures for computer-guided therapy
(Hung K et al., 2020).

As mentioned above, there are papers on automatic cephalometric analysis, but there are few
studies on automatic cephalometric analysis targeting orthognathic surgery patient data. It is
necessary to find out whether Al automatic cephalomeric analysis can analyze orthognathic surgery
patient image data well and whether it is affected by the presence or absence of hardware including
the plate used in the surgery.

This study aimed to evaluate the clinical validity and accuracy of a deep learning-based CBCT

automatic landmarking algorithm in 3D automatic cephalometry and analysis. The authors posited



that the values produced by the algorithm would be comparable to those obtained by humans and
would promote efficiency by reducing time. Additionally, the authors hypothesized that no errors

would be observed in the measured values attributable to hardware and screws after surgery.



I1. Materials and Methods

1. 3D manual landmarking

Under the supervision of a clinical physician, two biomedical experts identified 3D landmarks
in 821 CBCT images acquired with an i-CAT 17-19 device (Imaging Sciences International, Hatfield,
PA, USA) and 148 CBCT images acquired with different NewTom models (5G, VGi EVO, VGi

Mark 3, VGi Mark 4; NewTom, Imola, Italy).

2. 3D automatic landmarking

Using an automatic 3D landmarking algorithm utilizing a 2-stage coarse-to-fine approach, 65
landmarks were measured. All CBCT datasets were acquired for diagnostic purposes and exported
in Digital Imaging and Communications in Medicine format. The personal data of all patients,
including names and registration numbers, were anonymized. The dataset was compiled without
regard to sex, age, or race and included perioperative information, with a focus on cases of
orthognathic surgery. Consequently, approximately 40% of the CBCT scans contained surgical
hardware, such as surgical plates and mini-screws.

Sixty-five 3D landmarks in 12 anatomical groups, including the bone, skin, dental crown, tooth
root, neural canal (center or opening), and sella, were cataloged (Table 1). The time required to
measure these 65 landmarks was 10.9 seconds per volume, with point-to-point errors of 1.7 £ 0.1
mm (99% confidence interval). The threshold for a clinically acceptable successful detection rate
(SDR) was set at 3 mm, with SDRs of 88.16% at this level and 94.35% at 4 mm (Torosdagli N et
al., 2014). All 65 landmarks were detected near their true positions, even in the presence of various

types of orthognathic surgical hardware.



Table 1. Anatomical groups and included landmarks.

Group

Landmarks

Mid-sagittal Mx. (bone)

Mid-sagittal Mn. (bone)

Mid-sagittal Mx. (soft tissue)

Mid-sagittal Mn. (soft tissue)

Skull

Lateral Mn.

Tooth crown (Mx.)

Tooth roots (Mx.)

Tooth crown (Mn.)

Tooth roots (Mn.)

Bone around orbit

Condyle

A (A-point), ANS (anterior nasal spine), PNS (posterior nasal spine), N (nasion)

B (B-point), Pog (pogonion), Gn (gnathion), Me (menton)

Sls (soft tissue A-point), Pn (pronasale), Soft N (soft tissue nasion), Sts (stomion superius), Soft
Gabella (soft tissue gabella), Ala R (right alar base), Ala L (left alar base)

Soft Pog (soft tissue pogonion), Si (mentolabial sulcus), Sti (stomion inferius)

G (crista galli), Ba (basion), S (sella), Po_R (right porion), Po_L (left porion)

Go_R (right gonion), Go_L (left gonion), M_R (right mental foramen), M_L (left mental
foramen), MF_R (right mandibular foramen), MF_L (left mandibular foramen)

R U1CP (center of right maxillary incisor crown), L U1CP (center of left maxillary incisor crown),
R U3CP (tip of right maxillary canine crown), L U3CP (tip of left maxillary canine crown), R
UBCP (tip of mesiobuccal cusp of right maxillary first molar crown), L U6CP (tip of mesiobuccal
cusp of left maxillary first molar crown)

R U1RP (root of right maxillary incisor), L U1RP (root of left maxillary incisor), R U3RP (root of
right maxillary canine), L U3RP (root of left maxillary canine), R U6RP (mesiobuccal root of right
maxillary first molar), L UBRP (mesiobuccal root of left maxillary first molar)

R L1CP (center of right mandibular incisor crown), L L1CP (center of left mandibular incisor
crown), R L3CP (tip of right mandibular canine crown), L L3CP (tip of left mandibular canine
crown), R L6CP (tip of mesiobuccal cusp of right mandibular first molar crown), L L6CP (tip of
mesiobuccal cusp of left mandibular first molar crown)

R L1RP (root of right mandibular incisor), L L1RP (root of left mandibular incisor), R L3RP (root
of right mandibular canine), L L3RP (root of left mandibular canine), R L6RP (mesiobuccal root
of right mandibular first molar), L L6RP (mesiobuccal root of left mandibular first molar)
ZyFr_R (right zygomaticofrontal suture), ZyFr_L (left zygomaticofrontal suture), RO_R (right
roof of orbit), Or_R (right orbitale), RO_L (left roof of orbit), Or_L (left orbitale)

CIL_R (right condylus lateralis), Cm_R (right condylus medialis), Co_R (right condylion), CI_L

(left condylus lateralis), Cm_L (left condylus medialis), Co_L (left condylion)

Mx: maxilla, Mn: mandible.



3. 3D landmark measurement

Among the 821 sets of CBCT images from Chung-Ang University Hospital in Seoul,
Korea(Institutional Review Board number: 1922-007-362), which were used in a study on 3D
automatic landmarking using deep learning, 80 sets of CBCT images that were not used for training
were selected as the study subjects. A total of 80 CBCT were categorized into a non-surgical group
(39 cases) and a surgical group (41 cases). The dataset was constructed independent of gender, age,
and race and included orthognathic surgery cases. All CBCT datasets were collected for diagnostic
purposes through anonymization and encryption before generating ground truth data.

The latter was further subdivided into 9 cases without hardware and 32 cases with hardware.
All CBCT scans were anonymized and assigned new serial numbers for the study.

Based on the 65 landmarks, 53 measurements (27 lengths, 21 angles, and 5 ratios) were taken.
The classification and measurement values were based on the methodology outlined by Gupta et al
(Gupta A et al., 2016).

The length measurements were categorized into 3 groups: 1) bilateral, obtained from 2
symmetrical landmarks in the parasagittal plane (Fig. 1); 2) midsagittal, derived from 2 landmarks
in the midsagittal plane (Fig. 2); and 3) midsagittal to bilateral, acquired using 3 landmarks—1 in
the central sagittal plane and 2 symmetrically located in the parasagittal plane (Fig. 3).

The angles were classified into 3 types: midsagittal (calculated using 3 landmarks within the
midsagittal plane); midsagittal to bilateral (determined by 4 landmarks, 2 in the midsagittal plane
and 2 symmetrically positioned in the parasagittal plane) (Fig. 4).; and planar (either four landmarks

or two landmarks and one horizontal plane (Fig. 5).



Figure 1. Bilateral linear 3D cephalometric measurements obtained through two symmetrically

present landmarks, one in right parasagittal and one in left parasagittal plane.



Figure 2. Midsagittal linear 3D cephalometric measurements obtained through two landmarks in

midsagittal plane.



Figure 3. Midsagittal to bilateral linear 3D cephalometric measurements obtained through three
landmarks, one landmark in midsagittal plane and other two landmarks symmetrically located in

parasagittal planes on the right and left side of skull.
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Figure 4. Angular 3D cephalometric measurements (midsagittal and midsagittal to bilateral) based

on three points.
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Figure 5. Angular 3D cephalometric measurements obtained through either four landmarks or two

landmarks and one horizontal plane.
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Measurements were obtained through 3D vector calculation. Length was determined by
multiplying the 3D voxel index of a landmark by the spacing values along the X, y, and z axes,
followed by application of the 3D Euclidean distance formula. For angles, the angle between the
vectors 4 and v, represented by the pair of landmarks, was calculated. This angle was derived
using the second law of cosines. When determining the smaller of the angles formed by the 2 vectors,
the direction of the vectors was verified and factored into the calculation. In mathematics, the angle
between 2 vectors is a value between 0 and 180 degrees. The angle between 2 vectors @ and v
can be calculated using the dot product and inverse trigonometric functions.

The following formulas were used to calculate the distances and angles in P(X1, y1, Z1), Q(Xz,

Y2, Z2), R(X3, Y3, Z3), and S(Xa, Y4, Z4):

Dpq = \/(Xl —X2)?+ (Y, —Y2)? + (Z1 — Z,)?

where X; = x; X (spacing of x-—axis),Y; =y; X (spacing of y-axis), and Z; = z; X

(spacing of z-axis)

uv

ep RS=COS—1 —
e |ul[v]

wherei = (x; —x)l+ (v, —y))f + (z, —z)k  and ¥ = (xy —x3)i + (v — y3)J +

(za — Zs)]E
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4. Statistical analysis

The means and standard deviations (SDs) of the measurements, obtained using landmarks
identified by humans or artificial intelligence (Al), were determined. The means, medians, and SDs
of the errors between the 2 measured values were also calculated. For the 80 CBCT scans, the
Shapiro-Wilk test was applied to assess the normality of the measurements based on human- and
Al-identified landmarks. Subsequently, an unpaired t-test was used to evaluate whether a significant
difference existed between the 2 groups. Additionally, a Bland-Altman plot was employed to
visually represent the differences between groups.

An unpaired t-test was used to compare the nonsurgical, surgical, hardware present, and
hardware absent groups. Differences between the groups were visually expressed using violin plots.
Statistical significance was established at P<0.05. Shapiro-Wilk and unpaired t-tests were conducted
using SPSS GradPacks Statistics 28 (IBM Corp., Armonk, NY, USA). Bland-Altman and violin
plots were created using Microsoft Excel (Version 2208 Build 16.0.15601.20148, 64-bit; Microsoft,

Redmond, WA, USA).

14



I11. Results

1. Comparison of measurement values obtained by human and Al
methods

The means and SDs of the measurements, as well as the means, medians, and SDs of the
differences between the 2 methods, were calculated (Tables 2-4). The unpaired t-test revealed
statistically significant differences for 6 of the 53 measured values when comparing landmarks
detected by humans and Al (R U6CP-L U6CP, R L3CP-L L3CP, S-N, Or_R-R U3CP, L1L to Me-
Go, and GoR-Gn/S-N; P<0.05). The measurements with the highest mean error values were CoL-
CoR (3.700 mm) for length, U1R to L1R (3.587°) and U1L to L1L (3.169°) for angle, and N-Me/N-
ANS (0.043) for ratio.

The difference between values measured using human-identified and Al-detected landmarks
was illustrated with a Bland-Altman plot. The limits of agreement and the width obtained in the
Bland-Altman analysis are presented in Table 5. The measurements with the largest widths were

CoR-CoL (17.49 mm) for length, U1R to L1R (20.06°) for angle, and N-Me/N-ANS (0.22) for ratio.
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Table 2. Comparison of linear cephalometric measurements between manual and artificial

intelligence methods. (unit: mm)

Linear measurement parameters Manual Artificial intelligence Error p value
Bilateral measurement

ZyFr_R-ZyFr_L 102.09 £ 6.08 101.83 £5.15 1.13+1.15 0.155
GoL-GoR 92.21+7.73 92.38 £7.38 0.94+0.70 0.201
CoL-CoR 103.68 £ 6.29 103.24 £ 5.01 3.70+ 2.50 0.377
OrL-OrR 59.63 + 3.39 59.33+3.12 1.93+1.54 0.281
R U3CP-L U3CP 35.09 + 2.64 34.94 +2.08 1.35+1.63 0.535
R U6CP-L U6CP 52.66 + 3.47 52.14 £2.79 1.70 £ 1.34" 0.030 *
R L3CP-L L3CP 27.09 + 1.87 27.78 + 1.66 1.35+1.01" 0.000 *
R L6CP-L L6CP 47.38+2.99 47.64 + 243 1.63+1.10 0.245
Midsagittal measurement

N-Me 123.15 £ 7.69 122.97 £ 7.36 1.25+1.13 0.341
N-ANS 54.39 +3.29 54.29 + 3.00 1.33+1.01 0.572
ANS-Me 69.73+6.78 69.62 + 6.52 1.02 £ 0.94 0.476
ANS-PNS 46.92 +4.18 4724 +3.44 1.38+1.30 0.139
S-N 63.98 +3.73 63.60 + 3.68 0.85+0.74" 0.002 *
Me-L L1CP 42.16 + 3.53 42.25 + 3.46 0.68 + 0.88 0.466
Me-R L1CP 42.14 + 3.50 42.18 £ 3.44 0.62£0.71 0.656
Midsagittal to bilateral measurement

GoL-Pg 88.07 £ 5.73 87.84 £5.37 169+1.21 0.317
GoR-Pg 87.61+5.86 87.61+5.74 1.79+1.38 0.980
GoL-N 119.18 £ 7.59 118.81£7.22 1.29+1.16 0.057
GoR-N 119.45 £ 7.43 119.01 £ 7.08 1.49+1.40 0.051
ColL-GoL 57.1+6.14 56.97 £ 5.86 1.98 £ 1.57 0.629
CoR-GoR 57.58 + 6.25 57.48 + 5.46 212 +1.85 0.745
ColL-Pg 125.29 £ 7.32 12528 £7.12 1.01+0.80 0.969
CoR-Pg 125.43 £ 7.66 125.49 £ 7.67 1.14+1.03 0.709
Or_L-L U3CP 55.93+4.28 55.70 + 4.05 0.76 £ 0.77 0.060
Or_R-R U3CP 55.55+4.35 55.33+4.11 0.73+0.62" 0.041 *
Or_L-L U6CP 51.33+4.24 51.38 + 4.02 0.72£0.57 0.660
Or_R-R U6CP 51.51+4.20 51.52 £ 3.96 0.72 + 0.60 0.882

*P<0.05. Refer to Table 1 for abbreviations.
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Table 3. Comparison of angular cephalometric measurements between manual and artificial

intelligence methods. (unit: mm)

Angular measurement parameters ~ Manual Artificial intelligence  Error p value
Midsagittal measurement

S-N-A 82.16 + 3.92 82.27+3.33 141+1.22 0.587
S-N-B 80.18 £ 4.77 80.24 + 4.39 1.25+1.15 0.752
A-N-B 3.74 £ 2.15 3.64 +2.15 0.72 £ 0.56 0.366
U1L to ANS-PNS 64.65+7.7 65.13+7.1 265+21 0.206
U1R to ANS-PNS 65.19 £ 7.92 65.29 £ 7.02 257124 0.797
U1L-SN 104.46 £8.15 103.89%7.1 237191 0.092
U1R-SN 103.94+£8.21  103.78 + 7.03 257+£1.97 0.669
Midsagittal to bilateral measurement

N-GoL-Me 7174 £ 45 71.8+4.42 0.64 £ 0.61 0.493
N-GoR-Me 71.71+£45 71.8 +4.36 0.64 £ 0.69 0.380
CoL-GoL-Me 121.28 £+6.65 121.38+6.41 1.45+1.06 0.609
CoR-GoR-Me 12146 £6.16  121.49+6.05 1.38+1.26 0.873
UlL to L1L 130.88 + 10.37 130.62+ 8.9 317291 0.590
UlRto L1IR 131.18 £10.87 131.16 +9.37 3.59 £ 3.63 0.981
L1L to Me-GoL 96.44 £ 7.77 95.64 £ 6.96 274 227" 0.045 *
L1R to Me-GoR 948+ 74 95.22 £7.22 2,72 +2.53 0.321
Planar measurement

A-B X N-Pog 5.14 +2.77 5.21+3.18 1.16 £ 0.92 0.678
S-N X GoL-Gn 4759 +£5.23 47.25 +£5.02 1.55+1.49 0.152
S-N X GoR-Gn 46.83 £ 5.25 47.06 £ 4.79 15+1.07 0.274
ANS-PNS X S-N 168.69 £ 457  168.88 £ 4.02 1.61+1.46 0.440
PoL-OrLxGoL-Me 30.91+£5.78 30.85+5.61 0.94+0.78 0.663
PoR-OrRxGoR-Me 30.32+£5.35 30.35+£5.23 1.12+0.89 0.865

*P<0.05. Refer to Table 1 for abbreviations.
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Table 4. Comparison of ratios between manual and artificial intelligence methods.

Ratio parameters Manual Artificial intelligence Error p value
N-Me/N-ANS 2.27+0.13 2.27+0.13 0.04 £ 0.04 0.952
S-GoL/N-Me 0.73+0.05 0.72 £ 0.05 0.01+0.01 0.528
S-GoR/N-Me 0.73+0.05 0.73+0.05 0.02 £ 0.02 0.738
GoL-Gn/S-N 1.38+0.09 1.39+0.08 0.04 +0.03 0.119
GoR-Gn/S-N 1.38+0.09 1.39+0.08 0.03 £ 0.03" 0.025 *

*P<0.05. Refer to Table 1 for abbreviations.
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Table 5. Bland-Altman analysis of the difference between manual and artificial intelligence-based

cephalometric measurements.

95% limit of agreement

95% limit of agreement

Width Width
Upper limit Lower limit Upper limit Lower limit

Linear measurement Angular measurement
Bilateral measurement Midsagittal measurement
ZyFr_R-ZyFr_L 3.38 —2.87 6.24 S-N-A 3.54 =3.77 7.31
GoR-GoL 211 —2.44 4.55 S-N-B 3.28 -3.41 6.69
CoR-CoL 9.19 -8.3 17.49 A-N-B 1.88 -1.69 3.57
OrR-OrL 5.12 —-4.52 9.64 UlL to ANS-PNS 6.1 —7.06 13.17
R U3CP-L U3CP 4.29 -3.99 8.28 ULR to ANS-PNS 6.8 -7.01 13.81
R U6CP-L U6CP 4.66 -3.61 8.27 U1L-SN 6.45 -5.31 11.75
R L3CP-L L3CP 2.33 -3.72 6.05 U1R-SN 6.53 —6.22 12.74
R L6CP-L L6CP 3.59 -4.1 7.69 Midsagittal to bilateral measurement
Midsagittal measurement N-GoL-Me 1.66 -1.8 3.46
N-Me 3.48 -3.12 6.59 N-GoR-Me 1.74 -1.92 3.66
N-ANS 3.38 -3.17 6.55 CoL-GoL-Me 3.43 -3.63 7.06
ANS-Me 2.84 —2.61 5.45 CoR-GoR-Me 3.64 -3.7 7.34
ANS-PNS 3.37 -3.99 7.36 UlL to L1L 8.71 -8.19 16.9
S-N 2.47 -1.71 4.18 UlRto L1R 10.04 -10.01 20.06
Me-L L1CP 2.08 -2.27 4.35 L1L to Me-GoL  7.62 —6.03 13.64
Me-R L1CP 1.8 -1.9 3.7 L1R to Me-GoR  6.84 —7.66 14.5
Midsagittal to bilateral measurement Midsagittal to bilateral measurement
GolL-Pg 4.29 -3.82 8.11 A-B X N-Pog 2.84 -2.98 5.82
GoR-Pg 4.45 —4.44 8.9 S-N X GoL-Gn 451 -3.82 8.33
GoL-N 3.69 -2.96 6.65 S-N X GoR-Gn 3.37 -3.83 7.2
GoR-N 4.36 -3.47 7.83 ANS-PNS X S-N  4.06 —4.43 8.49
ColL-GoL 51 —4.83 9.93 PoL-OrLxGoL-Me 2.46 -2.34 4.81
CoR-GoR 5.63 —5.42 11.05 PoR-OrRxGoR-Me 2.78 -2.84 5.62
CoL-Me 2.53 —2.52 5.05 Ratio parameters
CoR-Me 2.96 -3.09 6.05 N-Me/N-ANS 0.11 -0.11 0.22
Or_L-Lu3CcP 231 -1.85 4.16 S-GoL/N-Me 0.04 —-0.04 0.07
Or_R-RU3CP 205 -1.61 3.66 S-GoR/N-Me 0.04 —-0.04 0.09
Or_L-LU6CP 176 -1.85 3.61 GoL-Gn/S-N 0.08 -0.1 0.18
Or R-RU6BCP 181 -1.85 3.66 GoR-Gn/S-N 0.07 —0.09 0.09

Refer to Table 1 for abbreviations.



2. Comparison of measured values by surgical history and
hardware presence

The 80 CBCT scans included a non-surgical group (39 cases) and a surgical group (41 cases),
with the latter including 9 cases without hardware and 32 cases with hardware. For each group,
measurements derived from human-identified and Al-detected landmarks were compared for the 27
linear parameters using an unpaired t-test (Fig. 6). In the linear cephalometric measurements, the
non-surgical group displayed a mean error of 1.32 mm and an SD of 1.30 mm. The surgical group
without hardware had a mean of 1.10 mm (SD, 1.08 mm), while the group with hardware had a
mean of 1.45 mm (SD, 1.49 mm). The lowest error was observed in the surgical group without
hardware. No significant difference in measurement agreement was observed between the non-
surgical and surgical groups (P<0.05). However, a significant difference was noted between surgical
subgroups based on the presence or absence of hardware (P<0.05). These findings were graphically

represented using a violin plot (Fig. 7).
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Figure 6. Comparison of linear cephalometric measurements between manual and artificial intelligence methods by patient group. Black
error bars represent the 95% confidence standard deviation range for each item value.
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Figure 7. Violin plots representing the difference in linear measurements between the manual and
artificial intelligence methods. The thick vertical bar in the violin plot represents the interquartile
range, while the thin vertical line indicates the 95% confidence interval; the extremes of this thin
line denote the maximum and minimum values. The central white dot signifies the median. The
width of a violin plot reflects the density of the data, with wider sections indicating a higher
frequency of values and narrower sections representing a lower frequency. The difference values
are distributed around the median for all 3 groups: non-surgical, surgical without hardware, and
surgical with hardware. A. Violin plots of linear measurements for the 3 groups. B. Violin plots of
linear measurements for the non-surgical and surgical groups. C. Violin plots of linear measurements

for the surgical group, comparing cases with and without hardware.
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Figure 8. Comparison of angular cephalometric measurements between manual and artificial intelligence methods by patient group.
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Figure 9. Violin plots representing the difference in angular measurements between the manual and
artificial intelligence methods. The difference values are distributed around the median for all 3
groups: non-surgical, surgical without hardware, and surgical with hardware. A. Violin plots of
angular measurements for the 3 groups. B. Violin plots of angular measurements for the non-surgical
and surgical groups. C. Violin plots of angular measurements for the surgical group, comparing

cases with and without hardware.
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Figure 10. Comparison of cephalometric measurement ratios between manual and artificial intelligence methods by patient group.
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Figure 11. Violin plots representing the difference in ratio measurements between the manual and
artificial intelligence methods. Difference values are distributed around the median for all 3 groups:
non-surgical, surgical without hardware, and surgical with hardware. A. Violin plots of the
difference in ratios for the 3 groups. B. Violin plots of the difference in ratios for the non-surgical
and surgical groups. C. Violin plots of the difference in ratios for the surgical group, comparing

cases with and without hardware.
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Finally, measurement values for the 5 ratio items were compared in a similar fashion using an
unpaired t-test (Fig. 10). For the non-surgical group, the mean error between human- and Al-
landmarked measurements was 0.0285 (SD, 0.0275); for the surgical group without hardware, the
mean was 0.0188 (SD, 0.0158); and for the surgical group with hardware, the mean was 0.0313 (SD,
0.0297). The postoperative group without hardware exhibited the lowest error. No significant
difference was noted between the non-surgical and surgical groups (P>0.05). However, a significant
difference was noted between surgical subgroups based on the presence or absence of hardware
(P<0.05). These findings were graphically represented using a violin plot (Fig. 11).

Similarly, for the 21 angle items, the measurements derived from human- and Al-identified
landmarks were compared using an unpaired t-test (Fig. 8). In the angular cephalometric
measurements, the mean error for the non-surgical group was 1.81°(SD, 2.05°). The surgical group
without hardware had a mean error of 1.60° (SD, 1.46°), while the surgical group with hardware had
a mean error of 1.83° (SD, 1.94°). The postoperative group without hardware exhibited the lowest
error. No significant difference was noted between the non-surgical and surgical groups (P>0.05),
nor was a significant difference present between surgical subgroups based on the presence or
absence of hardware (P<0.05). These findings were graphically represented using a violin plot (Fig.

9).
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1VV. Discussion

In recent years, Al technology has made remarkable advances in medical imaging, especially
in dentistry and maxillofacial surgery. Al-automated landmarking is becoming increasingly
important in orthodontics and maxillofacial surgery by providing important anatomical landmarks
for treatment planning. This paper aims to present a comprehensive exploration of whether 3D Al-
based automatic craniometric landmark identification is clinically useful.

Among the 6 items displaying significant differences, 2 measurements included the left gonion
(GoL) or the right gonion (GoR): L1L to Me-GoL and GoR-Gn/S-N (P<0.05). In a previous study
by these authors, the SDRs of these landmarks were particularly low. All detection methods from
the "2014 Automatic Cephalometric X-Ray Landmark Detection: a grand challenge”, conducted by
the Institute of Electrical and Electronics Engineers International Symposium on Biomedical
Imaging, misrepresented the gonion landmark. This resulted in a minimum error greater than 4 mm
from the ground truth point (Lee JH et al., 2020). This discrepancy suggests that either the dataset
failed to capture the high variability around these landmarks, or errors were present during manual
annotation.

Furthermore, of the 6 significant items, 2 measurements involved the sella: S-N and GoR-Gn/S-
N (P<0.05). The sella is a fiducial point located at the center of a cavity that, by definition, is a
cephalometric landmark easily detectable on 2D head radiographs. However, it is difficult to identify
on 3D CBCT because the skull structure does not create 3D contours. Makram et al. (Makram M
and Kamel H, 2014) proposed a system that automatically localizes 20 three-dimensional hard tissue
cephalometric landmarks using Reeb graphs. In their study, the mean error of the sella was notably

high, at 2.6 mm. Given the challenges associated with the sella, various methods have been
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attempted for landmark detection. Montdfar et al. (Montufar J et al., 2018) employed a technique
involving the circle adjustment of the sub-volume slice of the sella using Hough transformation to
generate an anatomical geometric contour of the sella.

Four of the 6 items - R U6CP-L U6CP, R L3CP-L L3CP, Or_R-R U3CP, and L1L to Me-GoL
(P<0.05) - included landmarks related to the teeth. The identification of landmarks associated with
teeth can be affected by the surrounding anatomical structures, leading to potential errors even for
clinicians. This is particularly true for the mandibular incisors, which are often difficult to discern
due to their typical overlap with the maxillary incisors (Jeon S and Lee KC, 2021).

Since manual landmarking has been considered as a criterion for evaluating the accuracy of
Al-based fully automated cephalometric analysis, inaccuracy related to inter- and intra-operator
variability in manual landmarking identification can be seen as one of the major limitations.

In this study, 80 CBCT scans were analyzed. Using unpaired t-tests, comparisons were made
between measurement values based on manual and Al landmarking. Of 53 measurements,
statistically significant differences were observed for 4 lengths, 1 angle, and 1 ratio. When assessing
the errors in assessments of length, angle, and ratio based on the designated measurement points on
a 3-dimensional structure, the greatest error was found for length. In contrast, even errors at the
measurement points had minimal impact on angles and ratios. Given that measured angles and ratios,
more so than lengths, are valuable in planning orthodontic treatment or orthognathic surgery, the
findings of this study are promising for clinical application.

The 80 CBCT scans were categorized into a non-surgical group (39 cases) and a surgical group
(41 cases), with the latter including 9 cases without hardware and 32 cases with hardware. When
comparing the manual and Al-based measurements for the 5 ratio items in each group, the cohort in

which hardware was removed postoperatively exhibited the lowest measurement error across length,
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angle, and ratio values. No significant differences were detected in any of the measurement groups
when comparing preoperative and postoperative data. Postoperatively, however, significant
differences in measurement errors for length and ratio were observed depending on whether
hardware was present (Figs. 6-11).

Noise in CBCT images, along with metal artifacts from dental prostheses and implants,
complicates the accurate delineation of teeth and bones. Hardware and screws were expected to
introduce errors; however, the Al method performed well, regardless of hardware and screw
presence. Consequently, this algorithm may serve as a valuable tool for assessing the extent of
preoperative to postoperative change.

Minnema et al. (Minnema J et al., 2019) developed a deep learning algorithm based on mixed-
scale density CNNs for the segmentation of teeth and bones on CBCT images containing metal
structures. The algorithm appeared capable of excluding metal artifacts and accurately segmenting
teeth and bone structures. These findings indicate that CNNs can identify voxel-level features in
CBCT images that humans cannot distinguish.

The algorithm employed in the present study was based on deep learning techniques. Dot et al.
(Dot G et al. 2020) compared the results of 11 studies to assess the accuracy and reliability of
automatic CBCT cephalometric landmarking; the 2 algorithms that demonstrated the best
performance employed deep learning methods. In this study, the deep learning-based algorithm
reported an average error of less than 2 mm for all landmarks, comparable to the inter-operator
variability observed in manual landmarking.

In this study, landmarks were not manually adjusted after 3D automatic landmarking. If manual
adjustments were made to landmarks with a high likelihood of error (such as teeth, sellae, and

gonions) following automatic landmarking, the accuracy of the measured values could be further
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improved. Alternatively, hybrid analysis methods that determine specific landmarks through various
approaches, such as the Montufar sella measurement, can be employed (Montafar J et al, 2018).

The time required to manually measure 65 landmarks was approximately 40-60 minutes per
CBCT volume, although this time was impossible to fully capture because the workers took
intermittent breaks. In contrast, the Al algorithm completed the task in 10.9 seconds, with the
following PC specifications: GeForce 2080Ti, 64 GB RAM, and an Intel i7 CPU at 3.6 GHz. Since
the landmark-based calculation of measurements is identical in the manual and Al methods, the Al
method markedly reduced the time needed to identify a landmark and determine the measurement
value.

The accuracy of measurements obtained with the deep learning-based CBCT automatic
landmarking algorithm was comparable to that based on human-identified landmarks. By decreasing
the time needed to calculate these measurements, the use of such an algorithm can improve the
efficiency of diagnosis and treatment.

In this study, measurements of length demonstrated the lowest accuracy. However, as angles
and ratios are more commonly utilized than length in patient diagnosis, the findings confirm that
employing measurements derived from Al-based landmarks is suitable for diagnostic purposes.

In the comparison between surgical and non-surgical groups, no significant differences were
found in linear measurements, angular measurements, or ratio parameters. Similarly, no significant
differences were observed between preoperative and postoperative data for any patient group.
Additionally, the presence of skeletal deformity did not impact the accuracy of automatic landmark
identification.

The technology discussed in this report is anticipated to increase clinician efficiency and

minimize diagnostic errors. This will facilitate the use of 3D cephalometric analyses for clinicians
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of all experience levels. Furthermore, the availability of a user-friendly, web-based application for
3D automatic landmarking will broaden access for clinicians. At present, no clear standard exists
for 3D cephalometric analysis, largely due to the time and effort involved as well as constraints
related to its application in corrective procedures, surgical diagnosis, and treatment planning. The
findings of this study may assist clinicians in incorporating 3D cephalometric analysis into their

practice, irrespective of their level of experience.
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V. Conclusion

There were 4 differences in length, 1 difference in angle, and 1 difference in ratio, and in the
surgical group, there was a significant difference in the measurement errors for length and ratio
depending on the presence or absence of the hardware. It is necessary to re-evaluate whether the
clinical application of the measurement values is meaningful by comparing the differences between
human and between Al and human in the measurement values (length, angle, ratio). In conclusion,
although there are still limitations, there is a clear advantage in terms of efficiency, and it can be

used in the clinical range.
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