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ABSTRACT 

 

Clinical validity and precision of deep learning-

based cone-beam computed tomography automatic 

landmarking algorithm 

 

 

Jung-Eun Park 

 

 

Department of Dentistry 

The Graduate School, Yonsei University 

(Directed by Prof. Hyung-Seog Yu, D.D.S., M.S., Ph.D) 

 

 

 

This study was performed to assess the clinical validity and accuracy of a deep learning-based 

automatic landmarking algorithm for cone-beam computed tomography (CBCT). Three-

dimensional (3D) CBCT head measurements obtained through manual and automatic landmarking 

were compared.  
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A total of 80 CBCT scans were divided into 3 groups: non-surgical (39 cases); surgical without 

hardware, namely surgical plates and mini-screws (9 cases); and surgical with hardware (32 cases). 

Each CBCT scan was analyzed to obtain 53 measurements, comprising 27 lengths, 21 angles, and 5 

ratios, which were determined based on 65 landmarks identified using either a manual or a 3D 

automatic landmark detection method. 

In comparing measurement values derived from manual and artificial intelligence landmarking, 

6 items displayed significant differences: R U6CP-L U6CP, R L3CP-L L3CP, S-N, Or_R-R U3CP, 

L1L to Me-GoL, and GoR-Gn/S-N (P<0.05). Of the 3 groups, the surgical scans without hardware 

exhibited the lowest error, reflecting the smallest difference in measurements between human- and 

artificial intelligence-based landmarking. The time required to identify 65 landmarks was 

approximately 40-60 minutes per CBCT volume when done manually, compared to 10.9 seconds 

for the artificial intelligence method (PC specifications: GeForce 2080Ti, 64GB RAM, and an Intel 

i7 CPU at 3.6 GHz). 

There were 4 differences in length, 1 difference in angle, and 1 difference in ratio, and in the 

surgical group, there was a significant difference in the measurement errors for length and ratio 

depending on the presence or absence of the hardware. It is necessary to re-evaluate whether the 

clinical application of the measurement values is meaningful by comparing the differences between 

human and between AI and human in the measurement values (length, angle, ratio). In conclusion, 

although there are still limitations, there is a clear advantage in terms of efficiency, and it can be 

used in the clinical range.  

_______________________________________________________________________________ 

Key Words: Cone-Beam Computed Tomography; Anatomic Landmarks; Cephalometry; Deep 

Learning; Orthognathic Surgery 
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I. Introduction 

 

Cephalometric analysis is essential for diagnosis and treatment planning in orthodontic and 

orthognathic surgery. Traditionally, 2-dimensional (2D) cephalometric radiography has been used 

to evaluate the craniomaxillofacial (CMF) region. However, this imaging modality projects a 3-

dimensional (3D) CMF structure onto a 2D plane, leading to image distortion. This distortion can 

manifest as the overlapping of anatomical structures and the enlargement or reduction of specific 

areas (Gribel BF et al., 2011). 

Several experts have proposed the use of 3D cephalometric analysis with computed 

tomography or cone-beam computed tomography (CBCT) images (Lee SH et al., 2014; Olszewski 
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R et al., 2006). CBCT enables clinicians to visualize anatomy in 3 dimensions without overlap, 

providing comprehensive information on anatomical spatial relationships (Mah JK et al., 2010). 

Accurate landmarking is essential for proper diagnosis. However, manual landmarking can be 

repetitive and laborious, often yielding inconsistencies between and within practitioners. To 

alleviate the challenges associated with manual landmarking, numerous studies have explored the 

use of automatic landmark detection systems (Lindner C et al., 2016; Vandaele R et al., 2018).  

A wealth of information can be obtained from 3D cephalometry; however, 3D landmarking is 

difficult, labor-intensive, time-consuming, and heavily dependent on expertise and experience 

(Lagravere MO et al., 2010; Hassan B et al., 2013). The complexity of processing 3D data 

contributes to these challenges, as does the substantial effort required to create a 3D labeled dataset. 

Furthermore, since no open dataset is available for 3D CMF landmarks, many studies have had to 

rely on small datasets and have limited their measurements to landmarks on the bone surface.  

As indicated above, research on 2D and 3D automatic landmarking is ongoing. However, few 

studies have examined the utility and clinical applicability of cephalometric analysis based on 

landmarks identified through automatic processes. The clinically acceptable margin of error for 

landmark placement depends on the error value when implemented in a clinical setting (Ghowsi A 

et al., 2022). When conducting cephalometric analyses, it is essential to ascertain the impact of errors 

in linear, angular, and ratio measurements across all 3 dimensions (x, y, and z coordinates). Accuracy 

results reported for most AI models should be re-evaluated to reflect clinical reproducibility. 

Because a 1–2 mm deviation in other two measurement points can mostly affect linear and angular 

values, and consequently orthodontic diagnosis and treatment. The impact of cephalometric analysis 

method on the accuracy of AI landmarking has not yet been studied sufficiently. When selecting 

linear and angular measurements of landmarks, it may be useful to evaluate whether AI can achieve 
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clinically acceptable results in terms of accuracy and whether it can obtain a sufficiently complete 

cephalometric analysis for an accurate orthodontic diagnosis (Polizzi A and Leonardi R, 2024).  

Jeon and Lee (Jeon S and Lee KC, 2021) compared 26 measurements obtained from a 

convolutional neural network (CNN)-based 2D automatic head landmarking system with those 

derived from conventional landmarking across 35 lateral head radiographs. Gupta et al. (Gupta A et 

al., 2016) compared 51 measurements between a knowledge-based 3D automatic head landmarking 

system and manual landmarking for 30 CBCT scans. Both studies concluded that automated 

cephalometric analysis is comparable in accuracy to manual calculations (Jeon S and Lee KC, 2021; 

Gupta A et al., 2016). 

In dentistry, metal artifacts are commonly observed on CBCT images due to materials used in 

orthodontics, surgical applications, and dental restorations. The presence of metal artifacts along the 

path of the radiation beam causes photon depletion and scattering, resulting in characteristic light 

and dark banding artifacts on the CBCT image (Barrett JF and Keat N; 2004). These artifacts obscure 

the adjacent anatomy and impede diagnosis; furthermore, they can interfere with the image 

segmentation of maxillary and mandibular teeth and bone structures for computer-guided therapy 

(Hung K et al., 2020).  

As mentioned above, there are papers on automatic cephalometric analysis, but there are few 

studies on automatic cephalometric analysis targeting orthognathic surgery patient data. It is 

necessary to find out whether AI automatic cephalomeric analysis can analyze orthognathic surgery 

patient image data well and whether it is affected by the presence or absence of hardware including 

the plate used in the surgery. 

This study aimed to evaluate the clinical validity and accuracy of a deep learning-based CBCT 

automatic landmarking algorithm in 3D automatic cephalometry and analysis. The authors posited 
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that the values produced by the algorithm would be comparable to those obtained by humans and 

would promote efficiency by reducing time. Additionally, the authors hypothesized that no errors 

would be observed in the measured values attributable to hardware and screws after surgery. 
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II. Materials and Methods 

 

1. 3D manual landmarking  

Under the supervision of a clinical physician, two biomedical experts identified 3D landmarks 

in 821 CBCT images acquired with an i-CAT 17-19 device (Imaging Sciences International, Hatfield, 

PA, USA) and 148 CBCT images acquired with different NewTom models (5G, VGi EVO, VGi 

Mark 3, VGi Mark 4; NewTom, Imola, Italy). 

 

2. 3D automatic landmarking 

Using an automatic 3D landmarking algorithm utilizing a 2-stage coarse-to-fine approach, 65 

landmarks were measured. All CBCT datasets were acquired for diagnostic purposes and exported 

in Digital Imaging and Communications in Medicine format. The personal data of all patients, 

including names and registration numbers, were anonymized. The dataset was compiled without 

regard to sex, age, or race and included perioperative information, with a focus on cases of 

orthognathic surgery. Consequently, approximately 40% of the CBCT scans contained surgical 

hardware, such as surgical plates and mini-screws. 

Sixty-five 3D landmarks in 12 anatomical groups, including the bone, skin, dental crown, tooth 

root, neural canal (center or opening), and sella, were cataloged (Table 1). The time required to 

measure these 65 landmarks was 10.9 seconds per volume, with point-to-point errors of 1.7 ± 0.1 

mm (99% confidence interval). The threshold for a clinically acceptable successful detection rate 

(SDR) was set at 3 mm, with SDRs of 88.16% at this level and 94.35% at 4 mm (Torosdagli N et 

al., 2014). All 65 landmarks were detected near their true positions, even in the presence of various 

types of orthognathic surgical hardware. 
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Table 1. Anatomical groups and included landmarks. 

Group Landmarks 

Mid-sagittal Mx. (bone) A (A-point), ANS (anterior nasal spine), PNS (posterior nasal spine), N (nasion) 

Mid-sagittal Mn. (bone) B (B-point), Pog (pogonion), Gn (gnathion), Me (menton) 

Mid-sagittal Mx. (soft tissue) 

Sls (soft tissue A-point), Pn (pronasale), Soft N (soft tissue nasion), Sts (stomion superius), Soft 

Gabella (soft tissue gabella), Ala R (right alar base), Ala L (left alar base) 

Mid-sagittal Mn. (soft tissue) Soft Pog (soft tissue pogonion), Si (mentolabial sulcus), Sti (stomion inferius) 

Skull G (crista galli), Ba (basion), S (sella), Po_R (right porion), Po_L (left porion) 

Lateral Mn. 

Go_R (right gonion), Go_L (left gonion), M_R (right mental foramen), M_L (left mental 

foramen), MF_R (right mandibular foramen), MF_L (left mandibular foramen) 

Tooth crown (Mx.) 

R U1CP (center of right maxillary incisor crown), L U1CP (center of left maxillary incisor crown), 

R U3CP (tip of right maxillary canine crown), L U3CP (tip of left maxillary canine crown), R 

U6CP (tip of mesiobuccal cusp of right maxillary first molar crown), L U6CP (tip of mesiobuccal 

cusp of left maxillary first molar crown) 

Tooth roots (Mx.) 

R U1RP (root of right maxillary incisor), L U1RP (root of left maxillary incisor), R U3RP (root of 

right maxillary canine), L U3RP (root of left maxillary canine), R U6RP (mesiobuccal root of right 

maxillary first molar), L U6RP (mesiobuccal root of left maxillary first molar) 

Tooth crown (Mn.) 

R L1CP (center of right mandibular incisor crown), L L1CP (center of left mandibular incisor 

crown), R L3CP (tip of right mandibular canine crown), L L3CP (tip of left mandibular canine 

crown), R L6CP (tip of mesiobuccal cusp of right mandibular first molar crown), L L6CP (tip of 

mesiobuccal cusp of left mandibular first molar crown) 

Tooth roots (Mn.) 

R L1RP (root of right mandibular incisor), L L1RP (root of left mandibular incisor), R L3RP (root 

of right mandibular canine), L L3RP (root of left mandibular canine), R L6RP (mesiobuccal root 

of right mandibular first molar), L L6RP (mesiobuccal root of left mandibular first molar) 

Bone around orbit 

ZyFr_R (right zygomaticofrontal suture), ZyFr_L (left zygomaticofrontal suture), RO_R (right 

roof of orbit), Or_R (right orbitale), RO_L (left roof of orbit), Or_L (left orbitale) 

Condyle 

Cl_R (right condylus lateralis), Cm_R (right condylus medialis), Co_R (right condylion), Cl_L 

(left condylus lateralis), Cm_L (left condylus medialis), Co_L (left condylion) 

Mx: maxilla, Mn: mandible. 
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3. 3D landmark measurement 

Among the 821 sets of CBCT images from Chung-Ang University Hospital in Seoul, 

Korea(Institutional Review Board number: 1922-007-362), which were used in a study on 3D 

automatic landmarking using deep learning, 80 sets of CBCT images that were not used for training 

were selected as the study subjects. A total of 80 CBCT were categorized into a non-surgical group 

(39 cases) and a surgical group (41 cases). The dataset was constructed independent of gender, age, 

and race and included orthognathic surgery cases. All CBCT datasets were collected for diagnostic 

purposes through anonymization and encryption before generating ground truth data. 

The latter was further subdivided into 9 cases without hardware and 32 cases with hardware. 

All CBCT scans were anonymized and assigned new serial numbers for the study. 

Based on the 65 landmarks, 53 measurements (27 lengths, 21 angles, and 5 ratios) were taken. 

The classification and measurement values were based on the methodology outlined by Gupta et al 

(Gupta A et al., 2016). 

The length measurements were categorized into 3 groups: 1) bilateral, obtained from 2 

symmetrical landmarks in the parasagittal plane (Fig. 1); 2) midsagittal, derived from 2 landmarks 

in the midsagittal plane (Fig. 2); and 3) midsagittal to bilateral, acquired using 3 landmarks—1 in 

the central sagittal plane and 2 symmetrically located in the parasagittal plane (Fig. 3). 

The angles were classified into 3 types: midsagittal (calculated using 3 landmarks within the 

midsagittal plane); midsagittal to bilateral (determined by 4 landmarks, 2 in the midsagittal plane 

and 2 symmetrically positioned in the parasagittal plane) (Fig. 4).; and planar (either four landmarks 

or two landmarks and one horizontal plane (Fig. 5). 
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Figure 1. Bilateral linear 3D cephalometric measurements obtained through two symmetrically 

present landmarks, one in right parasagittal and one in left parasagittal plane. 



9 

 

 

 

Figure 2. Midsagittal linear 3D cephalometric measurements obtained through two landmarks in 

midsagittal plane. 
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Figure 3. Midsagittal to bilateral linear 3D cephalometric measurements obtained through three 

landmarks, one landmark in midsagittal plane and other two landmarks symmetrically located in 

parasagittal planes on the right and left side of skull. 
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Figure 4. Angular 3D cephalometric measurements (midsagittal and midsagittal to bilateral) based 

on three points. 
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Figure 5. Angular 3D cephalometric measurements obtained through either four landmarks or two 

landmarks and one horizontal plane. 
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Measurements were obtained through 3D vector calculation. Length was determined by 

multiplying the 3D voxel index of a landmark by the spacing values along the x, y, and z axes, 

followed by application of the 3D Euclidean distance formula. For angles, the angle between the 

vectors 𝑢̅ and 𝑣 ̅, represented by the pair of landmarks, was calculated. This angle was derived 

using the second law of cosines. When determining the smaller of the angles formed by the 2 vectors, 

the direction of the vectors was verified and factored into the calculation. In mathematics, the angle 

between 2 vectors is a value between 0 and 180 degrees. The angle between 2 vectors 𝑢̅ and 𝑣 ̅ 

can be calculated using the dot product and inverse trigonometric functions. 

The following formulas were used to calculate the distances and angles in P(x1, y1, z1), Q(x2, 

y2, z2), R(x3, y3, z3), and S(x4, y4, z4): 

 

 

𝑤ℎ𝑒𝑟𝑒 𝑋𝑖 = 𝑥𝑖 ×  (𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑜𝑓 𝑥­ − 𝑎𝑥𝑖𝑠) ,𝑌𝑖 = 𝑦𝑖  × (𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑜𝑓 𝑦­𝑎𝑥𝑖𝑠) , and 𝑍𝑖 = 𝑧𝑖 ×

(𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑜𝑓 𝑧­𝑎𝑥𝑖𝑠) 

 

 

 

𝑤ℎ𝑒𝑟𝑒 𝑢⃗ = (𝑥2 − 𝑥1)𝑖̂ + (𝑦2 − 𝑦1)𝐽 + (𝑧2 − 𝑧1)𝑘̂  and 𝑣⃑ = (𝑥4 − 𝑥3)𝑖̂ + (𝑦4 − 𝑦3)𝐽 +

(𝑧4 − 𝑧3)𝑘̂ 

 

 

 

𝜃𝑃𝑄𝑅𝑆 = 𝑐𝑜𝑠−1
𝑢̅𝑣̅

|𝑢⃗ ||𝑣 |
 

𝐷𝑃Q = √(𝑋1 − 𝑋2)
2 + (𝑌1 − 𝑌2)

2 + (𝑍1 − 𝑍2)
2 
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4. Statistical analysis 

The means and standard deviations (SDs) of the measurements, obtained using landmarks 

identified by humans or artificial intelligence (AI), were determined. The means, medians, and SDs 

of the errors between the 2 measured values were also calculated. For the 80 CBCT scans, the 

Shapiro-Wilk test was applied to assess the normality of the measurements based on human- and 

AI-identified landmarks. Subsequently, an unpaired t-test was used to evaluate whether a significant 

difference existed between the 2 groups. Additionally, a Bland-Altman plot was employed to 

visually represent the differences between groups. 

An unpaired t-test was used to compare the nonsurgical, surgical, hardware present, and 

hardware absent groups. Differences between the groups were visually expressed using violin plots. 

Statistical significance was established at P<0.05. Shapiro-Wilk and unpaired t-tests were conducted 

using SPSS GradPacks Statistics 28 (IBM Corp., Armonk, NY, USA). Bland-Altman and violin 

plots were created using Microsoft Excel (Version 2208 Build 16.0.15601.20148, 64-bit; Microsoft, 

Redmond, WA, USA). 
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III. Results 

 

1. Comparison of measurement values obtained by human and AI 

methods 

The means and SDs of the measurements, as well as the means, medians, and SDs of the 

differences between the 2 methods, were calculated (Tables 2-4). The unpaired t-test revealed 

statistically significant differences for 6 of the 53 measured values when comparing landmarks 

detected by humans and AI (R U6CP-L U6CP, R L3CP-L L3CP, S-N, Or_R-R U3CP, L1L to Me-

Go, and GoR-Gn/S-N; P<0.05). The measurements with the highest mean error values were CoL-

CoR (3.700 mm) for length, U1R to L1R (3.587°) and U1L to L1L (3.169°) for angle, and N-Me/N-

ANS (0.043) for ratio. 

The difference between values measured using human-identified and AI-detected landmarks 

was illustrated with a Bland-Altman plot. The limits of agreement and the width obtained in the 

Bland-Altman analysis are presented in Table 5. The measurements with the largest widths were 

CoR-CoL (17.49 mm) for length, U1R to L1R (20.06°) for angle, and N-Me/N-ANS (0.22) for ratio. 
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Table 2. Comparison of linear cephalometric measurements between manual and artificial 

intelligence methods. (unit: mm)  

Linear measurement parameters Manual Artificial intelligence Error p value 

Bilateral measurement  

ZyFr_R-ZyFr_L 102.09 ± 6.08 101.83 ± 5.15 1.13 ± 1.15 0.155  

GoL-GoR 92.21 ± 7.73 92.38 ± 7.38 0.94 ± 0.70 0.201  

CoL-CoR 103.68 ± 6.29 103.24 ± 5.01 3.70 ± 2.50 0.377  

OrL-OrR 59.63 ± 3.39 59.33 ± 3.12 1.93 ± 1.54 0.281  

R U3CP-L U3CP 35.09 ± 2.64 34.94 ± 2.08 1.35 ± 1.63 0.535  

R U6CP-L U6CP 52.66 ± 3.47 52.14 ± 2.79 1.70 ± 1.34* 0.030 * 

R L3CP-L L3CP 27.09 ± 1.87 27.78 ± 1.66 1.35 ± 1.01* 0.000 * 

R L6CP-L L6CP 47.38 ± 2.99 47.64 ± 2.43 1.63 ± 1.10 0.245  

Midsagittal measurement   
  

 

N-Me 123.15 ± 7.69 122.97 ± 7.36 1.25 ± 1.13 0.341  

N-ANS 54.39 ± 3.29 54.29 ± 3.00 1.33 ± 1.01 0.572  

ANS-Me 69.73 ± 6.78 69.62 ± 6.52 1.02 ± 0.94 0.476  

ANS-PNS 46.92 ± 4.18 47.24 ± 3.44 1.38 ± 1.30 0.139  

S-N 63.98 ± 3.73 63.60 ± 3.68 0.85 ± 0.74* 0.002 * 

Me-L L1CP 42.16 ± 3.53 42.25 ± 3.46 0.68 ± 0.88 0.466  

Me-R L1CP 42.14 ± 3.50 42.18 ± 3.44 0.62 ± 0.71 0.656  

Midsagittal to bilateral measurement  

GoL-Pg 88.07 ± 5.73 87.84 ± 5.37 1.69 ± 1.21 0.317  

GoR-Pg 87.61 ± 5.86 87.61 ± 5.74 1.79 ± 1.38 0.980  

GoL-N 119.18 ± 7.59 118.81 ± 7.22 1.29 ± 1.16 0.057  

GoR-N 119.45 ± 7.43 119.01 ± 7.08 1.49 ± 1.40 0.051  

CoL-GoL 57.1 ± 6.14 56.97 ± 5.86 1.98 ± 1.57 0.629  

CoR-GoR 57.58 ± 6.25 57.48 ± 5.46 2.12 ± 1.85 0.745  

CoL-Pg 125.29 ± 7.32 125.28 ± 7.12 1.01 ± 0.80 0.969  

CoR-Pg 125.43 ± 7.66 125.49 ± 7.67 1.14 ± 1.03 0.709  

Or_L-L U3CP 55.93 ± 4.28 55.70 ± 4.05 0.76 ± 0.77 0.060  

Or_R-R U3CP 55.55 ± 4.35 55.33 ± 4.11 0.73 ± 0.62* 0.041 * 

Or_L-L U6CP 51.33 ± 4.24 51.38 ± 4.02 0.72 ± 0.57 0.660  

Or_R-R U6CP 51.51 ± 4.20 51.52 ± 3.96 0.72 ± 0.60 0.882  

*P<0.05. Refer to Table 1 for abbreviations. 
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Table 3. Comparison of angular cephalometric measurements between manual and artificial 

intelligence methods. (unit: mm) 

Angular measurement parameters Manual Artificial intelligence Error p value 

Midsagittal measurement      

S-N-A 82.16 ± 3.92 82.27 ± 3.33 1.41 ± 1.22 0.587 

S-N-B 80.18 ± 4.77 80.24 ± 4.39 1.25 ± 1.15 0.752 

A-N-B 3.74 ± 2.15 3.64 ± 2.15 0.72 ± 0.56 0.366 

U1L to ANS-PNS 64.65 ± 7.7 65.13 ± 7.1 2.65 ± 2.1 0.206 

U1R to ANS-PNS 65.19 ± 7.92 65.29 ± 7.02 2.57 ± 2.4 0.797 

U1L-SN 104.46 ± 8.15 103.89 ± 7.1 2.37 ± 1.91 0.092 

U1R-SN 103.94 ± 8.21 103.78 ± 7.03 2.57 ± 1.97 0.669 

Midsagittal to bilateral measurement  

N-GoL-Me 71.74 ± 4.5 71.8 ± 4.42 0.64 ± 0.61 0.493 

N-GoR-Me 71.71 ± 4.5 71.8 ± 4.36 0.64 ± 0.69 0.380 

CoL-GoL-Me 121.28 ± 6.65 121.38 ± 6.41 1.45 ± 1.06 0.609 

CoR-GoR-Me 121.46 ± 6.16 121.49 ± 6.05 1.38 ± 1.26 0.873 

U1L to L1L 130.88 ± 10.37 130.62 ± 8.9 3.17 ± 2.91 0.590 

U1R to L1R 131.18 ± 10.87 131.16 ± 9.37 3.59 ± 3.63 0.981 

L1L to Me-GoL 96.44 ± 7.77 95.64 ± 6.96 2.74 ± 2.27* 0.045 * 

L1R to Me-GoR 94.8 ± 7.4 95.22 ± 7.22 2.72 ± 2.53 0.321 

Planar measurement     

A-B X N-Pog 5.14 ± 2.77 5.21 ± 3.18 1.16 ± 0.92 0.678 

S-N X GoL-Gn 47.59 ± 5.23 47.25 ± 5.02 1.55 ± 1.49 0.152 

S-N X GoR-Gn 46.83 ± 5.25 47.06 ± 4.79 1.5 ± 1.07 0.274 

ANS-PNS X S-N 168.69 ± 4.57 168.88 ± 4.02 1.61 ± 1.46 0.440 

PoL-OrLxGoL-Me 30.91 ± 5.78 30.85 ± 5.61 0.94 ± 0.78 0.663 

PoR-OrRxGoR-Me 30.32 ± 5.35 30.35 ± 5.23 1.12 ± 0.89 0.865 

*P<0.05. Refer to Table 1 for abbreviations. 
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Table 4. Comparison of ratios between manual and artificial intelligence methods. 

Ratio parameters Manual Artificial intelligence Error p value 

N-Me/N-ANS 2.27 ± 0.13 2.27 ± 0.13 0.04 ± 0.04 0.952  

S-GoL/N-Me 0.73 ± 0.05 0.72 ± 0.05 0.01 ± 0.01 0.528  

S-GoR/N-Me 0.73 ± 0.05 0.73 ± 0.05 0.02 ± 0.02 0.738  

GoL-Gn/S-N 1.38 ± 0.09 1.39 ± 0.08 0.04 ± 0.03 0.119  

GoR-Gn/S-N 1.38 ± 0.09 1.39 ± 0.08 0.03 ± 0.03* 0.025 * 

*P<0.05. Refer to Table 1 for abbreviations.  
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Table 5. Bland-Altman analysis of the difference between manual and artificial intelligence-based 

cephalometric measurements. 

  95% limit of agreement 
Width 

 
95% limit of agreement 

Width 
 

 
Upper limit Lower limit 

 
Upper limit Lower limit  

Linear measurement Angular measurement  

Bilateral measurement Midsagittal measurement  

ZyFr_R-ZyFr_L 3.38 −2.87 6.24 S-N-A 3.54 −3.77 7.31  

GoR-GoL 2.11 −2.44 4.55 S-N-B 3.28 −3.41 6.69  

CoR-CoL 9.19 −8.3 17.49 A-N-B 1.88 −1.69 3.57  

OrR-OrL 5.12 −4.52 9.64 U1L to ANS-PNS 6.1 −7.06 13.17  

R U3CP-L U3CP 4.29 −3.99 8.28 U1R to ANS-PNS 6.8 −7.01 13.81  

R U6CP-L U6CP 4.66 −3.61 8.27 U1L-SN 6.45 −5.31 11.75  

R L3CP-L L3CP 2.33 −3.72 6.05 U1R-SN 6.53 −6.22 12.74  

R L6CP-L L6CP 3.59 −4.1 7.69 Midsagittal to bilateral measurement  

Midsagittal measurement N-GoL-Me 1.66 −1.8 3.46  

N-Me 3.48 −3.12 6.59 N-GoR-Me 1.74 −1.92 3.66  

N-ANS 3.38 −3.17 6.55 CoL-GoL-Me 3.43 −3.63 7.06  

ANS-Me 2.84 −2.61 5.45 CoR-GoR-Me 3.64 −3.7 7.34  

ANS-PNS 3.37 −3.99 7.36 U1L to L1L 8.71 −8.19 16.9  

S-N 2.47 −1.71 4.18 U1R to L1R 10.04 −10.01 20.06  

Me-L L1CP 2.08 −2.27 4.35 L1L to Me-GoL 7.62 −6.03 13.64  

Me-R L1CP 1.8 −1.9 3.7 L1R to Me-GoR 6.84 −7.66 14.5  

Midsagittal to bilateral measurement Midsagittal to bilateral measurement  

GoL-Pg 4.29 −3.82 8.11 A-B X N-Pog 2.84 −2.98 5.82  

GoR-Pg 4.45 −4.44 8.9 S-N X GoL-Gn 4.51 −3.82 8.33  

GoL-N 3.69 −2.96 6.65 S-N X GoR-Gn 3.37 −3.83 7.2  

GoR-N 4.36 −3.47 7.83 ANS-PNS X S-N 4.06 −4.43 8.49  

CoL-GoL 5.1 −4.83 9.93 PoL-OrLxGoL-Me 2.46 −2.34 4.81  

CoR-GoR 5.63 −5.42 11.05 PoR-OrRxGoR-Me 2.78 −2.84 5.62  

CoL-Me 2.53 −2.52 5.05 Ratio parameters  

CoR-Me 2.96 −3.09 6.05 N-Me/N-ANS 0.11 −0.11 0.22  

Or_L-L U3CP 2.31 −1.85 4.16 S-GoL/N-Me 0.04 −0.04 0.07  

Or_R-R U3CP 2.05 −1.61 3.66 S-GoR/N-Me 0.04 −0.04 0.09  

Or_L-L U6CP 1.76 −1.85 3.61 GoL-Gn/S-N 0.08 −0.1 0.18  

Or_R-R U6CP 1.81 −1.85 3.66 GoR-Gn/S-N 0.07 −0.09 0.09  

Refer to Table 1 for abbreviations. 
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2. Comparison of measured values by surgical history and 

hardware presence 

The 80 CBCT scans included a non-surgical group (39 cases) and a surgical group (41 cases), 

with the latter including 9 cases without hardware and 32 cases with hardware. For each group, 

measurements derived from human-identified and AI-detected landmarks were compared for the 27 

linear parameters using an unpaired t-test (Fig. 6). In the linear cephalometric measurements, the 

non-surgical group displayed a mean error of 1.32 mm and an SD of 1.30 mm. The surgical group 

without hardware had a mean of 1.10 mm (SD, 1.08 mm), while the group with hardware had a 

mean of 1.45 mm (SD, 1.49 mm). The lowest error was observed in the surgical group without 

hardware. No significant difference in measurement agreement was observed between the non-

surgical and surgical groups (P<0.05). However, a significant difference was noted between surgical 

subgroups based on the presence or absence of hardware (P<0.05). These findings were graphically 

represented using a violin plot (Fig. 7). 
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Figure 6. Comparison of linear cephalometric measurements between manual and artificial intelligence methods by patient group. Black 

error bars represent the 95% confidence standard deviation range for each item value. 
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Figure 7. Violin plots representing the difference in linear measurements between the manual and 

artificial intelligence methods. The thick vertical bar in the violin plot represents the interquartile 

range, while the thin vertical line indicates the 95% confidence interval; the extremes of this thin 

line denote the maximum and minimum values. The central white dot signifies the median. The 

width of a violin plot reflects the density of the data, with wider sections indicating a higher 

frequency of values and narrower sections representing a lower frequency. The difference values 

are distributed around the median for all 3 groups: non-surgical, surgical without hardware, and 

surgical with hardware. A. Violin plots of linear measurements for the 3 groups. B. Violin plots of 

linear measurements for the non-surgical and surgical groups. C. Violin plots of linear measurements 

for the surgical group, comparing cases with and without hardware. 
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Figure 8. Comparison of angular cephalometric measurements between manual and artificial intelligence methods by patient group. 
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Figure 9. Violin plots representing the difference in angular measurements between the manual and 

artificial intelligence methods. The difference values are distributed around the median for all 3 

groups: non-surgical, surgical without hardware, and surgical with hardware. A. Violin plots of 

angular measurements for the 3 groups. B. Violin plots of angular measurements for the non-surgical 

and surgical groups. C. Violin plots of angular measurements for the surgical group, comparing 

cases with and without hardware. 
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Figure 10. Comparison of cephalometric measurement ratios between manual and artificial intelligence methods by patient group. 
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Figure 11. Violin plots representing the difference in ratio measurements between the manual and 

artificial intelligence methods. Difference values are distributed around the median for all 3 groups: 

non-surgical, surgical without hardware, and surgical with hardware. A. Violin plots of the 

difference in ratios for the 3 groups. B. Violin plots of the difference in ratios for the non-surgical 

and surgical groups. C. Violin plots of the difference in ratios for the surgical group, comparing 

cases with and without hardware. 
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Finally, measurement values for the 5 ratio items were compared in a similar fashion using an 

unpaired t-test (Fig. 10). For the non-surgical group, the mean error between human- and AI-

landmarked measurements was 0.0285 (SD, 0.0275); for the surgical group without hardware, the 

mean was 0.0188 (SD, 0.0158); and for the surgical group with hardware, the mean was 0.0313 (SD, 

0.0297). The postoperative group without hardware exhibited the lowest error. No significant 

difference was noted between the non-surgical and surgical groups (P>0.05). However, a significant 

difference was noted between surgical subgroups based on the presence or absence of hardware 

(P<0.05). These findings were graphically represented using a violin plot (Fig. 11). 

Similarly, for the 21 angle items, the measurements derived from human- and AI-identified 

landmarks were compared using an unpaired t-test (Fig. 8). In the angular cephalometric 

measurements, the mean error for the non-surgical group was 1.81° (SD, 2.05°). The surgical group 

without hardware had a mean error of 1.60° (SD, 1.46°), while the surgical group with hardware had 

a mean error of 1.83° (SD, 1.94°). The postoperative group without hardware exhibited the lowest 

error. No significant difference was noted between the non-surgical and surgical groups (P>0.05), 

nor was a significant difference present between surgical subgroups based on the presence or 

absence of hardware (P<0.05). These findings were graphically represented using a violin plot (Fig. 

9). 
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IV.  Discussion 

 

In recent years, AI technology has made remarkable advances in medical imaging, especially 

in dentistry and maxillofacial surgery. AI-automated landmarking is becoming increasingly 

important in orthodontics and maxillofacial surgery by providing important anatomical landmarks 

for treatment planning. This paper aims to present a comprehensive exploration of whether 3D AI-

based automatic craniometric landmark identification is clinically useful. 

Among the 6 items displaying significant differences, 2 measurements included the left gonion 

(GoL) or the right gonion (GoR): L1L to Me-GoL and GoR-Gn/S-N (P<0.05). In a previous study 

by these authors, the SDRs of these landmarks were particularly low. All detection methods from 

the "2014 Automatic Cephalometric X-Ray Landmark Detection: a grand challenge", conducted by 

the Institute of Electrical and Electronics Engineers International Symposium on Biomedical 

Imaging, misrepresented the gonion landmark. This resulted in a minimum error greater than 4 mm 

from the ground truth point (Lee JH et al., 2020). This discrepancy suggests that either the dataset 

failed to capture the high variability around these landmarks, or errors were present during manual 

annotation. 

Furthermore, of the 6 significant items, 2 measurements involved the sella: S-N and GoR-Gn/S-

N (P<0.05). The sella is a fiducial point located at the center of a cavity that, by definition, is a 

cephalometric landmark easily detectable on 2D head radiographs. However, it is difficult to identify 

on 3D CBCT because the skull structure does not create 3D contours. Makram et al. (Makram M 

and Kamel H, 2014) proposed a system that automatically localizes 20 three-dimensional hard tissue 

cephalometric landmarks using Reeb graphs. In their study, the mean error of the sella was notably 

high, at 2.6 mm. Given the challenges associated with the sella, various methods have been 
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attempted for landmark detection. Montúfar et al. (Montúfar J et al., 2018) employed a technique 

involving the circle adjustment of the sub-volume slice of the sella using Hough transformation to 

generate an anatomical geometric contour of the sella.  

Four of the 6 items - R U6CP-L U6CP, R L3CP-L L3CP, Or_R-R U3CP, and L1L to Me-GoL 

(P<0.05) - included landmarks related to the teeth. The identification of landmarks associated with 

teeth can be affected by the surrounding anatomical structures, leading to potential errors even for 

clinicians. This is particularly true for the mandibular incisors, which are often difficult to discern 

due to their typical overlap with the maxillary incisors (Jeon S and Lee KC, 2021). 

Since manual landmarking has been considered as a criterion for evaluating the accuracy of 

AI-based fully automated cephalometric analysis, inaccuracy related to inter- and intra-operator 

variability in manual landmarking identification can be seen as one of the major limitations.  

In this study, 80 CBCT scans were analyzed. Using unpaired t-tests, comparisons were made 

between measurement values based on manual and AI landmarking. Of 53 measurements, 

statistically significant differences were observed for 4 lengths, 1 angle, and 1 ratio. When assessing 

the errors in assessments of length, angle, and ratio based on the designated measurement points on 

a 3-dimensional structure, the greatest error was found for length. In contrast, even errors at the 

measurement points had minimal impact on angles and ratios. Given that measured angles and ratios, 

more so than lengths, are valuable in planning orthodontic treatment or orthognathic surgery, the 

findings of this study are promising for clinical application. 

The 80 CBCT scans were categorized into a non-surgical group (39 cases) and a surgical group 

(41 cases), with the latter including 9 cases without hardware and 32 cases with hardware. When 

comparing the manual and AI-based measurements for the 5 ratio items in each group, the cohort in 

which hardware was removed postoperatively exhibited the lowest measurement error across length, 
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angle, and ratio values. No significant differences were detected in any of the measurement groups 

when comparing preoperative and postoperative data. Postoperatively, however, significant 

differences in measurement errors for length and ratio were observed depending on whether 

hardware was present (Figs. 6-11). 

Noise in CBCT images, along with metal artifacts from dental prostheses and implants, 

complicates the accurate delineation of teeth and bones. Hardware and screws were expected to 

introduce errors; however, the AI method performed well, regardless of hardware and screw 

presence. Consequently, this algorithm may serve as a valuable tool for assessing the extent of 

preoperative to postoperative change. 

Minnema et al. (Minnema J et al., 2019) developed a deep learning algorithm based on mixed-

scale density CNNs for the segmentation of teeth and bones on CBCT images containing metal 

structures. The algorithm appeared capable of excluding metal artifacts and accurately segmenting 

teeth and bone structures. These findings indicate that CNNs can identify voxel-level features in 

CBCT images that humans cannot distinguish.  

The algorithm employed in the present study was based on deep learning techniques. Dot et al. 

(Dot G et al. 2020) compared the results of 11 studies to assess the accuracy and reliability of 

automatic CBCT cephalometric landmarking; the 2 algorithms that demonstrated the best 

performance employed deep learning methods. In this study, the deep learning-based algorithm 

reported an average error of less than 2 mm for all landmarks, comparable to the inter-operator 

variability observed in manual landmarking. 

In this study, landmarks were not manually adjusted after 3D automatic landmarking. If manual 

adjustments were made to landmarks with a high likelihood of error (such as teeth, sellae, and 

gonions) following automatic landmarking, the accuracy of the measured values could be further 
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improved. Alternatively, hybrid analysis methods that determine specific landmarks through various 

approaches, such as the Montúfar sella measurement, can be employed (Montúfar J et al, 2018). 

The time required to manually measure 65 landmarks was approximately 40-60 minutes per 

CBCT volume, although this time was impossible to fully capture because the workers took 

intermittent breaks. In contrast, the AI algorithm completed the task in 10.9 seconds, with the 

following PC specifications: GeForce 2080Ti, 64 GB RAM, and an Intel i7 CPU at 3.6 GHz. Since 

the landmark-based calculation of measurements is identical in the manual and AI methods, the AI 

method markedly reduced the time needed to identify a landmark and determine the measurement 

value.  

The accuracy of measurements obtained with the deep learning-based CBCT automatic 

landmarking algorithm was comparable to that based on human-identified landmarks. By decreasing 

the time needed to calculate these measurements, the use of such an algorithm can improve the 

efficiency of diagnosis and treatment.  

In this study, measurements of length demonstrated the lowest accuracy. However, as angles 

and ratios are more commonly utilized than length in patient diagnosis, the findings confirm that 

employing measurements derived from AI-based landmarks is suitable for diagnostic purposes. 

In the comparison between surgical and non-surgical groups, no significant differences were 

found in linear measurements, angular measurements, or ratio parameters. Similarly, no significant 

differences were observed between preoperative and postoperative data for any patient group. 

Additionally, the presence of skeletal deformity did not impact the accuracy of automatic landmark 

identification.  

The technology discussed in this report is anticipated to increase clinician efficiency and 

minimize diagnostic errors. This will facilitate the use of 3D cephalometric analyses for clinicians 
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of all experience levels. Furthermore, the availability of a user-friendly, web-based application for 

3D automatic landmarking will broaden access for clinicians. At present, no clear standard exists 

for 3D cephalometric analysis, largely due to the time and effort involved as well as constraints 

related to its application in corrective procedures, surgical diagnosis, and treatment planning. The 

findings of this study may assist clinicians in incorporating 3D cephalometric analysis into their 

practice, irrespective of their level of experience. 
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V. Conclusion 

 

There were 4 differences in length, 1 difference in angle, and 1 difference in ratio, and in the 

surgical group, there was a significant difference in the measurement errors for length and ratio 

depending on the presence or absence of the hardware. It is necessary to re-evaluate whether the 

clinical application of the measurement values is meaningful by comparing the differences between 

human and between AI and human in the measurement values (length, angle, ratio). In conclusion, 

although there are still limitations, there is a clear advantage in terms of efficiency, and it can be 

used in the clinical range.  
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국문 요약 

 

3 차원컴퓨터단층촬영(CBCT)을 이용한 자동 

랜드마킹 알고리즘의 임상적 타당성 및 정확성 

 

(지도교수 유 형 석) 

연세대학교 대학원 치의학과 

박 정 은 

 

본 연구의 목적은 수동 랜드마킹과 딥러닝으로 학습된 랜드마킹을 기반으로 하는 

3 차원 CBCT 두부 계측값을 비교하여, 딥러닝 기반 CBCT 자동랜드마킹 알고리즘의 

임상적 유효성 및 정확성 평가하는 것이다.  

80 개의 CBCT 를 비수술 그룹(39 case), 하드웨어가 있는 수술그룹(32 case), 

하드웨어가 없는 수술 그룹(9 case) 로 구분하였으며, 총 53 개의 

계측값(measurements)(27 개의 길이(Length), 21 개의 각도(angle), 5 개의 

비율(ratio))을 측정하여, 다음과 같은 결론을 얻었다. 

1. 사람과 인공지능이 찍은 landmarking 을 기반으로 하는 계측값을 비교했을 때, 

6 개 항목 R U6CP-L U6CP (P=0.030), R L3CP-L L3CP (P=0.000), S-N 
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(P=0.002), Or_R-R U3CP (P=0.041), L1L to Me-GoL (P=0.045), GoR-Gn/S-

N (P=0.025))에서 통계적으로 유의미한 차이가 있었다.  

2. 비수술 그룹과 수술 그룹에 대하여 사람과 인공지능이 landmarking 을 기반으로 

하는 계측값을 비교하였을 때, 하드웨어가 없는 수술 그룹이 가장 낮은 계측치 

오차를 가졌다.  

3. 65 개의 landmarking 에 소요되는 시간은, 수동 방식의 경우, CT 볼륨 하나 당 

대략 40-60분인 반면, 인공지능 방식의 경우, 10.9초 (PC 사양: a GeForce 2080Ti, 

64G RAM, and Intel i7 CPU 3.6 GHz)였다. 

길이에서 4 개, 각도, 비율에서 각 1 개씩 차이가 있었고, 수술 그룹에서는 하드웨어 

유무에 따라 길이와 비율에 대한 계측치 오차가 유의미한 차이를 보였다. 

계측값(길이, 각도, 비율)에서 사람 간의 차이와 AI 와 사람간 차이를 비교하여, 

측정값의 임상적 적용 의미가 있는지 다시 평가할 필요가 있다. 결론적으로 아직까지 

한계는 존재하지만, 효율성 측면에서는 확실한 이점이 존재하며, 임상적 범위에서 

사용 가능하다.  

 

_____________________________________________________________________________ 

핵심되는 말 : 3 차원컴퓨터단층촬영(CBCT), 해부학적 계측점, 자동 두부 방사선 

계측, 딥러닝, 악교정 수술 
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