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ABSTRACT 

 
Utilizing Deep Learning to Detect Perforators of Anterolateral Thigh 

Free Flap in Computed Tomography Images for Maxillofacial 
Reconstruction 

 

 
The anterolateral thigh (ALT) free flap is widely utilized for reconstructive surgery in cases of 

anatomical defects caused by trauma, disease, or congenital malformations. Perforator vessels, 
which supply oxygen and blood, are essential for the successful transplantation of the ALT free flap. 
This study aimed to develop an artificial intelligence model to accurately detect perforator vessels 
of the ALT free flap in computed tomography angiography (CTA) images. For the image data, 53 
CTA series from patients who underwent ALT free flap surgeries were used. Of these, 48 CTA 
series were used for training, and 5 CTA series were used for testing. The nnUNet model performed 
deep learning using manually annotated data provided by two oral and maxillofacial surgeons. Two 
models were developed in this study. nnUNet one trained on perforator vessels confirmed through 
surgery and nnUNet adv trained additionally on perforator vessels confirmed radiologically. The 
nnUNet adv demonstrated superior performance compared to nnUNet one in both internal and 
external validation, achieving higher scores in Dice, IoU, Precision, and Recall metrics. In external 
validation, nnUNet adv achieved a Dice score of 0.682 and a detection rate of 71.4% for identifying 
perforator vessels. Training with radiologically verified perforator vessels, in addition to surgically 
confirmed vessels, resulted in better performance than using only surgical confirmation. These 
results suggest that the nnUNet adv developed in this study can reduce the time surgeons spend 
interpreting CTA images and assist in preoperative planning by enabling more accurate design of 
various free flap configurations. Furthermore, nnUNet adv demonstrated potential in detecting 
perforator vessels that might be missed by specialists during CTA interpretation. Adding more 
training datasets in the future is expected to further enhance the model's accuracy and reliability. 

 

 

 

 

 

 

                                                                                

Key words: Artificial intelligence, Deep learning, Computed tomography, Anterolateral thigh flap, 
Perforators, Reconstruction, Oral and maxillofacial area   
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1. Introduction 

 

Defects in the body can occur due to accidents, diseases, or deformities. When a part 
of the body is missing, reconstructive surgery is needed with tissue from other parts of the 
body. The tissue harvested for this purpose is called a flap. Flaps can be in the form of 
composite flaps, consisting of multiple tissues such as skin, muscle, and bone, or simple 
flaps that consist of just one type of tissue (Mittal et al., 2018). Tissues need a vessel for 
oxygen and nutrients to survive in a recipient site. Such a vessel is called a perforator. When 
transplanting a flap, the blood vessels that supply it with nutrients and oxygen may also be 
transplanted. Depending on the cutting of a vessel, flaps are classified into pedicled flaps 
and free flaps. Pedicled flaps are transferred to the defect area without cutting the blood 
vessels, keeping the original blood supply intact (Kim et al., 2024). While this ensures 
sufficient blood supply, it limits the range of reconstruction to areas near the donor site due 
to the restricted length of the blood vessels. (Figure 1) 

 

 

Figure 1. A schematic diagram of a flap with perforators. A flap for a 
transplantation needs a perforator vessel for oxygen and nutrients. 
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In contrast, free flaps involve cutting the blood vessels that supply the flap with 
nutrients and oxygen and anastomosing them to vessels at the recipient site. (Figure 2) This 
allows for reconstructive surgery regardless of the physical distance between the defect site 
and the donor site. Furthermore, the variety of sites from which free flaps can be harvested 
can allow for more diverse tissue compositions from donor sites, making it applicable to a 
wide range of defects. Due to these advantages, research on free flaps has been very active 
(Nghija and Son, 2024). 

 

 

Figure 2. Cutting a perforator in harvesting free ALT flap. 

 

Free flaps can be harvested from various parts of the body, such as the fibula flap, 
radial forearm flap, and anterolateral thigh (ALT) flap, which are commonly used for oral 
and maxillofacial defects. Among these, the ALT flap was first reported by Song in 1984 
(Song et al., 1984). Since then, the ALT flap has been used for various reconstructive 
surgeries, including those for head and neck as well as ankle defects (Çiçek, 2023). 

The ALT flap is a free flap with many advantages. It has a long vascular pedicle, 
providing sufficient length and flexibility for anastomosis with the recipient site’s vessels. 
It can be very useful for reconstructing complex oral and maxillofacial defects. Due to these 
advantages, the ALT flap is considered a preferred choice among many surgeons in the field 
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of head and neck reconstruction (Besharah et al., 2020; Ranganath et al., 2022; 
Vijayasekaran et al., 2020). 

The most important step in harvesting a flap is identifying and keeping the perforator 
intact during dissection. It can make the perforator vessel supply the flap with nutrients and 
oxygen. The perforators of the ALT flap mainly branch from the descending branch of the 
lateral circumflex femoral artery. However, the number, location, and pathway of these 
perforators vary significantly from a patient to a patient (Figure 3) (De Beule et al., 2016).  

 

 

Figure 3. Scheme of a perforator from lateral circumflex femoral artery for ALT 
flap. 

 

These anatomical variations in the flap can sometimes lead to inconsistent results. In 
some cases, the variation in the perforators connected to the ALT flap presents a challenge 
to the surgeon. When the perforator cannot be found or is encountered in an unexpected 
location, the surgeon can cut the perforator and have to resort to using a second optional 
flap. Furthermore, if the perforator is damaged during the transplant of a free flap, resulting 
in a lack of blood flow, the reconstructive surgery may fail (Smith et al., 2017). In such 
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cases, the patient may need a second surgery, which could also affect the morbidity of the 
donor site. Therefore, it is essential to control these variables before surgery (Kalra et al., 
2022). 

Traditionally, Doppler ultrasonography and computed tomography angiography (CTA) 
are used to locate perforators preoperatively (Hashimoto et al., 2012). Of these, CTA offers 
a higher predictive accuracy. However, interpreting CTA is time-consuming and requires a 
high level of expertise, which can pose challenges for the surgeon. Failure to predict the 
number, location, length, and diameter of the perforators can prolong the time required to 
locate them during surgery and lead to complications such as mismatches in the diameter 
of vessels between the donor and the recipient site. Therefore, accurate interpretation of 
CTA is crucial. 

There is growing interest in artificial intelligence (AI) and deep learning technologies 
to analyze CT images. Khan et al. successfully reported a deep learning-based technique 
for intracranial hemorrhage detection using CT images from 75 patients (Khan et al., 2023). 
And Cevik et al. reported artificial intelligence for identification of the deep inferior 
epigastric artery perforator (DIEP) using preoperative CTA. Automatic detection of the 
deep inferior epigastric perforator is reported by Mavioso et al. They developed an 
automatic detection tool with 20 CTA from patients who undergone a DIEAP flap for breast 
reconstruction (Mavioso et al., 2018). And the automatic detection tool was evaluated in a 
prospective way with 40 patients. The reduction of the time is achieved during analyzing 
CTA and surgery (Mavioso et al., 2020). 

Due to growing interest in artificial intelligence, the purpose of this study is to develop 
an artificial intelligence to detect a perforator of ALT flap using CTA images. 

 

2. Materials and Methods 

 

2.1. Data selection 

 

Patients who visited the Department of Oral and Maxillofacial Surgery at Yonsei 
University Dental Hospital and underwent anterolateral thigh (ALT) flap surgery between 
March 2021 and July 2022 were selected. A total of 52 patients underwent the procedure, 
and all of them underwent a lower extremity computed tomography angiogram (CTA) prior 
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to surgery. Before utilizing the lower extremity CTA data, approval was obtained from the 
Institutional Review Board (IRB) of Yonsei University Dental Hospital (IRB 2-2024-0009). 

The lower extremity CTA was used to explore the ALT perforator and provide the 
necessary images for deep learning in the AI model. Based on these criteria, lower 
extremity CTA data were requested from the Imaging Data Service Team at Yonsei 
University for all 52 selected patients. Since one patient had two lower extremity CTA 
scans on different dates, a total of 53 series of lower extremity CTA data were collected. 
Out of these, 48 CTA series were categorized into the learning group to be used for deep 
learning, while 5 CTA series were categorized into the test group to measure the 
performance of the artificial intelligence model developed through deep learning. 

For lower extremity CTA series imaging, all patients are required to fast for 4–6 hours 
beforehand. The imaging range is set to include the lower extremities. A preliminary scan 
is performed before the main scan to confirm that the lower extremities, including the 
anterior superior iliac spine (ASIS) and patella, are properly captured. Afterward, a contrast 
agent is administered. Following the injection of the contrast agent, the main scan is 
conducted, and thinner axial slice thickness results in higher resolution. All patients were 
imaged with an axial slice thickness of 2 mm. The specifications of the equipment used for 
CTA imaging are represented by the model name: Siemens Somatom Definition Flash 
(FLASH), FORCE, or X.cite (Siemens Healthineers), Revolution CT (GE Healthcare, 
Chicago, IL, USA) 

The 2mm-thickness axial data from the CTA series was extracted as DICOM files, and 
all information was anonymized. Due to variations in patient height, the number of axial 
slices in lower extremity angiography ranged from 500 to 800 slices per patient. To ensure 
a consistent number of axial slices across patients, 250 axial slices were selected from the 
anterior superior iliac spine (ASIS) toward the knee. At a 2mm thickness, the 250 axial 
slices cover approximately 500mm, which includes the region from the ASIS to the patella 
in most patients. This region is considered sufficient for exploring the ALT perforator. 
Consequently, 250 axial slices per CTA series were used across 53 series, resulting in a 
total of 13,250 axial slices. The data is shown in table 1. 
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Table 1. The CTA series and axial slices utilized in this study. The Learning Group 
was used both for deep learning in the AI model and for internal validation. The Test Group, 
on the other hand, was not used in the deep learning process and was solely utilized for 
external validation. 

 

2.2. Manual annotation 

 

For deep learning in the artificial intelligence model, it was necessary to annotate 
perforators manually in the lower extremity angiography images by two experts(DW/HY). 
Perforators identified during surgery were manually annotated and classified as "surgically 
confirmed perforators." Additionally, perforators confirmed by two oral and maxillofacial 
surgery specialists in the CTA series were classified as "radiologically confirmed 
perforators." The annotation process was conducted across all 13,250 axial slices. 

The program used for manual annotation was the Supervisely App, which provides a 
brush annotation tool to mark perforators in DICOM labeling online (Figure 4). Data 
manually annotated with the brush tool on axial slices can be reconstructed into 3D models, 
allowing for visualization in three dimensions and examination from coronal-sectional 
views (Figure 5). Access to the Supervisely app is restricted to securely encrypted accounts, 
minimizing the risk of personal information exposure, and data can be immediately deleted 
after processing. Additionally, both experts can access the same data, allowing for double-
checking. For perforators in the expert-validated group, the consistency of brush 
annotations between the two experts was calculated using Cohen’s Kappa value. 

 

 CTA series Axial slices 

Learning group 48 12000 
Test group 5 1250 
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Figure 4. Manual brush annotation tool to mark the perforator on Supervisely 
application. 
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Figure 5. A coronal-view perforator and brush annotation region. 

 

2.3. Development of artificial intelligence 

 

nnUNet was chosen as an AI model for deep learning. This engine can support 3D 
image data to reflect the characteristic of perforators continuously existing between 
adjacent slices. the nnUNet is known for its high segmentation performance in medical data 
(Isensee et al., 2021). 

The brush-annotated data were extracted in the .json file format. The CTA slides used 
for the analysis were extracted in the .nrrd file format instead of the original .dicom files. 
Then these file formats were sent to the Department of Computer Science at Korea 
University for AI model development. The data transfer was conducted after obtaining 
approval from the Severance Institutional Review Board. 

The brush annotation extracted from the .json file was matched with the CTA image 
extracted from the .nrrd file. Registration is the process of aligning the coordinates of the 
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brush annotation with the coordinates in the CTA images, allowing the positional 
information to be recognized as the same location. 

Additionally, for nnUNet to recognize the CTA images, all data must be in the same 
size. Therefore, any CTA images that were not in 512 x 512 pixels were cropped and 
adjusted to 512 x 512 pixels. This crop applied to three CTA image series in the learning 
group. 

Then nnUNet model was trained with the pre-processed data. The learning group for 
the nnUNet deep learning is composed of 12000 slices. The training was repeated 1000 
epochs because repeated learning can improve the performance of the AI model. 

 

2.3.1 nnUNet one 

 

The AI model trained on perforators confirmed through surgery was referred to as 
nnUNet one. Perforators identified during surgery are actual, existing perforators, and the 
AI model was trained to learn the true perforators. In the train group, a total of 105 
perforators were confirmed through surgery in 48 patients. These perforators were marked 
on the CTA series, which served as the training data for nnUNet one. In other words, 
nnUNet one is an AI model trained on "surgically confirmed perforators." 

 

2.3.2 nnUNet adv 

 

The AI model trained on data marked by two experts as perforators in the CTA series, 
regardless of whether they were confirmed through surgery, was referred to as nnUNet adv. 
In the train group, a total of 186 perforators were marked by the two experts across 48 CTA 
series, and this data was used to train nnUNet adv. Since the perforators were identified 
solely through interpretation of the CTA series and not confirmed via surgery, the dataset 
may include cases where the perforators do not actually exist. In other words, nnUNet adv 
is an AI model trained on "radiologically confirmed perforators." 
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2.4. Assessment of artificial intelligence model performance  

 

After developing the artificial intelligence (AI) model using deep learning techniques, 
the model's performance was evaluated using two methods. These two methods were 
referred to as "perforator-specific performance" and "slice-specific performance." 

 

2.4.1 Ground truth 

 

To evaluate the performance of the AI model, data to be used as ground truth is 
required. While it would be ideal to use perforators identified through surgery as the ground 
truth, this approach poses ethical concerns. Performing unnecessary surgeries solely for 
research purposes would be unacceptable, as patients should not undergo procedures 
beyond what is necessary for their reconstruction. Any unnecessary surgeries to locate 
additional perforators beyond those required for reconstruction must be avoided. 

As an alternative, two experts interpreted CTA series and marked perforators to create 
ground truth data. According to previous studies, it has been reported that perforators were 
sometimes overlooked during CTA interpretation by experts but were found to exist during 
surgery (Kim et al., 2023). To identify as many perforators as possible in the given CTA 
series, two experts independently searched for perforators in CTA series. Cross-checking 
of the perforator marking areas was performed using the Supervisely application. Based on 
this ground truth data, the performance of the AI model was evaluated by comparing 
whether the areas identified as perforators by the AI model matched the expert annotations. 

 

2.4.2 Internal and external validation 

 

To evaluate the performance of the AI model, two approaches are employed: Internal 
validation, which tests the model using the data it was trained on, and External validation, 
which tests the model on new data not used during training. Naturally, the performance 
values from internal validation are expected to be higher. 
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For internal validation, 5 CTA series were randomly selected from the 48 CTA series 
used during training. For external validation, 5 CTA series not used in the training process 
were utilized. 

 

2.4.3 Perforator-specific performance 

 

Perforator-specific performance is a method for evaluating the performance of an AI 
model by determining whether the AI model has detected the perforator along its pathway. 
If the AI model detects part of the perforator prior to surgery, it can assist surgeons in 
locating the perforator more efficiently. 
When the perforator's location is interpreted based on the position identified by the AI 
model, it reduces interpretation time and enables the planning of various designs for flap 
surgery, making this evaluation clinically significant. 
Therefore, Perforator-specific performance was assessed based on whether the AI model 
detected the perforator on at least one slide of each perforator. If the AI model detected the 
perforator on one or more slides along its pathway, from its origin to the end of its 
distribution in the tissue, it was considered to have achieved Perforator-specific 
performance. 

To evaluate the perforator-specific performance of the AI model, two experts 
identified perforators in five CTA scans from the test group and compared them with the 
perforators detected by the AI model. 

 

2.4.4 Slice-specific performance 

 

Slice-specific performance is a method used to determine the accuracy of the AI model 
by assessing whether the manual annotations and the AI model's annotations match on each 
axial slide. 

To evaluate slice-specific performance, the data used for the test included 5 CTA series 
in test group. Each CTA of the five patients had 250 axial slides, resulting in a total of 1,250 
slides for evaluation. The results for each slide were represented using colors. If the area 
detected by the AI model matched the area marked by two experts, the region was marked 
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in green (Figure 6). Areas detected by the AI model but not marked by two experts were 
marked in red (Figure 7). Areas marked by two experts but not detected by the AI model 
were marked in blue (Figure 8). 

Through this color-coding system, green regions indicate true positives (TP), red 
regions indicate false positives (FP), and blue regions indicate false negatives (FN). By 
scoring slides for TP, FP, and FN, the performance of the AI model was evaluated across 
the 1,250 slides in 5 CTA series of test group. 

 

 

Figure 6. True positive area. The region where the location of the perforator 
identified by the AI model aligns with the manual brush annotation(Green mark). 
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Figure 7. False positive area. The region where the AI model identified a perforator, 
but no manual brush annotation(Red mark) is present. 
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Figure 8. False negative area. The region where the AI model failed to identify a 
perforator, but manual brush annotation(Blue mark) is present. 
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2.4.5 Statistic analysis 

 

Common metrics for evaluating the performance of AI models include Dice, IoU, 
Precision, and Recall (Huang et al., 2024). Dice is a performance measure typically used 
when labels are sparse and is one of the most widely used metrics in medical imaging and 
computer science. A higher Dice score indicates better performance, with the score 
increasing when the AI model’s annotations match the ground truth and decreasing with 
false positives. The formula for Dice is as follows: 

 

𝐷𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

IoU, or Intersection over Union, is also used to evaluate AI model performance and 
serves as a supporting metric for Dice. Like Dice, higher values indicate better performance: 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

Precision indicates the proportion of perforators annotated by the AI model that are 
present: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall, also known as sensitivity or true positive rate, represents the proportion of 
actual perforators present in the data that the AI model correctly annotated: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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3. Results 

 

A total of 117 surgery-validated perforators were identified, with 105 observed in the 
48 CTA series in the Learning Group and 12 observed in the 5 CTA series in the Test Group. 
Subsequently, two oral and maxillofacial surgery specialists analyzed 53 CTA series and 
identified a total of 207 expert-validated perforators. Among these, 186 were found in the 
48 CTA series in the Learning Group, and 21 were found in the 5 CTA series in the Test 
Group. The Cohen's Kappa coefficient for the perforators confirmed by the two experts was 
0.92, indicating a very high level of agreement (Table 2). 

 

 

Table 2. Numbers of perforators validated by surgery (surgically confirmed 
perforators) and two experts (radiologically confirmed perforators).  

 

3.1 Perforator-specific performance 

 

The performance of the AI model developed in this study was analyzed from a clinical 
perspective. The evaluation focused on the AI model’s ability to identify perforators, 
referred to as perforator-specific performance. If a surgeon starts to interpret CTA series 
from the location identified by AI model, it can significantly reduce interpretation time and 
facilitate planning of various flap surgery designs. It can be very helpful for a surgeon. 
Perforator-specific performance was evaluated solely for nnUNet adv. 

Expert-validated perforators in the 5 CTA series in test group were used to evaluate 
Perforator-specific performance of AI model. The two experts detected a total of 21 
perforators in the 5 CTA series in the test group.  

 Number of perforators 

Total Learning group 
(48 CTA series) 

Test group 
(5 CTA series) 

Surgically confirmed perforators 117 105 12 
Radiologically confirmed perforators 207 186 21 
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The AI model detected 23 perforators in the 5 CTA series in the test group. The 
Perforator-specific performance of AI model was evaluated by comparing the perforators 
annotated by AI model with the manually annotated perforators. 

Out of the 21 perforators identified by the two experts, the AI model detected 15 
perforators, failing to detect 6 perforators. It results in a true positive rate of 71.4%. 

On the other hand, of the 23 perforators detected by the AI model, only 15 perforators 
were matched with the manual annotations. 8 other perforators of the 23 perforators were 
not identified by two experts (Table 3). 

 

nnUNet adv 
    Experts 

Detection No detection 

Detection 15 (71.4%) 6 (28.6%) 

No detection 8 (100%) 0 (0%) 

 

Table 3. The numbers of perforators detected by two experts and nnUNet adv. 

 

A statistical analysis was conducted to evaluate the perforator-specific performance. 
And external validation of the nnUNet adv model was performed to result in DICE value, 
IoU, Precision, and Recall that could be compared with other studies. The nnUNet adv 
showed a DICE value of 0.682, IoU of 0.517, Precision of 0.652, and Recall of 0.714. 

 

nnUNet adv   DICE IoU Precision Recall 

External 
Validation 

0.682 0.517 0.652 0.714 

 

Table 4. Perforator-specific performance of nnUNet adv. 
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3.2 Slice-specific performance 

 

The performance of the AI model developed in this study was analyzed from a 
computer science perspective. Axial slides from the CTA images of each patient were 
evaluated for slice-specific performance of AI model. For each CTA, 250 slides from the 
anterior superior iliac spine were evaluated. Out of a total of 53 CTA series, five CTA series, 
which were not used for training, were utilized as the test group. Each CTA of the five 
patients had 250 axial slides, resulting in a total of 1,250 slides for evaluation. 

Slice-specific performance was tested for both nnUNet one and nnUNet adv. And 
internal validation and external validation were conducted for both nnUNet one and 
nnUNet adv to evaluate the AI model's performance from a computer science perspective. 

First, the slice-specific performance of nnUNet one was analyzed. For internal 
validation, 5 CTA series were randomly selected from the 48 series used for training. For 
external validation, 5 CTA series that were not used during training were utilized. The 
DICE value was 0.0957 for internal validation and 0.0275 for external validation. The IoU 
value was 0.054 for internal validation and 0.014 for external validation. 

 

nnUNet one  DICE IoU Precision Recall 

Internal 
Validation 

0.0957 0.054 0.101 0.123 

External 
Validation 

0.0275 0.014 0.023 0.03 

 

Table 5. Slice-specific performance of nnUNet one. 

 

Using the same approach, the performance of nnUNet adv was analyzed. The DICE 
value was 0.284 for internal validation and 0.184 for external validation. The IoU value 
was 0.173 for internal validation and 0.103 for external validation. 
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nnUNet adv DICE IoU Precision Recall 

Internal 
Validation 

0.284 0.173 0.42 0.251 

External 
Validation 

0.184 0.103 0.284 0.144 

 

Table 6. Slice-specific performance of nnUNet adv. 

 

4. Discussions 

 

 The AI model's performance was assessed with two criteria: perforator-specific 
performance and slice-specific performance. For perforator-specific performance, nnUNet 
adv successfully detected 15 out of the 21 perforators identified by experts, achieving a 
detection rate of approximately 71%. This indicates a reasonable level of perforator-
specific performance, suggesting that nnUNet adv can aid surgeons by providing hints 
about the location of perforators. Surgeons can locate perforators quickly and easily by 
starting their search from slices annotated by nnUNet adv before surgery. While experts 
must manually search each CTA slide to find perforators, the AI model can analyze many 
slides quickly and present results, potentially saving surgeons significant time in perforator 
localization for surgical planning. 

The DICE value for nnUNet adv is 0.682. Typically, AI models analyzing medical 
images are considered to have good performance when a DICE value is between 0.7 and 1. 
According to the study by Josephine Chen et al., an AI model developed to detect deep 
inferior epigastric vessels using 100 CTA series achieved a DICE value of 0.703. Despite 
having half the number of CTA series, the DICE value in this study is similar to the DICE 
value reported in Josephine Chen's study. It indicates that the perforator detection 
performance of nnUNet adv can be considered satisfactory. 

The nnUNet adv has advantages over human interpreters. Having undergone training 
in this study, nnUNet adv does not experience inexperience when interpreting CTA series. 
In contrast, all novice interpreters require a long learning curve to become proficient in 
interpretation. Moreover, many skilled interpreters eventually retire over time, 
necessitating the training of new novice interpreters to learn how to interpret CTA series 
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from the beginning. However, nnUNet adv does not retire, meaning it never reverts to a 
novice state. Instead, it continues to improve in precision and accuracy over time. 

It is also worth noting the 8 perforators identified by nnUNet adv among the 23 
perforators it detected, which were not identified by the two experts. If these 8 perforators 
detected by nnUNet adv are indeed real perforators, it would provide significant clinical 
benefits. Additionally, the performance of nnUNet adv could be higher than the reported 
DICE value of 0.682. Previous studies have reported cases where perforators not identified 
in CTA series by experts were later discovered during surgery. Kim et al. reported 79 
perforators identified in CTA series, but 85 perforators were found during surgery in 53 
patients. It has been reported that six perforators were not identified during the 
interpretation of the CTA series (Kim et al., 2023). If nnUNet adv successfully detected 
perforators missed by experts, its performance could be considered superior to that of 
human interpreters. Further research is required to validate these 8 false positives identified 
by the AI model.  

Next, slice-specific performance was assessed to find the performance of nnUNet one 
and nnUNet adv developed in this study. The Dice scores for nnUNet one and nnUNet adv 
were 0.0275 and 0.184, respectively.  

Using five CTA series not included in the deep learning training, external validation 
was performed. Dice values for nnUNet one and nnUNet adv in external validation were 
0.0275 and 0.184, respectively. Additionally, internal validation was conducted using five 
randomly selected CTA series from a total of 48 CTA series. Dice values for nnUNet one 
and nnUNet adv in internal validation were 0.0957 and 0.284, respectively. nnUNet adv 
demonstrated superior performance compared to nnUNet one in both internal and external 
validation. Anouk van der Schot et al. investigated placenta vessel segmentation using U-
Net and pix2pix models. After training the U-Net model with 483 images and evaluating 
its performance, internal validation yielded Dice and IoU values of 0.53 [0.49; 0.64] and 
0.49 [0.17; 0.56], respectively (van der Schot et al., 2023). These values appear higher than 
the Dice (0.284) and IoU (0.173) achieved by nnUNet adv in this study. However, in van 
der Schot et al.’s research, when the test set was changed, the Dice score ranged from 0.49 
to 0.64, and the IoU ranged from 0.17 to 0.56, indicating significant variation. Therefore, 
for a more accurate evaluation of nnUNet adv's performance, it is necessary to conduct 
internal and external validations using alternative test sets in this study. 

The brush annotation tool used for marking perforators creates circular regions. If the 
cross-sectional shape of the perforator on a slice is oval or another shape, this can lead to 
pixel-level discrepancies between the perforator’s actual shape and the circular brush 
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annotation. These discrepancies may introduce errors in the AI model's development 
(Figure 9). If the Supervisely app develops annotation tools with varied shapes in the future, 
it could help reduce these discrepancies and potentially improve the AI model’s 
performance. 

 

 

Figure 9. Inaccuracy between the perforator and brush annotation. 

 

There are two ways to enhance the performance of nnUNet adv. The first is to increase 
the number of CTA series used for training. Josephine Chen et al. conducted a study using 
100 CTA series to train nnUNet for detecting inferior deep epigastric vessels. In contrast, 
this study utilized 53 CTA series. It is anticipated that increasing the number of CTA series 
will result in an improved DICE value. Secondly, data augmentation allows the AI model 
to learn more effectively from the same dataset. Data augmentation involves creating 
multiple variations of a single image by applying transformations such as scaling, zooming, 
and rotation. This technique effectively increases the amount of data available for training. 
Although data augmentation was not used in this study, implementing this technique in 
future training of nnUNet adv is expected to significantly enhance its performance. 
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5. Conclusion 

 

In this study, nnUNet adv was developed to detect perforators for ALT flaps using CTA 
series. nnUNet adv can assist surgeons in locating perforators quickly. With further deep 
learning on an expanded dataset, it could potentially surpass expert’s accuracy in the future. 

An AI model that undergoes more extensive deep learning is expected to reduce the time 
experts need to analyze CTA images preoperatively, improve the accuracy of perforator 
detection, and ultimately enhance surgical outcomes. Future studies are anticipated to make 
all of this possible. 
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Abstract in Korean  

 

딥러닝으로 하지 전산화단층촬영 영상에서 악안면 재건에 필요한 

대퇴피판의 천공지를 감지하는 연구 

 
   

전외측 대퇴부 유리피판은 외상, 질병 또는 선천적 기형으로 인해 해부학적 결손이 

있는 경우 재건을 위해 널리 이용하고 있는 유리 피판이다. 전외측 대퇴부 유리피판

의 이식을 성공적으로 하기 위해 산소와 혈액을 공급하는 천공지 혈관이 반드시 필요

하다. 본 연구는 전산화 단층촬영 혈관 조영술 이미지에서 전외측 대퇴부 유리피판의 

천공지 혈관을 정확하게 탐지하기 위한 인공지능 모델을 개발하는 것을 목표로 하였

다. 이미지 데이터로 전외측 대퇴부 유리피판 이식 수술을 받은 환자의 53개 전산화 

단층촬영 혈관조영술 이미지를 사용하였다. 이 중 48개는 학습용으로 사용하였고 5개

는 테스트용으로 사용하였다. 두 명의 구강악안면외과 전문의가 수동으로 주석 처리

한 정보를 이용하여 nnUNet 모델이 딥러닝을 수행하였다. 본 연구에서는 수술로 확인

된 천공지 혈관을 학습한 nnUNet one과 방사선학적으로 추가로 확인된 천공지 혈관을 

학습한 nnUNet adv라는 두 가지 모델을 개발하였다. nnUNet one보다 nnUNet adv가 내부 

검증, 외부 검증에서 Dice, IoU, Precision, Recall 모두 높은 수치를 보였다. nnUNet adv는 

천공지 혈관 식별에 대한 성능 평가를 위한 외부 검증에서 Dice 점수 0.682와 71.4% 

탐지율을 보였다. 본 연구에서 개발한 nnUNet adv는 외과의사의 전산화 단층촬영 혈관

조영술의 판독 시간을 줄이고 수술 전 다양한 유리피판의 모양을 술자가 설계하는데 

도움을 줄 수 있는 성능으로 평가한다. 또한, nnUNet adv는 전문의가 판독에 실패한 천

공지 혈관을 탐지할 수 있는 가능성을 보였다. 향후 학습 데이터 세트를 추가하면 모

델의 정확성과 신뢰성이 더욱 향상될 것으로 기대된다.  

 

_______________________________________________________________________________ 

핵심되는 말 : 전외측 대퇴부 유리 피판, 천공지 혈관, 인공지능, 딥러닝, 컴퓨터 단층

촬영 혈관조영술, 악안면부위, 재건술  
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