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ABSTRACT

Utilizing Deep Learning to Detect Perforators of Anterolateral Thigh
Free Flap in Computed Tomography Images for Maxillofacial
Reconstruction

The anterolateral thigh (ALT) free flap is widely utilized for reconstructive surgery in cases of
anatomical defects caused by trauma, disease, or congenital malformations. Perforator vessels,
which supply oxygen and blood, are essential for the successful transplantation of the ALT free flap.
This study aimed to develop an artificial intelligence model to accurately detect perforator vessels
of the ALT free flap in computed tomography angiography (CTA) images. For the image data, 53
CTA series from patients who underwent ALT free flap surgeries were used. Of these, 48 CTA
series were used for training, and 5 CTA series were used for testing. The nnUNet model performed
deep learning using manually annotated data provided by two oral and maxillofacial surgeons. Two
models were developed in this study. nnUNet one trained on perforator vessels confirmed through
surgery and nnUNet adv trained additionally on perforator vessels confirmed radiologically. The
nnUNet adv demonstrated superior performance compared to nnUNet one in both internal and
external validation, achieving higher scores in Dice, IoU, Precision, and Recall metrics. In external
validation, nnUNet adv achieved a Dice score of 0.682 and a detection rate of 71.4% for identifying
perforator vessels. Training with radiologically verified perforator vessels, in addition to surgically
confirmed vessels, resulted in better performance than using only surgical confirmation. These
results suggest that the nnUNet adv developed in this study can reduce the time surgeons spend
interpreting CTA images and assist in preoperative planning by enabling more accurate design of
various free flap configurations. Furthermore, nnUNet adv demonstrated potential in detecting
perforator vessels that might be missed by specialists during CTA interpretation. Adding more
training datasets in the future is expected to further enhance the model's accuracy and reliability.

Key words: Artificial intelligence, Deep learning, Computed tomography, Anterolateral thigh flap,
Perforators, Reconstruction, Oral and maxillofacial area



1. Introduction

Defects in the body can occur due to accidents, diseases, or deformities. When a part
of the body is missing, reconstructive surgery is needed with tissue from other parts of the
body. The tissue harvested for this purpose is called a flap. Flaps can be in the form of
composite flaps, consisting of multiple tissues such as skin, muscle, and bone, or simple
flaps that consist of just one type of tissue (Mittal et al., 2018). Tissues need a vessel for
oxygen and nutrients to survive in a recipient site. Such a vessel is called a perforator. When
transplanting a flap, the blood vessels that supply it with nutrients and oxygen may also be
transplanted. Depending on the cutting of a vessel, flaps are classified into pedicled flaps
and free flaps. Pedicled flaps are transferred to the defect area without cutting the blood
vessels, keeping the original blood supply intact (Kim et al., 2024). While this ensures
sufficient blood supply, it limits the range of reconstruction to areas near the donor site due
to the restricted length of the blood vessels. (Figure 1)

Lateral circumflex femoral artery

Ascendingbranch — —

Transverse branch

Descending branch

Perforator

Skin paddle

\

Figure 1. A schematic diagram of a flap with perforators. A flap for a
transplantation needs a perforator vessel for oxygen and nutrients.



In contrast, free flaps involve cutting the blood vessels that supply the flap with
nutrients and oxygen and anastomosing them to vessels at the recipient site. (Figure 2) This
allows for reconstructive surgery regardless of the physical distance between the defect site
and the donor site. Furthermore, the variety of sites from which free flaps can be harvested
can allow for more diverse tissue compositions from donor sites, making it applicable to a
wide range of defects. Due to these advantages, research on free flaps has been very active
(Nghija and Son, 2024).

ALT flap
with a perforator

Figure 2. Cutting a perforator in harvesting free ALT flap.

Free flaps can be harvested from various parts of the body, such as the fibula flap,
radial forearm flap, and anterolateral thigh (ALT) flap, which are commonly used for oral
and maxillofacial defects. Among these, the ALT flap was first reported by Song in 1984
(Song et al., 1984). Since then, the ALT flap has been used for various reconstructive
surgeries, including those for head and neck as well as ankle defects (Cigek, 2023).

The ALT flap is a free flap with many advantages. It has a long vascular pedicle,
providing sufficient length and flexibility for anastomosis with the recipient site’s vessels.
It can be very useful for reconstructing complex oral and maxillofacial defects. Due to these
advantages, the ALT flap is considered a preferred choice among many surgeons in the field



of head and neck reconstruction (Besharah et al., 2020; Ranganath et al., 2022;
Vijayasekaran et al., 2020).

The most important step in harvesting a flap is identifying and keeping the perforator
intact during dissection. It can make the perforator vessel supply the flap with nutrients and
oxygen. The perforators of the ALT flap mainly branch from the descending branch of the
lateral circumflex femoral artery. However, the number, location, and pathway of these
perforators vary significantly from a patient to a patient (Figure 3) (De Beule et al., 2016).

: Lateral circumflexfemoral arte
Lateral circumflex femoral artery Y

Ascendingbranch Ascendingbranch —

Transverse branch > Transverse branch

Descending branch Descending branch

Perforator

()

Figure 3. Scheme of a perforator from lateral circumflex femoral artery for ALT
flap.

These anatomical variations in the flap can sometimes lead to inconsistent results. In
some cases, the variation in the perforators connected to the ALT flap presents a challenge
to the surgeon. When the perforator cannot be found or is encountered in an unexpected
location, the surgeon can cut the perforator and have to resort to using a second optional
flap. Furthermore, if the perforator is damaged during the transplant of a free flap, resulting
in a lack of blood flow, the reconstructive surgery may fail (Smith et al., 2017). In such



cases, the patient may need a second surgery, which could also affect the morbidity of the
donor site. Therefore, it is essential to control these variables before surgery (Kalra et al.,
2022).

Traditionally, Doppler ultrasonography and computed tomography angiography (CTA)
are used to locate perforators preoperatively (Hashimoto et al., 2012). Of these, CTA offers
a higher predictive accuracy. However, interpreting CTA is time-consuming and requires a
high level of expertise, which can pose challenges for the surgeon. Failure to predict the
number, location, length, and diameter of the perforators can prolong the time required to
locate them during surgery and lead to complications such as mismatches in the diameter
of vessels between the donor and the recipient site. Therefore, accurate interpretation of
CTA is crucial.

There is growing interest in artificial intelligence (Al) and deep learning technologies
to analyze CT images. Khan et al. successfully reported a deep learning-based technique
for intracranial hemorrhage detection using CT images from 75 patients (Khan et al., 2023).
And Cevik et al. reported artificial intelligence for identification of the deep inferior
epigastric artery perforator (DIEP) using preoperative CTA. Automatic detection of the
deep inferior epigastric perforator is reported by Mavioso et al. They developed an
automatic detection tool with 20 CTA from patients who undergone a DIEAP flap for breast
reconstruction (Mavioso et al., 2018). And the automatic detection tool was evaluated in a
prospective way with 40 patients. The reduction of the time is achieved during analyzing
CTA and surgery (Mavioso et al., 2020).

Due to growing interest in artificial intelligence, the purpose of this study is to develop
an artificial intelligence to detect a perforator of ALT flap using CTA images.

2. Materials and Methods

2.1. Data selection

Patients who visited the Department of Oral and Maxillofacial Surgery at Yonsei
University Dental Hospital and underwent anterolateral thigh (ALT) flap surgery between
March 2021 and July 2022 were selected. A total of 52 patients underwent the procedure,
and all of them underwent a lower extremity computed tomography angiogram (CTA) prior
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to surgery. Before utilizing the lower extremity CTA data, approval was obtained from the
Institutional Review Board (IRB) of Yonsei University Dental Hospital (IRB 2-2024-0009).

The lower extremity CTA was used to explore the ALT perforator and provide the
necessary images for deep learning in the Al model. Based on these criteria, lower
extremity CTA data were requested from the Imaging Data Service Team at Yonsei
University for all 52 selected patients. Since one patient had two lower extremity CTA
scans on different dates, a total of 53 series of lower extremity CTA data were collected.
Out of these, 48 CTA series were categorized into the learning group to be used for deep
learning, while 5 CTA series were categorized into the test group to measure the
performance of the artificial intelligence model developed through deep learning.

For lower extremity CTA series imaging, all patients are required to fast for 4-6 hours
beforehand. The imaging range is set to include the lower extremities. A preliminary scan
is performed before the main scan to confirm that the lower extremities, including the
anterior superior iliac spine (ASIS) and patella, are properly captured. Afterward, a contrast
agent is administered. Following the injection of the contrast agent, the main scan is
conducted, and thinner axial slice thickness results in higher resolution. All patients were
imaged with an axial slice thickness of 2 mm. The specifications of the equipment used for
CTA imaging are represented by the model name: Siemens Somatom Definition Flash
(FLASH), FORCE, or X.cite (Siemens Healthineers), Revolution CT (GE Healthcare,
Chicago, IL, USA)

The 2mm-thickness axial data from the CTA series was extracted as DICOM files, and
all information was anonymized. Due to variations in patient height, the number of axial
slices in lower extremity angiography ranged from 500 to 800 slices per patient. To ensure
a consistent number of axial slices across patients, 250 axial slices were selected from the
anterior superior iliac spine (ASIS) toward the knee. At a 2mm thickness, the 250 axial
slices cover approximately S00mm, which includes the region from the ASIS to the patella
in most patients. This region is considered sufficient for exploring the ALT perforator.
Consequently, 250 axial slices per CTA series were used across 53 series, resulting in a
total of 13,250 axial slices. The data is shown in table 1.



CTA series Axial slices

Learning group 48 12000
Test group 5 1250

Table 1. The CTA series and axial slices utilized in this study. The Learning Group
was used both for deep learning in the AI model and for internal validation. The Test Group,
on the other hand, was not used in the deep learning process and was solely utilized for
external validation.

2.2. Manual annotation

For deep learning in the artificial intelligence model, it was necessary to annotate
perforators manually in the lower extremity angiography images by two experts(DW/HY).
Perforators identified during surgery were manually annotated and classified as "surgically
confirmed perforators." Additionally, perforators confirmed by two oral and maxillofacial
surgery specialists in the CTA series were classified as "radiologically confirmed
perforators." The annotation process was conducted across all 13,250 axial slices.

The program used for manual annotation was the Supervisely App, which provides a
brush annotation tool to mark perforators in DICOM labeling online (Figure 4). Data
manually annotated with the brush tool on axial slices can be reconstructed into 3D models,
allowing for visualization in three dimensions and examination from coronal-sectional
views (Figure 5). Access to the Supervisely app is restricted to securely encrypted accounts,
minimizing the risk of personal information exposure, and data can be immediately deleted
after processing. Additionally, both experts can access the same data, allowing for double-
checking. For perforators in the expert-validated group, the consistency of brush
annotations between the two experts was calculated using Cohen’s Kappa value.



Figure 4. Manual brush annotation tool to mark the perforator on Supervisely
application.



Figure 5. A coronal-view perforator and brush annotation region.

2.3. Development of artificial intelligence

nnUNet was chosen as an Al model for deep learning. This engine can support 3D
image data to reflect the characteristic of perforators continuously existing between
adjacent slices. the nnUNet is known for its high segmentation performance in medical data
(Isensee et al., 2021).

The brush-annotated data were extracted in the .json file format. The CTA slides used
for the analysis were extracted in the .nrrd file format instead of the original .dicom files.
Then these file formats were sent to the Department of Computer Science at Korea
University for Al model development. The data transfer was conducted after obtaining
approval from the Severance Institutional Review Board.

The brush annotation extracted from the .json file was matched with the CTA image
extracted from the .nrrd file. Registration is the process of aligning the coordinates of the
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brush annotation with the coordinates in the CTA images, allowing the positional
information to be recognized as the same location.

Additionally, for nnUNet to recognize the CTA images, all data must be in the same
size. Therefore, any CTA images that were not in 512 x 512 pixels were cropped and
adjusted to 512 x 512 pixels. This crop applied to three CTA image series in the learning

group.

Then nnUNet model was trained with the pre-processed data. The learning group for
the nnUNet deep learning is composed of 12000 slices. The training was repeated 1000
epochs because repeated learning can improve the performance of the AI model.

2.3.1 nnUNet one

The Al model trained on perforators confirmed through surgery was referred to as
nnUNet one. Perforators identified during surgery are actual, existing perforators, and the
Al model was trained to learn the true perforators. In the train group, a total of 105
perforators were confirmed through surgery in 48 patients. These perforators were marked
on the CTA series, which served as the training data for nnUNet one. In other words,
nnUNet one is an Al model trained on "surgically confirmed perforators."

2.3.2 nnUNet adv

The Al model trained on data marked by two experts as perforators in the CTA series,
regardless of whether they were confirmed through surgery, was referred to as nnUNet adv.
In the train group, a total of 186 perforators were marked by the two experts across 48 CTA
series, and this data was used to train nnUNet adv. Since the perforators were identified
solely through interpretation of the CTA series and not confirmed via surgery, the dataset
may include cases where the perforators do not actually exist. In other words, nnUNet adv
is an Al model trained on "radiologically confirmed perforators."



2.4. Assessment of artificial intelligence model performance

After developing the artificial intelligence (Al) model using deep learning techniques,
the model's performance was evaluated using two methods. These two methods were
referred to as "perforator-specific performance" and "slice-specific performance."

2.4.1 Ground truth

To evaluate the performance of the Al model, data to be used as ground truth is
required. While it would be ideal to use perforators identified through surgery as the ground
truth, this approach poses ethical concerns. Performing unnecessary surgeries solely for
research purposes would be unacceptable, as patients should not undergo procedures
beyond what is necessary for their reconstruction. Any unnecessary surgeries to locate
additional perforators beyond those required for reconstruction must be avoided.

As an alternative, two experts interpreted CTA series and marked perforators to create
ground truth data. According to previous studies, it has been reported that perforators were
sometimes overlooked during CTA interpretation by experts but were found to exist during
surgery (Kim et al., 2023). To identify as many perforators as possible in the given CTA
series, two experts independently searched for perforators in CTA series. Cross-checking
of the perforator marking areas was performed using the Supervisely application. Based on
this ground truth data, the performance of the Al model was evaluated by comparing
whether the areas identified as perforators by the Al model matched the expert annotations.

2.4.2 Internal and external validation

To evaluate the performance of the Al model, two approaches are employed: Internal
validation, which tests the model using the data it was trained on, and External validation,
which tests the model on new data not used during training. Naturally, the performance
values from internal validation are expected to be higher.
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For internal validation, 5 CTA series were randomly selected from the 48 CTA series
used during training. For external validation, 5 CTA series not used in the training process
were utilized.

2.4.3 Perforator-specific performance

Perforator-specific performance is a method for evaluating the performance of an Al
model by determining whether the Al model has detected the perforator along its pathway.
If the Al model detects part of the perforator prior to surgery, it can assist surgeons in
locating the perforator more efficiently.

When the perforator's location is interpreted based on the position identified by the Al
model, it reduces interpretation time and enables the planning of various designs for flap
surgery, making this evaluation clinically significant.

Therefore, Perforator-specific performance was assessed based on whether the AI model
detected the perforator on at least one slide of each perforator. If the Al model detected the
perforator on one or more slides along its pathway, from its origin to the end of its
distribution in the tissue, it was considered to have achieved Perforator-specific
performance.

To evaluate the perforator-specific performance of the Al model, two experts
identified perforators in five CTA scans from the test group and compared them with the
perforators detected by the Al model.

2.4.4 Slice-specific performance

Slice-specific performance is a method used to determine the accuracy of the Al model
by assessing whether the manual annotations and the Al model's annotations match on each
axial slide.

To evaluate slice-specific performance, the data used for the test included 5 CTA series
in test group. Each CTA of the five patients had 250 axial slides, resulting in a total of 1,250
slides for evaluation. The results for each slide were represented using colors. If the area
detected by the Al model matched the area marked by two experts, the region was marked
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in green (Figure 6). Areas detected by the Al model but not marked by two experts were
marked in red (Figure 7). Areas marked by two experts but not detected by the Al model
were marked in blue (Figure 8).

Through this color-coding system, green regions indicate true positives (TP), red
regions indicate false positives (FP), and blue regions indicate false negatives (FN). By
scoring slides for TP, FP, and FN, the performance of the Al model was evaluated across
the 1,250 slides in 5 CTA series of test group.

Figure 6. True positive area. The region where the location of the perforator
identified by the Al model aligns with the manual brush annotation(Green mark).
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Figure 7. False positive area. The region where the Al model identified a perforator,
but no manual brush annotation(Red mark) is present.
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Figure 8. False negative area. The region where the Al model failed to identify a
perforator, but manual brush annotation(Blue mark) is present.
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2.4.5 Statistic analysis

Common metrics for evaluating the performance of Al models include Dice, IoU,
Precision, and Recall (Huang et al., 2024). Dice is a performance measure typically used
when labels are sparse and is one of the most widely used metrics in medical imaging and
computer science. A higher Dice score indicates better performance, with the score
increasing when the Al model’s annotations match the ground truth and decreasing with
false positives. The formula for Dice is as follows:

2TP
2TP+FP+FN

Dice =

IoU, or Intersection over Union, is also used to evaluate Al model performance and
serves as a supporting metric for Dice. Like Dice, higher values indicate better performance:

TP

loU = rp 7P T FN

Precision indicates the proportion of perforators annotated by the Al model that are
present:

TP

p .. —
recision —TP T FP

Recall, also known as sensitivity or true positive rate, represents the proportion of
actual perforators present in the data that the Al model correctly annotated:

TP
TP+ FN

15

Recall =



3. Results

A total of 117 surgery-validated perforators were identified, with 105 observed in the
48 CTA series in the Learning Group and 12 observed in the 5 CTA series in the Test Group.
Subsequently, two oral and maxillofacial surgery specialists analyzed 53 CTA series and
identified a total of 207 expert-validated perforators. Among these, 186 were found in the
48 CTA series in the Learning Group, and 21 were found in the 5 CTA series in the Test
Group. The Cohen's Kappa coefficient for the perforators confirmed by the two experts was
0.92, indicating a very high level of agreement (Table 2).

Number of perforators
Total | Learning group Test group
(48 CTA series) (5 CTA series)
Surgically confirmed perforators 117 105 12
Radiologically confirmed perforators | 207 186 21

Table 2. Numbers of perforators validated by surgery (surgically confirmed
perforators) and two experts (radiologically confirmed perforators).

3.1 Perforator-specific performance

The performance of the Al model developed in this study was analyzed from a clinical
perspective. The evaluation focused on the Al model’s ability to identify perforators,
referred to as perforator-specific performance. If a surgeon starts to interpret CTA series
from the location identified by Al model, it can significantly reduce interpretation time and
facilitate planning of various flap surgery designs. It can be very helpful for a surgeon.
Perforator-specific performance was evaluated solely for nnUNet adv.

Expert-validated perforators in the 5 CTA series in test group were used to evaluate
Perforator-specific performance of Al model. The two experts detected a total of 21
perforators in the 5 CTA series in the test group.
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The AI model detected 23 perforators in the 5 CTA series in the test group. The
Perforator-specific performance of AI model was evaluated by comparing the perforators
annotated by Al model with the manually annotated perforators.

Out of the 21 perforators identified by the two experts, the Al model detected 15
perforators, failing to detect 6 perforators. It results in a true positive rate of 71.4%.

On the other hand, of the 23 perforators detected by the Al model, only 15 perforators
were matched with the manual annotations. 8 other perforators of the 23 perforators were
not identified by two experts (Table 3).

nnUNet adv Detection No detection
Experts
Detection 15 (71.4%) 6 (28.6%)
No detection 8 (100%) 0 (0%)

Table 3. The numbers of perforators detected by two experts and nnUNet adyv.

A statistical analysis was conducted to evaluate the perforator-specific performance.
And external validation of the nnUNet adv model was performed to result in DICE value,
IoU, Precision, and Recall that could be compared with other studies. The nnUNet adv
showed a DICE value of 0.682, IoU of 0.517, Precision of 0.652, and Recall of 0.714.

nnUNet adv DICE ToU Precision Recall
External 0682 | 0517 | 0652 | 0714
Validation

Table 4. Perforator-specific performance of nnUNet adyv.
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3.2 Slice-specific performance

The performance of the Al model developed in this study was analyzed from a
computer science perspective. Axial slides from the CTA images of each patient were
evaluated for slice-specific performance of Al model. For each CTA, 250 slides from the
anterior superior iliac spine were evaluated. Out of a total of 53 CTA series, five CTA series,
which were not used for training, were utilized as the test group. Each CTA of the five
patients had 250 axial slides, resulting in a total of 1,250 slides for evaluation.

Slice-specific performance was tested for both nnUNet one and nnUNet adv. And
internal validation and external validation were conducted for both nnUNet one and
nnUNet adv to evaluate the Al model's performance from a computer science perspective.

First, the slice-specific performance of nnUNet one was analyzed. For internal
validation, 5 CTA series were randomly selected from the 48 series used for training. For
external validation, 5 CTA series that were not used during training were utilized. The
DICE value was 0.0957 for internal validation and 0.0275 for external validation. The loU
value was 0.054 for internal validation and 0.014 for external validation.

nnUNet one DICE ToU Precision Recall
Internal 0.0957 | 0054 | 0.101 0.123
Validation
External
. 0.0275 0.014 0.023 0.03
Validation

Table 5. Slice-specific performance of nnUNet one.

Using the same approach, the performance of nnUNet adv was analyzed. The DICE
value was 0.284 for internal validation and 0.184 for external validation. The IoU value
was 0.173 for internal validation and 0.103 for external validation.
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nnUNet adv DICE TIoU Precision Recall
Internal
Validation 0.284 0.173 0.42 0.251
External
L. 0.184 0.103 0.284 0.144
Validation

Table 6. Slice-specific performance of nnUNet adv.

4. Discussions

The Al model's performance was assessed with two criteria: perforator-specific
performance and slice-specific performance. For perforator-specific performance, nnUNet
adv successfully detected 15 out of the 21 perforators identified by experts, achieving a
detection rate of approximately 71%. This indicates a reasonable level of perforator-
specific performance, suggesting that nnUNet adv can aid surgeons by providing hints
about the location of perforators. Surgeons can locate perforators quickly and easily by
starting their search from slices annotated by nnUNet adv before surgery. While experts
must manually search each CTA slide to find perforators, the AI model can analyze many
slides quickly and present results, potentially saving surgeons significant time in perforator
localization for surgical planning.

The DICE value for nnUNet adv is 0.682. Typically, Al models analyzing medical
images are considered to have good performance when a DICE value is between 0.7 and 1.
According to the study by Josephine Chen et al., an Al model developed to detect deep
inferior epigastric vessels using 100 CTA series achieved a DICE value of 0.703. Despite
having half the number of CTA series, the DICE value in this study is similar to the DICE
value reported in Josephine Chen's study. It indicates that the perforator detection
performance of nnUNet adv can be considered satisfactory.

The nnUNet adv has advantages over human interpreters. Having undergone training
in this study, nnUNet adv does not experience inexperience when interpreting CTA series.
In contrast, all novice interpreters require a long learning curve to become proficient in
interpretation. Moreover, many skilled interpreters eventually retire over time,
necessitating the training of new novice interpreters to learn how to interpret CTA series
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from the beginning. However, nnUNet adv does not retire, meaning it never reverts to a
novice state. Instead, it continues to improve in precision and accuracy over time.

It is also worth noting the 8 perforators identified by nnUNet adv among the 23
perforators it detected, which were not identified by the two experts. If these 8 perforators
detected by nnUNet adv are indeed real perforators, it would provide significant clinical
benefits. Additionally, the performance of nnUNet adv could be higher than the reported
DICE value of 0.682. Previous studies have reported cases where perforators not identified
in CTA series by experts were later discovered during surgery. Kim et al. reported 79
perforators identified in CTA series, but 85 perforators were found during surgery in 53
patients. It has been reported that six perforators were not identified during the
interpretation of the CTA series (Kim et al., 2023). If nnUNet adv successfully detected
perforators missed by experts, its performance could be considered superior to that of
human interpreters. Further research is required to validate these 8 false positives identified
by the Al model.

Next, slice-specific performance was assessed to find the performance of nnUNet one
and nnUNet adv developed in this study. The Dice scores for nnUNet one and nnUNet adv
were 0.0275 and 0.184, respectively.

Using five CTA series not included in the deep learning training, external validation
was performed. Dice values for nnUNet one and nnUNet adv in external validation were
0.0275 and 0.184, respectively. Additionally, internal validation was conducted using five
randomly selected CTA series from a total of 48 CTA series. Dice values for nnUNet one
and nnUNet adv in internal validation were 0.0957 and 0.284, respectively. nnUNet adv
demonstrated superior performance compared to nnUNet one in both internal and external
validation. Anouk van der Schot et al. investigated placenta vessel segmentation using U-
Net and pix2pix models. After training the U-Net model with 483 images and evaluating
its performance, internal validation yielded Dice and IoU values of 0.53 [0.49; 0.64] and
0.49 [0.17; 0.56], respectively (van der Schot et al., 2023). These values appear higher than
the Dice (0.284) and IoU (0.173) achieved by nnUNet adv in this study. However, in van
der Schot et al.’s research, when the test set was changed, the Dice score ranged from 0.49
to 0.64, and the IoU ranged from 0.17 to 0.56, indicating significant variation. Therefore,
for a more accurate evaluation of nnUNet adv's performance, it is necessary to conduct
internal and external validations using alternative test sets in this study.

The brush annotation tool used for marking perforators creates circular regions. If the
cross-sectional shape of the perforator on a slice is oval or another shape, this can lead to
pixel-level discrepancies between the perforator’s actual shape and the circular brush
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annotation. These discrepancies may introduce errors in the Al model's development
(Figure 9). If the Supervisely app develops annotation tools with varied shapes in the future,
it could help reduce these discrepancies and potentially improve the Al model’s
performance.

Figure 9. Inaccuracy between the perforator and brush annotation.

There are two ways to enhance the performance of nnUNet adv. The first is to increase
the number of CTA series used for training. Josephine Chen et al. conducted a study using
100 CTA series to train nnUNet for detecting inferior deep epigastric vessels. In contrast,
this study utilized 53 CTA series. It is anticipated that increasing the number of CTA series
will result in an improved DICE value. Secondly, data augmentation allows the AT model
to learn more effectively from the same dataset. Data augmentation involves creating
multiple variations of a single image by applying transformations such as scaling, zooming,
and rotation. This technique effectively increases the amount of data available for training.
Although data augmentation was not used in this study, implementing this technique in
future training of nnUNet adv is expected to significantly enhance its performance.
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5. Conclusion

In this study, nnUNet adv was developed to detect perforators for ALT flaps using CTA
series. nnUNet adv can assist surgeons in locating perforators quickly. With further deep
learning on an expanded dataset, it could potentially surpass expert’s accuracy in the future.

An Al model that undergoes more extensive deep learning is expected to reduce the time
experts need to analyze CTA images preoperatively, improve the accuracy of perforator
detection, and ultimately enhance surgical outcomes. Future studies are anticipated to make
all of this possible.
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Abstract in Korean
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