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ABSTRACT

Analysis of Morphological Variations in the Pubic Symphysis
Using Three-Dimensional Statistical Shape Modeling

The pubic symphysis is pivotal in biological and forensic anthropology, particularly
in age-at-death estimation. While computational approaches have advanced accuracy, they
face limitations such as the "black box," obscuring crucial morphological features for
estimation. Additionally, research on sexual dimorphism in the pubic symphysis is limited,
often overlooking surface variations and relying on outline analyses.

To address these limitations, statistical shape modeling is employed, a method capable
of analyzing complex morphological variations by generating mean models and identifying
subtle shape changes. This research focuses on two primary aspects of pubic symphysis:
sexual dimorphism and age-related morphological changes.

Computed Tomography scans of 252 subjects from the National Forensic Service of
South Korea were analyzed. Preprocessed data underwent rigid alignment and statistical
shape model construction. Principal component analysis was performed to compare models,
followed by MATLAB-based classification training to assess variations.

Sexual dimorphism was most evident in dorsal-ventral width, influencing the outline
shape beginning in the 30s and peaking in the 50s. In contrast, the 20s showed more
significant differences in surface morphology rather than outline. Age-related changes were
most pronounced in younger individuals, with males showing ventral margin extension and
females experiencing changes likely linked to pregnancy. In older groups, changes were
less significant and showed greater individual variability, particularly among females, due
to menopause and pelvic muscle aging.

This study provides critical insights into the morphological complexity of the pubic
symphysis. Thus, these findings can serve as valuable cornerstones for advancing human
identification methodologies in biological and forensic anthropology.

Keywords: Pubic symphysis, Three-dimensional statistical shape modeling, Sexual
dimorphism, Age-at-death estimation, Human variation, Forensic Anthropology
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1. Introduction

Human identification, a fundamental objective in forensic anthropology, involves
estimating biological characteristics or identifying unknown individuals to establish their
identity (1-3). This process is essential for humanitarian purposes and serves as a
foundation for addressing legal and judicial matters. Among the primary focus areas, the
development of methods for estimating sex and age from skeletal remains has remained a

central research topic.

Sex estimation primarily relies on analyzing measurements and morphological
features, as male and female skeletons exhibit inherent differences in size and shape (1).
Among various skeletal elements, the pelvic bone is considered the most sexually
dimorphic, with regions such as the subpubic region, greater sciatic notch, and preauricular
sulcus commonly utilized for this purpose (1,4-10). The cranium is another frequently
analyzed skeletal element, with sex estimation often relying on five key morphological
traits: the nuchal crest, mastoid process, supraorbital margin, glabella, and mental eminence
(1,11-13).

In contrast to the relatively binary process of sex estimation, age estimation is
inherently more complex. Various methods have been developed to estimate age, but
environmental and cultural factors can influence skeletal changes in addition to natural
skeletal aging processes (14-17). This complexity has led to ongoing debates about the
applicability of age estimation methods across different populations (2). Nevertheless,
widely employed approaches for adult age estimation include dental development and wear
(18,19), cranial suture closure (1,20,21), and morphological changes in the pubic
symphyseal surface (22-25). Additional skeletal features commonly analyzed for age

estimation include the sternal rib end (26), clavicle (27), and iliac auricular surface (28).



Among skeletal elements, the pubic symphysis plays a central role in forensic
anthropology due to its reliability in age estimation and inclusion in the highly sexually
dimorphic pelvic bone (1,24,29). The pubic symphysis is predominantly utilized for
estimating age, and several standardized methods have been developed to assess age based
on phases or components (22,25,30,31). The Suchey-Brooks method, the most widely
employed, classifies morphological changes in pubic symphysis into six phases
characterized by features such as billowing, ossific nodules, and rim erosion (25,29,32).
However, this method has notable limitations, including the subjective nature of visual
assessments, significant overlaps in age ranges, and reduced accuracy in estimating older
individuals' ages (33-35). Consequently, researchers often categorize unidentified
individuals into broad age groups, such as young, middle-aged, or older adults, rather than

providing precise age estimates.

To address these limitations, researchers have increasingly adopted mathematical
approaches based on computed tomography to automate age estimation of the pubic
symphysis. These approaches aim to provide more precise and quantitative results (36-42).
Early computational methods focused on calculating convexity and concavity, noting that
the symphyseal surface becomes flatter with age (36,37). Subsequent analyses utilized
bending energy calculations through thin plate splines (TPS) algorithm or variance-based
SAH scores proposed by Slice and Algee-Hewitt to assess surface morphology (38-41).
Despite advancements, many methods struggled to accurately estimate older individuals'
ages due to underrepresented subtle morphological variations (39-41). Recently, Kotérova
et al. introduced algorithms such as the Simple Automated Symphyseal Surface-based
(SASS) and the Advanced Automated Neural Network-grounded Extended Symphyseal
Surface-based (AANNESS), which demonstrated improved accuracy by analyzing subtle

morphological changes across diverse populations and sexes (42).

While computational approaches have enhanced age estimation, they often focus on
subtle morphological differences without addressing the broader, fundamental changes
occurring in the pubic symphysis over time. Moreover, these methods frequently operate

as a "black box," failing to elucidate the specific features used for classification. Castillo et
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al. sought to address this issue by examining morphological changes in the pubic symphysis
across various age groups (43). However, their study lacked detailed insights into the

direction or magnitude of these changes, limiting its applicability.

Furthermore, while sexual dimorphism is a critical factor in pubic symphyseal
morphology, it remains underexplored in computational studies. Although numerous
studies have examined sexual dimorphism in the pelvic bone (4-9), few have explicitly
focused on the pubic symphysis (22,24,44). Seminal works, including those by Todd and
Suchey-Brooks, acknowledged sex-specific variations in the pubic symphysis and
recommended sex-specific approaches to age estimation (22,25). However, these studies

often lacked quantitative analyses of sexual dimorphic traits.

Recently, Bravo Morante et al. used geometric morphometric methods to analyze
sexual dimorphism in the pubic symphysis, focusing primarily on the outline (44). While
this study provided valuable insights, its reliance on a few landmarks likely overlooked
finer morphological details. Additionally, potential surface morphology differences on the
symphyseal surface were not fully explored and may have been disregarded. In contrast,
Lottering et al. rendered the symphyseal surface in three dimensions, which provided a
more detailed representation of its morphology. They demonstrated that males exhibited
larger surface dimensions than females. However, their findings were categorized
according to the Suchey-Brooks phases, limiting their ability to delineate sexual
dimorphism across specific age groups. Moreover, the extent of sexual dimorphism was
not quantitatively assessed, further underscoring the need for a comprehensive analytical
framework (45).

These limitations highlight the need for a more comprehensive approach to
understanding sexual dimorphism and age-related changes in the pubic symphysis. A
detailed examination that captures both outline and surface-level variations while
quantitatively characterizing sexual dimorphism across age groups is essential for

advancing forensic anthropology methodologies.



To fill these gaps, this study employs statistical shape modeling (SSM) to examine
sexual dimorphism and age-related morphological changes in the pubic symphysis. It
specifically seeks to overcome gaps in previous research, including the limited focus on
subtle morphological variations, insufficient insights into the direction and magnitude of
age-related changes, lack of quantitative analyses of sexual dimorphism, and reliance on
phase-based categorizations. this study aims to achieve the following objectives:
visualizing morphological differences and changes in the pubic symphysis associated with
sexual dimorphism and aging, estimating structural and biomechanical factors underlying
these changes, and identifying key morphological variations for distinguishing between
sexes and consecutive age groups. The findings are anticipated to enhance forensic
anthropology by improving the precision of sex and age estimation methodologies and
providing critical tools for human identification. Furthermore, by leveraging SSM, this
research introduces a novel quantitative framework for evaluating subtle morphological
changes, offering valuable implications for both academic and practical advancements in

forensic science.



2. Materials and methods

2.1. Materials

A total of 641 CT scans of adults whose bodies underwent forensic examination by
South Korea's National Forensic Service between 2020 and 2021 were obtained for the
study. This study included South Korean nationals for whom premortem details like sex
and age were available. Following careful review, individuals with pubis bones displaying
pathology or damage were excluded. For each age decade from the twenties to the eighties,
18 males and 18 females were randomly chosen for analysis, resulting in a total of 252
individuals. A detailed age distribution is presented in Table 1. Approval of the use of CT
data (protocol number 2-2023-0071) was obtained from the Institutional Review Board of
Yonsei University, College of Dentistry in Seoul, which waived the requirement for
informed consent from all subjects and/or their legal guardians. All methods were

performed in accordance with the relevant guidelines and regulations.

Table 1. Age distribution of subjects by decade.

Mean age + Standard deviation

Age groups Male Female Total

20s 23.8+2.6 23.9+£29 239+2.7
30s 348+26 34.2+3.0 345+28
40s 454+ 3.0 454 +2.8 454 +29
50s 53.8+25 55.1+2.7 545+ 2.7
60s 63.2+25 63.4+2.4 63.3+2.4
70s 738125 73.9+2.6 739125
80s 828126 84.7+3.2 83.8+3.0
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2.2. Data acquisition

Whole-body CT data were stored in Digital Imaging and Communication in Medicine
(DICOM) format. To isolate the pubic symphysis for analysis, 3D Slicer (version 5.3.0)

and Meshmixer (version 3.5.474) were employed.

The data acquisition involved three key steps. First, CT data was imported into 3D
Slicer, where the Volume Rendering and Crop Volume modules were used to locate the
pubic symphysis and set a region of interest (ROI) to isolate it. Next, the Threshold Effect
of the Segmentation Editor module was applied within the ROI to remove surrounding soft
tissues and create a complete model of the pubic symphysis, with threshold values adjusted
to each subject’s bone density. Finally, in Meshmixer, the left and right pubic bones were
separated to examine the pubic symphysis, and any remaining soft tissues were removed.
For this study, only the left pubic symphysis was used for analysis under the assumption of
bilateral asymmetry in the human skeleton (46). The processed data was then saved in
Polygon File (PLY) format.



2.3. Preprocessing

The segmented data frequently contains substantial noise and extraneous mesh
elements unrelated to anatomical structures, necessitating a preprocessing step to eliminate
these artifacts and refine the data for shape analysis and modeling. This preprocessing,
commonly called "mesh cleaning," was conducted using MeshLab (version 2022.02) and

Meshmixer.

The overall process comprised three main stages, as outlined in Figure 1. In the first
stage, elements that could interfere with shape analysis were removed using MeshLab’s
tools, such as the select faces in rectangular region, fit plane to selection, ambient occlusion,
select faces by color, and delete selected face and vertices filters (Figure 1A). These filters
left only the outer shell of the pubic symphysis data intact. In the second stage, hollow
regions were made watertight using the make solid function in Meshmixer, eliminating any
internal elements that could influence the analysis (Figure 1B). Finally, the pubic
symphysis data were smoothed in MeshLab using the screened Poisson surface
reconstruction, isotropic explicit remeshing, and remove duplicate vertex and faces filters
(Figure 1C). This final stage smoothed the surface and redistributed vertices, producing a

consistent data topology suited for subsequent analysis.



Figure 1. Three-step preprocessing procedure.

Mesh cleaning removes extraneous bone mesh elements (A, B) and redistributes vertex data for topology refinement

©.



2.4. Statistical shape modeling

2.4.1. Concept and Application

Shape refers to the geometric information that remains after excluding global
geometric properties — translation, orientation, and size (47,48). Starting from D’Arcy
Thompson, shape analysis has become a fundamental tool for quantitative morphology
analysis (49). Among its methods, statistical shape modeling (SSM) is imperative in
analyzing and understanding the range of morphological variations within a defined shape
group (50,51). Its ability to generate mean models and depict shape variation across
populations makes it ideal for studying complex and variable structures. As a result, SSM
has been applied in biological sciences, including assessing anatomical variations (52-54),
developing segmentation methods for computed tomography (CT) and magnetic resonance

imaging (MRI) (50,55,56), and evaluating pathological changes in morphology (57,58).

Until recently, SSM has played a minor role in biological anthropology. However, its

application in this field has expanded notably in recent years.

Audenaert et al. utilized SSM to analyze sexual dimorphism across seven lower limb
anatomical structures from CT scans of 271 individuals, identifying size as the most
significant factor for sex discrimination with only slight improvements over traditional
methods (51). Likewise, Fliss et al. analyzed 61 femur CT scans to estimate sex using SSM,
finding that classification accuracy improved by including more principal components.

However, accuracy itself was similar to traditional linear measurements (59).

SSM has also been utilized to analyze age-related morphological changes. Shin et al.
constructed a shape model of axial cervical vertebrae from 43 individuals to assess skeletal
maturation, finding that skeletal maturation in males could be predicted more accurately

than in females. Additionally, they observed no significant correlation between bone size
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and skeletal maturity (60). Similarly, Klop et al. created shape models from 874 cadaveric
children’s mandibles to analyze growing morphology, visualizing the most important shape

variation correlated with age (61).

SSM has also been applied to estimate stature. Ebert et al. reconstructed 42 left femora
into their original forms using SSM, achieving minimal reconstruction errors that enabled
reliable stature estimations. Additionally, sex estimation based on constructed models
demonstrated relatively high accuracy, with rates reaching approximately 85% for single-
sided cut (62).

Previous studies employing SSM in biological anthropology have primarily focused
on identifying significant shape variations related to sex or age, thereby improving the
accuracy of human identification. Applying SSM to the pubic symphysis is expected to
reveal meaningful morphological variations that differentiate sex or age groups. Moreover,
although not a primary focus, previous research has used SSM to generate mean models
for specific groups (e.g., by sex), uncovering morphological traits that are difficult to detect
visually. Given the complex and variable morphology of the pubic symphysis, the

methodological advantages of SSM make it particularly well-suited for its analysis.

This study used open-source software ShapeWorks (version 6.3.2) to construct
statistical shape models. ShapeWorks was selected for its full graphical user interface,
which eliminates the need for coding in environments such as MATLAB or R. Additionally,
it provides the convenience of handling preprocessing and analysis within a single software.
Another reason for choosing ShapeWorks is its use of Particle-based Surface Modeling
(PSM), a method known for constructing precise and robust statistical shape models
(further discussed in Section 2.4.3) (63).

The SSM process comprises three main steps: mesh optimization, shape registration,

and principal component analysis (PCA). Below are detailed explanations of each step.
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2.4.2. Initial alignment and ROI

The initial alignment process aimed to convert the pubic symphysis data into a format
compatible with ShapeWorks (Figure 2). All steps were performed within ShapeWorks’

data and grooming module.

For shape analysis, it was necessary to align shapes oriented in different positions and
directions to ensure that only intrinsic shape variations were captured, independent of
positional differences. Therefore, an initial alignment was required to arrange the data for
consistent orientation. Five anatomical landmarks were manually designated on the sample
data to achieve consistent alignment, and the Iterative Closest Point (ICP) algorithm was
then applied to align these landmarks across 252 pubic symphysis samples (63). These
landmarks included the midpoint of the dorsal (DM) and ventral (VM) margins, the
superior (SP) and inferior (IP) points of the symphyseal surface, and a central point (CP)
at the intersection of lines connecting DM to VM and SP to IP (Figure 2A). Based on these
five landmarks, thousands of vertices on each of the 252 pubic symphysis samples were

aligned.

Additionally, previous studies on pubic symphysis morphology have indicated that
morphological differences or changes associated with sex or age extend beyond the
symphyseal surface (64). This included areas surrounding the articulation margins.
Therefore, by following the protocol established by Kotérova et al., This study limits the
analysis to a 1 cm region extending vertically from each articulation margin (42), ensuring

that areas beyond this region are not included (Figure 2B).
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® SP

Figure 2. Initial alignment and ROI designation.

The mesh optimization procedure prepares the pubic symphysis data for use in
ShapeWorks. For consistent alignment, five key anatomical landmarks were manually
identified (A): the superior (SP), inferior (IP), ventral (VM), dorsal (DM), and central
points of the symphyseal surface (CP). Following this, the region of interest (ROI) was
narrowed to a 1 cm vertical span from each articulation margin, concentrating the analysis

on this area (B).
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2.4.3. Shape model construction

To construct SSM, the vertices of each dataset should correspond to each other, and
the corresponding vertices should represent a similar position or feature in each dataset.
ShapeWorks employs a PSM algorithm to ensure correspondence among vertices. PSM
positions landmarks based on entropy, strategically concentrating them in areas of greater
shape variability (47,63). In this study, 4096 landmarks were automatically designated on
rigidly aligned data using PSM.

Furthermore, Procrustes registration was performed to achieve a more accurate and
consistent alignment of shapes for subsequent statistical analysis (65). This involved
scaling, translation, and rotation of the shapes to minimize the differences between

corresponding points while preserving their distinct morphological features.
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2.5. Shape model analysis

2.5.1. Principal component analysis

Principal component analysis (PCA) was employed to capture shape variation within
the dataset. PCA is a statistical technique that reduces the dimensionality of high-
dimensional shape data while preserving essential information. By decomposing the
covariance matrix of the aligned shape data into eigenvectors and eigenvalues, PCA
facilitated the identification of principal components (PCs) that explain the majority of
variance in the dataset (66). These PCs represent distinct shape variations, offering valuable

insights into the dataset's underlying dynamics of shape variation.

During PCA, the mean model of each sex or age group is extracted, portraying the
average shape within the respective group. The mean model later serves as a reference for
comparing between sexes or age groups, offering quantitative and visual descriptions of

sexual dimorphism or age-related morphological changes.

2.5.2. Model evaluation

Three commonly used metrics—compactness, generalization, and specificity—were
employed to evaluate the statistical shape model quantitatively (47,67). These metrics
ensure the model creates an optimal representation of shape variation while balancing
simplicity and accuracy (67). Since the same dataset was used in this study to investigate
sexual dimorphism and aging morphology, the model evaluation results apply to both

analyses.

Compactness indicates the efficiency of the shape model, assessing whether a wide

range of morphological variations could be reproduced with a small number of PCs.
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Generalization evaluates the ability of the generated PC model to reconstruct shapes
beyond the dataset used for analysis. This is assessed by the error value between unseen
data and reconstructed data. Lastly, specificity evaluates the capacity of the PC model to
produce reasonable shape data randomly. It is considered ideal when the error value
between the random shape data and the closest sample data minimally increases as the

number of PCs used increases.

2.5.3. Model comparison

Using the model-to-model distance module of SlicerSALT (version 4.0.1), the spatial
displacement of corresponding landmarks was visualized with vector arrows and heatmaps.
The morphological differences between males and females were demonstrated in the first
part of the study. For the second part of the study, the morphological changes from the
younger age group to the older age group were illustrated (e.g., the morphological
characteristic of the average pubic symphysis of individuals in their 30s compared to those
in their 20s).

To evaluate the statistical significance of observed morphological changes,
Hotelling’s T-squared test was applied (p<0.05) (63). Regions with p-values exceeding 0.05,
indicating non-significant differences, were colored blue. In contrast, areas with p-values
below 0.05 were displayed in a gradient based on significance levels, with the most

significant regions highlighted in red.

2.5.4. Shape-based classification

The accuracy of group classification based on morphological characteristics was

evaluated using the Classification Learner application in MATLAB (version R2023a). In
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the analysis of sexual dimorphism, sex was set as the response variable, with each sample’s
PCA scores of the compared two groups used as predictor variables. For the analysis of
age-related morphological variations, age group served as the response variable, while PCA
scores were again used as predictors. All available training algorithms in MATLAB were
utilized, with training conducted through 10-fold cross-validation. For each comparison,
the algorithm achieving the highest classification accuracy was selected, and the principal
component (PC) most influential in distinguishing consecutive age groups was identified
via an ANOVA-based feature ranking method.
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3. Results

3.1. Model evaluation

Figure 3 presents the three quantitative evaluations of the constructed statistical shape
model based on 252 datasets.

Compactness (Figure 1A) demonstrates the efficiency of capturing morphological
variation. Results indicate that the top ten principal components (PCs) account for about
85% of the shape variability in the pubic symphysis data, while the top 20 PCs capture
approximately 95%.

Generalization (Figure 1B) assesses the PCA model’s ability to reconstruct shapes
beyond the dataset used in the analysis, measured by the error between the original and
reconstructed data. Results show that increasing the number of PCs reduced the error value

from roughly 0.6 mm to 0.2 mm.

Finally, specificity (Figure 1C) measures whether the PCA model can randomly
generate realistic shape models based on the error between the random model and its
nearest sample model. While more PCs add complexity, this increase should be gradual. In
this study, specificity results showed a minimal increase in error values up to around 0.2

mm when up to 20 PCs were used.
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Compactness (A) illustrates whether the PC model can capture a wide range of shape

variations using a limited number of PCs. Generalization (B) assesses the model's ability

to reconstruct shapes not included in the sample data, measured by the error between

unseen and reconstructed data. Specificity (C) evaluates the model's capacity to randomly

generate realistic shape data based on the error between the randomly generated data and

the closest sample data.

-18 -



3.2. Principal Components

Figure 4 demonstrates the first five principal components (PCs) obtained from the

PCA of 252 pubic symphyseal surface datasets.

Each PC captures unique morphological characteristics: PC1 represents the overall
width of the symphyseal surface; PC2 indicates whether the central margin extends
ventrally or dorsally; PC3 emphasizes the combination of the sharpness at the inferior point
and the curvature of the ventral or dorsal margin; PC4 highlights the degree of bulging in
either the central or marginal areas of the symphyseal surface; and PC5 focuses on the

prominence of the superior, central, or inferior third of the surface.
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PC1 PC2 PC3 PC4 PC5

Figure 4. Shape variations of PC 1 through PC 5.

A model with a weight of -2 standard deviations (in violet) is overlaid with a model of +2 standard deviations (in
yellow). Areas where the two models overlap are displayed in colors other than violet or yellow. Each principal component
(PC) represents one or more unique morphological variations. In the orientation labels, 'D' stands for dorsal, and 'S' stands

for superior.
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3.3. Mean models

Mean pubic symphysis models were constructed for each sex and each age-sex group.

The detailed description is as follows.

First, for sex-specific mean models (Figure 5), males exhibited a wider symphyseal
surface in the dorsal-ventral direction than females. Additionally, the inferior point in males
appeared sharper than in females. In both sexes, the dorsal border of the symphyseal surface
was rounded, whereas the ventral border was straighter, forming a subtle angle at the

midpoint.

Next, for age-sex group mean models (Figure 6), the mean model for individuals in
their twenties demonstrated distinct morphological characteristics compared to other age
groups. Specifically, the symphyseal surface in this group was predominantly oval-shaped,
with rounded superior and inferior points. In contrast, the inferior points in other age groups
tended to be more tapered. From the thirties to the eighties, the mean models displayed a
flatter or slightly recessed symphyseal surface, whereas the twenties group retained a
degree of convexity. Furthermore, the width of the symphyseal surface increased with age

in males, while in females, the width remained relatively consistent across age groups.
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Figure 5. Mean models of the pubic symphysis of male and female.

For orientation labels, ‘D’ represents dorsal, and ‘S’ represents superior.
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Figure 6. Mean models of the pubic symphysis by sex and age group.

For orientation labels, ‘D’ represents dorsal, and ‘S’ represents superior.
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3.4. Sexual dimorphism

3.4.1. Model comparison

The morphological differences between the mean female and male pubic symphyses
were analyzed and demonstrated, accompanied by statistical testing of these differences
(Figure 7). Additionally, sexually dimorphic features in the mean pubic symphysis models
for each age group were visualized and the statistical significance of these changes was

evaluated (Figure 8).

When comparing the mean surfaces irrespective of age (Figure 7), females exhibited
narrower dorsal-ventral widths than males. Additionally, the superior point of the female
surface appeared to extend further superiorly, while the inferior angle was inclined dorsally.
Among these sexually dimorphic features, the difference in dorsal-ventral width was the
most significant. Statistical testing revealed that nearly all surface differences between

sexes were statistically significant, except for a small region in the center of the surface.

The sexual dimorphism observed in each age group is described as follows (Figure 8).

Sexual dimorphism in surface morphology was most pronounced in females in their
twenties. Females exhibited a more dorsal positioning of the superior and inferior angles
and the surrounding surfaces. Additionally, the middle section of the ventral border and the

adjacent surfaces appeared more ventrally prominent in females.

From the thirties to the eighties, morphological differences between males and females
began to follow a distinct pattern, particularly in the outline of the surface. Females
typically displayed a narrower surface, a superior angle extending further upward, and an
inferior angle inclined dorsally. Notably, these morphological differences gradually
increased with age, reaching their peak in the fifties. However, after the fifties, the degree

of sexual dimorphism began to diminish.
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The results of the statistical testing for morphological differences across age groups
showed a pattern consistent with the shape comparison (Figure 8). The statistically
significant morphological differences increased and extended across the surface up to the
50s, marking the peak of sexual dimorphism. Beyond the 50s, the extent of statistically

significant areas began to decrease with age.

In the 20s, significant areas were primarily confined to the center of the surface and
regions near the superior and inferior angles. However, from the 30s to the 80s, significant
areas became more concentrated along the ventral and dorsal borders and the adjacent

surfaces, excluding the central portion of the surface.
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Figure 7. Sexual dimorphism in the pubic symphysis.

(Left) Three-dimensional visualization of the relative differences that the female pubic
symphysis exhibits to that of the male, with vector arrows indicating the direction and

magnitude of changes, doubled in size for clarity.

(Right) Regions with p-values above 0.05 are shown in blue, while those below 0.05

are color-coded by significance level, with the most significant changes marked in red.
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Figure 8. Sexual dimorphism in each age group.

Model comparison (top line) and statistical testing of morphological differences (bottom line).
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3.4.2. Shape-based classification

The classification algorithm with the highest sex classification accuracy and its
corresponding accuracy were identified. Additionally, the most significant shape
variation—represented by the principal component (PC)—for sex classification was
determined using the ANOVA Feature Ranking Algorithm (Table 2). Figure 9 visually

illustrates these shape variations.

When assessing classification accuracy without considering age, an overall accuracy
of 81% was achieved. PC1, which accounts for the greatest variance in the data, emerged
as the most significant shape variation for distinguishing between sexes. The "All" section
of Figure 9 showed that PC1 primarily represents variation in the dorsal-ventral width of

the symphyseal surface.

An analysis of results by age group revealed a notable trend: sex classification
accuracy increased with age, peaking at 94.4% in individuals in their 50s. After the 50s,
accuracy slightly declined but remained stable. Across all age groups except for the 20s
and 30s, PCIl consistently represented the most significant shape variation for

distinguishing between sexes.

As illustrated in Figure 9, the significant shape variations in each age group, except
for the 20s and 30s, primarily reflected differences in dorsal-ventral width, consistent with
the findings for the overall population. In contrast, the 20s and 30s exhibited more complex
shape variations involving the overall outline and surface details. In the 20s, the most
prominent variation occurred in the surface volume at the center, along with the ventral
tilting of the superior angle. This tilting also produced a notch on the ventral margin. In the
30s, the pattern of shape variation resembled that of the 20s, but the magnitude of

differences in surface volume and the tilting of the superior angle was less pronounced.
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Table 2. Sex estimation training performance.

Age groups Best performing algorithm Accuracy (%) Best PC number*
All Logistic Regression Kernel 81.0 1
20s Kernal Naive Bayes 75.0 3
30s Logistic Regression Kernel 80.6 2
40s Dense Tree 86.1 1
50s Efficient Linear SVM 94.4 1
60s Logistic Regression Kernel 83.3 1
70s Bagged Tree 83.3 1
80s Efficient Logistic Regression 83.3 1

* The most significant shape variation (PC) for sex classification. Ranked based on ANOVA Feature Ranking Algorithm.
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Figure 9. Significant shape variation for sex classification in each age group.

A model with a weight of -2 standard deviations (light blue) and one with a weight of
+2 standard deviations (pink) are superimposed. The areas of overlap between the two

models are shown in colors other than light blue or pink.
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3.5. Aging Morphology

3.5.1. Model comparison

Age-related morphological changes in the mean pubic symphysis models for each age
group were visualized (Figure 10), and their statistical significance was assessed (Figure
11). For analysis, the sample data were categorized into three age groups: young adults
(YA), middle-aged adults (MA), and older adults (OA).

In males and females, the most pronounced morphological changes occurred in the
YA group, particularly during the transition from the 20s to the 30s. In subsequent age
transitions, the magnitude of change gradually decreased, with slight increases observed in
the MA group—specifically from the 50s to the 60s in males and from the 40s to the 50s
in females. While males exhibited a sharp reduction in the rate of morphological change
with increasing age, females demonstrated a more gradual decline across all age groups,
except beyond the 60s. Additionally, males displayed more statistically significant

morphological changes than females, whose changes were less pronounced.

The focal points of morphological changes shifted with age. In the YA group, the
changes were primarily concentrated on surface characteristics. In contrast, in the MA and
OA groups, the alterations were more prominent in the surface outline for both sexes.
Furthermore, when constructing a shape model without separating the sexes, the pattern of

morphological change closely resembled that observed in males.

The detailed findings are as follows.

In the YA group, the pubic symphysis, regardless of sex, tended to extend toward both
the ventral and dorsal margins. Significant changes were evident near the ventral margin
during the transition from the 20s to the 30s. In comparison, prominent alterations appeared

near the dorsal margin during the transition from the 30s to the 40s. In males, distinct
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modifications were observed near the center of the ventral margin between the 20s and 30s.
In contrast, females exhibited morphological changes in the same regions; however, these

changes were not statistically significant.

In the MA group, both sexes experienced a slight increase in the magnitude of change.
In males, statistically significant alterations occurred primarily in the superior half of the
surface. At the same time, changes were concentrated along the ventral and dorsal margins

in females, though these changes did not reach statistical significance.

Finally, both sexes exhibited minimal morphological changes in the OA group, and

statistically significant alterations were largely absent.
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Figure 10. Shape comparison between consecutive age groups.

Three-dimensional visualization of the relative difference in the pubic symphysis between older and younger age

groups, with vector arrows indicating the direction and magnitude of changes, doubled in size for clarity.
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Figure 11. Statistical testing of age-related morphological changes.

Regions with p-values above 0.05 are shown in blue, while those below 0.05 are color-coded by significance level,

with the most significant changes marked in red.

-34-



3.5.2. Shape-based classification

The classification algorithm with the highest accuracy and corresponding accuracy for
each age-sex group was determined. Additionally, the most significant shape variation,
represented by the PC, for age classification was identified (Table 3). Figure 12 visually

represents these shape variations for each age-sex group.

As shown in Table 3, the transition from the 20s to the 30s produced the highest age
classification accuracy for both males and females. Accuracy also slightly increased during
specific transitions: from the 50s to the 60s in males, from the 40s to the 50s in females,
and from the 70s to the 80s in females. Except for the transitions from the 70s to the 80s in
males and from the 50s to the 60s in females, separating the sexes for age classification

consistently resulted in higher accuracy than combining both sexes in the analysis.

The analysis also revealed an interesting trend: lower-ranked PCs (i.e., PCs explaining
the greatest variance) played a more significant role in distinguishing consecutive age
groups when classification accuracy was relatively high. This pattern was particularly
evident during the transitions from the 20s to the 30s, the 30s to the 40s, and the 50s to the
60s.

For significant shape variations (Figure 12), surface details consistently appeared in
all PCs across every group. However, the observed surface shape variations were
challenging to define due to their irregular nature. When males and females were analyzed
together, surface details emerged as one of the most significant factors for classifying age
groups, except for the most significant PC during the 20s—30s transition. In this case, the

PC primarily reflected curvature along the ventral or dorsal margins.
The age-related shape variations by group were as follows.

In addition to sex-based differences in the YA group, the analysis highlighted distinct
variations during the transitions from the 20s to the 30s and the 30s to the 40s. During the
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20s—30s transition, males primarily exhibited variations in symphyseal surface width,
which served as the most critical factor for classification. The second most significant
variation was the ventral or dorsal margins curvature. The extent of surface protrusion
emerged as the most crucial factor for females, mirroring the secondary factor identified in
males. Additionally, irregular surface characteristics emerged as a key distinguishing
feature in females. During the 30s—40s transition, males and females displayed similar
patterns of significant shape variations. The primary factors were the sharpness of the
inferior point and the notch formation along the ventral margin. Additional factors included

the length of the pubic symphysis and detailed surface features embedded in the PCs.

Significant PCs consistently captured surface details in both the MA and OA groups.
These surface details appeared irregular and resisted standardization into definitive
descriptions. However, in the OA group, the most critical PCs captured more complex

patterns of surface variation, reflecting the increasing morphological intricacy in this age

group.
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Table 3. Age estimation training performance.

Age groups Sex Best performing algorithm Accuracy (%) Best PC number*
M Logistic Regression Kernel 83.3 1
20s — 30s F Gaussian Naive Bayes 83.3 4
All SVM Kernel 77.8 2
M Efficient Logistic Regression 80.6 3
30s —40s F Bagged Tree 72.2 6
All Efficient Logistic Regression 70.8 7
M Bagged Tree 66.7 6
40s — 50s F Bagged Tree 75.0 8
All Kernel Nave Bayes 65.3 52
M Logistic Regression Kernel 83.3 4
50s — 60s F Fine Tree 61.1
All Coarse Tree 63.9 4
M Binary GLM Logistic Regression 77.8 11
60s — 70s F Medium Neural Network 66.7 17
All Medium KNN 58.3 11
M Binary GLM Logistic Regression 63.9 20
70s — 80s F Binary GLM Logistic Regression 77.8 30
All Three-dimensional KNN 66.7 11
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Figure 12. Significant shape variation for classifying two successive age groups.
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A model with a weight of -2 standard deviations (violet) and one with a weight of +2 standard deviations (yellow) are

superimposed. The two models' overlap areas are shown in colors other than violet or yellow.
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4. Discussion

4.1. Principal components

PCA reduces the dimensionality of data by emphasizing axes with the highest variance
(68). Higher-ranked PCs are typically regarded as effective in capturing significant patterns
within a dataset. As a result, numerous biological anthropology research has focused on
these higher-ranked PCs to distinguish variables such as age and sex based on skeletal
morphology. However, the primary role of high-ranked PCs is to reflect the dominant shape
variations in the dataset, highlighting individual variations instead of directly providing
clear indicators for age or sex classification. Conversely, lower-ranked PCs, which are often
dismissed as noise during dimensionality reduction, can reveal subtle and localized patterns

in the data that are crucial for specific classification tasks (68-71).

In this study, higher-ranked PCs derived from the PCA of 252 pubic symphyses
(Figure 4) demonstrated significant associations with sexual dimorphism but not with age
group classification. PCs with high explained variance were effective for sex classification
(Table 2). However, as shown in Table 3, comparisons among older age groups revealed
that shape variations with lower explained variance were more effective in distinguishing
between age groups. This finding suggests that, in the pubic symphysis, subtle and localized

patterns become increasingly important for age differentiation as individuals age.

In this study, age group differentiation relied on comparisons between consecutive
groups, limiting the identification of variations across a broader age range. Expanding the
approach to include the entire spectrum from 20 to 80 could establish more reliable
indicators for distinguishing young, middle-aged, and older adults. Despite these
limitations, the findings address key shortcomings of traditional visual age estimation

methods, which often rely on broad and overlapping age categories.

-40 -



4.2. Sexual dimorphism

4.2.1. Model comparison

When analyzing the morphological differences between males and females without
dividing by age groups, this study observed a notable tendency for the dorsal border to shift
toward the center of the surface. This finding aligns with a former study by Bravo Morante
et al., the primary reference for this study, and Todd, who reported that the dorsal border
appears flatter in females (22,44). However, unlike previous studies, this research also
identified a flattening trend in the ventral border, albeit to a lesser extent than in the dorsal

border.

Furthermore, the superior angle tended to extend upward. While previous studies
suggested that a flatter dorsal border contributed to an elongated appearance in females
(44), this study demonstrated that the elongated appearance results from a combination of
dorsal and ventral border flattening and the superior angle extending superiorly. In addition,
although previous studies did not address changes in the inferior point, this study found
that the inferior point in females showed a dorsal tilt, adding a novel contribution to the

understanding of pubic symphyseal morphology.

Despite these findings, the statistical testing in this study indicated that changes across
almost all areas were statistically significant. While this may suggest that all observed
morphological changes are genuinely meaningful, the considerable inter-individual
morphological variation in the dataset used in this study might have influenced the
detection of statistically significant results. Therefore, further validation using datasets with

different population groups is necessary to confirm these findings.

Some research has suggested that sexual dimorphism increases significantly after
puberty and differs from age to age (22,24). However, previous studies that analyzed the

sexual dimorphism of the pubic symphysis did so without distinguishing between age
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groups or by simply dividing the groups into young, middle-aged, and older adults (44).

Therefore, this study investigates sexual dimorphism across different age groups.

From the 30s onward, sexual dimorphism predominantly appears in the outline,
consistent with observations when age groups are not separated. As reported in previous
studies, the most pronounced sexual dimorphism is observed in the ventral and dorsal
borders, particularly in the dorsal-ventral width (22,44). While earlier research primarily
noted a sharp increase in sexual dimorphism beginning in the 30s, this study extends these

findings by identifying additional, more nuanced aspects of this phenomenon.

Sexual dimorphism indeed becomes evident in the 30s. Prior research has linked a
surge in sexual dimorphism in the 30s to pregnancy and childbirth as it changes bone
density (44,72-75). In the Korean population, the subject of this study, the average age of
first childbirth is 33 years old (76). Therefore, as previously agreed, it is plausible to infer
that factors like pregnancy and childbirth contributed to the observed flattening of the
ventral border in the 30s. Nevertheless, further physiological and biomechanical validation
is required to clarify the mechanisms underlying this pattern. However, contrary to earlier
studies that emphasized the flattening of the dorsal border (22,44), this research
demonstrates that 30s sexual dimorphism is primarily concentrated on the ventral border.

By contrast, significant changes in the dorsal border did not emerge until the 40s.

This study also identifies, for the first time, that sexual dimorphism peaks in the 50s.
Bone density typically declines in males and females between the ages of 35 and 45;
however, this decline accelerates in females due to menopause, resulting in more
pronounced bone density differences in the 40s (77-80). These physiological changes,
combined with the sexual dimorphism already present in the 30s, likely led to the peak

observed in the 50s.

The results for individuals in their 20s diverge significantly from the findings of
previous studies. Previous studies assumed that sexual dimorphism was most evident on
the outline (44). However, this study demonstrated that in the 20s, sexual dimorphism is

more prominently reflected in surface volume rather than outline. In females, statistically
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significant differences were found as dorsal tilting of the superior and inferior angles and
increased volume in the central ventral region of the symphyseal surface. This finding
suggests that in the 20s, sexual dimorphism could not be effectively distinguished by

outline alone but instead requires an analysis of surface morphology.

4.2.2. Shape-based classification

Without separating by age groups, the significant shape variation for distinguishing
between sexes was the dorsal-ventral width. This finding aligns with previous studies, as
discussed in the 4.1.1 section, which noted that females exhibit a more elongated

appearance than males (22,44).

Breaking the findings down by age groups, this study identifies PC1 as the most
significant principal component for distinguishing between sexes from the 40s to the 80s.
These findings align with the overall results without separating them by age, where dorsal-
ventral width appears as the primary indicator of sexual dimorphism (22,44). In addition,
the previous study described female pubic symphysis as having an “elongated appearance,”
implying a perceived lengthening (44). However, this study confirms that the pubic
symphysis in females is superiorly longer. Moreover, individuals in their 50s show the
highest accuracy in sex classification, coinciding with the peak of sexual dimorphism. This
result suggests that the pubic symphysis in the 50s allows for a more apparent distinction

between sexes compared to other age groups.

The age groups requiring closer attention are those in their 20s and 30s. The lower
accuracy in distinguishing age groups in the 20s and 30s compared to older groups, such
as those in their 60s and beyond, indicates that sexual dimorphism is relatively less
pronounced in younger adults. While previous studies and the findings discussed in Section
4.1.1 noted the emergence of sexual dimorphism in the 30s, the relatively weak degree of

dimorphism at this stage indicates that it is still in an early developmental phase (44).
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Additionally, unlike other age groups, the significant shape variations in the 20s and
30s do not involve dorsal-ventral width. Figure 9 demonstrated that the shape variations in
the 20s and 30s primarily concern whether the surface volume is concentrated along the
dorsal and ventral borders or the central region. In the 30s, however, this trend appears less
pronounced compared to the 20s. As highlighted in Section 4.1.1, these findings suggest
that distinguishing sex in individuals up to their 30s requires focusing on surface details or

volume rather than outline.

Another notable feature in the 20s and 30s involves the upper half of the ventral border,
mainly whether it appears curved or straight. Combining this observation with the model
comparison results (Figure 8) reveals that females tend to have a rounded, curved ventral
border. At the same time, males display a straighter upper half, forming an angular shape
near the middle. This finding differs significantly from Bravo Morante et al.’s 2021 study,
which proposed distinct representative pubic symphyseal morphologies for young adult
males and females (44). Furthermore, the observation that males have a straighter ventral
border challenges Bravo Morante et al.’s conclusion that males tend to exhibit a more
rounded shape (44). However, as this study focused on the Korean population, validation

in other populations for broader applicability is required.
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4.3. Aging morphology

4.3.1. Model comparison

The observations in the YA group align with previous studies, confirming that younger
age groups experience more pronounced morphological changes and are easier to
distinguish than other age groups (37,39,41,42). However, the transition from the 20s to
the 30s reveals distinct patterns of change between males and females, underscoring the

significant influence of sex beyond aging effects.

In males, the marked extension at the center of the ventral margin coincides with the
superior margin of the suspensory ligament that supports the base of the penis, where it
attaches to the pubic symphysis (81). This extension likely results from the greater tension
exerted by the suspensory ligament due to the protrusion of external male genitalia.
However, further anatomical studies are necessary to elucidate the correlation between

suspensory ligaments and aging, particularly in young adults.

The morphological changes observed during this transition were not statistically
significant in females. This result may reflect fluctuating individual differences caused by
external factors, such as pregnancy, rather than natural aging processes. South Korean
women have their first childbirth at an average age of 33.5 years, with childbirth rates
peaking in their 30s (76). Pregnancy and childbirth can alter pelvic floor muscles, leading
to changes such as weakening and sagging (82-84). Since these muscles connect to the
pubic bone (84), maternity status could plausibly influence the morphology of the pubic
symphysis during this specific age range. However, as this study lacked data on the
pregnancy and childbirth histories of the subjects, future research should examine age-

related changes while accounting for maternity status.

From the 30s to 40s, males and females exhibited similar patterns of morphological
changes, but the exact locations of these changes differed. In males, changes occurred near

the origins of the rectus abdominis, pyramidalis, and gracilis muscles, while in females, the
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adductor longus muscle origin showed more pronounced changes (85-87). As suggested in
previous studies, variations in muscle usage may influence pubic symphyseal morphology
(51). However, specific research focusing on the primary muscles utilized by males and
females within this age group still needs to be completed, underscoring the need for further

investigation.

In the MA group, males in their 50s and females in their 40s exhibited a sudden surge
in the rate of change. This shift may correspond to age-related bone loss, which typically
begins in both sexes around 3540 years of age. Physiological differences likely explain
the more significant changes observed in females than males (77,78,80). Females
experience accelerated bone loss during their 40s and early 50s due to menopause, whereas

males undergo a more gradual loss over their lifetime (77,79,80).

The patterns of change also varied between sexes. In males, the observed changes
aligned with established pubic symphyseal aging processes characterized by surface
smoothing (37,41). Conversely, females showed a pattern of narrowing pubic symphyseal
width, contrasting with findings by Lottering et al., who reported increasing maximum
width with aging to maintain mechanical strength (45). However, caution is advised when
interpreting these findings because these changes in females were not statistically

significant.

The results in the OA group challenge findings by Kotérova et al., who suggested that
age-related differences remain distinguishable even in individuals over 50 years old (42).
In this study, statistically significant morphological changes were difficult to identify in
both sexes after 60 years of age. The changes observed in this age group likely reflect
irregular individual variations rather than consistent aging patterns across the population
(40,41,88,89).

Morphological changes in older females were particularly notable. While these

changes did not achieve statistical significance, their moderate presence suggests greater
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individual variability among aging females compared to males. This finding contradicts
earlier studies suggesting females exhibit less individual variability in pubic symphyseal
morphology than males (37). As discussed in the YA and MA groups, females are more
likely to experience physiological events such as childbirth and menopause, which affect
pubic symphyseal morphology (23,82). Furthermore, pelvic floor muscles connected to the
pubic symphysis undergo more age-related changes in females, including sagging, which
increases with age regardless of pregnancy and childbirth history (90,91). These findings
and hormonal and muscle-aging patterns suggest that females may exhibit more significant

morphological variability with advancing age.

4.3.2. Shape-based classification

In the YA group, it was necessary to analyze transitions from the 20s to the 30s and
from the 30s to the 40s separately due to differences in significant shape variations. The
ventral-dorsal width was the most critical shape variation distinguishing males in their 20s
from those in their 30s. This finding aligns with previous research, which reported an
increase in the superior-inferior and ventral-dorsal dimensions of the symphyseal surface
with age (45). However, apart from this transition, width did not emerge as a decisive factor
in other groups. This suggests that ventral-dorsal width alone may not be sufficient for
general age classification. However, it is more relevant for distinguishing adolescents and

young adults in their 20s from other age groups among male specimens.

Additionally, the second most crucial factor distinguishing males in their 20s and 30s
was the curvature of the margin. This observation supports findings that describe the
symphyseal surface transitioning to a more rounded shape after age 30 (40). For females,
this curvature was identified as the most significant shape variation during the 20s—30s
transition but carried less significance, likely reflecting greater individual variability within

this age group.
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During the 30s—40s transition, both males and females prioritized the minor notch-
like feature located on the upper one-third of the ventral border as a distinguishing factor.
This observation corresponds to Phase IV of the Suchey and Brooks method, which
described a hiatus on the upper ventral rim. It also aligns with findings from subsequent
geometric morphometric studies (25,35,44). However, previous research either suggested
a broad age range for the appearance of the notch or associated it with older adults without
specifying a particular age group. While this study did not exclusively determine age
groups for notch formation, the findings, in conjunction with previous research, suggest
that the notch is absent until the 30s and emerges during the 40s. The underlying cause of
this phenomenon remains unexplored. Recent studies on the morphology of the four
ligaments surrounding the pubic symphysis revealed that the notch formation area overlaps
with the superior and anterior pubic ligaments (92). This overlap may contribute to notch

formation, but future biomechanical studies are needed to validate this hypothesis.

In the MA and OA groups, significant shape variations distinguishing age groups
primarily involved complex surface textures, which posed challenges for standardized
descriptions. This finding explains why computational methods capable of analyzing subtle
surface details through algorithms can improve age estimation accuracy. However,
previous studies that calculated morphological changes using bending energy scores often
overestimated these scores due to surface irregularities, resulting in underestimation of the
age of older individuals (41). The patterns of surface shape variation identified in this study

could help address such errors in future research.

Moreover, more complex surface shape variations were observed in females than
males. Previous studies predominantly focused on males or used mixed-sex samples (40-
42). While mixed-sex analyses may be helpful when sex cannot be determined, when sex
is identifiable, sex-specific estimation methods should be employed. This study highlights
the importance of developing separate age estimation approaches for each sex to improve

accuracy.
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5. Conclusion

This study addresses critical limitations in previous research on pubic symphysis
morphology within biological anthropology. Traditional visual analyses of the pubic
symphysis, such as those by Todd and Suchey-Brooks, emphasize sex-specific differences.
Still, previous studies have lacked detailed three-dimensional analyses of sexual
dimorphism. Additionally, while computational methods for age estimation achieved high
accuracy, they obscured the specific morphological features that drive classification,

creating a "black box."

By utilizing SSM, this study overcame these limitations and provided a detailed
analysis of sexual dimorphism and age-related morphological changes in the pubic
symphysis. Though SSM is widely used in various fields, its application in biological and
forensic anthropology remains rare. This study aimed to reveal critical morphological
patterns and provide a transparent framework for interpreting skeletal morphology by

employing SSM.
The findings of this study are summarized as follows:

* Three-dimensional visualization of sexually dimorphic morphologies between males
and females.

* Identification of crucial shape variations for distinguishing between sexes.

* Three-dimensional visualization of age-related changes in each age-sex group.

* Determination of crucial shape variations for differentiating consecutive age groups

These results deepen our understanding of pubic symphyseal morphology and

highlight the potential of SSM as a tool in anthropological research.

However, this study has several limitations that require further investigation. The
exclusive focus on the Korean population necessitates the inclusion of diverse population
groups to generalize the findings. For female subjects, analyzing medical history—such as

pregnancy, childbirth, and menopause—can enhance the accuracy of detecting statistically
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significant morphological changes in female subjects. Additionally, the use of PCA for only
two consecutive age groups makes it challenging to apply the findings of this study when
pubic symphyses from a broader range of age groups are intermixed. Future research should
conduct PCA on multiple age groups to provide a more comprehensive understanding of
age-related morphological patterns. Finally, while this study hypothesizes that the muscles'
biomechanical effects contribute to morphological differences and changes in the pubic
symphysis, these hypotheses require validation. Interdisciplinary research integrating
biomechanical methods, such as finite element analysis, can confirm these effects and

refine understanding of these influences.

Despite these limitations, this study highlights the complexity of sexual dimorphism
and age-related changes in the pubic symphysis. By employing advanced methodologies
and offering valuable insights, this research not only advances the understanding of pubic
symphysis morphology but also lays a strong foundation for future studies in biological

anthropology.
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