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ABSTRACT

Inflation of Type I Error of Log-Rank Test

with Inappropriately Generated Censoring Data

When simulating survival data, some types of data generation lead to erroneous results. In, in
an appropriate generating method called random generation, the event time and censoring time are
separately generated based on assumed distributions. In the case where the censoring proportion is
fixed, for example, the Weibull distribution does not have a closed form for calculating the censoring
distribution parameter, particularly when the shape parameters differ. This often leads to the use of
inappropriate data generation methods to simplify the process. In this study, we aimed to investigate
the problems caused by inappropriate data generation through simulations and mathematical
validation. Specifically, we evaluated Type | error rates of the log-rank test in a two-sample setting
and examined the correlation between event times(T) and censoring times(C).

In inappropriate generating method 1, after generating event time based on assumed
Exponential and Weibull distributions, censoring indicator is generated using a Bernoulli
distribution. In cases where censoring occurs, the censoring time is replaced by the generated event
time. Furthermore, in inappropriate generating method II, censoring time is generated based on a
Uniform(0, T;) distribution, introducing between T and C.

The Type | error of the log-rank test was well controlled in the random generation whether the
predefined censoring proportions were equal or not between groups, whereas it was inflated in the
inappropriate method when the censoring proportions were unequal. However, an inappropriate

method appeared to effectively control the Type | error when the censoring proportions were equal.

Vi



This is likely due to the log-rank test, where the dependent censoring between T and C results in
the conditional distribution of T given C becoming different from the marginal distribution of T
which can distort the actual differences between groups, creating the illusion of well-controlled Type
| error rates.

Additional simulations were conducted to investigate this issue. One group was generated using
the random generating method, while the other group was generated using the inappropriate
generating method II. The results showed that even when the censoring proportions were equal
between the groups, the Type I error of the log-rank test was inflated. This finding suggests that the
increase in Type | errors is not due to unequal censoring proportions, but rather due to the
inappropriate data-generating process that induced dependent censoring. Additionally, Spearman
correlation between event time and censoring time confirmed that improper data generation

introduced dependency.

Key words: Censored Data, Random Generating, Inappropriate Data Generating, Log-Rank Test,
Type I error
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1. Introduction

In survival analysis, there are various approaches for generating survival data. As different
approaches used in previous studies, Alam et al. (2022) generated event times and censoring times
separately, assumed the same distribution, and used the minimum as observed time. Additionally,
Wan (2016) generated event times assuming a Weibull distribution and created censoring times
under two conditions: one where the shape parameter of the censoring time matched the event time,
and another where it differed. A numerical root-finding algorithm was employed to determine the
scale parameter when using a different shape parameter for the censoring time. This method is

commonly used to generate survival data and is referred to as random or independent generation.

Furthermore, event times can be generated by drawing random values from a uniform
distribution and applying an inverse transformation to an Exponential distribution. The censoring
indicator can be generated based on a Bernoulli distribution using the true event rate as a parameter.
The authors then employed the approach of multiplying the generated survival time with a random

value from a uniform distribution for censored observations (Kuss et al., 2021).

A recent study investigated the impact of unequal censoring proportions and insufficient follow-
up under dependent censoring in clinical trials comparing survival between two groups (Srivastava
et al., 2021). In this study, event times were generated assuming Exponential and Weibull
distributions, and censoring times were generated from a uniform distribution ranging from zero to
the corresponding generated event times. The study found that as the difference in censoring
proportions between the treatment groups increased, there was a tendency for Type I error to increase

and power to decrease in all tests.



Research on censoring proportions in survival data has been extensively conducted over the
years. Beltangady and Frankowski evaluated the performance of log-rank and Wilcoxon type tests
to compare two survival distributions in the presence of unequal random censoring for small sample
sizes. They concluded that the inequality of censoring proportions affected the power of all tests,
and that greater differences in censoring proportions led to lower power estimates (Beltangady and
Frankowski, 1989). Wang et al. proposed several improvements of the permutation log-rank test for
comparing two survival distributions with different censoring distributions. Their method involves
imputing failure and censoring times based on Kaplan-Meier estimates of the survival and censoring
distributions. Additionally, they introduced a permutation test specifically designed to address

unequal censoring using this imputation approach (Wang et al., 2010).

When the censoring proportion is fixed, survival data are generally generated using the random
generation method described in Section 2.2. However, when the shape parameters of the Weibull
distribution differ, a closed-form expression for calculating the scale parameter of the censoring
distribution does not exist. To address this issue, some studies have employed inappropriate data
generation methods. However, improper methods often lead to erroneous results. The objective of
this study is to identify the issues arising from such practices through mathematical proofs and
simulations across equal and unequal censoring proportions between two groups. This study makes
a notable contribution by addressing the issue of inappropriately generating censored data, which
commonly occurs in clinical trials, and by comparing incorrect data generation methods across

several simulation settings.

The remainder of this paper is organized as follows. Section 1 introduces the study and
describes its purpose. In Section 2, we explain independent censoring, the approach for deriving the

distribution parameter of the censoring time under this condition, and the log-rank test. Also, in the



same section, we summarize the three methods, one using random generating method and two using
inappropriate methods, generating survival data. In Section 3, we present the theoretical framework
for both dependent and independent data generation of event times and censoring times. In Section
4 sets up different simulation setting and compares the Type I error control of the two-sample log-
rank test and the correlation between for each method. Finally, Section 5 concludes the study and

discusses the implications of this research.



2. Methods

2.1 Notation

Assume that there are n; subjects. For j = 1,-+,n;, T;; denotes the survival time for the
ith subject and in jth group. Also, C;; denotes the censoring time for the ith subject and in jth
group. We observe (X;;, §;;), where the observed event time is denoted X;; = min(T;;, C;;) and

8;; = I(X;; = C;j) serves as the censoring indicator.

The hazard function is denoted by h(t), and the survival function is denoted by S(t). The
predefined censoring proportion is indicated as p. For the distribution parameters, A is denoted as
the parameter in Exponential distribution or the scale parameter in the Weibull distribution. The
shape parameter in the Weibull distribution is denoted as «. Lastly, the Spearman correlation is

represented by 7.



2.2 Parameter of censoring time distribution for fixed censoring

proportion

The event time is generated using the Exponential and Weibull distributions, respectively, and

each distribution is as follows:

*  Exponential distribution
e h(x)=21
e S(x) = exp(—1x)

* f(x) = Aexp(=1x)

*  Weibull distribution
«  h(x) = dax®?
e S(x) = exp(—1x%)

s f(x) = atx®* lexp(—Ax%)

where a > 0 is a shape parameter, and A > 0 is a scale parameter. In the case of a Weibull
distribution, the condition a # 1 is required, because if a = 1, the distribution becomes

equivalent to the Exponential distribution.



The parameters of the censoring time distribution for each distribution can be derived using the
joint probability distribution function of the event and the censoring time distribution when the
censoring proportion is predefined and fixed. First, when event time is generated from an

Exponential distribution, the censoring time parameter can be derived as follows:

Exponential distribution

p (Censoring proportion) = P(T > C)

=f flle"llt-lze"lzcdtdc
0 c

=f [—e"lit-lze"lzc];odc
0

_ [_ &l e—</11+/12>]
T L+,

¢ Weibull distribution

p (Censoring proportion) = P(T > C)

f f a Lt* L exp(—A,t) - @Ay c®27t exp(—2,c%2) dtdc
0 c

f a,A,c% ! exp(—AZC“Z)J a A %17 exp(—A, %) dtdc
0 c



= J- a,Ayc%2 L exp(—A,c%2) exp (—A,c*)dc
0

Since a closed form no longer exists in the Weibull distribution, we add the condition that the

shape parameters, a; and a,, are equal for further mathematical derivations.

f a,A,c% " exp(—A,c% — A, c%) dc
0

exp (—(4; + 1,)c*

[_(/11/11 13) 0

|
Ro
SQ
iy
|
SQ
N

As shown in the above equation, the relationship between the parameters of the assumed
distributions for the event and censoring times can be derived. Since the censoring proportion is

fixed and 4, is given, 4, can be calculated.

Based on the derived A,, the censoring time distribution can be generated. This method of
separately deriving the event and censoring time distributions is referred to as independent
generating. Typically, the times are derived randomly, and survival data is created by comparing the

two times: if the event occurs first, the censoring indicator is set to 1; otherwise, it is set to 0.



However, for example, when the shape parameter of the Weibull distribution differ (a; # a5),
there is no closed-form for calculating the scale parameter A,, requiring the use of numerical
methods such as the Newton-Raphson algorithm. However, this process is computationally intensive
and complex, leading to several cases in previous studies in which inappropriate methods were

employed to generate survival data.

To address this issue, some studies have employed inappropriate data generation methods.
These methods lead to erroneous results when generating survival data. The aim of this study is to
identify and verify the issues arising from such practices through theoretical framework and

simulations.



2.3 Data generation

2.3.1 Appropriate generating method

The following methods were explained based on a two-sample setting.

In an appropriate generating method, also called random generation, the event times Tj;, i =

1,..,n; and j = 1,2 is generated based on the assumed Exponential and Weibull distribution.

Also, the censoring times C;; can be generated based on the distribution assumption of the

parameter, as explained through the parameter relationship described in 2.2. The censoring

indicator is obtained as &;; = I(T;; < Cj;), in other words, if an event occurs, &§;; =1; if

censoring occurs, §;; = 0. Observed time X;; can be expressed as follows:

Finally, the generated survival data is (Xl-]-,(Sij), i=1..,n and j =1,2.

Xy = | .
Y Cij if &y

Figure 1. Diagram of the random generating method for survival data (X, &)

C

¢,

»

X

min(Tl, Cl) = T1

min(T,, C;) = C,

min(Tn! Cn) = Cn

1)

MO, o =

: Event time
: Censoring time
: Censoring indicator

: Observed time




2.3.2 Inappropriate generating method 1

In inappropriate generating method I, first, the event time, T;;, i =1,..,n; and j =1,2 is
generated based on the assumed distribution. Next, the censoring indicator is generated using
bernoulli distribution, §;; ~ Bernoulli(1 — p), where p is prespecified censoring proportion. The

censoring time C;; is then expressed as follows:

T;; if 8 =0
Cy = \uniform(ry ) if 8 = 1

When censoring occurs, §;; = 0, and the previously generated event time is used as the

censoring time. Cj; is replaced by the percentile values (75%, 85% and 95%) of the censoring time

randomly generated in inappropriate method I. However, in this case, if Cj; < Tj; , it becomes
difficult to properly generate to uniform distribution. Additionally, evenif §;; = 1, in order to check

the correlation between event time and censoring time, there must be no missing values, and all data
for each subject must be available. An important point is that this procedure is only required when
calculating the correlation. In all other cases, if 6;; = 1, there is no need to generate a censoring
time. Therefore, when it is necessary to check the correlation, the survival data is generated as
follows with modification.

Ti' lf 6,:' =
C: = J
Y T;j + Uniform(0,C;;) if 6;; =

|
= o

10



2.3.3 Inappropriate generating method 11

In inappropriate generating method I, the censoring time C;; was set to be exactly the pre-
generated event time Tj;. Instead in inappropriate generating method II, when censoring occurs
(6;; = 0), more randomness can be imposed on C;; by sampling it from a Unif(0,T;;)

distribution, which is formulated as follows:

{Uniform(O,Tij) lf 611 =0
ij =

~ \Uniform(Ty;, Cj)  if &8 =

-

By making the above modifications, it is possible to generate censoring time earlier than the

pre-generated event time Tj;. Similar to inappropriate method I the case where §;; = 1 was

modified as follows to check the correlation.

{Uniform(O,Tij) lf 511 =0
ij =

~ Ty + Uniform(0,C;)  if &

Il
[EnN

11



2.4 Log-Rank Test

The log-rank test is a representative method for testing the homogeneity of survival functions
between two or more groups. The data generated from K (= 2) populations may include correct
censoring and have t; < t, < -+ <t distinct observed values. For group j = 1,2,---,K, time
point i = 1,2,---,D, d;; is denoted as the number of events in the jt™" group at time t; and Y
is denoted as the number of individuals at risk in the jt* group at time t;. Also, d; = Z}{zl d;;
and Y; = Zﬁ-{zl Y;; denote the number of events and the number of individuals at risk at the time

point t; in the combined data, respectively.
We test the following hypotheses:
Hy : hi(t) = hy(t) = - = hy(t), forall t <t
H; : atleast one of the h;(t)’s is different for some t < 1

Here 7 denotes as the largest time at which all of the groups have at least one subject at risk. For

. . . . di _ dy _ dy
example, in a two-sample case, if the null hypothesis is true, then at time ¢;, —* = Y—“ = Y—ZL
i 1i 2

The test statistic of the log-rank test can be expressed as follows:

Then rewriting the test statistics Z;(7),

12



In the case where the number of groups K = 2, the test statistic is as follows:

ZaW(t) [dn =Yy (dﬁ)]
Y;

7 =
e R - =D

The test statistic Z under the null hypothesis, H, approaches Z ~ N(0,1) as n — c. When

the weight function W (t;) is 1 for all time points ¢;, it represents the standard log-rank test

statistics. Depending on the W (¢t;), various forms of weighted log-rank test statistics exist (Fleming

et al., 1987).

13



3. Theoretical framework

3.1 Generation of censoring data

Proposition.

When the time-to-event T and censoring time C are dependent, the observed data (X =
min(T,C) and 6 = I(T < C)) alone is insufficient to identify and compare the marginal survival

functions between two groups.
Definition.

For the pdf f of the observables (X,§) with parameters vector 8, 6 is identifiable if any

given 6 uniquely determines the density f of (X,6),1i.e.if fys0, = fx 5,0, then 6, = 6.
Proof.

Let T be the random variable for the event time and C the random variable for the censoring
time, and the observed survival time X = min(T,C) and § = I(T < C). The PDFsof T and C
in groups 1 and 2 denoted as f;(t),g,(c) and f,(t), g,(c), respectively. Also, the CDFs and
survival functions in groups 1 and 2 are F;(t),S;(t) = 1— F,(t) and F,(t),S,(t) =1 — F,(t),

respectively.

The distribution of the observed data (X, d) is determined by the joint distribution of T and

C ineach group, Q,(t,c) = Pr(T <t,C <c) and Q,(t,c) = Pr(T <t,C <c).

14



I.  Under independent censoring

S @) =Pr(T, >t) = J- Pr(T, > t|C; = ¢) -Pr(C, = ¢)dc
0

= f Pr(T, > t,C, =c¢)/Pr(C; =c)-Pr(C; =c)dc
0

= f Pr(T; > t) - Pr(C; = c)dc
0

= Pr(T; > t) f g1(c)dc =Pr(T; > t) = S,(t)
0
such that from the observed Pr(X; = c¢,d = 0), the marginal survival function S;(t) can be
separated out as Pr(T; > t,C, = ¢) = S;(t) - g:(c) due to independence between T and C.

Hence, the observed (X,d) in both groups 1 and 2 can be used to obtain the marginal survival

functions S;(t) and S,(t) totest for H, : S;(t) = S,(t).

I1. Under dependent censoring
Let the strength of dependence between T and C be 6 (-1 <0< 1).

Now, the observed Pr(X; =c¢, 6§ =0) =Pr(T; >t,C, =c)=S,(t|c,0) - g,(c) = S;(¢) -
g1(c) = 5,(t) - g1(c), where S;(t) is not the marginal survival function of t but a function of

t,c,and 0.

Therefore, the marginal survival function S;(t) can no longer be separated out from the

observed (X,6), i.e.,, Pr(T; > t,C; = ¢) no longer factorizes such that S;(t) is isolated. Thus,

15



comparing the observed (X,d) between the two groups 1 and 2 is not equivalent to comparing the

marginal survival functions S;(t) and S,(t) and cannot be used to test for H : S;(t) = S,(¢).

The above presents the proof in a general case. In contrast, the following demonstrates the
theoretical framework as applied to the actual generating scenario in the simulation section. The

framework of inappropriate generating method II (IG 1II) is as follows:

C|T=t6=0 ~ Unif(0,t)

IG1I ={C|T=t;6=1 ~ Unlf(t;C*)

and censoring proportion is defined by Pr(é = 0) = p.

*  Joint CDF: Qg (t,c) = Pr(T <t,C <c)

Pr(T<t,C<c¢cd=0)+Pr(T<tC<cdbd=1)

Pr(T< t,C<c|6=0)XPr(6=0)+Pr(T< t,C<c|d6=1)xPr(6=1)

Cc
prPr(TS t|C=w,6=0)-Pr(C=w|5§ =0)dw
0

t
+(1—p)XfPr(CS c|T=26=1)Pr(T=2z|6=1)dz
0

c—z
C*—z

c t
pf Pr(T < t|C=W,6=O)g(w)dw+(1—p)f I(z<c<CHf(2)dz
0 0

For the derivation of the formula, we represented it using a joint PDF.

16



62

¢ Joint PDF: Q(T,C)(t’ )= atdc

Qrc(t,c)

d|ad ¢
= E[E[pLPr(TS t|C=W.5=O)g(w)dW]]

d|o t c—z .
+aa[(1-p)£mI(ZSCSC)f(Z)dZ]
9 o 9 1
= S Pr(T < £1C = 6,8 = 0)g(O] + 5|1 = p) e 1t < ¢ < CHF )|
= pg(@OfT=t|C=¢6=0)+1-p)f(t) — It <c<C")

cr—t

The joint PDFs for each group 1 and 2 can be expressed as follows:
Group 1: p1g1()i(T =t C =¢,6 =0)+ (1 - p)fit) ==t < c < )

Group 2: p,g,()f,(T =t |C=¢,6 =0)+ (1 —p)fr() = I(t S c < C)

As the survival functions of each group change, f;(t) becomes f;*(t), and f,(t) becomes
f5 (). If p; = p,, the joint PDFs structure is the same across groups under equal censoring, but
when p, # p,, with unequal censoring by groups, the distribution of the survival functions is altered.

The test statistic such as log-rank differs between groups, leading to an increase in Type I error.

Additionally, when survival data is generated using random generating for group 1 and

inappropriate generating for group 2, the survival function f;(t) of group 1 remains unchanged,

17



whereas the survival function f,(t) of group 2 changes to f; (t). In this case, when the censoring
proportions are equal, i.e., p; = p,, the distribution of the survival functions differ, resulting in a

violation of homogeneity between the two groups.

18



4. Simulation

4.1 Simulation setting

Before the simulation settings, event times for all generating methods were generated based on
the following approach under distributional assumptions. First, let X be a random variable with a
continuous and strictly increasing cumulative distribution function (CDF). Then, we define a random
variable Y denoted as Y = F(X), then, Y follows a uniform distribution on the interval [0, 1].

In other words, Y = F(X) ~ Uniform(0,1).

Next, for the event time T in the Exponential distribution, F(T) =1 —S(T) £ 1-—
exp(=AT) £ U ~ Uniform(0,1). Finally, exp(=AT) = U, and T £—log (U)/A . Similarly, in

the Weibull distribution, exp(—AT%) < U, and T < (—log (U)/2)"/.

In the one-sample case, the correlation between the event time and censoring time was
examined. The correlation was measured using the Spearman correlation coefficient (7). In the
case of the Pearson correlation, the normality assumption is required when both variables are
continuous, and it only measures linear relationships. Moreover, because it measures the correlation
between actual values, it is highly sensitive to outliers, which can distort the overall correlation.
Therefore, Spearman correlation, which is rank-based, non-parametric, and does not require any
assumptions, was used. For each simulation setting, 100 iterations were performed and the
correlation was calculated as the average of these iterations. Additionally, Kaplan-Meier plots were

generated to compare the different methods and prespecified censoring proportions.

In the two-sample case, as in the one-sample case, the correlation between the event time and
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censoring time was examined. Additionally, under the null hypothesis Hy: hy(t) = h,(t), the Type
I error of the log-rank test was calculated by performing 1,000 iterations. To make this more intuitive
within the table, the %bias measure was also examined. %Bias is an indicator that shows the
percentage difference between the calculated value and the reference value, and can be used to

determine if there is any bias. The reference value was set at a significance level of 0.05. Letting the

a —0.05
0.05

calculated Type I error as a, it is calculated as %bias = ( ) x 100.

Both cases where the sample sizes in the two groups were equal or unequal were examined,
considering both general situations and realistic data collection conditions. The detailed simulation

settings are shown in Table 1 below.

For the two samples, the simulation setting was modified to use a pre-specified censoring
proportion to check the Spearman correlation, unlike the censoring proportion setting used to
observe the Type I error rate in Table 1. The reason for this modification is that setting the censoring
proportion to zero could result in an infinite value for censoring times, and this adjustment was made
to prevent such occurrences. (py,p;) = (10,10), (20,20), (30,30), (40,40), (10,20), (20,30), (30,40),

(20,10), (30,20), (40,30), (10,30), (20,40), (30,10), (40,20), (10,40), (40,10).
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Table 1. All scenarios for data generation settings

Sample size

Censoring proportion

Method

Distribution parameter

One Sample n € {30, 100, 1000}

p € {10,20,30, 40}

Appropriate

T; ~ Exp(5.873) or Weibull(2,2)
C; ~ Exp(1,) or Weibull(shape, 2)

Inappropriate [

Inappropriate 11

T; ~ Exp(5.873) or Weibull(2,2)

Equal sample size
(ny,nz) € {(30,30),
(100,100), (1000,1000)}

Two Sample

Unequal sample size
(ny,n;) € {(30,100),
(100, 1000)}

(1, p2) € 1(0,0), (10,10),
(20,20), (30,30), (40,40),
(0,10), (10,20), (20,30),
(30,40), (10,0), (20,10),
(30,20), (40,30), (0,20),
(10,30), (20,40), (20,0),
(30,10), (40,20), (0,30),
(10,40), (30,0), (40,10,

(0,40), (40,0)}

Appropriate

T;j ~ Exp(5.873) or Weibull(2,2)
Cij ~ Exp(4;) or Weibull(shape, 2)

Inappropriate 1

Inappropriate 11

T;j ~ Exp(5.873) or Weibull(2,2)

Appropriate

T;; ~ Exp(5.873) or Weibull(2,2)
Cij ~ Exp(2;) or Weibull(shape, 2)

Inappropriate |

Inappropriate 11

T;j ~ Exp(5.873) or Weibull(2,2)
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4.2 Simulation result

Tables 2 - 5 compared the type I error of the log-rank test and %bias for each method. Tables
8-9 and Appendix Tables 1 - 10 presented the Spearman correlation coefficients for each scenario in

both one-sample and two-sample scenarios.

Figure 2 - 3 showed Kaplan-Meier (KM) curves comparing each method under Exponential
and Weibull distribution for a one-sample case with N = 1000 and p = 0.3. As shown in the
figure, the log-rank tests conducted using the three different data generation methods under the same
simulation settings yielded significant differences (p-value < 0.001). This indicates that the null
hypothesis, which states that "all three hazard functions are identical," can be rejected. Based on the
KM curves derived from the appropriate method, it was observed that inappropriate method 1 tended
to overestimate survival probabilities. This overestimation can be attributed to the fact that censoring
times were taken directly from event times, which prolonged the at-risk set denominator and led to
inflated survival probability estimates. Meanwhile, under the assumption of a Weibull distribution,
the KM curves generated by the appropriate method and inappropriate method II did not show
substantial differences. However, under the assumption of an Exponential distribution, the KM
curves showed clear differences between the two methods. These findings indicate that the

appropriateness of the data generation method can significantly impact the survival analysis results.

In tables 2 and 4, the Type I error of the log-rank test under each method are shown, based on
survival data generated assuming Exponential and Weibull distributions with equal sample sizes. In
appropriate generating method, the Type I error remained close to 0.05, irrespective of the simulation
settings. On the other hand, in inappropriate generating methods I and II, the larger the sample size

and the difference in censoring proportions between groups, the more Type I error inflated from 0.05.
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Specifically, in method I, when the sample size was (1000,1000), the %bias approached an enormous
value. Even when the difference in censoring proportions between the groups was the same, a higher
overall censoring proportion led to a higher Type I error. Also, the Type I error was observed to
increase as the extent of unequal censoring between the two groups. In tables 3 and 5, where the

sample sizes were unequal, a similar pattern was observed as with equal sample sizes.

However, an inappropriate method appeared to control the Type | error when the censoring
proportions were equal. This is likely due to the log-rank test, where improperly generated data can
distort the actual differences between groups, creating the illusion of well-controlled Type I error.
Additional simulations are conducted to investigate this issue. One group was generated using the
random generating method, while the other group was generated using the inappropriate generating
method II. The results showed that even when the censoring proportions were equal between the
groups, the Type I error of the log-rank test was inflated in tables 6 - 7. Specifically, in Figures 4 —
5, as the sample size increases and the censoring proportion becomes higher, the Type | error
increased. This finding suggests that the increase in Type | errors is not simply due to unequal

censoring proportions, but rather due to the inappropriate data-generating process.

Thus, the Spearman correlation coefficient was examined between event time (T) and
censoring time(C) to investigate the properties of inappropriately generated data for each method.
(Tables 8 - 9, Appendix tables 1 - 10) In both one-sample and two-sample cases, no correlation was
found in random generating. However, in inappropriate method I, a correlation was observed across
all settings. Notably, as the censoring proportion increased, the correlation also increased; the lower
the percentile replaced upon event occurrence, the higher the correlation value. Additionally, in
inappropriate method II, while the correlation coefficient was smaller than that of inappropriate

method I across all simulation settings, a correlation was still observed.
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Figure 2. Kaplan-Meier curves comparing each method under
Exponential distribution for one sample with N = 1000 and
censoring proportion p = 0.3
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Note. AG: Appropriate generating method, IG1: Inappropriate
generating method I, IG2: Inappropriate generating method II

Figure 3. Kaplan-Meier curves comparing each method under
Weibull distribution for one sample with N = 1000 and
censoring proportion p = 0.3
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Table 2. Type I error for each method with predefined censoring proportion and sample size where n, and n, are equal assumed

Exponential distribution Ty, T, ~ Exp(5.873)

Appropriate method Inappropriate method I Inappropriate method II
Pr P2 (30,30) (100,100) (1000,1000) %Bias | (30,30) (100,100) (1000,1000) %Bias | (30,30) (100,100) (1000,1000) %Bias
0 0 0.055 0.057 0.053 6 0.054 0.051 0.054 8 0.054 0.051 0.054 8
10 10 0.053 0.055 0.06 20 0.051 0.058 0.056 12 0.062 0.06 0.047 -6
20 20 0.058 0.052 0.057 14 0.056 0.054 0.058 16 0.057 0.051 0.056 12
30 30 0.058 0.055 0.063 26 0.06 0.053 0.048 -4 0.058 0.057 0.051 2
40 40 0.055 0.057 0.052 4 0.067 0.056 0.052 4 0.059 0.056 0.044 -12
0 10 0.052 0.05 0.058 16 0.065 0.11 0.618 1136 0.056 0.069 0.19 280
10 20 0.061 0.055 0.054 8 0.073 0.126 0.65 1200 0.056 0.084 0.241 382
20 30 0.062 0.045 0.063 26 0.084 0.139 0.71 1320 0.066 0.081 0.281 462
30 40 0.051 0.056 0.054 8 0.094 0.141 0.78 1460 0.074 0.085 0.358 616
10 0 0.061 0.049 0.059 18 0.073 0.125 0.639 1178 0.056 0.081 0.252 404
20 10 0.053 0.049 0.057 14 0.079 0.117 0.689 1278 0.057 0.086 0.279 458
30 20 0.051 0.055 0.059 18 0.074 0.127 0.741 1382 0.065 0.078 0.344 588
40 30 0.053 0.057 0.057 14 0.075 0.135 0.823 1546 0.074 0.081 0.397 694
0 20 0.057 0.051 0.047 -6 0.119 0.308 0.998 1896 0.07 0.121 0.684 1268
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10
20
20
30
40

10
30
40
40

30
40

10

20

30

40

10

40

0.055
0.053
0.057
0.047
0.049
0.059
0.052
0.046
0.048
0.05
0.054

0.046
0.052
0.045
0.054
0.051
0.05
0.057
0.048
0.055
0.058
0.058

0.06
0.052
0.06
0.052
0.053
0.06
0.052
0.056
0.059
0.051
0.05

20
4
12
18
2
0

0.139
0.153
0.134
0.127
0.141
0.215
0.253
0.244
0.247
0.388
0.384

0.36
0.387
0.321
0.353
0.388
0.611
0.686
0.625
0.673
0.864
0.879

0.997
0.999
0.996
0.999
0.999

1
1

1894
1898
1892
1898
1898
1900
1900
1900
1900
1900
1900

0.076
0.098
0.075
0.089
0.1
0.104
0.124
0.119
0.136
0.17
0.154

0.144
0.167
0.122
0.143
0.168
0.237
0.285
0.236
0.284
0.429
0.408

0.754
0.85
0.713
0.797
0.875
0.968
0.99
0.976
0.994

1408
1600
1326
1494
1650
1836
1880
1852
1888
1900
1900

Note. %Bias was calculated based on the Type I error when the sample sizes of the two groups were (1000,1000).
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Table 3. Type I error for each method with predefined censoring proportion and sample size where n; and n, are unequal assumed
Exponential distribution Ty, T, ~ Exp(5.873)

Appropriate method Inappropriate method I Inappropriate method II

Pr b2 (30,100) (100,1000) %Bias (30,100) (100,1000) %Bias (30,100) (100,1000) %Bias
0 0 0.052 0.052 4 0.058 0.057 14 0.058 0.057 14
10 10 0.054 0.053 6 0.062 0.056 12 0.066 0.055 10
20 20 0.055 0.047 -6 0.059 0.062 24 0.047 0.055 10
30 30 0.056 0.041 -18 0.062 0.056 12 0.058 0.048 -4
40 40 0.053 0.048 -4 0.062 0.049 -2 0.054 0.052 4
0 10 0.054 0.051 2 0.105 0.201 302 0.079 0.116 132
10 20 0.052 0.055 10 0.106 0.204 308 0.084 0.113 126
20 30 0.054 0.044 -12 0.104 0.232 364 0.086 0.12 140
30 40 0.055 0.043 -14 0.106 0.242 384 0.085 0.142 184
10 0 0.053 0.051 2 0.066 0.143 186 0.058 0.07 40
20 10 0.054 0.046 -8 0.077 0.159 218 0.052 0.067 34
30 20 0.054 0.044 -12 0.086 0.169 238 0.053 0.081 62
40 30 0.052 0.043 -14 0.085 0.183 266 0.058 0.085 70
0 20 0.05 0.058 16 0.208 0.582 1064 0.115 0.239 378
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10
20
20
30
40
0
10
30
40
40
0

30
40
0
10
20
30
40
0
10
0
40

0.052
0.048
0.05
0.055
0.054
0.049
0.046
0.052
0.057
0.053
0.052

0.049
0.047
0.044
0.042
0.047
0.048
0.048
0.042
0.047
0.046
0.056

12

0.215
0.23
0.167
0.178
0.186
0.384
0.42
0.321
0.347
0.495
0.625

0.635
0.683
0.461
0.5
0.562
0.925
0.952
0.809
0.859
0.975
1

1170
1266
822
9200
1024
1750
1804
1518
1618
1850
1900

0.119
0.13
0.066
0.081
0.089
0.173
0.197
0.112
0.147
0.2
0.274

0.276
0.322
0.147
0.165
0.196
0.471
0.549
0.305
0.381
0.554
0.746

452
544
194
230
292
842
998
510
662
1008
1392

Note. %Bias was calculated based on the Type I error when the sample sizes of the two groups were (100,1000).
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Table 4. Type I error for each method with predefined censoring proportion and sample size where n, and n, are equal assumed

Weibull distribution Ty, T, ~ Weib(2,2)

Appropriate method

Inappropriate method I

Inappropriate method II

Pr P2 (30,30) (100,100) (1000,1000) %Bias | (30,30) (100,100) (1000,1000) %Bias | (30,30) (100,100) (1000,1000) %DBias
0 0 0.055 0.057 0.053 6 0.054 0.051 0.054 8 0.054 0.051 0.054 8
10 10  0.053 0.055 0.06 20 0.051 0.058 0.056 12 0.064 0.061 0.047 -6
20 20 0.058 0.052 0.057 14 0.056 0.054 0.058 16 0.052 0.053 0.048 -4
30 30 0.058 0.055 0.063 26 0.06 0.053 0.048 4 0.054 0.055 0.051 2
40 40  0.055 0.057 0.052 4 0.067 0.056 0.052 4 0.059 0.054 0.045 -10
0 10 0.052 0.05 0.058 16 0.065 0.1 0.618 1136 | 0.051 0.058 0.106 112
10 20 0.061 0.055 0.054 8 0.073 0.126 0.65 1200 | 0.06 0.065 0.143 186
20 30 0.062 0.045 0.063 26 0.084 0.139 0.71 1320 | 0.057 0.068 0.161 222
30 40  0.051 0.056 0.054 8 0.094 0.141 0.78 1460 | 0.071 0.069 0.207 314
10 0 0061 0.049 0.059 18 0.073 0.125 0.639 1178 | 0.054 0.074 0.132 164
20 10 0.053 0.049 0.057 14 0.079 0.117 0.689 1278 | 0.055 0.079 0.171 242
30 20 0.051 0.055 0.059 18 0.074 0.127 0.741 1382 | 0.058 0.064 0.19 280
40 30 0.053 0.057 0.057 14 0.075 0.135 0.823 1546 | 0.066 0.068 0.23 360
0 20 0.057 0.051 0.047 -6 0.119 0.308 0.998 1896 | 0.058 0.086 0.373 646
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30
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10
30
40
40

30
40

10

20

30

40

10

40

0.055
0.053
0.057
0.047
0.049
0.059
0.052
0.046
0.048
0.05
0.054

0.046
0.052
0.045
0.054
0.051
0.05
0.057
0.048
0.055
0.058
0.058

0.06
0.052
0.06
0.052
0.053
0.06
0.052
0.056
0.059
0.051
0.05

18
2
0

0.139
0.153
0.134
0.127
0.141
0.215
0.253
0.243
0.247
0.388
0.384

0.36
0.387
0.321
0.353
0.388
0.611
0.686
0.625
0.673
0.864
0.879

0.997
0.999
0.996
0.999
0.999

1
1

1894
1898
1892
1898
1898
1900
1900
1900
1900
1900
1900

0.069
0.083
0.062
0.066
0.074
0.071
0.098
0.081
0.099
0.112
0.103

0.102
0.104
0.097
0.087
0.106
0.138
0.157
0.144
0.167
0.233
0.23

0.449
0.539
0.424
0.509
0.604
0.747
0.848
0.789
0.859
0.973
0.962

798
978
748
918
1108
1394
1596
1478
1618
1846
1824

Note. %Bias was calculated based on the Type I error when the sample sizes of the two groups were (1000,1000).
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Table 5. Type I error for each method with predefined censoring proportion and sample size where n; and n, are unequal assumed

Weibull distribution Ty, T, ~ Weib(2,2)

Appropriate method Inappropriate method I Inappropriate method II

Pr b2 (30,100) (100,1000) %Bias (30,100) (100,1000) %Bias (30,100) (100,1000) %Bias
0 0 0.052 0.052 4 0.058 0.057 14 0.058 0.057 14
10 10 0.054 0.053 6 0.062 0.056 12 0.064 0.054 8
20 20 0.055 0.047 -6 0.059 0.063 26 0.05 0.056 12
30 30 0.056 0.041 -18 0.063 0.057 14 0.056 0.053 6
40 40 0.053 0.048 -4 0.063 0.05 0 0.06 0.055 10
0 10 0.054 0.051 2 0.105 0.201 302 0.067 0.087 74
10 20 0.052 0.055 10 0.106 0.204 308 0.075 0.081 62
20 30 0.054 0.044 -12 0.104 0.232 364 0.066 0.089 78
30 40 0.055 0.043 -14 0.105 0.245 390 0.069 0.104 108
10 0 0.053 0.051 2 0.066 0.143 186 0.055 0.055 10
20 10 0.054 0.046 -8 0.078 0.159 218 0.053 0.056 12
30 20 0.054 0.044 -12 0.087 0.17 240 0.054 0.059 18
40 30 0.052 0.043 -14 0.089 0.182 264 0.059 0.07 40
0 20 0.05 0.058 16 0.208 0.582 1064 0.092 0.156 212
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30
40
0
10
20
30
40
0
10
0
40

0.052
0.048
0.05
0.055
0.054
0.049
0.046
0.052
0.057
0.053
0.052

0.049
0.047
0.044
0.042
0.047
0.048
0.048
0.042
0.047
0.046
0.056

12

0.215
0.231
0.167
0.183
0.191
0.384
0.42
0.32
0.349
0.495
0.625

0.635
0.683
0.461
0.498
0.559
0.925
0.952
0.81
0.859
0.974
1

1170
1266
822
896
1018
1750
1804
1520
1618
1848
1900

0.091
0.096
0.053
0.058
0.065
0.119
0.136
0.063
0.089
0.105
0.166

0.177
0.204
0.089
0.103
0.114
0.264
0.346
0.152
0.193
0.29
0.469

254
308
78
106
128
428
592
204
286
480
838

Note. %Bias was calculated based on the Type I error when the sample sizes of the two groups were (100,1000).
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Table 6. Type 1 error for group 1: appropriate method (random generating), group 2: inappropriate generating method II assumed
Exponential distribution T;, T, ~ Exp(5.873)

n1 = nz n1 * nz

P1 P2

(30,30) (100,100) (1000,1000)  %HBias (30,100)  (100,1000) %Bias
0 0 0.054 0.051 0.054 8 0.058 0.057 14
10 10 0.048 0.068 0.198 296 0.072 0.105 110
20 20 0.066 0.12 0.672 1244 0.106 0.226 352
30 30 0.103 0.213 0.956 1812 0.167 0.422 744
40 40 0.163 0.378 1 1900 0.234 0.654 1208

Note. %Bias was calculated based on the type 1 error when the sample sizes of the two groups were (1000,1000) and (100,1000).
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Table 7. Type 1 error for group 1: appropriate method (random generating), group 2: inappropriate generating method Il assumed Weibull

distribution Ty, T, ~ Weib(2,2)

nl = nz nl * nZ
P1 P2
(30,30) (100,100) (1000,1000)  %Bias (30,100)  (100,1000) %Bias

0 0 0.054 0.051 0.054 8 0.058 0.057 14
10 10 0.047 0.058 0.111 122 0.061 0.089 78
20 20 0.046 0.084 0.36 620 0.082 0.142 184
30 30 0.074 0.133 0.729 1358 0.118 0.263 426
40 40 0.107 0.221 0.953 1806 0.159 0.442 784

Note. %Bias was calculated based on the type 1 error when the sample sizes of the two groups were (1000,1000) and (100,1000).
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Figure 5. Type 1 error for group 1: appropriate method (random
generating), group 2: inappropriate method II in two sample

where n; and n, are unequal

Figure 4. Type 1 error for group 1: appropriate method (random
generating), group 2: inappropriate method II in two sample
where n,; and n, are equal
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Table 8. Spearman correlation coefficient under each method in one sample assumed Exponential
distribution T ~ Exp(5.873)

Method P
30 100 1000
10 -0.002 -0.001 0.003
20 0.013 -0.011 -0.004
Appropriate method
30 0.046 -0.006 -0.005
40 0.013 -0.007 0.001
10 0.195 0.204 0.211
(7‘;’;/ 20 0.389 0.4 0.401
0
percentile) 30 0.569 0.571 0.571
40 0.714 0.716 0.719
10 0.15 0.157 0.161
%
Inappropriate (8(;"/ 20 0.32 0.321 0.318
0
method 1 percentile) 30 0.487 0.479 0.473
40 0.643 0.629 0.628
10 0.099 0.106 0.109
c* 20 0.237 0.231 0.227
(95%
percentile) 30 0.383 0.363 0.353
40 0.532 0.5 0.498
10 0.223 0.178 0.195
Cx 20 0.339 0.347 0.344
(75%
percentile) 30 0.432 0.435 0.448
40 0.516 0.522 0.531
10 0.181 0.133 0.149
%
Inappropriate (8C5% 20 0.278 0.279 0.274
method IT percentile) 30 0.366 0.366 0375
40 0.459 0.459 0.465
10 0.135 0.084 0.1
c* 20 0.205 0.202 0.195
(95%
percentile) 30 0.287 0.278 0.284
40 0.38 0.373 0.374
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Table 9. Spearman correlation coefficient under each method in one sample assumed Weibull
distribution T ~ Weib(2,2)

Method P
30 100 1000
10 -0.023 0.014 0.001
20 -0.005 0.005 -0.001
Appropriate method
30 0.02 0.023 0.003
40 0.019 0.013 -0.005
10 0.343 0.35 0.359
(7C5’;/ 20 0.46 0.477 0.48
0
percentile) 30 0.577 0.576 0.576
40 0.668 0.665 0.669
10 0.304 0.308 0.315
Inappropriate (8C5j/ 20 0.416 0.427 0.427
0
method 1 percentile) 30 0.527 0.523 0.52
40 0.624 0.612 0.614
10 0.254 0.254 0.26
c* 20 0.357 0.36 0.36
(95%
percentile) 30 0.465 0.452 0.446
40 0.562 0.538 0.539
10 0.342 0.309 0.327
Cx 20 0.382 0.394 0.394
(75%
percentile) 30 0.4 0.403 0.419
40 0.414 0.426 0.436
10 0.309 0.271 0.287
Inappropriate (;Si/ 20 0.346 0.354 0.351
0
method II percentile) 30 0.368 0.366 0.38
40 0.386 0.395 0.402
10 0.265 0.221 0.237
(9051; 20 0.296 0.299 0.296
0
percentile) 30 0.32 0315 0.327
40 0.347 0.35 0.356
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5. Conclusion and discussion

A random generation method is generally used when generating survival data. In this approach,
the event and censoring times are generated independently. The distribution parameters for
censoring times are then determined based on the assumed two distributions under the condition of
a fixed censoring proportion. We define this as the appropriate method. When both time distributions
are Exponential, the censoring parameter can be calculated directly. However, when Weibull
distributions are assumed, a closed-form expression cannot be derived. In such cases, if the shape
parameters are assumed equal, the scale parameter can be determined. Otherwise, the scale
parameter is calculated numerically using the root-finding Newton-Raphson algorithm. However,
this process is time consuming and complex, leading to many instances in previous studies where
survival data were inappropriately generated. Inappropriate data generation can result in misleading
results. To address this, we conducted simulations and developed a theoretical framework based on

two inappropriate methods.

The simulation demonstrated Type I error under various simulation settings for three different
methods: one using random generation and the other two using inappropriate methods. Through this
study, we aimed to investigate the inflation in Type I error when survival data were generated

inappropriately.

The simulation results showed that when survival data were generated using an appropriate
method, the Type I error was well controlled regardless of whether the censoring proportions were
equal or unequal. In contrasts, when survival data were generated using an inappropriate method,
the Type I error was not controlled in all cases where the censoring proportions were unequal.

Furthermore, when one group’s data was generated using the random generating method and the
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other group’s data was generated using the inappropriate method II, it was observed that the Type I
error was not controlled even when the censoring proportions of the two groups were equal. The
Spearman correlation between the event times and censoring times showed that a correlation existed
when generating inappropriate methods. The reason for the presence of a correlation in the
inappropriate generating method is due to the fact that the data were generated dependently, not

randomly.

Therefore, it is essential to appropriately generate survival data. Failure to consider this and using
improperly generated data, such as a simulation section, can lead to erroneous results. This can be
applied not only to the log-rank test statistic but also to other statistical measures. Moreover, further
research is needed to explore new methods that can effectively control the Type I error even under

dependently censored survival data.
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Appendix

Appendix Table 1. Spearman correlation coefficient for appropriate method in two sample with n,
and n, are equal and unequal assumed Exponential distribution Ty, T, ~ Exp(5.873)

ny=n, ny #n,
P1 P2
(30,30) (100,100)  (1000,1000) (30,100)  (100,1000)

10 10 -0.023 -0.014 0.007 -0.012 -0.009
20 20 -0.006 -0.003 0.004 -0.005 -0.004
30 30 0.018 0.013 0.002 0.016 0.008
40 40 0.02 -0.009 0.002 0.015 -0.006
10 20 0.037 -0.02 -0.003 0.031 -0.011
20 30 -0.004 -0.005 -0.005 -0.009 -0.003
30 40 0.015 0.006 0.001 0.008 0.002
20 10 0.045 -0.002 0 0.034 0
30 20 0.013 0.007 0 0.012 0.004
40 30 -0.04 0 0 -0.032 0
10 30 -0.008 -0.016 -0.003 -0.005 -0.009
20 40 0.004 0.007 0.002 -0.002 0.003
30 10 -0.009 0.008 -0.003 -0.007 0.003
40 20 -0.004 0.018 0.001 -0.006 0.009
10 40 -0.002 0.014 -0.002 -0.001 0.009
40 10 0.001 -0.005 0.001 -0.001 -0.003
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Appendix Table 2. Spearman correlation coefficient for appropriate method in two sample with n,
and n, are equal and unequal assumed Weibull distribution T;, T, ~ Weib(2,2)

ny=n, ny#n,
P1 P2
(30,30) (100,100)  (1000,1000) (30,100)  (100,1000)

10 10 -0.024 -0.012 0.008 -0.012 -0.009
20 20 -0.004 -0.001 0.003 -0.004 -0.003
30 30 0.016 0.013 0.003 0.014 0.007
40 40 0.019 -0.008 0.001 0.014 -0.005
10 20 0.034 -0.019 -0.004 0.03 -0.01
20 30 -0.009 -0.007 -0.005 -0.011 -0.004
30 40 0.018 0.005 0.001 0.009 0.002
20 10 0.044 -0.001 0 0.032 0.001
30 20 0.013 0.007 0 0.012 0.004
40 30 -0.041 0 -0.001 -0.032 -0.001
10 30 -0.005 -0.014 -0.003 -0.004 -0.008
20 40 0.003 0.008 0.002 -0.001 0.003
30 10 -0.01 0.007 -0.003 -0.007 0.002
40 20 0 0.019 0.002 -0.002 0.01
10 40 -0.002 0.014 -0.002 -0.001 0.009
40 10 0 -0.004 0.001 -0.002 -0.003
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Appendix Table 3. Spearman correlation coefficient for inappropriate method I in two sample with n; and n, are equal assumed
Exponential distribution Ty, T, ~ Exp(5.873)

C* (75% percentile) C* (85% percentile) C* (95% percentile)

Pr P2 (30,30) (100,100) (1000,1000) | (30,30) (100,100) (1000,1000) | (30,30) (100,100) (1000,1000)
10 10 0.194 0.21 0.21 0.149 0.163 0.16 0.098 0.113 0.108
20 20 0.389 0.405 0.399 0.319 0.326 0.316 0.236 0.236 0.225
30 30 0.57 0.561 0.573 0.489 0.468 0.477 0.385 0.351 0.359
40 40 0.714 0.721 0.72 0.642 0.638 0.628 0.532 0.515 0.5
10 20 0.3 0.296 0.306 0.239 0.234 0.24 0.175 0.164 0.168
20 30 0482 0.481 0.486 0.405 0.398 0.395 0.312 0.297 0.29
30 40 0.643 0.643 0.647 0.567 0.555 0.552 0.463 0.437 0.428
20 10 0.301 0.311 0.305 0.243 0.248 0.238 0.178 0.178 0.167
30 20 0495 0.485 0.489 0.423 0.399 0.399 0.33 0.297 0.295
40 30 0.652 0.641 0.645 0.578 0.552 0.55 0.477 0.435 0.427
10 30 0.403 0.39 0.393 0.342 0.321 0.319 0.267 0.239 0.234
20 40 0.562 0.562 0.56 0.489 0.48 0.472 0.394 0.374 0.362
30 10 0.384 0.386 0.393 0.322 0.315 0.32 0.247 0.233 0.235
40 20 0.573 0.541 0.563 0.505 0.455 0.475 0.412 0.346 0.366
10 40 0.449 0.462 0.467 0.39 0.394 0.397 0.312 0.306 0.308
40 10 0474 0.459 0.464 0.417 0.391 0.393 0.34 0.303 0.303
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Appendix Table 4. Spearman correlation coefficient for inappropriate method I in two sample with n; and n, are unequal assumed
Exponential distribution Ty, T, ~ Exp(5.873)

C* (75% percentile) C* (85% percentile) C* (95% percentile)
Pr Pz (30,100) (100,1000) (30,100) (100,1000) (30,100) (100,1000)
10 10 0.203 0.21 0.156 0.162 0.105 0.111
20 20 0.402 0.404 0.328 0.324 0.24 0.234
30 30 0.563 0.566 0.476 0.471 0.363 0.353
40 40 0.716 0.721 0.637 0.634 0.517 0.508
10 20 0.299 0.302 0.236 0.237 0.167 0.166
20 30 0.488 0.483 0.405 0.396 0.305 0.292
30 40 0.649 0.645 0.567 0.554 0.454 0.432
20 10 0.301 0.307 0.244 0.242 0.177 0.172
30 20 0.482 0.487 0.405 0.4 0.308 0.297
40 30 0.646 0.643 0.565 0.551 0.455 0.431
10 30 0.398 0.389 0.329 0.317 0.247 0.233
20 40 0.563 0.562 0.486 0.477 0.383 0.367
30 10 0.384 0.387 0.321 0316 0.246 0.233
40 20 0.568 0.552 0.494 0.467 0.397 0.357
10 40 0.455 0.464 0.391 0.393 0.302 0.304
40 10 0.473 0.46 0.415 0.391 0.335 0.302
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Appendix Table 5. Spearman correlation coefficient for inappropriate method I in two sample with n; and n, are equal assumed
Weibull distribution Ty, T, ~ Weib(2,2)

C* (75% percentile) C* (85% percentile) C* (95% percentile)
P1 P2 (30,30) (100,100) (1000,1000) | (30,30) (100,100) (1000,1000) | (30,30) (100,100) (1000,1000)
10 10 0.342 0.355 0.358 0.303 0.314 0314 0.252 0.262 0.259
20 20 0.46 0.483 0.479 0.416 0.432 0.426 0.357 0.365 0.359
30 30 0.578 0.567 0.578 0.529 0.512 0.522 0.468 0.44 0.45
40 40 0.668 0.673 0.669 0.624 0.622 0.614 0.562 0.552 0.54
10 20 0411 0.41 0.42 0.367 0.364 0.371 0.312 0.305 0.31
20 30 0.521 0.524 0.528 0.474 0.474 0.473 0.41 0.406 0.403
30 40 0.621 0.622 0.624 0.574 0.57 0.568 0.512 0.5 0.494
20 10 0.41 0.423 0.419 0.368 0.377 0.37 0.316 0.318 0.309
30 20 0.531 0.524 0.531 0.487 0.472 0.477 0.428 0.404 0.407
40 30 0.632 0.621 0.622 0.587 0.568 0.566 0.528 0.499 0.493
10 30 0477 0.468 0.47 0.436 0.419 0.419 0.384 0.357 0.356
20 40 0.571 0.576 0.574 0.525 0.525 0.52 0.468 0.458 0.449
30 10 0.456 0.462 0.47 0.412 0.414 0.419 0.358 0.352 0.356
40 20 0.586 0.555 0.577 0.545 0.502 0.523 0.485 0.432 0.453
10 40 0.495 0.51 0.516 0.455 0.462 0.467 0.399 0.401 0.403
40 10 0.526 0.507 0.512 0.484 0.459 0.463 0.426 0.396 0.399
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Appendix Table 6. Spearman correlation coefficient for inappropriate method II in two sample with n; and n, are unequal assumed
Weibull distribution Ty, T, ~ Weib(2,2)

C* (75% percentile) C* (85% percentile) C* (95% percentile)
Pr Pz (30,100) (100,1000) (30,100) (100,1000) (30,100) (100,1000)
10 10 0.35 0.356 0.309 0314 0.257 0.26
20 20 0.474 0.483 0.428 0.431 0.366 0.364
30 30 0.571 0.571 0.519 0.516 0.45 0.443
40 40 0.667 0.672 0.619 0.619 0.55 0.546
10 20 0.41 0.415 0.365 0.368 0.307 0.307
20 30 0.526 0.525 0.475 0.472 0.409 0.403
30 40 0.625 0.622 0.575 0.569 0.508 0.496
20 10 0.414 0.421 0.37 0.373 0.314 0.313
30 20 0.523 0.528 0.475 0.475 0.411 0.406
40 30 0.626 0.622 0.577 0.568 0.512 0.496
10 30 0.472 0.466 0.427 0.417 0.368 0.353
20 40 0.572 0.575 0.525 0.523 0.461 0.453
30 10 0.459 0.465 0414 0.416 0.356 0.353
40 20 0.581 0.567 0.537 0.513 0.474 0.443
10 40 0.5 0.511 0.457 0.463 0.396 0.399
40 10 0.522 0.509 0.479 0.46 0.422 0.396
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Appendix Table 7. Spearman correlation coefficient for inappropriate method II in two sample with n; and n, are equal assumed
Exponential distribution Ty, T, ~ Exp(5.873)

C* (75% percentile) C* (85% percentile) C* (95% percentile)
P1 P2 (30,30) (100,100) (1000,1000) | (30,30) (100,100) (1000,1000) | (30,30) (100,100) (1000,1000)
10 10 0.222 0.204 0.189 0.18 0.16 0.142 0.135 0.111 0.094
20 20 0.338 0.339 0.34 0.277 0.272 0.27 0.204 0.194 0.193
30 30 0433 0.453 0.451 0.368 0.383 0.377 0.289 0.292 0.287
40 40 0.516 0.531 0.53 0.459 0.468 0.462 0.379 0.379 0.372
10 20 0.266 0.268 0.268 0.214 0.212 0.209 0.155 0.148 0.146
20 30 0.366 0.393 0.4 0.306 0.326 0.328 0.228 0.245 0.243
30 40 0514 0.477 0.493 0.458 0.41 0.422 0.382 0.322 0.331
20 10 0.241 0.26 0.27 0.188 0.203 0.211 0.131 0.139 0.148
30 20 0.41 0.39 0.395 0.35 0.322 0.323 0.281 0.238 0.238
40 30 0.514 0.486 0.491 0.455 0.418 0.421 0.376 0.33 0.332
10 30 0.303 0.328 0.325 0.252 0.271 0.264 0.19 0.203 0.196
20 40 0423 0.427 0.437 0.363 0.36 0.369 0.289 0.276 0.285
30 10 0.326 0.319 0.325 0.277 0.261 0.264 0.218 0.194 0.195
40 20 0.44 0.418 0.436 0.383 0.353 0.367 0.308 0.273 0.283
10 40 0.369 0.358 0.365 0.321 0.303 0.308 0.261 0.236 0.239
40 10 0.368 0.362 0.362 0.322 0.307 0.305 0.266 0.239 0.237
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Appendix Table 8. Spearman correlation coefficient for inappropriate method II in two sample with n,; and n, are unequal assumed
Exponential distribution Ty, T, ~ Exp(5.873)

C* (75% percentile) C* (85% percentile) C* (95% percentile)
Pr Pz (30,100) (100,1000) (30,100) (100,1000) (30,100) (100,1000)
10 10 0.212 0.201 0.168 0.156 0.122 0.108
20 20 0.344 0.343 0.28 0.275 0.205 0.196
30 30 0.435 0.451 0.366 0.38 0.28 0.289
40 40 0.521 0.532 0.462 0.466 0.377 0.377
10 20 0.265 0.268 0.211 0.211 0.15 0.148
20 30 0.377 0.395 0314 0.326 0.232 0.242
30 40 0.508 0.483 0.448 0.415 0.365 0.326
20 10 0.252 0.267 0.2 0.209 0.139 0.146
30 20 0.393 0.394 0.33 0.324 0.253 0.24
40 30 0.507 0.49 0.444 0.421 0.362 0.332
10 30 0.311 0.324 0.256 0.265 0.187 0.196
20 40 0.433 0.433 0.371 0.365 0.293 0.281
30 10 0.322 0.318 0.271 0.259 0.208 0.192
40 20 0.439 0.425 0.378 0.359 0.299 0.276
10 40 0.361 0.362 0.31 0.305 0.244 0.238
40 10 0.357 0.36 0.31 0.303 0.25 0.235
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Appendix Table 9. Spearman correlation coefficient for inappropriate method II in two sample with n; and n, are equal assumed
Weibull distribution Ty, T, ~ Weib(2,2)

C* (75% percentile) C* (85% percentile) C* (95% percentile)
P1 P2 (30,30) (100,100) (1000,1000) | (30,30) (100,100) (1000,1000) | (30,30) (100,100) (1000,1000)
10 10 0.341 0.334 0.321 0.308 0.295 0.281 0.265 0.247 0.231
20 20 0.382 0.387 0.39 0.345 0.347 0.348 0.295 0.292 0.293
30 30 0402 0.421 0.42 0.369 0.383 0.381 0.322 0.332 0.329
40 40 0414 0.434 0.433 0.386 0.402 0.399 0.346 0.356 0.353
10 20 0.351 0.358 0.359 0314 0.318 0318 0.266 0.266 0.265
20 30 0375 0.404 0.41 0.339 0.366 0.369 0.29 0.314 0.315
30 40 0.446 0.415 0.429 0.418 0.38 0.393 0.379 0.331 0.343
20 10 0.327 0.349 0.361 0.289 0.309 0.319 0.244 0.256 0.267
30 20 0411 0.397 0.405 0.379 0.357 0.364 0.335 0.305 0.31
40 30 0453 0.423 0.428 0.423 0.389 0.392 0.379 0.34 0.344
10 30 0.354 0.378 0.375 0.318 0.34 0.335 0.272 0.291 0.285
20 40 0.391 0.4 0.414 0.359 0.363 0.376 0.314 0.313 0.326
30 10 0.374 0.368 0.375 0.34 0.33 0.336 0.297 0.281 0.285
40 20 0.409 0.394 0.413 0.377 0.358 0.374 0.333 0.31 0.324
10 40 0.385 0.374 0.383 0.355 0.339 0.346 0.313 0.292 0.298
40 10 0.385 0.377 0.38 0.355 0.341 0.343 0.315 0.295 0.295
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Appendix Table 10. Spearman correlation coefficient for inappropriate method II in two sample with n, and n, are unequal assumed
Weibull distribution Ty, T, ~ Weib(2,2)

C* (75% percentile) C* (85% percentile) C* (95% percentile)
Pr P2 (30,100) (100,1000) (30,100) (100,1000) (30,100) (100,1000)
10 10 0.336 0.332 0.3 0.293 0.254 0.243
20 20 0.388 0.392 0.351 0.351 0.299 0.296
30 30 0.404 0.42 0.369 0.381 0.319 0.33
40 40 0.421 0.435 0.391 0.402 0.349 0.356
10 20 0.353 0.359 0.314 0.319 0.265 0.266
20 30 0.385 0.404 0.348 0.365 0.297 0.312
30 40 0.442 0.421 0.411 0.385 0.368 0.336
20 10 0.337 0.356 0.298 0.315 0.251 0.263
30 20 0.399 0.403 0.363 0.363 0.313 0.31
40 30 0.447 0.427 0.414 0.392 0.368 0.343
10 30 0.361 0.374 0.323 0.336 0.275 0.285
20 40 0.404 0.408 0.371 0.371 0.324 0.321
30 10 0.37 0.369 0.335 0.33 0.289 0.28
40 20 0.412 0.403 0.377 0.366 0.329 0.317
10 40 0.378 0.377 0.346 0.341 0.301 0.295
40 10 0.376 0.377 0.344 0.341 0.301 0.293
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