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ABSTRACT 

Inflation of Type Ⅰ Error of Log-Rank Test  

with Inappropriately Generated Censoring Data 

 

 

When simulating survival data, some types of data generation lead to erroneous results. In, in 

an appropriate generating method called random generation, the event time and censoring time are 

separately generated based on assumed distributions. In the case where the censoring proportion is 

fixed, for example, the Weibull distribution does not have a closed form for calculating the censoring 

distribution parameter, particularly when the shape parameters differ. This often leads to the use of 

inappropriate data generation methods to simplify the process. In this study, we aimed to investigate 

the problems caused by inappropriate data generation through simulations and mathematical 

validation. Specifically, we evaluated Type I error rates of the log-rank test in a two-sample setting 

and examined the correlation between event times(𝑇) and censoring times(𝐶). 

In inappropriate generating method Ⅰ, after generating event time based on assumed 

Exponential and Weibull distributions, censoring indicator is generated using a Bernoulli 

distribution. In cases where censoring occurs, the censoring time is replaced by the generated event 

time. Furthermore, in inappropriate generating method Ⅱ, censoring time is generated based on a 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑇𝑖) 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, introducing between 𝑇 𝑎𝑛𝑑 𝐶. 

The Type I error of the log-rank test was well controlled in the random generation whether the 

predefined censoring proportions were equal or not between groups, whereas it was inflated in the 

inappropriate method when the censoring proportions were unequal. However, an inappropriate 

method appeared to effectively control the Type I error when the censoring proportions were equal. 
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This is likely due to the log-rank test, where the dependent censoring between 𝑇 𝑎𝑛𝑑 𝐶 results in 

the conditional distribution of 𝑇 𝑔𝑖𝑣𝑒𝑛 𝐶 becoming different from the marginal distribution of 𝑇 

which can distort the actual differences between groups, creating the illusion of well-controlled Type 

I error rates. 

Additional simulations were conducted to investigate this issue. One group was generated using 

the random generating method, while the other group was generated using the inappropriate 

generating method Ⅱ. The results showed that even when the censoring proportions were equal 

between the groups, the Type I error of the log-rank test was inflated. This finding suggests that the 

increase in Type I errors is not due to unequal censoring proportions, but rather due to the 

inappropriate data-generating process that induced dependent censoring. Additionally, Spearman 

correlation between event time and censoring time confirmed that improper data generation 

introduced dependency. 

                                                                            

Key words: Censored Data, Random Generating, Inappropriate Data Generating, Log-Rank Test, 

Type Ⅰ error
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1. Introduction 

In survival analysis, there are various approaches for generating survival data. As different 

approaches used in previous studies, Alam et al. (2022) generated event times and censoring times 

separately, assumed the same distribution, and used the minimum as observed time. Additionally, 

Wan (2016) generated event times assuming a Weibull distribution and created censoring times 

under two conditions: one where the shape parameter of the censoring time matched the event time, 

and another where it differed. A numerical root-finding algorithm was employed to determine the 

scale parameter when using a different shape parameter for the censoring time. This method is 

commonly used to generate survival data and is referred to as random or independent generation. 

Furthermore, event times can be generated by drawing random values from a uniform 

distribution and applying an inverse transformation to an Exponential distribution. The censoring 

indicator can be generated based on a Bernoulli distribution using the true event rate as a parameter. 

The authors then employed the approach of multiplying the generated survival time with a random 

value from a uniform distribution for censored observations (Kuss et al., 2021). 

A recent study investigated the impact of unequal censoring proportions and insufficient follow-

up under dependent censoring in clinical trials comparing survival between two groups (Srivastava 

et al., 2021). In this study, event times were generated assuming Exponential and Weibull 

distributions, and censoring times were generated from a uniform distribution ranging from zero to 

the corresponding generated event times. The study found that as the difference in censoring 

proportions between the treatment groups increased, there was a tendency for Type Ⅰ error to increase 

and power to decrease in all tests. 
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Research on censoring proportions in survival data has been extensively conducted over the 

years. Beltangady and Frankowski evaluated the performance of log-rank and Wilcoxon type tests 

to compare two survival distributions in the presence of unequal random censoring for small sample 

sizes. They concluded that the inequality of censoring proportions affected the power of all tests, 

and that greater differences in censoring proportions led to lower power estimates (Beltangady and 

Frankowski, 1989). Wang et al. proposed several improvements of the permutation log-rank test for 

comparing two survival distributions with different censoring distributions. Their method involves 

imputing failure and censoring times based on Kaplan-Meier estimates of the survival and censoring 

distributions. Additionally, they introduced a permutation test specifically designed to address 

unequal censoring using this imputation approach (Wang et al., 2010). 

When the censoring proportion is fixed, survival data are generally generated using the random 

generation method described in Section 2.2. However, when the shape parameters of the Weibull 

distribution differ, a closed-form expression for calculating the scale parameter of the censoring 

distribution does not exist. To address this issue, some studies have employed inappropriate data 

generation methods. However, improper methods often lead to erroneous results. The objective of 

this study is to identify the issues arising from such practices through mathematical proofs and 

simulations across equal and unequal censoring proportions between two groups. This study makes 

a notable contribution by addressing the issue of inappropriately generating censored data, which 

commonly occurs in clinical trials, and by comparing incorrect data generation methods across 

several simulation settings. 

The remainder of this paper is organized as follows. Section 1 introduces the study and 

describes its purpose. In Section 2, we explain independent censoring, the approach for deriving the 

distribution parameter of the censoring time under this condition, and the log-rank test. Also, in the 
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same section, we summarize the three methods, one using random generating method and two using 

inappropriate methods, generating survival data. In Section 3, we present the theoretical framework 

for both dependent and independent data generation of event times and censoring times. In Section 

4 sets up different simulation setting and compares the Type Ⅰ error control of the two-sample log-

rank test and the correlation between for each method. Finally, Section 5 concludes the study and 

discusses the implications of this research. 
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2. Methods 

2.1 Notation 

Assume that there are 𝑛𝑖 subjects. For 𝑗 =  1, ⋯ , 𝑛𝑖, 𝑇𝑖𝑗  denotes the survival time for the 

𝑖th subject and in 𝑗th group. Also, 𝐶𝑖𝑗 denotes the censoring time for the 𝑖th subject and in 𝑗th 

group. We observe (𝑋𝑖𝑗 , 𝛿𝑖𝑗), where the observed event time is denoted 𝑋𝑖𝑗 =  𝑚𝑖𝑛(𝑇𝑖𝑗 , 𝐶𝑖𝑗) and 

𝛿𝑖𝑗 =  𝐼(𝑋𝑖𝑗 = 𝐶𝑖𝑗) serves as the censoring indicator. 

The hazard function is denoted by ℎ(𝑡), and the survival function is denoted by 𝑆(𝑡). The 

predefined censoring proportion is indicated as 𝑝. For the distribution parameters, 𝜆 is denoted as 

the parameter in Exponential distribution or the scale parameter in the Weibull distribution. The 

shape parameter in the Weibull distribution is denoted as 𝛼. Lastly, the Spearman correlation is 

represented by 𝑟𝑠 . 
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2.2 Parameter of censoring time distribution for fixed censoring 

proportion 

The event time is generated using the Exponential and Weibull distributions, respectively, and 

each distribution is as follows: 

 

• Exponential distribution 

• ℎ(𝑥) = 𝜆 

• 𝑆(𝑥) =  𝑒𝑥𝑝(−𝜆𝑥)  

• 𝑓(𝑥) = 𝜆𝑒𝑥𝑝(−𝜆𝑥)  

 

• Weibull distribution 

• ℎ(𝑥) = 𝜆𝛼𝑥𝛼−1 

• 𝑆(𝑥) =  𝑒𝑥𝑝(−𝜆𝑥𝛼)  

• 𝑓(𝑥) = 𝛼𝜆𝑥𝛼−1𝑒𝑥𝑝(−𝜆𝑥𝛼)  

 

where 𝛼 > 0  is a shape parameter, and 𝜆 > 0  is a scale parameter. In the case of a Weibull 

distribution, the condition 𝛼 ≠ 1  is required, because if 𝛼 = 1 , the distribution becomes 

equivalent to the Exponential distribution. 
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The parameters of the censoring time distribution for each distribution can be derived using the 

joint probability distribution function of the event and the censoring time distribution when the 

censoring proportion is predefined and fixed. First, when event time is generated from an 

Exponential distribution, the censoring time parameter can be derived as follows: 

 

• Exponential distribution 

𝑝 (Censoring proportion) = 𝑃(𝑇 > 𝐶) 

=  ∫ ∫ 𝜆1𝑒−𝜆1𝑡 ∙
∞

𝑐

𝜆2𝑒−𝜆2𝑐𝑑𝑡𝑑𝑐
∞

0

 

=  ∫ [−𝑒−𝜆1𝑡 ∙ 𝜆2𝑒−𝜆2𝑐]
0

∞
𝑑𝑐

∞

0

 

=  [− 
𝜆1

𝜆1 + 𝜆2

𝑒−(𝜆1+𝜆2)]
0

∞

 

 =   
𝜆1

𝜆1 + 𝜆2

 

 

• Weibull distribution 

𝑝 (Censoring proportion) = 𝑃(𝑇 > 𝐶) 

=  ∫ ∫ 𝛼1𝜆1𝑡𝛼1−1 exp(−𝜆1𝑡) ∙
∞

𝑐

𝛼2𝜆2𝑐𝛼2−1 exp(−𝜆2𝑐𝛼2) 𝑑𝑡𝑑𝑐
∞

0

 

=  ∫ 𝛼2𝜆2𝑐𝛼2−1 exp(−𝜆2𝑐𝛼2) ∫ 𝛼1𝜆1𝑡𝛼1−1 exp(−𝜆1𝑡𝛼1)
∞

𝑐

𝑑𝑡𝑑𝑐
∞

0
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=  ∫ 𝛼2𝜆2𝑐𝛼2−1 exp(−𝜆2𝑐𝛼2) exp (−𝜆1𝑐𝛼1)𝑑𝑐
∞

0

 

 

Since a closed form no longer exists in the Weibull distribution, we add the condition that the 

shape parameters, 𝛼1 and 𝛼2, are equal for further mathematical derivations. 

 

=  ∫ 𝛼1𝜆2𝑐𝛼1−1 exp(−𝜆2𝑐𝛼1 − 𝜆1𝑐𝛼1) 𝑑𝑐
∞

0

 

=  [
𝜆2

−(𝜆1 + 𝜆2)
exp (−(𝜆1 + 𝜆2)𝑐𝛼1]

0

∞

 

=  
𝜆1

𝜆1 + 𝜆2

   &   𝛼1 =  𝛼2 

 

As shown in the above equation, the relationship between the parameters of the assumed 

distributions for the event and censoring times can be derived. Since the censoring proportion is 

fixed and 𝜆1 is given, 𝜆2 can be calculated. 

Based on the derived 𝜆2, the censoring time distribution can be generated. This method of 

separately deriving the event and censoring time distributions is referred to as independent 

generating. Typically, the times are derived randomly, and survival data is created by comparing the 

two times: if the event occurs first, the censoring indicator is set to 1; otherwise, it is set to 0. 
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However, for example, when the shape parameter of the Weibull distribution differ (𝛼1 ≠ 𝛼2), 

there is no closed-form for calculating the scale parameter 𝜆2 , requiring the use of numerical 

methods such as the Newton-Raphson algorithm. However, this process is computationally intensive 

and complex, leading to several cases in previous studies in which inappropriate methods were 

employed to generate survival data. 

To address this issue, some studies have employed inappropriate data generation methods. 

These methods lead to erroneous results when generating survival data. The aim of this study is to 

identify and verify the issues arising from such practices through theoretical framework and 

simulations. 
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2.3 Data generation 

2.3.1 Appropriate generating method 

The following methods were explained based on a two-sample setting.  

In an appropriate generating method, also called random generation, the event times 𝑇𝑖𝑗 , 𝑖 =

1, … , 𝑛𝑗 and 𝑗 = 1, 2 is generated based on the assumed Exponential and Weibull distribution. 

Also, the censoring times 𝐶𝑖𝑗  can be generated based on the distribution assumption of the 

parameter, as explained through the parameter relationship described in 2.2. The censoring 

indicator is obtained as 𝛿𝑖𝑗 =  𝐼(𝑇𝑖𝑗 ≤  𝐶𝑖𝑗) , in other words, if an event occurs, 𝛿𝑖𝑗 = 1 ; if 

censoring occurs, 𝛿𝑖𝑗 = 0. Observed time 𝑋𝑖𝑗 can be expressed as follows: 

 

𝑋𝑖𝑗  =  {
  𝑇𝑖𝑗         𝑖𝑓  𝛿𝑖𝑗  =  1

  𝐶𝑖𝑗         𝑖𝑓  𝛿𝑖𝑗  =  0
 

 

Finally, the generated survival data is (𝑋𝑖𝑗 , 𝛿𝑖𝑗), 𝑖 = 1, … , 𝑛𝑗 and 𝑗 = 1, 2. 

 

 

 

 

 

Figure 1. Diagram of the random generating method for survival data (𝑋, 𝛿)  

T C 
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X 

𝒎𝒊𝒏(𝑻𝟐, 𝑪𝟐) = 𝑪𝟐 

𝒎𝒊𝒏(𝑻𝟏, 𝑪𝟏) = 𝑻𝟏 

𝒎𝒊𝒏(𝑻𝒏, 𝑪𝒏) = 𝑪𝒏 

𝑻𝟏 

𝜹 

0 

1 

0 

𝑪𝟏 

𝑪𝟐 

𝑻𝒏 𝑪𝒏 

．．． ．．． ．．． ．．． 
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2.3.2 Inappropriate generating method Ⅰ 

In inappropriate generating method Ⅰ, first, the event time, 𝑇𝑖𝑗 , 𝑖 = 1, … , 𝑛𝑗 and 𝑗 = 1, 2 is 

generated based on the assumed distribution. Next, the censoring indicator is generated using 

bernoulli distribution, 𝛿𝑖𝑗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑝), where 𝑝 is prespecified censoring proportion. The 

censoring time 𝐶𝑖𝑗 is then expressed as follows: 

 

𝐶𝑖𝑗  =  {
𝑇𝑖𝑗                                     𝑖𝑓  𝛿𝑖𝑗  =  0

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑇𝑖𝑗 , 𝐶𝑖𝑗
∗ )        𝑖𝑓  𝛿𝑖𝑗  =  1

 

 

When censoring occurs, 𝛿𝑖𝑗 = 0 , and the previously generated event time is used as the 

censoring time. 𝐶𝑖𝑗
∗  is replaced by the percentile values (75%, 85% and 95%) of the censoring time 

randomly generated in inappropriate method Ⅰ. However, in this case, if 𝐶𝑖𝑗
∗ ≤ 𝑇𝑖𝑗   , it becomes 

difficult to properly generate to uniform distribution. Additionally, even if 𝛿𝑖𝑗  =  1, in order to check 

the correlation between event time and censoring time, there must be no missing values, and all data 

for each subject must be available. An important point is that this procedure is only required when 

calculating the correlation. In all other cases, if 𝛿𝑖𝑗  =  1, there is no need to generate a censoring 

time. Therefore, when it is necessary to check the correlation, the survival data is generated as 

follows with modification. 

𝐶𝑖𝑗  =  {
𝑇𝑖𝑗                                               𝑖𝑓  𝛿𝑖𝑗  =  0

𝑇𝑖𝑗 +  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝐶𝑖𝑗
∗ )        𝑖𝑓  𝛿𝑖𝑗  =  1
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2.3.3 Inappropriate generating method Ⅱ 

In inappropriate generating method Ⅰ, the censoring time 𝐶𝑖𝑗 was set to be exactly the pre-

generated event time 𝑇𝑖𝑗  . Instead in inappropriate generating method Ⅱ, when censoring occurs 

( 𝛿𝑖𝑗  =  0) , more randomness can be imposed on 𝐶𝑖𝑗  by sampling it from a 𝑈𝑛𝑖𝑓(0, 𝑇𝑖𝑗) 

distribution, which is formulated as follows: 

 

𝐶𝑖𝑗  =  {
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑇𝑖𝑗)          𝑖𝑓  𝛿𝑖𝑗  =  0

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑇𝑖𝑗 , 𝐶𝑖𝑗
∗ )        𝑖𝑓  𝛿𝑖𝑗  =  1

 

 

By making the above modifications, it is possible to generate censoring time earlier than the 

pre-generated event time 𝑇𝑖𝑗  . Similar to inappropriate method Ⅰ the case where 𝛿𝑖𝑗  =  1  was 

modified as follows to check the correlation. 

 

𝐶𝑖𝑗  =  {
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑇𝑖𝑗)                   𝑖𝑓  𝛿𝑖𝑗  =  0

𝑇𝑖𝑗 +  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝐶𝑖𝑗
∗ )        𝑖𝑓  𝛿𝑖𝑗  =  1
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2.4 Log-Rank Test 

The log-rank test is a representative method for testing the homogeneity of survival functions 

between two or more groups. The data generated from 𝐾(≥ 2) populations may include correct 

censoring and have 𝑡1 < 𝑡2 < ⋯ < 𝑡𝐷  distinct observed values. For group 𝑗 = 1,2, ⋯ , 𝐾,   time 

point 𝑖 = 1,2, ⋯ , 𝐷, 𝑑𝑖𝑗  is denoted as the number of events in the 𝑗𝑡ℎ group at time 𝑡𝑖 and 𝑌𝑖𝑗  

is denoted as the number of individuals at risk in the 𝑗𝑡ℎ group at time 𝑡𝑖. Also, 𝑑𝑖 =  ∑ 𝑑𝑖𝑗
𝐾
𝑗=1  

and 𝑌𝑖 =  ∑ 𝑌𝑖𝑗
𝐾
𝑗=1  denote the number of events and the number of individuals at risk at the time 

point 𝑡𝑖 in the combined data, respectively. 

We test the following hypotheses:  

𝐻0 ∶ ℎ1(𝑡) = ℎ2(𝑡) =  ⋯ = ℎ𝑘(𝑡), for all 𝑡 ≤ 𝜏  

𝐻1 ∶ at least one of the ℎ𝑖(𝑡)’s is different for some 𝑡 ≤ 𝜏 

Here 𝜏 denotes as the largest time at which all of the groups have at least one subject at risk. For 

example, in a two-sample case, if the null hypothesis is true, then at time 𝑡𝑖, 
𝑑𝑖

𝑌𝑖
=  

𝑑1𝑖

𝑌1𝑖
=  

𝑑2𝑖

𝑌2𝑖
. 

The test statistic of the log-rank test can be expressed as follows: 

 

𝑍𝑗(𝜏) =  ∑ [
𝑑𝑖𝑗

𝑌𝑖𝑗

− 
𝑑𝑖

𝑌𝑖

]

𝐷

𝑖=1

, 𝑗 = 1, … , 𝐾 

 

Then rewriting the test statistics 𝑍𝑗(𝜏), 
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𝑍𝑗(𝜏) =  ∑
1

𝑌𝑖𝑗

[𝑑𝑖𝑗 −  𝑌𝑖𝑗
𝑑𝑖

𝑌𝑖

] =  ∑
1

𝑌𝑖𝑗

𝐷

𝑖=1

[𝑂𝑖𝑗 − 𝐸𝑖𝑗], 𝑗 = 1, … , 𝐾 

𝐷

𝑖=1

 

 

In the case where the number of groups 𝐾 = 2, the test statistic is as follows:  

 

𝑍 =  
∑ 𝑊(𝑡𝑖) [𝑑𝑖1 − 𝑌𝑖1 (

𝑑𝑖

𝑌𝑖
)]𝐷

𝑖=1

√∑ 𝑊(𝑡𝑖) 2
𝑌1𝑖

𝑌𝑖
(1 −

𝑌1𝑖

𝑌𝑖
)𝐷

𝑖=1 (
𝑌𝑖 − 𝑑𝑖

𝑌𝑖 − 1
) 𝑑𝑖

 

 

The test statistic 𝑍 under the null hypothesis, 𝐻0 approaches 𝑍 ~ 𝑁(0, 1) as 𝑛 → ∞. When 

the weight function 𝑊(𝑡𝑖)  is 1 for all time points 𝑡𝑖 , it represents the standard log-rank test 

statistics. Depending on the 𝑊(𝑡𝑖), various forms of weighted log-rank test statistics exist (Fleming 

et al., 1987). 
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3. Theoretical framework 

3.1 Generation of censoring data 

 

Proposition. 

When the time-to-event 𝑇  and censoring time 𝐶  are dependent, the observed data (𝑋 =

 𝑚𝑖𝑛(𝑇, 𝐶) and 𝛿 = 𝐼(𝑇 ≤ 𝐶)) alone is insufficient to identify and compare the marginal survival 

functions between two groups. 

Definition. 

For the pdf 𝑓 of the observables (𝑋, 𝛿) with parameters vector 𝜃, 𝜃 is identifiable if any 

given 𝜃 uniquely determines the density 𝑓 of (𝑋, 𝛿), i.e. if 𝑓𝑋,𝛿,𝜃1
≡ 𝑓𝑋,𝛿,𝜃2

, then 𝜃1 = 𝜃2. 

Proof. 

Let 𝑇 be the random variable for the event time and 𝐶 the random variable for the censoring 

time, and the observed survival time 𝑋 =  𝑚𝑖𝑛(𝑇, 𝐶) and 𝛿 = 𝐼(𝑇 ≤ 𝐶). The PDFs of 𝑇 and 𝐶 

in groups 1 and 2 denoted as 𝑓1(𝑡), 𝑔1(𝑐)  and 𝑓2(𝑡), 𝑔2(𝑐) , respectively. Also, the CDFs and 

survival functions in groups 1 and 2 are 𝐹1(𝑡), 𝑆1(𝑡) = 1 − 𝐹1(𝑡) and 𝐹2(𝑡), 𝑆2(𝑡) = 1 − 𝐹2(𝑡), 

respectively. 

The distribution of the observed data (𝑋, 𝛿) is determined by the joint distribution of 𝑇 and 

𝐶 in each group, 𝑄1(𝑡, 𝑐) =  Pr(𝑇 ≤ 𝑡, 𝐶 ≤ 𝑐) and 𝑄2(𝑡, 𝑐) =  Pr(𝑇 ≤ 𝑡, 𝐶 ≤ 𝑐). 
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I. Under independent censoring 

𝑆1(𝑡) = Pr(𝑇1 > 𝑡) =  ∫ Pr(𝑇1 > 𝑡|𝐶1 = 𝑐) ∙ Pr(𝐶1 = 𝑐) 𝑑𝑐
∞

0

 

=  ∫ Pr(𝑇1 > 𝑡, 𝐶1 = 𝑐)/ Pr(𝐶1 = 𝑐) ∙ Pr(𝐶1 = 𝑐) 𝑑𝑐
∞

0

  

=  ∫ Pr(𝑇1 > 𝑡) ∙ Pr(𝐶1 = 𝑐) 𝑑𝑐
∞

0

 

=  Pr(𝑇1 > 𝑡) ∙ ∫ 𝑔1(𝑐)𝑑𝑐
∞

0

= Pr(𝑇1 > 𝑡) = 𝑆1(𝑡) 

such that from the observed 𝑃𝑟(𝑋1 = 𝑐, 𝛿 = 0), the marginal survival function 𝑆1(𝑡) can be 

separated out as Pr(𝑇1 > 𝑡, 𝐶1 = 𝑐) = 𝑆1(𝑡) ∙ 𝑔1(𝑐) due to independence between 𝑇 and 𝐶. 

Hence, the observed (𝑋, 𝛿) in both groups 1 and 2 can be used to obtain the marginal survival 

functions 𝑆1(𝑡) and 𝑆2(𝑡) to test for 𝐻0 ∶ 𝑆1(𝑡) = 𝑆2(𝑡). 

 

II. Under dependent censoring 

Let the strength of dependence between 𝑇 and 𝐶 be 𝜃 (−1 ≤ 0 ≤ 1). 

Now, the observed Pr(𝑋1 = 𝑐, 𝛿 = 0) = Pr(𝑇1 > 𝑡, 𝐶1 = 𝑐) = 𝑆1(𝑡|𝑐, 𝜃) ∙ 𝑔1(𝑐) = 𝑆1
∗(𝑡) ∙

𝑔1(𝑐) ≠ 𝑆1(𝑡) ∙ 𝑔1(𝑐), where 𝑆1
∗(𝑡) is not the marginal survival function of 𝑡 but a function of 

𝑡, 𝑐, and 𝜃. 

Therefore, the marginal survival function 𝑆1(𝑡)  can no longer be separated out from the 

observed (𝑋, 𝛿), i.e., Pr(𝑇1 > 𝑡, 𝐶1 = 𝑐) no longer factorizes such that 𝑆1(𝑡) is isolated. Thus, 
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comparing the observed (𝑋, 𝛿) between the two groups 1 and 2 is not equivalent to comparing the 

marginal survival functions 𝑆1(𝑡) and 𝑆2(𝑡) and cannot be used to test for 𝐻0 ∶ 𝑆1(𝑡) = 𝑆2(𝑡). 

 

The above presents the proof in a general case. In contrast, the following demonstrates the 

theoretical framework as applied to the actual generating scenario in the simulation section. The 

framework of inappropriate generating method Ⅱ (IG Ⅱ) is as follows: 

IG Ⅱ = {
𝐶 | 𝑇 = 𝑡, 𝛿 = 0  ~  𝑈𝑛𝑖𝑓(0, 𝑡) 
𝐶 | 𝑇 = 𝑡, 𝛿 = 1  ~  𝑈𝑛𝑖𝑓(𝑡, 𝐶∗)

 

and censoring proportion is defined by Pr(𝛿 = 0) =  𝑝. 

 

• Joint CDF: 𝑄𝑇,𝐶(𝑡, 𝑐) =  Pr(𝑇 ≤ 𝑡, 𝐶 ≤ 𝑐) 

=  Pr(𝑇 ≤  𝑡, 𝐶 ≤ 𝑐, 𝛿 = 0) + Pr(𝑇 ≤  𝑡, 𝐶 ≤ 𝑐, 𝛿 = 1) 

=  Pr(𝑇 ≤  𝑡, 𝐶 ≤ 𝑐 | 𝛿 = 0) × Pr(𝛿 = 0) + Pr(𝑇 ≤  𝑡, 𝐶 ≤  𝑐 | 𝛿 = 1) × Pr(𝛿 = 1) 

=  𝑝 × ∫ Pr(𝑇 ≤  𝑡 | 𝐶 = 𝑤, 𝛿 = 0)
𝑐

0

∙ Pr(𝐶 = 𝑤 | 𝛿 = 0)𝑑𝑤

+ (1 − 𝑝) × ∫ Pr(𝐶 ≤  𝑐 | 𝑇 = 𝑧, 𝛿 = 1)
𝑡

0

∙ Pr(𝑇 = 𝑧 | 𝛿 = 1)𝑑𝑧 

=  𝑝 ∫ Pr(𝑇 ≤  𝑡 | 𝐶 = 𝑤, 𝛿 = 0)
𝑐

0

𝑔(𝑤)𝑑𝑤 + (1 − 𝑝) ∫  
𝑐 − 𝑧

𝐶∗ − 𝑧
 𝐼(𝑧 ≤ 𝑐 ≤ 𝐶∗)𝑓(𝑧)

𝑡

0

𝑑𝑧  

 

For the derivation of the formula, we represented it using a joint PDF. 
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• Joint PDF: 𝑞(𝑇,𝐶)(𝑡, 𝑐) =  
𝜕2

𝜕𝑡𝜕𝑐
 𝑄𝑇,𝐶(𝑡, 𝑐) 

=  
𝜕

𝜕𝑡
[

𝜕

𝜕𝑐
[𝑝 ∫ Pr(𝑇 ≤  𝑡 | 𝐶 = 𝑤, 𝛿 = 0)

𝑐

0

𝑔(𝑤)𝑑𝑤]]

+  
𝜕

𝜕𝑐
[

𝜕

𝜕𝑡
[(1 − 𝑝) ∫  

𝑐 − 𝑧

𝐶∗ − 𝑧
 𝐼(𝑧 ≤ 𝑐 ≤ 𝐶∗)𝑓(𝑧)

𝑡

0

𝑑𝑧]]  

=  
𝜕

𝜕𝑡
[𝑝Pr(𝑇 ≤  𝑡 | 𝐶 = 𝑐, 𝛿 = 0)𝑔(𝑐)] + 

𝜕

𝜕𝑐
[(1 − 𝑝)

−1

𝐶∗ − 𝑡
𝐼(𝑡 ≤ 𝑐 ≤ 𝐶∗)𝑓(𝑡)] 

=  𝑝𝑔(𝑐)𝑓(𝑇 = 𝑡 | 𝐶 = 𝑐, 𝛿 = 0) + (1 − 𝑝)𝑓(𝑡)
−1

𝐶∗ − 𝑡
𝐼(𝑡 ≤ 𝑐 ≤ 𝐶∗) 

 

The joint PDFs for each group 1 and 2 can be expressed as follows: 

Group 1: 𝑝1𝑔1(𝑐)𝑓1(𝑇 = 𝑡 | 𝐶 = 𝑐, 𝛿 = 0) + (1 − 𝑝1)𝑓1(𝑡)
−1

𝐶∗−𝑡
𝐼(𝑡 ≤ 𝑐 ≤ 𝐶∗) 

Group 2: 𝑝2𝑔2(𝑐)𝑓2(𝑇 = 𝑡 | 𝐶 = 𝑐, 𝛿 = 0) + (1 − 𝑝2)𝑓2(𝑡)
−1

𝐶∗−𝑡
𝐼(𝑡 ≤ 𝑐 ≤ 𝐶∗) 

 

As the survival functions of each group change, 𝑓1(𝑡) becomes 𝑓1
∗(𝑡), and 𝑓2(𝑡) becomes 

𝑓2
∗(𝑡). If 𝑝1 = 𝑝2, the joint PDFs structure is the same across groups under equal censoring, but 

when 𝑝1 ≠ 𝑝2, with unequal censoring by groups, the distribution of the survival functions is altered. 

The test statistic such as log-rank differs between groups, leading to an increase in Type Ⅰ error. 

Additionally, when survival data is generated using random generating for group 1 and 

inappropriate generating for group 2, the survival function 𝑓1(𝑡) of group 1 remains unchanged, 
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whereas the survival function 𝑓2(𝑡) of group 2 changes to 𝑓2
∗(𝑡). In this case, when the censoring 

proportions are equal, i.e., 𝑝1 =  𝑝2, the distribution of the survival functions differ, resulting in a 

violation of homogeneity between the two groups. 
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4. Simulation 

4.1 Simulation setting 

Before the simulation settings, event times for all generating methods were generated based on 

the following approach under distributional assumptions. First, let 𝑋 be a random variable with a 

continuous and strictly increasing cumulative distribution function (CDF). Then, we define a random 

variable 𝑌 denoted as 𝑌 =  𝐹(𝑋), then, 𝑌 follows a uniform distribution on the interval [0, 1]. 

In other words, 𝑌 = 𝐹(𝑋)  ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) . 

Next, for the event time 𝑇  in the Exponential distribution, 𝐹(𝑇) = 1 − 𝑆(𝑇) =
𝑑

1 −

𝑒𝑥𝑝(−𝜆𝑇) =
𝑑

𝑈 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) . Finally, 𝑒𝑥𝑝(−𝜆𝑇) =
𝑑

𝑈 , and 𝑇 =
𝑑

− log (𝑈)/𝜆  . Similarly, in 

the Weibull distribution, 𝑒𝑥𝑝(−𝜆𝑇𝛼) =
𝑑

𝑈, and 𝑇 =
𝑑

(−log (𝑈)/𝜆)1/𝛼. 

In the one-sample case, the correlation between the event time and censoring time was 

examined. The correlation was measured using the Spearman correlation coefficient (𝑟𝑠). In the 

case of the Pearson correlation, the normality assumption is required when both variables are 

continuous, and it only measures linear relationships. Moreover, because it measures the correlation 

between actual values, it is highly sensitive to outliers, which can distort the overall correlation. 

Therefore, Spearman correlation, which is rank-based, non-parametric, and does not require any 

assumptions, was used. For each simulation setting, 100 iterations were performed and the 

correlation was calculated as the average of these iterations. Additionally, Kaplan-Meier plots were 

generated to compare the different methods and prespecified censoring proportions. 

In the two-sample case, as in the one-sample case, the correlation between the event time and 



20 

 

censoring time was examined. Additionally, under the null hypothesis 𝐻0: ℎ1(𝑡) = ℎ2(𝑡), the Type 

Ⅰ error of the log-rank test was calculated by performing 1,000 iterations. To make this more intuitive 

within the table, the %bias measure was also examined. %Bias is an indicator that shows the 

percentage difference between the calculated value and the reference value, and can be used to 

determine if there is any bias. The reference value was set at a significance level of 0.05. Letting the 

calculated Type Ⅰ error as 𝛼, it is calculated as %𝑏𝑖𝑎𝑠 =  (
𝛼 − 0.05

0.05
) × 100. 

Both cases where the sample sizes in the two groups were equal or unequal were examined, 

considering both general situations and realistic data collection conditions. The detailed simulation 

settings are shown in Table 1 below. 

For the two samples, the simulation setting was modified to use a pre-specified censoring 

proportion to check the Spearman correlation, unlike the censoring proportion setting used to 

observe the Type Ⅰ error rate in Table 1. The reason for this modification is that setting the censoring 

proportion to zero could result in an infinite value for censoring times, and this adjustment was made 

to prevent such occurrences. (𝑝1, 𝑝2) = (10,10), (20,20), (30,30), (40,40), (10,20), (20,30), (30,40), 

(20,10), (30,20), (40,30), (10,30), (20,40), (30,10), (40,20), (10,40), (40,10). 
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Table 1. All scenarios for data generation settings 

 Sample size Censoring proportion Method Distribution parameter 

One Sample 𝑛 ∈ {30, 100, 1000} 𝑝 ∈ {10, 20, 30, 40} 

Appropriate 
𝑇𝑖  ~ 𝐸𝑥𝑝(5.873) 𝑜𝑟 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(2,2) 

𝐶𝑖  ~ 𝐸𝑥𝑝(𝜆2) 𝑜𝑟 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑠ℎ𝑎𝑝𝑒, 2) 

Inappropriate Ⅰ 

𝑇𝑖  ~ 𝐸𝑥𝑝(5.873) 𝑜𝑟 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(2,2) 

Inappropriate Ⅱ 

Two Sample 

Equal sample size 

(n1, n2) ∈ {(30,30), 

(100,100), (1000,1000)} 

(𝑝1,  𝑝2) ∈ {(0,0), (10,10), 

(20,20), (30,30), (40,40), 

(0,10), (10,20), (20,30), 

(30,40), (10,0), (20,10), 

(30,20), (40,30), (0,20), 

(10,30), (20,40), (20,0), 

(30,10), (40,20), (0,30), 

(10,40), (30,0), (40,10), 

(0,40), (40,0)} 

Appropriate 
𝑇𝑖𝑗  ~ 𝐸𝑥𝑝(5.873) 𝑜𝑟 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(2,2) 

𝐶𝑖𝑗  ~ 𝐸𝑥𝑝(𝜆2) 𝑜𝑟 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑠ℎ𝑎𝑝𝑒, 2) 

Inappropriate Ⅰ 

𝑇𝑖𝑗  ~ 𝐸𝑥𝑝(5.873) 𝑜𝑟 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(2,2) 

Inappropriate Ⅱ 

Unequal sample size 

(n1, n2) ∈ {(30,100), 

(100, 1000)} 

Appropriate 
𝑇𝑖𝑗  ~ 𝐸𝑥𝑝(5.873) 𝑜𝑟 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(2,2) 

𝐶𝑖𝑗  ~ 𝐸𝑥𝑝(𝜆2) 𝑜𝑟 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑠ℎ𝑎𝑝𝑒, 2) 

Inappropriate Ⅰ 

𝑇𝑖𝑗  ~ 𝐸𝑥𝑝(5.873) 𝑜𝑟 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(2,2) 

Inappropriate Ⅱ 
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4.2 Simulation result 

Tables 2 - 5 compared the type Ⅰ error of the log-rank test and %bias for each method. Tables 

8-9 and Appendix Tables 1 - 10 presented the Spearman correlation coefficients for each scenario in 

both one-sample and two-sample scenarios. 

Figure 2 - 3 showed Kaplan-Meier (KM) curves comparing each method under Exponential 

and Weibull distribution for a one-sample case with 𝑁 = 1000  and 𝑝 = 0.3 . As shown in the 

figure, the log-rank tests conducted using the three different data generation methods under the same 

simulation settings yielded significant differences (p-value < 0.001). This indicates that the null 

hypothesis, which states that "all three hazard functions are identical," can be rejected. Based on the 

KM curves derived from the appropriate method, it was observed that inappropriate method 1 tended 

to overestimate survival probabilities. This overestimation can be attributed to the fact that censoring 

times were taken directly from event times, which prolonged the at-risk set denominator and led to 

inflated survival probability estimates. Meanwhile, under the assumption of a Weibull distribution, 

the KM curves generated by the appropriate method and inappropriate method Ⅱ did not show 

substantial differences. However, under the assumption of an Exponential distribution, the KM 

curves showed clear differences between the two methods. These findings indicate that the 

appropriateness of the data generation method can significantly impact the survival analysis results. 

In tables 2 and 4, the Type Ⅰ error of the log-rank test under each method are shown, based on 

survival data generated assuming Exponential and Weibull distributions with equal sample sizes. In 

appropriate generating method, the Type Ⅰ error remained close to 0.05, irrespective of the simulation 

settings. On the other hand, in inappropriate generating methods Ⅰ and Ⅱ, the larger the sample size 

and the difference in censoring proportions between groups, the more Type Ⅰ error inflated from 0.05. 
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Specifically, in method Ⅰ, when the sample size was (1000,1000), the %bias approached an enormous 

value. Even when the difference in censoring proportions between the groups was the same, a higher 

overall censoring proportion led to a higher Type Ⅰ error. Also, the Type Ⅰ error was observed to 

increase as the extent of unequal censoring between the two groups. In tables 3 and 5, where the 

sample sizes were unequal, a similar pattern was observed as with equal sample sizes. 

However, an inappropriate method appeared to control the Type I error when the censoring 

proportions were equal. This is likely due to the log-rank test, where improperly generated data can 

distort the actual differences between groups, creating the illusion of well-controlled Type I error. 

Additional simulations are conducted to investigate this issue. One group was generated using the 

random generating method, while the other group was generated using the inappropriate generating 

method Ⅱ. The results showed that even when the censoring proportions were equal between the 

groups, the Type I error of the log-rank test was inflated in tables 6 - 7. Specifically, in Figures 4 – 

5, as the sample size increases and the censoring proportion becomes higher, the Type I error 

increased. This finding suggests that the increase in Type I errors is not simply due to unequal 

censoring proportions, but rather due to the inappropriate data-generating process. 

Thus, the Spearman correlation coefficient was examined between event time (𝑇)  and 

censoring time(𝐶) to investigate the properties of inappropriately generated data for each method. 

(Tables 8 - 9, Appendix tables 1 - 10) In both one-sample and two-sample cases, no correlation was 

found in random generating. However, in inappropriate method Ⅰ, a correlation was observed across 

all settings. Notably, as the censoring proportion increased, the correlation also increased; the lower 

the percentile replaced upon event occurrence, the higher the correlation value. Additionally, in 

inappropriate method Ⅱ, while the correlation coefficient was smaller than that of inappropriate 

method Ⅰ across all simulation settings, a correlation was still observed. 
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Figure 2. Kaplan-Meier curves comparing each method under 

Exponential distribution for one sample with 𝑁 = 1000 and 

censoring proportion 𝑝 = 0.3 

 

Note. AG: Appropriate generating method, IG1: Inappropriate 

generating method Ⅰ, IG2: Inappropriate generating method Ⅱ 

 

Figure 3. Kaplan-Meier curves comparing each method under 

Weibull distribution for one sample with 𝑁 = 1000  and 

censoring proportion 𝑝 = 0.3 

 

Note. AG: Appropriate generating method, IG1: Inappropriate 

generating method Ⅰ, IG2: Inappropriate generating method Ⅱ
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Table 2. Type Ⅰ error for each method with predefined censoring proportion and sample size where 𝑛1 and 𝑛2 are equal assumed 

Exponential distribution 𝑇1, 𝑇2 ~ 𝐸𝑥𝑝(5.873) 

𝒑𝟏 𝒑𝟐 
Appropriate method Inappropriate method Ⅰ Inappropriate method Ⅱ 

(30,30) (100,100) (1000,1000) %Bias (30,30) (100,100) (1000,1000) %Bias (30,30) (100,100) (1000,1000) %Bias 

0 0 0.055 0.057 0.053 6 0.054 0.051 0.054 8 0.054 0.051 0.054 8 

10 10 0.053 0.055 0.06 20 0.051 0.058 0.056 12 0.062 0.06 0.047 -6 

20 20 0.058 0.052 0.057 14 0.056 0.054 0.058 16 0.057 0.051 0.056 12 

30 30 0.058 0.055 0.063 26 0.06 0.053 0.048 -4 0.058 0.057 0.051 2 

40 40 0.055 0.057 0.052 4 0.067 0.056 0.052 4 0.059 0.056 0.044 -12 

0 10 0.052 0.05 0.058 16 0.065 0.11 0.618 1136 0.056 0.069 0.19 280 

10 20 0.061 0.055 0.054 8 0.073 0.126 0.65 1200 0.056 0.084 0.241 382 

20 30 0.062 0.045 0.063 26 0.084 0.139 0.71 1320 0.066 0.081 0.281 462 

30 40 0.051 0.056 0.054 8 0.094 0.141 0.78 1460 0.074 0.085 0.358 616 

10 0 0.061 0.049 0.059 18 0.073 0.125 0.639 1178 0.056 0.081 0.252 404 

20 10 0.053 0.049 0.057 14 0.079 0.117 0.689 1278 0.057 0.086 0.279 458 

30 20 0.051 0.055 0.059 18 0.074 0.127 0.741 1382 0.065 0.078 0.344 588 

40 30 0.053 0.057 0.057 14 0.075 0.135 0.823 1546 0.074 0.081 0.397 694 

0 20 0.057 0.051 0.047 -6 0.119 0.308 0.998 1896 0.07 0.121 0.684 1268 
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10 30 0.055 0.046 0.06 20 0.139 0.36 0.997 1894 0.076 0.144 0.754 1408 

20 40 0.053 0.052 0.052 4 0.153 0.387 0.999 1898 0.098 0.167 0.85 1600 

20 0 0.057 0.045 0.06 20 0.134 0.321 0.996 1892 0.075 0.122 0.713 1326 

30 10 0.047 0.054 0.052 4 0.127 0.353 0.999 1898 0.089 0.143 0.797 1494 

40 20 0.049 0.051 0.053 6 0.141 0.388 0.999 1898 0.1 0.168 0.875 1650 

0 30 0.059 0.05 0.06 20 0.215 0.611 1 1900 0.104 0.237 0.968 1836 

10 40 0.052 0.057 0.052 4 0.253 0.686 1 1900 0.124 0.285 0.99 1880 

30 0 0.046 0.048 0.056 12 0.244 0.625 1 1900 0.119 0.236 0.976 1852 

40 10 0.048 0.055 0.059 18 0.247 0.673 1 1900 0.136 0.284 0.994 1888 

40 0 0.05 0.058 0.051 2 0.388 0.864 1 1900 0.17 0.429 1 1900 

0 40 0.054 0.058 0.05 0 0.384 0.879 1 1900 0.154 0.408 1 1900 

Note. %Bias was calculated based on the Type Ⅰ error when the sample sizes of the two groups were (1000,1000). 

 

  



27 

 

Table 3. Type Ⅰ error for each method with predefined censoring proportion and sample size where 𝑛1 and 𝑛2 are unequal assumed 

Exponential distribution 𝑇1, 𝑇2 ~ 𝐸𝑥𝑝(5.873) 

𝒑𝟏 𝒑𝟐 
Appropriate method Inappropriate method Ⅰ Inappropriate method Ⅱ 

(30,100) (100,1000) %Bias (30,100) (100,1000) %Bias (30,100) (100,1000) %Bias 

0 0 0.052 0.052 4 0.058 0.057 14 0.058 0.057 14 

10 10 0.054 0.053 6 0.062 0.056 12 0.066 0.055 10 

20 20 0.055 0.047 -6 0.059 0.062 24 0.047 0.055 10 

30 30 0.056 0.041 -18 0.062 0.056 12 0.058 0.048 -4 

40 40 0.053 0.048 -4 0.062 0.049 -2 0.054 0.052 4 

0 10 0.054 0.051 2 0.105 0.201 302 0.079 0.116 132 

10 20 0.052 0.055 10 0.106 0.204 308 0.084 0.113 126 

20 30 0.054 0.044 -12 0.104 0.232 364 0.086 0.12 140 

30 40 0.055 0.043 -14 0.106 0.242 384 0.085 0.142 184 

10 0 0.053 0.051 2 0.066 0.143 186 0.058 0.07 40 

20 10 0.054 0.046 -8 0.077 0.159 218 0.052 0.067 34 

30 20 0.054 0.044 -12 0.086 0.169 238 0.053 0.081 62 

40 30 0.052 0.043 -14 0.085 0.183 266 0.058 0.085 70 

0 20 0.05 0.058 16 0.208 0.582 1064 0.115 0.239 378 



28 

 

10 30 0.052 0.049 -2 0.215 0.635 1170 0.119 0.276 452 

20 40 0.048 0.047 -6 0.23 0.683 1266 0.13 0.322 544 

20 0 0.05 0.044 -12 0.167 0.461 822 0.066 0.147 194 

30 10 0.055 0.042 -16 0.178 0.5 900 0.081 0.165 230 

40 20 0.054 0.047 -6 0.186 0.562 1024 0.089 0.196 292 

0 30 0.049 0.048 -4 0.384 0.925 1750 0.173 0.471 842 

10 40 0.046 0.048 -4 0.42 0.952 1804 0.197 0.549 998 

30 0 0.052 0.042 -16 0.321 0.809 1518 0.112 0.305 510 

40 10 0.057 0.047 -6 0.347 0.859 1618 0.147 0.381 662 

40 0 0.053 0.046 -8 0.495 0.975 1850 0.2 0.554 1008 

0 40 0.052 0.056 12 0.625 1 1900 0.274 0.746 1392 

Note. %Bias was calculated based on the Type Ⅰ error when the sample sizes of the two groups were (100,1000). 
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Table 4. Type Ⅰ error for each method with predefined censoring proportion and sample size where 𝑛1 and 𝑛2 are equal assumed 

Weibull distribution 𝑇1, 𝑇2 ~ 𝑊𝑒𝑖𝑏(2,2) 

𝒑𝟏 𝒑𝟐 
Appropriate method Inappropriate method Ⅰ Inappropriate method Ⅱ 

(30,30) (100,100) (1000,1000) %Bias (30,30) (100,100) (1000,1000) %Bias (30,30) (100,100) (1000,1000) %Bias 

0 0 0.055 0.057 0.053 6 0.054 0.051 0.054 8 0.054 0.051 0.054 8 

10 10 0.053 0.055 0.06 20 0.051 0.058 0.056 12 0.064 0.061 0.047 -6 

20 20 0.058 0.052 0.057 14 0.056 0.054 0.058 16 0.052 0.053 0.048 -4 

30 30 0.058 0.055 0.063 26 0.06 0.053 0.048 -4 0.054 0.055 0.051 2 

40 40 0.055 0.057 0.052 4 0.067 0.056 0.052 4 0.059 0.054 0.045 -10 

0 10 0.052 0.05 0.058 16 0.065 0.11 0.618 1136 0.051 0.058 0.106 112 

10 20 0.061 0.055 0.054 8 0.073 0.126 0.65 1200 0.06 0.065 0.143 186 

20 30 0.062 0.045 0.063 26 0.084 0.139 0.71 1320 0.057 0.068 0.161 222 

30 40 0.051 0.056 0.054 8 0.094 0.141 0.78 1460 0.071 0.069 0.207 314 

10 0 0.061 0.049 0.059 18 0.073 0.125 0.639 1178 0.054 0.074 0.132 164 

20 10 0.053 0.049 0.057 14 0.079 0.117 0.689 1278 0.055 0.079 0.171 242 

30 20 0.051 0.055 0.059 18 0.074 0.127 0.741 1382 0.058 0.064 0.19 280 

40 30 0.053 0.057 0.057 14 0.075 0.135 0.823 1546 0.066 0.068 0.23 360 

0 20 0.057 0.051 0.047 -6 0.119 0.308 0.998 1896 0.058 0.086 0.373 646 
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10 30 0.055 0.046 0.06 20 0.139 0.36 0.997 1894 0.069 0.102 0.449 798 

20 40 0.053 0.052 0.052 4 0.153 0.387 0.999 1898 0.083 0.104 0.539 978 

20 0 0.057 0.045 0.06 20 0.134 0.321 0.996 1892 0.062 0.097 0.424 748 

30 10 0.047 0.054 0.052 4 0.127 0.353 0.999 1898 0.066 0.087 0.509 918 

40 20 0.049 0.051 0.053 6 0.141 0.388 0.999 1898 0.074 0.106 0.604 1108 

0 30 0.059 0.05 0.06 20 0.215 0.611 1 1900 0.071 0.138 0.747 1394 

10 40 0.052 0.057 0.052 4 0.253 0.686 1 1900 0.098 0.157 0.848 1596 

30 0 0.046 0.048 0.056 12 0.243 0.625 1 1900 0.081 0.144 0.789 1478 

40 10 0.048 0.055 0.059 18 0.247 0.673 1 1900 0.099 0.167 0.859 1618 

40 0 0.05 0.058 0.051 2 0.388 0.864 1 1900 0.112 0.233 0.973 1846 

0 40 0.054 0.058 0.05 0 0.384 0.879 1 1900 0.103 0.23 0.962 1824 

Note. %Bias was calculated based on the Type Ⅰ error when the sample sizes of the two groups were (1000,1000). 

 

 

 

 

 

 



31 

 

Table 5. Type Ⅰ error for each method with predefined censoring proportion and sample size where 𝑛1 and 𝑛2 are unequal assumed 

Weibull distribution 𝑇1, 𝑇2 ~ 𝑊𝑒𝑖𝑏(2,2) 

𝒑𝟏 𝒑𝟐 
Appropriate method Inappropriate method Ⅰ Inappropriate method Ⅱ 

(30,100) (100,1000) %Bias (30,100) (100,1000) %Bias (30,100) (100,1000) %Bias 

0 0 0.052 0.052 4 0.058 0.057 14 0.058 0.057 14 

10 10 0.054 0.053 6 0.062 0.056 12 0.064 0.054 8 

20 20 0.055 0.047 -6 0.059 0.063 26 0.05 0.056 12 

30 30 0.056 0.041 -18 0.063 0.057 14 0.056 0.053 6 

40 40 0.053 0.048 -4 0.063 0.05 0 0.06 0.055 10 

0 10 0.054 0.051 2 0.105 0.201 302 0.067 0.087 74 

10 20 0.052 0.055 10 0.106 0.204 308 0.075 0.081 62 

20 30 0.054 0.044 -12 0.104 0.232 364 0.066 0.089 78 

30 40 0.055 0.043 -14 0.105 0.245 390 0.069 0.104 108 

10 0 0.053 0.051 2 0.066 0.143 186 0.055 0.055 10 

20 10 0.054 0.046 -8 0.078 0.159 218 0.053 0.056 12 

30 20 0.054 0.044 -12 0.087 0.17 240 0.054 0.059 18 

40 30 0.052 0.043 -14 0.089 0.182 264 0.059 0.07 40 

0 20 0.05 0.058 16 0.208 0.582 1064 0.092 0.156 212 
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10 30 0.052 0.049 -2 0.215 0.635 1170 0.091 0.177 254 

20 40 0.048 0.047 -6 0.231 0.683 1266 0.096 0.204 308 

20 0 0.05 0.044 -12 0.167 0.461 822 0.053 0.089 78 

30 10 0.055 0.042 -16 0.183 0.498 896 0.058 0.103 106 

40 20 0.054 0.047 -6 0.191 0.559 1018 0.065 0.114 128 

0 30 0.049 0.048 -4 0.384 0.925 1750 0.119 0.264 428 

10 40 0.046 0.048 -4 0.42 0.952 1804 0.136 0.346 592 

30 0 0.052 0.042 -16 0.32 0.81 1520 0.063 0.152 204 

40 10 0.057 0.047 -6 0.349 0.859 1618 0.089 0.193 286 

40 0 0.053 0.046 -8 0.495 0.974 1848 0.105 0.29 480 

0 40 0.052 0.056 12 0.625 1 1900 0.166 0.469 838 

Note. %Bias was calculated based on the Type Ⅰ error when the sample sizes of the two groups were (100,1000). 
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Table 6. Type 1 error for group 1: appropriate method (random generating), group 2: inappropriate generating method Ⅱ assumed 

Exponential distribution 𝑇1, 𝑇2 ~ 𝐸𝑥𝑝(5.873) 

𝐩𝟏 𝐩𝟐 

𝒏𝟏 = 𝒏𝟐 𝒏𝟏 ≠ 𝒏𝟐 

(𝟑𝟎, 𝟑𝟎) (𝟏𝟎𝟎, 𝟏𝟎𝟎) (𝟏𝟎𝟎𝟎, 𝟏𝟎𝟎𝟎) %Bias (𝟑𝟎, 𝟏𝟎𝟎) (𝟏𝟎𝟎, 𝟏𝟎𝟎𝟎) %Bias 

0 0 0.054 0.051 0.054 8 0.058 0.057 14 

10 10 0.048 0.068 0.198 296 0.072 0.105 110 

20 20 0.066 0.12 0.672 1244 0.106 0.226 352 

30 30 0.103 0.213 0.956 1812 0.167 0.422 744 

40 40 0.163 0.378 1 1900 0.234 0.654 1208 

Note. %Bias was calculated based on the type 1 error when the sample sizes of the two groups were (1000,1000) and (100,1000). 

 

 

  



34 

 

 

 

 

Table 7. Type 1 error for group 1: appropriate method (random generating), group 2: inappropriate generating method Ⅱ assumed Weibull 

distribution 𝑇1, 𝑇2 ~ 𝑊𝑒𝑖𝑏(2,2) 

𝐩𝟏 𝐩𝟐 

𝒏𝟏 = 𝒏𝟐 𝒏𝟏 ≠ 𝒏𝟐 

(𝟑𝟎, 𝟑𝟎) (𝟏𝟎𝟎, 𝟏𝟎𝟎) (𝟏𝟎𝟎𝟎, 𝟏𝟎𝟎𝟎) %Bias (𝟑𝟎, 𝟏𝟎𝟎) (𝟏𝟎𝟎, 𝟏𝟎𝟎𝟎) %Bias 

0 0 0.054 0.051 0.054 8 0.058 0.057 14 

10 10 0.047 0.058 0.111 122 0.061 0.089 78 

20 20 0.046 0.084 0.36 620 0.082 0.142 184 

30 30 0.074 0.133 0.729 1358 0.118 0.263 426 

40 40 0.107 0.221 0.953 1806 0.159 0.442 784 

Note. %Bias was calculated based on the type 1 error when the sample sizes of the two groups were (1000,1000) and (100,1000). 
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Figure 4. Type 1 error for group 1: appropriate method (random 

generating), group 2: inappropriate method Ⅱ in two sample 

where 𝑛1 and 𝑛2 are equal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Type 1 error for group 1: appropriate method (random 

generating), group 2: inappropriate method Ⅱ in two sample 

where 𝑛1 and 𝑛2 are unequal 
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Table 8. Spearman correlation coefficient under each method in one sample assumed Exponential 

distribution 𝑇 ~ 𝐸𝑥𝑝(5.873) 

Method 𝒑 
n 

30 100 1000 

Appropriate method 

10 -0.002 -0.001 0.003 

20 0.013 -0.011 -0.004 

30 0.046 -0.006 -0.005 

40 0.013 -0.007 0.001 

Inappropriate 

method Ⅰ 

C*  

(75% 

percentile) 

10 0.195 0.204 0.211 

20 0.389 0.4 0.401 

30 0.569 0.571 0.571 

40 0.714 0.716 0.719 

C*  

(85% 

percentile) 

10 0.15 0.157 0.161 

20 0.32 0.321 0.318 

30 0.487 0.479 0.473 

40 0.643 0.629 0.628 

C*  

(95% 

percentile) 

10 0.099 0.106 0.109 

20 0.237 0.231 0.227 

30 0.383 0.363 0.353 

40 0.532 0.5 0.498 

Inappropriate 

method Ⅱ 

C*  

(75% 

percentile) 

10 0.223 0.178 0.195 

20 0.339 0.347 0.344 

30 0.432 0.435 0.448 

40 0.516 0.522 0.531 

C*  

(85% 

percentile) 

10 0.181 0.133 0.149 

20 0.278 0.279 0.274 

30 0.366 0.366 0.375 

40 0.459 0.459 0.465 

C*  

(95% 

percentile) 

10 0.135 0.084 0.1 

20 0.205 0.202 0.195 

30 0.287 0.278 0.284 

40 0.38 0.373 0.374 
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Table 9. Spearman correlation coefficient under each method in one sample assumed Weibull 

distribution 𝑇 ~ 𝑊𝑒𝑖𝑏(2,2) 

Method 𝒑 
n 

30 100 1000 

Appropriate method 

10 -0.023 -0.014 0.001 

20 -0.005 0.005 -0.001 

30 0.02 0.023 0.003 

40 0.019 0.013 -0.005 

Inappropriate 

method Ⅰ 

C*  

(75% 

percentile) 

10 0.343 0.35 0.359 

20 0.46 0.477 0.48 

30 0.577 0.576 0.576 

40 0.668 0.665 0.669 

C*  

(85% 

percentile) 

10 0.304 0.308 0.315 

20 0.416 0.427 0.427 

30 0.527 0.523 0.52 

40 0.624 0.612 0.614 

C*  

(95% 

percentile) 

10 0.254 0.254 0.26 

20 0.357 0.36 0.36 

30 0.465 0.452 0.446 

40 0.562 0.538 0.539 

Inappropriate 

method Ⅱ 

C*  

(75% 

percentile) 

10 0.342 0.309 0.327 

20 0.382 0.394 0.394 

30 0.4 0.403 0.419 

40 0.414 0.426 0.436 

C*  

(85% 

percentile) 

10 0.309 0.271 0.287 

20 0.346 0.354 0.351 

30 0.368 0.366 0.38 

40 0.386 0.395 0.402 

C*  

(95% 

percentile) 

10 0.265 0.221 0.237 

20 0.296 0.299 0.296 

30 0.32 0.315 0.327 

40 0.347 0.35 0.356 
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5. Conclusion and discussion 

A random generation method is generally used when generating survival data. In this approach, 

the event and censoring times are generated independently. The distribution parameters for 

censoring times are then determined based on the assumed two distributions under the condition of 

a fixed censoring proportion. We define this as the appropriate method. When both time distributions 

are Exponential, the censoring parameter can be calculated directly. However, when Weibull 

distributions are assumed, a closed-form expression cannot be derived. In such cases, if the shape 

parameters are assumed equal, the scale parameter can be determined. Otherwise, the scale 

parameter is calculated numerically using the root-finding Newton-Raphson algorithm. However, 

this process is time consuming and complex, leading to many instances in previous studies where 

survival data were inappropriately generated. Inappropriate data generation can result in misleading 

results. To address this, we conducted simulations and developed a theoretical framework based on 

two inappropriate methods. 

The simulation demonstrated Type Ⅰ error under various simulation settings for three different 

methods: one using random generation and the other two using inappropriate methods. Through this 

study, we aimed to investigate the inflation in Type Ⅰ error when survival data were generated 

inappropriately. 

    The simulation results showed that when survival data were generated using an appropriate 

method, the Type Ⅰ error was well controlled regardless of whether the censoring proportions were 

equal or unequal. In contrasts, when survival data were generated using an inappropriate method, 

the Type Ⅰ error was not controlled in all cases where the censoring proportions were unequal. 

Furthermore, when one group’s data was generated using the random generating method and the 
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other group’s data was generated using the inappropriate method Ⅱ, it was observed that the Type Ⅰ 

error was not controlled even when the censoring proportions of the two groups were equal. The 

Spearman correlation between the event times and censoring times showed that a correlation existed 

when generating inappropriate methods. The reason for the presence of a correlation in the 

inappropriate generating method is due to the fact that the data were generated dependently, not 

randomly. 

Therefore, it is essential to appropriately generate survival data. Failure to consider this and using 

improperly generated data, such as a simulation section, can lead to erroneous results. This can be 

applied not only to the log-rank test statistic but also to other statistical measures. Moreover, further 

research is needed to explore new methods that can effectively control the Type Ⅰ error even under 

dependently censored survival data.
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Appendix 

Appendix Table 1. Spearman correlation coefficient for appropriate method in two sample with 𝑛1 

and 𝑛2 are equal and unequal assumed Exponential distribution 𝑇1, 𝑇2 ~ 𝐸𝑥𝑝(5.873) 

𝐩𝟏 𝐩𝟐 

𝒏𝟏 = 𝒏𝟐 𝒏𝟏 ≠ 𝒏𝟐 

(30,30) (100,100) (1000,1000) (30,100) (100,1000) 

10 10 -0.023 -0.014 0.007 -0.012 -0.009 

20 20 -0.006 -0.003 0.004 -0.005 -0.004 

30 30 0.018 0.013 0.002 0.016 0.008 

40 40 0.02 -0.009 0.002 0.015 -0.006 

10 20 0.037 -0.02 -0.003 0.031 -0.011 

20 30 -0.004 -0.005 -0.005 -0.009 -0.003 

30 40 0.015 0.006 0.001 0.008 0.002 

20 10 0.045 -0.002 0 0.034 0 

30 20 0.013 0.007 0 0.012 0.004 

40 30 -0.04 0 0 -0.032 0 

10 30 -0.008 -0.016 -0.003 -0.005 -0.009 

20 40 0.004 0.007 0.002 -0.002 0.003 

30 10 -0.009 0.008 -0.003 -0.007 0.003 

40 20 -0.004 0.018 0.001 -0.006 0.009 

10 40 -0.002 0.014 -0.002 -0.001 0.009 

40 10 0.001 -0.005 0.001 -0.001 -0.003 
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Appendix Table 2. Spearman correlation coefficient for appropriate method in two sample with 𝑛1 

and 𝑛2 are equal and unequal assumed Weibull distribution 𝑇1, 𝑇2 ~ 𝑊𝑒𝑖𝑏(2, 2) 

𝐩𝟏 𝐩𝟐 

𝒏𝟏 = 𝒏𝟐 𝒏𝟏 ≠ 𝒏𝟐 

(30,30) (100,100) (1000,1000) (30,100) (100,1000) 

10 10 -0.024 -0.012 0.008 -0.012 -0.009 

20 20 -0.004 -0.001 0.003 -0.004 -0.003 

30 30 0.016 0.013 0.003 0.014 0.007 

40 40 0.019 -0.008 0.001 0.014 -0.005 

10 20 0.034 -0.019 -0.004 0.03 -0.01 

20 30 -0.009 -0.007 -0.005 -0.011 -0.004 

30 40 0.018 0.005 0.001 0.009 0.002 

20 10 0.044 -0.001 0 0.032 0.001 

30 20 0.013 0.007 0 0.012 0.004 

40 30 -0.041 0 -0.001 -0.032 -0.001 

10 30 -0.005 -0.014 -0.003 -0.004 -0.008 

20 40 0.003 0.008 0.002 -0.001 0.003 

30 10 -0.01 0.007 -0.003 -0.007 0.002 

40 20 0 0.019 0.002 -0.002 0.01 

10 40 -0.002 0.014 -0.002 -0.001 0.009 

40 10 0 -0.004 0.001 -0.002 -0.003 
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Appendix Table 3. Spearman correlation coefficient for inappropriate method Ⅰ in two sample with 𝑛1 and 𝑛2 are equal assumed 

Exponential distribution 𝑇1, 𝑇2 ~ 𝐸𝑥𝑝(5.873) 

𝒑𝟏 𝒑𝟐 
C* (75% percentile) C* (85% percentile) C* (95% percentile) 

(30,30) (100,100) (1000,1000) (30,30) (100,100) (1000,1000) (30,30) (100,100) (1000,1000) 

10 10 0.194 0.21 0.21 0.149 0.163 0.16 0.098 0.113 0.108 

20 20 0.389 0.405 0.399 0.319 0.326 0.316 0.236 0.236 0.225 

30 30 0.57 0.561 0.573 0.489 0.468 0.477 0.385 0.351 0.359 

40 40 0.714 0.721 0.72 0.642 0.638 0.628 0.532 0.515 0.5 

10 20 0.3 0.296 0.306 0.239 0.234 0.24 0.175 0.164 0.168 

20 30 0.482 0.481 0.486 0.405 0.398 0.395 0.312 0.297 0.29 

30 40 0.643 0.643 0.647 0.567 0.555 0.552 0.463 0.437 0.428 

20 10 0.301 0.311 0.305 0.243 0.248 0.238 0.178 0.178 0.167 

30 20 0.495 0.485 0.489 0.423 0.399 0.399 0.33 0.297 0.295 

40 30 0.652 0.641 0.645 0.578 0.552 0.55 0.477 0.435 0.427 

10 30 0.403 0.39 0.393 0.342 0.321 0.319 0.267 0.239 0.234 

20 40 0.562 0.562 0.56 0.489 0.48 0.472 0.394 0.374 0.362 

30 10 0.384 0.386 0.393 0.322 0.315 0.32 0.247 0.233 0.235 

40 20 0.573 0.541 0.563 0.505 0.455 0.475 0.412 0.346 0.366 

10 40 0.449 0.462 0.467 0.39 0.394 0.397 0.312 0.306 0.308 

40 10 0.474 0.459 0.464 0.417 0.391 0.393 0.34 0.303 0.303 
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Appendix Table 4. Spearman correlation coefficient for inappropriate method Ⅰ in two sample with 𝑛1 and 𝑛2 are unequal assumed 

Exponential distribution 𝑇1, 𝑇2 ~ 𝐸𝑥𝑝(5.873) 

𝒑𝟏 𝒑𝟐 
C* (75% percentile) C* (85% percentile) C* (95% percentile) 

(30,100) (100,1000) (30,100) (100,1000) (30,100) (100,1000) 

10 10 0.203 0.21 0.156 0.162 0.105 0.111 

20 20 0.402 0.404 0.328 0.324 0.24 0.234 

30 30 0.563 0.566 0.476 0.471 0.363 0.353 

40 40 0.716 0.721 0.637 0.634 0.517 0.508 

10 20 0.299 0.302 0.236 0.237 0.167 0.166 

20 30 0.488 0.483 0.405 0.396 0.305 0.292 

30 40 0.649 0.645 0.567 0.554 0.454 0.432 

20 10 0.301 0.307 0.244 0.242 0.177 0.172 

30 20 0.482 0.487 0.405 0.4 0.308 0.297 

40 30 0.646 0.643 0.565 0.551 0.455 0.431 

10 30 0.398 0.389 0.329 0.317 0.247 0.233 

20 40 0.563 0.562 0.486 0.477 0.383 0.367 

30 10 0.384 0.387 0.321 0.316 0.246 0.233 

40 20 0.568 0.552 0.494 0.467 0.397 0.357 

10 40 0.455 0.464 0.391 0.393 0.302 0.304 

40 10 0.473 0.46 0.415 0.391 0.335 0.302 
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Appendix Table 5. Spearman correlation coefficient for inappropriate method Ⅰ in two sample with 𝑛1 and 𝑛2 are equal assumed 

Weibull distribution 𝑇1, 𝑇2 ~ 𝑊𝑒𝑖𝑏(2,2) 

𝒑𝟏 𝒑𝟐 
C* (75% percentile) C* (85% percentile) C* (95% percentile) 

(30,30) (100,100) (1000,1000) (30,30) (100,100) (1000,1000) (30,30) (100,100) (1000,1000) 

10 10 0.342 0.355 0.358 0.303 0.314 0.314 0.252 0.262 0.259 

20 20 0.46 0.483 0.479 0.416 0.432 0.426 0.357 0.365 0.359 

30 30 0.578 0.567 0.578 0.529 0.512 0.522 0.468 0.44 0.45 

40 40 0.668 0.673 0.669 0.624 0.622 0.614 0.562 0.552 0.54 

10 20 0.411 0.41 0.42 0.367 0.364 0.371 0.312 0.305 0.31 

20 30 0.521 0.524 0.528 0.474 0.474 0.473 0.41 0.406 0.403 

30 40 0.621 0.622 0.624 0.574 0.57 0.568 0.512 0.5 0.494 

20 10 0.41 0.423 0.419 0.368 0.377 0.37 0.316 0.318 0.309 

30 20 0.531 0.524 0.531 0.487 0.472 0.477 0.428 0.404 0.407 

40 30 0.632 0.621 0.622 0.587 0.568 0.566 0.528 0.499 0.493 

10 30 0.477 0.468 0.47 0.436 0.419 0.419 0.384 0.357 0.356 

20 40 0.571 0.576 0.574 0.525 0.525 0.52 0.468 0.458 0.449 

30 10 0.456 0.462 0.47 0.412 0.414 0.419 0.358 0.352 0.356 

40 20 0.586 0.555 0.577 0.545 0.502 0.523 0.485 0.432 0.453 

10 40 0.495 0.51 0.516 0.455 0.462 0.467 0.399 0.401 0.403 

40 10 0.526 0.507 0.512 0.484 0.459 0.463 0.426 0.396 0.399 
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Appendix Table 6. Spearman correlation coefficient for inappropriate method Ⅱ in two sample with 𝑛1 and 𝑛2 are unequal assumed 

Weibull distribution 𝑇1, 𝑇2 ~ 𝑊𝑒𝑖𝑏(2,2) 

𝒑𝟏 𝒑𝟐 
C* (75% percentile) C* (85% percentile) C* (95% percentile) 

(30,100) (100,1000) (30,100) (100,1000) (30,100) (100,1000) 

10 10 0.35 0.356 0.309 0.314 0.257 0.26 

20 20 0.474 0.483 0.428 0.431 0.366 0.364 

30 30 0.571 0.571 0.519 0.516 0.45 0.443 

40 40 0.667 0.672 0.619 0.619 0.55 0.546 

10 20 0.41 0.415 0.365 0.368 0.307 0.307 

20 30 0.526 0.525 0.475 0.472 0.409 0.403 

30 40 0.625 0.622 0.575 0.569 0.508 0.496 

20 10 0.414 0.421 0.37 0.373 0.314 0.313 

30 20 0.523 0.528 0.475 0.475 0.411 0.406 

40 30 0.626 0.622 0.577 0.568 0.512 0.496 

10 30 0.472 0.466 0.427 0.417 0.368 0.353 

20 40 0.572 0.575 0.525 0.523 0.461 0.453 

30 10 0.459 0.465 0.414 0.416 0.356 0.353 

40 20 0.581 0.567 0.537 0.513 0.474 0.443 

10 40 0.5 0.511 0.457 0.463 0.396 0.399 

40 10 0.522 0.509 0.479 0.46 0.422 0.396 
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Appendix Table 7. Spearman correlation coefficient for inappropriate method Ⅱ in two sample with 𝑛1 and 𝑛2 are equal assumed 

Exponential distribution 𝑇1, 𝑇2 ~ 𝐸𝑥𝑝(5.873) 

𝒑𝟏 𝒑𝟐 
C* (75% percentile) C* (85% percentile) C* (95% percentile) 

(30,30) (100,100) (1000,1000) (30,30) (100,100) (1000,1000) (30,30) (100,100) (1000,1000) 

10 10 0.222 0.204 0.189 0.18 0.16 0.142 0.135 0.111 0.094 

20 20 0.338 0.339 0.34 0.277 0.272 0.27 0.204 0.194 0.193 

30 30 0.433 0.453 0.451 0.368 0.383 0.377 0.289 0.292 0.287 

40 40 0.516 0.531 0.53 0.459 0.468 0.462 0.379 0.379 0.372 

10 20 0.266 0.268 0.268 0.214 0.212 0.209 0.155 0.148 0.146 

20 30 0.366 0.393 0.4 0.306 0.326 0.328 0.228 0.245 0.243 

30 40 0.514 0.477 0.493 0.458 0.41 0.422 0.382 0.322 0.331 

20 10 0.241 0.26 0.27 0.188 0.203 0.211 0.131 0.139 0.148 

30 20 0.41 0.39 0.395 0.35 0.322 0.323 0.281 0.238 0.238 

40 30 0.514 0.486 0.491 0.455 0.418 0.421 0.376 0.33 0.332 

10 30 0.303 0.328 0.325 0.252 0.271 0.264 0.19 0.203 0.196 

20 40 0.423 0.427 0.437 0.363 0.36 0.369 0.289 0.276 0.285 

30 10 0.326 0.319 0.325 0.277 0.261 0.264 0.218 0.194 0.195 

40 20 0.44 0.418 0.436 0.383 0.353 0.367 0.308 0.273 0.283 

10 40 0.369 0.358 0.365 0.321 0.303 0.308 0.261 0.236 0.239 

40 10 0.368 0.362 0.362 0.322 0.307 0.305 0.266 0.239 0.237 
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Appendix Table 8. Spearman correlation coefficient for inappropriate method Ⅱ in two sample with 𝑛1 and 𝑛2 are unequal assumed 

Exponential distribution 𝑇1, 𝑇2 ~ 𝐸𝑥𝑝(5.873) 

𝒑𝟏 𝒑𝟐 
C* (75% percentile) C* (85% percentile) C* (95% percentile) 

(30,100) (100,1000) (30,100) (100,1000) (30,100) (100,1000) 

10 10 0.212 0.201 0.168 0.156 0.122 0.108 

20 20 0.344 0.343 0.28 0.275 0.205 0.196 

30 30 0.435 0.451 0.366 0.38 0.28 0.289 

40 40 0.521 0.532 0.462 0.466 0.377 0.377 

10 20 0.265 0.268 0.211 0.211 0.15 0.148 

20 30 0.377 0.395 0.314 0.326 0.232 0.242 

30 40 0.508 0.483 0.448 0.415 0.365 0.326 

20 10 0.252 0.267 0.2 0.209 0.139 0.146 

30 20 0.393 0.394 0.33 0.324 0.253 0.24 

40 30 0.507 0.49 0.444 0.421 0.362 0.332 

10 30 0.311 0.324 0.256 0.265 0.187 0.196 

20 40 0.433 0.433 0.371 0.365 0.293 0.281 

30 10 0.322 0.318 0.271 0.259 0.208 0.192 

40 20 0.439 0.425 0.378 0.359 0.299 0.276 

10 40 0.361 0.362 0.31 0.305 0.244 0.238 

40 10 0.357 0.36 0.31 0.303 0.25 0.235 
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Appendix Table 9. Spearman correlation coefficient for inappropriate method Ⅱ in two sample with 𝑛1 and 𝑛2 are equal assumed 

Weibull distribution 𝑇1, 𝑇2 ~ 𝑊𝑒𝑖𝑏(2,2) 

𝒑𝟏 𝒑𝟐 
C* (75% percentile) C* (85% percentile) C* (95% percentile) 

(30,30) (100,100) (1000,1000) (30,30) (100,100) (1000,1000) (30,30) (100,100) (1000,1000) 

10 10 0.341 0.334 0.321 0.308 0.295 0.281 0.265 0.247 0.231 

20 20 0.382 0.387 0.39 0.345 0.347 0.348 0.295 0.292 0.293 

30 30 0.402 0.421 0.42 0.369 0.383 0.381 0.322 0.332 0.329 

40 40 0.414 0.434 0.433 0.386 0.402 0.399 0.346 0.356 0.353 

10 20 0.351 0.358 0.359 0.314 0.318 0.318 0.266 0.266 0.265 

20 30 0.375 0.404 0.41 0.339 0.366 0.369 0.29 0.314 0.315 

30 40 0.446 0.415 0.429 0.418 0.38 0.393 0.379 0.331 0.343 

20 10 0.327 0.349 0.361 0.289 0.309 0.319 0.244 0.256 0.267 

30 20 0.411 0.397 0.405 0.379 0.357 0.364 0.335 0.305 0.31 

40 30 0.453 0.423 0.428 0.423 0.389 0.392 0.379 0.34 0.344 

10 30 0.354 0.378 0.375 0.318 0.34 0.335 0.272 0.291 0.285 

20 40 0.391 0.4 0.414 0.359 0.363 0.376 0.314 0.313 0.326 

30 10 0.374 0.368 0.375 0.34 0.33 0.336 0.297 0.281 0.285 

40 20 0.409 0.394 0.413 0.377 0.358 0.374 0.333 0.31 0.324 

10 40 0.385 0.374 0.383 0.355 0.339 0.346 0.313 0.292 0.298 

40 10 0.385 0.377 0.38 0.355 0.341 0.343 0.315 0.295 0.295 
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Appendix Table 10. Spearman correlation coefficient for inappropriate method Ⅱ in two sample with 𝑛1 and 𝑛2 are unequal assumed 

Weibull distribution 𝑇1, 𝑇2 ~ 𝑊𝑒𝑖𝑏(2,2) 

𝒑𝟏 𝒑𝟐 
C* (75% percentile) C* (85% percentile) C* (95% percentile) 

(30,100) (100,1000) (30,100) (100,1000) (30,100) (100,1000) 

10 10 0.336 0.332 0.3 0.293 0.254 0.243 

20 20 0.388 0.392 0.351 0.351 0.299 0.296 

30 30 0.404 0.42 0.369 0.381 0.319 0.33 

40 40 0.421 0.435 0.391 0.402 0.349 0.356 

10 20 0.353 0.359 0.314 0.319 0.265 0.266 

20 30 0.385 0.404 0.348 0.365 0.297 0.312 

30 40 0.442 0.421 0.411 0.385 0.368 0.336 

20 10 0.337 0.356 0.298 0.315 0.251 0.263 

30 20 0.399 0.403 0.363 0.363 0.313 0.31 

40 30 0.447 0.427 0.414 0.392 0.368 0.343 

10 30 0.361 0.374 0.323 0.336 0.275 0.285 

20 40 0.404 0.408 0.371 0.371 0.324 0.321 

30 10 0.37 0.369 0.335 0.33 0.289 0.28 

40 20 0.412 0.403 0.377 0.366 0.329 0.317 

10 40 0.378 0.377 0.346 0.341 0.301 0.295 

40 10 0.376 0.377 0.344 0.341 0.301 0.293 
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국 문 요 약 

부적절한 중도절단 데이터 생성 시 

로그-순위 검정의 제 1종 오류 증가 

 

생존 데이터를 생성할 때, 일부 데이터 생성 방식은 잘못된 결과를 초래할 수 있다. 

일반적으로 무작위 생성(random generating)이라 불리는 데이터 생성 방법은 사건발생 

시간(𝑇)과 중도절단 시간 (𝐶)을 각각 독립적으로 분포를 가정하여 생성한다. 그러나, 

예를 들어 중도절단율이 고정된 경우, 와이블 분포의 형상모수가 다를 때 중도절단 

분포의 척도모수를 계산하기 위한 닫힌 형태의 식이 존재하지 않는다. 이를 단순화하

기 위해 일부 연구에서는 부적절한 데이터 생성을 사용해왔다. 본 연구는 이로 인해 

발생하는 문제를 증명과 시뮬레이션을 통해 확인하고자 한다. 구체적으로 두 그룹 간 

로그-순위 검정의 1종 오류(Type I Error)와 사건발생 및 중도절단 시간 간 상관관계를 

검토하였다. 

부적절한 데이터 생성 방법 Ⅰ은 사건발생 시간을 생성한 후, 베르누이 분포를 사용

하여 중도절단 여부를 나타내는 지시함수를 생성한다. 중도절단이 발생하는 경우, 중

도절단 시간은 생성된 사건발생 시간으로 대체한다. 부적절한 데이터 생성 방법 Ⅱ에

서는 중도절단 시간을 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑇𝑖) 분포를 기반으로 생성한다. 

시뮬레이션 결과, 무작위 생성 방법에서는 사전에 정의된 중도절단율이 두 그룹 간 
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동일하거나 다른 경우 모두 로그-순위 검정의 1종 오류가 잘 통제되었다. 그러나 부적

절한 방법에서는 두 그룹 간 중도절단율이 다른 경우 1종 오류가 증가하였다. 반면, 

중도절단율이 동일한 경우 부적절한 방법에서도 1종 오류가 잘 통제되는 것으로 보였

다. 이는 𝑇와 𝐶의 종속성으로 인해 𝐶를 조건으로 한 𝑇의 조건부 분포가 𝑇의 주변 분

포와 달라지면서, 그룹 간 실제 차이가 왜곡되고 로그-순위 검정에서 1종 오류가 잘 

통제되는 것처럼 보이는 결과를 초래한다. 

이를 확인하기 위해 추가 시뮬레이션을 진행하였다. 한 그룹은 적절한 방법으로 데

이터를 생성하고, 다른 그룹은 부적절한 방법 Ⅱ로 생성하였다. 그 결과, 두 그룹 간 

중도절단율이 동일한 경우에도 1종 오류가 통제되지 않았다. 이는 그룹 간 중도절단

율의 차이 때문이 아닌, 부적절한 데이터 생성과정에서 비롯된 문제임을 나타낸다. 또

한 사건발생 시간과 중도절단 시간 간의 스피어만 상관계수를 확인한 결과, 부적절한 

데이터 생성 방식이 사건발생 시간과 중도절단 시간 간에 종속성이 존재함을 확인하

였다. 

                                                                                 

핵심되는 말: 중도절단 데이터, 무작위 생성, 부적절한 데이터 생성, 로그-순위 검정, 

제 1종 오류 


	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	1. Introduction
	2. Methods
	2.1 Notation
	2.2 Parameter of the censoring time distribution for fixed censoring proportion
	2.3 Data generation
	2.3.1 Appropriate generating method
	2.3.2 Inappropriate generating method Ⅰ
	2.3.3 Inappropriate generating method Ⅱ

	2.4 Log-rank test

	3. Theoretical framework
	3.1 Generation of censoring data

	4. Simulation
	4.1 Simulation setting
	4.2 Simulation results

	5. Conclusion and discussion
	Appendix
	Bibliography
	국문요약


<startpage>1
LIST OF FIGURES ⅲ
LIST OF TABLES ⅳ
ABSTRACT ⅵ
1. Introduction 1
2. Methods 4
 2.1 Notation 4
 2.2 Parameter of the censoring time distribution for fixed censoring proportion 5
 2.3 Data generation 9
  2.3.1 Appropriate generating method 9
  2.3.2 Inappropriate generating method Ⅰ 10
  2.3.3 Inappropriate generating method Ⅱ 11
 2.4 Log-rank test 12
3. Theoretical framework 14
 3.1 Generation of censoring data 14
4. Simulation 19
 4.1 Simulation setting 19
 4.2 Simulation results 22
5. Conclusion and discussion 38
Appendix 40
Bibliography 50
국문요약 52
</body>

