creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

An Ensemble Approach to CATE estimation
with Super Learner in RCTs

Jong Soo Hong

The Graduate School
Yonsei University
Department of Biostatistics and Computing



An Ensemble Approach to CATE estimation
with Super Learner in RCTs

A Dissertation Submitted to the
Department of Biostatistics and Computing
and the Graduate School of Yonsei University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Biostatistics and Computing

Jong Soo Hong

December 2024



This certifies that the dissertation of Jong Soo Hong is approved.

~F~2

Inkyung Jung: Thesis Supervisor

Lpr S e

Chung Mo Nam: Thesis Committee Member #1

S;ﬁu-e, Porn

Sohee Park: Thesis Committee Member #2

—

Min Jin Ha: Thesis Committee Member #3

—

Jeong Hoon Jang: Thesis Committee Member #4

The Graduate School
Yonsei University

December 2024



Contents

LlSt Of ﬁgures ....................................................................................... iV
LlSt Of tables ........................................................................................ Vi
Appendix .......................................................................................... viii
Abstract .............................................................................................. X1
1. Intro duction ................................................................................... 1
1.1 Background ............................................................................ 1

1.2 Objective and outline .................................................................. 3

2. Potential outcome ﬁ-amework .............................................................. 4
2.1 NOtatiOIlS and deﬁnitions ............................................................ 4

3. Reviews Of methOdS for CATE estimation ................................................ 7
3.1 EStlmatng CATE Via meta_learner ................................................. 7
3.1.1 S_leamer .......................................................................... 7

312 T_learner .......................................................................... 8

313 X_leamer ........................................................................... 8

32 Direct mOdeling Of CATE  cocorrerrer e 10



301 ReJEAITET -« v v e vrrrerrrereeneanene ettt ettt et te et et neeees 10

320 CaUuSAl FOFESt v v v rrerrrrrrrremnrneanenttantt ettt aaeees 12

3.2.3 WEIGAIIUIIG ++vrrrrrrrrrrrsssss s e s e seessiiii 13

3.2.4 A-lCAIIENG v+ rrrrrrrrrrr s rss s ettt 14

3.3 Ensemble mMethod -« c-c-crorerrrrermememmrmeeneea e 16
3.3.1 Causal stacking ««««weerrrrrrrerr 16

3.3.2 SUITOate CATE «rrrrrrrrrsssssserrrmeeiii ittt 17

4. Proposed method ««««««eesrrrrrrr 18
4.1  Super Learner CATE estimation method - ssserrrrrrer. 18

42  Unbiased plug-in estimator in RCTs:++«««««xxrrreeeerrrrrrm, 20

5. SImUIAtiON StUAIES ««« v v v v e rrrrrrrrrernraneeee ettt et 21
5.1 SImUlAtion SCREIMIE -+« v v v v rrrrrrrrrrernenernane ettt ettt aaeneeann 21

5.0 EvAlUALION TIIELEICS *« + v v v e e rrrrrrrmrnensnane ettt ettt aaeneeann 25

5.3 SIMULAtION TESUILS v+ v v vrrerrrrrrrrernenernene et et ettt aaeneeenn 27

6. Conclusion and DIiSCUSSION <« -« -« e e e rrrrrrrrrmemseneaeentneaat ettt 53
BADLIOrApIY -+ ++ e+ e e rereee ettt 55



App endix ..........

Abstract in Korean



List of figures

Figure 1. Visualization of model performance: Evaluation metrics for scenario 1-1-1: Data
generating process 1 with a 3:1 treatment-to-control ratio using S-learner to estimate

surrogate CATE over 100 iterations .............................................................. 41

Figure 2. Visualization of model performance: Evaluation metrics for scenario 1-2-1: Data
generating process 1 with a 2:1 treatment-to-control ratio using S-learner to estimate

surrogate CATE over 100 iterations .............................................................. 42

Figure 3. Visualization of model performance: Evaluation metrics for scenario 1-3-1: Data
generating process 1 with a 1:1 treatment-to-control ratio using S-learner to estimate

surrogate CATE over 100 iterations .............................................................. 43

Figure 4. Visualization of model performance: Evaluation metrics for scenario 1-1-2: Data
generating process 1 with a 3:1 treatment-to-control ratio using T-learner to estimate

surrogate CATE over 100 iterations .............................................................. 44

Figure 5. Visualization of model performance: Evaluation metrics for scenario 1-2-2: Data
generating process 1 with a 2:1 treatment-to-control ratio using T-learner to estimate

surrogate CATE over 100 iterations .............................................................. 45

Figure 6. Visualization of model performance: Evaluation metrics for scenario 1-3-2: Data
generating process 1 with a 1:1 treatment-to-control ratio using T-learner to estimate

surrogate CATE over 100 iterations .............................................................. 46



Figure 7. Visualization of model performance: Evaluation metrics for scenario 2-1-1: Data
generating process 2 with a 3:1 treatment-to-control ratio using S-learner to estimate

surrogate CATE over 100 iterations .............................................................. 47

Figure 8. Visualization of model performance: Evaluation metrics for scenario 2-2-1: Data
generating process 2 with a 2:1 treatment-to-control ratio using S-learner to estimate

surrogate CATE over 100 iterations .............................................................. 48

Figure 9. Visualization of model performance: Evaluation metrics for scenario 2-3-1: Data
generating process 2 with a 1:1 treatment-to-control ratio using S-learner to estimate

surrogate CATE over 100 iterations .............................................................. 49

Figure 10. Visualization of model performance: Evaluation metrics for scenario 2-1-2: Data
generating process 2 with a 3:1 treatment-to-control ratio using T-learner to estimate

surrogate CATE over 100 iterations .............................................................. 50

Figure 11. Visualization of model performance: Evaluation metrics for scenario 2-2-2: Data
generating process 2 with a 2:1 treatment-to-control ratio using T-learner to estimate

surrogate CATE over 100 iterations .............................................................. 51

Figure 12. Visualization of model performance: Evaluation metrics for scenario 2-3-2: Data
generating process 2 with a 1:1 treatment-to-control ratio using T-learner to estimate

surrogate CATE over 100 iterations .............................................................. 52



List of tables

Table 1. Simulation scenarios for the data generating process D1: 2 prognostic and 2

predictive covariates; D2: 7 prognostic and 2 predictive covariates----«----rovreeeeees 24

Table 2. Evaluation metrics for CATE estimation methods:«---------rrrrrrrrmmsseenennnns 25

Table 3. Evaluation metrics for Scenario 1-1-1: Data generating process 1 with a 3:1

treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations

Table 4. Evaluation metrics for Scenario 1-2-1: Data generating process 1 with a 2:1

treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations

Table 5. Evaluation metrics for Scenario 1-3-1: Data generating process 1 with a 1:1

treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations

Table 6. Evaluation metrics for Scenario 1-1-2: Data generating process 1 with a 3:1

treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations

Table 7. Evaluation metrics for Scenario 1-2-2: Data generating process 1 with a 2:1

treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations

Vi



Table 8. Evaluation metrics for Scenario 1-3-2: Data generating process 1 with a 1:1

treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations

Table 9. Evaluation metrics for Scenario 2-1-1: Data generating process 2 with a 3:1

treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations

Table 10. Evaluation metrics for Scenario 2-2-1: Data generating process 2 with a 2:1

treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations

Table 11. Evaluation metrics for Scenario 2-3-1: Data generating process 2 with a 1:1

treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations

Table 12. Evaluation metrics for Scenario 2-1-2: Data generating process 2 with a 3:1

treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations

Table 13. Evaluation metrics for Scenario 2-2-2: Data generating process 2 with a 2:1

treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations

Vii



Table 14. Evaluation metrics for Scenario 2-3-2: Data generating process 2 with a 1:1

treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations

Appendix

Table Al. CATE estimation method’s tuning parameters - -« -« «-«-xorrreerrrerreeeeeeees 57

Table A2. Simulation scenarios for the data generating process D1 null: 4 prognostic

covariates; D2 null: 9 prognostic covariates .................................................... 58

Figure A3. Visualization of model performance: Evaluation metrics for scenario 1-1-1 null
model: Data generating process 1 with a 3:1 treatment-to-control ratio using S-learner to

estimate Surrogate C ATE over 100 iterations ................................................... 59

Figure A4. Visualization of model performance: Evaluation metrics for scenario 1-2-1 null
model: Data generating process 1 with a 2:1 treatment-to-control ratio using S-learner to

estimate Surrogate CATE over 100 iterations ................................................... 60

Figure AS. Visualization of model performance: Evaluation metrics for scenario 1-3-1 null
model: Data generating process 1 with a 1:1 treatment-to-control ratio using S-learner to

estimate Surrogate C ATE over 100 iterations ................................................... 61

Figure A6. Visualization of model performance: Evaluation metrics for scenario 1-1-2 null
model: Data generating process 1 with a 3:1 treatment-to-control ratio using T-learner to

estimate Surrogate C ATE over 100 iterations ................................................... 62

viil



Figure A7. Visualization of model performance: Evaluation metrics for scenario 1-2-2 null
model: Data generating process 1 with a 2:1 treatment-to-control ratio using T-learner to

estimate Surrogate CATE over 100 iterations ................................................... 63

Figure A8. Visualization of model performance: Evaluation metrics for scenario 1-3-2 null
model: Data generating process 1 with a 1:1 treatment-to-control ratio using T-learner to

estimate Surrogate CATE over 100 iterations ................................................... 64

Figure A9. Visualization of model performance: Evaluation metrics for scenario 2-1-1 null
model: Data generating process 2 with a 3:1 treatment-to-control ratio using S-learner to

estimate Surrogate C ATE over 100 iterations ................................................... 65

Figure A10. Visualization of model performance: Evaluation metrics for scenario 2-2-1 null
model: Data generating process 2 with a 2:1 treatment-to-control ratio using S-learner to

estimate Surrogate C ATE over 100 iterations ................................................... 66

Figure A11. Visualization of model performance: Evaluation metrics for scenario 2-3-1 null
model: Data generating process 2 with a 1:1 treatment-to-control ratio using S-learner to

estimate Surrogate C ATE over 100 iterations ................................................... 67

Figure A12. Visualization of model performance: Evaluation metrics for scenario 2-1-2 null
model: Data generating process 2 with a 3:1 treatment-to-control ratio using T-learner to

estimate Surrogate C ATE over 100 iterations ................................................... 68



Figure A13. Visualization of model performance: Evaluation metrics for scenario 2-2-2 null
model: Data generating process 2 with a 2:1 treatment-to-control ratio using T-learner to

estimate Surrogate CATE over 100 iterations ................................................... 69

Figure A14. Visualization of model performance: Evaluation metrics for scenario 2-3-2 null
model: Data generating process 2 with a 1:1 treatment-to-control ratio using T-learner to

estimate Surrogate CATE over 100 iterations ................................................... 70



ABSTRACT

An Ensemble Approach to CATE estimation
with Super Learner in RCTs

Previous studies have focused on average treatment effects rather than individual
treatment effects in causal inference. Recently, with the growing interest in precision
medicine, there has been a substantial increase in research on Conditional Average
Treatment Effect (CATE) estimation and Individualized Treatment Rules (ITR). CATE
estimation is a method for estimating the average treatment effect for individuals with
identical feature attributes.

Various parametric and non-parametric methods have been proposed for CATE
estimation, but recent studies indicate that no method has been found to be uniformly
superior to the others across all criteria. To address this inconsistency, one study applied
an ensemble method, such as causal stacking, to improve the consistency of CATE
estimation. In this context, we proposed the Super Learner approach for CATE estimation
to improve the performance metrics. Super Learner has the advantage of dividing data using
cross-validation, which helps prevent overfitting and enables the generation of optimal

results, compared to stacking or other methods.

Xi



Simulation results demonstrate that the proposed method has less MSE and
outperformed in various performance metrics. These results indicate that, instead of relying
on a single CATE estimation method for treatment decisions, utilizing the Super Learner
to combine results from multiple methods provides a more robust and reliable framework
for optimizing patient care. Furthermore, the Super Learner approach proves to be a
practical and effective tool for developing individualized treatment rules, offering

significant potential for optimizing patient care.

Key words: Causal inference, Heterogeneous treatment effect, Conditional average

treatment effect, Individual treatment rules, Plug-in estimator

Xii



Chapter 1

Introduction

1.1 Background

Predicting individual treatment effects, beyond the average treatment effect (ATE),
has become increasingly important. Clinical trials are primarily designed to estimate ATE.
This is because the design and purpose of clinical trials focus on evaluating the average
effect of a specific treatment across the entire population. However, the ATE does not
capture differences in treatment effects at the individual or subgroup level. For instance,
certain subgroups may experience significantly greater or smaller treatment effects, but
ATE averages out such heterogeneity, potentially obscuring it. Therefore, the need for
additional analysis, such as the conditional average treatment effect (CATE), has emerged

to establish personalized treatment rules.

In clinical trials, CATE is typically estimated in two settings: the estimation of
treatment effects in a relatively small number of predefined subgroups as per regulatory
guidance, and data-driven assessments of treatment effect heterogeneity. This study focuses

on the latter.

Over the past 15 years, advancements in machine learning and the growing interest in
precision medicine within the field of causal inference have driven the development of
various methods for estimating treatment effect heterogeneity. These methods primarily
focus on evaluating the heterogeneity of treatment effects based on data-driven approaches.
Methods for evaluating treatment effect heterogeneity which have been developed across
various disciplines, can be broadly categorized into four primary approaches: (a) modeling

the response surface, (b) direct estimation of CATE, (c) direct estimation of individualized



treatment rules (ITR), and (d) direct identification of subgroups (Lipkovich et al., 2024).
The response surface modeling approach, initially introduced through the virtual twins
method (Foster et al., 2011), has since been further expanded into several variations. In this
study, we focus on approaches (a) and (b) as the foundation of our analysis to improve

CATE estimation.

Several studies have reported challenges in selecting a model for evaluating HTE, as
different models often perform better depending on the evaluation metrics used (Loh et al.,
2019). Bouvier et al. (2024) demonstrated the issue of low agreement between CATE
estimation methods when recommending treatments based on estimated individual
treatment effects, with the methods showing weak correlations or inconsistent treatment

recommendations.

Meanwhile, attempts have been made to improve the accuracy of CATE estimation
methods using ensemble methods, which combine the predictions of multiple models to
enhance overall performance. In ensemble models, since the true value of CATE is
unknown, it must be replaced with an alternative value. Specifically, in clinical trials, a
mathematically derived unbiased estimator can be used as a substitute for CATE. We
demonstrated the unbiased estimator of true CATE in randomized clinical trials in Chapter
3. In observational studies, it is not possible to obtain an unbiased estimator to substitute
for the true CATE when applying ensemble models. When attempting to obtain an unbiased
estimator of the substitute value in observational studies, the propensity score must be
estimated. As the propensity score appears in the denominator of the estimation formula,
the estimator can become unstable, particularly when the propensity score is close to zero.

Therefore, this study limited the analysis to clinical trial settings.



1.2 Objective and outline

This paper aims to improve CATE estimation by applying the Super Learner approach
to estimate the weights of CATE estimation methods. A key advantage of this approach is
its ability to prevent overfitting by training model weights using cross-validation, which
distinguishes it from the stacking method. The CATE estimation methods used in the Super
Learner demonstrate superior performance only in specific scenarios. Therefore, we
evaluate the proposed method based on various performance metrics to determine whether
it performs well under diverse conditions. We conducted simulation studies to compare our
proposed method with existing methods. Simulation studies were designed under
conditions where the true CATE is known to verify whether the proposed method

outperforms existing methods.

In Chapter 2, we introduce the notations and definitions related to the potential
outcome framework. In Chapter 3, we provide a brief review of CATE estimation and
ensemble methods. In Chapter 4, we propose the Super Learner based CATE estimation.
The simulations and their results are summarized in Chapter 5. Finally, Chapter 6 concludes

and provides a discussion on the proposed method.



Chapter 2

Potential outcome framework

2.1 Notations and definitions

We adopt potential outcome framework introduced by Neyman and Rubin (2005).
This framework serves as a theoretical foundation for causal inference and is widely used
for quantifying and analyzing causal effects. Also known as the Rubin Causal Model
(RCM), this approach was formalized by Rubin and defines causal effects through
assumptions and comparisons not only of “what actually happened” but also of “what could

have happened.”

Potential outcomes are defined as the possible outcomes under the different treatment
conditions: Y (1) represents the potential outcome if the individual receives the treatment
and Y (0) represents the potential outcome if the individual does not receive the treatment

(or receive the control).

For each individual, only one of the two potential outcomes is observed, depending
on the treatment assignment. This issue is referred to as the counterfactual problem, as it is
impossible to observe both outcomes for the same individual. The observed outcome (Y,,s)
is determined as:

(Y1), ifT =1,
Yobs = {Y(O), if T = 0. @1

To evaluate heterogeneous treatment effects (HTE), we first define the individual

treatment effect (causal effect). The individual treatment effect for a binary or continuous

outcome Y is represented in terms of potential outcomes as:



7; = Y;(1) — Y;(0), (2.2)

where Y;(t),t € {0, 1}, represents a potential outcome that could have been observed.
However, since both potential outcomes cannot be observed simultaneously for the same

individual, the causal effect cannot be directly measured.

To enable causal inference within the potential outcome framework, the following

assumptions are required:
First, we assume general Stable Unit Treatment Value Assumption (SUTVA):
Y, =Y(T) = (DT + (001 - Ty, (23)

where Y; is the observed outcome and T; is the treatment received for the i-th subject.
From the perspective of precision medicine, we are interested in modeling the
heterogeneity of individual treatment effect (ITE) as a function of observed subject

characteristics, leading to the conditional average treatment effect (CATE), defined as:
T(x) = E(Yi (1) = Y;(0)|X = xy), 24

where x; = (xli, ...,xpl-) is a vector of p covariates, denoted by Xj, ..., X, for the i-th

subject.

Removing the patient index i, let u(t,x) = E(Y(t)|X = x),t € {0,1}, and define
T(x) = u(1,x) — u(0,x) . Note that under strong treatment ignorability, ensured by
randomization in RCTs and assumed in observational studies conditional on the covariates
(Rosenbaum & Rubin, 1983), we can replace the potential outcomes with the conditional

expectations of the observable random variables:
u(t,x) =EYI|T =t X =x). (2.5)

The response surface can be represented without loss of generality as:



u(t,x) = h(x) + %T(x)(Zt —1),t € {0,1}, (2.6)

where h(x) is the main covariate effect, that is,

AG) = 5 (u(L, ) + w0, ) @.7)

In observational data, estimating causal effects, such as ATE and CATE, requires
additional assumptions. First, we assume treatment ignorability conditional on the observed

covariates that is,

T 1L{Y(1),Y(0)}|X (2.8)

Second, we often estimate the propensity score function m(x) =Pr(T = 1|X =

x) from the observed data. To make valid inferences, we assume positivity, 0 < m(x) < 1.

Occasionally we use a general treatment assignment function 7(t,x) = Pr(T =
t|X = x) allowing us to simplify certain expressions. In this context, the propensity score
is defined as m(x) = m(1, x). In this paper, we focus on randomized clinical trial settings

and use the treatment assignment probability p instead of estimating the propensity score

(x).

Let us assume we obtained a good estimate of CATE, A(x). we define a subgroup as

a set of all subjects with a positive treatment effect, that is,

S(x) = {x s Alx) > 8}, (2.9)

where § is a predefined. In this paper, we only consider cases where § = 0. This implies
that subgroup includes all individuals with a treatment effect that is even slightly positive.
This approach is closely related to developing individualized treatment assignment rules or
regimens that, given a subject’s covariate profile X = x, select the optimal treatment

D(x) € {0,1}.



Chapter 3

Reviews of methods for CATE estimation

3.1 Estimating CATE via meta-learner

The meta-learner emerged as a powerful framework to address the complexity of
CATE estimation by combining machine learning techniques with causal inference theory.
It estimates nuisance parameters through outcome modeling and propensity score modeling,
leveraging these results to estimate CATE. There are no restrictions on the methods used
to estimate the model, allowing for the application of various machine learning techniques

such as extreme gradient boosting (XGBoost) or random forests (RF).

3.1.1 S-learner

The S-learner estimates the treatment effect within a single regression model, where
the treatment is included as a feature and where interactions between the treatment and
relevant covariates are introduced in the parametric settings. First, a model is used to

estimate the response function pu(t,x):
u(t,x) =E[Y|T =t,X = x]. (3.1

Then, the individual treatment effect 7 is estimated as:
T(x) = A1, x) — (0, x). (3.2)

Since the S-learner trains only one outcome model by using machine learning models

such as XGBoost and RF, it is simple and computationally efficient. However, if the



treatment effect is highly heterogeneous, the S-learner may introduce bias due to the single-
model approach, making it difficult to capture interaction effects between treatment groups

effectively.

3.1.2 T-learner

In the T-learner algorithm, two models are built, one for the treatment group and one

for the control group. These models are used to calculate the response functions:

m(x) =E[Y|IT =1,X =x],
uo(x) =E[Y|T =0,X = x].

The ITE is estimated as the difference between the two predicted risks:
() = A1 () — Ao ().

The T-learner offer the advantage of simplicity of implementation and flexibility for
integration with various machine learning models. However, a potential drawback is the
risk of introducing bias in estimated. T-learners may be prone to bias arising from
inconsistent estimations across independently trained models and challenges related to data

imbalance.

3.1.3 X-learner

Kiinzel et al. (2019) proposed a method called X-learner, which is a hybrid estimator
of CATE formed as a weighted average of two estimators 7 (x) and 7y(x) constructed

using a multi-step procedure:
1. Estimate the response function as in the T-learner:

to(x) = E[Y|X = x,T = 0],



u(x) =E[Y|X=xT =1].

2. Imputed the treatment effects for the individuals in the treated group based on the
control-outcome estimator and the treatment effects for the individuals in the control group

based on the treatment-outcome estimator and estimate 7;(x) and 7, (x):

D' =Y, — flo(X),i € {i: T; = 1},
D° =, (X;) - Y, i €{i: T; = 0},
t.(x) = E[D|X = «],
to(x) = E[D°|X = x].

3. Define the ITE by a weighted average of the two estimates:

2(x) = wx) 2o (x) + (1 = w(x)) 2 (x),

where the weight function is often taken as the estimated propensity score, w(x) =

#(x) = Pr(T = 1]X = x) or constant probability of treatment assignment.

The X-learner is expected to outperform the T-learner in scenarios where the control
arm is significantly larger than the treated arm. This is because the two estimators, 7, (x)
and 7,(x), in the X-learner rely on comparing observed outcomes and counterfactual
outcomes predicted from the alternative arm, rather than comparing predicted potential
outcomes generated by models fitted to different arms. Additionally, with the X-learner,
differences in model complexity across the two arms are effectively "smoothed out" within

each estimator, 7, (x) and T,(x).



3.2 Direct modeling of CATE

A common approach to addressing the challenges associated with tuning complexity
parameters for predictive and prognostic effects is to redefine the problem in a way that
eliminates the need to estimate prognostic effects. Over the past 10 years, several methods
have been developed to model CATE directly, bypassing the need to incorporate the
prognostic component of the outcome model. The key benefit of these methods is that they

reduce the risk of errors resulting from misspecifying the prognostic effects.

3.2.1 R-learner

One proposal for outcome transformation is based on the so-called Robinson’s
transformation (Kennedy, 2023) of an outcome variable that involves simultaneously
centering the response and treatment indicator around their estimated expected values.

Specifically, consider

yr = i) (3.3)
T (X))

where u(x) = E(Y|X = x) is the overall response function, capturing the main effect of
covariates on the outcomes in the pooled data. It is easy to show that E(Y*|X = x) = 7(x),
therefore a simple approach similar to the modified outcome is to estimate CATE by
regressing Y™ on the covariates. The residualization of marginal outcomes and treatment
effects has recently been promoted in the literature as part of efforts to estimate overall
treatment effects from observational data, particularly under the framework of
double/debiased machine learning. Additionally, it has been a focus in research on HTE, as

demonstrated by Athey et al. (2019) in their work on generalized random forests (GRF).

10



The transformation leads to the following data representation:

Y, = u(x) = (T; = n(X))r(X) + €y, (34)

where the plug-in estimates of nuisance parameters p(x) and m(x) are obtained from
some off-the-shelf machine learning methods with a cross-fitting step following the
estimation of 7(x). These ideas were first introduced in the proposal by Zhao and

Panigrahi (2019) and further generalized in R-learning of Nie and Wager (2021).
The R-learner estimates the ITEs in two steps:
1. Fit the response function 4~!(x) and the propensity score 77!(x) with a base learner.

2. Estimate ITEs by minimizing the R-loss, which uses Robinson’s decomposition:

#() = argmin(Ly{x()} + An{x())
R RN . .
Lafr) = =) (=700 = (T - 271060 7))

=1

2

Here A,{t(-)} is aregularizer on the complexity of the 7(-) to a given machine learning
method. It was shown that the cross-fitting procedure controls the convergence rates of the
target CATE estimator independently of learning the nuisance parameters, as if those were

provided by an approximate oracle.

11



3.2.2 Causal Forest

The causal forests algorithm is a special case of generalized random forests (GRF), a
flexible and general framework to estimate the ITEs (Athey et al., 2019). Causal forests
extend the original random forest algorithm by borrowing ideas from kernel-based methods
and the R-learner. If we know that 7(x) were constant over some neighbourhood N(x),
we could solve partially linear model over N(x) using the residual-on-residual approach:
first, we estimate m(x) = E(T;|X; = x) and second, u(x) = E(Y;|X; = x). We can any
non-parametric method like the lasso, RF, boosting methods and others. The final step is to

estimate 7(x) over the neighbourhood N(x):

YxeneylYi — AXDHT; — (X))}

8 = Yixeneoytly — T(X)}

In contrast to the standard random forest algorithm in which a prediction for a new
observation is obtained by averaging predictions of each tree, here, the trees are used to
compute a weighting scheme similar to kernel-based methods. The trees act as weights

between training points and any new observations:

HX, €L
i) = ~= 2 ) = B Eam(x)

Ax) = Z Vit (x).
i=1

where X; corresponds to the covariates of individual i in the training dataset and Ly (x)
corresponds to the set of observations in the training set that fall in the same leaf as x for

tree b.

Then, the prediction for a new observation is obtained using the adaptive weights by

minimizing the R-loss described above.

Another characteristic of causal forests (and more generally of GRF) is the notion of

12



honesty where the training data is split into two parts: one for constructing the tree and the
other (the estimation sample) for estimating leaf values for each tree. In doing so, the
estimates are less prone to bias and more consistent. The notion of honesty is similar to

employing the cross-fitting in non-parametric meta-learners.

3.2.3 W-learning

Directly estimating CATE using W-learning is achieved through the following
procedure. Based on an inverse probability weighted (IPW) transformation, a continuous

or binary outcome Y can be transformed.

v =y T; v 1-T; T, — m(X;)
P i-w(x) T tr(x) (1 - (X))

It is instructive, as will be seen from the following, to express the modified outcome

via the treatment indicator A; = 2T; — 1 € {—1,1}.

A;
Yr =Y. :
' "AT(X) + (1 —-Ap))/2

An alternative way of obtaining a CATE estimator is by using a weighted squared loss

with the outcome multiplied by 24 and subject weights

1
W, = ,
COARMX) + (1 - 4)/2

argminE (Wi(ZAiYi — g(Xl-))2|Xi = x)

gx)
Xi = X)

2

A

= argminE | 4W; <Yi - —lg(Xi)>
g(x) 2

= 7(x).
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W-learning with augmentation method can be obtained by transforming continuous

responses into doubly robust augmented inverse probability weighted (AIPW) scores.

T,(Y: — 0, (X)) (- TH(Y; — (X))
(X;) 1-7(X;)

Tarpw (X)) = (X)) — fio(X;) +

T, — 7t (X;)
f(x)(1 - 7(X))

= A (X) — Ao(X) + (Y; — a1y, X)),

where fi;(x) = fi(1,x) and f,(x) = 1(0,x) are based on the outcome regression.

3.2.4 A-learning

Chen et al. (2017) proposed A-learning based on minimizing the modified loss

2
E (Y — (T — (X )) gx )) is the method for directly estimating CATE. Its population

minimizer for the squared loss is g(x) = t(x). This property holds because the centered

interaction (T — (X )) g(X) is orthogonal to the main effect h(X) in (2.7).

It is important to note that direct estimation methods are prone to high variability
resulting in poor efficiency, which can be improved by augmenting the estimating

equations with an additional zero-expectation term.

! v-2g00)|x=x)=0
E(n(X)—(l—A)/Z( —29¢ )>‘ _x>_ '

It can be shown that the solution of the equation does not change if we add a tern

b(X)

e SIS for an arbitrary function of covariates b(X). Now the goal is to choose the

function b(X) that minimizes the variance of the estimating equations.

A-learning with augmentation method can be implemented by transforming outcome

variable based on Robinson’s transformation (3.3) to the outcome variable. Through
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augmentation, the estimation has doubly robust property if either the outcome model or the

propensity score model is correctly specified.

Hence, A-learning is well-suited for simpler data and models, providing an efficient
approach when quick results are prioritized. In contrast, A-learning with augmentation is
more appropriate for complex data settings, offering robust estimation, particularly in

scenarios where model misspecification is a concern.
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3.3 Ensemble method

3.3.1 Causal stacking

Han and Wu (2022) proposed causal stacking method for CATE function estimation
in RCTs (Bernoulli design or completely randomized design). The analysis procedure is as

follows:
1. Choose K CATE estimation algorithms

2. Partition the data into train/validation set and calculate the proportion of treated units in

validation set.
3. Estimate T) using training data and predict Ty (X;),i € Syaiq

4. Optimize the weights

1

2 (% - WTf1:K(Xi))2.

1€Syalid

W= argmin
w20,||w||1:1 valid

where 7; is defined as:

LW MG [~ A (1A~ T)

T = [ (X)) — o (X)) 1-p

)

within the validation set.

5. Predict £,(-) = W2, ().

First, researcher selects K methods for estimating CATE as candidate methods to
apply the ensemble method. Next, the dataset is divided into a training set and validation
set. The K CATE estimation methods are trained on the training set and the proportion of

treated units p is calculated using the validation set.
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Using the K CATE models, predicted value 7, (X;) are calculated on the validation
set and weights that minimize the loss function are optimized. Since the true CATE is
unknown in the loss function used for W, an unbiased plug-in estimator substitutes true
CATE as the surrogate CATE. The plug-in estimator is one of the methods proposed by
many researchers to approximate the true CATE (Saito & Yasui, 2020). Aronow and
Middleton (2013) demonstrated that an unbiased for 7(X;) under any choice of the
regression functions fiy and fi; when using validation set. An estimator that substitutes
the true CATE using this idea is referred to as a plug-in estimator. The predicted values and
weights from each method are linearly combined to estimate the CATE. Previous studies

have shown that causal stacking outperforms individual methods in terms of mean squared

€1Tor.

3.3.2 Surrogate CATE

As introduced in Section 3.3.1, implementing ensemble methods typically requires a
surrogate value for the true Conditional Average Treatment Effect (CATE) during the
estimation process. In most practical settings, however, it is not feasible to observe the
exact CATE for each subject, thereby necessitating a suitable surrogate. This surrogate
effectively serves as a “true” label in the training procedure and critically affects both the

bias and variance of the resulting estimators.

In the context of a RCT, the treatment assignment probability p is known a priori,
and randomization ensures that the treatment assignment is independent of the potential
outcomes. Under these conditions, the plug-in estimator is unbiased, providing a surrogate
for the true CATE. This property is especially advantageous when applying ensemble
methods, as it allows the algorithm to rely on a well-founded surrogate for the underlying

CATE, ultimately improving estimation accuracy and robustness.
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Chapter 4

Proposed method

4.1 Super Learner CATE estimation method

We propose Super Learner-based method for CATE estimation. This idea is derived
from Super Learner (Van der Laan et al., 2007). Super Learner identifies the optimal
weights that minimize loss based on cross-validation results. Unlike other ensemble
methods that use predefined combination rules, the Super Learner learns the weights in a
data-driven manner. We expect our proposed method to prevent overfitting and ensure
estimation stability, improving upon the causal stacking method suggested in previous

studies. The proposed algorithm is outlined as follows:

Algorithm 1. Super Learner-based method for CATE estimation

Input: Dataset S = {(X;,Y;, T;)}~,, candidate CATE algorithms {cA;}X_,.
1: Split the dataset into V-fold datasets {S;, S, ..., Sy}.

2:for veE{1,2,..,V} do

3: Define the dataset excluding the v-th foldas S_, =S5\ S,.

4: For each CATE algorithm Ay, fit Ay using S_, to estimate Ty, the predicted

CATE for the data in S,,, based on the model trained on S_,,.

5: end for

18



T 7 Tka
6: Construct the predicted CATE matrix C = Do .

7: Estimate the plug-in estimator for true CATE t* = (f],%; ..., T5)¢, where each

individual estimator
Y, — 4, (XDIT; [V, — A,(XD]1(A = T))

T = [l (X)) — po (X)) + » - 1—>p :

Using the data in Sy, fit the regression model f,,[, that Y; using X; and

fraction of treated units in the S, should be p.

8: Estimate the weight w by solving the problem: minhmlilze |£* — Ccwl]|?.
w>0,[|lw||=1

9: fit CATE fk,S — qu(strain): ke {1,2, ,K}

Output: predict test dataset Yh_; Wiy s(X;) fOr i € Siest

First, researcher selects K methods for estimating CATE as candidate methods to
apply the Super Learner-based method. Then, the data is divided into V-fold datasets. The
K CATE estimation methods are trained using the dataset excluding the v-fold, and the
predicted CATE for the v-fold dataset using prediction models. This process is repeated
V' times to create the predicted CATE matrix C.

Next, a plug-in estimator is calculated to utilize the surrogate CATE as substitute for

the true CATE. To optimize the weight w, following loss function is minimized:

minimize ||£* — Cw||?
W>0,||W||=1

To obtain the K CATE estimations for the entire dataset, each model is refitted to
generate predictions (Polley & Van der Laan, 2010). These predictions, along with the

estimated weights, are used to estimate the CATE for the test dataset.

19



4.2 Unbiased plug-in estimator in RCTs

In Algorithm 1, the plug-in estimator plays a crucial role, serving as a benchmark for
estimating the true conditional average treatment effect. As mentioned in Section 3.3.2,
identifying an appropriate substitute for the true CATE is essential for estimating weights
in ensemble methods. To ensure reliable CATE estimation, an unbiased estimator must be
used. However, in observational studies, even if the propensity score is carefully modeled,
the property of unbiasedness is not guaranteed. Consequently, this study focuses on

randomized clinical trials to secure an unbiased plug-in estimator for the true CATE.

In causal inference and machine learning, many studies utilize plug-in estimators as
substitutes for the true CATE, employing outcome models based on meta-learner
framework such as S-learner, T-learner, and X-learner (Mahajan et al., 2022). In this study,
we adopt plug-in estimators derived from S-learner and T-learner to evaluate their impact

on the performance of ensemble methods.

Finally, using Algorithm 1, we compared the Super Learner-based method with
existing methods to examine whether it prevents overfitting and produces consistent results.

The results were validated through simulations, as detailed in Chapter 5.
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Chapter 5

Simulation studies

5.1 Simulation scheme

We conducted a simulation study with two scenarios reflecting different challenges
encountered in HTE assessments. This is done to demonstrate that, if certain key
assumptions are violated, it would no longer be feasible to accurately estimate CATE even

with very sophisticated methods.

The simulations used in this paper partially adopted the settings proposed by
Lipkovich (2024). Data generating process D1 and D2 represent data from an RCT
setting, where subjects are randomized to treatment than to the control groups at ratios of
3:1, 2:1 or 1:1. The outcome Y is continuous, with large values indicating treatment
benefits. The train dataset contains N=1,000 observations and the data-generating process

1s defined as follows:

Y =100 — (X; + 5X2) + T X (9:(X3) + g2(Xy)) + €,
. 111
where X1, Xs, X,~N(0.5,1), X,~Categorical (g,g,g) ,e~N(0,1), T € {0,1}.

Here, X;,X, form the prognostic component and X3, X, the predictive part with

CATE given as t(x) = g;(x3) + g,(x4). Nonlinearity is induced in CATE viaa g,(-)

a—>b-0.25 ifx <0
g1(x) =4a — b(x — 0.5)? if0<x<1,
a—>b-0.25 ifx>1

and a monotone g, (*)
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0 ifx<O0

c
= ifo<x<1,
92(x) 1+ exp(—d(x — 0.5))
c ifx>1

The constant a = 0.625, b =5, ¢ = 0.625, d = 20 are calibrated so as to make the overall
treatment effect slightly positive, E[t(X)] = 0.0119, the true signature Sipye = {T(X) >
0} has the proportion of subjects E[I(X € Stye)] = 0.330 and the true mean treatment
effect in Sgye 18 E[T(X)|X € Strye] = 0.665 and the true subgroup’s utility index 7 is
0.22.

Data under D, are simulated similarly to D;, except the prognostic part is more

complex:

Y =100 — (X; + 5X2) + 2(Xs + X + X7 + Xg + Xo) + T X (91(X3) + 9,(Xs)) + €,
X5, X, ..., Xo~N(0.5,1),

To make analysis more challenging each dataset includes an additional 10 noise

covariates independently drawn from the standard normal distribution.

Unequal sample sizes in treatment groups, such as when the treatment group is three
times larger than the control group, seem to be an advantage since the larger sample size is
in the arm where the true outcome model is more complex. Therefore, additional

simulations were conducted with treatment and control ratios of 2:1 and 1:1.

We selected 11 methods to estimate CATE estimation in each scenario. Selected
methods are T-, S-, R-, X-, Causal Forest, A-learning, A-learning with augmentation, W-
learning, W-learning with augmentation, causal stacking, and our proposed Super Learner-
based CATE method. The CATE estimation methods included in the comparison were
determined based on the availability of R packages or publicly available codes from other

papers. The outcome model was estimated using XGBoost.

We utilized a modified version of meta-learning code by (Nie & Wager, 2021), which
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includes cvboost3, tboost3, sboost3, rboost3, and xboost3 to estimate T-learner, S-learner,
R-learner, and X-learner (Lipkovich et al., 2023). This modified version focuses on the
three key tuning parameters (size, depth, and eta) out of the seven tuning parameters in the
original cvboost. Hyperparameters for all models were estimated using 5-fold cross-
validation combined with grid search, and the ranges of hyperparameters explored during
the search process are summarized in detail in the Appendix Table Al. The estimation of
Causal Forest was performed using the ‘grf” package, while the estimation of A-learning

and W-learning was performed using the ‘personalized’ package.

In addition to the previous simulations, we conducted additional simulations for cases
where the CATE is absent, referred to as a null model. Through these simulations, we aimed
to examine the relative performance of the Super Learner compared to other methods in
the absence of CATE. We constructed the null model by partially modifying D1 and D2

to remove the interaction term (X X T). The data generating process is as follows.
Null model:
(D1 null) ¥ =100 — (X; + 5X;) + (g1 (X3) + g2(Xs)) + €

(DZ null) Y =100 - (Xl + 5X2) + 2(X5 + X6 +X7 +X8 +X9) + (91(X3) + gz(X4)) + €

To make analysis more challenging each dataset includes an additional 10 noise

covariates independently drawn from the standard normal distribution.

The results of the additional simulations are summarized in the Appendix Table A2

and Figure A3-A14.
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Table 1. Simulation scenarios for the data generating process D1: 2 prognostic and 2 predictive
covariates; D2: 7 prognostic and 2 predictive covriates

Scenario Data generating process Treatment-.to-control Surrogate
ratio CATE
1-1-1 D1 3:1 S-learner
1-2-1 D1 2:1 S-learner
1-3-1 D1 1:1 S-learner
1-1-2 D1 3:1 T-learner
1-2-2 D1 2:1 T-learner
1-3-2 D1 1:1 T-learner
2-1-1 D2 3:1 S-learner
2-2-1 D2 2:1 S-learner
2-3-1 D2 1:1 S-learner
2-1-2 D2 3:1 T-learner
2-2-2 D2 2:1 T-learner
2-3-2 D2 1:1 T-learner
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5.2 Evaluation metrics

We used eight evaluation metrics to summarize the performance of various methods
for estimating CATE on the simulated data (Table 2). We mainly focus on mean squared
error and subgroup utility index, as they are critical for assessing both estimation accuracy

and subgroup identification performance.

Table 2. Evaluation metrics for CATE estimation

Evaluation metrics Descriptive

Pearson correlation between true CATE and

corr(2(X), 1(X)) estimated CATE

n(§ N Strue)

— % Jaccard similarity coefficient
n($U Spue)

agree(f', Strue) =

R True average treatment effect on estimated
ATE(S) = Ex{T(X)|R(X) > 0}
subgroup

R Estimated average treatment effect on
ATE(S) = Ex{Z(X0)R(X) > 0} .
estimated subgroup

Difference between estimated average
treatment effect on estimated subgroup and

bias{ATE(S)} = ATE(S) — ATE(S
MS{ ( )} ( ) ( ) true average treatment effect on estimated

subgroup
. Standard deviation of estimated average
SD{ATE(S)}
treatment effect on estimated subgroup
n= ATE(S’) % @ Subgroup’s utility index

MSE, =

1 . 2
Srost Z (i — £ (X)) Mean squared error of test dataset
es

iE€Stest

* Sprue®) = {x : T(X) > 0} and S(X) = {x: £(X) > 0}
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We evaluated agreement between the true and estimated CATE using Pearson
correlation. The Jaccard similarity coefficient measured the overlap between the true
subgroup and estimated subgroup. A true/estimated subgroup is defined as the set of
individuals whose true/estimated CATE is greater than 0. True average treatment effect on
estimated subgroup represents the average treatment effect of the subgroup with a positive
estimated CATE. Bias is difference between estimated average treatment effect on
estimated subgroup and true average treatment effect on estimated subgroup. Standard
deviation of estimated average treatment effect on estimated subgroup indicates the extent
of dispersion or variability. Subgroup’s utility index is equivalent to the difference between
the value of the estimated treatment assignment rule and that of a fixed regimen that assigns
everyone to the control. In other words, a higher value indicates that the treatment
assignment rule is effective in assigning appropriate treatments to patients with a greater

treatment effect across the entire population.

The figures consist of one box plot (A) and three scatter plots (B-D):
(A) A box plot of mean squared error (MSE)
(B) A scatter plot of the correlation between true CATE and estimated CATE versus the
subgroup utility index
(C) A scatter plot of the true average treatment effect (ATE) on the estimated subgroup
versus the estimated ATE on the same subgroup
(D) A scatter plot of the correlation between true CATE and estimated CATE versus the

Jaccard similarity coefficient between the true subgroup and the estimated subgroup.

These plots aim to evaluate performance of methods for accurately estimating CATE
and identifying subgroups with significant treatment effects across simulations. In the
following section, we evaluate the CATE estimation methods based on the simulation

results.
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5.3 Simulation results

The results of the evaluation metrics for comparing CATE estimation methods are
presented in Tables 3—14. Across all simulations, the Super Learner consistently
demonstrated superior performance, showing subgroup utility index values that were
relatively close to the true values. When considering both the subgroup utility index and
the bias in the average treatment effect of the estimated subgroup, the proposed method
exhibited a higher subgroup utility index and relatively smaller bias compared to other

methods.

Except for the A-learning and W-learning methods, the Pearson correlation and
Jaccard similarity coefficient appeared to fall within a similar range and indicated a linear
correlation in each Figure (D). However, the A-learning and W-learning methods showed
poor CATE estimation results across multiple evaluation metrics. Augmentation methods
that transform the form of the outcome occasionally demonstrated good performance

depending on the scenario.

From the perspective of the treatment-to-control ratio, the bias in the average
treatment effect of the estimated subgroup decreased as the treatment proportion became
closer to the control proportion (Tables 3—5). This suggests that a balanced treatment-to-

control ratio contributes to more stable and accurate estimations.

In the simulations, we used the S-learner and T-learner as substitutes for the true CATE.
Although the T-learner showed slightly larger values under the same settings, overall
simulation results showed no significant difference between the two learners, indicating

that the plug-in estimator did not have notable impact on performance metrics.

In terms of MSE, the Super Learner method demonstrated significantly smaller values
and ranges compared to other methods, while A-learning and W-learning exhibited very
large values, indicating instability in their estimates. Additionally, in each Figure (B), the

Pearson correlation and subgroup utility index appeared to have a linear relationship in
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most cases. Through plot (C), it was possible to examine whether the estimated ATE in the
estimated subgroup was underestimated or overestimated compared to the true ATE in the
estimated subgroup. Most estimates tended to be overestimated. Estimates closer to the
diagonal line were considered more accurate, with the Super Learner, S-learner, and X-

learner, in that order, showing closer.

Considering multiple evaluation metrics comprehensively, the Super Learner
demonstrated robust and superior performance in CATE estimation compared to other

methods.

The additional simulation results for the null model indicate that in most scenario
settings, the S-learner, A-learning, and W-learning methods showed relatively higher mean
squared errors, as shown in plot (A). Since the null model represents a case where the true
CATE is absent, various performance metrics cannot be comprehensively evaluated.
However, as presented in plot (B), estimated average treatment effect on estimated
subgroup values are ranked in descending order as causal forest, Super Learner, and S-

learner in Appendix Figure A2-A13.
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Table 3. Evaluation metrics for Scenario 1-1-1: Data generating process 1 with a 3:1 treatment-to-control ratio using S-learner to estimate
surrogate CATE over 100 iterations

Method corr(3,t)  agree(S,S) ATE(S) ATE(S)  bias{ATE(S)} SD{ATE(S)} n
T-learner 0.549 0.439 0.569 0.271 0.299 0.072 0.136
S-learner 0.652 0.498 0.345 0.315 0.030 0.075 0.161
R-learner 0.696 0.494 0.394 0.262 0.132 0.082 0.140
X-learner 0.586 0.431 0.332 0.257 0.075 0.073 0.136
Causal Forest 0.704 0.419 0.128 0.365 -0.236 0.073 0.137
A-learning -0.028 0.295 3.791 0.008 3.782 4.933 0.007
A-learning aug* 0.676 0.450 0.469 0.227 0.241 0.083 0.137
W-learning 0.003 0.326 4.295 0.014 4.281 4.136 0.013
W-learning aug 0.761 0.505 0.620 0.283 0.337 0.069 0.164
Causal stacking 0.695 0.486 0.399 0.250 0.150 0.082 0.138
Super Learner** 0.773 0.525 0.404 0.348 0.055 0.094 0.185

* aug; augmentation

** Super Learner; proposed method
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Table 4. Evaluation metrics for Scenario 1-2-1: Data generating process 1 with a 2:1 treatment-to-control ratio using S-learner to estimate
surrogate CATE over 100 iterations

Method corr(3,t)  agree(S,S) ATE(S) ATE(S)  bias{ATE(S)} SD{ATE(S)} n
T-learner 0.578 0.452 0.521 0.282 0.240 0.059 0.141
S-learner 0.630 0.488 0.307 0.302 0.005 0.062 0.155
R-learner 0.748 0.521 0.379 0.260 0.119 0.082 0.141
X-learner 0.644 0.462 0.311 0.290 0.021 0.062 0.151
Causal Forest 0.715 0.442 0.131 0.358 -0.226 0.067 0.142
A-learning -0.003 0.283 4.619 0.008 4.610 4.839 0.006
A-learning aug* 0.667 0.449 0.434 0.224 0.210 0.073 0.135
W-learning 0.013 0.322 4.406 0.013 4.394 3.910 0.012
W-learning aug 0.723 0.483 0.560 0.255 0.304 0.064 0.152
Causal stacking 0.743 0.510 0.387 0.245 0.142 0.079 0.138
Super Learner** 0.758 0.511 0.379 0.334 0.045 0.075 0.180

* aug; augmentation

** Super Learner; proposed method
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Table 5. Evaluation metrics for Scenario 1-3-1: Data generating process 1 with a 1:1 treatment-to-control ratio using S-learner to estimate
surrogate CATE over 100 iterations

Method corr(3,t)  agree(S,S) ATE(S) ATE(S)  bias{ATE(S)} SD{ATE(S)} n
T-learner 0.564 0.445 0.505 0.272 0.233 0.053 0.138
S-learner 0.577 0.455 0.280 0.270 0.010 0.065 0.143
R-learner 0.791 0.537 0.372 0.275 0.097 0.072 0.150
X-learner 0.698 0.480 0.329 0.315 0.014 0.059 0.164
Causal Forest 0.695 0.418 0.149 0.327 -0.178 0.075 0.146
A-learning 0.007 0.277 4.166 0.014 4.152 5.165 0.009
A-learning aug* 0.618 0.429 0.410 0.212 0.198 0.061 0.130
W-learning -0.005 0.285 4.658 0.012 4.647 5.265 0.008
W-learning aug 0.595 0.430 0.483 0.215 0.268 0.056 0.131
Causal stacking 0.781 0.531 0.374 0.269 0.105 0.073 0.148
Super Learner** 0.729 0.496 0.341 0.341 0.001 0.065 0.181

* aug; augmentation

** Super Learner; proposed method
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Table 6. Evaluation metrics for Scenario 1-1-2: Data generating process 1 with a 3:1 treatment-to-control ratio using T-learner to estimate
surrogate CATE over 100 iterations

Method corr(3,t)  agree(S,S) ATE(S) ATE(S)  bias{ATE(S)} SD{ATE(S)} n
T-learner 0.550 0.450 0.555 0.270 0.285 0.071 0.136
S-learner 0.646 0.506 0.333 0.312 0.021 0.069 0.159
R-learner 0.691 0.496 0.383 0.255 0.128 0.087 0.137
X-learner 0.572 0.435 0.325 0.258 0.067 0.078 0.133
Causal Forest 0.692 0.433 0.124 0.362 -0.238 0.069 0.136
A-learning -0.014 0.286 5.480 0.007 5.473 6.687 0.005
A-learning aug* 0.676 0.457 0.458 0.217 0.241 0.077 0.132
W-learning 0.025 0.330 4.698 0.013 4.685 4.384 0.013
W-learning aug 0.761 0.506 0.607 0.271 0.336 0.069 0.159
Causal stacking 0.687 0.485 0.392 0.243 0.149 0.088 0.134
Super Learner** 0.778 0.528 0.390 0.346 0.044 0.088 0.183

* aug; augmentation

** Super Learner; proposed method
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Table 7. Evaluation metrics for Scenario 1-2-2: Data generating process 1 with a 2:1 treatment-to-control ratio using T-learner to estimate
surrogate CATE over 100 iterations

Method corr(3,t)  agree(S,S) ATE(S) ATE(S)  bias{ATE(S)} SD{ATE(S)} n
T-learner 0.567 0.453 0.527 0.276 0.252 0.065 0.139
S-learner 0.628 0.500 0.311 0.303 0.007 0.077 0.156
R-learner 0.764 0.538 0.387 0.275 0.112 0.090 0.146
X-learner 0.647 0.471 0.315 0.289 0.026 0.071 0.149
Causal Forest 0.730 0.438 0.127 0.376 -0.249 0.071 0.140
A-learning -0.036 0.291 4.430 0.006 4.423 5.017 0.005
A-learning aug* 0.673 0.459 0.436 0.220 0.216 0.075 0.135
W-learning 0.008 0.328 4.309 0.013 4.296 3.704 0.012
W-learning aug 0.723 0.494 0.568 0.255 0.313 0.077 0.152
Causal stacking 0.761 0.532 0.391 0.264 0.127 0.089 0.145
Super Learner** 0.763 0.527 0.381 0.354 0.028 0.080 0.185

* aug; augmentation

** Super Learner; proposed method
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Table 8. Evaluation metrics for Scenario 1-3-2: Data generating process 1 with a 1:1 treatment-to-control ratio using T-learner to estimate
surrogate CATE over 100 iterations

Method corr(3,t)  agree(S,S) ATE(S) ATE(S)  bias{ATE(S)} SD{ATE(S)} n
T-learner 0.563 0.450 0.505 0.274 0.231 0.053 0.138
S-learner 0.574 0.459 0.292 0.271 0.021 0.066 0.143
R-learner 0.786 0.543 0.369 0.279 0.091 0.071 0.151
X-learner 0.699 0.489 0.327 0.321 0.006 0.062 0.164
Causal Forest 0.707 0.431 0.146 0.342 -0.196 0.072 0.148
A-learning 0.004 0.279 3.861 0.015 3.846 5.019 0.010
A-learning aug* 0.629 0.432 0.405 0.209 0.196 0.060 0.130
W-learning 0.006 0.293 4.118 0.017 4.101 4.907 0.012
W-learning aug 0.602 0.432 0.479 0.205 0.274 0.058 0.128
Causal stacking 0.781 0.540 0.371 0.276 0.095 0.071 0.151
Super Learner** 0.723 0.507 0.343 0.341 0.002 0.068 0.179

* aug; augmentation

** Super Learner; proposed method
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Table 9. Evaluation metrics for Scenario 2-1-1: Data generating process 2 with a 3:1 treatment-to-control ratio using S-learner to estimate
surrogate CATE over 100 iterations

Method corr(3,t)  agree(S,S) ATE(S) ATE(S)  bias{ATE(S)} SD{ATE(S)} n
T-learner 0.155 0.292 1.507 0.082 1.425 0.144 0.042
S-learner 0.391 0.392 0.435 0.194 0.241 0.083 0.105
R-learner 0.371 0.365 0.442 0.107 0.335 0.107 0.066
X-learner 0.233 0.316 0.508 0.118 0.390 0.083 0.062
Causal Forest 0.161 0.238 0.229 0.097 0.131 0.189 0.028
A-learning -0.011 0.287 4.893 0.010 4.884 5.567 0.007
A-learning aug* 0.645 0.432 0.467 0.192 0.275 0.088 0.122
W-learning 0.012 0.321 5.145 0.013 5.132 4.688 0.013
W-learning aug 0.745 0.493 0.618 0.254 0.364 0.072 0.154
Causal stacking 0.364 0.365 0.462 0.098 0.364 0.117 0.063
Super Learner** 0.660 0.473 0.447 0.276 0.171 0.120 0.154

* aug; augmentation

** Super Learner; proposed method
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Table 10. Evaluation metrics for Scenario 2-2-1: Data generating process 2 with a 2:1 treatment-to-control ratio using S-learner to
estimate surrogate CATE over 100 iterations

Method corr(3,t)  agree(S,S) ATE(S) ATE(S)  bias{ATE(S)} SD{ATE(S)} n
T-learner 0.159 0.299 1.331 0.081 1.249 0.101 0.041
S-learner 0.395 0.403 0.382 0.195 0.187 0.074 0.103
R-learner 0.407 0.389 0.403 0.114 0.289 0.102 0.067
X-learner 0.272 0.333 0.500 0.130 0.369 0.073 0.066
Causal Forest 0.154 0.254 0.238 0.074 0.165 0.163 0.027
A-learning 0.007 0.290 4.906 0.012 4.894 5.553 0.008
A-learning aug* 0.635 0.449 0.441 0.208 0.232 0.074 0.126
W-learning 0.017 0.323 4.687 0.013 4.674 4.350 0.012
W-learning aug 0.698 0.487 0.563 0.246 0.317 0.066 0.146
Causal stacking 0.405 0.387 0.423 0.105 0.318 0.108 0.064
Super Learner** 0.651 0.471 0.424 0.273 0.150 0.103 0.151

* aug; augmentation

** Super Learner; proposed method
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Table 11. Evaluation metrics for Scenario 2-3-1: Data generating process 2 with a 1:1 treatment-to-control ratio using S-learner to
estimate surrogate CATE over 100 iterations

Method corr(3,t)  agree(S,S) ATE(S) ATE(S)  bias{ATE(S)} SD{ATE(S)} n
T-learner 0.157 0.296 1.237 0.082 1.155 0.084 0.041
S-learner 0.374 0.380 0.352 0.189 0.163 0.070 0.099
R-learner 0.458 0.405 0.387 0.149 0.238 0.116 0.085
X-learner 0.330 0.348 0.496 0.173 0.323 0.076 0.083
Causal Forest 0.175 0.220 0.178 0.129 0.048 0.134 0.031
A-learning 0.000 0.270 3.895 0.014 3.880 4.646 0.009
A-learning aug* 0.622 0.431 0.405 0.208 0.197 0.066 0.128
W-learning -0.004 0.289 3.883 0.016 3.867 4.070 0.011
W-learning aug 0.595 0.429 0.479 0.208 0.271 0.066 0.129
Causal stacking 0.455 0.402 0.392 0.148 0.244 0.116 0.085
Super Learner** 0.557 0.427 0.363 0.267 0.096 0.091 0.146

* aug; augmentation

** Super Learner; proposed method
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Table 12. Evaluation metrics for Scenario 2-1-2: Data generating process 2 with a 3:1 treatment-to-control ratio using T-learner to
estimate surrogate CATE over 100 iterations

Method corr(3,t)  agree(S,S) ATE(S) ATE(S)  bias{ATE(S)} SD{ATE(S)} n
T-learner 0.155 0.293 1.498 0.080 1.418 0.145 0.041
S-learner 0.406 0.394 0.408 0.198 0.210 0.070 0.105
R-learner 0.372 0.367 0.431 0.104 0.327 0.097 0.066
X-learner 0.256 0.322 0.514 0.120 0.394 0.097 0.062
Causal Forest 0.165 0.244 0.215 0.087 0.128 0.150 0.022
A-learning -0.016 0.292 5.805 0.006 5.799 7.536 0.005
A-learning aug* 0.666 0.452 0.467 0.211 0.256 0.080 0.132
W-learning 0.002 0.327 5.228 0.013 5.215 5.514 0.012
W-learning aug 0.749 0.509 0.616 0.271 0.345 0.069 0.159
Causal stacking 0.359 0.364 0.497 0.094 0.404 0.147 0.061
Super Learner** 0.613 0.446 0.488 0.244 0.244 0.149 0.142

* aug; augmentation

** Super Learner; proposed method

38



Table 13. Evaluation metrics for Scenario 2-2-2: Data generating process 2 with a 2:1 treatment-to-control ratio using T-learner to
estimate surrogate CATE over 100 iterations

Method corr(3,t)  agree(S,S) ATE(S) ATE(S)  bias{ATE(S)} SD{ATE(S)} n
T-learner 0.166 0.295 1.357 0.087 1.270 0.100 0.044
S-learner 0.405 0.395 0.393 0.203 0.190 0.065 0.107
R-learner 0.419 0.387 0.420 0.126 0.294 0.093 0.075
X-learner 0.289 0.338 0.503 0.145 0.358 0.079 0.073
Causal Forest 0.178 0.249 0.227 0.099 0.128 0.178 0.029
A-learning -0.004 0.287 4.894 0.010 4.884 5.701 0.008
A-learning aug* 0.641 0.452 0.453 0.227 0.226 0.067 0.137
W-learning 0.019 0.324 4.754 0.014 4.740 4.334 0.013
W-learning aug 0.702 0.484 0.570 0.253 0.317 0.064 0.150
Causal stacking 0.411 0.384 0.462 0.113 0.349 0.120 0.069
Super Learner** 0.633 0.458 0.434 0.256 0.178 0.100 0.148

* aug; augmentation

** Super Learner; proposed method
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Table 14. Evaluation metrics for Scenario 2-3-2: Data generating process 2 with a 1:1 treatment-to-control ratio using T-learner to
estimate surrogate CATE over 100 iterations

Method corr(3,t)  agree(S,S) ATE(S) ATE(S)  bias{ATE(S)} SD{ATE(S)} n
T-learner 0.152 0.296 1.245 0.079 1.166 0.096 0.040
S-learner 0.338 0.370 0.349 0.167 0.182 0.067 0.089
R-learner 0.442 0.407 0.382 0.124 0.258 0.094 0.075
X-learner 0.308 0.345 0.509 0.152 0.357 0.078 0.077
Causal Forest 0.189 0.229 0.191 0.124 0.068 0.141 0.032
A-learning -0.011 0.281 3.072 0.007 3.065 3.613 0.005
A-learning aug* 0.599 0.421 0.406 0.184 0.221 0.062 0.118
W-learning -0.001 0.295 3.451 0.012 3.439 3.570 0.009
W-learning aug 0.576 0.422 0.480 0.185 0.295 0.060 0.119
Causal stacking 0.438 0.405 0.387 0.122 0.265 0.095 0.075
Super Learner** 0.530 0.417 0.371 0.250 0.121 0.118 0.133

* aug; augmentation

** Super Learner; proposed method
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Figure 1. Visualization of model performance: Evaluation metrics for scenario 1-1-1: Data generating process 1 with a 3:1 treatment-to-
control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure 2. Visualization of model performance: Evaluation metrics for scenario 1-2-1: Data generating process 1 with a 2:1 treatment-to-
control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure 3. Visualization of model performance: Evaluation metrics for scenario 1-3-1: Data generating process 1 with a 1:1 treatment-to-

control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure 4. Visualization of model performance: Evaluation metrics for scenario 1-1-2: Data generating process 1 with a 3:1 treatment-to-
control ratio using T-learner to estimate surrogate CATE over 100 iterations
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Figure 5. Visualization of model performance: Evaluation metrics for scenario 1-2-2: Data generating process 1 with a 2:1 treatment-to-
control ratio using T-learner to estimate surrogate CATE over 100 iterations
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Figure 6. Visualization of model performance: Evaluation metrics for scenario 1-3-2: Data generating process 1 with a 1:1 treatment-to-
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Figure 7. Visualization of model performance: Evaluation metrics for scenario 2-1-1: Data generating process 2 with a 3:1 treatment-to-
control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure 9. Visualization of model performance: Evaluation metrics for scenario 2-3-1: Data generating process 2 with a 1:1 treatment-to-

control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure 10. Visualization of model performance: Evaluation metrics for scenario 2-1-2: Data generating process 2 with a 3:1 treatment-

to-control ratio using T-learner to estimate surrogate CATE over 100 iterations
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Figure 11. Visualization of model performance: Evaluation metrics for scenario 2-2-2: Data generating process 2 with a 2:1 treatment-
to-control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure 12. Visualization of model performance: Evaluation metrics for scenario 2-3-2: Data generating process 2 with a 1:1 treatment-
to-control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Chapter 6

Conclusion and Discussion

In causal inference, developing a robust and consistent method for estimating
conditional average treatment effects (CATE) is critically important. Existing methods
often rely on varying assumptions, which can lead to inconsistent results. If the CATE
estimation results differ across methods, clinicians may face difficulties in deciding

whether to administer treatment to patients with specific covariates.

To address this issue, this study introduces a Super Learner-based CATE estimation
method that demonstrates robust and reliable performance, even in challenging and
complex estimation settings. The proposed method uses cross validation to efficiently
utilize data, overcoming the limitations of individual methods and combining the strengths

of each method to produce more stable and accurate estimates.

In the simulation study, the proposed method outperformed other methods across
multiple evaluation metrics, including mean squared error (MSE), bias, and subgroup
utility index. It demonstrated enhanced accuracy and robustness, highlighting its potential
as an effective approach for estimating CATE, particularly in scenarios where traditional
methods struggle due to data complexity or heterogeneity. These findings suggest that the
Super Learner-based approach can effectively address key challenges in CATE estimation,
enhancing the consistency and interpretability of the results. Moreover, the null model
simulation further demonstrated that in the absence of heterogeneous treatment effects,

most methods produce HTE estimates close to zero.
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Despite these strengths, the study also underscores certain limitations. The reliance on
a plug-in estimator as a substitute for the true CATE leads to inherent uncertainty due to
the unobservability of the true values. This limitation emphasizes the need for further
investigation of alternative substitutes for the true CATE. Comparing models using
multiple substitutes could help reduce potential biases and enhance the robustness of the

estimation procedure.

When applying various meta-learners or methods such as causal forests, this study
employed XGBoost; however, alternative machine learning methods could also be applied.
In such cases, the results may vary depending on the dataset used in simulations or real-
world applications. Further research could explore which machine learning methods yield

better performance in outcome modeling.

Further studies should extend the proposed method to real-world applications, such as
randomized clinical trials (RCTs) and observational studies, with more pronounced
heterogeneity in data and treatment effects. Additionally, refining methodologies to support
treatment recommendations based on heterogeneous treatment effects represents a
significant area for further investigation. These efforts will be essential for advancing both
methodological theory and practical applications of CATE estimation, particularly in fields

like precision medicine and policymaking.

Continued advancements in this area, especially in mitigating inherent uncertainties
and enhancing the robustness of estimation methods, will be crucial for improving the
reliability and applicability of causal inference methodologies. This study contributes to
these ongoing efforts by establishing a rigorous framework for more effective and reliable

CATE estimation in diverse and complex settings.
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Appendix

Table Al. CATE estimation method’s tuning parameters

CATE estimation methods

Tuning parameters

S-learner
T-learner
R-learner
X-learner
Causal Forest

A-learning

A-learning aug

We-learning

Wk-learning aug

Causal stacking

Super Learner

cvboost3

k folds=5

tree depth = {2,3,4}, eta = {0.0005, 0.01, 0.015, 0.025, 0.05, 0.08, 0.1, 0.2},
ntree_max = 1000, early stopping_rounds = 10,

subsample = 0.9, colsample bytree = 0.9

num.trees = 10000

max_depth = 5, eta = 0.01, nthread=1, booster = “gbtree”, subsample = 0.90,
colsample bytree = 0.90, nrounds = 1000, nfold = 5, early stopping rounds = 50
max_depth = 5, eta = 0.01, nthread=1, booster = “gbtree”, subsample = 0.90,
colsample bytree = 0.90, nrounds = 1000, nfold = 5, early stopping_rounds = 50,
nfolds.crossfit = 5, augment.func = aug.func

max_depth = 5, eta = 0.01, nthread=1, booster = “gbtree”, subsample = 0.90,
colsample bytree = 0.90, nrounds = 1000, nfold = 5, early stopping rounds = 50
max_depth = 5, eta = 0.01, nthread=1, booster = “gbtree”, subsample = 0.90,
colsample bytree = 0.90, nrounds = 1000, nfold = 5, early stopping_rounds = 50,
nfolds.crossfit = 5, augment.func = aug.func

train:validation = 2:1

5-folds
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Table A2. Simulation scenarios for the data generating process D1 null: 4 prognostic covariates;
D2 null: 9 prognostic covariates

S ] Dat " v Treatment-to-control Surrogate
cenario ata generating process ratio CATE
1-1-1 D1 null 31 S-learner
1-2-1 D1 null 2:1 S-learner
1-3-1 D1 null 1:1 S-learner
1-1-2 D1 null 3:1 T-learner
1-2-2 D1 null 2:1 T-learner
1-3-2 D1 null 1:1 T-learner
2-1-1 D2 null 3:1 S-learner
2-2-1 D2 null 2:1 S-learner
2-3-1 D2 null 1:1 S-learner
2-1-2 D2 null 3:1 T-learner
2-2-2 D2 null 2:1 T-learner
2-3-2 D2 null 1:1 T-learner
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Figure A3. Visualization of model performance: Evaluation metrics for scenario 1-1-1 null model: Data generating process 1 with a 3:1
treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure A4. Visualization of model performance: Evaluation metrics for scenario 1-2-1 null model: Data generating process 1 with a 2:1
treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure AS. Visualization of model performance: Evaluation metrics for scenario 1-3-1 null model: Data generating process 1 with a 1:1
treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure A6. Visualization of model performance: Evaluation metrics for scenario 1-1-2 null model: Data generating process 2 with a 3:1
treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations
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Figure A7. Visualization of model performance: Evaluation metrics for scenario 1-2-2 null model: Data generating process 2 with a 2:1
treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations
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Figure A8. Visualization of model performance: Evaluation metrics for scenario 1-3-2 null model: Data generating process 2 with a 1:1
treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations
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Figure A9. Visualization of model performance: Evaluation metrics for scenario 2-1-1 null model: Data generating process 1 with a 3:1
treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure A10. Visualization of model performance: Evaluation metrics for scenario 2-2-1 null model: Data generating process 1 with a 2:1
treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure A11. Visualization of model performance: Evaluation metrics for scenario 2-3-1 null model: Data generating process 1 with a 1:1
treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure A12. Visualization of model performance: Evaluation metrics for scenario 2-1-2 null model: Data generating process 2 with a 3:1
treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations
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Figure A13. Visualization of model performance: Evaluation metrics for scenario 2-2-2 null model: Data generating process 2 with a 2:1
treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations
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Figure A14. Visualization of model performance: Evaluation metrics for scenario 2-3-2 null model: Data generating process 2 with a 1:1
treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations
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Abstract in Korean
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