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ABSTRACT  

 
 
 
 

An Ensemble Approach to CATE estimation 

with Super Learner in RCTs 

  

 

Previous studies have focused on average treatment effects rather than individual 

treatment effects in causal inference. Recently, with the growing interest in precision 

medicine, there has been a substantial increase in research on Conditional Average 

Treatment Effect (CATE) estimation and Individualized Treatment Rules (ITR). CATE 

estimation is a method for estimating the average treatment effect for individuals with 

identical feature attributes. 

Various parametric and non-parametric methods have been proposed for CATE 

estimation, but recent studies indicate that no method has been found to be uniformly 

superior to the others across all criteria. To address this inconsistency, one study applied 

an ensemble method, such as causal stacking, to improve the consistency of CATE 

estimation. In this context, we proposed the Super Learner approach for CATE estimation 

to improve the performance metrics. Super Learner has the advantage of dividing data using 

cross-validation, which helps prevent overfitting and enables the generation of optimal 

results, compared to stacking or other methods. 
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Simulation results demonstrate that the proposed method has less MSE and 

outperformed in various performance metrics. These results indicate that, instead of relying 

on a single CATE estimation method for treatment decisions, utilizing the Super Learner 

to combine results from multiple methods provides a more robust and reliable framework 

for optimizing patient care. Furthermore, the Super Learner approach proves to be a 

practical and effective tool for developing individualized treatment rules, offering 

significant potential for optimizing patient care. 

                                                                           

Key words: Causal inference, Heterogeneous treatment effect, Conditional average 

treatment effect, Individual treatment rules, Plug-in estimator
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Chapter 1  

Introduction 

 

1.1 Background 

Predicting individual treatment effects, beyond the average treatment effect (ATE), 

has become increasingly important. Clinical trials are primarily designed to estimate ATE. 

This is because the design and purpose of clinical trials focus on evaluating the average 

effect of a specific treatment across the entire population. However, the ATE does not 

capture differences in treatment effects at the individual or subgroup level. For instance, 

certain subgroups may experience significantly greater or smaller treatment effects, but 

ATE averages out such heterogeneity, potentially obscuring it. Therefore, the need for 

additional analysis, such as the conditional average treatment effect (CATE), has emerged 

to establish personalized treatment rules. 

In clinical trials, CATE is typically estimated in two settings: the estimation of 

treatment effects in a relatively small number of predefined subgroups as per regulatory 

guidance, and data-driven assessments of treatment effect heterogeneity. This study focuses 

on the latter. 

Over the past 15 years, advancements in machine learning and the growing interest in 

precision medicine within the field of causal inference have driven the development of 

various methods for estimating treatment effect heterogeneity. These methods primarily 

focus on evaluating the heterogeneity of treatment effects based on data-driven approaches. 

Methods for evaluating treatment effect heterogeneity which have been developed across 

various disciplines, can be broadly categorized into four primary approaches: (a) modeling 

the response surface, (b) direct estimation of CATE, (c) direct estimation of individualized 
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treatment rules (ITR), and (d) direct identification of subgroups (Lipkovich et al., 2024). 

The response surface modeling approach, initially introduced through the virtual twins 

method (Foster et al., 2011), has since been further expanded into several variations. In this 

study, we focus on approaches (a) and (b) as the foundation of our analysis to improve 

CATE estimation. 

Several studies have reported challenges in selecting a model for evaluating HTE, as 

different models often perform better depending on the evaluation metrics used (Loh et al., 

2019). Bouvier et al. (2024) demonstrated the issue of low agreement between CATE 

estimation methods when recommending treatments based on estimated individual 

treatment effects, with the methods showing weak correlations or inconsistent treatment 

recommendations. 

Meanwhile, attempts have been made to improve the accuracy of CATE estimation 

methods using ensemble methods, which combine the predictions of multiple models to 

enhance overall performance. In ensemble models, since the true value of CATE is 

unknown, it must be replaced with an alternative value. Specifically, in clinical trials, a 

mathematically derived unbiased estimator can be used as a substitute for CATE. We 

demonstrated the unbiased estimator of true CATE in randomized clinical trials in Chapter 

3. In observational studies, it is not possible to obtain an unbiased estimator to substitute 

for the true CATE when applying ensemble models. When attempting to obtain an unbiased 

estimator of the substitute value in observational studies, the propensity score must be 

estimated. As the propensity score appears in the denominator of the estimation formula, 

the estimator can become unstable, particularly when the propensity score is close to zero. 

Therefore, this study limited the analysis to clinical trial settings. 
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1.2 Objective and outline 

This paper aims to improve CATE estimation by applying the Super Learner approach 

to estimate the weights of CATE estimation methods. A key advantage of this approach is 

its ability to prevent overfitting by training model weights using cross-validation, which 

distinguishes it from the stacking method. The CATE estimation methods used in the Super 

Learner demonstrate superior performance only in specific scenarios. Therefore, we 

evaluate the proposed method based on various performance metrics to determine whether 

it performs well under diverse conditions. We conducted simulation studies to compare our 

proposed method with existing methods. Simulation studies were designed under 

conditions where the true CATE is known to verify whether the proposed method 

outperforms existing methods.  

In Chapter 2, we introduce the notations and definitions related to the potential 

outcome framework. In Chapter 3, we provide a brief review of CATE estimation and 

ensemble methods. In Chapter 4, we propose the Super Learner based CATE estimation. 

The simulations and their results are summarized in Chapter 5. Finally, Chapter 6 concludes 

and provides a discussion on the proposed method.  
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Chapter 2 

Potential outcome framework 

 

2.1 Notations and definitions 

We adopt potential outcome framework introduced by Neyman and Rubin (2005). 

This framework serves as a theoretical foundation for causal inference and is widely used 

for quantifying and analyzing causal effects. Also known as the Rubin Causal Model 

(RCM), this approach was formalized by Rubin and defines causal effects through 

assumptions and comparisons not only of “what actually happened” but also of “what could 

have happened.”  

Potential outcomes are defined as the possible outcomes under the different treatment 

conditions: 𝑌(1) represents the potential outcome if the individual receives the treatment 

and 𝑌(0) represents the potential outcome if the individual does not receive the treatment 

(or receive the control).  

For each individual, only one of the two potential outcomes is observed, depending 

on the treatment assignment. This issue is referred to as the counterfactual problem, as it is 

impossible to observe both outcomes for the same individual. The observed outcome (𝑌obs) 

is determined as:  

 𝑌obs = '𝑌
(1),			if	𝑇 = 1,
𝑌(0),			if	𝑇 = 0. (2.1) 

To evaluate heterogeneous treatment effects (HTE), we first define the individual 

treatment effect (causal effect). The individual treatment effect for a binary or continuous 

outcome Y is represented in terms of potential outcomes as: 
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 𝜏$ = 𝑌$(1) − 𝑌$(0), (2.2) 

where 𝑌$(𝑡), 𝑡 ∈ {0, 1}, represents a potential outcome that could have been observed. 

However, since both potential outcomes cannot be observed simultaneously for the same 

individual, the causal effect cannot be directly measured.  

To enable causal inference within the potential outcome framework, the following 

assumptions are required: 

First, we assume general Stable Unit Treatment Value Assumption (SUTVA): 

 𝑌$ = 𝑌$(𝑇$) = 𝑌$(1)𝑇$ + 𝑌$(0)(1 − 𝑇$), (2.3) 

where 𝑌$ is the observed outcome and 𝑇$ is the treatment received for the 𝑖-th subject. 

From the perspective of  precision medicine, we are interested in modeling the 

heterogeneity of individual treatment effect (ITE) as a function of observed subject 

characteristics, leading to the conditional average treatment effect (CATE), defined as: 

 𝜏(𝑥$) = 𝐸(𝑌$(1) − 𝑌$(0)|𝑋 = 𝑥$), (2.4) 

where 𝑥$ = :𝑥%$ , … , 𝑥&$< is a vector of 𝑝 covariates, denoted by 𝑋%, … , 𝑋&, for the 𝑖-th 

subject.  

Removing the patient index 𝑖, let 𝜇(𝑡, 𝑥) = 𝐸(𝑌(𝑡)|𝑋 = 𝑥), 𝑡 ∈ {0, 1}, and define 

𝜏(𝑥) = 𝜇(1, 𝑥) − 𝜇(0, 𝑥) . Note that under strong treatment ignorability, ensured by 

randomization in RCTs and assumed in observational studies conditional on the covariates 

(Rosenbaum & Rubin, 1983), we can replace the potential outcomes with the conditional 

expectations of the observable random variables: 

 𝜇(𝑡, 𝑥) = 𝐸(𝑌|𝑇 = 𝑡, 𝑋 = 𝑥). (2.5) 

The response surface can be represented without loss of generality as: 
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 𝜇(𝑡, 𝑥) = ℎ(𝑥) +
1
2
τ(𝑥)(2𝑡 − 1), 𝑡 ∈ {0,1}, (2.6) 

where ℎ(𝑥) is the main covariate effect, that is, 

 ℎ(𝑥) =
1
2
{𝜇(1, 𝑥) + 𝜇(0, 𝑥)}. (2.7) 

In observational data, estimating causal effects, such as ATE and CATE, requires 

additional assumptions. First, we assume treatment ignorability conditional on the observed 

covariates that is,  

 𝑇 ⊥ {𝑌(1), 𝑌(0)}|𝑋 (2.8) 

Second, we often estimate the propensity score function 𝜋(𝑥) = Pr(𝑇 = 1|𝑋 =

𝑥)	from the observed data. To make valid inferences, we assume positivity, 0 < 𝜋(𝑥) < 1. 

Occasionally we use a general treatment assignment function 𝜋(𝑡, 𝑥) = Pr(𝑇 =

𝑡|𝑋 = 𝑥) allowing us to simplify certain expressions. In this context, the propensity score 

is defined as 𝜋(𝑥) ≡ 𝜋(1, 𝑥). In this paper, we focus on randomized clinical trial settings 

and use the treatment assignment probability 𝑝 instead of estimating the propensity score 

𝜋(𝑥). 

Let us assume we obtained a good estimate of CATE, ΔI(𝑥). we define a subgroup as 

a set of all subjects with a positive treatment effect, that is, 

 𝑆K(𝑥) = L𝑥 ∶ 	 ΔI(𝑥) > 𝛿P, (2.9) 

where 𝛿	is	a	predefined. In this paper, we only consider cases where 𝛿 = 0. This implies 

that subgroup includes all individuals with a treatment effect that is even slightly positive. 

This approach is closely related to developing individualized treatment assignment rules or 

regimens that, given a subject’s covariate profile 𝑋 = 	𝑥 , select the optimal treatment 

𝐷(𝑥) ∈ {0, 1}.  
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Chapter 3 

Reviews of methods for CATE estimation  

 

3.1 Estimating CATE via meta-learner 

The meta-learner emerged as a powerful framework to address the complexity of 

CATE estimation by combining machine learning techniques with causal inference theory. 

It estimates nuisance parameters through outcome modeling and propensity score modeling, 

leveraging these results to estimate CATE. There are no restrictions on the methods used 

to estimate the model, allowing for the application of various machine learning techniques 

such as extreme gradient boosting (XGBoost) or random forests (RF). 

 

3.1.1 S-learner 

The S-learner estimates the treatment effect within a single regression model, where 

the treatment is included as a feature and where interactions between the treatment and 

relevant covariates are introduced in the parametric settings. First, a model is used to 

estimate the response function 𝜇(𝑡, 𝑥): 

 𝜇(𝑡, 𝑥) = 𝐸[𝑌|𝑇 = 𝑡, 𝑋 = 𝑥]. (3.1) 

Then, the individual treatment effect 𝜏 is estimated as: 

 𝜏̂(𝑥) = 𝜇̂(1, 𝑥) − 𝜇̂(0, 𝑥). (3.2) 

Since the S-learner trains only one outcome model by using machine learning models 

such as XGBoost and RF, it is simple and computationally efficient. However, if the 
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treatment effect is highly heterogeneous, the S-learner may introduce bias due to the single-

model approach, making it difficult to capture interaction effects between treatment groups 

effectively. 

 

3.1.2 T-learner 

In the T-learner algorithm, two models are built, one for the treatment group and one 

for the control group. These models are used to calculate the response functions: 

𝜇%(𝑥) = 𝐸[𝑌|𝑇 = 1, 𝑋 = 𝑥],	

𝜇'(𝑥) = 𝐸[𝑌|𝑇 = 0, 𝑋 = 𝑥]. 

The ITE is estimated as the difference between the two predicted risks: 

𝜏̂(𝑥) = 𝜇̂%(𝑥) − 𝜇̂'(𝑥). 

The T-learner offer the advantage of simplicity of implementation and flexibility for 

integration with various machine learning models. However, a potential drawback is the 

risk of introducing bias in estimated. T-learners may be prone to bias arising from 

inconsistent estimations across independently trained models and challenges related to data 

imbalance. 

 

3.1.3 X-learner 

Künzel et al. (2019) proposed a method called X-learner, which is a hybrid estimator 

of CATE formed as a weighted average of two estimators 𝜏̂%(𝑥) and 𝜏̂'(𝑥) constructed 

using a multi-step procedure: 

1. Estimate the response function as in the T-learner: 

𝜇'(𝑥) = 𝐸[𝑌|𝑋 = 𝑥, 𝑇 = 0],	
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𝜇%(𝑥) = 𝐸[𝑌|𝑋 = 𝑥, 𝑇 = 1]. 

2. Imputed the treatment effects for the individuals in the treated group based on the 

control-outcome estimator and the treatment effects for the individuals in the control group 

based on the treatment-outcome estimator and estimate 𝜏̂%(𝑥) and 𝜏̂'(𝑥): 

𝐷W% = 𝑌$ − 𝜇̂'(𝑋$), 𝑖 ∈ {𝑖 ∶ 𝑇$ = 1},	

𝐷W' = 𝜇̂%(𝑋$) − 𝑌$ , 𝑖 ∈ {𝑖 ∶ 𝑇$ = 0},	

𝜏̂%(𝑥) = 𝐸X𝐷W%Y𝑋 = 𝑥Z,	

𝜏̂'(𝑥) = 𝐸X𝐷W'Y𝑋 = 𝑥Z. 

3. Define the ITE by a weighted average of the two estimates: 

 𝜏̂(𝑥) = 𝑤(𝑥)	𝜏̂'(𝑥) + :1 − 𝑤(𝑥)<	𝜏̂%(𝑥),  

where the weight function is often taken as the estimated propensity score, 𝑤(𝑥) =

𝜋\(𝑥) = PrI (𝑇 = 1|𝑋 = 𝑥) or constant probability of treatment assignment.  

The X-learner is expected to outperform the T-learner in scenarios where the control 

arm is significantly larger than the treated arm. This is because the two estimators, 𝜏̂%(𝑥) 

and 𝜏̂'(𝑥), in the X-learner rely on comparing observed outcomes and counterfactual 

outcomes predicted from the alternative arm, rather than comparing predicted potential 

outcomes generated by models fitted to different arms. Additionally, with the X-learner, 

differences in model complexity across the two arms are effectively "smoothed out" within 

each estimator, 𝜏̂%(𝑥) and 𝜏̂'(𝑥). 
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3.2 Direct modeling of CATE 

A common approach to addressing the challenges associated with tuning complexity 

parameters for predictive and prognostic effects is to redefine the problem in a way that 

eliminates the need to estimate prognostic effects. Over the past 10 years, several methods 

have been developed to model CATE directly, bypassing the need to incorporate the 

prognostic component of the outcome model. The key benefit of these methods is that they 

reduce the risk of errors resulting from misspecifying the prognostic effects. 

 

 

3.2.1 R-learner 

One proposal for outcome transformation is based on the so-called Robinson’s 

transformation (Kennedy, 2023) of an outcome variable that involves simultaneously 

centering the response and treatment indicator around their estimated expected values. 

Specifically, consider 

 𝑌$∗ =
𝑌$ − 𝜇(𝑋$)
𝑇$ − 𝜋(𝑋$)

, (3.3) 

 

where 𝜇(𝑥) = 𝐸(𝑌|𝑋 = 𝑥) is the overall response function, capturing the main effect of 

covariates on the outcomes in the pooled data. It is easy to show that 𝐸(𝑌∗|𝑋 = 𝑥) = 𝜏(𝑥), 

therefore a simple approach similar to the modified outcome is to estimate CATE by 

regressing 𝑌∗ on the covariates. The residualization of marginal outcomes and treatment 

effects has recently been promoted in the literature as part of efforts to estimate overall 

treatment effects from observational data, particularly under the framework of 

double/debiased machine learning. Additionally, it has been a focus in research on HTE, as 

demonstrated by Athey et al. (2019) in their work on generalized random forests (GRF). 
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The transformation leads to the following data representation: 

 𝑌$ − 𝜇(𝑋$) = :𝑇$ − 𝜋(𝑋$)<𝜏(𝑋$) + 𝜖$ , (3.4) 

where the plug-in estimates of nuisance parameters 𝜇(𝑥) and 𝜋(𝑥) are obtained from 

some off-the-shelf machine learning methods with a cross-fitting step following the 

estimation of 𝜏(𝑥) . These ideas were first introduced in the proposal by Zhao and 

Panigrahi (2019) and further generalized in R-learning of Nie and Wager (2021). 

The R-learner estimates the ITEs in two steps: 

1. Fit the response function 𝜇̂)$(𝑥) and the propensity score 𝜋\)$(𝑥) with a base learner. 

2. Estimate ITEs by minimizing the R-loss, which uses Robinson’s decomposition: 

𝜏̂(∙) = argmin(𝐿c*{τ(∙)} + Λ*{τ(∙)})		

𝐿c*{τ(∙)} =
1
𝑛
fg𝑌$ − 𝜇̂)$(𝑋$) − h𝑇$ − 𝜋\)$(𝑋$)i 𝜏(𝑋$)j

+
.

*

$,%

 

Here Λ*{τ(∙)} is a regularizer on the complexity of the 𝜏(∙) to a given machine learning 

method. It was shown that the cross-fitting procedure controls the convergence rates of the 

target CATE estimator independently of learning the nuisance parameters, as if those were 

provided by an approximate oracle.  
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3.2.2 Causal Forest 

The causal forests algorithm is a special case of generalized random forests (GRF), a 

flexible and general framework to estimate the ITEs (Athey et al., 2019). Causal forests 

extend the original random forest algorithm by borrowing ideas from kernel-based methods 

and the R-learner. If we know that 𝜏(𝑥) were constant over some neighbourhood 𝑁(𝑥), 

we could solve partially linear model over 𝑁(𝑥) using the residual-on-residual approach: 

first, we estimate 𝜋(𝑥) = 𝐸(𝑇$|𝑋$ = 𝑥) and second, 𝜇(𝑥) = 𝐸(𝑌$|𝑋$ = 𝑥). We can any 

non-parametric method like the lasso, RF, boosting methods and others. The final step is to 

estimate 𝜏(𝑥) over the neighbourhood 𝑁(𝑥): 

𝜏̂(𝑥) =
∑ {𝑌$ − 𝜇̂(𝑋$)}{𝑇$ − 𝜋\(𝑋$)}{$:/!∈1(3)}

∑ {𝑇$ − 𝜋\(𝑋$)}{$:/!∈1(3)}
. 

In contrast to the standard random forest algorithm in which a prediction for a new 

observation is obtained by averaging predictions of each tree, here, the trees are used to 

compute a weighting scheme similar to kernel-based methods. The trees act as weights 

between training points and any new observations: 

 
𝛼6$(𝑥) =

1{𝑋$ ∈ 𝐿6(𝑥)}
|𝐿6(𝑥)|

, 𝛼$(𝑥) = B)%f𝛼6$(𝑥)
7

6,%

,	

𝜇̂(𝑥) =f𝑌$𝛼$(𝑥).
*

$,%

 

 

where 𝑋$ corresponds to the covariates of individual 𝑖 in the training dataset and 𝐿6(𝑥) 

corresponds to the set of observations in the training set that fall in the same leaf as 𝑥 for 

tree 𝑏. 

Then, the prediction for a new observation is obtained using the adaptive weights by 

minimizing the R-loss described above. 

Another characteristic of causal forests (and more generally of GRF) is the notion of 
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honesty where the training data is split into two parts: one for constructing the tree and the 

other (the estimation sample) for estimating leaf values for each tree. In doing so, the 

estimates are less prone to bias and more consistent. The notion of honesty is similar to 

employing the cross-fitting in non-parametric meta-learners. 

 

3.2.3 W-learning 

Directly estimating CATE using W-learning is achieved through the following 

procedure. Based on an inverse probability weighted (IPW) transformation, a continuous 

or binary outcome Y can be transformed. 

𝑌$∗ = 𝑌$
𝑇$

𝜋(𝑋$)
− 𝑌$

1 − 𝑇$
1 − 𝜋(𝑋$)

= 𝑌$
𝑇$ − 𝜋(𝑋$)

𝜋(𝑋$)(1 − 𝜋(𝑋$)
. 

It is instructive, as will be seen from the following, to express the modified outcome 

via the treatment indicator 𝐴$ = 2𝑇$ − 1 ∈ {−1, 1}. 

𝑌$∗ = 𝑌$
	𝐴$

𝐴$𝜋(𝑋$) + (1 − 𝐴$)/2
.			 

An alternative way of obtaining a CATE estimator is by using a weighted squared loss 

with the outcome multiplied by 2𝐴 and subject weights 

𝑊$ =
1

𝐴$𝜋\(𝑋$) + (1 − 𝐴$)/2
, 

argmin
8(3)

𝐸 h𝑊$:2𝐴$𝑌$ − 𝑔(𝑋$)<
+t 𝑋$ = 𝑥i	

= argmin
8(3)

𝐸 u4𝑊$ w𝑌$ −
𝐴$
2
𝑔(𝑋$)x

+

y 𝑋$ = 𝑥z	

= 𝜏(𝑥). 
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W-learning with augmentation method can be obtained by transforming continuous 

responses into doubly robust augmented inverse probability weighted (AIPW) scores. 

𝜏̂9:;<(𝑋$) = 𝜇̂%(𝑋$) − 𝜇̂'(𝑋$) +
𝑇$:𝑌$ − 𝜇̂%(𝑋$)<

𝜋\(𝑋$)
−
(1 − 𝑇$):𝑌$ − 𝜇̂'(𝑋$)<

1 − 𝜋\(𝑋$)
	

= 	 𝜇̂%(𝑋$) − 𝜇̂'(𝑋$) +
𝑇$ − 𝜋\(𝑋$)

𝜋\(𝑋$):1 − 𝜋\(𝑋$)<
:𝑌$ − 𝜇̂(𝑇$ , 𝑋$)<, 

where 𝜇̂%(𝑥) ≡ 𝜇̂(1, 𝑥) and 𝜇̂'(𝑥) ≡ 𝜇̂(0, 𝑥) are based on the outcome regression. 

 

3.2.4 A-learning 

Chen et al. (2017) proposed A-learning based on minimizing the modified loss 

𝐸 h𝑌 − :𝑇 − 𝜋(𝑋)<𝑔(𝑋)i
+
 is the method for directly estimating CATE. Its population 

minimizer for the squared loss is 𝑔(𝑥) = 𝜏(𝑥). This property holds because the centered 

interaction :𝑇 − 𝜋(𝑋)<𝑔(𝑋) is orthogonal to the main effect ℎ(𝑋) in (2.7). 

It is important to note that direct estimation methods are prone to high variability 

resulting in poor efficiency, which can be improved by augmenting the estimating 

equations with an additional zero-expectation term.  

𝐸 w
1

𝜋(𝑋) − (1 − 𝐴) 2⁄
w𝑌 −

𝐴
2
𝑔(𝑋)x| 𝑋 = 𝑥x = 0. 

It can be shown that the solution of the equation does not change if we add a tern 
6(/)

=(/))(%)9) +⁄
 for an arbitrary function of covariates 𝑏(𝑋). Now the goal is to choose the 

function 𝑏(𝑋) that minimizes the variance of the estimating equations. 

A-learning with augmentation method can be implemented by transforming outcome 

variable based on Robinson’s transformation (3.3) to the outcome variable. Through 
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augmentation, the estimation has doubly robust property if either the outcome model or the 

propensity score model is correctly specified.  

Hence, A-learning is well-suited for simpler data and models, providing an efficient 

approach when quick results are prioritized. In contrast, A-learning with augmentation is 

more appropriate for complex data settings, offering robust estimation, particularly in 

scenarios where model misspecification is a concern.  
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3.3 Ensemble method 

3.3.1 Causal stacking 

Han and Wu (2022) proposed causal stacking method for CATE function estimation 

in RCTs (Bernoulli design or completely randomized design). The analysis procedure is as 

follows: 

1. Choose K CATE estimation algorithms  

2. Partition the data into train/validation set and calculate the proportion of treated units in 

validation set. 

3. Estimate 𝜏? using training data and predict 𝜏̂?(𝑋$), 𝑖 ∈ 𝑆valid 

4. Optimize the weights 

𝑤} = 	 argmin
EF',H|E|H",%

1
𝑆JKL$M

f :𝜏̂$ −𝑤N𝜏̂%:O(𝑋$)<
+,

$∈Pvalid

 

where 𝜏̂$ is defined as: 

𝜏̂$ = [𝜇̂%(𝑋$) − 𝜇̂'(𝑋$)] +
[𝑌$ − 𝜇̂%(𝑋$)]𝑇$

𝑝
−
[𝑌$ − 𝜇̂'(𝑋$)](1 − 𝑇$)

1 − 𝑝
, 

within the validation set. 

5. Predict 𝜏̂Q(∙) = 𝑤}N𝜏̂%:O(∙). 

 

First, researcher selects 𝐾 methods for estimating CATE as candidate methods to 

apply the ensemble method. Next, the dataset is divided into a training set and validation 

set. The 𝐾 CATE estimation methods are trained on the training set and the proportion of 

treated units 𝑝 is calculated using the validation set. 
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Using the 𝐾 CATE models, predicted value 𝜏̂?(𝑋$) are calculated on the validation 

set and weights that minimize the loss function are optimized. Since the true CATE is 

unknown in the loss function used for 𝑤} , an unbiased plug-in estimator substitutes true 

CATE as the surrogate CATE. The plug-in estimator is one of the methods proposed by 

many researchers to approximate the true CATE (Saito & Yasui, 2020). Aronow and 

Middleton (2013) demonstrated that an unbiased for 𝜏(𝑋$)  under any choice of the 

regression functions 𝜇̂' and 𝜇̂% when using validation set. An estimator that substitutes 

the true CATE using this idea is referred to as a plug-in estimator. The predicted values and 

weights from each method are linearly combined to estimate the CATE. Previous studies 

have shown that causal stacking outperforms individual methods in terms of mean squared 

error.  

 

3.3.2 Surrogate CATE 

As introduced in Section 3.3.1, implementing ensemble methods typically requires a 

surrogate value for the true Conditional Average Treatment Effect (CATE) during the 

estimation process. In most practical settings, however, it is not feasible to observe the 

exact CATE for each subject, thereby necessitating a suitable surrogate. This surrogate 

effectively serves as a “true” label in the training procedure and critically affects both the 

bias and variance of the resulting estimators. 

In the context of a RCT, the treatment assignment probability 𝑝 is known a priori, 

and randomization ensures that the treatment assignment is independent of the potential 

outcomes. Under these conditions, the plug-in estimator is unbiased, providing a surrogate 

for the true CATE. This property is especially advantageous when applying ensemble 

methods, as it allows the algorithm to rely on a well-founded surrogate for the underlying 

CATE, ultimately improving estimation accuracy and robustness. 
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Chapter 4 

Proposed method 

 

4.1 Super Learner CATE estimation method 

We propose Super Learner-based method for CATE estimation. This idea is derived 

from Super Learner (Van der Laan et al., 2007). Super Learner identifies the optimal 

weights that minimize loss based on cross-validation results. Unlike other ensemble 

methods that use predefined combination rules, the Super Learner learns the weights in a 

data-driven manner. We expect our proposed method to prevent overfitting and ensure 

estimation stability, improving upon the causal stacking method suggested in previous 

studies. The proposed algorithm is outlined as follows:  

 

Algorithm 1. Super Learner-based method for CATE estimation 

Input: Dataset 𝑆 = {(𝑋$ , 𝑌$ , 𝑇$)}$,%* , candidate CATE algorithms {𝒜?}?,%O . 

1: Split the dataset into V-fold datasets {𝑆%, 𝑆+, … , 𝑆R}. 

2: for 𝑣 ∈ {1,2, … , 𝑉} do 

3:  Define the dataset excluding the 𝑣-th fold as 𝑆)J = 𝑆 ∖ 𝑆J. 

4:  For each CATE algorithm 𝒜?, fit 𝒜? using 𝑆)J to estimate 𝜏̂?,J, the predicted 

CATE for the data in 𝑆J, based on the model trained on 𝑆)J. 

5: end for 
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6: Construct the predicted CATE matrix 𝐶 = u
𝜏̂%,% ⋯ 𝜏̂O,%
⋮ ⋯ ⋮

𝜏̂%,R ⋯ 𝜏̂O,R
z. 

7: Estimate the plug-in estimator for true CATE  𝜏̂∗ = (𝜏̂%∗, 𝜏̂+∗… , 𝜏̂*∗ )S , where each 

individual estimator 

𝜏̂$∗ = [𝜇̂%(𝑋$) − 𝜇̂'(𝑋$)] +
[𝑌$ − 𝜇̂%(𝑋$)]𝑇$

𝑝
−
[𝑌$ − 𝜇̂'(𝑋$)](1 − 𝑇$)

1 − 𝑝
, 

Using the data in 𝑆train  fit the regression model 𝜇̂%, 𝜇̂'  that 𝑌$ 	using 𝑋$  and 

fraction of treated units in the 𝑆J should be 𝑝.  

8: Estimate the weight 𝑤 by solving the problem: minimize
EW'	,H|E|H,%

‖𝜏̂∗ − 𝐶𝑤‖+. 

9: fit CATE 𝜏̂?,S ← 𝒜?(𝑆train), 𝑘 ∈ {1,2, … , 𝐾} 

Output: predict test dataset ∑ 𝑤}?𝜏̂?,P(𝑋$)O
?,% 	𝑓𝑜𝑟	𝑖 ∈ 𝑆test 

 

First, researcher selects 𝐾 methods for estimating CATE as candidate methods to 

apply the Super Learner-based method. Then, the data is divided into 𝑉-fold datasets. The 

𝐾 CATE estimation methods are trained using the dataset excluding the 𝑣-fold, and the 

predicted CATE for the 𝑣-fold dataset using prediction models. This process is repeated 

𝑉 times to create the predicted CATE matrix 𝐶.  

Next, a plug-in estimator is calculated to utilize the surrogate CATE as substitute for 

the true CATE. To optimize the weight 𝑤, following loss function is minimized: 

minimize
EW'	,H|E|H,%

‖𝜏̂∗ − 𝐶𝑤‖+ 

To obtain the 𝐾 CATE estimations for the entire dataset, each model is refitted to 

generate predictions (Polley & Van der Laan, 2010). These predictions, along with the 

estimated weights, are used to estimate the CATE for the test dataset.  
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4.2 Unbiased plug-in estimator in RCTs 

In Algorithm 1, the plug-in estimator plays a crucial role, serving as a benchmark for 

estimating the true conditional average treatment effect. As mentioned in Section 3.3.2, 

identifying an appropriate substitute for the true CATE is essential for estimating weights 

in ensemble methods. To ensure reliable CATE estimation, an unbiased estimator must be 

used. However, in observational studies, even if the propensity score is carefully modeled, 

the property of unbiasedness is not guaranteed. Consequently, this study focuses on 

randomized clinical trials to secure an unbiased plug-in estimator for the true CATE.  

In causal inference and machine learning, many studies utilize plug-in estimators as 

substitutes for the true CATE, employing outcome models based on meta-learner 

framework such as S-learner, T-learner, and X-learner (Mahajan et al., 2022). In this study, 

we adopt plug-in estimators derived from S-learner and T-learner to evaluate their impact 

on the performance of ensemble methods. 

Finally, using Algorithm 1, we compared the Super Learner-based method with 

existing methods to examine whether it prevents overfitting and produces consistent results. 

The results were validated through simulations, as detailed in Chapter 5.
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Chapter 5 

Simulation studies 

 

5.1 Simulation scheme 

We conducted a simulation study with two scenarios reflecting different challenges 

encountered in HTE assessments. This is done to demonstrate that, if certain key 

assumptions are violated, it would no longer be feasible to accurately estimate CATE even 

with very sophisticated methods.  

The simulations used in this paper partially adopted the settings proposed by 

Lipkovich (2024). Data generating process 𝐷1  and 𝐷2  represent data from an RCT 

setting, where subjects are randomized to treatment than to the control groups at ratios of 

3:1, 2:1 or 1:1. The outcome 𝑌  is continuous, with large values indicating treatment 

benefits. The train dataset contains N=1,000 observations and the data-generating process 

is defined as follows: 

𝑌 = 100 − (𝑋% + 5𝑋+) + 𝑇 × :𝑔%(𝑋[) + 𝑔+(𝑋\)< + 𝜖,	 

where 𝑋%, 𝑋[, 𝑋\~𝑁(0.5, 1), 𝑋+~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 h
%
[
, %
[
, %
[
i , 𝜖~𝑁(0,1), 𝑇 ∈ {0,1}. 

Here, 𝑋%, 𝑋+  form the prognostic component and 𝑋[, 𝑋\  the predictive part with 

CATE given as τ(𝑥) = 𝑔%(𝑥[) + 𝑔+(𝑥\). Nonlinearity is induced in CATE via a 𝑔%(∙)  

𝑔%(𝑥) = �
𝑎 − 𝑏 ∙ 0.25 if	𝑥 < 0

𝑎 − 𝑏(𝑥 − 0.5)+ 										if	0 ≤ 𝑥 ≤ 1,
𝑎 − 𝑏 ∙ 0.25 	if	𝑥 > 1

 

and a monotone 𝑔+(∙) 
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𝑔+(𝑥) = �

0 if	𝑥 < 0
𝑐

1 + exp:−𝑑(𝑥 − 0.5)<
									if	0 ≤ 𝑥 ≤ 1,

𝑐 if	𝑥 > 1

 

The constant a = 0.625, b = 5, c = 0.625, d = 20 are calibrated so as to make the overall 

treatment effect slightly positive, E[𝜏(𝑋)] = 0.0119,	the true signature 𝑆S]^_ = {𝜏(𝑋) >

0} has the proportion of subjects 𝐸[𝐼(𝑋 ∈ 𝑆S]^_)] = 0.330 and the true mean treatment 

effect in 𝑆S]^_ is E[𝜏(𝑋)|𝑋 ∈ 𝑆S]^_] = 0.665 and the true subgroup’s utility index 𝜂 is 

0.22. 

Data under 𝐷+  are simulated similarly to 𝐷% , except the prognostic part is more 

complex:  

𝑌 = 100 − (𝑋% + 5𝑋+) + 2(𝑋` + 𝑋a + 𝑋b + 𝑋c + 𝑋d) + 𝑇 × :𝑔%(𝑋[) + 𝑔+(𝑋\)< + 𝜖,	

𝑋`, 𝑋a, … , 𝑋d~𝑁(0.5, 1), 

To make analysis more challenging each dataset includes an additional 10 noise 

covariates independently drawn from the standard normal distribution. 

Unequal sample sizes in treatment groups, such as when the treatment group is three 

times larger than the control group, seem to be an advantage since the larger sample size is 

in the arm where the true outcome model is more complex. Therefore, additional 

simulations were conducted with treatment and control ratios of 2:1 and 1:1. 

We selected 11 methods to estimate CATE estimation in each scenario. Selected 

methods are T-, S-, R-, X-, Causal Forest, A-learning, A-learning with augmentation, W-

learning, W-learning with augmentation, causal stacking, and our proposed Super Learner-

based CATE method. The CATE estimation methods included in the comparison were 

determined based on the availability of R packages or publicly available codes from other 

papers. The outcome model was estimated using XGBoost. 

We utilized a modified version of meta-learning code by (Nie & Wager, 2021), which 
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includes cvboost3, tboost3, sboost3, rboost3, and xboost3 to estimate T-learner, S-learner, 

R-learner, and X-learner (Lipkovich et al., 2023). This modified version focuses on the 

three key tuning parameters (size, depth, and eta) out of the seven tuning parameters in the 

original cvboost. Hyperparameters for all models were estimated using 5-fold cross-

validation combined with grid search, and the ranges of hyperparameters explored during 

the search process are summarized in detail in the Appendix Table A1. The estimation of 

Causal Forest was performed using the ‘grf’ package, while the estimation of A-learning 

and W-learning was performed using the ‘personalized’ package. 

In addition to the previous simulations, we conducted additional simulations for cases 

where the CATE is absent, referred to as a null model. Through these simulations, we aimed 

to examine the relative performance of the Super Learner compared to other methods in 

the absence of CATE. We constructed the null model by partially modifying 𝐷1 and 𝐷2 

to remove the interaction term (𝑋 × 𝑇). The data generating process is as follows. 

Null model: 

(𝐷1 null) 𝑌 = 100 − (𝑋% + 5𝑋+) + :𝑔%(𝑋[) + 𝑔+(𝑋\)< + 𝜖 

(𝐷2 null) 𝑌 = 100 − (𝑋% + 5𝑋+) + 2(𝑋` + 𝑋a + 𝑋b + 𝑋c + 𝑋d) + :𝑔%(𝑋[) + 𝑔+(𝑋\)< + 𝜖 

To make analysis more challenging each dataset includes an additional 10 noise 

covariates independently drawn from the standard normal distribution. 

The results of the additional simulations are summarized in the Appendix Table A2 

and Figure A3-A14. 
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Table 1. Simulation scenarios for the data generating process 𝐷1: 2 prognostic and 2 predictive 
covariates; 𝐷2: 7 prognostic and 2 predictive covriates 

Scenario Data generating process 
Treatment-to-control 

ratio 
Surrogate 

CATE 
1-1-1 𝐷1 3:1 S-learner 

1-2-1 𝐷1 2:1 S-learner 

1-3-1 𝐷1 1:1 S-learner 

1-1-2 𝐷1 3:1 T-learner 

1-2-2 𝐷1 2:1 T-learner 

1-3-2 𝐷1 1:1 T-learner 

2-1-1 𝐷2 3:1 S-learner 

2-2-1 𝐷2 2:1 S-learner 

2-3-1 𝐷2 1:1 S-learner 

2-1-2 𝐷2 3:1 T-learner 

2-2-2 𝐷2 2:1 T-learner 

2-3-2 𝐷2 1:1 T-learner 
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5.2 Evaluation metrics 

We used eight evaluation metrics to summarize the performance of various methods 

for estimating CATE on the simulated data (Table 2). We mainly focus on mean squared 

error and subgroup utility index, as they are critical for assessing both estimation accuracy 

and subgroup identification performance. 

 

Table 2. Evaluation metrics for CATE estimation 

Evaluation metrics Descriptive 

𝑐𝑜𝑟𝑟:τ\(𝑋), τ(𝑋)< 
Pearson correlation between true CATE and 

estimated CATE 

𝑎𝑔𝑟𝑒𝑒:𝑆K, 𝑆S]^_< =
𝑛:𝑆K ∩ 𝑆S]^_<
𝑛:𝑆K ∪ 𝑆S]^_<

 Jaccard similarity coefficient 

𝐴𝑇𝐸:𝑆K< = 𝐸/{τ(𝑋)|τ\(𝑋) > 0} 
True average treatment effect on estimated 

subgroup 

𝐴𝑇𝐸£:𝑆K< = 𝐸/{τ\(𝑋)|τ\(𝑋) > 0} 
Estimated average treatment effect on 

estimated subgroup 

𝑏𝑖𝑎𝑠L𝐴𝑇𝐸:𝑆K<P = 𝐴𝑇𝐸£:𝑆K< − 𝐴𝑇𝐸:𝑆K< 

Difference between estimated average 

treatment effect on estimated subgroup and 

true average treatment effect on estimated 

subgroup 

𝑆𝐷L𝐴𝑇𝐸£:𝑆K<P 
Standard deviation of estimated average 

treatment effect on estimated subgroup 

𝜂 = 𝐴𝑇𝐸:𝑆K< ×
𝑛(𝑆K)
𝑛

 Subgroup’s utility index 

𝑀𝑆𝐸? =	
1

𝑆S_QS
f :𝜏$ − 𝜏̂?(𝑋$)<

+

$∈P()*(

 Mean squared error of test dataset 

∗	𝑆+,-.(𝑋) = {𝑥 ∶ τ(𝑋) > 0} and 𝑆/(𝑋) = {𝑥 ∶ 	 𝜏̂(𝑋) > 0} 
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We evaluated agreement between the true and estimated CATE using Pearson 

correlation. The Jaccard similarity coefficient measured the overlap between the true 

subgroup and estimated subgroup. A true/estimated subgroup is defined as the set of 

individuals whose true/estimated CATE is greater than 0. True average treatment effect on 

estimated subgroup represents the average treatment effect of the subgroup with a positive 

estimated CATE. Bias is difference between estimated average treatment effect on 

estimated subgroup and true average treatment effect on estimated subgroup. Standard 

deviation of estimated average treatment effect on estimated subgroup indicates the extent 

of dispersion or variability. Subgroup’s utility index is equivalent to the difference between 

the value of the estimated treatment assignment rule and that of a fixed regimen that assigns 

everyone to the control. In other words, a higher value indicates that the treatment 

assignment rule is effective in assigning appropriate treatments to patients with a greater 

treatment effect across the entire population. 

The figures consist of one box plot (A) and three scatter plots (B-D): 

(A) A box plot of mean squared error (MSE) 

(B) A scatter plot of the correlation between true CATE and estimated CATE versus the 

subgroup utility index 

(C) A scatter plot of the true average treatment effect (ATE) on the estimated subgroup 

versus the estimated ATE on the same subgroup  

(D) A scatter plot of the correlation between true CATE and estimated CATE versus the 

Jaccard similarity coefficient between the true subgroup and the estimated subgroup. 

These plots aim to evaluate performance of methods for accurately estimating CATE 

and identifying subgroups with significant treatment effects across simulations. In the 

following section, we evaluate the CATE estimation methods based on the simulation 

results.
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5.3 Simulation results 

The results of the evaluation metrics for comparing CATE estimation methods are 

presented in Tables 3–14. Across all simulations, the Super Learner consistently 

demonstrated superior performance, showing subgroup utility index values that were 

relatively close to the true values. When considering both the subgroup utility index and 

the bias in the average treatment effect of the estimated subgroup, the proposed method 

exhibited a higher subgroup utility index and relatively smaller bias compared to other 

methods. 

Except for the A-learning and W-learning methods, the Pearson correlation and 

Jaccard similarity coefficient appeared to fall within a similar range and indicated a linear 

correlation in each Figure (D). However, the A-learning and W-learning methods showed 

poor CATE estimation results across multiple evaluation metrics. Augmentation methods 

that transform the form of the outcome occasionally demonstrated good performance 

depending on the scenario. 

From the perspective of the treatment-to-control ratio, the bias in the average 

treatment effect of the estimated subgroup decreased as the treatment proportion became 

closer to the control proportion (Tables 3–5). This suggests that a balanced treatment-to-

control ratio contributes to more stable and accurate estimations. 

In the simulations, we used the S-learner and T-learner as substitutes for the true CATE. 

Although the T-learner showed slightly larger values under the same settings, overall 

simulation results showed no significant difference between the two learners, indicating 

that the plug-in estimator did not have notable impact on performance metrics.  

In terms of MSE, the Super Learner method demonstrated significantly smaller values 

and ranges compared to other methods, while A-learning and W-learning exhibited very 

large values, indicating instability in their estimates. Additionally, in each Figure (B), the 

Pearson correlation and subgroup utility index appeared to have a linear relationship in 
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most cases. Through plot (C), it was possible to examine whether the estimated ATE in the 

estimated subgroup was underestimated or overestimated compared to the true ATE in the 

estimated subgroup. Most estimates tended to be overestimated. Estimates closer to the 

diagonal line were considered more accurate, with the Super Learner, S-learner, and X-

learner, in that order, showing closer. 

Considering multiple evaluation metrics comprehensively, the Super Learner 

demonstrated robust and superior performance in CATE estimation compared to other 

methods. 

The additional simulation results for the null model indicate that in most scenario 

settings, the S-learner, A-learning, and W-learning methods showed relatively higher mean 

squared errors, as shown in plot (A). Since the null model represents a case where the true 

CATE is absent, various performance metrics cannot be comprehensively evaluated. 

However, as presented in plot (B), estimated average treatment effect on estimated 

subgroup values are ranked in descending order as causal forest, Super Learner, and S-

learner in Appendix Figure A2-A13. 
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Table 3. Evaluation metrics for Scenario 1-1-1: Data generating process 1 with a 3:1 treatment-to-control ratio using S-learner to estimate 
surrogate CATE over 100 iterations 

Method 𝐜𝐨𝐫𝐫(𝛕*, 𝛕) 𝐚𝐠𝐫𝐞𝐞0𝐒2, 𝐒3 𝐀𝐓𝐄70𝐒23 𝐀𝐓𝐄0𝐒23 𝐛𝐢𝐚𝐬;𝐀𝐓𝐄0𝐒23< 𝐒𝐃;𝐀𝐓𝐄70𝐒23< 𝛈 

T-learner 0.549 0.439 0.569 0.271 0.299 0.072 0.136 

S-learner 0.652 0.498 0.345 0.315 0.030 0.075 0.161 

R-learner 0.696 0.494 0.394 0.262 0.132 0.082 0.140 

X-learner 0.586 0.431 0.332 0.257 0.075 0.073 0.136 

Causal Forest 0.704 0.419 0.128 0.365 -0.236 0.073 0.137 

A-learning -0.028 0.295 3.791 0.008 3.782 4.933 0.007 

A-learning aug* 0.676 0.450 0.469 0.227 0.241 0.083 0.137 

W-learning 0.003 0.326 4.295 0.014 4.281 4.136 0.013 

W-learning aug 0.761 0.505 0.620 0.283 0.337 0.069 0.164 

Causal stacking 0.695 0.486 0.399 0.250 0.150 0.082 0.138 

Super Learner** 0.773 0.525 0.404 0.348 0.055 0.094 0.185 

* aug; augmentation 

** Super Learner; proposed method  
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Table 4. Evaluation metrics for Scenario 1-2-1: Data generating process 1 with a 2:1 treatment-to-control ratio using S-learner to estimate 
surrogate CATE over 100 iterations 

Method 𝐜𝐨𝐫𝐫(𝛕*, 𝛕) 𝐚𝐠𝐫𝐞𝐞0𝐒2, 𝐒3 𝐀𝐓𝐄70𝐒23 𝐀𝐓𝐄0𝐒23 𝐛𝐢𝐚𝐬;𝐀𝐓𝐄0𝐒23< 𝐒𝐃;𝐀𝐓𝐄70𝐒23< 𝛈 

T-learner 0.578 0.452 0.521 0.282 0.240 0.059 0.141 

S-learner 0.630 0.488 0.307 0.302 0.005 0.062 0.155 

R-learner 0.748 0.521 0.379 0.260 0.119 0.082 0.141 

X-learner 0.644 0.462 0.311 0.290 0.021 0.062 0.151 

Causal Forest 0.715 0.442 0.131 0.358 -0.226 0.067 0.142 

A-learning -0.003 0.283 4.619 0.008 4.610 4.839 0.006 

A-learning aug* 0.667 0.449 0.434 0.224 0.210 0.073 0.135 

W-learning 0.013 0.322 4.406 0.013 4.394 3.910 0.012 

W-learning aug 0.723 0.483 0.560 0.255 0.304 0.064 0.152 

Causal stacking 0.743 0.510 0.387 0.245 0.142 0.079 0.138 

Super Learner** 0.758 0.511 0.379 0.334 0.045 0.075 0.180 

* aug; augmentation 

** Super Learner; proposed method   
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Table 5. Evaluation metrics for Scenario 1-3-1: Data generating process 1 with a 1:1 treatment-to-control ratio using S-learner to estimate 
surrogate CATE over 100 iterations 

Method 𝐜𝐨𝐫𝐫(𝛕*, 𝛕) 𝐚𝐠𝐫𝐞𝐞0𝐒2, 𝐒3 𝐀𝐓𝐄70𝐒23 𝐀𝐓𝐄0𝐒23 𝐛𝐢𝐚𝐬;𝐀𝐓𝐄0𝐒23< 𝐒𝐃;𝐀𝐓𝐄70𝐒23< 𝛈 

T-learner 0.564 0.445 0.505 0.272 0.233 0.053 0.138 

S-learner 0.577 0.455 0.280 0.270 0.010 0.065 0.143 

R-learner 0.791 0.537 0.372 0.275 0.097 0.072 0.150 

X-learner 0.698 0.480 0.329 0.315 0.014 0.059 0.164 

Causal Forest 0.695 0.418 0.149 0.327 -0.178 0.075 0.146 

A-learning 0.007 0.277 4.166 0.014 4.152 5.165 0.009 

A-learning aug* 0.618 0.429 0.410 0.212 0.198 0.061 0.130 

W-learning -0.005 0.285 4.658 0.012 4.647 5.265 0.008 

W-learning aug 0.595 0.430 0.483 0.215 0.268 0.056 0.131 

Causal stacking 0.781 0.531 0.374 0.269 0.105 0.073 0.148 

Super Learner** 0.729 0.496 0.341 0.341 0.001 0.065 0.181 

* aug; augmentation 

** Super Learner; proposed method  
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Table 6. Evaluation metrics for Scenario 1-1-2: Data generating process 1 with a 3:1 treatment-to-control ratio using T-learner to estimate 
surrogate CATE over 100 iterations 

Method 𝐜𝐨𝐫𝐫(𝛕*, 𝛕) 𝐚𝐠𝐫𝐞𝐞0𝐒2, 𝐒3 𝐀𝐓𝐄70𝐒23 𝐀𝐓𝐄0𝐒23 𝐛𝐢𝐚𝐬;𝐀𝐓𝐄0𝐒23< 𝐒𝐃;𝐀𝐓𝐄70𝐒23< 𝛈 

T-learner 0.550 0.450 0.555 0.270 0.285 0.071 0.136 

S-learner 0.646 0.506 0.333 0.312 0.021 0.069 0.159 

R-learner 0.691 0.496 0.383 0.255 0.128 0.087 0.137 

X-learner 0.572 0.435 0.325 0.258 0.067 0.078 0.133 

Causal Forest 0.692 0.433 0.124 0.362 -0.238 0.069 0.136 

A-learning -0.014 0.286 5.480 0.007 5.473 6.687 0.005 

A-learning aug* 0.676 0.457 0.458 0.217 0.241 0.077 0.132 

W-learning 0.025 0.330 4.698 0.013 4.685 4.384 0.013 

W-learning aug 0.761 0.506 0.607 0.271 0.336 0.069 0.159 

Causal stacking 0.687 0.485 0.392 0.243 0.149 0.088 0.134 

Super Learner** 0.778 0.528 0.390 0.346 0.044 0.088 0.183 

* aug; augmentation 

** Super Learner; proposed method   
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Table 7. Evaluation metrics for Scenario 1-2-2: Data generating process 1 with a 2:1 treatment-to-control ratio using T-learner to estimate 
surrogate CATE over 100 iterations 

Method 𝐜𝐨𝐫𝐫(𝛕*, 𝛕) 𝐚𝐠𝐫𝐞𝐞0𝐒2, 𝐒3 𝐀𝐓𝐄70𝐒23 𝐀𝐓𝐄0𝐒23 𝐛𝐢𝐚𝐬;𝐀𝐓𝐄0𝐒23< 𝐒𝐃;𝐀𝐓𝐄70𝐒23< 𝛈 

T-learner 0.567 0.453 0.527 0.276 0.252 0.065 0.139 

S-learner 0.628 0.500 0.311 0.303 0.007 0.077 0.156 

R-learner 0.764 0.538 0.387 0.275 0.112 0.090 0.146 

X-learner 0.647 0.471 0.315 0.289 0.026 0.071 0.149 

Causal Forest 0.730 0.438 0.127 0.376 -0.249 0.071 0.140 

A-learning -0.036 0.291 4.430 0.006 4.423 5.017 0.005 

A-learning aug* 0.673 0.459 0.436 0.220 0.216 0.075 0.135 

W-learning 0.008 0.328 4.309 0.013 4.296 3.704 0.012 

W-learning aug 0.723 0.494 0.568 0.255 0.313 0.077 0.152 

Causal stacking 0.761 0.532 0.391 0.264 0.127 0.089 0.145 

Super Learner** 0.763 0.527 0.381 0.354 0.028 0.080 0.185 

* aug; augmentation 

** Super Learner; proposed method  
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Table 8. Evaluation metrics for Scenario 1-3-2: Data generating process 1 with a 1:1 treatment-to-control ratio using T-learner to estimate 
surrogate CATE over 100 iterations 

Method 𝐜𝐨𝐫𝐫(𝛕*, 𝛕) 𝐚𝐠𝐫𝐞𝐞0𝐒2, 𝐒3 𝐀𝐓𝐄70𝐒23 𝐀𝐓𝐄0𝐒23 𝐛𝐢𝐚𝐬;𝐀𝐓𝐄0𝐒23< 𝐒𝐃;𝐀𝐓𝐄70𝐒23< 𝛈 

T-learner 0.563 0.450 0.505 0.274 0.231 0.053 0.138 

S-learner 0.574 0.459 0.292 0.271 0.021 0.066 0.143 

R-learner 0.786 0.543 0.369 0.279 0.091 0.071 0.151 

X-learner 0.699 0.489 0.327 0.321 0.006 0.062 0.164 

Causal Forest 0.707 0.431 0.146 0.342 -0.196 0.072 0.148 

A-learning 0.004 0.279 3.861 0.015 3.846 5.019 0.010 

A-learning aug* 0.629 0.432 0.405 0.209 0.196 0.060 0.130 

W-learning 0.006 0.293 4.118 0.017 4.101 4.907 0.012 

W-learning aug 0.602 0.432 0.479 0.205 0.274 0.058 0.128 

Causal stacking 0.781 0.540 0.371 0.276 0.095 0.071 0.151 

Super Learner** 0.723 0.507 0.343 0.341 0.002 0.068 0.179 

* aug; augmentation 

** Super Learner; proposed method 
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Table 9. Evaluation metrics for Scenario 2-1-1: Data generating process 2 with a 3:1 treatment-to-control ratio using S-learner to estimate 
surrogate CATE over 100 iterations 

Method 𝐜𝐨𝐫𝐫(𝛕*, 𝛕) 𝐚𝐠𝐫𝐞𝐞0𝐒2, 𝐒3 𝐀𝐓𝐄70𝐒23 𝐀𝐓𝐄0𝐒23 𝐛𝐢𝐚𝐬;𝐀𝐓𝐄0𝐒23< 𝐒𝐃;𝐀𝐓𝐄70𝐒23< 𝛈 

T-learner 0.155 0.292 1.507 0.082 1.425 0.144 0.042 

S-learner 0.391 0.392 0.435 0.194 0.241 0.083 0.105 

R-learner 0.371 0.365 0.442 0.107 0.335 0.107 0.066 

X-learner 0.233 0.316 0.508 0.118 0.390 0.083 0.062 

Causal Forest 0.161 0.238 0.229 0.097 0.131 0.189 0.028 

A-learning -0.011 0.287 4.893 0.010 4.884 5.567 0.007 

A-learning aug* 0.645 0.432 0.467 0.192 0.275 0.088 0.122 

W-learning 0.012 0.321 5.145 0.013 5.132 4.688 0.013 

W-learning aug 0.745 0.493 0.618 0.254 0.364 0.072 0.154 

Causal stacking 0.364 0.365 0.462 0.098 0.364 0.117 0.063 

Super Learner** 0.660 0.473 0.447 0.276 0.171 0.120 0.154 

* aug; augmentation 

** Super Learner; proposed method 
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Table 10. Evaluation metrics for Scenario 2-2-1: Data generating process 2 with a 2:1 treatment-to-control ratio using S-learner to 
estimate surrogate CATE over 100 iterations 

Method 𝐜𝐨𝐫𝐫(𝛕*, 𝛕) 𝐚𝐠𝐫𝐞𝐞0𝐒2, 𝐒3 𝐀𝐓𝐄70𝐒23 𝐀𝐓𝐄0𝐒23 𝐛𝐢𝐚𝐬;𝐀𝐓𝐄0𝐒23< 𝐒𝐃;𝐀𝐓𝐄70𝐒23< 𝛈 

T-learner 0.159 0.299 1.331 0.081 1.249 0.101 0.041 

S-learner 0.395 0.403 0.382 0.195 0.187 0.074 0.103 

R-learner 0.407 0.389 0.403 0.114 0.289 0.102 0.067 

X-learner 0.272 0.333 0.500 0.130 0.369 0.073 0.066 

Causal Forest 0.154 0.254 0.238 0.074 0.165 0.163 0.027 

A-learning 0.007 0.290 4.906 0.012 4.894 5.553 0.008 

A-learning aug* 0.635 0.449 0.441 0.208 0.232 0.074 0.126 

W-learning 0.017 0.323 4.687 0.013 4.674 4.350 0.012 

W-learning aug 0.698 0.487 0.563 0.246 0.317 0.066 0.146 

Causal stacking 0.405 0.387 0.423 0.105 0.318 0.108 0.064 

Super Learner** 0.651 0.471 0.424 0.273 0.150 0.103 0.151 

* aug; augmentation 

** Super Learner; proposed method 
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Table 11. Evaluation metrics for Scenario 2-3-1: Data generating process 2 with a 1:1 treatment-to-control ratio using S-learner to 
estimate surrogate CATE over 100 iterations 

Method 𝐜𝐨𝐫𝐫(𝛕*, 𝛕) 𝐚𝐠𝐫𝐞𝐞0𝐒2, 𝐒3 𝐀𝐓𝐄70𝐒23 𝐀𝐓𝐄0𝐒23 𝐛𝐢𝐚𝐬;𝐀𝐓𝐄0𝐒23< 𝐒𝐃;𝐀𝐓𝐄70𝐒23< 𝛈 

T-learner 0.157 0.296 1.237 0.082 1.155 0.084 0.041 

S-learner 0.374 0.380 0.352 0.189 0.163 0.070 0.099 

R-learner 0.458 0.405 0.387 0.149 0.238 0.116 0.085 

X-learner 0.330 0.348 0.496 0.173 0.323 0.076 0.083 

Causal Forest 0.175 0.220 0.178 0.129 0.048 0.134 0.031 

A-learning 0.000 0.270 3.895 0.014 3.880 4.646 0.009 

A-learning aug* 0.622 0.431 0.405 0.208 0.197 0.066 0.128 

W-learning -0.004 0.289 3.883 0.016 3.867 4.070 0.011 

W-learning aug 0.595 0.429 0.479 0.208 0.271 0.066 0.129 

Causal stacking 0.455 0.402 0.392 0.148 0.244 0.116 0.085 

Super Learner** 0.557 0.427 0.363 0.267 0.096 0.091 0.146 

* aug; augmentation 

** Super Learner; proposed method 
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Table 12. Evaluation metrics for Scenario 2-1-2: Data generating process 2 with a 3:1 treatment-to-control ratio using T-learner to 
estimate surrogate CATE over 100 iterations 

Method 𝐜𝐨𝐫𝐫(𝛕*, 𝛕) 𝐚𝐠𝐫𝐞𝐞0𝐒2, 𝐒3 𝐀𝐓𝐄70𝐒23 𝐀𝐓𝐄0𝐒23 𝐛𝐢𝐚𝐬;𝐀𝐓𝐄0𝐒23< 𝐒𝐃;𝐀𝐓𝐄70𝐒23< 𝛈 

T-learner 0.155 0.293 1.498 0.080 1.418 0.145 0.041 

S-learner 0.406 0.394 0.408 0.198 0.210 0.070 0.105 

R-learner 0.372 0.367 0.431 0.104 0.327 0.097 0.066 

X-learner 0.256 0.322 0.514 0.120 0.394 0.097 0.062 

Causal Forest 0.165 0.244 0.215 0.087 0.128 0.150 0.022 

A-learning -0.016 0.292 5.805 0.006 5.799 7.536 0.005 

A-learning aug* 0.666 0.452 0.467 0.211 0.256 0.080 0.132 

W-learning 0.002 0.327 5.228 0.013 5.215 5.514 0.012 

W-learning aug 0.749 0.509 0.616 0.271 0.345 0.069 0.159 

Causal stacking 0.359 0.364 0.497 0.094 0.404 0.147 0.061 

Super Learner** 0.613 0.446 0.488 0.244 0.244 0.149 0.142 

* aug; augmentation 

** Super Learner; proposed method 
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Table 13. Evaluation metrics for Scenario 2-2-2: Data generating process 2 with a 2:1 treatment-to-control ratio using T-learner to 
estimate surrogate CATE over 100 iterations 

Method 𝐜𝐨𝐫𝐫(𝛕*, 𝛕) 𝐚𝐠𝐫𝐞𝐞0𝐒2, 𝐒3 𝐀𝐓𝐄70𝐒23 𝐀𝐓𝐄0𝐒23 𝐛𝐢𝐚𝐬;𝐀𝐓𝐄0𝐒23< 𝐒𝐃;𝐀𝐓𝐄70𝐒23< 𝛈 

T-learner 0.166 0.295 1.357 0.087 1.270 0.100 0.044 

S-learner 0.405 0.395 0.393 0.203 0.190 0.065 0.107 

R-learner 0.419 0.387 0.420 0.126 0.294 0.093 0.075 

X-learner 0.289 0.338 0.503 0.145 0.358 0.079 0.073 

Causal Forest 0.178 0.249 0.227 0.099 0.128 0.178 0.029 

A-learning -0.004 0.287 4.894 0.010 4.884 5.701 0.008 

A-learning aug* 0.641 0.452 0.453 0.227 0.226 0.067 0.137 

W-learning 0.019 0.324 4.754 0.014 4.740 4.334 0.013 

W-learning aug 0.702 0.484 0.570 0.253 0.317 0.064 0.150 

Causal stacking 0.411 0.384 0.462 0.113 0.349 0.120 0.069 

Super Learner** 0.633 0.458 0.434 0.256 0.178 0.100 0.148 

* aug; augmentation 

** Super Learner; proposed method  
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Table 14. Evaluation metrics for Scenario 2-3-2: Data generating process 2 with a 1:1 treatment-to-control ratio using T-learner to 
estimate surrogate CATE over 100 iterations 

Method 𝐜𝐨𝐫𝐫(𝛕*, 𝛕) 𝐚𝐠𝐫𝐞𝐞0𝐒2, 𝐒3 𝐀𝐓𝐄70𝐒23 𝐀𝐓𝐄0𝐒23 𝐛𝐢𝐚𝐬;𝐀𝐓𝐄0𝐒23< 𝐒𝐃;𝐀𝐓𝐄70𝐒23< 𝛈 

T-learner 0.152 0.296 1.245 0.079 1.166 0.096 0.040 

S-learner 0.338 0.370 0.349 0.167 0.182 0.067 0.089 

R-learner 0.442 0.407 0.382 0.124 0.258 0.094 0.075 

X-learner 0.308 0.345 0.509 0.152 0.357 0.078 0.077 

Causal Forest 0.189 0.229 0.191 0.124 0.068 0.141 0.032 

A-learning -0.011 0.281 3.072 0.007 3.065 3.613 0.005 

A-learning aug* 0.599 0.421 0.406 0.184 0.221 0.062 0.118 

W-learning -0.001 0.295 3.451 0.012 3.439 3.570 0.009 

W-learning aug 0.576 0.422 0.480 0.185 0.295 0.060 0.119 

Causal stacking 0.438 0.405 0.387 0.122 0.265 0.095 0.075 

Super Learner** 0.530 0.417 0.371 0.250 0.121 0.118 0.133 

* aug; augmentation 

** Super Learner; proposed method 
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Figure 1. Visualization of model performance: Evaluation metrics for scenario 1-1-1: Data generating process 1 with a 3:1 treatment-to-
control ratio using S-learner to estimate surrogate CATE over 100 iterations  
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Figure 2. Visualization of model performance: Evaluation metrics for scenario 1-2-1: Data generating process 1 with a 2:1 treatment-to-
control ratio using S-learner to estimate surrogate CATE over 100 iterations 
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Figure 3. Visualization of model performance: Evaluation metrics for scenario 1-3-1: Data generating process 1 with a 1:1 treatment-to-

control ratio using S-learner to estimate surrogate CATE over 100 iterations 
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Figure 4. Visualization of model performance: Evaluation metrics for scenario 1-1-2: Data generating process 1 with a 3:1 treatment-to-
control ratio using T-learner to estimate surrogate CATE over 100 iterations 
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Figure 5. Visualization of model performance: Evaluation metrics for scenario 1-2-2: Data generating process 1 with a 2:1 treatment-to-
control ratio using T-learner to estimate surrogate CATE over 100 iterations 
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Figure 6. Visualization of model performance: Evaluation metrics for scenario 1-3-2: Data generating process 1 with a 1:1 treatment-to-

control ratio using T-learner to estimate surrogate CATE over 100 iterations
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Figure 7. Visualization of model performance: Evaluation metrics for scenario 2-1-1: Data generating process 2 with a 3:1 treatment-to-
control ratio using S-learner to estimate surrogate CATE over 100 iterations 
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Figure 8. Visualization of model performance: Evaluation metrics for scenario 2-2-1: Data generating process 2 with a 2:1 treatment-to-
control ratio using S-learner to estimate surrogate CATE over 100 iterations 
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Figure 9. Visualization of model performance: Evaluation metrics for scenario 2-3-1: Data generating process 2 with a 1:1 treatment-to-

control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Figure 10. Visualization of model performance: Evaluation metrics for scenario 2-1-2: Data generating process 2 with a 3:1 treatment-

to-control ratio using T-learner to estimate surrogate CATE over 100 iterations 
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Figure 11. Visualization of model performance: Evaluation metrics for scenario 2-2-2: Data generating process 2 with a 2:1 treatment-
to-control ratio using S-learner to estimate surrogate CATE over 100 iterations 



 

 

52 

 

Figure 12. Visualization of model performance: Evaluation metrics for scenario 2-3-2: Data generating process 2 with a 1:1 treatment-
to-control ratio using S-learner to estimate surrogate CATE over 100 iterations
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Chapter 6 

 

Conclusion and Discussion 

 

In causal inference, developing a robust and consistent method for estimating 

conditional average treatment effects (CATE) is critically important. Existing methods 

often rely on varying assumptions, which can lead to inconsistent results. If the CATE 

estimation results differ across methods, clinicians may face difficulties in deciding 

whether to administer treatment to patients with specific covariates.  

To address this issue, this study introduces a Super Learner-based CATE estimation 

method that demonstrates robust and reliable performance, even in challenging and 

complex estimation settings. The proposed method uses cross validation to efficiently 

utilize data, overcoming the limitations of individual methods and combining the strengths 

of each method to produce more stable and accurate estimates. 

In the simulation study, the proposed method outperformed other methods across 

multiple evaluation metrics, including mean squared error (MSE), bias, and subgroup 

utility index. It demonstrated enhanced accuracy and robustness, highlighting its potential 

as an effective approach for estimating CATE, particularly in scenarios where traditional 

methods struggle due to data complexity or heterogeneity. These findings suggest that the 

Super Learner-based approach can effectively address key challenges in CATE estimation, 

enhancing the consistency and interpretability of the results. Moreover, the null model 

simulation further demonstrated that in the absence of heterogeneous treatment effects, 

most methods produce HTE estimates close to zero. 
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Despite these strengths, the study also underscores certain limitations. The reliance on 

a plug-in estimator as a substitute for the true CATE leads to inherent uncertainty due to 

the unobservability of the true values. This limitation emphasizes the need for further 

investigation of alternative substitutes for the true CATE. Comparing models using 

multiple substitutes could help reduce potential biases and enhance the robustness of the 

estimation procedure. 

When applying various meta-learners or methods such as causal forests, this study 

employed XGBoost; however, alternative machine learning methods could also be applied. 

In such cases, the results may vary depending on the dataset used in simulations or real-

world applications. Further research could explore which machine learning methods yield 

better performance in outcome modeling. 

Further studies should extend the proposed method to real-world applications, such as 

randomized clinical trials (RCTs) and observational studies, with more pronounced 

heterogeneity in data and treatment effects. Additionally, refining methodologies to support 

treatment recommendations based on heterogeneous treatment effects represents a 

significant area for further investigation. These efforts will be essential for advancing both 

methodological theory and practical applications of CATE estimation, particularly in fields 

like precision medicine and policymaking. 

Continued advancements in this area, especially in mitigating inherent uncertainties 

and enhancing the robustness of estimation methods, will be crucial for improving the 

reliability and applicability of causal inference methodologies. This study contributes to 

these ongoing efforts by establishing a rigorous framework for more effective and reliable 

CATE estimation in diverse and complex settings. 
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Appendix 
Table A1. CATE estimation method’s tuning parameters 

CATE estimation methods Tuning parameters 

S-learner cvboost3 
k_folds = 5 
tree depth = {2,3,4}, eta = {0.0005, 0.01, 0.015, 0.025, 0.05, 0.08, 0.1, 0.2}, 
ntree_max = 1000, early_stopping_rounds = 10,  
subsample = 0.9, colsample_bytree = 0.9 

T-learner 

R-learner 

X-learner 

Causal Forest num.trees = 10000 

A-learning max_depth = 5, eta = 0.01, nthread=1, booster = “gbtree”, subsample = 0.90,  
colsample_bytree = 0.90, nrounds = 1000, nfold = 5, early_stopping_rounds = 50 

A-learning aug max_depth = 5, eta = 0.01, nthread=1, booster = “gbtree”, subsample = 0.90,  
colsample_bytree = 0.90, nrounds = 1000, nfold = 5, early_stopping_rounds = 50, 
nfolds.crossfit = 5, augment.func = aug.func 

W-learning max_depth = 5, eta = 0.01, nthread=1, booster = “gbtree”, subsample = 0.90,  
colsample_bytree = 0.90, nrounds = 1000, nfold = 5, early_stopping_rounds = 50 

W-learning aug max_depth = 5, eta = 0.01, nthread=1, booster = “gbtree”, subsample = 0.90,  
colsample_bytree = 0.90, nrounds = 1000, nfold = 5, early_stopping_rounds = 50, 
nfolds.crossfit = 5, augment.func = aug.func 

Causal stacking train:validation = 2:1 

Super Learner 5-folds 
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Table A2. Simulation scenarios for the data generating process 𝐷1 null: 4 prognostic covariates; 
𝐷2 null: 9 prognostic covariates 

Scenario Data generating process 
Treatment-to-control 

ratio 
Surrogate 

CATE 
1-1-1 𝐷1 null 3:1 S-learner 

1-2-1 𝐷1 null 2:1 S-learner 

1-3-1 𝐷1 null 1:1 S-learner 

1-1-2 𝐷1 null 3:1 T-learner 

1-2-2 𝐷1 null 2:1 T-learner 

1-3-2 𝐷1 null 1:1 T-learner 

2-1-1 𝐷2 null 3:1 S-learner 

2-2-1 𝐷2 null 2:1 S-learner 

2-3-1 𝐷2 null 1:1 S-learner 

2-1-2 𝐷2 null 3:1 T-learner 

2-2-2 𝐷2 null 2:1 T-learner 

2-3-2 𝐷2 null 1:1 T-learner 
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Figure A3. Visualization of model performance: Evaluation metrics for scenario 1-1-1 null model: Data generating process 1 with a 3:1 
treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations 
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Figure A4. Visualization of model performance: Evaluation metrics for scenario 1-2-1 null model: Data generating process 1 with a 2:1 
treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations  
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Figure A5. Visualization of model performance: Evaluation metrics for scenario 1-3-1 null model: Data generating process 1 with a 1:1 
treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations  
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Figure A6. Visualization of model performance: Evaluation metrics for scenario 1-1-2 null model: Data generating process 2 with a 3:1 
treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations  
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Figure A7. Visualization of model performance: Evaluation metrics for scenario 1-2-2 null model: Data generating process 2 with a 2:1 
treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations  
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Figure A8. Visualization of model performance: Evaluation metrics for scenario 1-3-2 null model: Data generating process 2 with a 1:1 
treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations  
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Figure A9. Visualization of model performance: Evaluation metrics for scenario 2-1-1 null model: Data generating process 1 with a 3:1 
treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations  
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Figure A10. Visualization of model performance: Evaluation metrics for scenario 2-2-1 null model: Data generating process 1 with a 2:1 
treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations  
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Figure A11. Visualization of model performance: Evaluation metrics for scenario 2-3-1 null model: Data generating process 1 with a 1:1 
treatment-to-control ratio using S-learner to estimate surrogate CATE over 100 iterations  
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Figure A12. Visualization of model performance: Evaluation metrics for scenario 2-1-2 null model: Data generating process 2 with a 3:1 
treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations  
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Figure A13. Visualization of model performance: Evaluation metrics for scenario 2-2-2 null model: Data generating process 2 with a 2:1 
treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations  
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Figure A14. Visualization of model performance: Evaluation metrics for scenario 2-3-2 null model: Data generating process 2 with a 1:1 
treatment-to-control ratio using T-learner to estimate surrogate CATE over 100 iterations   
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Abstract in Korean 

 

RCT에서 Super Learner를 활용한  

CATE 추정에 대한 앙상블 접근법 

 

이전 연구들은 인과 추론에서 개별 치료 효과보다는 평균 치료 효과에 초점을 맞춰

왔다. 그러나 정밀 의학에 대한 관심이 높아짐에 따라, 최근에는 조건부 평균 처치효

과(CATE) 추정과 개별 치료 규칙(ITR)에 대한 연구가 크게 증가하고 있다. CATE 추

정은 동일한 특성 속성을 가진 집단에 대한 평균 치료 효과를 추정하는 방법이다. 

CATE 추정을 위해 다양한 모수적(parametric) 및 비모수적(non-parametric) 방법

이 제안되었으나, 최근 연구들은 특정 기준에서 모든 방법보다 항상 우수한 방법은 

없다는 것을 보여준다. 이러한 한계를 해결하기 위해, 한 연구에서는 인과 스태킹

(causal stacking)과 같은 앙상블 방법을 적용하여 CATE 추정의 일관성을 향상시키

고자 하였다. 이러한 맥락에서, 우리는 다양한 성능평가 지표에서 우수한 결과를 얻기 

위해 Super Learner를 활용한 CATE 추정방법을 제안했다. Super Learner는 데이터

를 교차 검증(cross-validation)을 사용하여 분할하는 장점이 있어 과적합(overfitting)

을 방지하고, 스태킹이나 다른 개별 추정방법들에 비해 최적의 결과를 도출할 수 있

다. 



 

 

72 

시뮬레이션 결과, 본 논문에서 제안한 방법은 다른 방법들에 비해 MSE가 더 낮았

으며 다양한 성능 지표에서 우수한 성능을 보였다. 이러한 결과는 치료 결정을 위해 

단일 CATE 추정 방법에 의존하기보다는 여러 방법의 결과를 결합하기 위해 Super 

Learner를 활용하는 것이 더 견고하고 신뢰할 수 있는 환자 치료 최적화 프레임워크

를 제공함을 시사한다. 결과적으로 Super Learner 접근법은 개별화된 치료 규칙을 개

발하는 데 있어 실질적이고 효과적인 도구가 될 수 있고 환자 치료 최적화를 위한 상

당한 가능성을 제공할 것이라 예상한다. 

_______________________________________________________________________________ 

핵심되는 말 : 인과추론, 이질적 처치효과, 조건부 평균 처치효과, 개별 치료 규칙, 플
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