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ABSTRACT

An Explainable Artificial Intelligence-Enabled Electrocardiogram
Model for the Prediction of Coronary Artery Calcification

The coronary artery calcium (CAC) score, assessed via computed tomography (CT) to quantify
calcium deposits in the coronary arteries, is a marker of atherosclerosis and a robust predictor of
coronary events. Current cardiovascular disease (CVD) risk prediction models, such as the
ACC/AHA Pooled Cohort Equations (PCE), guide primary prevention but often yield borderline
risk classifications, leaving decision-making uncertain. In such cases, CAC scoring is recommended
by guidelines as an additional tool to guide decisions. The presence of CAC often favors initiating
primary prevention measures like statin therapy, while its absence may lead to withholding statins.

However, routine CAC scoring is limited by high costs, radiation exposure, and lack of
insurance coverage. In contrast, electrocardiograms (ECGs) are widely used, non-invasive, cost-
effective, and radiation-free. Advances in deep convolutional neural networks have enabled artificial
intelligence (Al) models to detect previously undetectable conditions from ECGs. An AI-ECG
capable of predicting CAC could provide valuable CVD risk insights. Especially in routine health
screenings, where ECGs are widely performed, this approach could enable opportunistic CAC
screening in the general population, facilitating earlier detection of coronary artery calcification and
timely implementation of primary prevention strategies.

We aimed to develop an AI-ECG model to predict CAC and validate its potential for
opportunistic screening in health screening settings. To ensure broader applicability, we aimed to
perform external validation in health screening settings at two separate institutions. Additionally,
we aimed to evaluate the clinical implications and potential impact of our AI-ECG model on
decision-making through multinational retrospective cohort analyses spanning two different
countries. Finally, we aimed to provide visual morphological explainability of model predictions.

The AI-ECG model was trained on over 194,000 ECGs annotated with CAC scores from
Severance Hospital (SH). It was tested on a health checkup dataset (SH, 14,242 ECGs) where
participants had both ECG and CT measurements of CAC on the same visit. External validation
used datasets from Yongin Severance Hospital (YSH, 729 ECGs) and Ajou University Medical
Center (AUMC, 2056 ECGs). In multinational retrospective cohort analyses, 52,400 ECGs from SH
health screenings (not matched with CAC measurements) and 30,623 ECGs from the United
Kingdom Biobank (UKB) were utilized. A variational autoencoder (VAE) pre-trained on over 5
million ECGs was employed to enhance interpretability by providing visual explanations of ECG
features influencing predictions.

Our AI-ECG model showed strong performance in predicting CAC, achieving an AUROC of
0.841 for CACS > 400 and an AUROC of 0.720 for CAC > 0 in the health screening test dataset.
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Our Al-ECG model demonstrated robust performance in external validation, with AUROCs of 0.784
and 0.814 in YSH and AUMC datasets for predicting CACS > 400, and 0.691 and 0.701 for CACS
> 0.

The AI-ECG model could screen individuals in the PCE low-risk group with the highest
likelihood of having CAC, and those in the PCE moderate-risk group with the lowest likelihood of
having CAC: In the PCE low-risk category, 24.9% had CAC > 0; among these individuals, the
proportion increased to 45.7% when selecting those identified as high-risk by the AI-ECG model;
In the PCE moderate-risk category, 35.4% had CACS = 0; among these individuals, the proportion
increased to 60.9% when selecting those identified as low-risk by the AI-ECG model. Among PCE
low-risk individuals who were reclassified as high-risk by AI-ECG, the incidence rate (IR) of major
adverse cardiovascular event (MACE) was higher compared to those in the PCE moderate-risk
category who were reclassified as low-risk by AI-ECG (SH cohort analysis dataset MACE IR per
1000 person-year [PY]: 6.0 vs. 3.3, P =0.007, UKB cohort analysis dataset MACE IR per 1000 PY:
8.3 vs. 7.0, P =0.360). Thus, it would be more reasonable to withhold statin therapy (down-risk) in
individuals classified as PCE moderate risk but AI-ECG low risk, and to initiate statin therapy (up-
risk) in those classified as PCE low risk but AI-ECG high risk. AI-ECG was an independent risk
factor for MACE (adjusted hazard ratio [95% CI]: 1.087 [1.053-1.123] in the SH cohort analysis
dataset and 1.117 [1.061-1.175] in the UKB cohort analysis dataset). AI-ECG provided additional
predictive value beyond the PCE, with the combined PCE plus AI-ECG score outperforming the
PCE alone in terms of C-index. The association between AI-ECG and MACE remained consistent
across all demographic and PCE-based subgroups. We provided visual morphological
interpretations of ECG factors associated with increased predicted risk, identifying potential changes
such as upward shift of the ST segment in the anteroseptal leads with reciprocal downward shift in
the inferolateral leads, downward shift of the ST segment in all leads, longer PR interval, and others,
to be associated with CAC.

Our AI-ECG model proves to be an effective tool for predicting coronary artery calcification.
We demonstrated the potential integration of our AI-ECG model into clinical workflow by showing
its dual utility: it can either screen individuals who would benefit most from CACS measurement,
or directly guide decisions regarding statin therapy initiation or withholding through patient
reclassification. The ubiquitous availability of ECGs, combined with our finding that the AI-ECG
model serves as an independent risk factor for cardiovascular events, suggests its potential for
incorporation as a CVD risk prediction tool. Particularly in routine health screenings where ECGs
are universally performed, AI-ECG-based CAC prediction could enable opportunistic CAC
screening in the general population, paving the way for earlier detection and timely implementation
of primary prevention strategies.

Key words: coronary artery calcification, coronary artery calcium score, artificial intelligence,
electrocardiogram, Al-ECG, health screening, primary prevention
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1. INTRODUCTION

1.1. Background

1.1.1. Coronary artery calcification

Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and
mortality worldwide, imposing a substantial burden on individuals and healthcare systems. The
estimated number of individuals aged 20 and older affected by coronary heart disease in the United
States is 18.2 million®. Each year, around 605,000 Americans experience their first myocardial
infarction, while over 200,000 have a recurrent event?. In 2016, the health care costs associated with
coronary heart disease amounted to $80 billion in the United States®. Early identification of
individuals at high risk is critical for implementing preventive measures and reducing adverse
cardiovascular events.

In current clinical practice, cardiovascular disease (CVD) risk prediction frameworks, such
as the American College of Cardiology/American Heart Association (ACC/AHA) Pooled Cohort
Equations (PCE), evaluate an individual's risk of developing CVD by incorporating clinical
variables*®. These frameworks guide recommendations for primary prevention strategies based on
the calculated risk score. However, risk assessment often yields borderline or intermediate
classifications where the decision to initiate treatment remains uncertain. In these cases, coronary
artery calcium (CAC) scoring is recommended by several guidelines as an additional measure to
guide primary prevention decisions®7. The presence of CAC (i.e., CAC score > 0) in such individuals
often tips the balance toward initiating primary prevention measures such as statin therapy, whereas
the absence of CAC may sometimes lead to recommendations to withhold statins.

Coronary artery calcification (CAC) is associated with the progression of advanced
atherosclerosis®®. The coronary artery calcium score (CACS), assessed by computed tomography
(CT) to quantify calcium deposits in the coronary arteries, serves as an excellent measure of
atherosclerotic plaque burden®*, Numerous studies validate that CAC is indicative of subclinical
atherosclerosis'?*4. The presence and burden of CAC provide direct evidence of the extent of
coronary artery disease (CAD) and predict future cardiovascular events independently of traditional
risk factors, with predictive power that has been widely corroborated and surpasses that of any other
non-invasive biomarker for this condition®'%-2!, These insights have positioned CAC scoring as a
valuable tool for stratifying cardiovascular risk.



Despite its clinical value and inclusion in several guidelines for cardiovascular risk
stratification, routine CAC measurement is limited by significant barriers. CT-based CAC scoring
involves high costs, exposes patients to radiation, and is largely inaccessible in resource-limited
settings. Moreover, insurance coverage for CAC screening is virtually nonexistent®2, further
restricting its widespread adoption. These limitations underscore the need for alternative methods to
identify the disease early in a cost-effective and accessible manner.

1.1.2. Potential of artificial intelligence in electrocardiogram analysis

In contrast, an electrocardiogram (ECG) stands as a sensitive, cost-effective, non-invasive,
and radiation-free diagnostic tool commonly utilized in various health evaluations. The recent
application of artificial intelligence (Al) techniques to ECGs has enabled the automatic classification
or diagnosis of various cardiac diseases, such as arrhythmia and ischemia?*-%. Moreover, with the
leverage of deep convolutional neural networks on ECGs, numerous Al models proficiently
identifying diseases and conditions that were previously undetectable through conventional ECG
interpretation have emerged?”?°, Importantly, many of these advanced Al models have demonstrated
their effectiveness through rigorous prospective validation in real-world scenarios. For example,
Attiaetal. (2019) developed an Al-enabled ECG (AI-ECG) algorithm capable of identifying patients
with atrial fibrillation during normal sinus rhythm, while Noseworthy et al. (2022) found in a
prospective trial that the Al-guided targeted screening of atrial fibrillation with ECGs actually
resulted in a significant increase in atrial fibrillation detection rates, particularly among those
classified as high-risk by the algorithm3®3t, Moreover, Attia et al. (2019) developed an Al-ECG
algorithm capable of identifying patients at a high likelihood of low ejection fraction, while Yao et
al. (2021) found in a pragmatic randomized clinical trial that the usage of this Al-powered clinical
decision support tool significantly improved the early diagnosis of patients with low ejection fraction
in routine primary care settings®?32,

Furthermore, various techniques have been introduced to visually explain Al-ECG
predictions, which is crucial as it transforms the Al from a black-box model to a transparent and
interpretable tool3435. For example, van de Leur et al. (2022) and Wouters et al. (2023) pre-trained
a variational autoencoder (VAE) model to learn the intrinsic factors influencing median beat ECG
morphology in an unsupervised manner33, They then used this pre-trained VAE model to explain
ECG morphological features related to various ECG diagnosis statements, reduced ejection fraction,
mortality, and outcomes following cardiac resynchronization therapy®%.

If an AI-ECG can predict CAC, individuals undergoing ECGs can gain valuable insights
into potential ASCVD risks. Especially in routine health screenings, where ECGs are universally



performed, this approach could enable opportunistic screening for coronary artery calcification in
the general population, paving the way for earlier detection and timely implementation of primary
prevention strategies.

1.2. Related studies

In a study by Farjo et al. (2020)¥, a logistic regression machine learning model was
developed to predict CACS of 400 or higher using ECG features from continuous wavelet transforms
alongside various clinical features. To our knowledge, this was the first study to create a machine
learning model for predicting CACS. The study used data from 534 subjects, split into training (80%)
and testing (20%) sets. A second cohort of 87 patients undergoing invasive coronary angiography
was used to validate the model. The machine learning models were developed to predict binary
outcomes: CAC = 0 and CAC > 400. The CAC = 0 model, based on clinical features, achieved an
area under the receiver operating characteristics curve (AUROC) of 0.84, with sensitivity, specificity,
and accuracy of 92%, 70%, and 75%, respectively. The CAC > 400 model, using both ECG and
clinical features, had an AUROC of 0.87, with sensitivity, specificity, and accuracy of 91%, 75%,
and 81%, respectively. The CAC > 400 model was also tested for its ability to predict outcomes such
as coronary artery stenosis, revascularization needs, and major adverse cardiovascular events in
patients. The CAC > 400 model significantly predicted the need for revascularization (P < 0.001),
and major adverse cardiovascular events during a two-year follow-up period. The machine learning
models demonstrated the ability to use easily obtainable clinical and ECG data to predict CACS and
stratify cardiovascular risk, potentially providing a low-risk, non-invasive alternative to current
methods. However, none of the ECG features ranked among the top three most important factors.
Instead, the top three were coronary artery disease, age, and sex, suggesting that clinical features
played a more significant role than ECGs in predicting CACS of 400 or higher in this study. More
advanced Al methods, such as deep convolutional neural networks, could be essential for extracting
more complex features from ECG data to enhance predictive accuracy. While the study demonstrates
the potential of using machine learning models based on ECG and clinical data for cardiovascular
risk assessment, it emphasizes the need for further research with larger and more diverse populations
to fully realize the clinical utility of these approaches.

A study by Han et al. (2022)% explored the potential of applying deep learning to ECGs to
predict CACS. The research developed binary classification models using deep convolutional neural
networks to predict CACS (> 100, > 400, and > 1000) solely from ECG waveform data. The model
development and internal validation dataset included 8,178 ECGs from 5,765 patients, and the
external validation dataset included 1,745 ECGs from 877 patients. The ECG data were paired with
CACS measured within 60 days of the ECG recording to ensure that the CAC values remained



relevant to the corresponding ECG data. In the internal validation, the models achieved AUROC
scores of 0.753, 0.802, and 0.835 for CACS > 100, > 400, and > 1000, respectively. Similarly, in
the external validation, the models showed AUROC:s of 0.718, 0.777, and 0.803, indicating that the
models were generalizable across different populations. The Al models outperformed traditional
logistic regression models that relied on conventional ECG features. This suggests that deep learning
techniques are better at detecting subtle signals in ECGs that may correlate with coronary artery
calcification, making them more effective for predicting CAC. However, the study had several
limitations. However, a notable limitation of this study is the lack of exclusion of individuals with
clinical ASCVD. According to guidelines®?, CAC scoring is not recommended for individuals with
clinical ASCVD, as they are already candidates for primary prevention or more advanced treatments.
Consequently, Al-ECG-based CAC prediction holds no utility for this group. Without excluding
individuals with clinical ASCVD, it is unclear whether the model's performance is biased toward
those with an existing diagnosis or symptoms, and whether it would be equally effective for those
who are the intended targets of opportunistic detection. Another limitation was the lack of
demonstration of an association between the Al model’s predictions and actual cardiovascular
disease outcomes. Furthermore, the impact of the Al model on decision-making remains unclear, as
it was not demonstrated how the predictions could guide clinical care or influence therapeutic
strategies. Additionally, the study lacked interpretability in the Al model, as no techniques were
incorporated to explain how the model made its predictions. This “black box™ nature is a common
challenge in deep learning models. Additionally, the study's dataset was relatively small, with only
8178 ECGs used for training and validation, potentially limiting the model’s ability to generalize to
broader, more diverse populations.

A study by Awasthi et al. (2023)%° developed and tested Al models designed to detect CAD
using ECGs. This research aimed to enhance the detection of CAD and improve risk stratification
for acute coronary events and mortality. The study utilized a large dataset from over 7 million
patients across more than 70 hospitals and clinics in the United States, focusing on individuals
without a prior history of ASCVD. The study developed separate Al models to detect three specific
markers of CAD: elevated CACS, obstructive coronary artery disease, and regional left ventricular
akinesis, which could indicate possible prior myocardial infarction. These models achieved high
levels of accuracy, with AUROC scores of 0.88 for detecting CACS of 300 or greater, 0.85 for
identifying obstructive CAD, and 0.94 for detecting regional left ventricular akinesia. This level of
accuracy suggests the Al models are highly effective at detecting underlying coronary disease from
ECG data alone. One of the study’s key findings was that the Al models could predict the risk of
acute coronary events and all-cause mortality over time periods as short as three years, even in
patients who had no known history of ASCVD. Patients who tested positive on one, two, or all three
Al models were found to have progressively higher hazard ratios for acute coronary events,
including myocardial infarctions, compared to those who tested negative. For instance, patients
testing positive on all three models had a significantly higher risk of acute coronary events over a



three-year period, with a hazard ratio of 11.75, compared to those with no positive results. The study
also highlighted the potential clinical utility of AI-ECGs in providing more timely risk assessments
than conventional methods. However, one limitation of the study was the lack of interpretability in
the Al models, as no techniques were employed to explain how the models made their predictions.
Additionally, regarding the CACS prediction model, it was unclear whether the cohort used in the
study included individuals with clinical ASCVD for whom CAC scoring is not recommended
according to guidelines®’, as they are already candidates for primary prevention or advanced
treatments. As a result, AI-ECG-based CAC prediction has no utility for individuals with clinical
ASCVD. Without excluding this group, it is unclear whether the model’s performance is biased
toward those with existing diagnoses or symptoms and whether it would be similarly effective for
the intended population targeted for opportunistic detection.

1.3. Objectives

In this study, we developed an AI-ECG model to predict coronary artery calcification and
validated its potential for opportunistic screening in health screening settings. To ensure broader
applicability, we performed external validation in health screening settings at two separate
institutions. We evaluated the clinical implications and potential impact of our AI-ECG model on
decision-making through multinational retrospective cohort analyses spanning two different
countries. We also provided visual morphological explainability of model predictions.

A more detailed overview of the study is provided below (Figure 1). We developed our Al-
ECG model predicting coronary artery calcification using an extensive dataset comprising over
194,000 ECGs annotated with CACS. We then tested the model on a health screening dataset
comprising individuals with both ECG and CT-derived CAC measurements obtained during their
evaluations, validating its potential for opportunistic screening. We then conducted external
validations using health screening datasets from separate institutions to evaluate the model’s
applicability in distinct yet potentially analogous populations. Additionally, we validated the clinical
implications of our AI-ECG model through multinational retrospective cohort analyses using the
UK Biobank (UKB), a dataset representative of the general population in the United Kingdom, and
a health screening dataset from South Korea, focusing on cardiovascular events. We assessed how
effectively the AI-ECG model reclassifies individuals for initiating primary prevention decisions,
beyond traditional risk assessment tools, to evaluate its potential impact on decision-making.
Moreover, we examined whether the AI-ECG model serves as an independent risk factor for
predicting cardiovascular events. Finally, we integrated a pre-trained VAE model to provide visual
morphological explainability, as described in previous studies®>=¢.
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Figure 1. Overview of the study.

CACS: coronary artery calcium score; ECG: electrocardiogram; Al: artificial intelligence; AlI-ECG:
artificial intelligence-enabled electrocardiogram; VAE: variational autoencoder.



2. METHODS

2.1. Data sources and labeling

2.1.1. Data for model development and testing

The standard 12-lead ECG data and electronic medical records (EMR) from Severance
Hospital (SH) were utilized for AI-ECG model development and internal validation (Figures 2-5).
The 12-lead ECG database from SH, sourced from the General Electric (GE) Healthcare MUSE™
system, encompasses approximately 5.6 million ECG records from 1.4 million individuals, spanning
from 1993 to 2022. The database incorporates data from health screenings. This database consists
of raw waveforms (one-dimensional ECG signal), measurement metrics like heart rate, PR interval,
and QT interval, along with automatic ECG interpretations generated by the GE ECG machine. Each
ECG recording has a duration of 10 seconds with sampling rates of either 500 Hz or 250 Hz. The
GE ECG algorithm constructs a median waveform for each ECG recording, spanning 1.2 seconds.
This is achieved by aligning all QRS complexes of identical shape and deriving a representative
QRS complex using the median voltage. This median waveform is also incorporated into the
database.

From the EMR database, we retrieved CT readings of heart-related scans conducted
between November 2005 and August 2022 for individuals aged 18 and above. Examples of CT
readings containing CACS are shown in Table 1. Notably, CT scans undertaken during health
screenings were available from December 2010 to August 2022. To extract the CACS from these
CT readings, we employed regular expressions, using a comprehensive range of search terms such
as “calcium score” and “CAC score” to ensure all relevant CACS were extracted.

Data from individuals with both ECG recordings and CACS from CT readings were used
to develop the AI-ECG model for predicting CACS (Figures 3 and 4). Specifically, ECGs recorded
during health screenings were extracted if a corresponding CAC measurement via CT was
performed during the same visit (Figure 4). These ECGs were subsequently labeled with the
corresponding CACS. These ECGs were designated as the health screening hold-out test dataset.
ECGs not recorded during health screenings were extracted if their recordings fell within a 30-day
period surrounding the CAC measurements, either preceding or following them, and these ECGs
were subsequently labeled with the respective CACS (Figure 3). We chose this 30-day window since
CAC is a gradually progressing condition, making it unlikely for significant changes to be observed



within a month#®41, While a longer time window might provide more samples, it also increases the
potential for substantial variation in the CACS. Thus, we chose a time window of 30 days to balance
between these trade-offs. In instances where multiple CAC measurements were taken within this
30-day period relative to an ECG, the ECG was labeled with the CACS from the closest date. These
ECGs constituted the model development dataset. ECGs bearing automatic interpretations that
included any of the following phrases were excluded: “lead reversal,” suggesting potential lead
misplacement; “poor quality,” signifying the presence of artifacts; and “pacemaker,” indicating the
potential presence of an artificial pacemaker. To prevent data leakage and overestimation of
performance, ECGs from individuals present in the health screening test dataset were additionally
excluded from the model development dataset. The model development dataset was then randomly
partitioned into training and validation datasets at an 80:20 ratio, stratified by CACS > 400, while
ensuring no overlap of individuals between the two.
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Figure 2. Data flow diagram (SH, overview).

SH: Severance Hospital; ECG: electrocardiogram; CACS: coronary artery calcium score; CT:

computed tomography.



5.6 million ECGs from 1.4 million individuals
eligible from 1993 to 2022

Extract ECG from adult individuals (age = 18) K
if the dates of measurement of the two tests 78,549 CACS measurements via CT

are within 30 days from each other from 69,657 individuals,
not measured in health screenings
from November 2005 to August 2022

207,199 ECGs from 59,285 individuals

11,503 ECGs including one or more of the following automatic interpretation
phrases excluded: “lead reversal,” “poor quality,” or “pacemaker”

196,146 ECGs from 57,559 individuals

4-| 1,183 ECGs from individuals included in the test dataset excluded

Model development dataset
194,963 ECGs from 57,019 individuals
\

i ¥
Training dataset Validation dataset
155,971 ECGs from 38,992 ECGs from
45,605 individuals 11,414 individuals

Figure 3. Data flow diagram (SH, model development dataset).

SH: Severance Hospital; ECG: electrocardiogram; CACS: coronary artery calcium score; CT:
computed tomography
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5.6 million ECGs from 1.4 million individuals
eligible from 1993 to 2022

Extract ECG from adult individuals (age = 18) 14,695 CACS measurements via CT

if recorded during the same visit from 13,394 individuals,
measured in health screenings

from December 2010 to August 2022

14,248 ECGs from 12,926 individuals

6 ECGs including one or more of the following automatic interpretation
phrases excluded: “lead reversal,” “poor quality,” or “pacemaker”

Health screening test dataset
14,242 ECGs from 12,924 individuals

3523 excluded
2857 no survey data (medical history)
554 no blood chemistry test data
112 no blood pressure data

PCE score calculated for
10,719 ECGs from 9963 individuals

Figure 4. Data flow diagram (SH, health screening test dataset).

SH: Severance Hospital; ECG: electrocardiogram; CACS: coronary artery calcium score; CT:
computed tomography
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5.6 million ECGs from 1.4 million individuals
eligible from 1993 to 2022

59,016 ECGs from 42,094 adult individuals (age = 18)
undergoing health screenings without CT
from September 15, 2012 to September 14, 2016

1471 ECGs from patients included in the model development dataset
3081 ECGs missing complete clinical data
128 ECGs not linked with KOSTAT mortality data
25 ECGs including one or more of the following automatic interpretation phrases:
‘lead reversal,” “poor quality,” or “pacemaker”
1911 ECGs with a cardiovascular event occurring prior to the assessment date

i

Cohort analysis dataset
52,400 ECGs from 37,757 individuals

Figure 5. Data flow diagram (SH, cohort analysis dataset).

SH: Severance Hospital; ECG: electrocardiogram; CT: computed tomography, KOSTAT: Statistics
Korea
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Table 1. Examples of CT readings containing CACS. The table shows two examples of CT
readings in which regular expression was applied to extract CACS. We have bolded the sentences
including the CACS.

CT reading

Example 1

Average heart rate : 58 bpm, Reconstruction cardiac phase : 74%
Extensive calcified plaques at all three coronary arteries.

The maximum diameter stenosis of LAD is 43%.

Moderate stenosis (57%) of 1st diagonal branch.

The maximum diameter stenosis of LCX is 39%.

Discrete near total occlusion at distal PL branch.

Agatston calcium score is 1385.

Global LV systolic function is within normal range.

(Indexed values, LVEF: 77%, LVEDV: 69 mL/m2)

There is no evidence of intracardiac mass in LV and LA.

Valve calcification is not seen.

No evidence of pericardial thickening or calcification or effusion.
Diffuse atherosclerosis at thoracic aorta.

Normal lung parenchyma on covered scan area.

Conclusion)

1. Extensive calcified plaques at all three coronary arteries.
- with moderate stenosis of 1st diagonal branch.
- with discrete near total occlusion at PL branch.

2. Diffuse atherosclerosis at thoracic aorta.

-- Two vessel disease

adv) coronary angiography

Example 2

Average heart rate : 49 bpm, Reconstruction cardiac phase : 74%
Coronary arteries are well pacified without significant stenosis or calcified
plaque.

Agatston calcium score is zero.

LV function is within normal range.

(LVEF: 70%, LVEDV: 86 mL)

There is no evidence of intracardiac mass in LV and LA.

Valve calcification is not seen.

No evidence of pericardial thickening or calcification or effusion.

Normal lung parenchyma and thoracic cage on covered scan area.

Conclusion)
Normal coronary CT angiogram (Ca. score=0)

CT: computed tomography; CACS: coronary artery calcium score; LAD: left anterior descending
artery; LCX: left circumflex artery; LVEF: left ventricular ejection fraction; LVEDV: left
ventricular end-diastolic volume; LA: left atrium; LV: left ventricle; PL: posterolateral
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2.1.2. Data for external validations

We conducted external validations of our AI-ECG model using health screening data from
two separate institutions: Yongin Severance Hospital (YSH) and Ajou University Medical Center
(AUMC) (Figures 6 and 7). The standard 12-lead ECG database from YSH, sourced from the GE
Healthcare MUSE™ system, encompasses approximately 222,000 ECG records from 102,000
individuals, spanning from March 2020 to July 2023 (Figure 6). The database incorporates data from
health screenings. We retrieved CACS from CT reports produced during health screenings between
April 2020 and August 2022, utilizing the same search criteria as applied to the SH database. The
standard 12-lead ECG database from AUMC, also sourced from the GE Healthcare MUSE™ system,
encompasses approximately 1.7 million ECG records from 740,000 individuals, spanning from 1993
to July 2020 (Figure 7). The database incorporates data from health screenings. We retrieved CACS
from CT reports produced during health screenings between October 2003 and September 2012,
utilizing the same search criteria as applied to the SH database. ECGs recorded during these health
screenings were selected and labeled with the respective CACS if a corresponding CT scan from the
same visit was available. Each ECG recording had a duration of 10 seconds, with sampling rates of
either 500 Hz or 250 H. Each database entry also includes a median waveform, lasting 1.2 seconds.
The exclusion criteria based on automatic interpretation phrases, as used for the SH database, were
also applied to the ECGs from YSH and AUMC.
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222,000 ECGs from 102,000 individuals eligible
from March 2020 to August 2022

Extract ECG from adult individuals (age = 18) | 714 CACS measurements via CT
if recorded during the same visit from 712 individuals,
measured in health screenings
from April 2020 to August 2022

731 ECGs from 712 individuals

2 ECGs including one or more of the following automatic interpretation
phrases excluded: “lead reversal,” “poor quality,” or “pacemaker”

| 729 ECGs from 710 individuals |

Figure 6. Data flow diagram (YSH).

YSH: Yongin Severance Hospital; ECG: electrocardiogram; CACS: coronary artery calcium score;
CT: computed tomography.
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1,700,000 ECGs from 740,000 individuals eligible
from 1993 to 2020

Extract ECG from adult individuals (age > 18) 1914 CACS measurements via CT

if recorded during the same visit from 1902 individuals,
measured in health screenings

from October 2003 to September 2012

2062 ECGs from 1885 individuals

6 ECGs including one or more of the following automatic interpretation
phrases excluded: “lead reversal,” “poor quality,” or “pacemaker”

| 2056 ECGs from 1879 individuals |

Figure 7. Data flow diagram (AUMC).

AUMC: Ajou University Medical Center; ECG: electrocardiogram; CACS: coronary artery calcium
score; CT: computed tomography.
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2.1.3. Data for multinational retrospective cohort analyses

We conducted multinational retrospective cohort analyses using datasets from two different
countries to validate whether the Al-ECG model could predict future cardiovascular events (Figures
5 and 8). This cohort analysis is essential for verifying the AI-ECG model's potential clinical
relevance and its impact on decision-making.

First, data from individuals undergoing health screenings at SH, with only ECG recordings,
but without CACS from CT readings, from September 15, 2012 to September 14, 2016, were used
(Figure 5). ECGs from patients included in the model development dataset, those missing clinical
data, not linked with mortality data, those with automatic interpretation phrases including “lead
reversal,” “poor quality,” or “pacemaker,” and those with prior cardiovascular events were excluded.

Secondly, we utilized data from the UKB, a large-scale biomedical database representing
the general population of the United Kingdom#2. Established in 2006, the UKB cohort is a significant
international health resource that has gathered extensive data and biological samples from
approximately half a million participants aged 40 to 69 years at the time of enrollment. In 2015, the
UKB launched its imaging study, aiming to scan 20% of the original cohort. Resting 12-lead ECG
data were collected during this imaging study, which we used for our analysis (Figure 8).
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Data for 502,396 individuals available in the UKB

Excluded 125,971 individuals with missing clinical data.
Excluded 22,643 individuals with cardiovascular events occurring before the ECG measurement date.

| 353,782 individuals |

Resting 12-lead ECG measured
at first imaging study

| 30,623 individuals |

Figure 8. Data flow diagram (UKB, cohort analysis dataset).

UKB: United Kingdom Biobank; ECG: electrocardiogram
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2.2. Data preprocessing

2.2.1. ECG sampling rate and lead selection

All SH, YSH, AUMC and UKB data underwent identical preprocessing methods. ECGs
with a sampling rate of 250 Hz underwent upsampling to 500 Hz using linear interpolation, ensuring
a uniform 500 Hz rate across all ECGs. Each waveform was standardized with z-score normalization,
bringing the mean to 0 and the standard deviation to 1. According to the Einthoven law and
Goldberger equation, only two of the six limb leads (leads I, 11, I1l, aVR, aVL, aVF) are needed to
calculate the other four*®. Therefore, using any two limb leads provides the same information as all
six. We thus used eight leads (leads I, 11, V1-V6) from the 12 available as input.

2.2.2. Data augmentation

During the training phase, we employed a data augmentation strategy. Although ECG
changes linked to coronary artery calcification are not well-studied, prior knowledge indicates that
coronary heart disease-related ECG findings are more often morphological than rhythm-based**.
Thus, we hypothesized that calcification-related ECG changes would similarly involve
morphological features and reasoned that analyzing a 2.5-second segment, rather than the full 10-
second ECG, would suffice. Thus, for every training epoch, we randomly chose a distinct 2.5-second
segment from the 10-second ECG, introducing slight variations in the data across epochs to emulate
data augmentation effectively. For the internal validation, internal testing, external validation, and
retrospective cohort analyses datasets, the 10-second ECGs were segmented into four non-
overlapping 2.5-second intervals, and all segments were evaluated for consistency.

2.3. Al-enabled ECG model development

We utilized the raw waveforms of the ECGs as input and adopted the 1-dimensional variant
of EfficientNet-BO for our AI-ECG model architecture (Table 2, Figure 9)*. We trained our
EfficientNet model without leveraging any pre-trained weights. Given that our dataset exhibited
class imbalance—a known factor that can adversely affect classification performance—we
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implemented widely recognized techniques to counterbalance its effects®. Specifically, we
employed both oversampling of the minority class and undersampling of the majority class. In each
training epoch, we adjusted the training dataset by randomly oversampling the minority class and
randomly undersampling the majority class, so that both classes were of equal size while preserving
the original training dataset's total size. Hyperparameter optimization was achieved through
comprehensive empirical tests and grid search, leading us to select a batch size of 512, a learning
rate of 0.01, and the Adam optimizer. The choice to deploy the EfficientNet-BO0 architecture arose
from these hyperparameter optimization trials: Among various network scales, kernel sizes, and
strides of EfficientNet explored, the default 1-dimensional version of EfficientNet-BO demonstrated
superior performance. To guard against over-fitting, we implemented early stopping during training,
contingent upon observed validation loss.

Ensemble learning refers to a methodology that combines multiple individual models to
achieve better generalization performance*’*. We built 25 individual EfficientNet-BO models using
the same training strategies. For each of these models, we generated outputs from four non-
overlapping 2.5-second intervals within 10-second ECGs, resulting in a total of 25 x 4 =100 outputs.
This approach was applied across the internal validation, internal testing, external validation, and
retrospective cohort analysis datasets. We then adopted a soft voting ensemble method, averaging
these 100 outputs to obtain the final result. Consequently, the average area under the receiver
operating characteristics curve (AUROC) on the test set improved from 0.706 (standard deviation
0.004) for individual EfficientNet-BO models to 0.720 for CAC > 0 and from 0.822 (standard
deviation 0.003) for individual models to 0.841 for CAC > 400 after applying the soft voting
ensemble method.
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Table 2. Neural network architecture summary (EfficientNet-B0).
EfficientNet-B0

Stage Operator Output shape Layers
Input 8 x 1250

1 Convid (k=3) 32 x 625 1
2 SepConv (k=3) 16 x 625 1
3 MBConv (k=3) 24 x 313 2
4 MBConv (k=5) 40 x 157 2
5 MBConv (k=3) 80 x 79 3
6 MBConv (k=5) 112 x 79 3
7 MBConv (k=5) 192 x 40 4
8 MBConv (k=3) 320 x 40 1
9 Convid (k=1) 1280 x 40 1
10 AvgPool 1280 1
11 Linear 2 1

Conv1ld: 1-dimensional convolution; SepConv: depthwise separable convolution; MBConv: mobile
inverted bottleneck convolution; AvgPool: average pooling
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Figure 9. EfficientNet-B0 architecture.

Conv1d: 1-dimensional convolution; SepConv: depthwise separable convolution; MBConv: mobile
inverted bottleneck convolution; AvgPool: average pooling
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2.4. Pre-trained VAE model development

We integrated a pre-trained VAE model to provide visual morphological explainability, as
described in previous studies (Table 3, Figures 10 and 11)%%4°, This methodology employs a VAE
architecture to learn the intrinsic factors influencing median beat ECG morphology in an
unsupervised manner. The VAE comprises two primary components: the encoder, which translates
the input ECG data into a condensed latent space, termed ECG factors, and the decoder, which
interprets points from this latent space (ECG factors) to approximate the initial data space, aiming
to reconstruct the original input data as closely as possible®®2¢4°. The VAE’s training objective
encompasses two loss metrics. The first, known as the reconstruction loss, measures how well the
decoded data matches the original data. The second, the Kullback-Leibler Divergence loss,
quantifies the deviation of the encoded distribution (ECG factors) from a predetermined distribution,
typically a standard Gaussian. The aggregate loss constitutes a balanced summation of these metrics
with an appropriate ratio. By decoding the ECG factors and delineating their impact on median beat
ECG morphology, individual ECG factor interpretability becomes feasible. The unsupervised
training nature of VAEs allows for capitalizing on expansive datasets and provides an automated
method to unveil inherent data structures efficiently. In essence, the VAE model efficiently
compresses any ECG to a set number of descriptive, independent factors and can also reproduce or
create ECGs using these factors.

We pre-trained the VAE model using the entire set of 5.6 million median waveforms from
the standard 12-lead ECG database of SH. We randomly divided this dataset in a 9:1 ratio (while
ensuring no individual overlap) to create the training and validation sets. We explored the essential
hyperparameters outlined by previous studies®**: the summation ratio () between the two loss
components and the number of ECG factors. In our current experiment settings, we found that 48
ECG factors and a B value of 16 yield the most optimal VAE model during factor traversal
assessments. Consequently, we adopted the model trained with these hyperparameters. To guard
against over-fitting, we implemented early stopping during training, contingent upon observed
validation loss. We found that 29 ECG factors were significant, and the factor traversals for these
are reported in Figures 12-19.
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Table 3. Neural network architecture summary (VAE).

Pre-trained variational autoencoder

Stage Operator Output shape Layers
Input 8 x 600

1 CausalConvolutionBlock 128 x 600 7
2 CausalConvolutionBlock 64 x 600 1
3 AvgPool 64 1
4: latent space Linear, Softplus w48 o:48 1
5 Reparameterization 48 1
6 Linear 64 1
7 Linear 38400 1
8 Reshape 64 x 600 1
9 CausalConvolutionBlock 128 x 600 7
10 CausalConvolutionBlock 8 x 600 1
11: output Flatten, Linear, Softplus, Reshape p:8 x 600, ¢:8 x 600 1

VAE: variational autoencoder; AvgPool: average pooling
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Figure 10. VAE architecture (overview).

VAE: variational autoencoder
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Figure 12. Factor traversals of all the ECG factors (lead 1). 29 ECG factors (factor numbers 1,
2,4,5,7,8,11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48)
were significant.

ECG: electrocardiogram
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Figure 13. Factor traversals of all the ECG factors (lead I1). 29 ECG factors (factor numbers 1,
2,4,5,7,8,11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48)
were significant.

ECG: electrocardiogram
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Figure 14. Factor traversals of all the ECG factors (lead V1). 29 ECG factors (factor numbers 1,
2,4,5,7,8,11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48)
were significant.

ECG: electrocardiogram
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Figure 15. Factor traversals of all the ECG factors (lead V2). 29 ECG factors (factor numbers 1,
2,4,5,7,8,11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48)
were significant.

ECG: electrocardiogram
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Figure 16. Factor traversals of all the ECG factors (lead V3). 29 ECG factors (factor numbers 1,
2,4,5,7,8,11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48)
were significant.

ECG: electrocardiogram
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Figure 17. Factor traversals of all the ECG factors (lead V4). 29 ECG factors (factor numbers 1,
2,4,5,7,8,11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48)
were significant.

ECG: electrocardiogram
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Figure 18. Factor traversals of all the ECG factors (lead V5). 29 ECG factors (factor numbers 1,
2,4,5,7,8,11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48)
were significant.
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Figure 19. Factor traversals of all the ECG factors (lead V6). 29 ECG factors (factor numbers 1,
2,4,5,7,8,11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48)
were significant.

ECG: electrocardiogram
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2.5. Outcomes

2.5.1. AI-ECG model training objective

We set the training objective of the EfficientNet model to predict CACS > 400 as a binary
classification task. This threshold was selected because a CAC score above 400 is clinically
recognized as signifying a high risk of a cardiovascular event and is classified as “severe disease”,
providing an imperative benchmark for early intervention and risk stratification'>6:50-52 \While this
threshold guided the model’s training, its utility is not limited to this specific threshold. Coronary
artery calcification represents a diverse disease process, characterized by variability in histological
features and degrees of atherosclerosis progression®. The model generates outputs on a continuous
scale, inherently capturing patterns relevant to various levels of calcification across different CACS.

2.5.2. XGBoost model using VAE features

Subsequently, ECG factors from the pre-trained VAE model were employed to construct
an XGBoost model to predict CACS > 400. This model was trained, validated, and tested using the
same corresponding datasets as the EfficientNet model. Using Shapley Additive exPlanations
(SHAP) analysis®, we determined which ECG factors had the greatest impact on the prediction. We
applied the SHAP method to the test dataset. For the interpretation of the top contributing ECG
factors, we utilized a method termed “factor traversals”3>%: By modulating the values of an
individual ECG factor from -3 (represented in blue) to 3 (represented in red), advancing in
increments of 1.5 units, and then using the decoder part of the VAE model to reconstruct the ECG,
we were able to overlay these reconstructed ECGs on a single plot. The reconstructed ECG
corresponding to an ECG factor value of 0 was shown in grey. This visualization allowed us to
comprehend the variations in ECG morphology attributable to each individual ECG factor. The
factor traversals of all the significant ECG factors from our pre-trained VAE model are provided in
Figures 12-19.

35



2.6. Performance evaluation

2.6.1. Performance comparison

For performance comparison, we constructed an XGBoost model that uses traditional ECG
features (ventricular rate, atrial rate, PR interval, QRS duration, QT interval, QT interval corrected,
P axis, R axis, T axis) provided by a built-in software in the ECG machine (GE MUSE™) with the
training objective of predicting CACS > 400.

2.6.2. Performance metrics and risk categorization

We evaluated the performance of the AI-ECG model in predicting CACS > 400 and also
CACS > 0. We generated receiver operating characteristic (ROC) curves and precision-recall (PR)
curves, subsequently evaluating the area under the ROC curve (AUROC) and the area under the PR
curve (AUPRC).

We classified PCE risk scores into low, moderate, and high-risk categories using the 7.5%
and 20% thresholds, in line with current cholesterol management guidelines, which recommend
initiation of primary prevention with statins for those in the moderate or high-risk categories®.
However, for borderline or intermediate classifications, where the decision to initiate treatment
remains uncertain, guidelines recommend that the presence of CAC supports initiating primary
prevention measures, while its absence suggests refraining from such measures®”.

Therefore, in the PCE low-risk category, it would be beneficial for the AI-ECG to increase
the likelihood of identifying the presence of CAC. Conversely, in the PCE moderate-risk category,
it would be advantageous for the AI-ECG to improve the detection of individuals without CAC.
Accordingly, in the validation set of the model development dataset, the threshold at which the
positive predictive value (PPV) for a CACS > 0 is 0.800 was defined as AI-ECG high risk. Similarly,
the threshold at which the negative predictive value (NPV) for a CACS > 0 is 0.800 was defined as
AI-ECG low risk. Individuals falling between these thresholds were categorized as Al-ECG
moderate risk. At the determined thresholds, we calculated performance metrics for CAC > 400 and
> 0, including accuracy, sensitivity, specificity, PPV, NPV, and the F1 score.

36



2.7. Multinational retrospective cohort analyses

We conducted multinational retrospective cohort analyses using datasets from two different
countries. First, we used SH health screening data. Diagnostic records (in International
Classification of Disease, 10th Revision [ICD-10] codes) from individuals included in the SH health
screening data for the cohort analysis were extracted from their EMR database. In South Korea, a
government organization called Statistics Korea (KOSTAT) offers a service that links researchers'
data with mortality data, based on resident registration numbers, following specific ethical and
application procedures. Data from SH health screenings for the cohort analysis was linked with
KOSTAT mortality data. The KOSTAT mortality data includes information on whether the
individual is deceased, the date of death, and the cause of death (in ICD-10 codes).

Survival analyses were conducted to assess the occurrence of major adverse cardiovascular
event (MACE). MACE was defined as an aggregate of fatal or non-fatal myocardial infarction (121
- 125), ischemic stroke (163 and 164), or cardiovascular death®, with cardiovascular death also
defined using the same ICD-10 codes for fatal or non-fatal myocardial infarction and ischemic stroke
in the mortality data. Individuals who experienced a MACE before the health screening date or
within 90 days after the health screening date were excluded from the analysis. The reason for setting
a 90-day washout period after the health screening date was to exclude cases where pre-existing
cardiovascular disease was detected through additional tests following abnormal findings during the
health screening. The survival analysis observation period began after the 90-day washout. For the
remaining individuals, data were censored at the date of the first MACE, 10 years from the health
screening date, or August 10, 2024, whichever came first.

Kaplan-Meier curves for MACE were plotted to compare the Al-ECG risk groups. The net
reclassification improvement (NRI) was evaluated to assess up-risking or down-risking of
individuals within the PCE low- or moderate-risk categories based on the AI-ECG-derived risk
categories®®.

We assessed whether the AI-ECG model serves as an independent risk factor for MACE:
Various risk factors measured during health screenings that are included in the PCE — including
age, sex, diabetes mellitus, hypertension, smoking status, total cholesterol, high-density lipoprotein
(HDL) cholesterol and systolic blood pressure — were extracted from the EMR database and used
along with the AI-ECG output as independent variables, and MACE as the dependent variable in a
Cox proportional hazards regression to evaluate the association between Al-ECG output and MACE,
with appropriate adjustments.

We evaluated whether the AI-ECG model adds predictive value beyond the PCE for MACE:
The predictive performance of the PCE, measured by Harrell’s concordance index (C-index), was
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compared with that of the combined PCE plus Al-ECG score. The PCE plus AI-ECG score for each
individual was calculated as follows: “PCE score + AI-ECG score * 20”.

We also conducted a retrospective cohort analysis using the UKB data. Clinical and
outcome variables corresponding to those extracted from the SH dataset were also obtained from
the UKB, with the codes used for extraction detailed in Table 4. Similarly, the AI-ECG output was
derived from the UKB data, and the same analyses conducted for the SH dataset were performed on
the UKB dataset. Individuals who experienced a MACE before the ECG measurement date were
excluded from the analysis. Data were censored at the date of MACE, 6 years from the ECG
measurement date, or November 2021 (final point where participants’ diagnostic codes were
followed up), whichever came first.

We also conducted subgroup analyses within the cohort analysis datasets. Within subgroups
defined by sex, age (under 60 years and 60 years or older), and PCE risk category (low-risk group
and moderate or higher-risk group), Cox proportional hazards regression was performed to evaluate
the hazard ratio of the AI-ECG model's output, adjusting for the variables included in the PCE.
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Table 4. VVariables extracted from the UKB

Description Category Coding

Age at recruitment Baseline . Field: 21022
characteristics

Sex Baseline Field: 31
characteristics

Diabetes diagnosed by doctor MEd'.Cfr’ll Field: 2443
conditions

Medication for cholesterol, blood pressure or diabetes Medication Field: 6177

Medication for cholesterol, blood pressure or diabetes, or Medication Field: 6153

exogenous hormones

Smoking status Smoking Field: 20116

Systolic blood pressure Blood pressure Field: 4080

Cholesterol Blood chemistry  Field: 30690

HDL cholesterol Blood chemistry  Field: 30760

Ethnic background Ethnicity Field: 21000

ECG datasets oS aesL 12 Field: 20205

Acute myocardial infarction First occurrence  Field: 131298

ICD-10: 121

Subsequent myocardial infarction . .
ICD-10: 122 First occurrence  Field: 131300
Certain current complications following acute

myocardial infarction First occurrence  Field: 131302
ICD-10: 123

Other acute ischemic heart disease . I
ICD-10: 124 First occurrence  Field: 131304
Chronic ischemic heart disease . I
ICD-10" 125 First occurrence  Field: 131306
Cerebral infarction . I
ICD-10" 163 First occurrence  Field: 131366
Stroke, not specified as hemorrhage or infarction - I
ICD-10: 164 First occurrence  Field: 131368
Date of death Death register Field: 40000
Underlying (primary) cause of death: ICD-10 Death register Field: 40001

UKB: United Kingdom Biobank; HDL.: high density lipoprotein; ECG: electrocardiogram, ICD-10:
International Classification of Disease, 10th revision
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2.8. Statistical analysis

We compared the characteristics between the datasets. We evaluated the normality of
continuous data using the Shapiro-Wilk test. Normally distributed continuous variables were
compared using the independent samples t-test, while non-normally distributed variables were
compared using the Mann—Whitney U test for two-group comparisons. For comparisons among
three or more groups, analysis of variance (ANOVA) and Kruskal-Wallis tests were used,
respectively. Categorical data were analyzed using the chi-square test, while comparisons of
AUROC:s utilized the Delong test®”.

For Harrell’s C-index and the NRI, the 95% confidence intervals (CIs) were determined
based on 2,000 bootstrapping (resampling with replacement) runs, with the 2.5th and 97.5th
percentile borders reported®. The Kaplan—Meier method was used to plot survival curves for the
low-, moderate-, and high-risk groups based on the risk scoring methods. The pairwise log-rank test
with post-hoc Bonferroni correction was used to compare the survival functions across these risk
groups statistically. The p-values for the incidence rate differences and hazard ratio differences were
calculated using the z-test. Statistical significance was set at P <0.05 for all tests.

2.9. Software

Neural network models were developed in Python (version 3.8.5) utilizing the “PyTorch”
framework (version 1.11.0). SHAP analysis was conducted using the “shap” library (version 0.43.0)
in Python. For model evaluation and further statistical analyses, we used the “Scikit-learn” library
(version 0.23.2) in Python. The Delong test was conducted using the “pROC” library (version 1.18.4)
in R (version 4.2.0). The Cox proportional hazards regression was conducted using the “survival”
library (version 3.2.7) in R.

2.10. Ethics approval

The Institutional Review Boards (IRB) of SH, YSH and AUMC approved this study and
waived the requirement for informed consent because only anonymized data were used
retrospectively (IRB no. 4-2022-1299 and 4-2022-1506 [SH], 9-2024-0032 [YSH], AJOUIRB-DB-
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2024-207 [AUMC]). The UKB was approved by the North West Multi-centre Research Ethics
Committee as a Research Tissue Bank (RTB) approval (approval number: 21/NW/0157)*. This
approval means that researchers do not require separate ethical clearance and can operate under RTB
approval. All participants provided informed consent for participation.
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3. RESULTS

3.1. Dataset characteristics

3.1.1. Dataset sizes

The model development dataset from SH included 194,964 ECGs from 57,019 individuals
and the health screening test dataset from SH included 14,242 ECGs from 12,924 individuals
(Figures 2-4). The external validation dataset from YSH included 729 ECGs from 710 individuals
and the external validation dataset from AUMC included 2056 ECGs from 1879 individuals (Figures
6 and 7). The cohort analysis dataset from SH included 52,400 ECGs from 37,757 individuals

(Figure 5). The cohort analysis dataset from UKB included 30,623 ECGs from 30,623 individuals
(Figure 8).

3.1.2. Dataset for model development, testing and external validations

Table 5 shows the characteristics of the datasets used in the AI-ECG model development,
testing and external validations. The test dataset and the external validation datasets, having been
extracted from health screening data, represented a healthier spectrum of individuals, characterized
by younger ages (mean [standard deviation, SD]: 53.1 [10.0] years, 57.1 [10.7] years and 51.1 [8.2]
years vs. 61.8 [13.3] years, P < 0.001), lower CACS (mean [SD]: 59.0 [212.2] agatston units [AU],
81.5 [274.8] AU and 36.4 [152.3] AU vs. 295.1 [920.9] AU, P < 0.001), and lower proportions of
CACS > 400 (3.8 %, 6.0 % and 2.5% vs. 17.8 %, P < 0.001) and CACS > 0 (37.9 %, 46.8 % and
29.5 % vs. 62.0 %, P < 0.001), relative to the model development dataset.
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Table 5. Dataset characteristics (model development, testing and external validation datasets).

Model development  Health screening test Health screening Health screening P-
dataset (SH) dataset (SH) external validation external validation Value
N = 194,963 N = 14,242 dataset (YSH) dataset (AUMC)
N =729 N = 2056

Number of patients 57,019 12,926 710 1879
Sex, male 108,828 (55.8%) 8,502 (59.7%) 427 (58.6%) 1540 (74.9%) <0.001
Age 61.8 + 13.3 53.1 + 10.0 57.1 £ 10.7 51.1 + 8.2 <0.001
CACS 295.1 + 920.9 59.0 £ 212.2 815 + 274.8 36.4 + 152.3 <0.001
CACS>0 120,837 (62.0%) 5394 (37.9%) 341 (46.8%) 606 (29.5%) <0.001
CACS > 400 34,637 (17.8%) 542 (3.8%) 44 (6.0%) 52 (2.5%) <0.001

SH: Severance Hospital; YSH: Yongin Severance Hospital; AUMC: Ajou University Medical Center; CACS: coronary artery calcium
score.
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3.1.3. Dataset for multinational retrospective cohort analyses

Tables 6 and 7 show the characteristics of the datasets used in the retrospective cohort
analyses. Individuals who experienced a MACE within 10 years in the SH cohort analysis dataset
(Table 6, N = 1611) were older (median [interquartile range]: 59 [52 — 65] years vs. 47 [38 — 55]
years) and had a higher proportion of males (74.1% vs. 56.0%) compared to those without events
(N =50,789). They also had more comorbidities, including higher rates of diabetes mellitus (13.3%
vs. 3.9%) and hypertension (32.0% vs. 12.0%). Their median systolic blood pressure was higher
(median [IQR]: 125 [116-134] mmHg vs. 119 [109-129] mmHg), and they had elevated Al-ECG
scores (median [IQR]: 0.283 [0.149-0.432] vs. 0.105 [0.038-0.235]) and PCE scores (median [IQR]:
8 [4-14.8] vs. 1.9 [0.5-2.5]) compared to individuals without events.

Individuals who experienced a MACE within 6 years in the UKB cohort analysis dataset
(Table 7, N = 699) were older (median [IQR]: 61 [55-64] years vs. 55 [49-61] years) compared to
those without events (N = 29,924). A higher proportion of males was observed (71.0% vs. 46.7%),
and they had more comorbidities, including higher rates of diabetes mellitus (6.7% vs. 2.4%) and
hypertension (24.5% vs. 12.1%). The proportion of current smokers was also higher (8.6% vs. 6.2%).
They had elevated systolic blood pressure (median [IQR]: 140.5 [129-154.5] mmHg vs. 133 [122.5-
145.5]1 mmHg), lower HDL cholesterol (median [IQR]: 49.7 [42.4-58.2] mg/dL vs. 55.7 [46.8—66.4]
mg/dL), higher AI-ECG scores (median [IQR]: 0.359 [0.233-0.479] vs. 0.202 [0.105-0.328]), and
higher PCE scores (median [IQR]: 10.2 [5.6-15.5] vs. 4.3 [1.8-9.1]).
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Table 6. Dataset characteristics (SH cohort analysis dataset).

Positive for MACE Negative for MACE P-

N =1611 N =50,789 value
Age, years [IQR] 59 [52 — 65] 47 [38 —55] <0.001
Sex (male) (%) 1193 (74.1%) 28,423 (56.0%) <0.001
DM (%) 215 (13.3%) 1958 (3.9%) <0.001
HTN (%) 516 (32.0%) 6071 (12.0%) <0.001
Current smoker (%) 319 (19.8%) 9273 (18.3%) 0.122
SBP, mmHg [IQR] 125116 — 134] 119 [109 - 129] <0.001
Total cholesterol, mg/dL [IQR] 192 [169 - 215] 192 [170 - 215] 0.550
HDL cholesterol, mg/dL [IQR] 48 [42 — 57] 52 [44 — 62] <0.001
AI-ECG score [IQR] 0.283[0.149-0.432] 0.105[0.038-0.235] <0.001
PCE score [IQR] 8[4-14.8] 1.9[0.5-25] <0.001

SH: Severance Hospital; MACE: major adverse cardiovascular event; IQR: interquartile range; DM:
diabetes mellitus; HTN: hypertension; SBP: systolic blood pressure; HDL.: high-density lipoprotein;
Al: artificial intelligence; ECG: electrocardiogram; PCE: Pooled Cohort Equations
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Table 7. Dataset characteristics (UKB cohort analysis dataset).

Positive for MACE Negative for MACE P-

N =699 N =29,924 value
Age, years [IQR] 61 [55 — 64] 55 [49 - 61] <0.001
Sex (male) (%) 496 (71.0%) 13,977 (46.7%) <0.001
DM (%) 47 (6.7%) 724 (2.4%) <0.001
HTN (%) 171 (24.5%) 3618 (12.1%) <0.001
Current smoker (%) 60 (8.6%) 1863 (6.2%) 0.014
SBP, mmHg [IQR] 140.5 [129 - 154.5] 133[122.5 -145.5] <0.001
Total cholesterol, mg/dL [IQR] 218.3[190.2 - 245.8] 220.4 [194 - 248.5] 0.100
HDL cholesterol, mg/dL [IQR] 49.7 [42.4 - 58.2] 55.7 [46.8 — 66.4] <0.001
AI-ECG score [IQR] 0.359[0.233-0.479] 0.202 [0.105-0.328] <0.001
PCE score [IQR] 10.2[5.6 — 15.5] 4.3[1.8-9.1] <0.001

UKB: United Kingdom Biobank; MACE: major adverse cardiovascular event; IQR: interquartile
range; DM: diabetes mellitus; HTN: hypertension; SBP: systolic blood pressure; HDL.: high-density
lipoprotein; Al: artificial intelligence; ECG: electrocardiogram; PCE: Pooled Cohort Equations
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3.2. Model performance

3.2.1. Model performance in the health screening test dataset

Figures 20 and 21 display the ROC curves, and Figures 22 and 23 display the PR curves of
the models. Our AI-ECG model exhibited AUROCs of 0.841 and 0.720 in predicting CACS > 400
and > 0, respectively, in the test dataset. The respective AUPRCs were 0.289 and 0.603. Tables 8
and 9 show the performance metrics at the thresholds used to define the AI-ECG risk categories. Al-
ECG model output was correlated with CACS (Figure 24), demonstrating that the model is not
confined to a single threshold but instead encodes information applicable to diverse CACS levels.

Figure 25 illustrates the AI-ECG-derived reclassification within each PCE risk category in
the health screening test dataset. Among the 10,719 individuals, 7519, 2652, and 548 were
categorized as low, moderate, and high risk, respectively, based on the PCE. Among individuals
categorized as low risk by the PCE, 45.7% of those classified as high risk by the AI-ECG were found
to have CAC, which is higher than the overall proportion of CAC > 0 (24.9%) in the PCE low-risk
category. Among individuals categorized as moderate risk by the PCE, 60.9% of those classified as
low risk by the AI-ECG were CAC-free, which is higher than the overall proportion of CAC =0
(35.4%) in the PCE moderate-risk category.
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Figure 20. ROC curves of the AI-ECG model (CACS > 400).

ROC: receiver operating characteristics; Al: artificial intelligence; ECG: electrocardiogram; CACS:
coronary artery calcium score; AUROC: area under the receiver operating characteristics curve;
YSH: Yongin Severance Hospital; AUMC: Ajou University Medical Center
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Figure 21. ROC curves of the AI-ECG model (CACS > 0).

ROC: receiver operating characteristics; Al: artificial intelligence; ECG: electrocardiogram; CACS:
coronary artery calcium score; AUROC: area under the receiver operating characteristics curve;

YSH: Yongin Severance Hospital; AUMC: Ajou University Medical Center
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Figure 22. PR curves of the AI-ECG model (CACS > 400).

PR: precision-recall; Al: artificial intelligence; ECG: electrocardiogram; CACS: coronary artery
calcium score; AUPRC: area under the precision-recall curve; YSH: Yongin Severance Hospital;
AUMC: Ajou University Medical Center
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Figure 23. PR curves of the AI-ECG model (CACS > 0).

PR: precision-recall; Al: artificial intelligence; ECG: electrocardiogram; CACS: coronary artery
calcium score; AUPRC: area under the precision-recall curve; YSH: Yongin Severance Hospital;
AUMC: Ajou University Medical Center
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Figure 24. Boxplot of AI-ECG score by CACS group. AI-ECG model output was correlated with
CACS. The Pearson correlation coefficient between the AI-ECG model outputs and CACS was

0.318 (P < 0.001).

Al: artificial intelligence; ECG: electrocardiogram; AI-ECG: artificial intelligence-enabled
electrocardiogram; CACS: coronary artery calcium score.
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Table 8. AI-ECG performance for predicting CACS > 400. The table presents performance
metrics at the thresholds used to define the AI-ECG risk categories in the health screening test
dataset (SH) and two external health screening validation datasets (YSH and AUMC).

Accuracy  Sensitivity  Specificity PPV NPV F1 score

High risk vs. low/moderate risk category threshold for AI-ECG

SH 0.903 0.498 0.920 0.196 0.979 0.281

YSH 0.831 0.545 0.850 0.189 0.967 0.281

AUMC  0.875 0.519 0.884 0.104 0.986 0.174
High/moderate risk vs. low risk category threshold for AI-ECG

SH 0.267 0.993 0.238 0.049 0.999 0.093

YSH 0.211 0.977 0.162 0.070 0.991 0.130

AUMC 0.183 1.000 0.162 0.030 1.000 0.058

Al: artificial intelligence, ECG: electrocardiogram, CACS: coronary artery calcium score; SH:
Severance Hospital; YSH; Yongin Severance Hospital; AUMC: Ajou University Medical Center;
PPV: positive predictive value; NPV: negative predictive value.
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Table 9. AI-ECG performance for predicting CACS > 0. The table presents performance metrics
at the thresholds used to define the AI-ECG risk categories in the health screening test dataset (SH)
and two external health screening validation datasets (YSH and AUMC).

Accuracy  Sensitivity  Specificity PPV NPV F1 score

High risk vs. low/moderate risk category threshold for AI-ECG

SH 0.661 0.180 0.954 0.707 0.656 0.287

YSH 0.594 0.252 0.894 0.677 0.576 0.368

AUMC 0.721 0.241 0.922 0.564 0744 0.338
High/moderate risk vs. low risk category threshold for AI-ECG

SH 0.544 0.915 0.318 0.450 0.861 0.603

YSH 0.569 0.944 0.240 0.522 0.830 0.672

AUMC 0.416 0.939 0.198 0.329 0.886 0.487

Al: artificial intelligence, ECG: electrocardiogram, CACS: coronary artery calcium score; SH:
Severance Hospital; YSH; Yongin Severance Hospital; AUMC: Ajou University Medical Center;
PPV: positive predictive value; NPV: negative predictive value.

54



Entire cohort
N =10,719
Proportiong,c = 0.379

Figure 25. AI-ECG-derived reclassification within each PCE risk category (SH, health
screening test dataset). “Proportioncac” refers to the proportion of individuals with CAC > 0.

Al: artificial intelligence; ECG: electrocardiogram; AI-ECG: artificial intelligence-enabled
electrocardiogram; PCE: Pooled Cohort Equations; SH: Severance Hospital; CAC: coronary artery
calcification; CACS: coronary artery calcium score.
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3.2.2. Model performance in the external validations

In the external validations, the AI-ECG model maintained its efficacy, achieving AUROCs
of 0.784 and 0.814, and AUPRCs of 0.237 and 0.122 in the YSH and AUMC datasets, respectively,
for predicting CACS > 400 (Figures 20 and 22), and AUROCs of 0.691 and 0.701, and AUPRCs of
0.651 and 0.493 in the YSH and AUMC datasets, respectively, for predicting CACS > 0 (Figures 21
and 23). Comparing the AUROC between the test dataset and the external validation datasets
showed no significant difference (DeLong test [unpaired, two-sided], SH vs. YSH P =0.112, SH vs.
AUMC P =0.350 for CACS > 400, and SH vs. YSH P=0.151, SH vs. AUMC P = 0.152 for CACS
> 0). This underscores the model's generalizability to external environments.

3.2.3. Performance comparison

The XGBoost model, constructed with traditional ECG features for performance
comparison, exhibited AUROCs of 0.668 and 0.600 in predicting CACS > 400 and > 0, respectively,
in the test dataset (Figures 26-29). The AI-ECG model outperformed the XGBoost model using
traditional ECG features in all comparisons (Delong test, P < 0.001).
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Figure 26. ROC curves (XGBoost using traditional ECG features, CACS > 400).

ROC: receiver operating characteristics; ECG: electrocardiogram; CAC: coronary artery calcium;
AUROC: area under the receiver operating characteristics curve; YSH: Yongin Severance Hospital;
AUMC: Ajou University Medical Center
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Figure 27. ROC curves (XGBoost using traditional ECG features, CACS > 0).

ROC: receiver operating characteristics; ECG: electrocardiogram; CAC: coronary artery calcium;
AUROC: area under the receiver operating characteristics curve; YSH: Yongin Severance Hospital,
AUMC: Ajou University Medical Center
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Figure 28. PR curves (XGBoost using traditional ECG features, CACS > 400).

PR: receiver operating characteristics; ECG: electrocardiogram; CAC: coronary artery calcium;
AUPRC: area under the precision-recall curve; YSH: Yongin Severance Hospital; AUMC: Ajou
University Medical Center
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Figure 29. PR curves (XGBoost using traditional ECG features, CACS > 0).

PR: receiver operating characteristics; ECG: electrocardiogram; CAC: coronary artery calcium;
AUPRC: area under the precision-recall curve; YSH: Yongin Severance Hospital; AUMC: Ajou
University Medical Center

60



3.3. Multinational retrospective cohort analyses

3.3.1. SH cohort analysis dataset

Figure 30 illustrates the Al-ECG-derived reclassification within each PCE risk category in
the SH cohort analysis dataset. Among the 52,400 individuals, 43,142, 7712, and 1546 were
categorized as low, moderate, and high risk, respectively, based on the PCE. The MACE incidence
rate (IR) per 1000 person-years (PY) was 1.9 for the PCE low-risk category and 9.2 for the PCE
moderate-risk category, respectively. Among individuals classified as low risk by PCE but high risk
by AI-ECG, the MACE IR per 1000 PY was 6.0, which was higher than the 3.3 observed in those
classified as moderate risk by PCE but low risk by AI-ECG (P = 0.007). Within both the PCE low-
risk and moderate-risk groups, there was a significant difference in Kaplan-Meier curves based on
AI-ECG risk categories (Figure 31A, log-rank test P < 0.001; post-hoc pairwise comparisons: Low
vs. Moderate P < 0.001, Moderate vs. High P < 0.001; adjusted significance level with Bonferroni
correction: 0.5/2 = 0.025. Figure 31B, log-rank test P < 0.001; post-hoc pairwise comparisons: Low
vs. Moderate P < 0.001, Moderate vs. High P < 0.001; adjusted significance level with Bonferroni
correction: 0.5/2 = 0.025). The NRI for up-risking or down-risking based on AI-ECG within the
PCE low- or moderate-risk categories (Figure 30) was 4.6% (95% CI: 3.2% — 5.9%) among events
and -1.8% (95% ClI: -2.0% — -1.6%) among non-events, resulting in a total NRI of 2.8% (95% ClI:
1.4% — 4.1%) (Table 10A).

Table 11 presents the results of the Cox proportional hazards regression analysis for MACE.
In the SH cohort analysis dataset, during a median follow-up of 7.9 years (interquartile range: 6.9 —
8.9 years), 1,110 individuals (1,611 ECGs) experienced a MACE. To facilitate a more intuitive
interpretation of the data, we adjusted the scale of the AI-ECG output in the analysis. The AI-ECG
output, originally presented on a scale from 0 to 1, was rescaled to a new range of 0 to 10 by
multiplying it by a factor of ten. Consequently, the adjusted hazard ratios (HRs) for the AI-ECG
output, as presented in Table 11, now reflect the change in hazards associated with a 10% absolute
increase in the AI-ECG output. The analysis revealed significant positive associations between the
AI-ECG output and the likelihood of MACE. For every 10% absolute increase in the Al-ECG output,
the adjusted hazard for MACE was 1.087 (95% CI: 1.053 — 1.123) after adjusting for clinical
variables. This indicates that the AI-ECG output is an independent risk factor for MACE. The PCE
plus Al-ECG score, which yielded a C-index of 0.796 (Table 12, 95% CI: 0.782 — 0.802), surpassed
the PCE by a difference of 0.010 (95% CI: 0.007 — 0.013) in the C-index.
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Entire cohort
N = 52,400
MACE IR per 1000 PY = 3.4

Figure 30. AI-ECG-derived reclassification within each PCE risk category (SH, cohort
analysis dataset).

Al: artificial intelligence; ECG: electrocardiogram; AI-ECG: artificial intelligence-enabled
electrocardiogram; PCE: Pooled Cohort Equations; SH: Severance Hospital; MACE: major adverse
cardiovascular event; IR: incidence rate; PY: person-year; CAC: coronary artery calcification;
CACS: coronary artery calcium score.
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Figure 31. Kaplan-Meier curves (SH cohort analysis dataset). (A) Kaplan-Meier curves stratified
by AI-ECG risk categories within the PCE low-risk group. (B) Kaplan-Meier curves stratified by
AI-ECG risk categories within the PCE moderate-risk group.

SH: Severance Hospital; Al: artificial intelligence; ECG: electrocardiogram; AI-ECG: artificial
intelligence-enabled electrocardiogram; PCE: Pooled Cohort Equations.
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Table 10. Net reclassification improvement. The NRI for up-risking or down-risking based on Al-
ECG within the PCE low- or moderate-risk categories.

(A) SH cohort analysis dataset

Up-risked, %

Down-risked, %

(95% CI) (95% CI)
Number of 5.5 0.9 Event NRI, % 4.6
cases (4.3-6.7) (05-15) (95% ClI) (32-5.9)
(N =1384)
Number of 2.7 0.9 Non-event NRI, % -1.8
controls (25-2.8) (0.8-1.0) (95% ClI) (-2.0--1.6)
(N = 49,470)
NRI, % 2.8
(95% CI) (1.4-4.1)
(B) UKB cohort analysis dataset
Up-risked, % Down-risked, %
(95% CI) (95% CI)
Number of 55 1.7 Event NRI, % 3.8
cases (3.7-7.4) (0.7-2.7) (95% CI) (1.7-6.0)
(N = 604)
Number of 3.6 1.3 Non-event NRI, % -2.3
controls (3.4-3.8) (1.2-15) (95% CI) (-25--2.0)
(N =28,679)
NRI, % 15
(95% CI) (-0.6 —3.7)

NRI: net reclassification improvement; SH: Severance Hospital; UKB: United Kingdom Biobank;

ClI: confidence interval.
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Table 11. Cox regression analysis results. The AI-ECG output, originally presented on a scale
from 0 to 1, was rescaled to a new range of 0 to 10 by multiplying it by a factor of ten.

SH cohort analysis dataset UKB cohort analysis dataset

Adjusted HR P-Value Adjusted HR P-Value
(95% CI) (95% ClI)

Age, years 1.074 <0.001 1.064 <0.001
(1.068 — 1.080) (1.052 - 1.077)

Sex (male) 1.926 <0.001 1.729 <0.001
(1.709 - 2.172) (1.441 - 2.075)

DM 1.536 <0.001 1.690 0.001
(1.321 - 1.785) (1.232 - 2.319)

HTN 1.407 <0.001 1.300 0.006
(1.255 - 1.577) (1.076 — 1.571)

Current smoker 1.221 0.003 1.397 0.014
(1.071 -1.392) (1.069 — 1.824)

SBP, mmHg 1.003 0.078 1.008 <0.001
(1.000 —1.007) (1.003 - 1.012)

Total cholesterol, mg/dL 1.002 0.007 1.002 0.047
(1.001 - 1.004) (1.000 — 1.004)

HDL cholesterol, mg/dL 0.994 0.005 0.979 <0.001
(0.990 — 0.998) (0.972 — 0.986)

AI-ECG score * 10 1.087 <0.001 1.117 <0.001

(1.053 — 1.123)

(1.061 — 1.175)

SH: Severance Hospital; UKB: United Kingdom Biobank; HR: hazard ratio; Cl: confidence interval;
DM: diabetes mellitus; HTN: hypertension; SBP: systolic blood pressure; HDL: high-density
lipoprotein; Al: artificial intelligence; ECG: electocardiogram
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Table 12. C-index comparison. The C-index of the PCE for predicting MACE was 0.786 (95% ClI:
0.777 — 0.796) in the SH cohort analysis dataset and 0.724 (95% CI: 0.705 — 0.741) in the UKB
cohort analysis dataset.

C-index of the PCE plus Differences in C-index

Al-ECG score (95% Cl) with the PCE (95% CI)
SH cohort analysis dataset 0.796 (0.786 — 0.806) 0.010 (0.007 — 0.013)
UKB cohort analysis dataset 0.735 (0.716 — 0.754) 0.011 (0.004 — 0.019)

SH: Severance Hospital; UKB: United Kingdom Biobank; PCE: Pooled Cohort Equations; MACE:
major adverse cardiovascular event; Cl: confidence interval; Al: artificial intelligence; ECG:
electrocardiogram
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3.3.2. UKB cohort analysis dataset

Figure 32 illustrates the AI-ECG-derived reclassification within each PCE risk category in
the UKB cohort analysis dataset. Among the 30,623 individuals, 20,744, 8539, and 1340 were
categorized as low, moderate, and high risk, respectively, based on the PCE. The MACE IR per
1000 PY was 3.1 for the PCE low-risk category and 11.5 for the PCE moderate-risk category,
respectively. Among individuals classified as low risk by PCE but high risk by AI-ECG, the MACE
IR per 1000 PY was 8.3, which was higher than the 7.0 observed in those classified as moderate risk
by PCE but low risk by AI-ECG, although the difference did not reach statistical significance (P =
0.360). Within the PCE low-risk group, there was a significant difference in Kaplan-Meier curves
between individuals categorized as high and moderate risk by AI-ECG (Figure 33A, log-rank test:
P < 0.001; post-hoc pairwise comparisons: low vs. moderate, P = 0.035; moderate vs. high, P <
0.001; adjusted significance level using Bonferroni correction: 0.025). However, within the PCE
moderate-risk group, no significant difference was observed in Kaplan-Meier curves between the
AI-ECG low- and moderate-risk groups (Figure 33B, log-rank test: P < 0.001; post-hoc pairwise
comparisons: low vs. moderate, P = 0.361; moderate vs. high, P < 0.001; adjusted significance level
using Bonferroni correction: 0.025). The NRI for up-risking or down-risking based on AI-ECG
within the PCE low- or moderate-risk categories (Figure 32) was 3.8% (95% CI: 1.7% — 6.0%)
among events and -2.3% (95% ClI: -2.5% — -2.0%) among non-events, resulting in a total NRI of
1.5% (95% CI: -0.6% — 3.7%) (Table 10B).

Table 11 presents the results of the Cox proportional hazards regression analysis for MACE.
In the UKB cohort analysis dataset, during a median follow-up of 3.5 years (interquartile range: 2.5
— 5.0 years), 699 individuals experienced a MACE. For every 10% absolute increase in the AI-ECG
output, the adjusted hazard for MACE was 1.117 (95% CI: 1.061 — 1.175) after adjusting for clinical
variables (Table 11). This indicates that the AI-ECG output is an independent risk factor for MACE.
The PCE plus Al-ECG score, which yielded a C-index of 0.735 (Table 12, 95% CI: 0.716 — 0.754),
surpassed the PCE by a difference of 0.011 (95% CI: 0.004 — 0.019) in the C-index.
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Entire cohort
N = 30,623
MACE IR per 1000 PY = 6.1

Figure 32. AI-ECG-derived reclassification within each PCE risk category (UKB, cohort
analysis dataset).

Al: artificial intelligence; ECG: electrocardiogram; AI-ECG: artificial intelligence-enabled
electrocardiogram; PCE: Pooled Cohort Equations; UKB: United Kingdom Biobank; MACE: major
adverse cardiovascular event; IR: incidence rate; PY: person-year; CAC: coronary artery
calcification; CACS: coronary artery calcium score.
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Figure 33. Kaplan-Meier curves (UKB cohort analysis dataset). (A) Kaplan-Meier curves
stratified by AI-ECG risk categories within the PCE low-risk group. (B) Kaplan-Meier curves
stratified by AI-ECG risk categories within the PCE moderate-risk group.

UKB: United Kingdom Biobank; Al: artificial intelligence; ECG: electrocardiogram; Al-ECG:
artificial intelligence-enabled electrocardiogram; PCE: Pooled Cohort Equations.
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3.3.3. Subgroup analyses

Figure 34 shows the hazard ratios of the AI-ECG model by subgroup. The association
between the AI-ECG model and MACE remained consistent across all demographic and PCE-based
subgroups. In the SH cohort analysis dataset, for every 10% absolute increase in the AI-ECG output,
the adjusted hazard for MACE was 1.106 (95% CI: 1.057-1.158) in the age < 60 subgroup, 1.083
(95% CI: 1.036-1.133) in the age > 60 subgroup, 1.090 (95% CI: 1.021-1.164) in the female
subgroup, 1.090 (95% ClI: 1.050-1.131) in the male subgroup, 1.100 (95% CI: 1.046—1.156) in the
low-risk (PCE) subgroup, and 1.092 (95% CI: 1.048-1.139) in the moderate or high-risk (PCE)
subgroup, after adjusting for clinical variables. There were no differences in adjusted HR
comparison between subgroups (P-value for hazard ratio comparison: 0.518, 0.988, and 0.844,
respectively). In the UKB cohort analysis dataset, for every 10% absolute increase in the AI-ECG
output, the adjusted hazard for MACE was 1.085 (95% CI: 1.006-1.171) in the age < 60 subgroup,
1.141 (95% CI: 1.065-1.222) in the age > 60 subgroup, 1.135 (95% CI: 1.034-1.247) in the female
subgroup, 1.109 (95% CI: 1.044-1.178) in the male subgroup, 1.106 (95% CI: 1.016-1.204) in the
low-risk (PCE) subgroup, and 1.113 (95% CI: 1.046-1.184) in the moderate or high-risk (PCE)
subgroup, after adjusting for clinical variables. There were no differences in adjusted HR
comparison between subgroups (P-value for hazard ratio comparison: 0.342, 0.677, and 0.912,
respectively).
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Figure 34. Hazard ratios of the AI-ECG model by subgroups. The hazard ratios were adjusted
for the variables included in the PCE (age, sex, diabetes mellitus, hypertension, smoking status, total
cholesterol, high-density lipoprotein cholesterol and systolic blood pressure). The Al-ECG output,
originally presented on a scale from 0 to 1, was rescaled to a new range of 0 to 10 by multiplying it
by a factor of ten.

SH cohort analysis dataset

Adjusted HR (95% CI) P-value  P-value for HR
comparison

Age 0.518

<60 1.106 (1.057 - 1.158) <0.001 —

>60 1.083(1.036-1.133) <0.001 —
Sex 0.988

Female 1.090(1.021 —1.164) 0.010 s

Male 1.090 (1.050—1.131) <0.001 ——

PCE 0.844
Low risk 1.100 (1.046 — 1.156) <0.001 —
> Moderate risk 1.092 (1.048 — 1.139) <0.001 —
UKB cohort analysis dataset
Adjusted HR (95% CI) P-value  P-value for HR
comparison

Age 0.342

<60 1.085(1.006-1.171) 0.035 ——

=60 1.141(1.065 - 1.222) <0.001 B ce—
Sex 0.677

Female 1.135(1.034 —1.247) 0.008 —_—

Male 1.109(1.044—1.178) <0.001 —

PCE 0.912
Low risk  1.106 (1.016 — 1.204) 0.019 —_—
> Moderate risk 1.113 (1.046 —1.184) <0.001 —_——
1.0 11 1.2

Adjusted HR (95% Cl)

Al: artificial intelligence; ECG: electrocardiogram; AI-ECG: artificial intelligence-enabled
electrocardiogram; PCE: Pooled Cohort Equations; HR: hazard ratio; Cl: confidence interval; SH:
Severance Hospital; UKB: United Kingdom Biobank
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3.4. Interpretation

The XGBoost model constructed with ECG factors derived from the pre-trained VAE
model demonstrated an AUROC of 0.734 in the test dataset. Figure 35 shows the SHAP summary
plot of the top 10 important features of the XGBoost model using ECG factors, and Figures 36-40
provide visualizations of the important ECG factors: Upward shift of the ST segment in the
anteroseptal leads with reciprocal downward shift of the ST segment in the inferolateral leads (lower
values of ECG factor 48), downward shift of the ST segment in all leads (lower values of ECG factor
39), longer PR interval (higher values of ECG factor 36), increased QRS amplitude in the
anterolateral leads with decreased QRS amplitude in the inferoseptal leads (lower values of ECG
factor 23), and shorter TP interval (lower values of ECG factor 31) were associated with increased
predicted risk.
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Figure 35. SHAP summary plot of XGBoost model using VAE features. Top 10 important

features as shown by SHAP analysis.

SHAP: Shapley Additive exPlanations; VAE: variational autoencoder; ECG: electrocardiogram
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Figure 36. Factor traversals of ECG factor 48. Upward shift of the ST segment in the anteroseptal
leads with reciprocal downward shift of the ST segment in the inferolateral leads (lower values of
ECG factor 48), downward shift of the ST segment in all leads (lower values of ECG factor 39),
longer PR interval (higher values of ECG factor 36), increased QRS amplitude in the anterolateral
leads with decreased QRS amplitude in the inferoseptal leads (lower values of ECG factor 23), and
shorter TP interval (lower values of ECG factor 31) were associated with increased predicted risk.

ECG: electrocardiogram
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Figure 37. Factor traversals of ECG factor 39. Upward shift of the ST segment in the anteroseptal
leads with reciprocal downward shift of the ST segment in the inferolateral leads (lower values of
ECG factor 48), downward shift of the ST segment in all leads (lower values of ECG factor 39),
longer PR interval (higher values of ECG factor 36), increased QRS amplitude in the anterolateral
leads with decreased QRS amplitude in the inferoseptal leads (lower values of ECG factor 23), and
shorter TP interval (lower values of ECG factor 31) were associated with increased predicted risk.

ECG: electrocardiogram
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Figure 38. Factor traversals of ECG factor 36. Upward shift of the ST segment in the anteroseptal
leads with reciprocal downward shift of the ST segment in the inferolateral leads (lower values of
ECG factor 48), downward shift of the ST segment in all leads (lower values of ECG factor 39),
longer PR interval (higher values of ECG factor 36), increased QRS amplitude in the anterolateral
leads with decreased QRS amplitude in the inferoseptal leads (lower values of ECG factor 23), and
shorter TP interval (lower values of ECG factor 31) were associated with increased predicted risk.

ECG: electrocardiogram
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Figure 39. Factor traversals of ECG factor 23. Upward shift of the ST segment in the anteroseptal
leads with reciprocal downward shift of the ST segment in the inferolateral leads (lower values of
ECG factor 48), downward shift of the ST segment in all leads (lower values of ECG factor 39),
longer PR interval (higher values of ECG factor 36), increased QRS amplitude in the anterolateral
leads with decreased QRS amplitude in the inferoseptal leads (lower values of ECG factor 23), and
shorter TP interval (lower values of ECG factor 31) were associated with increased predicted risk.

ECG: electrocardiogram
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Figure 40. Factor traversals of ECG factor 31. Upward shift of the ST segment in the anteroseptal
leads with reciprocal downward shift of the ST segment in the inferolateral leads (lower values of
ECG factor 48), downward shift of the ST segment in all leads (lower values of ECG factor 39),
longer PR interval (higher values of ECG factor 36), increased QRS amplitude in the anterolateral
leads with decreased QRS amplitude in the inferoseptal leads (lower values of ECG factor 23), and
shorter TP interval (lower values of ECG factor 31) were associated with increased predicted risk.

ECG: electrocardiogram
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3.5. Compliance with reporting guidelines

The Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) Checklist for Prediction Model Development and Validation was followed
(Table 13)%.
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Table 13. TRIPOD checklist (prediction model development and validation). Items relevant
only to the development of a prediction model are denoted by D, items relating solely to a validation
of a prediction model are denoted by V, and items relating to both are denoted D;V*°.

Section/Topic  Item Checklist Item Location
Title and abstract
Identify the study as developing and/or
. . validating a multivariable prediction .
Title 1 DV model, the target population, and the Appropriate title
outcome to be predicted.
Provide a summary of objectives, study
Abstract 2 DV design, setting, participar_1ts_, sample si_ze, Appropriate abstract
predictors, outcome, statistical analysis,
results, and conclusions.
Introduction
Explain the medical context (including
whether diagnostic or prognostic) and
3a D;V rationale for developing or validating the 1.1. Background
Background multivariable prediction model, including
and objectives references to existing models.
Specify the objectives, including whether
3b D;V the study describes the development or 1.3. Objectives
validation of the model or both.
Methods
Describe the study design or source of data 2.1. Data sources
: . . and labeling
4a D'V (e.g., randomized trial, cohort, or registry 27 Multinational
’ data), separately for the development and .
AR h - retrospective cohort
validation data sets, if applicable. analyses
Source of data 2.1. Data sources
Specify the key study dates, including start | and labeling
4b D;V of accrual; end of accrual; and, if 2.7. Multinational
applicable, end of follow-up. retrospective cohort
analyses
Specify key elements of the study setting inld IZ gzelli?]c;urces
5a DV (e.q., primary care, secondary care, gengral 27 Multinational
population) including number and location .
of centres. retrospective cohort
analyses
2.1. Data sources
and labeling
Participants 5b D;V Describe eligibility criteria for participants. | 2.7. Multinational
retrospective cohort
analyses
2.1. Data sources
5c DV Give details of treatments received, if gn7d Il\zilt:ﬁltlirr]lgtional

relevant.

retrospective cohort
analyses
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Clearly define the outcome that is

2.5. Outcomes

6a D;vV predicted by the prediction model, 2.6. Performance
including how and when assessed. evaluation
Outcome
. . 2.5. Outcomes
. Report any actions to blind assessment of
6b D;V - 2.6. Performance
the outcome to be predicted. .
evaluation
Clearly define all predictors used in 2.3. Al-enabled
. developing or validating the multivariable ECG framework
7a D;V ok - .
prediction model, including how and when | development
. they were measured. 2.4. Outcomes
Predictors
. . 2.3. Al-enabled
Report any actions to blind assessment of ECG model
7b D;V predictors for the outcome and other
. development
predictors. 2.5. Outcomes
2.1. Data sources
and labeling
Sample size 8 D;V Explain how the study size was arrived at. | 2.7. Multinational
retrospective cohort
analyses
Describe how missing data were handled inld IZ gg&:izc&urces
. . (e.g., complete-case analysis, single .
Missing data | 9 D:V' | imputation, multiple imputation) with 2.7. Multinational
- - . retrospective cohort
details of any imputation method.
analyses
10a D Describe how predictors were handled in 2.2. Data
the analyses. preprocessing
Specify type of model, all model-building 2.3. Al-enabled
10b D procet_jures (including any predictor ECG model
selection), and method for internal development
validation. 2.5. Outcomes
Statistical 2.3. Al-enabled
. For validation, describe how the ECG model
analysis 10c \Y L
predictions were calculated. development
methods
2.5. Outcomes
Specify all measures used to assess model 2 6. Performance
10d D;V performance and, if relevant, to compare e
. evaluation
multiple models.
Describe any model updating (e.g.,
10e \% recalibration) arising from the validation, if | N/A (not done)
done.
. Provide details on how risk groups were 2.7 Multi_national
Risk groups 11 DV - retrospective cohort
created, if done.
analyses
2.1. Data sources
Development For validation, identify any differences and labeling
P 12 \% from the development data in setting, 2.7. Multinational
vs. validation P L . .
eligibility criteria, outcome, and predictors. | retrospective cohort
analyses
Results
Participants 13a DV Describe the flow of participants through 3.1. Dataset

the study, including the number of

characteristics
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participants with and without the outcome
and, if applicable, a summary of the
follow-up time. A diagram may be helpful.
Describe the characteristics of the
. participants (_ba5|c dempgraphlc_:s, cllr}lcal 3.1 Dataset
13b D;V features, available predictors), including o
= : g characteristics
the number of participants with missing
data for predictors and outcome.
For validation, show a comparison with the
13¢ v development data of the distribution of 3.1. Dataset
important variables (demographics, characteristics
predictors and outcome).
142 D Specify the num_ber of particip_ants and 3.1 Data_set_
Model ?fu(tjcome events r:n eacroll_analélsw. _ characteristics
one, report the unadjusted association
development 14b D between each candidate predictor and 3.1 Dataset
outcome. characteristics
Present the full prediction model to allow 3.2, Model
-~ S - performance
152 D predlct!ons for |p(!|V|duaIs (i.e., aII_ 3.3, Multinational
regression coefficients, and model intercept retrospective cohort
Model or baseline survival at a given time point). analyses
specification 2.3. Al-enabled
156 D Explain how to the use the prediction ECG model
model. development
2.5. Outcomes
3.2. Model
Model 16 D'V Report performance measures (with Cls) ge?:f?\zlrgfat?rfaetional
performance ’ for the prediction model. " .
retrospective cohort
analyses
Model- If don_e, re_port the results frpm any model
updating 17 \% updating (i.e., model specification, model N/A (not done)
performance).
Discussion
Discuss any limitations of the study (such
Limitations 18 D;V as nonrepresentative sample, few events 4.4, Limitations
per predictor, missing data).
For validation, discuss the results with
19a v reference to performance in the 4.2. Implications
development data, and any other validation | 4.3. Strengths
Interpretation data.
Give an overall interpretation of the results,
19b D'V considering objectives, limitations, results 4.2. Implications
! from similar studies, and other relevant 4.3. Strengths
evidence.
L . Discuss the potential clinical use of the 4.2. Implications
Implications 20 D:V model and implications for future research. | 4.3. Strengths

Other information
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Supplementary Provide information about the availability All information is
information 21 D;vV of supplementary resources, such as study provided in the main
protocol, Web calculator, and data sets. manuscript.
Funding . Give the source of funding and the role of Not relevant to this
22 D;V -
the funders for the present study. manuscript.

TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or
Diagnosis
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4. DISCUSSION

4.1. Summary of key findings

In this study, we developed an AI-ECG model to predict coronary artery calcification and
validated its potential for opportunistic screening using a health screening dataset. Our AI-ECG
model showed strong performance in predicting CAC, achieving an AUROC of 0.841 for CACS >
400 and an AUROC of 0.720 for CAC > 0 in the health screening test dataset. Our AI-ECG model
maintained robustness in external validation health screening datasets, underscoring its
generalizability to various environments. In the PCE low-risk category, 24.9% had CAC > 0; among
these individuals, the proportion increased to 45.7% when selecting those identified as high-risk by
the AI-ECG model. In the PCE moderate-risk category, 35.4% had CACS = 0; among these
individuals, the proportion increased to 60.9% when selecting those identified as low-risk by the Al-
ECG model. Among PCE low-risk individuals who were reclassified as high-risk by AI-ECG, the
IR of MACE was higher compared to those in the PCE moderate-risk category who were reclassified
as low-risk by AI-ECG (SH cohort analysis dataset MACE IR per 1000 PY: 6.0 vs. 3.3, UKB cohort
analysis dataset MACE IR per 1000 PY: 8.3 vs. 7.0). AI-ECG was an independent risk factor for
MACE (adjusted HR [95% CI]: 1.087 [1.053-1.123] in the SH cohort analysis dataset and 1.117
[1.061-1.175] in the UKB cohort analysis dataset). AI-ECG provided additional predictive value
beyond the PCE, with the combined PCE plus AI-ECG score outperforming the PCE alone in terms
of C-index. The association between AI-ECG and MACE remained consistent across all
demographic and PCE-based subgroups. We provided visual morphological interpretations of ECG
factors associated with increased predicted risk, identifying potential changes such as upward shift
of the ST segment in the anteroseptal leads with reciprocal downward shift in the inferolateral leads,
downward shift of the ST segment in all leads, longer PR interval, and others, to be associated with
CAC.

4.2. Implications

We demonstrated the potential integration of our AI-ECG model into the clinical workflow
by assessing its effectiveness for CAC screening and its ability to reclassify individuals for initiating
or withholding primary prevention decisions. Specifically, we showed that the AI-ECG model could
screen individuals in the PCE low-risk group with the highest likelihood of having CAC, and those
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in the PCE moderate-risk group with the lowest likelihood of having CAC. In the PCE low-risk
category, where detecting CAC could recommend initiating primary prevention strategies, 24.9% of
individuals had a CACS > 0. Of these, 3.2%-5.2% were classified as high risk by the AI-ECG model,
with the proportion of individuals with CAC in this subgroup rising to 45.7%. Similarly, in the PCE
moderate-risk category, where ruling out CAC could recommend withholding primary prevention
strategies, 35.4% had a CACS = 0. Among these, 4.6%-5.7% were classified as low risk by the Al-
ECG model, with the proportion of CAC-free individuals in this subgroup reaching 60.9%. This
suggests that the AI-ECG model could be used to screen and prioritize a small subset of individuals
for whom CACS measurement would be most useful, especially given that routine CACS
measurement is impractical due to cost, radiation exposure, or lack of insurance coverage??.
Particularly in routine health screenings where ECGs are universally performed, Al-ECG-based
CAC prediction could enable opportunistic CAC screening in the general population, paving the
way for earlier detection and timely implementation of primary prevention strategies.

Additionally, decisions regarding initiating or withholding statin therapy could be directly
guided by AI-ECG risk reclassification. Across two cohort datasets, individuals classified as
moderate risk by the PCE but as low risk by the AI-ECG model had a lower MACE IR than those
classified as low risk by the PCE but as high risk by the AI-ECG model (MACE IR per 1000 PY:
3.3 vs. 6.0 in the SH cohort; 7.0 vs. 8.3 in the UKB cohort). Thus, it would be more reasonable to
withhold statin therapy (down-risk) in individuals classified as PCE moderate risk but AI-ECG low
risk, and to initiate statin therapy (up-risk) in those classified as PCE low risk but AI-ECG high risk.
This approach is further supported by the NRI for up-risking or down-risking based on AI-ECG
within the PCE low- or moderate-risk categories, which was 2.8% (95% CI: 1.4%-4.1%) and 1.5%
(95% CI: -0.6%-3.7%) in the two cohort datasets, respectively.

We demonstrated that AI-ECG prediction serves as an independent risk factor for MACE
and enhances the predictive value of conventional risk stratification tools, such as the PCE, with the
combined PCE and AI-ECG scores outperforming the PCE alone in terms of the C-index. Given
that ECG is a ubiquitous and cost-effective tool, these findings suggest that incorporating our Al-
ECG model as a novel risk factor into existing CVD risk prediction tools—or developing new CVD
risk prediction tools that integrate AI-ECG—could provide significant advantages in predictive
ability. Furthermore, the association between AI-ECG and MACE remained robust across all
demographic and PCE-based subgroups, indicating that the AI-ECG model is effective across a
diverse range of individuals and cardiovascular risk levels. Moreover, regarding the model’s
generalizability and reproducibility, similar trends were observed when the AI-ECG model,
primarily developed using data from an Asian population, was applied to a United Kingdom dataset
for survival analysis.

Previous studies have developed AI-ECG models capable of predicting CAC using only
ECGs and have validated these models on a more general patient spectrum®%, However, a notable
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limitation of these studies is the lack of exclusion of individuals with clinical ASCVD. According
to guidelines®7?, CAC scoring is not recommended for individuals with clinical ASCVD, as they are
already candidates for primary prevention or more advanced treatments and evaluations.
Consequently, AlI-ECG-based CAC prediction holds no utility for this group. Without excluding
individuals with clinical ASCVD, it is unclear whether the model's performance is biased toward
those with an existing diagnosis or symptoms. In our current study, we sought to address this
limitation by validating the AI-ECG model on individuals undergoing health screenings. Health
screenings embody the principles of preventive medicine, primarily targeting asymptomatic
individuals to proactively detect early-stage diseases and implement primary prevention when
necessary. Although it is not possible to confirm that the health screening cohort was entirely
subclinical, these individuals represented a healthier spectrum than patients undergoing outpatient
CAC scoring, as evidenced by their younger age and lower CAC scores compared to the model
development dataset. Furthermore, our retrospective cohort analyses excluded individuals with prior
cardiovascular events, ensuring that our findings are clinically relevant for individuals without overt
disease.

While the association between CAC and structural changes in the heart has not been
extensively studied, some recent studies indicates that higher CACS is linked to adverse cardiac
remodeling, including increased left ventricular mass and larger aortic root diameter®®6!, These
findings suggest that higher CACS are linked to structural changes in the heart. Such structural
changes may manifest as subtle alterations in the ECG that were previously undetectable to the
human eye but can now be identified through the application of Al techniques®. In our results, the
observation that higher CACS correlated with higher outputs from the AI-ECG model suggests that
elevated CACS may be associated with more pronounced structural changes in the heart that the
model was able to detect.

We integrated a VAE model (pre-trained using 5.6 million ECGs) to provide visual
morphological explainability, as described in previous studies®*=¢. This approach allowed us to
mitigate the “black box” issue prevalent in traditional end-to-end deep learning techniques, enabling
us to provide quantifiable visual interpretations of the morphological ECG changes linked to our
prediction task. We found potential ECG changes such as upward shift of the ST segment in the
anteroseptal leads with reciprocal downward shift of the ST segment in the inferolateral leads,
downward shift of the ST segment in all leads, longer PR interval, increased QRS amplitude in the
anterolateral leads with decreased QRS amplitude in the inferoseptal leads, and shorter TP interval
that might be associated with CAC. Our literature review revealed that studies investigating ECG
abnormalities associated with CAC are limited, and the findings are often conflicting: While some
studies have identified associations between ST-T or Q wave abnormalities and CAC®?, others have
reported no such links®. Although further research is necessary to establish the associations between
the possible morphological ECG changes identified in our study and CAC, novel data-driven Al-
based approaches, such as the one we employed, can open up new opportunities for exploration.
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4.3. Strengths

Our study has numerous strengths. Firstly, our AI-ECG model uniquely requires only ECGs
for analysis, without the need for any additional clinical data, enhancing its usability in various
clinical settings. It includes all ECGs regardless of medical anomalies, such as arrhythmias or
ischemia, thereby increasing its applicability; the only exclusions are cases of lead misplacements,
unwanted artifacts, and the presence of artificial pacemakers. This inclusive approach ensures that
the model can be widely applicable across a diverse range of ECG readings. Second, our model has
consistently demonstrated strong performance across multiple external validation cohorts,
underscoring its reliability and adaptability in various clinical environments. Third, while there have
been concerns about applying AI-ECG models developed on one racial or ethnic group to others®*,
our findings showed that similar trends were observed when our AI-ECG model, initially developed
using data primarily from an Asian population, was applied to the United Kingdom dataset for
survival analysis. This highlights the model’s robust performance across different racial and ethnic
groups, reinforcing its potential for broader clinical application. Fourth, the training processes for
both the AI-ECG and VAE models were conducted using exceptionally large datasets, which is a
significant advantage. Specifically, nearly 200,000 ECGs were employed for the training and
validation of the AI-ECG model, while more than 5 million ECGs were utilized to train the VAE
model. Utilizing such large datasets helps to minimize the risk of overfitting, allows the models to
capture a wider range of variabilities, and ultimately increases the confidence and generalizability
of the models in clinical applications®>56,

4.4. Limitations

This study's findings should be interpreted in light of the following limitations. First, the
retrospective design introduces some limitations. Although we validated our AI-ECG model using
health screening data, potential selection bias may exist depending on who decided or was
recommended to undergo CAC scoring during health screenings, a factor that cannot be precisely
known due to the retrospective nature of the study. Additionally, because of its retrospective design,
data not originally recorded, such as the presence or absence of symptoms, could not be extracted.
Future prospective studies are necessary to confirm the findings of the study. Second, although the
ACC/AHA PCE is a widely used CVD risk prediction model, applying it to the Korean and UK
cohorts may introduce inaccuracies. Specifically, studies have shown that the PCE, developed based
on American cohorts, tends to overestimate the risk in Asian and European populations®”-7°. This
misalignment may affect the validity of the AI-ECG based risk reclassification of individuals
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compared to the PCE in Korean and UK populations. Third, while mortality data linked using
KOSTAT mortality records and resident registration numbers ensures 100% accuracy up to the end
of follow-up date, the occurrence of cardiovascular events, extracted from EMRs, may be prone to
incomplete capture: Events diagnosed at other hospitals may not be captured, and it is not possible
to ascertain whether the diagnosis codes extracted from EMRs represent the patient’s first-ever
diagnosis. Future studies should utilize longitudinal data with comprehensive diagnosis records that
include diagnoses made at any institution. Fourth, in the UKB, clinical data were collected at the
first assessment date, while resting ECGs were performed during a subsequent imaging visit,
creating an unavoidable time gap that could have influenced the results. Fifth, the current model's
explainability with the pre-trained VAE model is limited due to the ambiguous nature of some
factors, which capture multiple ECG alterations simultaneously. Advancements in Al-based feature
extraction methods might enhance our understanding of these ECG factors.

88



5. CONCLUSIONS

In conclusion, our AI-ECG model proves to be an effective tool for predicting coronary
artery calcification. We demonstrated the potential integration of our AI-ECG model into clinical
workflow by showing its dual utility: it can either screen individuals who would benefit most from
CACS measurement, or directly guide decisions regarding statin therapy initiation or withholding
through patient reclassification. The ubiquitous availability of ECGs, combined with our finding
that the AI-ECG model serves as an independent risk factor for cardiovascular events, suggests its
potential for incorporation into CVD risk prediction tools. Particularly in routine health screenings
where ECGs are universally performed, Al-ECG-based CAC prediction could enable opportunistic
CAC screening in the general population, paving the way for earlier detection and timely
implementation of primary prevention strategies.
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ABSTRACT IN KOREAN

BAEY 435 A5 9% 49 A5 ATAS /% AAE

A5 433} (coronary artery calcium, CAC) H= s Zgo] 2
AEE FHo =z Frstry] Y38l HFH ©5E Y (computed tomograph, CT) &2
e AsFTe A xmolxd #AAFEH AR AEE o5 QiAo A A2
5 24, o9& E9] ACC/AHA Pooled Cohort Equations (PCE)

A& AFstAT, TF AAA A8 E7FE skl oAt
4571 2o olg s B¢, CAC HAoE JAF AH S s

) A Zo] BFE = wbE, CACYF 918 A% AEY ALgo] viEdE
a8y CAC AF FA4L2 v, A v& 23 48 FF502 <
Abgo]  AFATt. wrd A AT (electrocardiogram, ECG) &= 4y  AFEEW,
H R EAola, vlg adFoln WA xmFo] qitk. | AEFAH AR HdS
AAEE B8 ojdeds 38X F old s 84 4 3= A3 A5 (artificial
intelligence, A) 9% 7}538A itk CACE <58 4+ A= AI-ECGE A8
Az el gt FEES AT 7 vk 53] AAErE d8 FRHeE A%
Ao olgst HHe dRE AFeA 71341 CAC EAE 7hsstAl 3to
DA M3leE 7)o Hdstn A s Al AdgstA & 4 ok

B dJoE CACE o=3l7] 9% AI-ECG E9S /Wdstn, A% AR
gAeNAe] 738 AdE s J

-

e AFsna dvh @ €We A% Aede
wAss] g8l T oAlel MR sl A AW delHE olgstel A% AFE
Fastna goh =H, @ ATE FolRel 47 tEd $34 2sE $AS B
AI-ECG 2R 47 @elsh 2474 932 Frhstnd st siAoz, 2w

ofSol JEFS A= HHAE 5 AlZHA Fez s Algstazt sklch
AI-ECG B9 AAMUgw ABgAg oA CAC HA4=E A" 194,00070
oA AAEZE Algd FHAHQIU. o] REALE £ wWEolN HHEY CT 7y
Sk 14,242719 AlBpgAEY A7} AR dolgHE Fd
T2 SAABRTAY A (729712 AR ofFuigwE Y
(2,056712] AAZ) dHeolgE Abgste]  FHHEAT. veFd $FEH IZE
EXdE AraAd A7 AAANA 52400709 A X9 United Kingdom
Biobank (UKB)elAl 3% 30,623712 AAEE &gttt a4 7HsdS =0)7]
Al 5000 A o] AHER A FHEE R QEJFUES ALEste] oS
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FEgS A= HAAE EFS A4 A

AI-ECG R4 CACE d5st= d Slo A3 Aes RoF3en, 174 A
HAE dolE Ao CAC H4 >4009 4% AUROC 0.841, CAC A< > 09 4
AUROC 0.720& 715385t o HASdAE SAMBEdA~H AT ofFoguyy
tolgl Ao A Z+2 CAC H< > 4002 AUROC 0.784%} 0.814, CAC A+ > 0
AUROC 0.6913 0.701% #3833 J55 A58 ch

AI-ECG E49& PCE AYdolr CAC 7FaAdol 71 =2 Jiy} PCE F3+
Aol CAC 7FeAdol 78 & 7iele AdE 4= Qlqlth: PCE A& oA

1o o Ho 2

H &2 45.7% %2 F7vh PCE &3 $1@wrellA] 35.4%7F CACS = 05 YERon,
AI-ECG Ede] oa] Aoz 2Ed A9 o vl&2 60.9%% S7Hth PCE
Aol AI-ECGel ¢l u9doer AeFd 152 PCE T3 AdTolA
AI-ECGel 9l&l Aoz AEFE IRt F2 A83 AR 2AEe] ¢
ERTAERAEL FISE FA4 dHolHACA 1000 JIdd Fo Adud AR
WA ED 6.0 vs. 3.3, P = 0.007, UKB ZZE 4] dlo]gf Aol 1000 AdG F2
Add Ak B E: 8.3 vs. 7.0, P = 0.360). webd, PCE F3+ 99
HEFEUAR AI-ECGolA Ao m 7% JiRleAE ABdS Eifshe
o $Feldoln, PCE ALPTOE EFHFHAAT AI-ECGolA o=
MAoNAE AERS A&sks Zlo] o #ejAdd Aot AI-ECGx T8
AHel 5517 Y gecle®m  FAHHEAFE AR [95% AlF
AR I3 E 4 dolgAle]A 1.087 [1.053-1.123], UKB 33 E
dolgAleA 1.117 [1.061-1.175]). PCES®} AI-ECG H+E5 Agst A9,
PCERY %2 C-index® HAH. T7ld <5 993 #dd Ade g<s
AlZtA o2 s o upward shift of the ST segment in the anteroseptal leads
with reciprocal downward shift in the inferolateral leads, downward shift of the
ST segment in all leads, longer PR interval 53 7S H3S CACS A1)
AI-ECG RH& @459 4332 oZshe o asdd =rde dFasi
oAy AISECG Rdlo]l o]Fd fudus B 94 fazze g9
e BAF F CAC A% FHol 7% BeF AL A¥sAL, B4
AERE B AEE Am A4 2R RF 242 A% P 5 des

Aokt AAdE7E del A8 d3 AI-ECG Edo] A8 Ao =34

4
pet U Y (o o
S o O Rk

1 m Ae
=

LM
[o 1ft

A9 gcow e Aas wigoR, @ Rde A9 Ad SF oS =R
FHE AAgE M A 53] AR dwbdew FHE QY] A%
H3A, AI=ECG 7IWF CAC A2 Awk Q1FellA 7134 CAC HAME 7hestl

sto] 7] W 27 oA A=k AA Ao r ojojd 4

BAHE T B AH, e 435 45 QTS AAE, 9FAS 7]
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