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ABSTRACT 

 

An Explainable Artificial Intelligence-Enabled Electrocardiogram 

Model for the Prediction of Coronary Artery Calcification 

 

 

The coronary artery calcium (CAC) score, assessed via computed tomography (CT) to quantify 

calcium deposits in the coronary arteries, is a marker of atherosclerosis and a robust predictor of 

coronary events. Current cardiovascular disease (CVD) risk prediction models, such as the 

ACC/AHA Pooled Cohort Equations (PCE), guide primary prevention but often yield borderline 

risk classifications, leaving decision-making uncertain. In such cases, CAC scoring is recommended 

by guidelines as an additional tool to guide decisions. The presence of CAC often favors initiating 

primary prevention measures like statin therapy, while its absence may lead to withholding statins. 

However, routine CAC scoring is limited by high costs, radiation exposure, and lack of 

insurance coverage. In contrast, electrocardiograms (ECGs) are widely used, non-invasive, cost-

effective, and radiation-free. Advances in deep convolutional neural networks have enabled artificial 

intelligence (AI) models to detect previously undetectable conditions from ECGs. An AI-ECG 

capable of predicting CAC could provide valuable CVD risk insights. Especially in routine health 

screenings, where ECGs are widely performed, this approach could enable opportunistic CAC 

screening in the general population, facilitating earlier detection of coronary artery calcification and 

timely implementation of primary prevention strategies. 

We aimed to develop an AI-ECG model to predict CAC and validate its potential for 

opportunistic screening in health screening settings. To ensure broader applicability, we aimed to 

perform external validation in health screening settings at two separate institutions. Additionally, 

we aimed to evaluate the clinical implications and potential impact of our AI-ECG model on 

decision-making through multinational retrospective cohort analyses spanning two different 

countries. Finally, we aimed to provide visual morphological explainability of model predictions. 

The AI-ECG model was trained on over 194,000 ECGs annotated with CAC scores from 

Severance Hospital (SH). It was tested on a health checkup dataset (SH, 14,242 ECGs) where 

participants had both ECG and CT measurements of CAC on the same visit. External validation 

used datasets from Yongin Severance Hospital (YSH, 729 ECGs) and Ajou University Medical 

Center (AUMC, 2056 ECGs). In multinational retrospective cohort analyses, 52,400 ECGs from SH 

health screenings (not matched with CAC measurements) and 30,623 ECGs from the United 

Kingdom Biobank (UKB) were utilized. A variational autoencoder (VAE) pre-trained on over 5 

million ECGs was employed to enhance interpretability by providing visual explanations of ECG 

features influencing predictions. 

Our AI-ECG model showed strong performance in predicting CAC, achieving an AUROC of 

0.841 for CACS ≥ 400 and an AUROC of 0.720 for CAC > 0 in the health screening test dataset. 
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Our AI-ECG model demonstrated robust performance in external validation, with AUROCs of 0.784 

and 0.814 in YSH and AUMC datasets for predicting CACS ≥ 400, and 0.691 and 0.701 for CACS 

> 0.  

The AI-ECG model could screen individuals in the PCE low-risk group with the highest 

likelihood of having CAC, and those in the PCE moderate-risk group with the lowest likelihood of 

having CAC: In the PCE low-risk category, 24.9% had CAC > 0; among these individuals, the 

proportion increased to 45.7% when selecting those identified as high-risk by the AI-ECG model; 

In the PCE moderate-risk category, 35.4% had CACS = 0; among these individuals, the proportion 

increased to 60.9% when selecting those identified as low-risk by the AI-ECG model. Among PCE 

low-risk individuals who were reclassified as high-risk by AI-ECG, the incidence rate (IR) of major 

adverse cardiovascular event (MACE) was higher compared to those in the PCE moderate-risk 

category who were reclassified as low-risk by AI-ECG (SH cohort analysis dataset MACE IR per 

1000 person-year [PY]: 6.0 vs. 3.3, P = 0.007, UKB cohort analysis dataset MACE IR per 1000 PY: 

8.3 vs. 7.0, P = 0.360). Thus, it would be more reasonable to withhold statin therapy (down-risk) in 

individuals classified as PCE moderate risk but AI-ECG low risk, and to initiate statin therapy (up-

risk) in those classified as PCE low risk but AI-ECG high risk. AI-ECG was an independent risk 

factor for MACE (adjusted hazard ratio [95% CI]: 1.087 [1.053–1.123] in the SH cohort analysis 

dataset and 1.117 [1.061–1.175] in the UKB cohort analysis dataset). AI-ECG provided additional 

predictive value beyond the PCE, with the combined PCE plus AI-ECG score outperforming the 

PCE alone in terms of C-index. The association between AI-ECG and MACE remained consistent 

across all demographic and PCE-based subgroups. We provided visual morphological 

interpretations of ECG factors associated with increased predicted risk, identifying potential changes 

such as upward shift of the ST segment in the anteroseptal leads with reciprocal downward shift in 

the inferolateral leads, downward shift of the ST segment in all leads, longer PR interval, and others, 

to be associated with CAC. 

Our AI-ECG model proves to be an effective tool for predicting coronary artery calcification. 

We demonstrated the potential integration of our AI-ECG model into clinical workflow by showing 

its dual utility: it can either screen individuals who would benefit most from CACS measurement, 

or directly guide decisions regarding statin therapy initiation or withholding through patient 

reclassification. The ubiquitous availability of ECGs, combined with our finding that the AI-ECG 

model serves as an independent risk factor for cardiovascular events, suggests its potential for 

incorporation as a CVD risk prediction tool. Particularly in routine health screenings where ECGs 

are universally performed, AI-ECG-based CAC prediction could enable opportunistic CAC 

screening in the general population, paving the way for earlier detection and timely implementation 

of primary prevention strategies. 

                                                                                

Key words: coronary artery calcification, coronary artery calcium score, artificial intelligence, 

electrocardiogram, AI-ECG, health screening, primary prevention 
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1. INTRODUCTION 

 

1.1. Background 

 

1.1.1. Coronary artery calcification 

 

Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and 

mortality worldwide, imposing a substantial burden on individuals and healthcare systems. The 

estimated number of individuals aged 20 and older affected by coronary heart disease in the United 

States is 18.2 million1. Each year, around 605,000 Americans experience their first myocardial 

infarction, while over 200,000 have a recurrent event2. In 2016, the health care costs associated with 

coronary heart disease amounted to $80 billion in the United States3. Early identification of 

individuals at high risk is critical for implementing preventive measures and reducing adverse 

cardiovascular events. 

In current clinical practice, cardiovascular disease (CVD) risk prediction frameworks, such 

as the American College of Cardiology/American Heart Association (ACC/AHA) Pooled Cohort 

Equations (PCE), evaluate an individual's risk of developing CVD by incorporating clinical 

variables4. These frameworks guide recommendations for primary prevention strategies based on 

the calculated risk score. However, risk assessment often yields borderline or intermediate 

classifications where the decision to initiate treatment remains uncertain. In these cases, coronary 

artery calcium (CAC) scoring is recommended by several guidelines as an additional measure to 

guide primary prevention decisions5-7. The presence of CAC (i.e., CAC score > 0) in such individuals 

often tips the balance toward initiating primary prevention measures such as statin therapy, whereas 

the absence of CAC may sometimes lead to recommendations to withhold statins. 

Coronary artery calcification (CAC) is associated with the progression of advanced 

atherosclerosis8,9. The coronary artery calcium score (CACS), assessed by computed tomography 

(CT) to quantify calcium deposits in the coronary arteries, serves as an excellent measure of 

atherosclerotic plaque burden8-11. Numerous studies validate that CAC is indicative of subclinical 

atherosclerosis12-14. The presence and burden of CAC provide direct evidence of the extent of 

coronary artery disease (CAD) and predict future cardiovascular events independently of traditional 

risk factors, with predictive power that has been widely corroborated and surpasses that of any other 

non-invasive biomarker for this condition9,15-21. These insights have positioned CAC scoring as a 

valuable tool for stratifying cardiovascular risk. 
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Despite its clinical value and inclusion in several guidelines for cardiovascular risk 

stratification, routine CAC measurement is limited by significant barriers. CT-based CAC scoring 

involves high costs, exposes patients to radiation, and is largely inaccessible in resource-limited 

settings. Moreover, insurance coverage for CAC screening is virtually nonexistent22,23, further 

restricting its widespread adoption. These limitations underscore the need for alternative methods to 

identify the disease early in a cost-effective and accessible manner. 

 

1.1.2. Potential of artificial intelligence in electrocardiogram analysis 

 

In contrast, an electrocardiogram (ECG) stands as a sensitive, cost-effective, non-invasive, 

and radiation-free diagnostic tool commonly utilized in various health evaluations. The recent 

application of artificial intelligence (AI) techniques to ECGs has enabled the automatic classification 

or diagnosis of various cardiac diseases, such as arrhythmia and ischemia24-28. Moreover, with the 

leverage of deep convolutional neural networks on ECGs, numerous AI models proficiently 

identifying diseases and conditions that were previously undetectable through conventional ECG 

interpretation have emerged27,29. Importantly, many of these advanced AI models have demonstrated 

their effectiveness through rigorous prospective validation in real-world scenarios. For example, 

Attia et al. (2019) developed an AI-enabled ECG (AI-ECG) algorithm capable of identifying patients 

with atrial fibrillation during normal sinus rhythm, while Noseworthy et al. (2022) found in a 

prospective trial that the AI-guided targeted screening of atrial fibrillation with ECGs actually 

resulted in a significant increase in atrial fibrillation detection rates, particularly among those 

classified as high-risk by the algorithm30,31. Moreover, Attia et al. (2019) developed an AI-ECG 

algorithm capable of identifying patients at a high likelihood of low ejection fraction, while Yao et 

al. (2021) found in a pragmatic randomized clinical trial that the usage of this AI-powered clinical 

decision support tool significantly improved the early diagnosis of patients with low ejection fraction 

in routine primary care settings32,33.  

Furthermore, various techniques have been introduced to visually explain AI-ECG 

predictions, which is crucial as it transforms the AI from a black-box model to a transparent and 

interpretable tool34,35. For example, van de Leur et al. (2022) and Wouters et al. (2023) pre-trained 

a variational autoencoder (VAE) model to learn the intrinsic factors influencing median beat ECG 

morphology in an unsupervised manner35,36. They then used this pre-trained VAE model to explain 

ECG morphological features related to various ECG diagnosis statements, reduced ejection fraction, 

mortality, and outcomes following cardiac resynchronization therapy35,36. 

If an AI-ECG can predict CAC, individuals undergoing ECGs can gain valuable insights 

into potential ASCVD risks. Especially in routine health screenings, where ECGs are universally 
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performed, this approach could enable opportunistic screening for coronary artery calcification in 

the general population, paving the way for earlier detection and timely implementation of primary 

prevention strategies.  

 

1.2. Related studies 

 

In a study by Farjo et al. (2020)37, a logistic regression machine learning model was 

developed to predict CACS of 400 or higher using ECG features from continuous wavelet transforms 

alongside various clinical features. To our knowledge, this was the first study to create a machine 

learning model for predicting CACS. The study used data from 534 subjects, split into training (80%) 

and testing (20%) sets. A second cohort of 87 patients undergoing invasive coronary angiography 

was used to validate the model. The machine learning models were developed to predict binary 

outcomes: CAC = 0 and CAC ≥ 400. The CAC = 0 model, based on clinical features, achieved an 

area under the receiver operating characteristics curve (AUROC) of 0.84, with sensitivity, specificity, 

and accuracy of 92%, 70%, and 75%, respectively. The CAC ≥ 400 model, using both ECG and 

clinical features, had an AUROC of 0.87, with sensitivity, specificity, and accuracy of 91%, 75%, 

and 81%, respectively. The CAC ≥ 400 model was also tested for its ability to predict outcomes such 

as coronary artery stenosis, revascularization needs, and major adverse cardiovascular events in 

patients. The CAC ≥ 400 model significantly predicted the need for revascularization (P < 0.001), 

and major adverse cardiovascular events during a two-year follow-up period. The machine learning 

models demonstrated the ability to use easily obtainable clinical and ECG data to predict CACS and 

stratify cardiovascular risk, potentially providing a low-risk, non-invasive alternative to current 

methods. However, none of the ECG features ranked among the top three most important factors. 

Instead, the top three were coronary artery disease, age, and sex, suggesting that clinical features 

played a more significant role than ECGs in predicting CACS of 400 or higher in this study. More 

advanced AI methods, such as deep convolutional neural networks, could be essential for extracting 

more complex features from ECG data to enhance predictive accuracy. While the study demonstrates 

the potential of using machine learning models based on ECG and clinical data for cardiovascular 

risk assessment, it emphasizes the need for further research with larger and more diverse populations 

to fully realize the clinical utility of these approaches. 

A study by Han et al. (2022)38 explored the potential of applying deep learning to ECGs to 

predict CACS. The research developed binary classification models using deep convolutional neural 

networks to predict CACS (≥ 100, ≥ 400, and ≥ 1000) solely from ECG waveform data. The model 

development and internal validation dataset included 8,178 ECGs from 5,765 patients, and the 

external validation dataset included 1,745 ECGs from 877 patients. The ECG data were paired with 

CACS measured within 60 days of the ECG recording to ensure that the CAC values remained 
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relevant to the corresponding ECG data. In the internal validation, the models achieved AUROC 

scores of 0.753, 0.802, and 0.835 for CACS ≥ 100, ≥ 400, and ≥ 1000, respectively. Similarly, in 

the external validation, the models showed AUROCs of 0.718, 0.777, and 0.803, indicating that the 

models were generalizable across different populations. The AI models outperformed traditional 

logistic regression models that relied on conventional ECG features. This suggests that deep learning 

techniques are better at detecting subtle signals in ECGs that may correlate with coronary artery 

calcification, making them more effective for predicting CAC. However, the study had several 

limitations. However, a notable limitation of this study is the lack of exclusion of individuals with 

clinical ASCVD. According to guidelines5-7, CAC scoring is not recommended for individuals with 

clinical ASCVD, as they are already candidates for primary prevention or more advanced treatments. 

Consequently, AI-ECG-based CAC prediction holds no utility for this group. Without excluding 

individuals with clinical ASCVD, it is unclear whether the model's performance is biased toward 

those with an existing diagnosis or symptoms, and whether it would be equally effective for those 

who are the intended targets of opportunistic detection. Another limitation was the lack of 

demonstration of an association between the AI model’s predictions and actual cardiovascular 

disease outcomes. Furthermore, the impact of the AI model on decision-making remains unclear, as 

it was not demonstrated how the predictions could guide clinical care or influence therapeutic 

strategies. Additionally, the study lacked interpretability in the AI model, as no techniques were 

incorporated to explain how the model made its predictions. This “black box” nature is a common 

challenge in deep learning models. Additionally, the study's dataset was relatively small, with only 

8178 ECGs used for training and validation, potentially limiting the model’s ability to generalize to 

broader, more diverse populations.  

A study by Awasthi et al. (2023)39 developed and tested AI models designed to detect CAD 

using ECGs. This research aimed to enhance the detection of CAD and improve risk stratification 

for acute coronary events and mortality. The study utilized a large dataset from over 7 million 

patients across more than 70 hospitals and clinics in the United States, focusing on individuals 

without a prior history of ASCVD. The study developed separate AI models to detect three specific 

markers of CAD: elevated CACS, obstructive coronary artery disease, and regional left ventricular 

akinesis, which could indicate possible prior myocardial infarction. These models achieved high 

levels of accuracy, with AUROC scores of 0.88 for detecting CACS of 300 or greater, 0.85 for 

identifying obstructive CAD, and 0.94 for detecting regional left ventricular akinesia. This level of 

accuracy suggests the AI models are highly effective at detecting underlying coronary disease from 

ECG data alone. One of the study’s key findings was that the AI models could predict the risk of 

acute coronary events and all-cause mortality over time periods as short as three years, even in 

patients who had no known history of ASCVD. Patients who tested positive on one, two, or all three 

AI models were found to have progressively higher hazard ratios for acute coronary events, 

including myocardial infarctions, compared to those who tested negative. For instance, patients 

testing positive on all three models had a significantly higher risk of acute coronary events over a 
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three-year period, with a hazard ratio of 11.75, compared to those with no positive results. The study 

also highlighted the potential clinical utility of AI-ECGs in providing more timely risk assessments 

than conventional methods. However, one limitation of the study was the lack of interpretability in 

the AI models, as no techniques were employed to explain how the models made their predictions. 

Additionally, regarding the CACS prediction model, it was unclear whether the cohort used in the 

study included individuals with clinical ASCVD for whom CAC scoring is not recommended 

according to guidelines5-7, as they are already candidates for primary prevention or advanced 

treatments. As a result, AI-ECG-based CAC prediction has no utility for individuals with clinical 

ASCVD. Without excluding this group, it is unclear whether the model’s performance is biased 

toward those with existing diagnoses or symptoms and whether it would be similarly effective for 

the intended population targeted for opportunistic detection. 

 

1.3. Objectives 

 

In this study, we developed an AI-ECG model to predict coronary artery calcification and 

validated its potential for opportunistic screening in health screening settings. To ensure broader 

applicability, we performed external validation in health screening settings at two separate 

institutions. We evaluated the clinical implications and potential impact of our AI-ECG model on 

decision-making through multinational retrospective cohort analyses spanning two different 

countries. We also provided visual morphological explainability of model predictions. 

A more detailed overview of the study is provided below (Figure 1). We developed our AI-

ECG model predicting coronary artery calcification using an extensive dataset comprising over 

194,000 ECGs annotated with CACS. We then tested the model on a health screening dataset 

comprising individuals with both ECG and CT-derived CAC measurements obtained during their 

evaluations, validating its potential for opportunistic screening. We then conducted external 

validations using health screening datasets from separate institutions to evaluate the model’s 

applicability in distinct yet potentially analogous populations. Additionally, we validated the clinical 

implications of our AI-ECG model through multinational retrospective cohort analyses using the 

UK Biobank (UKB), a dataset representative of the general population in the United Kingdom, and 

a health screening dataset from South Korea, focusing on cardiovascular events. We assessed how 

effectively the AI-ECG model reclassifies individuals for initiating primary prevention decisions, 

beyond traditional risk assessment tools, to evaluate its potential impact on decision-making. 

Moreover, we examined whether the AI-ECG model serves as an independent risk factor for 

predicting cardiovascular events. Finally, we integrated a pre-trained VAE model to provide visual 

morphological explainability, as described in previous studies35,36. 



6 

 

 

Figure 1. Overview of the study.  

CACS: coronary artery calcium score; ECG: electrocardiogram; AI: artificial intelligence; AI-ECG: 

artificial intelligence-enabled electrocardiogram; VAE: variational autoencoder. 
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2. METHODS 

 

2.1. Data sources and labeling 

 

2.1.1. Data for model development and testing 

 

The standard 12-lead ECG data and electronic medical records (EMR) from Severance 

Hospital (SH) were utilized for AI-ECG model development and internal validation (Figures 2-5). 

The 12-lead ECG database from SH, sourced from the General Electric (GE) Healthcare MUSETM 

system, encompasses approximately 5.6 million ECG records from 1.4 million individuals, spanning 

from 1993 to 2022. The database incorporates data from health screenings. This database consists 

of raw waveforms (one-dimensional ECG signal), measurement metrics like heart rate, PR interval, 

and QT interval, along with automatic ECG interpretations generated by the GE ECG machine. Each 

ECG recording has a duration of 10 seconds with sampling rates of either 500 Hz or 250 Hz. The 

GE ECG algorithm constructs a median waveform for each ECG recording, spanning 1.2 seconds. 

This is achieved by aligning all QRS complexes of identical shape and deriving a representative 

QRS complex using the median voltage. This median waveform is also incorporated into the 

database. 

From the EMR database, we retrieved CT readings of heart-related scans conducted 

between November 2005 and August 2022 for individuals aged 18 and above. Examples of CT 

readings containing CACS are shown in Table 1. Notably, CT scans undertaken during health 

screenings were available from December 2010 to August 2022. To extract the CACS from these 

CT readings, we employed regular expressions, using a comprehensive range of search terms such 

as “calcium score” and “CAC score” to ensure all relevant CACS were extracted. 

Data from individuals with both ECG recordings and CACS from CT readings were used 

to develop the AI-ECG model for predicting CACS (Figures 3 and 4). Specifically, ECGs recorded 

during health screenings were extracted if a corresponding CAC measurement via CT was 

performed during the same visit (Figure 4). These ECGs were subsequently labeled with the 

corresponding CACS. These ECGs were designated as the health screening hold-out test dataset. 

ECGs not recorded during health screenings were extracted if their recordings fell within a 30-day 

period surrounding the CAC measurements, either preceding or following them, and these ECGs 

were subsequently labeled with the respective CACS (Figure 3). We chose this 30-day window since 

CAC is a gradually progressing condition, making it unlikely for significant changes to be observed 
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within a month40,41. While a longer time window might provide more samples, it also increases the 

potential for substantial variation in the CACS. Thus, we chose a time window of 30 days to balance 

between these trade-offs. In instances where multiple CAC measurements were taken within this 

30-day period relative to an ECG, the ECG was labeled with the CACS from the closest date. These 

ECGs constituted the model development dataset. ECGs bearing automatic interpretations that 

included any of the following phrases were excluded: “lead reversal,” suggesting potential lead 

misplacement; “poor quality,” signifying the presence of artifacts; and “pacemaker,” indicating the 

potential presence of an artificial pacemaker. To prevent data leakage and overestimation of 

performance, ECGs from individuals present in the health screening test dataset were additionally 

excluded from the model development dataset. The model development dataset was then randomly 

partitioned into training and validation datasets at an 80:20 ratio, stratified by CACS ≥ 400, while 

ensuring no overlap of individuals between the two.  
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Figure 2. Data flow diagram (SH, overview). 

SH: Severance Hospital; ECG: electrocardiogram; CACS: coronary artery calcium score; CT: 

computed tomography. 

  



10 

 

 

Figure 3. Data flow diagram (SH, model development dataset). 

SH: Severance Hospital; ECG: electrocardiogram; CACS: coronary artery calcium score; CT: 

computed tomography 
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Figure 4. Data flow diagram (SH, health screening test dataset). 

SH: Severance Hospital; ECG: electrocardiogram; CACS: coronary artery calcium score; CT: 

computed tomography 
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Figure 5. Data flow diagram (SH, cohort analysis dataset). 

SH: Severance Hospital; ECG: electrocardiogram; CT: computed tomography, KOSTAT: Statistics 

Korea 
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Table 1. Examples of CT readings containing CACS. The table shows two examples of CT 

readings in which regular expression was applied to extract CACS. We have bolded the sentences 

including the CACS. 

 CT reading 

Example 1 Average heart rate : 58 bpm, Reconstruction cardiac phase : 74% 

Extensive calcified plaques at all three coronary arteries. 

The maximum diameter stenosis of LAD is 43%. 

Moderate stenosis (57%) of 1st diagonal branch. 

The maximum diameter stenosis of LCX is 39%. 

Discrete near total occlusion at distal PL branch. 

Agatston calcium score is 1385. 

Global LV systolic function is within normal range. 

(Indexed values, LVEF: 77%, LVEDV: 69 mL/m2) 

There is no evidence of intracardiac mass in LV and LA. 

Valve calcification is not seen. 

No evidence of pericardial thickening or calcification or effusion. 

Diffuse atherosclerosis at thoracic aorta. 

Normal lung parenchyma on covered scan area. 

  

Conclusion) 

1. Extensive calcified plaques at all three coronary arteries. 

    - with moderate stenosis of 1st diagonal branch. 

    - with discrete near total occlusion at PL branch. 

2. Diffuse atherosclerosis at thoracic aorta. 

-- Two vessel disease 

adv) coronary angiography 

Example 2 Average heart rate : 49 bpm, Reconstruction cardiac phase : 74% 

Coronary arteries are well pacified without significant stenosis or calcified 

plaque. 

Agatston calcium score is zero. 

LV function is within normal range. 

(LVEF: 70%, LVEDV: 86 mL) 

There is no evidence of intracardiac mass in LV and LA. 

Valve calcification is not seen. 

No evidence of pericardial thickening or calcification or effusion. 

Normal lung parenchyma and thoracic cage on covered scan area. 

  

Conclusion) 

Normal coronary CT angiogram (Ca. score=0) 

CT: computed tomography; CACS: coronary artery calcium score; LAD: left anterior descending 

artery; LCX: left circumflex artery; LVEF: left ventricular ejection fraction; LVEDV: left 

ventricular end-diastolic volume; LA: left atrium; LV: left ventricle; PL: posterolateral 
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2.1.2. Data for external validations 

 

We conducted external validations of our AI-ECG model using health screening data from 

two separate institutions: Yongin Severance Hospital (YSH) and Ajou University Medical Center 

(AUMC) (Figures 6 and 7). The standard 12-lead ECG database from YSH, sourced from the GE 

Healthcare MUSETM system, encompasses approximately 222,000 ECG records from 102,000 

individuals, spanning from March 2020 to July 2023 (Figure 6). The database incorporates data from 

health screenings. We retrieved CACS from CT reports produced during health screenings between 

April 2020 and August 2022, utilizing the same search criteria as applied to the SH database. The 

standard 12-lead ECG database from AUMC, also sourced from the GE Healthcare MUSETM system, 

encompasses approximately 1.7 million ECG records from 740,000 individuals, spanning from 1993 

to July 2020 (Figure 7). The database incorporates data from health screenings. We retrieved CACS 

from CT reports produced during health screenings between October 2003 and September 2012, 

utilizing the same search criteria as applied to the SH database. ECGs recorded during these health 

screenings were selected and labeled with the respective CACS if a corresponding CT scan from the 

same visit was available. Each ECG recording had a duration of 10 seconds, with sampling rates of 

either 500 Hz or 250 H. Each database entry also includes a median waveform, lasting 1.2 seconds. 

The exclusion criteria based on automatic interpretation phrases, as used for the SH database, were 

also applied to the ECGs from YSH and AUMC. 
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Figure 6. Data flow diagram (YSH).  

YSH: Yongin Severance Hospital; ECG: electrocardiogram; CACS: coronary artery calcium score; 

CT: computed tomography. 
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Figure 7. Data flow diagram (AUMC). 

AUMC: Ajou University Medical Center; ECG: electrocardiogram; CACS: coronary artery calcium 

score; CT: computed tomography. 
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2.1.3. Data for multinational retrospective cohort analyses 

 

We conducted multinational retrospective cohort analyses using datasets from two different 

countries to validate whether the AI-ECG model could predict future cardiovascular events (Figures 

5 and 8). This cohort analysis is essential for verifying the AI-ECG model's potential clinical 

relevance and its impact on decision-making.  

First, data from individuals undergoing health screenings at SH, with only ECG recordings, 

but without CACS from CT readings, from September 15, 2012 to September 14, 2016, were used 

(Figure 5). ECGs from patients included in the model development dataset, those missing clinical 

data, not linked with mortality data, those with automatic interpretation phrases including “lead 

reversal,” “poor quality,” or “pacemaker,” and those with prior cardiovascular events were excluded.  

Secondly, we utilized data from the UKB, a large-scale biomedical database representing 

the general population of the United Kingdom42. Established in 2006, the UKB cohort is a significant 

international health resource that has gathered extensive data and biological samples from 

approximately half a million participants aged 40 to 69 years at the time of enrollment. In 2015, the 

UKB launched its imaging study, aiming to scan 20% of the original cohort. Resting 12-lead ECG 

data were collected during this imaging study, which we used for our analysis (Figure 8). 
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Figure 8. Data flow diagram (UKB, cohort analysis dataset). 

UKB: United Kingdom Biobank; ECG: electrocardiogram 
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2.2. Data preprocessing 

 

2.2.1. ECG sampling rate and lead selection 

 

All SH, YSH, AUMC and UKB data underwent identical preprocessing methods. ECGs 

with a sampling rate of 250 Hz underwent upsampling to 500 Hz using linear interpolation, ensuring 

a uniform 500 Hz rate across all ECGs. Each waveform was standardized with z-score normalization, 

bringing the mean to 0 and the standard deviation to 1. According to the Einthoven law and 

Goldberger equation, only two of the six limb leads (leads I, II, III, aVR, aVL, aVF) are needed to 

calculate the other four43. Therefore, using any two limb leads provides the same information as all 

six. We thus used eight leads (leads I, II, V1-V6) from the 12 available as input. 

 

2.2.2. Data augmentation 

 

During the training phase, we employed a data augmentation strategy. Although ECG 

changes linked to coronary artery calcification are not well-studied, prior knowledge indicates that 

coronary heart disease-related ECG findings are more often morphological than rhythm-based44. 

Thus, we hypothesized that calcification-related ECG changes would similarly involve 

morphological features and reasoned that analyzing a 2.5-second segment, rather than the full 10-

second ECG, would suffice. Thus, for every training epoch, we randomly chose a distinct 2.5-second 

segment from the 10-second ECG, introducing slight variations in the data across epochs to emulate 

data augmentation effectively. For the internal validation, internal testing, external validation, and 

retrospective cohort analyses datasets, the 10-second ECGs were segmented into four non-

overlapping 2.5-second intervals, and all segments were evaluated for consistency. 

 

2.3. AI-enabled ECG model development 

 

We utilized the raw waveforms of the ECGs as input and adopted the 1-dimensional variant 

of EfficientNet-B0 for our AI-ECG model architecture (Table 2, Figure 9)45. We trained our 

EfficientNet model without leveraging any pre-trained weights. Given that our dataset exhibited 

class imbalance—a known factor that can adversely affect classification performance—we 
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implemented widely recognized techniques to counterbalance its effects46. Specifically, we 

employed both oversampling of the minority class and undersampling of the majority class. In each 

training epoch, we adjusted the training dataset by randomly oversampling the minority class and 

randomly undersampling the majority class, so that both classes were of equal size while preserving 

the original training dataset's total size. Hyperparameter optimization was achieved through 

comprehensive empirical tests and grid search, leading us to select a batch size of 512, a learning 

rate of 0.01, and the Adam optimizer. The choice to deploy the EfficientNet-B0 architecture arose 

from these hyperparameter optimization trials: Among various network scales, kernel sizes, and 

strides of EfficientNet explored, the default 1-dimensional version of EfficientNet-B0 demonstrated 

superior performance. To guard against over-fitting, we implemented early stopping during training, 

contingent upon observed validation loss. 

Ensemble learning refers to a methodology that combines multiple individual models to 

achieve better generalization performance47,48. We built 25 individual EfficientNet-B0 models using 

the same training strategies. For each of these models, we generated outputs from four non-

overlapping 2.5-second intervals within 10-second ECGs, resulting in a total of 25 × 4 = 100 outputs. 

This approach was applied across the internal validation, internal testing, external validation, and 

retrospective cohort analysis datasets. We then adopted a soft voting ensemble method, averaging 

these 100 outputs to obtain the final result. Consequently, the average area under the receiver 

operating characteristics curve (AUROC) on the test set improved from 0.706 (standard deviation 

0.004) for individual EfficientNet-B0 models to 0.720 for CAC > 0 and from 0.822 (standard 

deviation 0.003) for individual models to 0.841 for CAC ≥ 400 after applying the soft voting 

ensemble method. 
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Table 2. Neural network architecture summary (EfficientNet-B0). 

 

 

 

 

 

 

 

 

 

Conv1d: 1-dimensional convolution; SepConv: depthwise separable convolution; MBConv: mobile 

inverted bottleneck convolution; AvgPool: average pooling 

  

EfficientNet-B0 

Stage Operator Output shape Layers 

Input  8 × 1250  

1 Conv1d (k=3) 32 × 625 1 

2 SepConv (k=3) 16 × 625 1 

3 MBConv (k=3) 24 × 313 2 

4 MBConv (k=5) 40 × 157 2 

5 MBConv (k=3) 80 × 79 3 

6 MBConv (k=5) 112 × 79 3 

7 MBConv (k=5) 192 × 40 4 

8 MBConv (k=3) 320 × 40 1 

9 Conv1d (k=1) 1280 × 40 1 

10 AvgPool 1280 1 

11 Linear 2 1 
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Figure 9. EfficientNet-B0 architecture. 

Conv1d: 1-dimensional convolution; SepConv: depthwise separable convolution; MBConv: mobile 

inverted bottleneck convolution; AvgPool: average pooling 
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2.4. Pre-trained VAE model development 

 

We integrated a pre-trained VAE model to provide visual morphological explainability, as 

described in previous studies (Table 3, Figures 10 and 11)35,36,49. This methodology employs a VAE 

architecture to learn the intrinsic factors influencing median beat ECG morphology in an 

unsupervised manner. The VAE comprises two primary components: the encoder, which translates 

the input ECG data into a condensed latent space, termed ECG factors, and the decoder, which 

interprets points from this latent space (ECG factors) to approximate the initial data space, aiming 

to reconstruct the original input data as closely as possible35,36,49. The VAE’s training objective 

encompasses two loss metrics. The first, known as the reconstruction loss, measures how well the 

decoded data matches the original data. The second, the Kullback-Leibler Divergence loss, 

quantifies the deviation of the encoded distribution (ECG factors) from a predetermined distribution, 

typically a standard Gaussian. The aggregate loss constitutes a balanced summation of these metrics 

with an appropriate ratio. By decoding the ECG factors and delineating their impact on median beat 

ECG morphology, individual ECG factor interpretability becomes feasible. The unsupervised 

training nature of VAEs allows for capitalizing on expansive datasets and provides an automated 

method to unveil inherent data structures efficiently. In essence, the VAE model efficiently 

compresses any ECG to a set number of descriptive, independent factors and can also reproduce or 

create ECGs using these factors. 

We pre-trained the VAE model using the entire set of 5.6 million median waveforms from 

the standard 12-lead ECG database of SH. We randomly divided this dataset in a 9:1 ratio (while 

ensuring no individual overlap) to create the training and validation sets. We explored the essential 

hyperparameters outlined by previous studies35,36: the summation ratio (β) between the two loss 

components and the number of ECG factors. In our current experiment settings, we found that 48 

ECG factors and a β value of 16 yield the most optimal VAE model during factor traversal 

assessments. Consequently, we adopted the model trained with these hyperparameters. To guard 

against over-fitting, we implemented early stopping during training, contingent upon observed 

validation loss. We found that 29 ECG factors were significant, and the factor traversals for these 

are reported in Figures 12-19. 
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Table 3. Neural network architecture summary (VAE). 

VAE: variational autoencoder; AvgPool: average pooling 

 

  

Pre-trained variational autoencoder 

Stage Operator Output shape Layers 

Input  8 × 600  

1 CausalConvolutionBlock 128 × 600 7 

2 CausalConvolutionBlock 64 × 600 1 

3 AvgPool 64 1 

4: latent space Linear, Softplus μ: 48  σ: 48 1 

5 Reparameterization 48 1 

6 Linear 64 1 

7 Linear 38400 1 

8 Reshape 64 × 600 1 

9 CausalConvolutionBlock 128 × 600 7 

10 CausalConvolutionBlock 8 × 600 1 

11: output Flatten, Linear, Softplus, Reshape μ: 8 × 600, σ: 8 × 600 1 
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Figure 10. VAE architecture (overview). 

VAE: variational autoencoder 
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Figure 11. VAE architecture (specific). 

VAE: variational autoencoder 
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Figure 12. Factor traversals of all the ECG factors (lead I). 29 ECG factors (factor numbers 1, 

2, 4, 5, 7, 8, 11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48) 

were significant. 

ECG: electrocardiogram 
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Figure 13. Factor traversals of all the ECG factors (lead II). 29 ECG factors (factor numbers 1, 

2, 4, 5, 7, 8, 11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48) 

were significant. 

ECG: electrocardiogram 
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Figure 14. Factor traversals of all the ECG factors (lead V1). 29 ECG factors (factor numbers 1, 

2, 4, 5, 7, 8, 11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48) 

were significant. 

ECG: electrocardiogram 
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Figure 15. Factor traversals of all the ECG factors (lead V2). 29 ECG factors (factor numbers 1, 

2, 4, 5, 7, 8, 11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48) 

were significant. 

ECG: electrocardiogram 
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Figure 16. Factor traversals of all the ECG factors (lead V3). 29 ECG factors (factor numbers 1, 

2, 4, 5, 7, 8, 11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48) 

were significant. 

ECG: electrocardiogram 
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Figure 17. Factor traversals of all the ECG factors (lead V4). 29 ECG factors (factor numbers 1, 

2, 4, 5, 7, 8, 11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48) 

were significant. 

ECG: electrocardiogram 
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Figure 18. Factor traversals of all the ECG factors (lead V5). 29 ECG factors (factor numbers 1, 

2, 4, 5, 7, 8, 11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48) 

were significant. 

ECG: electrocardiogram 
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Figure 19. Factor traversals of all the ECG factors (lead V6). 29 ECG factors (factor numbers 1, 

2, 4, 5, 7, 8, 11, 12, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 48) 

were significant. 

ECG: electrocardiogram 
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2.5. Outcomes 

 

2.5.1. AI-ECG model training objective 

 

We set the training objective of the EfficientNet model to predict CACS ≥ 400 as a binary 

classification task. This threshold was selected because a CAC score above 400 is clinically 

recognized as signifying a high risk of a cardiovascular event and is classified as “severe disease”, 

providing an imperative benchmark for early intervention and risk stratification15,16,50-52. While this 

threshold guided the model’s training, its utility is not limited to this specific threshold. Coronary 

artery calcification represents a diverse disease process, characterized by variability in histological 

features and degrees of atherosclerosis progression53. The model generates outputs on a continuous 

scale, inherently capturing patterns relevant to various levels of calcification across different CACS.  

 

2.5.2. XGBoost model using VAE features 

 

Subsequently, ECG factors from the pre-trained VAE model were employed to construct 

an XGBoost model to predict CACS ≥ 400. This model was trained, validated, and tested using the 

same corresponding datasets as the EfficientNet model. Using Shapley Additive exPlanations 

(SHAP) analysis54, we determined which ECG factors had the greatest impact on the prediction. We 

applied the SHAP method to the test dataset. For the interpretation of the top contributing ECG 

factors, we utilized a method termed “factor traversals”35,36: By modulating the values of an 

individual ECG factor from -3 (represented in blue) to 3 (represented in red), advancing in 

increments of 1.5 units, and then using the decoder part of the VAE model to reconstruct the ECG, 

we were able to overlay these reconstructed ECGs on a single plot. The reconstructed ECG 

corresponding to an ECG factor value of 0 was shown in grey. This visualization allowed us to 

comprehend the variations in ECG morphology attributable to each individual ECG factor. The 

factor traversals of all the significant ECG factors from our pre-trained VAE model are provided in 

Figures 12-19. 
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2.6. Performance evaluation 

 

2.6.1. Performance comparison 

 

For performance comparison, we constructed an XGBoost model that uses traditional ECG 

features (ventricular rate, atrial rate, PR interval, QRS duration, QT interval, QT interval corrected, 

P axis, R axis, T axis) provided by a built-in software in the ECG machine (GE MUSETM) with the 

training objective of predicting CACS ≥ 400. 

 

2.6.2. Performance metrics and risk categorization 

 

We evaluated the performance of the AI-ECG model in predicting CACS ≥ 400 and also 

CACS > 0. We generated receiver operating characteristic (ROC) curves and precision-recall (PR) 

curves, subsequently evaluating the area under the ROC curve (AUROC) and the area under the PR 

curve (AUPRC). 

We classified PCE risk scores into low, moderate, and high-risk categories using the 7.5% 

and 20% thresholds, in line with current cholesterol management guidelines, which recommend 

initiation of primary prevention with statins for those in the moderate or high-risk categories4. 

However, for borderline or intermediate classifications, where the decision to initiate treatment 

remains uncertain, guidelines recommend that the presence of CAC supports initiating primary 

prevention measures, while its absence suggests refraining from such measures5-7. 

Therefore, in the PCE low-risk category, it would be beneficial for the AI-ECG to increase 

the likelihood of identifying the presence of CAC. Conversely, in the PCE moderate-risk category, 

it would be advantageous for the AI-ECG to improve the detection of individuals without CAC. 

Accordingly, in the validation set of the model development dataset, the threshold at which the 

positive predictive value (PPV) for a CACS > 0 is 0.800 was defined as AI-ECG high risk. Similarly, 

the threshold at which the negative predictive value (NPV) for a CACS > 0 is 0.800 was defined as 

AI-ECG low risk. Individuals falling between these thresholds were categorized as AI-ECG 

moderate risk. At the determined thresholds, we calculated performance metrics for CAC ≥ 400 and 

> 0, including accuracy, sensitivity, specificity, PPV, NPV, and the F1 score. 
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2.7. Multinational retrospective cohort analyses 

 

We conducted multinational retrospective cohort analyses using datasets from two different 

countries. First, we used SH health screening data. Diagnostic records (in International 

Classification of Disease, 10th Revision [ICD-10] codes) from individuals included in the SH health 

screening data for the cohort analysis were extracted from their EMR database. In South Korea, a 

government organization called Statistics Korea (KOSTAT) offers a service that links researchers' 

data with mortality data, based on resident registration numbers, following specific ethical and 

application procedures. Data from SH health screenings for the cohort analysis was linked with 

KOSTAT mortality data. The KOSTAT mortality data includes information on whether the 

individual is deceased, the date of death, and the cause of death (in ICD-10 codes).  

Survival analyses were conducted to assess the occurrence of major adverse cardiovascular 

event (MACE). MACE was defined as an aggregate of fatal or non-fatal myocardial infarction (I21 

- I25), ischemic stroke (I63 and I64), or cardiovascular death55, with cardiovascular death also 

defined using the same ICD-10 codes for fatal or non-fatal myocardial infarction and ischemic stroke 

in the mortality data. Individuals who experienced a MACE before the health screening date or 

within 90 days after the health screening date were excluded from the analysis. The reason for setting 

a 90-day washout period after the health screening date was to exclude cases where pre-existing 

cardiovascular disease was detected through additional tests following abnormal findings during the 

health screening. The survival analysis observation period began after the 90-day washout. For the 

remaining individuals, data were censored at the date of the first MACE, 10 years from the health 

screening date, or August 10, 2024, whichever came first.  

Kaplan-Meier curves for MACE were plotted to compare the AI-ECG risk groups. The net 

reclassification improvement (NRI) was evaluated to assess up-risking or down-risking of 

individuals within the PCE low- or moderate-risk categories based on the AI-ECG-derived risk 

categories56. 

We assessed whether the AI-ECG model serves as an independent risk factor for MACE: 

Various risk factors measured during health screenings that are included in the PCE — including 

age, sex, diabetes mellitus, hypertension, smoking status, total cholesterol, high-density lipoprotein 

(HDL) cholesterol and systolic blood pressure — were extracted from the EMR database and used 

along with the AI-ECG output as independent variables, and MACE as the dependent variable in a 

Cox proportional hazards regression to evaluate the association between AI-ECG output and MACE, 

with appropriate adjustments.  

We evaluated whether the AI-ECG model adds predictive value beyond the PCE for MACE: 

The predictive performance of the PCE, measured by Harrell’s concordance index (C-index), was 
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compared with that of the combined PCE plus AI-ECG score. The PCE plus AI-ECG score for each 

individual was calculated as follows: “PCE score + AI-ECG score * 20”. 

We also conducted a retrospective cohort analysis using the UKB data. Clinical and 

outcome variables corresponding to those extracted from the SH dataset were also obtained from 

the UKB, with the codes used for extraction detailed in Table 4. Similarly, the AI-ECG output was 

derived from the UKB data, and the same analyses conducted for the SH dataset were performed on 

the UKB dataset. Individuals who experienced a MACE before the ECG measurement date were 

excluded from the analysis. Data were censored at the date of MACE, 6 years from the ECG 

measurement date, or November 2021 (final point where participants’ diagnostic codes were 

followed up), whichever came first. 

We also conducted subgroup analyses within the cohort analysis datasets. Within subgroups 

defined by sex, age (under 60 years and 60 years or older), and PCE risk category (low-risk group 

and moderate or higher-risk group), Cox proportional hazards regression was performed to evaluate 

the hazard ratio of the AI-ECG model's output, adjusting for the variables included in the PCE. 
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Table 4. Variables extracted from the UKB 

UKB: United Kingdom Biobank; HDL: high density lipoprotein; ECG: electrocardiogram, ICD-10: 

International Classification of Disease, 10th revision 

  

Description Category Coding 

Age at recruitment 
Baseline 

characteristics 
Field: 21022 

Sex 
Baseline 

characteristics 
Field: 31 

Diabetes diagnosed by doctor 
Medical 

conditions 
Field: 2443 

Medication for cholesterol, blood pressure or diabetes Medication Field: 6177 

Medication for cholesterol, blood pressure or diabetes, or 

exogenous hormones 
Medication Field: 6153 

Smoking status Smoking Field: 20116 

Systolic blood pressure Blood pressure Field: 4080 

Cholesterol Blood chemistry Field: 30690 

HDL cholesterol Blood chemistry Field: 30760 

Ethnic background Ethnicity Field: 21000 

ECG datasets 
ECG at rest, 12 

lead 
Field: 20205 

Acute myocardial infarction 

ICD-10: I21 
First occurrence Field: 131298 

Subsequent myocardial infarction 

ICD-10: I22 
First occurrence Field: 131300 

Certain current complications following acute 

myocardial infarction 

ICD-10: I23 

First occurrence Field: 131302 

Other acute ischemic heart disease 

ICD-10: I24 
First occurrence Field: 131304 

Chronic ischemic heart disease 

ICD-10: I25 
First occurrence Field: 131306 

Cerebral infarction 

ICD-10: I63 
First occurrence Field: 131366 

Stroke, not specified as hemorrhage or infarction 

ICD-10: I64 
First occurrence Field: 131368 

Date of death Death register Field: 40000 

Underlying (primary) cause of death: ICD-10 Death register Field: 40001 



40 

 

2.8. Statistical analysis 

 

We compared the characteristics between the datasets. We evaluated the normality of 

continuous data using the Shapiro-Wilk test. Normally distributed continuous variables were 

compared using the independent samples t-test, while non-normally distributed variables were 

compared using the Mann–Whitney U test for two-group comparisons. For comparisons among 

three or more groups, analysis of variance (ANOVA) and Kruskal–Wallis tests were used, 

respectively. Categorical data were analyzed using the chi-square test, while comparisons of 

AUROCs utilized the Delong test57.  

For Harrell’s C-index and the NRI, the 95% confidence intervals (CIs) were determined 

based on 2,000 bootstrapping (resampling with replacement) runs, with the 2.5th and 97.5th 

percentile borders reported58. The Kaplan–Meier method was used to plot survival curves for the 

low-, moderate-, and high-risk groups based on the risk scoring methods. The pairwise log-rank test 

with post-hoc Bonferroni correction was used to compare the survival functions across these risk 

groups statistically. The p-values for the incidence rate differences and hazard ratio differences were 

calculated using the z-test. Statistical significance was set at P <0.05 for all tests. 

 

2.9. Software 

 

Neural network models were developed in Python (version 3.8.5) utilizing the “PyTorch” 

framework (version 1.11.0). SHAP analysis was conducted using the “shap” library (version 0.43.0) 

in Python. For model evaluation and further statistical analyses, we used the “Scikit-learn” library 

(version 0.23.2) in Python. The Delong test was conducted using the “pROC” library (version 1.18.4) 

in R (version 4.2.0). The Cox proportional hazards regression was conducted using the “survival” 

library (version 3.2.7) in R. 

 

2.10. Ethics approval 

 

The Institutional Review Boards (IRB) of SH, YSH and AUMC approved this study and 

waived the requirement for informed consent because only anonymized data were used 

retrospectively (IRB no. 4-2022-1299 and 4-2022-1506 [SH], 9-2024-0032 [YSH], AJOUIRB-DB-
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2024-207 [AUMC]). The UKB was approved by the North West Multi-centre Research Ethics 

Committee as a Research Tissue Bank (RTB) approval (approval number: 21/NW/0157)42. This 

approval means that researchers do not require separate ethical clearance and can operate under RTB 

approval. All participants provided informed consent for participation. 
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3. RESULTS 

 

3.1. Dataset characteristics 

 

3.1.1. Dataset sizes 

 

The model development dataset from SH included 194,964 ECGs from 57,019 individuals 

and the health screening test dataset from SH included 14,242 ECGs from 12,924 individuals 

(Figures 2-4). The external validation dataset from YSH included 729 ECGs from 710 individuals 

and the external validation dataset from AUMC included 2056 ECGs from 1879 individuals (Figures 

6 and 7). The cohort analysis dataset from SH included 52,400 ECGs from 37,757 individuals 

(Figure 5). The cohort analysis dataset from UKB included 30,623 ECGs from 30,623 individuals 

(Figure 8). 

 

3.1.2. Dataset for model development, testing and external validations 

 

Table 5 shows the characteristics of the datasets used in the AI-ECG model development, 

testing and external validations. The test dataset and the external validation datasets, having been 

extracted from health screening data, represented a healthier spectrum of individuals, characterized 

by younger ages (mean [standard deviation, SD]: 53.1 [10.0] years, 57.1 [10.7] years and 51.1 [8.2] 

years vs. 61.8 [13.3] years, P < 0.001), lower CACS (mean [SD]: 59.0 [212.2] agatston units [AU], 

81.5 [274.8] AU and 36.4 [152.3] AU vs. 295.1 [920.9] AU, P < 0.001), and lower proportions of 

CACS ≥ 400 (3.8 %, 6.0 % and 2.5% vs. 17.8 %, P < 0.001) and CACS > 0 (37.9 %, 46.8 % and 

29.5 % vs. 62.0 %, P < 0.001), relative to the model development dataset.  

 

 



43 

 

Table 5. Dataset characteristics (model development, testing and external validation datasets). 

 
Model development 

dataset (SH) 

N = 194,963 

Health screening test 

dataset (SH) 

N = 14,242 

Health screening 

external validation 

dataset (YSH) 

N = 729 

Health screening 

external validation 

dataset (AUMC) 

N = 2056 

P-

Value 

Number of patients 57,019 12,926 710 1879  

Sex, male 108,828 (55.8%) 8,502 (59.7%) 427 (58.6%) 1540 (74.9%) <0.001 

Age 61.8 ± 13.3 53.1 ± 10.0 57.1 ± 10.7 51.1 ± 8.2 <0.001 

CACS 295.1 ± 920.9 59.0 ± 212.2 81.5 ± 274.8 36.4 ± 152.3 <0.001 

CACS > 0 120,837 (62.0%) 5394 (37.9%) 341 (46.8%) 606 (29.5%) <0.001 

CACS ≥ 400 34,637 (17.8%) 542 (3.8%) 44 (6.0%) 52 (2.5%) <0.001 

SH: Severance Hospital; YSH: Yongin Severance Hospital; AUMC: Ajou University Medical Center; CACS: coronary artery calcium 

score. 
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3.1.3. Dataset for multinational retrospective cohort analyses 

 

Tables 6 and 7 show the characteristics of the datasets used in the retrospective cohort 

analyses. Individuals who experienced a MACE within 10 years in the SH cohort analysis dataset 

(Table 6, N = 1611) were older (median [interquartile range]: 59 [52 – 65] years vs. 47 [38 – 55] 

years) and had a higher proportion of males (74.1% vs. 56.0%) compared to those without events 

(N = 50,789). They also had more comorbidities, including higher rates of diabetes mellitus (13.3% 

vs. 3.9%) and hypertension (32.0% vs. 12.0%). Their median systolic blood pressure was higher 

(median [IQR]: 125 [116–134] mmHg vs. 119 [109–129] mmHg), and they had elevated AI-ECG 

scores (median [IQR]: 0.283 [0.149–0.432] vs. 0.105 [0.038–0.235]) and PCE scores (median [IQR]: 

8 [4–14.8] vs. 1.9 [0.5–2.5]) compared to individuals without events. 

Individuals who experienced a MACE within 6 years in the UKB cohort analysis dataset 

(Table 7, N = 699) were older (median [IQR]: 61 [55–64] years vs. 55 [49–61] years) compared to 

those without events (N = 29,924). A higher proportion of males was observed (71.0% vs. 46.7%), 

and they had more comorbidities, including higher rates of diabetes mellitus (6.7% vs. 2.4%) and 

hypertension (24.5% vs. 12.1%). The proportion of current smokers was also higher (8.6% vs. 6.2%). 

They had elevated systolic blood pressure (median [IQR]: 140.5 [129–154.5] mmHg vs. 133 [122.5–

145.5] mmHg), lower HDL cholesterol (median [IQR]: 49.7 [42.4–58.2] mg/dL vs. 55.7 [46.8–66.4] 

mg/dL), higher AI-ECG scores (median [IQR]: 0.359 [0.233–0.479] vs. 0.202 [0.105–0.328]), and 

higher PCE scores (median [IQR]: 10.2 [5.6–15.5] vs. 4.3 [1.8–9.1]). 
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Table 6. Dataset characteristics (SH cohort analysis dataset). 

 
Positive for MACE  

N = 1611 

Negative for MACE 

N = 50,789 

P-

value 

Age, years [IQR] 59 [52 – 65] 47 [38 – 55] <0.001 

Sex (male) (%) 1193 (74.1%) 28,423 (56.0%) <0.001 

DM (%) 215 (13.3%) 1958 (3.9%) <0.001 

HTN (%) 516 (32.0%) 6071 (12.0%) <0.001 

Current smoker (%) 319 (19.8%) 9273 (18.3%) 0.122 

SBP, mmHg [IQR] 125 [116 – 134] 119 [109 – 129] <0.001 

Total cholesterol, mg/dL [IQR] 192 [169 – 215] 192 [170 – 215] 0.550 

HDL cholesterol, mg/dL [IQR] 48 [42 – 57] 52 [44 – 62] <0.001 

AI-ECG score [IQR] 0.283 [0.149 – 0.432] 0.105 [0.038 – 0.235] <0.001 

PCE score [IQR] 8 [4 – 14.8] 1.9 [0.5 – 2.5] <0.001 

SH: Severance Hospital; MACE: major adverse cardiovascular event; IQR: interquartile range; DM: 

diabetes mellitus; HTN: hypertension; SBP: systolic blood pressure; HDL: high-density lipoprotein; 

AI: artificial intelligence; ECG: electrocardiogram; PCE: Pooled Cohort Equations 
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Table 7. Dataset characteristics (UKB cohort analysis dataset). 

 
Positive for MACE  

N = 699 

Negative for MACE 

N = 29,924 

P-

value 

Age, years [IQR] 61 [55 – 64] 55 [49 – 61] <0.001 

Sex (male) (%) 496 (71.0%) 13,977 (46.7%) <0.001 

DM (%) 47 (6.7%) 724 (2.4%) <0.001 

HTN (%) 171 (24.5%) 3618 (12.1%) <0.001 

Current smoker (%) 60 (8.6%) 1863 (6.2%) 0.014 

SBP, mmHg [IQR] 140.5 [129 – 154.5] 133 [122.5 – 145.5] <0.001 

Total cholesterol, mg/dL [IQR] 218.3 [190.2 – 245.8] 220.4 [194 – 248.5] 0.100 

HDL cholesterol, mg/dL [IQR] 49.7 [42.4 – 58.2] 55.7 [46.8 – 66.4] <0.001 

AI-ECG score [IQR] 0.359 [0.233 – 0.479] 0.202 [0.105 – 0.328] <0.001 

PCE score [IQR] 10.2 [5.6 – 15.5] 4.3 [1.8 – 9.1] <0.001 

UKB: United Kingdom Biobank; MACE: major adverse cardiovascular event; IQR: interquartile 

range; DM: diabetes mellitus; HTN: hypertension; SBP: systolic blood pressure; HDL: high-density 

lipoprotein; AI: artificial intelligence; ECG: electrocardiogram; PCE: Pooled Cohort Equations 
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3.2. Model performance 

 

3.2.1. Model performance in the health screening test dataset 

 

Figures 20 and 21 display the ROC curves, and Figures 22 and 23 display the PR curves of 

the models. Our AI-ECG model exhibited AUROCs of 0.841 and 0.720 in predicting CACS ≥ 400 

and > 0, respectively, in the test dataset. The respective AUPRCs were 0.289 and 0.603. Tables 8 

and 9 show the performance metrics at the thresholds used to define the AI-ECG risk categories. AI-

ECG model output was correlated with CACS (Figure 24), demonstrating that the model is not 

confined to a single threshold but instead encodes information applicable to diverse CACS levels.  

Figure 25 illustrates the AI-ECG-derived reclassification within each PCE risk category in 

the health screening test dataset. Among the 10,719 individuals, 7519, 2652, and 548 were 

categorized as low, moderate, and high risk, respectively, based on the PCE. Among individuals 

categorized as low risk by the PCE, 45.7% of those classified as high risk by the AI-ECG were found 

to have CAC, which is higher than the overall proportion of CAC > 0 (24.9%) in the PCE low-risk 

category. Among individuals categorized as moderate risk by the PCE, 60.9% of those classified as 

low risk by the AI-ECG were CAC-free, which is higher than the overall proportion of CAC = 0 

(35.4%) in the PCE moderate-risk category. 
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Figure 20. ROC curves of the AI-ECG model (CACS ≥ 400). 

ROC: receiver operating characteristics; AI: artificial intelligence; ECG: electrocardiogram; CACS: 

coronary artery calcium score; AUROC: area under the receiver operating characteristics curve; 

YSH: Yongin Severance Hospital; AUMC: Ajou University Medical Center 
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Figure 21. ROC curves of the AI-ECG model (CACS > 0). 

ROC: receiver operating characteristics; AI: artificial intelligence; ECG: electrocardiogram; CACS: 

coronary artery calcium score; AUROC: area under the receiver operating characteristics curve; 

YSH: Yongin Severance Hospital; AUMC: Ajou University Medical Center 
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Figure 22. PR curves of the AI-ECG model (CACS ≥ 400). 

PR: precision-recall; AI: artificial intelligence; ECG: electrocardiogram; CACS: coronary artery 

calcium score; AUPRC: area under the precision-recall curve; YSH: Yongin Severance Hospital; 

AUMC: Ajou University Medical Center 
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Figure 23. PR curves of the AI-ECG model (CACS > 0). 

PR: precision-recall; AI: artificial intelligence; ECG: electrocardiogram; CACS: coronary artery 

calcium score; AUPRC: area under the precision-recall curve; YSH: Yongin Severance Hospital; 

AUMC: Ajou University Medical Center 
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Figure 24. Boxplot of AI-ECG score by CACS group. AI-ECG model output was correlated with 

CACS. The Pearson correlation coefficient between the AI-ECG model outputs and CACS was 

0.318 (P < 0.001). 

AI: artificial intelligence; ECG: electrocardiogram; AI-ECG: artificial intelligence-enabled 

electrocardiogram; CACS: coronary artery calcium score. 
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Table 8. AI-ECG performance for predicting CACS ≥ 400. The table presents performance 

metrics at the thresholds used to define the AI-ECG risk categories in the health screening test 

dataset (SH) and two external health screening validation datasets (YSH and AUMC). 

 Accuracy Sensitivity Specificity PPV NPV F1 score 

High risk vs. low/moderate risk category threshold for AI-ECG 

SH 0.903 0.498 0.920 0.196 0.979 0.281 

YSH 0.831 0.545 0.850 0.189 0.967 0.281 

AUMC 0.875 0.519 0.884 0.104 0.986 0.174 

High/moderate risk vs. low risk category threshold for AI-ECG 

SH 0.267 0.993 0.238 0.049 0.999 0.093 

YSH 0.211 0.977 0.162 0.070 0.991 0.130 

AUMC 0.183 1.000 0.162 0.030 1.000 0.058 

AI: artificial intelligence, ECG: electrocardiogram, CACS: coronary artery calcium score; SH: 

Severance Hospital; YSH; Yongin Severance Hospital; AUMC: Ajou University Medical Center; 

PPV: positive predictive value; NPV: negative predictive value. 
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Table 9. AI-ECG performance for predicting CACS > 0. The table presents performance metrics 

at the thresholds used to define the AI-ECG risk categories in the health screening test dataset (SH) 

and two external health screening validation datasets (YSH and AUMC). 

 Accuracy Sensitivity Specificity PPV NPV F1 score 

High risk vs. low/moderate risk category threshold for AI-ECG 

SH 0.661 0.180 0.954 0.707 0.656 0.287 

YSH 0.594 0.252 0.894 0.677 0.576 0.368 

AUMC 0.721 0.241 0.922 0.564 0744 0.338 

High/moderate risk vs. low risk category threshold for AI-ECG 

SH 0.544 0.915 0.318 0.450 0.861 0.603 

YSH 0.569 0.944 0.240 0.522 0.830 0.672 

AUMC 0.416 0.939 0.198 0.329 0.886 0.487 

AI: artificial intelligence, ECG: electrocardiogram, CACS: coronary artery calcium score; SH: 

Severance Hospital; YSH; Yongin Severance Hospital; AUMC: Ajou University Medical Center; 

PPV: positive predictive value; NPV: negative predictive value. 

 

 

  



55 

 

 

Figure 25. AI-ECG-derived reclassification within each PCE risk category (SH, health 

screening test dataset). “ProportionCAC” refers to the proportion of individuals with CAC > 0. 

AI: artificial intelligence; ECG: electrocardiogram; AI-ECG: artificial intelligence-enabled 

electrocardiogram; PCE: Pooled Cohort Equations; SH: Severance Hospital; CAC: coronary artery 

calcification; CACS: coronary artery calcium score. 
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3.2.2. Model performance in the external validations 

 

In the external validations, the AI-ECG model maintained its efficacy, achieving AUROCs 

of 0.784 and 0.814, and AUPRCs of 0.237 and 0.122 in the YSH and AUMC datasets, respectively, 

for predicting CACS ≥ 400 (Figures 20 and 22), and AUROCs of 0.691 and 0.701, and AUPRCs of 

0.651 and 0.493 in the YSH and AUMC datasets, respectively, for predicting CACS > 0 (Figures 21 

and 23). Comparing the AUROC between the test dataset and the external validation datasets 

showed no significant difference (DeLong test [unpaired, two-sided], SH vs. YSH P = 0.112, SH vs. 

AUMC P = 0.350 for CACS ≥ 400, and SH vs. YSH P = 0.151, SH vs. AUMC P = 0.152 for CACS 

> 0). This underscores the model's generalizability to external environments. 

 

3.2.3. Performance comparison 

 

The XGBoost model, constructed with traditional ECG features for performance 

comparison, exhibited AUROCs of 0.668 and 0.600 in predicting CACS ≥ 400 and > 0, respectively, 

in the test dataset (Figures 26-29). The AI-ECG model outperformed the XGBoost model using 

traditional ECG features in all comparisons (Delong test, P < 0.001). 
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Figure 26. ROC curves (XGBoost using traditional ECG features, CACS ≥ 400). 

ROC: receiver operating characteristics; ECG: electrocardiogram; CAC: coronary artery calcium; 

AUROC: area under the receiver operating characteristics curve; YSH: Yongin Severance Hospital; 

AUMC: Ajou University Medical Center 
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Figure 27. ROC curves (XGBoost using traditional ECG features, CACS > 0). 

ROC: receiver operating characteristics; ECG: electrocardiogram; CAC: coronary artery calcium; 

AUROC: area under the receiver operating characteristics curve; YSH: Yongin Severance Hospital; 

AUMC: Ajou University Medical Center 
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Figure 28. PR curves (XGBoost using traditional ECG features, CACS ≥ 400). 

PR: receiver operating characteristics; ECG: electrocardiogram; CAC: coronary artery calcium; 

AUPRC: area under the precision-recall curve; YSH: Yongin Severance Hospital; AUMC: Ajou 

University Medical Center 
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Figure 29. PR curves (XGBoost using traditional ECG features, CACS > 0). 

PR: receiver operating characteristics; ECG: electrocardiogram; CAC: coronary artery calcium; 

AUPRC: area under the precision-recall curve; YSH: Yongin Severance Hospital; AUMC: Ajou 

University Medical Center 
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3.3. Multinational retrospective cohort analyses 

 

3.3.1. SH cohort analysis dataset 

 

Figure 30 illustrates the AI-ECG-derived reclassification within each PCE risk category in 

the SH cohort analysis dataset. Among the 52,400 individuals, 43,142, 7712, and 1546 were 

categorized as low, moderate, and high risk, respectively, based on the PCE. The MACE incidence 

rate (IR) per 1000 person-years (PY) was 1.9 for the PCE low-risk category and 9.2 for the PCE 

moderate-risk category, respectively. Among individuals classified as low risk by PCE but high risk 

by AI-ECG, the MACE IR per 1000 PY was 6.0, which was higher than the 3.3 observed in those 

classified as moderate risk by PCE but low risk by AI-ECG (P = 0.007). Within both the PCE low-

risk and moderate-risk groups, there was a significant difference in Kaplan-Meier curves based on 

AI-ECG risk categories (Figure 31A, log-rank test P < 0.001; post-hoc pairwise comparisons: Low 

vs. Moderate P < 0.001, Moderate vs. High P < 0.001; adjusted significance level with Bonferroni 

correction: 0.5/2 = 0.025. Figure 31B, log-rank test P < 0.001; post-hoc pairwise comparisons: Low 

vs. Moderate P < 0.001, Moderate vs. High P < 0.001; adjusted significance level with Bonferroni 

correction: 0.5/2 = 0.025). The NRI for up-risking or down-risking based on AI-ECG within the 

PCE low- or moderate-risk categories (Figure 30) was 4.6% (95% CI: 3.2% – 5.9%) among events 

and -1.8% (95% CI: -2.0% – -1.6%) among non-events, resulting in a total NRI of 2.8% (95% CI: 

1.4% – 4.1%) (Table 10A). 

Table 11 presents the results of the Cox proportional hazards regression analysis for MACE. 

In the SH cohort analysis dataset, during a median follow-up of 7.9 years (interquartile range: 6.9 – 

8.9 years), 1,110 individuals (1,611 ECGs) experienced a MACE. To facilitate a more intuitive 

interpretation of the data, we adjusted the scale of the AI-ECG output in the analysis. The AI-ECG 

output, originally presented on a scale from 0 to 1, was rescaled to a new range of 0 to 10 by 

multiplying it by a factor of ten. Consequently, the adjusted hazard ratios (HRs) for the AI-ECG 

output, as presented in Table 11, now reflect the change in hazards associated with a 10% absolute 

increase in the AI-ECG output. The analysis revealed significant positive associations between the 

AI-ECG output and the likelihood of MACE. For every 10% absolute increase in the AI-ECG output, 

the adjusted hazard for MACE was 1.087 (95% CI: 1.053 – 1.123) after adjusting for clinical 

variables. This indicates that the AI-ECG output is an independent risk factor for MACE. The PCE 

plus AI-ECG score, which yielded a C-index of 0.796 (Table 12, 95% CI: 0.782 – 0.802), surpassed 

the PCE by a difference of 0.010 (95% CI: 0.007 – 0.013) in the C-index.  
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Figure 30. AI-ECG-derived reclassification within each PCE risk category (SH, cohort 

analysis dataset). 

AI: artificial intelligence; ECG: electrocardiogram; AI-ECG: artificial intelligence-enabled 

electrocardiogram; PCE: Pooled Cohort Equations; SH: Severance Hospital; MACE: major adverse 

cardiovascular event; IR: incidence rate; PY: person-year; CAC: coronary artery calcification; 

CACS: coronary artery calcium score. 
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Figure 31. Kaplan-Meier curves (SH cohort analysis dataset). (A) Kaplan-Meier curves stratified 

by AI-ECG risk categories within the PCE low-risk group. (B) Kaplan-Meier curves stratified by 

AI-ECG risk categories within the PCE moderate-risk group. 

SH: Severance Hospital; AI: artificial intelligence; ECG: electrocardiogram; AI-ECG: artificial 

intelligence-enabled electrocardiogram; PCE: Pooled Cohort Equations. 
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Table 10. Net reclassification improvement. The NRI for up-risking or down-risking based on AI-

ECG within the PCE low- or moderate-risk categories. 

(A) SH cohort analysis dataset 

 Up-risked, % 

(95% CI) 

Down-risked, % 

(95% CI) 

  

Number of 

cases  

(N = 1384) 

5.5 

(4.3 – 6.7) 

0.9 

(0.5 – 1.5) 

Event NRI, % 

(95% CI) 

4.6 

(3.2 – 5.9) 

Number of 

controls 

(N = 49,470) 

2.7 

(2.5 – 2.8) 

0.9 

(0.8 – 1.0) 

Non-event NRI, % 

(95% CI) 

-1.8 

(-2.0 – -1.6) 

   NRI, % 

(95% CI) 

2.8 

(1.4 – 4.1) 

 

(B) UKB cohort analysis dataset 

 Up-risked, % 

(95% CI) 

Down-risked, % 

(95% CI) 

  

Number of 

cases  

(N = 604) 

5.5 

(3.7 – 7.4) 

1.7 

(0.7 – 2.7) 

Event NRI, % 

(95% CI) 

3.8 

(1.7 – 6.0) 

Number of 

controls 

(N = 28,679) 

3.6 

(3.4 – 3.8) 

1.3 

(1.2 – 1.5) 

Non-event NRI, % 

(95% CI) 

-2.3 

(-2.5 – -2.0) 

   NRI, % 

(95% CI) 

1.5 

(-0.6 – 3.7) 

 

NRI: net reclassification improvement; SH: Severance Hospital; UKB: United Kingdom Biobank; 

CI: confidence interval. 
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Table 11. Cox regression analysis results. The AI-ECG output, originally presented on a scale 

from 0 to 1, was rescaled to a new range of 0 to 10 by multiplying it by a factor of ten. 

 SH cohort analysis dataset UKB cohort analysis dataset  
Adjusted HR  

(95% CI) 

P-Value Adjusted HR 

(95% CI) 

P-Value 

Age, years  1.074  

(1.068 – 1.080) 

<0.001 1.064  

(1.052 – 1.077) 

<0.001 

Sex (male) 1.926  

(1.709 – 2.172) 

<0.001 1.729  

(1.441 – 2.075) 

<0.001 

DM 1.536  

(1.321 – 1.785) 

<0.001 1.690 

(1.232 – 2.319) 

0.001 

HTN 1.407  

(1.255 – 1.577) 

<0.001 1.300  

(1.076 – 1.571) 

0.006 

Current smoker 1.221  

(1.071 – 1.392) 

0.003 1.397 

(1.069 – 1.824) 

0.014 

SBP, mmHg 1.003  

(1.000 – 1.007) 

0.078 1.008  

(1.003 – 1.012) 

<0.001 

Total cholesterol, mg/dL 1.002  

(1.001 – 1.004) 

0.007 1.002 

(1.000 – 1.004) 

0.047 

HDL cholesterol, mg/dL 0.994  

(0.990 – 0.998) 

0.005 0.979  

(0.972 – 0.986) 

<0.001 

AI-ECG score * 10 1.087  

(1.053 – 1.123) 

<0.001 1.117 

(1.061 – 1.175) 

<0.001 

SH: Severance Hospital; UKB: United Kingdom Biobank; HR: hazard ratio; CI: confidence interval; 

DM: diabetes mellitus; HTN: hypertension; SBP: systolic blood pressure; HDL: high-density 

lipoprotein; AI: artificial intelligence; ECG: electocardiogram 
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Table 12. C-index comparison. The C-index of the PCE for predicting MACE was 0.786 (95% CI: 

0.777 – 0.796) in the SH cohort analysis dataset and 0.724 (95% CI: 0.705 – 0.741) in the UKB 

cohort analysis dataset. 

 
C-index of the PCE plus 

AI-ECG score (95% CI) 

Differences in C-index 

with the PCE (95% CI) 

SH cohort analysis dataset 0.796 (0.786 – 0.806) 0.010 (0.007 – 0.013) 

UKB cohort analysis dataset 0.735 (0.716 – 0.754) 0.011 (0.004 – 0.019) 

SH: Severance Hospital; UKB: United Kingdom Biobank; PCE: Pooled Cohort Equations; MACE: 

major adverse cardiovascular event; CI: confidence interval; AI: artificial intelligence; ECG: 

electrocardiogram 
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3.3.2. UKB cohort analysis dataset 

 

Figure 32 illustrates the AI-ECG-derived reclassification within each PCE risk category in 

the UKB cohort analysis dataset. Among the 30,623 individuals, 20,744, 8539, and 1340 were 

categorized as low, moderate, and high risk, respectively, based on the PCE. The MACE IR per 

1000 PY was 3.1 for the PCE low-risk category and 11.5 for the PCE moderate-risk category, 

respectively. Among individuals classified as low risk by PCE but high risk by AI-ECG, the MACE 

IR per 1000 PY was 8.3, which was higher than the 7.0 observed in those classified as moderate risk 

by PCE but low risk by AI-ECG, although the difference did not reach statistical significance (P = 

0.360). Within the PCE low-risk group, there was a significant difference in Kaplan-Meier curves 

between individuals categorized as high and moderate risk by AI-ECG (Figure 33A, log-rank test: 

P < 0.001; post-hoc pairwise comparisons: low vs. moderate, P = 0.035; moderate vs. high, P < 

0.001; adjusted significance level using Bonferroni correction: 0.025). However, within the PCE 

moderate-risk group, no significant difference was observed in Kaplan-Meier curves between the 

AI-ECG low- and moderate-risk groups (Figure 33B, log-rank test: P < 0.001; post-hoc pairwise 

comparisons: low vs. moderate, P = 0.361; moderate vs. high, P < 0.001; adjusted significance level 

using Bonferroni correction: 0.025). The NRI for up-risking or down-risking based on AI-ECG 

within the PCE low- or moderate-risk categories (Figure 32) was 3.8% (95% CI: 1.7% – 6.0%) 

among events and -2.3% (95% CI: -2.5% – -2.0%) among non-events, resulting in a total NRI of 

1.5% (95% CI: -0.6% – 3.7%) (Table 10B). 

Table 11 presents the results of the Cox proportional hazards regression analysis for MACE. 

In the UKB cohort analysis dataset, during a median follow-up of 3.5 years (interquartile range: 2.5 

– 5.0 years), 699 individuals experienced a MACE. For every 10% absolute increase in the AI-ECG 

output, the adjusted hazard for MACE was 1.117 (95% CI: 1.061 – 1.175) after adjusting for clinical 

variables (Table 11). This indicates that the AI-ECG output is an independent risk factor for MACE. 

The PCE plus AI-ECG score, which yielded a C-index of 0.735 (Table 12, 95% CI: 0.716 – 0.754), 

surpassed the PCE by a difference of 0.011 (95% CI: 0.004 – 0.019) in the C-index. 
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Figure 32. AI-ECG-derived reclassification within each PCE risk category (UKB, cohort 

analysis dataset). 

AI: artificial intelligence; ECG: electrocardiogram; AI-ECG: artificial intelligence-enabled 

electrocardiogram; PCE: Pooled Cohort Equations; UKB: United Kingdom Biobank; MACE: major 

adverse cardiovascular event; IR: incidence rate; PY: person-year; CAC: coronary artery 

calcification; CACS: coronary artery calcium score. 
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Figure 33. Kaplan-Meier curves (UKB cohort analysis dataset). (A) Kaplan-Meier curves 

stratified by AI-ECG risk categories within the PCE low-risk group. (B) Kaplan-Meier curves 

stratified by AI-ECG risk categories within the PCE moderate-risk group. 

UKB: United Kingdom Biobank; AI: artificial intelligence; ECG: electrocardiogram; AI-ECG: 

artificial intelligence-enabled electrocardiogram; PCE: Pooled Cohort Equations. 
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3.3.3. Subgroup analyses 

 

Figure 34 shows the hazard ratios of the AI-ECG model by subgroup. The association 

between the AI-ECG model and MACE remained consistent across all demographic and PCE-based 

subgroups. In the SH cohort analysis dataset, for every 10% absolute increase in the AI-ECG output, 

the adjusted hazard for MACE was 1.106 (95% CI: 1.057–1.158) in the age < 60 subgroup, 1.083 

(95% CI: 1.036–1.133) in the age ≥ 60 subgroup, 1.090 (95% CI: 1.021–1.164) in the female 

subgroup, 1.090 (95% CI: 1.050–1.131) in the male subgroup, 1.100 (95% CI: 1.046–1.156) in the 

low-risk (PCE) subgroup, and 1.092 (95% CI: 1.048–1.139) in the moderate or high-risk (PCE) 

subgroup, after adjusting for clinical variables. There were no differences in adjusted HR 

comparison between subgroups (P-value for hazard ratio comparison: 0.518, 0.988, and 0.844, 

respectively). In the UKB cohort analysis dataset, for every 10% absolute increase in the AI-ECG 

output, the adjusted hazard for MACE was 1.085 (95% CI: 1.006–1.171) in the age < 60 subgroup, 

1.141 (95% CI: 1.065–1.222) in the age ≥ 60 subgroup, 1.135 (95% CI: 1.034–1.247) in the female 

subgroup, 1.109 (95% CI: 1.044–1.178) in the male subgroup, 1.106 (95% CI: 1.016–1.204) in the 

low-risk (PCE) subgroup, and 1.113 (95% CI: 1.046–1.184) in the moderate or high-risk (PCE) 

subgroup, after adjusting for clinical variables. There were no differences in adjusted HR 

comparison between subgroups (P-value for hazard ratio comparison: 0.342, 0.677, and 0.912, 

respectively). 
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Figure 34. Hazard ratios of the AI-ECG model by subgroups. The hazard ratios were adjusted 

for the variables included in the PCE (age, sex, diabetes mellitus, hypertension, smoking status, total 

cholesterol, high-density lipoprotein cholesterol and systolic blood pressure). The AI-ECG output, 

originally presented on a scale from 0 to 1, was rescaled to a new range of 0 to 10 by multiplying it 

by a factor of ten. 

 

AI: artificial intelligence; ECG: electrocardiogram; AI-ECG: artificial intelligence-enabled 

electrocardiogram; PCE: Pooled Cohort Equations; HR: hazard ratio; CI: confidence interval; SH: 

Severance Hospital; UKB: United Kingdom Biobank 
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3.4. Interpretation 

 

The XGBoost model constructed with ECG factors derived from the pre-trained VAE 

model demonstrated an AUROC of 0.734 in the test dataset. Figure 35 shows the SHAP summary 

plot of the top 10 important features of the XGBoost model using ECG factors, and Figures 36–40 

provide visualizations of the important ECG factors: Upward shift of the ST segment in the 

anteroseptal leads with reciprocal downward shift of the ST segment in the inferolateral leads (lower 

values of ECG factor 48), downward shift of the ST segment in all leads (lower values of ECG factor 

39), longer PR interval (higher values of ECG factor 36), increased QRS amplitude in the 

anterolateral leads with decreased QRS amplitude in the inferoseptal leads (lower values of ECG 

factor 23), and shorter TP interval (lower values of ECG factor 31) were associated with increased 

predicted risk. 
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Figure 35. SHAP summary plot of XGBoost model using VAE features. Top 10 important 

features as shown by SHAP analysis. 

SHAP: Shapley Additive exPlanations; VAE: variational autoencoder; ECG: electrocardiogram 
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Figure 36. Factor traversals of ECG factor 48. Upward shift of the ST segment in the anteroseptal 

leads with reciprocal downward shift of the ST segment in the inferolateral leads (lower values of 

ECG factor 48), downward shift of the ST segment in all leads (lower values of ECG factor 39), 

longer PR interval (higher values of ECG factor 36), increased QRS amplitude in the anterolateral 

leads with decreased QRS amplitude in the inferoseptal leads (lower values of ECG factor 23), and 

shorter TP interval (lower values of ECG factor 31) were associated with increased predicted risk. 

ECG: electrocardiogram 

 

  



75 

 

 

Figure 37. Factor traversals of ECG factor 39. Upward shift of the ST segment in the anteroseptal 

leads with reciprocal downward shift of the ST segment in the inferolateral leads (lower values of 

ECG factor 48), downward shift of the ST segment in all leads (lower values of ECG factor 39), 

longer PR interval (higher values of ECG factor 36), increased QRS amplitude in the anterolateral 

leads with decreased QRS amplitude in the inferoseptal leads (lower values of ECG factor 23), and 

shorter TP interval (lower values of ECG factor 31) were associated with increased predicted risk. 

ECG: electrocardiogram 
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Figure 38. Factor traversals of ECG factor 36. Upward shift of the ST segment in the anteroseptal 

leads with reciprocal downward shift of the ST segment in the inferolateral leads (lower values of 

ECG factor 48), downward shift of the ST segment in all leads (lower values of ECG factor 39), 

longer PR interval (higher values of ECG factor 36), increased QRS amplitude in the anterolateral 

leads with decreased QRS amplitude in the inferoseptal leads (lower values of ECG factor 23), and 

shorter TP interval (lower values of ECG factor 31) were associated with increased predicted risk. 

ECG: electrocardiogram 
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Figure 39. Factor traversals of ECG factor 23. Upward shift of the ST segment in the anteroseptal 

leads with reciprocal downward shift of the ST segment in the inferolateral leads (lower values of 

ECG factor 48), downward shift of the ST segment in all leads (lower values of ECG factor 39), 

longer PR interval (higher values of ECG factor 36), increased QRS amplitude in the anterolateral 

leads with decreased QRS amplitude in the inferoseptal leads (lower values of ECG factor 23), and 

shorter TP interval (lower values of ECG factor 31) were associated with increased predicted risk. 

ECG: electrocardiogram 

 

 

  



78 

 

 

Figure 40. Factor traversals of ECG factor 31. Upward shift of the ST segment in the anteroseptal 

leads with reciprocal downward shift of the ST segment in the inferolateral leads (lower values of 

ECG factor 48), downward shift of the ST segment in all leads (lower values of ECG factor 39), 

longer PR interval (higher values of ECG factor 36), increased QRS amplitude in the anterolateral 

leads with decreased QRS amplitude in the inferoseptal leads (lower values of ECG factor 23), and 

shorter TP interval (lower values of ECG factor 31) were associated with increased predicted risk. 

ECG: electrocardiogram 
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3.5. Compliance with reporting guidelines 

 

The Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 

Diagnosis (TRIPOD) Checklist for Prediction Model Development and Validation was followed 

(Table 13)59. 
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Table 13. TRIPOD checklist (prediction model development and validation). Items relevant 

only to the development of a prediction model are denoted by D, items relating solely to a validation 

of a prediction model are denoted by V, and items relating to both are denoted D;V59. 

Section/Topic Item  Checklist Item Location 

Title and abstract 

Title 1 D;V 

Identify the study as developing and/or 

validating a multivariable prediction 

model, the target population, and the 

outcome to be predicted. 

Appropriate title 

Abstract 2 D;V 

Provide a summary of objectives, study 

design, setting, participants, sample size, 

predictors, outcome, statistical analysis, 

results, and conclusions. 

Appropriate abstract 

Introduction 

Background 

and objectives 

3a D;V 

Explain the medical context (including 

whether diagnostic or prognostic) and 

rationale for developing or validating the 

multivariable prediction model, including 

references to existing models. 

1.1. Background 

3b D;V 

Specify the objectives, including whether 

the study describes the development or 

validation of the model or both. 

1.3. Objectives 

Methods 

Source of data 

4a D;V 

Describe the study design or source of data 

(e.g., randomized trial, cohort, or registry 

data), separately for the development and 

validation data sets, if applicable. 

2.1. Data sources 

and labeling 

2.7. Multinational 

retrospective cohort 

analyses 

4b D;V 

Specify the key study dates, including start 

of accrual; end of accrual; and, if 

applicable, end of follow-up. 

2.1. Data sources 

and labeling 

2.7. Multinational 

retrospective cohort 

analyses 

Participants 

5a D;V 

Specify key elements of the study setting 

(e.g., primary care, secondary care, general 

population) including number and location 

of centres. 

2.1. Data sources 

and labeling 

2.7. Multinational 

retrospective cohort 

analyses 

5b D;V Describe eligibility criteria for participants. 

2.1. Data sources 

and labeling 

2.7. Multinational 

retrospective cohort 

analyses 

5c D;V 
Give details of treatments received, if 

relevant. 

2.1. Data sources 

and labeling 

2.7. Multinational 

retrospective cohort 

analyses 
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Outcome 

6a D;V 

Clearly define the outcome that is 

predicted by the prediction model, 

including how and when assessed. 

2.5. Outcomes 

2.6. Performance 

evaluation 

6b D;V 
Report any actions to blind assessment of 

the outcome to be predicted. 

2.5. Outcomes 

2.6. Performance 

evaluation 

Predictors 

7a D;V 

Clearly define all predictors used in 

developing or validating the multivariable 

prediction model, including how and when 

they were measured. 

2.3. AI-enabled 

ECG framework 

development 

2.4. Outcomes 

7b D;V 

Report any actions to blind assessment of 

predictors for the outcome and other 

predictors. 

2.3. AI-enabled 

ECG model 

development 

2.5. Outcomes 

Sample size 8 D;V Explain how the study size was arrived at. 

2.1. Data sources 

and labeling 

2.7. Multinational 

retrospective cohort 

analyses 

Missing data 9 D;V 

Describe how missing data were handled 

(e.g., complete-case analysis, single 

imputation, multiple imputation) with 

details of any imputation method. 

2.1. Data sources 

and labeling 

2.7. Multinational 

retrospective cohort 

analyses 

Statistical 

analysis 

methods 

10a D 
Describe how predictors were handled in 

the analyses. 

2.2. Data 

preprocessing 

10b D 

Specify type of model, all model-building 

procedures (including any predictor 

selection), and method for internal 

validation. 

2.3. AI-enabled 

ECG model 

development 

2.5. Outcomes 

10c V 
For validation, describe how the 

predictions were calculated. 

2.3. AI-enabled 

ECG model 

development 

2.5. Outcomes 

10d D;V 

Specify all measures used to assess model 

performance and, if relevant, to compare 

multiple models. 

2.6. Performance 

evaluation 

10e V 

Describe any model updating (e.g., 

recalibration) arising from the validation, if 

done. 

N/A (not done) 

Risk groups 11 D;V 
Provide details on how risk groups were 

created, if done. 

2.7. Multinational 

retrospective cohort 

analyses 

Development 

vs. validation 
12 V 

For validation, identify any differences 

from the development data in setting, 

eligibility criteria, outcome, and predictors. 

2.1. Data sources 

and labeling 

2.7. Multinational 

retrospective cohort 

analyses 

Results 

Participants 13a D;V 
Describe the flow of participants through 

the study, including the number of 

3.1. Dataset 

characteristics 
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participants with and without the outcome 

and, if applicable, a summary of the 

follow-up time. A diagram may be helpful. 

13b D;V 

Describe the characteristics of the 

participants (basic demographics, clinical 

features, available predictors), including 

the number of participants with missing 

data for predictors and outcome. 

3.1. Dataset 

characteristics 

13c V 

For validation, show a comparison with the 

development data of the distribution of 

important variables (demographics, 

predictors and outcome). 

3.1. Dataset 

characteristics 

Model 

development 

14a D 
Specify the number of participants and 

outcome events in each analysis. 

3.1. Dataset 

characteristics 

14b D 

If done, report the unadjusted association 

between each candidate predictor and 

outcome. 

3.1. Dataset 

characteristics 

Model 

specification 

15a D 

Present the full prediction model to allow 

predictions for individuals (i.e., all 

regression coefficients, and model intercept 

or baseline survival at a given time point). 

3.2. Model 

performance 

3.3. Multinational 

retrospective cohort 

analyses 

15b D 
Explain how to the use the prediction 

model. 

2.3. AI-enabled 

ECG model 

development 

2.5. Outcomes 

Model 

performance 
16 D;V 

Report performance measures (with CIs) 

for the prediction model. 

3.2. Model 

performance 

3.3. Multinational 

retrospective cohort 

analyses 

Model-

updating 
17 V 

If done, report the results from any model 

updating (i.e., model specification, model 

performance). 

N/A (not done) 

Discussion 

Limitations 18 D;V 

Discuss any limitations of the study (such 

as nonrepresentative sample, few events 

per predictor, missing data). 

4.4. Limitations 

Interpretation 

19a V 

For validation, discuss the results with 

reference to performance in the 

development data, and any other validation 

data. 

4.2. Implications 

4.3. Strengths 

19b D;V 

Give an overall interpretation of the results, 

considering objectives, limitations, results 

from similar studies, and other relevant 

evidence. 

4.2. Implications 

4.3. Strengths 

Implications 20 D;V 
Discuss the potential clinical use of the 

model and implications for future research. 

4.2. Implications 

4.3. Strengths 

Other information 
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Supplementary 

information 21 D;V 

Provide information about the availability 

of supplementary resources, such as study 

protocol, Web calculator, and data sets. 

All information is 

provided in the main 

manuscript. 

Funding 
22 D;V 

Give the source of funding and the role of 

the funders for the present study.  

Not relevant to this 

manuscript. 

TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 

Diagnosis 
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4. DISCUSSION 

 

4.1. Summary of key findings 

 

In this study, we developed an AI-ECG model to predict coronary artery calcification and 

validated its potential for opportunistic screening using a health screening dataset. Our AI-ECG 

model showed strong performance in predicting CAC, achieving an AUROC of 0.841 for CACS ≥ 

400 and an AUROC of 0.720 for CAC > 0 in the health screening test dataset. Our AI-ECG model 

maintained robustness in external validation health screening datasets, underscoring its 

generalizability to various environments. In the PCE low-risk category, 24.9% had CAC > 0; among 

these individuals, the proportion increased to 45.7% when selecting those identified as high-risk by 

the AI-ECG model. In the PCE moderate-risk category, 35.4% had CACS = 0; among these 

individuals, the proportion increased to 60.9% when selecting those identified as low-risk by the AI-

ECG model. Among PCE low-risk individuals who were reclassified as high-risk by AI-ECG, the 

IR of MACE was higher compared to those in the PCE moderate-risk category who were reclassified 

as low-risk by AI-ECG (SH cohort analysis dataset MACE IR per 1000 PY: 6.0 vs. 3.3, UKB cohort 

analysis dataset MACE IR per 1000 PY: 8.3 vs. 7.0). AI-ECG was an independent risk factor for 

MACE (adjusted HR [95% CI]: 1.087 [1.053–1.123] in the SH cohort analysis dataset and 1.117 

[1.061–1.175] in the UKB cohort analysis dataset). AI-ECG provided additional predictive value 

beyond the PCE, with the combined PCE plus AI-ECG score outperforming the PCE alone in terms 

of C-index. The association between AI-ECG and MACE remained consistent across all 

demographic and PCE-based subgroups. We provided visual morphological interpretations of ECG 

factors associated with increased predicted risk, identifying potential changes such as upward shift 

of the ST segment in the anteroseptal leads with reciprocal downward shift in the inferolateral leads, 

downward shift of the ST segment in all leads, longer PR interval, and others, to be associated with 

CAC. 

 

4.2. Implications 

 

We demonstrated the potential integration of our AI-ECG model into the clinical workflow 

by assessing its effectiveness for CAC screening and its ability to reclassify individuals for initiating 

or withholding primary prevention decisions. Specifically, we showed that the AI-ECG model could 

screen individuals in the PCE low-risk group with the highest likelihood of having CAC, and those 
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in the PCE moderate-risk group with the lowest likelihood of having CAC. In the PCE low-risk 

category, where detecting CAC could recommend initiating primary prevention strategies, 24.9% of 

individuals had a CACS > 0. Of these, 3.2%–5.2% were classified as high risk by the AI-ECG model, 

with the proportion of individuals with CAC in this subgroup rising to 45.7%. Similarly, in the PCE 

moderate-risk category, where ruling out CAC could recommend withholding primary prevention 

strategies, 35.4% had a CACS = 0. Among these, 4.6%–5.7% were classified as low risk by the AI-

ECG model, with the proportion of CAC-free individuals in this subgroup reaching 60.9%. This 

suggests that the AI-ECG model could be used to screen and prioritize a small subset of individuals 

for whom CACS measurement would be most useful, especially given that routine CACS 

measurement is impractical due to cost, radiation exposure, or lack of insurance coverage21,22. 

Particularly in routine health screenings where ECGs are universally performed, AI-ECG-based 

CAC prediction could enable opportunistic CAC screening in the general population, paving the 

way for earlier detection and timely implementation of primary prevention strategies. 

Additionally, decisions regarding initiating or withholding statin therapy could be directly 

guided by AI-ECG risk reclassification. Across two cohort datasets, individuals classified as 

moderate risk by the PCE but as low risk by the AI-ECG model had a lower MACE IR than those 

classified as low risk by the PCE but as high risk by the AI-ECG model (MACE IR per 1000 PY: 

3.3 vs. 6.0 in the SH cohort; 7.0 vs. 8.3 in the UKB cohort). Thus, it would be more reasonable to 

withhold statin therapy (down-risk) in individuals classified as PCE moderate risk but AI-ECG low 

risk, and to initiate statin therapy (up-risk) in those classified as PCE low risk but AI-ECG high risk. 

This approach is further supported by the NRI for up-risking or down-risking based on AI-ECG 

within the PCE low- or moderate-risk categories, which was 2.8% (95% CI: 1.4%–4.1%) and 1.5% 

(95% CI: -0.6%–3.7%) in the two cohort datasets, respectively.  

We demonstrated that AI-ECG prediction serves as an independent risk factor for MACE 

and enhances the predictive value of conventional risk stratification tools, such as the PCE, with the 

combined PCE and AI-ECG scores outperforming the PCE alone in terms of the C-index. Given 

that ECG is a ubiquitous and cost-effective tool, these findings suggest that incorporating our AI-

ECG model as a novel risk factor into existing CVD risk prediction tools—or developing new CVD 

risk prediction tools that integrate AI-ECG—could provide significant advantages in predictive 

ability. Furthermore, the association between AI-ECG and MACE remained robust across all 

demographic and PCE-based subgroups, indicating that the AI-ECG model is effective across a 

diverse range of individuals and cardiovascular risk levels. Moreover, regarding the model’s 

generalizability and reproducibility, similar trends were observed when the AI-ECG model, 

primarily developed using data from an Asian population, was applied to a United Kingdom dataset 

for survival analysis. 

Previous studies have developed AI-ECG models capable of predicting CAC using only 

ECGs and have validated these models on a more general patient spectrum38,39. However, a notable 
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limitation of these studies is the lack of exclusion of individuals with clinical ASCVD. According 

to guidelines5-7, CAC scoring is not recommended for individuals with clinical ASCVD, as they are 

already candidates for primary prevention or more advanced treatments and evaluations. 

Consequently, AI-ECG-based CAC prediction holds no utility for this group. Without excluding 

individuals with clinical ASCVD, it is unclear whether the model's performance is biased toward 

those with an existing diagnosis or symptoms. In our current study, we sought to address this 

limitation by validating the AI-ECG model on individuals undergoing health screenings. Health 

screenings embody the principles of preventive medicine, primarily targeting asymptomatic 

individuals to proactively detect early-stage diseases and implement primary prevention when 

necessary. Although it is not possible to confirm that the health screening cohort was entirely 

subclinical, these individuals represented a healthier spectrum than patients undergoing outpatient 

CAC scoring, as evidenced by their younger age and lower CAC scores compared to the model 

development dataset. Furthermore, our retrospective cohort analyses excluded individuals with prior 

cardiovascular events, ensuring that our findings are clinically relevant for individuals without overt 

disease. 

While the association between CAC and structural changes in the heart has not been 

extensively studied, some recent studies indicates that higher CACS is linked to adverse cardiac 

remodeling, including increased left ventricular mass and larger aortic root diameter60,61. These 

findings suggest that higher CACS are linked to structural changes in the heart. Such structural 

changes may manifest as subtle alterations in the ECG that were previously undetectable to the 

human eye but can now be identified through the application of AI techniques30. In our results, the 

observation that higher CACS correlated with higher outputs from the AI-ECG model suggests that 

elevated CACS may be associated with more pronounced structural changes in the heart that the 

model was able to detect. 

We integrated a VAE model (pre-trained using 5.6 million ECGs) to provide visual 

morphological explainability, as described in previous studies35,36. This approach allowed us to 

mitigate the “black box” issue prevalent in traditional end-to-end deep learning techniques, enabling 

us to provide quantifiable visual interpretations of the morphological ECG changes linked to our 

prediction task. We found potential ECG changes such as upward shift of the ST segment in the 

anteroseptal leads with reciprocal downward shift of the ST segment in the inferolateral leads, 

downward shift of the ST segment in all leads, longer PR interval, increased QRS amplitude in the 

anterolateral leads with decreased QRS amplitude in the inferoseptal leads, and shorter TP interval 

that might be associated with CAC. Our literature review revealed that studies investigating ECG 

abnormalities associated with CAC are limited, and the findings are often conflicting: While some 

studies have identified associations between ST-T or Q wave abnormalities and CAC62, others have 

reported no such links63. Although further research is necessary to establish the associations between 

the possible morphological ECG changes identified in our study and CAC, novel data-driven AI-

based approaches, such as the one we employed, can open up new opportunities for exploration. 
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4.3. Strengths 

 

Our study has numerous strengths. Firstly, our AI-ECG model uniquely requires only ECGs 

for analysis, without the need for any additional clinical data, enhancing its usability in various 

clinical settings. It includes all ECGs regardless of medical anomalies, such as arrhythmias or 

ischemia, thereby increasing its applicability; the only exclusions are cases of lead misplacements, 

unwanted artifacts, and the presence of artificial pacemakers. This inclusive approach ensures that 

the model can be widely applicable across a diverse range of ECG readings. Second, our model has 

consistently demonstrated strong performance across multiple external validation cohorts, 

underscoring its reliability and adaptability in various clinical environments. Third, while there have 

been concerns about applying AI-ECG models developed on one racial or ethnic group to others64, 

our findings showed that similar trends were observed when our AI-ECG model, initially developed 

using data primarily from an Asian population, was applied to the United Kingdom dataset for 

survival analysis. This highlights the model’s robust performance across different racial and ethnic 

groups, reinforcing its potential for broader clinical application. Fourth, the training processes for 

both the AI-ECG and VAE models were conducted using exceptionally large datasets, which is a 

significant advantage. Specifically, nearly 200,000 ECGs were employed for the training and 

validation of the AI-ECG model, while more than 5 million ECGs were utilized to train the VAE 

model. Utilizing such large datasets helps to minimize the risk of overfitting, allows the models to 

capture a wider range of variabilities, and ultimately increases the confidence and generalizability 

of the models in clinical applications65,66. 

 

4.4. Limitations 

 

This study's findings should be interpreted in light of the following limitations. First, the 

retrospective design introduces some limitations. Although we validated our AI-ECG model using 

health screening data, potential selection bias may exist depending on who decided or was 

recommended to undergo CAC scoring during health screenings, a factor that cannot be precisely 

known due to the retrospective nature of the study. Additionally, because of its retrospective design, 

data not originally recorded, such as the presence or absence of symptoms, could not be extracted. 

Future prospective studies are necessary to confirm the findings of the study. Second, although the 

ACC/AHA PCE is a widely used CVD risk prediction model, applying it to the Korean and UK 

cohorts may introduce inaccuracies. Specifically, studies have shown that the PCE, developed based 

on American cohorts, tends to overestimate the risk in Asian and European populations67-70. This 

misalignment may affect the validity of the AI-ECG based risk reclassification of individuals 
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compared to the PCE in Korean and UK populations. Third, while mortality data linked using 

KOSTAT mortality records and resident registration numbers ensures 100% accuracy up to the end 

of follow-up date, the occurrence of cardiovascular events, extracted from EMRs, may be prone to 

incomplete capture: Events diagnosed at other hospitals may not be captured, and it is not possible 

to ascertain whether the diagnosis codes extracted from EMRs represent the patient’s first-ever 

diagnosis. Future studies should utilize longitudinal data with comprehensive diagnosis records that 

include diagnoses made at any institution. Fourth, in the UKB, clinical data were collected at the 

first assessment date, while resting ECGs were performed during a subsequent imaging visit, 

creating an unavoidable time gap that could have influenced the results. Fifth, the current model's 

explainability with the pre-trained VAE model is limited due to the ambiguous nature of some 

factors, which capture multiple ECG alterations simultaneously. Advancements in AI-based feature 

extraction methods might enhance our understanding of these ECG factors. 
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5. CONCLUSIONS 

 

In conclusion, our AI-ECG model proves to be an effective tool for predicting coronary 

artery calcification. We demonstrated the potential integration of our AI-ECG model into clinical 

workflow by showing its dual utility: it can either screen individuals who would benefit most from 

CACS measurement, or directly guide decisions regarding statin therapy initiation or withholding 

through patient reclassification. The ubiquitous availability of ECGs, combined with our finding 

that the AI-ECG model serves as an independent risk factor for cardiovascular events, suggests its 

potential for incorporation into CVD risk prediction tools. Particularly in routine health screenings 

where ECGs are universally performed, AI-ECG-based CAC prediction could enable opportunistic 

CAC screening in the general population, paving the way for earlier detection and timely 

implementation of primary prevention strategies. 
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ABSTRACT IN KOREAN 

 

관상동맥 석회화 예측을 위한 설명 가능한 인공지능 기반 심전도 

모델 

 

 

관상동맥 석회화(coronary artery calcium, CAC) 점수는 관상동맥에 칼슘이 침착

된 정도를 양적으로 평가하기 위해 컴퓨터 단층촬영(computed tomograph, CT)으로 

측정되며, 죽상동맥경화증의 지표이자 관상동맥 사건의 강력한 예측 인자이다. 현재의 

심혈관 질환 위험 예측 모델, 예를 들어 ACC/AHA Pooled Cohort Equations (PCE) 

등은 일차 예방을 위한 지침을 제공하지만, 종종 경계선 위험 분류를 초래하여 의사 

결정이 불확실해지는 경우가 많다. 이러한 경우, CAC 점수는 의사 결정을 안내하기 

위한 추가 도구로 지침에서 권장된다. CAC가 존재할 경우 일차 예방 조치(예: 스타틴 

요법) 시작이 권장되는 반면, CAC가 없을 경우 스타틴 사용이 보류될 수 있다. 

그러나 CAC 점수 측정은 비용, 방사선 노출, 보험 적용 부족으로 인해 일상적인 

사용이 제한된다. 반면 심전도(electrocardiogram, ECG)는 널리 사용되며, 

비침습적이고, 비용 효과적이며 방사선 노출이 없다. 딥 컨볼루션 신경망의 발전은 

심전도를 통해 이전에는 탐지할 수 없었던 상태를 탐지할 수 있는 인공지능(artificial 

intelligence, AI) 모델을 가능하게 했다. CAC를 예측할 수 있는 AI-ECG는 심혈관 

질환 위험에 대한 통찰력을 제공할 수 있다. 특히 심전도가 널리 수행되는 건강 

검진에서 이러한 접근법은 일반 인구에서 기회적인 CAC 탐지를 가능하게 하여 

관상동맥 석회화를 조기에 발견하고 일차 예방을 적시에 실행하게 할 수 있다. 

본 연구에서는 CAC를 예측하기 위한 AI-ECG 모델을 개발하고, 건강 검진 

환경에서의 기회적 선별 가능성을 검증하고자 하였다. 더 넓은 적용 가능성을 

보장하기 위해 두 개의 별도 기관에서 건강 검진 데이터를 이용하여 외부 검증을 

수행하고자 했다. 또한, 본 연구는 두 개국에 걸친 다국적 후향적 코호트 분석을 통해 

AI-ECG 모델의 임상적 함의와 잠재적 영향을 평가하고자 하였다. 마지막으로, 모델 

예측에 영향을 미치는 심전도 특징의 시각적 형태적 설명을 제공하고자 하였다. 

AI-ECG 모델은 연세대학교 세브란스병원에서 CAC 점수로 라벨링된 194,000개 

이상의 심전도를 사용해 훈련되었다. 이 모델은 동일 방문에서 심전도와 CT 기반 

CAC 측정을 모두 수행한 14,242개의 세브란스병원 건강 검진 데이터를 통해 

테스트되었다. 외부 검증은 용인세브란스병원(729개의 심전도)과 아주대학교병원 

(2,056개의 심전도) 데이터를 사용하여 수행되었다. 다국적 후향적 코호트 

분석에서는 세브란스병원 건강 검진에서 52,400개의 심전도와 United Kingdom 

Biobank (UKB)에서 수집된 30,623개의 심전도를 활용하였다. 해석 가능성을 높이기 

위해 500만 개 이상의 심전도로 사전 훈련된 변분 오토인코더를 사용하여 예측에 
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영향을 미치는 심전도 특징을 시각적으로 설명하였다. 

AI-ECG 모델은 CAC를 예측하는 데 있어 강력한 성능을 보여주었으며, 건강 검진 

테스트 데이터셋에서 CAC 점수 ≥ 400의 경우 AUROC 0.841, CAC 점수 > 0의 경우 

AUROC 0.720을 기록하였다. 외부 검증에서도 용인세브란스병원과 아주대학교병원 

데이터셋에서 각각 CAC 점수 ≥ 400의 AUROC 0.784와 0.814, CAC 점수 > 0의 

AUROC 0.691과 0.701로 강력한 성능을 입증하였다. 

AI-ECG 모델은 PCE 저위험군에서 CAC 가능성이 가장 높은 개인과 PCE 중간 

위험군에서 CAC 가능성이 가장 낮은 개인을 선별할 수 있었다: PCE 저위험군에서 

24.9%가 CAC > 0을 나타냈으며, AI-ECG 모델에 의해 고위험으로 식별된 경우 이 

비율은 45.7%로 증가했다. PCE 중간 위험군에서 35.4%가 CACS = 0을 나타냈으며, 

AI-ECG 모델에 의해 저위험으로 식별된 경우 이 비율은 60.9%로 증가했다; PCE 

저위험군에서 AI-ECG에 의해 고위험으로 재분류된 그룹은 PCE 중간 위험군에서 

AI-ECG에 의해 저위험으로 재분류된 그룹보다 주요 심혈관 사건 발생률이 더 

높았다(세브란스병원 코호트 분석 데이터셋에서 1000 인년당 주요 심혈관 사건 

발생률: 6.0 vs. 3.3, P = 0.007, UKB 코호트 분석 데이터셋에서 1000 인년당 주요 

심혈관 사건 발생률: 8.3 vs. 7.0, P = 0.360). 따라서, PCE 중간 위험군으로 

분류되었지만 AI-ECG에서 저위험으로 분류된 개인에게는 스타틴을 보류하는 것이 

더 합리적이며, PCE 저위험군으로 분류되었지만 AI-ECG에서 고위험으로 분류된 

개인에게는 스타틴을 시작하는 것이 더 합리적일 것이다. AI-ECG는 주요 심혈관 

사건의 독립적 위험 요인으로 확인되었다(조정된 위험비 [95% 신뢰구간]: 

세브란스병원 코호트 분석 데이터셋에서 1.087 [1.053–1.123], UKB 코호트 분석 

데이터셋에서 1.117 [1.061–1.175]). PCE와 AI-ECG 점수를 결합한 경우, 단독 

PCE보다 높은 C-index를 보였다. 증가된 예측 위험과 관련된 심전도 요인을 

시각적으로 해석했으며, upward shift of the ST segment in the anteroseptal leads 

with reciprocal downward shift in the inferolateral leads, downward shift of the 

ST segment in all leads, longer PR interval 등과 같은 변화를 CAC와 연관지었다. 

AI-ECG 모델은 관상동맥 석회화를 예측하는 데 효과적인 도구임을 입증하였다. 

본 연구는 AI-ECG 모델이 이중적 유틸리티를 통해 임상 워크플로에 통합될 

가능성을 보여주었다. 즉, CAC 점수 측정이 가장 필요한 개인을 선별하거나, 환자 

재분류를 통해 스타틴 치료 시작 또는 보류 결정을 직접 안내할 수 있음을 

입증하였다. 심전도가 널리 사용된다는 점과 AI-ECG 모델이 심혈관 사건의 독립적 

위험 요인으로 확인된 결과를 바탕으로, 본 모델은 심혈관 질환 위험 예측 도구로 

통합될 잠재력을 가지고 있다. 특히 심전도가 일반적으로 수행되는 정기 건강 

검진에서, AI-ECG 기반 CAC 예측은 일반 인구에서 기회적 CAC 검사를 가능하게 

하여 조기 발견과 초기 예방 전략의 적시 실행으로 이어질 수 있다. 

_______________________________________________________________________________ 

핵심되는 말: 관상동맥 석회화, 관상동맥 석회화 점수, 인공지능, 심전도, 인공지능 기

반 심전도, 건강검진, 일차 예방 
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