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ABSTRACT

Generation and quality control of single-nucleus
multi-omics data in a cancer-immune cell mixture

Single-cell studies have enabled the exploration of cellular heterogeneity, the
identification of rare cell types, and the investigation of developmental processes and cell
fate. However, single-cell studies focusing on a single modality provide only partial
insights into the complex gene regulatory networks within cells. To address these
limitations, experimental methods have been developed to simultaneously analyze the
genome, epigenome, transcriptome, and proteome within the same cells. Currently, droplet-
based methodologies are widely used for multiomics studies, but they are costly and have
low throughput. In this study, SHARE-seq (Simultaneous High-throughput ATAC and
RNA Expression with Sequencing) was applied to generate and analyze libraries from a
mixed sample of the immune cell line NK92 and the colorectal cancer cell line HCT116.
SHARE-seq, a combinatorial indexing-based method, offers higher throughput and
improved cost efficiency compared to conventional droplet-based multiomics techniques.
Using this method, chromatin accessibility and gene expression profiles specific to each
cell line were identified at the single-nucleus level within the mixed sample. Furthermore,
UMAP analysis revealed distinct clusters corresponding to the NK92 and HCT116 cell
lines for each modality. Finally, nuclei with matching barcodes in both snATAC-seq and
snRNA-seq clusters were identified. These nuclei represent high-quality samples for

further analyses, such as Weighted Nearest Neighbor (WNN) analysis or studies on the

Vil



functional relationships of regulatory elements controlling gene expression.

This study demonstrates that simultaneous analysis of chromatin accessibility and
gene expression at the single-nucleus level in a cancer-immune cell mixture enables the
precise distinction between immune and cancer cell lines by leveraging data from two
modalities within the same nucleus. Additionally, it highlights the potential to identify
high-quality nuclei for future analyses aimed at exploring the functional relationships of
regulatory elements governing gene expression. These findings are expected to contribute
to the precise identification of cell types and enhance our understanding of cell-cell
interactions and gene regulatory networks in complex biological systems, such as the tumor
microenvironment (TME). Moving forward, the integration of single-cell multiomics data
is anticipated to be widely applied for characterizing and analyzing cell types in tissues

composed of diverse cell populations or within specific in vivo environments.

Key words : single nucleus, multimodal sequencing, chromatin accessibility, transcriptome

viii



1. INTRODUCTION

1.1. Chromatin dynamics and transcriptional regulation

The central dogma, a fundamental principle in molecular biology, describes the
unidirectional flow of genetic information from DNA to RNA to protein. According to
this concept, an organism’s genome sequence contains all the necessary information to
define its state. However, the field of epigenetics emerged to account for biological
phenomena that cannot be fully explained within the central dogma’s framework. Broadly
speaking, epigenetics serves as a bridge between genotype and phenotype, altering gene
expression at specific loci or chromosomes without changing the underlying DNA
sequence?. Among the various epigenetic mechanisms, chromatin accessibility plays a
particularly critical role.

Chromatin, composed of DNA and histone proteins, is located in the nucleus of
eukaryotic cells and is organized into a tightly packed structure of nucleosomes. Each
nucleosome consists of a histone octamer core around which 147 base pairs of DNA are
wound®#. Chromatin exists in euchromatic or heterochromatic states, and gene expression
is regulated by chromatin accessibility®. Accessible chromatin regions across the genome,
including enhancers, promoters, insulators, and transcription factor binding sites,
collectively control gene expression®. In contrast, inaccessible chromatin represents areas
where transcription factors cannot bind, leading to minimal transcriptional activity’.
Currently, ATAC-seq is recognized as a pivotal technique for identifying euchromatin
regions®®. This method employs transposase to target accessible chromatin regions. The

enzyme cleaves DNA in euchromatin regions, where chromatin structure is open, and



inserts adaptors. These DNA fragments are subsequently analyzed using next-generation
sequencing (NGS), enabling precise mapping of accessible chromatin locations across the
genome. In living organisms, controlling chromatin accessibility is essential for defining
cellular identity and function®. It regulates the development of stem cells into specific cell
types during embryonic development and mediates responses to environmental stimuli and
cellular signals!*2, ATAC-seq provides valuable insights into how cells regulate their
functions and respond to changes. Additionally, it allows researchers to understand how
disruptions in these regulatory mechanisms can lead to disease. As a result, ATAC-seq is
a crucial tool for deepening our knowledge of chromatin dynamics and its relevance to
cellular biology and disease.

Transcription is regulated by various mechanisms, including chromatin accessibility.
Among the resulting RNA transcripts, some undergo 5' capping*?, polyadenylation'#*® and
RNA splicing!®!’ to become mature mRNAs ready for protein translation. Regulating
MRNA expression enables cells to adapt to external signals and internal needs, ensuring
functional diversity and specificity. Currently, mRNA-seq (messenger RNA sequencing) is
a widely utilized and powerful technique for transcriptome analysis, providing
comprehensive insights into gene expression profiles at the cellular level*®?°. This method
leverages next-generation sequencing (NGS) to quantify and sequence mRNA molecules,
enabling the identification of expressed genes, transcript variants, and novel transcripts. By
capturing the transcriptome, mMRNA-seq provides a representation of the cellular functional
state, revealing genes actively being transcribed under specific conditions. Accurate control
of mMRNA expression is essential for physiological processes like cell differentiation,
growth, and stress adaptation. By controlling the timing and specificity of gene expression,

cells can execute specialized functions and maintain harmony across tissues and organs.



As a robust and versatile tool, MRNA-seq has become a cornerstone in functional genomics,
systems biology, and disease modeling. With its ability to provide high-resolution and
comprehensive transcriptome data, mMRNA-seq continues to advance our understanding of
gene regulation and its profound implications for cellular biology and therapeutic

development.

1.2. Single-cell multiomics technology

Unlike traditional bulk-level experiments, single-cell RNA sequencing technology has
revolutionized molecular biology by enabling unprecedented scale and resolution in
transcriptome profiling?®. With the advent of single-cell transcriptome analysis, efforts
have expanded to explore the genome?, epigenome??* and proteome®* at the single-cell
level, making it possible to analyze these dimensions individually. However, experiments
targeting a single modality capture only one aspect of the intricate regulatory elements that
control cellular differentiation, function, and signal transduction.

To overcome the limitations of single-cell unimodal sequencing, various experimental
approaches have emerged that enable multimodal analysis at single-cell resolution,
incorporating diverse modalities such as chromatin accessibility?>?’, histone
modifications?®?°, surface protein expression®! and spatial location®. Single-cell
transcriptomics, the leading single-cell omics approach, is frequently integrated with other
omics methods to investigate the link between gene expression and phenotypic
heterogeneity without bias®. Furthermore, this integrative analysis provides important
insights into the interactions between distal regulatory elements, like enhancers, and their
target genes, facilitating the study of intercellular communication and regulatory networks

at single-cell resolution. Single-cell multiomics has been transformative in developmental



biology by enabling lineage tracing and identifying epigenetic changes that drive cell fate
decisions. In disease research, it has offered valuable understanding of cancer progression,
immune cell heterogeneity in autoimmune diseases, and the molecular mechanisms behind
neurodegenerative disorders. The integration of spatially resolved techniques with single-
cell multiomics further adds a crucial layer of spatial context, particularly valuable for
studying tumor microenvironments and tissue architecture. Progress in multimodal
sequencing has enabled the concurrent analysis of various molecular characteristics within
individual cells, offering a more comprehensive understanding of how different regulatory

layers interact and function together at single-cell resolution.

1.3. SHARE-seq

SHARE-seq (Simultaneous High-throughput ATAC and RNA Expression with
Sequencing) is an experimental platform designed to jointly analyze chromatin
accessibility and transcriptomic data at the single-cell level®. By integrating chromatin
accessibility and transcriptomic data generated through SHARE-seq, regulatory elements
controlling gene expression can be identified. This joint profiling approach establishes a
direct link between transcriptional regulation and its downstream outputs, enabling greater
insight into the molecular processes underlying cellular physiology®. Moreover, the
concurrent measurement of various molecular features in individual cells provides a
comprehensive insight into the interactions and functions of regulatory layers within cells.
SHARE-seq enables the identification of functional links between regulatory elements that
govern gene expression and supports the reconstruction of cellular lineages and
differentiation pathways through temporal data analysis. In contrast to traditional droplet-

based single-cell separation methods, SHARE-seq employs multiple rounds of



hybridization-ligation to simultaneously label mMRNA and chromatin fragments originating
from the same cell*®. This process involves three rounds of combinatorial indexing, with
96 unique barcodes ligated to gDNA and cDNA in each round, resulting in a total of
884,736 possible barcode combinations. This high-throughput combinatorial indexing
method offers significant advantages over widely used droplet-based single-cell
multimodal sequencing, including higher efficiency and cost-effectiveness.

SHARE-seq is not limited to single-cell applications but is also compatible with
single-nucleus profiling, enabling its use in tissues where traditional single-cell sequencing
is challenging. For instance, adipocytes, which are large and high lipid-rich content, pose
significant  difficulties for droplet-based single-cell sequencing®. Similarly,
cardiomyocytes, characterized by their single or dual nucleus configuration and
intercalated disc-mediated connectivity, are challenging to sequence at the single-cell
level®. However, SHARE-seq can be applied at the single-nucleus level, enabling the
acquisition of chromatin accessibility and gene expression dataset even from tissues where
single-cell sequencing is challenging. In summary, SHARE-seq represents a robust and
versatile approach for concurrent profiling of chromatin accessibility and gene expression,
enabling high-throughput and cost-effective analyses across diverse sample types,

including those from challenging tissues, at both single-cell and single-nucleus resolutions.



2. MATERIALS AND METHODS

2.1. Cell line culture

The HCT116 human colorectal cancer cell line (ATCC) was maintained at 37°C in an
atmosphere of 5% CO: using RPMI 1640 medium (HyClone) supplemented with 10% FBS
(HyClone), 100 U/mL penicillin, and 100 pg/mL streptomycin (HyClone). The human NK
cell line NK-92 (ATCC) was cultured at 37°C with 5% CO: in a-MEM medium (Gibco)
supplemented with 20% FBS (HyClone), 55 uM 2-mercaptoethanol (Gibco), 100 U/mL

penicillin, 100 pg/mL streptomycin (HyClone), and 100 U/mL IL-2 (Roche).

2.2. SHARE-seq library preparation

SHARE-seq was conducted using methods described in prior studies®#3*4°, with minor

modifications introduced by Dr. Chul Min Yang and Dr. Eun-Chong Lee.

2.2.1. Annealing oligo plates

Linker strands and barcode sequences used during the hybridization rounds were
prepared in 96-well plates, with each well holding 10 pL of oligos at defined concentrations.
In Round 1, the concentrations were 9 uM for the linker and 10 uM for the barcodes; in
Round 2, 11 pM for the linker and 12 uM for the barcodes; and in Round 3, 13 uM for the
linker and 14 uM for the barcodes. The linker oligos were prepared in STE buffer
containing 10 mM Tris-HCI, pH 8.0, 50 mM NaCl, and 1 mM EDTA. Annealing was
achieved by heating the plates to 95°C for 2 minutes, followed by gradual cooling to 20°C

at a rate of - 1°C per minute. Each round contained 96 barcodes. For the full sequences,



refer to Supplementary Table S1 in the SHARE-seq publication®.

2.2.2. Adaptor annealing

Adaptors were annealed following the manufacturer's instructions. Adaptor A and
Adaptor B were annealed separately, differing only in the use of the Read 1 oligo for
Adaptor A and the Read 2 oligo for Adaptor B (Table 1). For each reaction, 100 uM of the
respective Read oligo and 100 pM of the ME oligo (Table 1) were prepared in annealing
buffer (10 mM Tris-HCI, pH 8.0, 50 mM NaCl, 1 mM EDTA). Annealing was carried out
by heating the plates to 95°C for 2 minutes, then slowly cooling to 20°C at a rate of 1°C
per minute. The reaction was finalized with a cooling step at 20°C for 2 minutes. Annealed

oligos were stored at -20°C.

Table 1. Oligo sequences for adaptor annealing

Index Oligo sequence

ME oligo TCTACACATATTCTCTGTC

Read 1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG
Read 2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

2.2.3. Tn5 transposome assembly
The Tn5 transposome was prepared according to the manufacturer's guidelines. In a
PCR tube, 100 pM of the Read 1 adaptor and 100 1M of the Read 2 adaptor were mixed in
equal volumes to create the adaptor mixture. An equal volume of the adaptor mixture was
then combined with unloaded Tn5 (Diagenode) and gently mixed using a pipette. The

assembled Tn5 complex was stored at -20°C.



2.2.4. Fixation
Briefly, 1 million cells were collected by centrifugation and resuspended in fresh
formaldehyde (Thermo Fisher Scientific) to achieve a final concentration of 0.1%. The
sample was incubated at room temperature for 5 minutes with rotation. Quenching solution
was added to neutralize the formaldehyde, and the cells were incubated on ice for 5 minutes.
The cell pellet was washed twice with 1 mL PBS-2RI (1X PBS, 0.835% BSA, 0.03 U/uL
SUPERase RNase Inhibitor, 0.06 U/uL Enzymatics RNase inhibitor).

2.2.5. Nuclei isolation

The cells were lysed in MNIB-2 buffer (10 mM Tris-HCI, pH 7.5, 10 mM NaCl, 3
mM MgClz, 0.1% NP-40, 0.1% Tween-20, 0.01% Digitonin) for 3 minutes. This was
followed by incubation in MNIB-3 buffer (10 mM Tris-HCI, pH 7.5, 10 mM NaCl, 3 mM
MgClz, 0.01% Digitonin) on ice for 10 minutes. After the nuclei isolation, the nuclei were
washed once with NIB-2RI buffer (10 mM Tris-HCI, pH 7.5, 10 mM NaCl, 3 mM MgCl.,
0.1% NP-40, 0.03 U/uL SUPERase RNase Inhibitor, 0.06 U/uL Enzymatics RNase
inhibitor). The isolated nuclei were counted, and 300,000 nuclei were distributed across

four tubes for downstream processing.

2.2.6. Transposition and reverse transcription
The extracted nuclei were suspended in 50 pL of PBS-2RI buffer and transferred to a
new tube. Prior to performing tagmentation, a 2x TB buffer (0.066 M Tris-acetate, 0.132

M K-acetate, 0.02 M Mg-acetate, 0.2% NP-40, 32% DMF) was prepared. Next, 150 pL of



tagmentation mixture (1x TB buffer, 0.01% Digitonin, 1x Proteinase inhibitor, 1.2 U/uL
Enzymatic RNase Inhibitor) was added to the sample, followed by incubation at room
temperature for 10 minutes. Subsequently, 4 pL of assembled Tn5 was added, and the
sample was aliquoted into PCR tubes at 50 pL per tube. The aliquots were maintained at
37°C with shaking at 500 rpm for 30 minutes. After the transposition step, the samples
were washed with NIB-2RI buffer. The washed samples were resuspended in 100 pL of
reverse transcription mix (0.3 M Betaine, 571 uM dNTPs, 2.38 uM RT-primer, 4.76 mM
DTT, 0.01% Triton X-100, 16.7% PEG 8000, 1x RT buffer, 19.05 U/uL Maxima H Minus
Reverse Transcriptase, SUPERase RNase Inhibitor 0.29 U/uL, Enzymatic RNase Inhibitor
0.57 U/uL) and aliquoted into 50 pL portions. The aliquots were heated at 50°C for 10
minutes, followed by three thermal cycles (8°C for 12 seconds, 15°C for 45 seconds, 20°C
for 45 seconds, 30°C for 30 seconds, 42°C for 120 seconds, and 50°C for 180 seconds),
and then incubated at 50°C for 5 minutes. After completing the reverse transcription, the

samples were washed with NIB-2RI buffer.

Table 2. Primer sequence used for reverse transcription

Index Primer sequence
RT_ /5Phos/ GTCTCGTGGGCTCGGAGATGTGTATAAGAGAC
primer AG[10-bp UMI)/iBiodT/TTTTTTTTTTTTTTVN

2.2.7. Hybridization and ligation
The samples resuspended in NIB-2RI were mixed with Hybridization buffer (1.67x
T4 ligase buffer, 0.17% NP-40, 0.084 U/uL SUPERase RNase Inhibitor, 0.533 U/uL
Enzymatic RNase Inhibitor) and dispensed into each well of the Round 1 plate at 40 pL

per well. The plate was incubated at 450 rpm and 24°C for 30 minutes. Subsequently, 10 pL



of Blocking Oligo 1 was dispensed into each well, followed by incubation of the plate at
450 rpm and 24°C for 30 minutes. After incubation, all samples were transferred to a
reservoir and redistributed into the Round 2 plate at 55 pL per well, followed by incubation
at 450 rpm and 24°C for 30 minutes. Next, 10 uL of Blocking Oligo 2 was dispensed into
each well, followed by incubating the plate for 30 minutes under the same conditions.
Finally, the samples were transferred back to a reservoir and distributed into the Round 3
plate at 65 L per well, followed by a final incubation at 450 rpm and 24°C for 30 minutes.
The barcoded samples were washed with NIB-2RI buffer and resuspended in 80 pL of NIB-
2RI buffer. The samples were subsequently suspended in 320 pL of ligation mixture (1.25x
T4 Ligase buffer, 0.125% NP-40, 25 U/uL T4 DNA ligase, 0.0625 U/uL SUPERase RNase
Inhibitor, 0.4 U/uL Enzymatic RNase Inhibitor) and incubated at 24°C with shaking at 450
rpm for 30 minutes. After completing the ligation step, the samples were washed with NIB-
2RI buffer and aliquoted into 50 pL sublibraries at 20,000 nuclei per aliquot. The 20,000-

nuclei sublibraries were stored in a -80°C deep freezer.

Table 3. Oligo sequences for combinatorial indexing

Index Oligo sequence

/5Phos/ CGCGCTGCATACTTG[8-bp
Barcodel ]JCCCATGATCGTCCGA

R1 linker CCGAGCCCACGAGACTCGGACGATCATGGG

/5Phos/CATCGGCGTACGACT[8-bp
Barcode2]ATCCACGTGCTTGAG

R2 linker CAAGTATGCAGCGCGCTCAAGCACGTGGAT

CAAGCAGAAGACGGCATACGAGATI[8-bp
Barcode3]GTGGCCGATGTTTCG

R1 barcodes

R2 barcodes

R3 barcodes

R3 linker AGTCGTACGCCGATGCGAAACATCGGCCAC
R1 blocking CCCATGATCGTCCGAGTCTCGTGGGCTCGG
R2 blocking ATCCACGTGCTTGAGCGCGCTGCATACTTG

10



R3 blocking GTGGCCGATGTTTCGCATCGGCGTACGACT

2.2.8. Reverse crosslinking and affinity pull-down

For the 20,000 nuclei stored in 50 pL, 1x reverse crosslinking buffer (prepared by
diluting 2x reverse crosslinking buffer: 100 mM Tris-HCI, pH 8.0, 100 mM NacCl, 0.004%
SDS), 0.2 pg/pL Proteinase K (New England Biolabs), and 0.4 U/uL SUPERase RNase
Inhibitor (Thermo Fisher Scientific) were added. The mixture was incubated at 450 rpm at
55°C for 1 hour. After incubation, 5 pL of 100 mM PMSF was added to inactivate
Proteinase K, followed by incubation at room temperature for 10 minutes. For affinity pull-
down preparation, Dynabeads MyOne Streptavidin T1 (Invitrogen) were washed twice
with 1x B&W-T buffer (5 mM Tris-HCI, pH 8.0, 1 M NaCl, 0.5 mM EDTA, and 0.05%
Tween 20) and once with 1x B&W-T buffer supplemented with 0.8 U/uL SUPERase
RNase Inhibitor (Thermo Fisher Scientific). Add the prepared beads to the sample after
Proteinase K inactivation, and incubate with rotation at 10 rpm at room temperature for 60

minutes.

2.2.9. SnATAC-seq library preparation
The transposed DNA in the supernatant was purified using the QIAGEN MinElute
PCR Purification Kit and eluted with 22 uL of QIAGEN Elution Buffer. The fragments
were amplified in a 50 pL PCR reaction containing 1x NEBNext buffer (New England
Biolabs), 0.5 pM library-specific Ad1 primer, and 0.5 uM P7 primer. The PCR reaction
was performed under the following conditions: 72°C for 5 minutes, 98°C for 30 seconds,
followed by 5 cycles of 98°C for 10 seconds, 63°C for 30 seconds, and 72°C for 1 minute.

A quantitative PCR was conducted to estimate the number of additional cycles needed for

11



library amplification. This was done using 1 pL of the pre-PCR sample in a total reaction
volume of 10 uL. The amplified library, following additional PCR, was purified using the
QIAGEN MinElute PCR Purification Kit. The final libraries underwent size selection with
0.9X AMPure XP beads (Beckman Coulter) and were sequenced on the lllumina NovaSeq
X platform with the following read specifications: Read 1 — 50 bp, Read 2 — 50 bp, Index
1-99 bp, and Index 2 — 8 bp.

2.2.10. cDNA library preparation

After the supernatant (SnATAC-seq library) was removed, the beads were washed
three times with 1x B&W-T buffer containing 0.2 U/uL SUPERase RNase Inhibitor
(Thermo Fisher Scientific) and once with STE buffer (10 mM Tris-HCI, pH 8.0, 50 mM
NaCl, and 1 mM EDTA). The washed beads were suspended in 50 pL of template switch
mix containing 1 mM dNTPs, 1 M Betaine, 10% PEG 8000, 1x Maxima RT buffer, 2%
Ficoll PM-400, 4 U/uL NxGen RNase Inhibitor, 2.5 uM TSO, and 10.12 U/uL Maxima H
Minus Reverse Transcriptase. The mixture was incubated with rotation at 10 rpm at room
temperature for 30 minutes, followed by shaking at 300 rpm at 42°C for 90 minutes. After
the TSO reaction, 100 pL of distilled water was added, and the beads were washed with
STE buffer. The cDNA was amplified in a 50 pL PCR reaction containing template DNA,
1x KAPA HiFi HotStart ReadyMix, 0.4 uM RNA primer, 0.4 pM P7 primer. The PCR
reaction was performed under the following conditions: 95°C for 3 minutes, followed by 5
cycles of 98°C for 20 seconds, 65°C for 45 seconds, and 72°C for 3 minutes; then an
additional 5 cycles of 98°C for 20 seconds, 67°C for 20 seconds, and 72°C for 5 minutes;
and a final extension at 72°C for 5 minutes. To determine the number of additional cycles

required for library amplification, a quantitative PCR was performed using a 1 pL aliquot
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of the PCR product in a total reaction volume of 10 pL containing 1x EvaGreen (Biotium).
Based on the gPCR results, the remaining samples were amplified with additional PCR
cycles under the conditions of 95°C for 3 minutes, followed by the additional cycles of
98°C for 20 seconds, 67°C for 20 seconds, 72°C for 1 minute, and a final extension at 72°C

for 5 minutes.

Table 4. Primer sequences used for cDNA library preparation

Index Primer sequence
TSO AAGCAGTGGTATCAACGCAGAGTGAATrGrG+G
RNA primer AAGCAGTGGTATCAACGCAGAGT

2.2.11. Tagmentation and snRNA-seq library preparation

A tagmentation mixture was prepared with 1x TD buffer (prepared by diluting 2x TD
buffer consisting of 20 mM Tris-HCI, pH 7.6, 10 mM MgClz, 20% dimethylformamide
with distilled water), 50 ng of cDNA, and distilled water to a final volume of 100 pL.
Subsequently, 10 uL of a 1:80 diluted ME-A adaptor-loaded Tn5 transposase was added,
and the reaction was incubated at 55°C with shaking at 300 rpm for 5 minutes. The
tagmented samples were purified using the QIAGEN MinElute PCR Clean-Up Kit and
eluted in 22 uL of QIAGEN Elution Buffer. The purified samples were amplified through
a 50 pL PCR reaction with the following thermal cycling conditions: 72°C for 5 minutes
and 98°C for 30 seconds, followed by 7 cycles of 98°C for 10 seconds, 65°C for 30 seconds,
and 72°C for 1 minute, with a final extension at 72°C for 5 minutes. The final libraries were
size-selected using 0.7x AMPure XP beads (Beckman Coulter) and sequenced on the

Illumina NovaSeq X platform with the following specifications: Read 1 — 50 bp, Read 2 —
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50 bp, Index 1 —99 bp, and Index 2 — 8 bp.

2.3. SHARE-seq library quality control

2.3.1. Polymerase chain reaction and electrophoresis for library size

distribution analysis
The obtained library was quantified, and 100 pg of the SHARE-seq library was used
for PCR. The PCR conditions were as follows: an initial denaturation at 95°C for 2 minutes,
followed by 20 cycles consisting of denaturation at 95°C for 20 seconds, annealing at 63°C
for the snATAC-seq library or 67°C for the snRNA-seq library for 30 seconds, and
extension at 72°C for 1 minute. A final extension step was performed at 72°C for 5 minutes.
The resulting libraries were evaluated via agarose gel electrophoresis to verify their size

distribution.

Table 5. Primer sequences for library size distribution analysis

Index Primer sequence
Mlumina P5 ~ AATGATACGGCGACCACCGAGATCTACAC
[Mlumina P7  CAAGCAGAAGACGGCATACGAGAT

Read 1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG
Read 2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG
Index 1 CTGTCTCTTATACACATCTCCGAGCCCACGAGAC

2.3.2. TA cloning and DNA elution for library sequence confirmation
DNA amplified with Illumina P5 and Illumina P7 primers (Table 5) was purified
using the Expin™ CleanUp SV (GeneAll). The purified DNA insert was cloned into a TA

vector (Enzynomics), and transformation was performed in DH50 competent cells
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(Enzynomics) according to the manufacturer's instructions. Libraries from the resulting
colonies were purified using the Exprep™ plasmid SV (GeneAll) and sequenced by Sanger

sequencing with the universal primers listed in Table 6.

Table 6. Sequencing primer for reading DNA sequence after cloning

Index Primer sequence

MI3R-pUC CAGGAAACAGCTATGAC

2.4. Bioinformatic analysis

Most of the bioinformatic analyses of the omics data generated in this dissertation
were conducted by Jieun Seo. The HCT116_CMV bulk mRNA-seq and ATAC-seq
datasets used in this dissertation were generated by Dr. Bobae Yang, while the NK92 bulk

MRNA-seq and ATAC-seq datasets were generated by Dr. Eun-Chong Lee.

2.4.1. mRNA-seq data processing

Paired-end sequencing reads were processed using Trim Galore** (v0.6.10) with the
command-line option trim_galore --paired for adapter trimming. The trimmed reads were
aligned to the Human hg38 genome assembly using STAR (v2.5.2b) with the parameters --
chimSegmentMin 20 --twopassMode Basic --quantMode TranscriptomeSAM. Gene
expression quantification was performed with RSEM*? (v1.3.1) using the options --paired-
end --estimated-rspd. Differentially expressed protein-coding genes were identified using
the DESeq2 R package*® (v1.44.0), applying a log. fold-change cutoff of 2 and an adjusted
p-value threshold of 0.01. Strand-specific reads were extracted with SAMtools (v1.19.2)*

and normalized to generate strand-specific mRNA-seq genome tracks using the
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bamCoverage function from deepTools (v3.5.5)* with the normalization method —

normalizeUsing CPM.

2.4.2. ATAC-seq data processing

Paired-end sequencing reads were trimmed using Trim Galore with the same
parameters applied in mRNA-seq preprocessing. The trimmed reads were aligned to the
Human hg38 reference genome using Bowtie2 (v2.5.3) with the settings --end-to-end --
very-sensitive --maxins 2000. Reads with low mapping quality, duplicates, and
mitochondrial origin were identified and filtered out using SAMtools and Picard Tools
(v2.14.1). Nucleosome-free regions were selected, and adaptor insertion sites induced by
Tn5 transposase were adjusted with the alignmentSieve function from deepTools, using the
command-line options --maxFragmentLength 140 —ATACshift. Nucleosome-free reads
were normalized with deepTools in the same way as for ChlP-seq data to produce genome-
wide ATAC-seq signal tracks. Peak calling for ATAC-seq data was performed with
MACS2 (v2.2.9.1)* without incorporating input control data. Differentially accessible
regions were identified using the DESeq2 R package, based on read counts from each
sample and customized size factors that accounted for the proportion of nucleosome-free
reads between samples, with thresholds set at an adjusted p-value of 0.01 and a log: fold-

change of 2.

2.4.3. SHARE-seq data pre-processing
Pre-processing of SHARE-seq data (.fastq.gz) was performed using previously
described scripts (available at https://github.com/masail116/SHARE-seqg-alignment\V2/)%,

Gene annotation and sequence files (Genome Reference Consortium Human Build 38 patch
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release 13; GRCh38.p13) from the GENCODE*  website  were  used.
Barcode demultiplexing was performed allowing one mismatch based on the introduced
barcodes in split-pool barcoding. Reads with disabled adapters and low-quality sequences
were trimmed using fastp* (v0.23.4). For snRNA-seq data, due to the characteristic
presence of polyA tails in mMRNA, the read2 sequence was excluded, and only the readl
FASTQ file was aligned to the reference genome using STAR*® (v.2.5.2b). The number of
reads mapped to genomic regions was quantified using FeatureCount® (v2.0.6), and unique
UMI-based read grouping was performed using UMI-tools>! (v1.1.5) to obtain unique reads
by removing duplicated reads. For snATAC-seq (SHARE-ATAC) data, alignment was
performed using bowtie2®? (v2.5.3). Reads that were unmapped, not primary aligned, or
aligned to chrM and chrY were removed. Barcodes with fewer than 50 reads were filtered
out. The read distribution was checked using RseQC®? (v5.0.2). This process resulted in a
count matrix (.h5 file) representing gene expression and a fragment profile (.bed file) for
each cell. To process the .h5 files for generating count matrices, the scanpy.read_10x_h5

function from Scanpy®* (v1.9.8) was used.

2.4.4. snRNA-seq data processing
All snRNA-seq analysis were executed on Scanpy. Cells with fewer than 1,000 or
more than 6,500 genes detected, as well as cells with fewer than 1,000 reads or more than
20,000 reads, were removed from the gene count matrix. Genes present in fewer than 50
cells were also excluded. Cells with more than 30% mitochondrial reads were removed,
and doublet detection was performed using the scanpy.external.pp.scrublet function. The
expected doublet rate was set to 0.06, and the number of neighbors was set to 30. Cells with

doublet scores exceeding 0.2 were annotated as suspected doublets and excluded from
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analysis. The data were subsequently normalized and log-transformed. Highly variable
genes (7,788 genes) were identified using the scanpy.pp.highly_variable_genes function
with parameters min_mean=0.0125, max_mean=3, and min_disp=0.5. The effects of total
counts per cell and the proportion of mitochondrial reads per cell were regressed out using
the scanpy.pp.regress_out function. The data were then scaled, followed by dimensionality
reduction using principal component analysis (PCA) with the scanpy.tl.pca function
(svd_solver="arpack’). A neighborhood graph was computed using the scanpy.pp.neighbors
function with the number of neighbors set to 15 (metric="cosine'). The neighborhood graph
was embedded into two dimensions using the scanpy.tl.umap function, with the minimum
effective distance between embedded points set to 0.5. Leiden clustering was performed
using the scanpy.tl.leiden function. For single-cell cluster annotation, a set of marker genes
was compiled. Each marker gene was qualitatively visualized in UMAP space to confirm

its spatial distribution.

2.4.5. sSnATAC-seq data processing

Chromatin analysis was conducted using the CreateChromatinAssay function from
Signac to generate a chromatin assay from the count matrix, followed by conversion into a
Seurat object using the CreateSeuratObject function from Seurat®® (v5.1.0). For each cell,
nucleosome signal intensity, transcription start site (TSS) enrichment score, fraction of
reads in peaks (FRIiP), and the proportion of counts overlapping the hg38 genome blacklist
were calculated wusing the NucleosomeSignal, TSS Enrichment, FRiP, and
FractionCountsInRegion functions, respectively. For quality control, cells with 2,000 to
50,000 peaks, a nucleosome signal value below 2.5, a TSS enrichment score above 4, a

FRiP value greater than 0.1, and a blacklist overlap ratio below 0.05 were retained for
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downstream analysis. The data was then normalized using the TF-IDF (term frequency-
inverse document frequency) method implemented in the RunTFIDF function. Singular
value decomposition (SVD) was performed on the TF-IDF matrix for linear dimensionality
reduction using the RunSVD function. Graph-based clustering, non-linear dimensionality
reduction, and UMAP visualization were performed using the FindNeighbors, FindClusters,
and RunUMAP functions, respectively, with parameters dims = 2:30, min.dist = 0.5, and
n.neighbors = 30. Notably, cells with relatively low FRiP values were carefully excluded
during the analysis to avoid artifacts associated with low-FRiP clusters. Gene annotation
was performed using the GeneActivity function, which computed counts for each cell
across gene bodies and 2,000 bp upstream of transcription start sites (including promoter
regions). Peak calling was repeated for each cluster, resulting in the identification of a total
of 184,399 features. All SnATAC-seq analyses described above were based on the

previously constructed peak-by-cell matrix.
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3. RESULTS

3.1. SHARE-seq workflow to concurrently profile chromatin

accessibility and gene expression in a cancer-immune cell mixture.

SHARE-seq (Simultaneous High-throughput ATAC and RNA Expression with
Sequencing) is an innovative multiomics platform that allows for concurrent analysis of
chromatin accessibility and gene expression at single-cell resolution®*. In SHARE-seq,
cells are first fixed, and their nuclei are isolated. Subsequently, the Tn5 transposase tags
regions of open chromatin in the DNA. mMRNA is reverse-transcribed using poly(T) primers
that include unigue molecular identifiers (UMIs) and biotin tags. The transposed DNA and
poly(T) cDNA undergo three rounds of hybridization-ligation with 8-bp barcodes in 96-
well plates. This process creates 884,736 unique barcode combinations, each of which
labels a single nucleus. Reverse crosslinking releases both transposed DNA and poly(T)
cDNA, ensuring that each carries the same barcode corresponding to the same cell. The
poly(T) cDNA, tagged with biotin, is isolated using streptavidin beads, while the transposed
DNA remains in the supernatant. These paired profiles are subsequently identified by
matching the well-specific barcode combinations, ensuring that the chromatin accessibility
and transcriptomic data are correctly linked for each individual cell (Figure 1A).

In this study, the nuclei of the NK92 cell line (immune cells) and the HCT116 cell line
(colon cancer cells) were mixed. SHARE-seq was performed on the mixed nuclei to
determine whether the two cell lines could be distinguished at the single-nucleus level.
Each cell line was fixed, and nuclei were isolated from 1 million cells. Prior to tagmentation,

150,000 nuclei from each cell line were combined, resulting in a total of 300,000 nuclei for
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tagmentation. Finally, sublibraries were constructed from 20,000 barcoded samples. Using
SHARE-seq, chromatin accessibility and gene expression were simultaneously profiled at
single-nucleus resolution in the cancer-immune cell mixture, demonstrating that immune

and cancer cell lines could be effectively distinguished.
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3.2. SHARE-seq library quality control via polymerase chain reaction

and TA cloning.

To separate individual nuclei through combinatorial indexing, the library structure
generated by SHARE-seq is more complex compared to conventional single-cell
sequencing libraries (Figure 2A, 2B). These constructs include well-specific barcodes
(BC1, BC2, and BC3), linker sequences, and molecular identifiers (for the snRNA-seq
library) to enable the accurate identification of paired profiles. By employing three
barcodes, SHARE-seq integrates both chromatin accessibility and gene expression data
from individual cells at single-nucleus resolution.

To confirm the accurate assembly of the SHARE-seq library structure, the barcode
construct length and sequence composition generated during shRNA-seq and SnATAC-seq
were analyzed using electrophoresis (Figure 2C, 2D). PCR was conducted using primers
targeting the sequencing primers of the SHARE-seq library (Read 1, Read 2, and Index 1)
and linker sequences that bind to the Illumina flow cell (Illumina P5 and Illumina P7). For
samples amplified with combinations of primers Illumina P5 and Illumina P7, Readl and
Illumina P7, or Read2 and Illumina P5, smeared bands were observed during electrophoresis,
indicating the presence of inserts in the amplified DNA. In contrast, samples amplified with
Index 1 and Illumina P7, targeting only the barcode region, showed a single, distinct band.
This result confirms that the three rounds of barcoding were successfully completed and
that the library structures within the SHARE-seq libraries were correctly assembled.

To ensure no sequence alterations occurred in the SHARE-seq library, the constructed
libraries were amplified with lllumina P5 and P7 primers and subjected to TA cloning.

After extracting the transformed libraries on a per-colony basis, sanger sequencing was
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conducted to evaluate the structural integrity of the libraries and their concordance with the
reference sequences. The analysis demonstrated strong concordance between the ShDRNA-
seq and snATAC-seq library sequences and their respective references, confirming the
correct library structure (Figure 2E, 2F). This result validates the reliability of the

barcoding and library construction processes in SHARE-seq.
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Figure 2. Quality control of SHARE-seq libraries using gel electrophoresis and TA
cloning. (A) Schematic overview of the snRNA-seq library construction (B) Schematic
overview of the sSnATAC-seq library construction (This schematic overview was adapted
and modified with reference to the original overview designed by Dr. Chul Min Yang). (C)
The distribution of DNA fragments in snRNA-seq libraries was visualized by gel
electrophoresis. (D) The distribution of DNA fragments in snATAC-seq libraries was
visualized by gel electrophoresis. (E) Comparison of actual sequences from snRNA-seq
libraries obtained via TA cloning with reference sequences. (F) Comparison of actual

sequences from snATAC-seq libraries obtained via TA cloning with reference sequences.
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3.3. Validation of SHARE-seq library quality using bulk sequencing.

To assess the reliability of sShnRNA-seq and snATAC-seq data generated by SHARE-
seq from a cancer-immune cell mixture, a portion of the library underwent bulk sequencing
to evaluate its overall quality. Bulk sequencing provides information about the inserts
within each library but does not capture barcode information, offering insights into all cell
types within the sample. Initially, TapeStation analysis was performed to examine the insert
size distribution of the SHARE-seq library. The generated SHARE-seq libraries conformed
well to established criteria®, indicating their high quality (Figure 3A, 3B). Additionally,
quality control at the bulk level confirmed the high quality of SHARE-seq libraries (Table
7,8).

Further quality control assessments revealed that snRNA-seq datasets typically
include a significant proportion of unspliced RNA, resulting in a large number of reads from
intronic regions. Bulk sequencing of the snRNA-seq library from the cancer-immune cell
mixture revealed an intron rate of approximately 40% (Figure 3C), which is significantly
higher than that typically observed in mRNA-seq experiments®. Additionally, bulk
sequencing of the sSnATAC-seq library showed distinct insert size distributions, with a clear
separation of nucleosome-free regions (NFR) at <147 bp and mononucleosomes (Figure
3D). These findings collectively confirm that the SHARE-seq library was properly
constructed at the bulk level and meets the quality requirements for subsequent single-
nucleus sequencing.

To further validate the SHARE-seq library, RNA and ATAC signals for housekeeping
genes were compared to previously generated bulk mRNA-seq and bulk ATAC-seq data
from NK92 and HCT116 cells. Genome browser tracks of housekeeping genes, including

PGK1 (Phosphoglycerate Kinase 1) and ACTB (Actin Beta), were evaluated through 1IGV
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visualization (Figure 3E). In the NK92 and HCT116 cell lines, a comparison of signals
from SHARE-seq bulk sequencing and bulk-level mRNA-seq and ATAC-seq at
housekeeping genes revealed a high level of consistency between the two experiments.
These results confirm the reliability and accuracy of the SHARE-seq library,
demonstrating its consistency with bulk sequencing. Furthermore, the SHARE-seq library

was confirmed to possess the quality required for single-nucleus sequencing.
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Figure 3. Quality control of SHARE-seq libraries via bulk sequencing. (A) Fragment
distribution of snRNA-seq libraries as visualized by TapeStation HS D5000
electropherogram. (B) Fragment distribution of snATAC-seq libraries as visualized by
TapeStation HS D5000 electropherogram. (C) Distribution of reads in the bulk-sequenced
snRNA-seq library inserts was analyzed. (D) Insert size distribution of the bulk-sequenced
SnATAC-seq library. (E) Genome tracks of bulk-sequenced SHARE-seq libraries and bulk
mRNA-seq and ATAC-seq from NK92 and HCT116_CMV cell lines were visualized in

IGV focusing on housekeeping gene regions.
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Table 7. Quality of SnRNA-seq libraries validated by bulk sequencing

Uniquely mapping Percent of reads mapped Duplication rate
reads (%) to multiple loci (%)
98.13 21.38 42.17

Table 8. Quality of ShnATAC-seq libraries validated by bulk sequencing

Mapping Duplication FRiP FRiB Number
rate(%) rate(%) (%) (%) Peaks
98.13 21.38 62.17 0.53 72,195
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3.4. Bulk mRNA-seq and ATAC-seq provide integrated insights into
the cancer-immune cell mixture.

Bulk mRNA-seq and ATAC-seq aggregate signals from all cell types in a sample,
providing a global view of transcriptional profiles and chromatin dynamics. However, they
lack the resolution necessary to differentiate signals from specific cell types. Differential
gene expression (Figure 4A) and differential accessible region analyses (Figure 4B) were
conducted using bulk mRNA-seq and ATAC-seq datasets generated for the NK92 and
HCT116_CMV cell lines in our laboratory. This allowed for the identification of genes
uniquely expressed and active in each cell line, which were subsequently compared with
data obtained from bulk-sequenced SHARE-seq libraries.

For NK92 cells, GZMA and GNLY were selected as markers due to their high
expression levels, the presence of ATAC-seq signals in accessible promoter regions to
NK?92 cell, and the absence of similar characteristics in HCT116 cells. Granzyme A (GZMA)
is abundantly expressed in NK92 cells, inducing caspase-independent cell death by
targeting the SET complex to cause DNA damage®’. Granulysin (GNLY) is also highly
expressed in NK92 cells, inducing lysis or apoptosis in target cells, tumor cells, or cells
infected by intracellular pathogens®. These attributes made GZMA and GNLY ideal
signature genes for NK92 cells. Similarly, for HCT116 cells, genes AREG and EPCAM were
selected based on analogous criteria. Amphiregulin (AREG) is highly expressed in HCT116
cells, mediating EGFR signaling to drive key oncogenic traits®®. EPCAM is a
transmembrane glycoprotein associated with cell-cell adhesion, playing a critical role in
tumorigenesis and metastasis®®. These genes were chosen as HCT116 signature

genes due to their specific characteristics.
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To verify that bulk sequencing represents integrated data from multiple cell types
within a sample, IGV genome tracks were utilized to compare signals from bulk mRNA-
seq and ATAC-seq datasets with those from bulk-sequenced SHARE-seq libraries. For
NK92 signature genes, signals were exclusively observed in NK92 bulk mRNA-seq and
ATAC-seq datasets, with no detectable RNA signals or ATAC peaks in the HCT116
datasets. In the SHARE-seq libraries generated from a cancer-immune cell mixture, both
RNA signals and ATAC peaks for these signature genes were detected, confirming
successful signal integration from both cell types (Figure 4C). Similarly, analysis of
HCT116 signature genes, such as AREG and EPCAM, revealed that RNA signals and
ATAC peaks were only present in HCT116 bulk datasets, with no corresponding signals in
NK92 datasets. However, in the SHARE-seq libraries from a cancer-immune cell mixture,
both RNA signals and ATAC peaks for these HCT116 signature genes were detected, further
demonstrating effective signal integration from both cell populations (Figure 4D).

These results confirm that NK92 and HCT116 cell lines were effectively mixed during
SHARE-seq preparation, with the libraries capturing the transcriptome and chromatin
dynamics of the mixed sample. In summary, when bulk sequencing was performed on the
SHARE-seq library generated from a cancer-immune cell mixture, it provided an overview
of the average transcriptome and chromatin dynamics across the mixed cell types in the
sample. However, it failed to resolve the transcriptome and chromatin dynamics specific to
each individual cell type. These findings highlight the inherent limitations of bulk

sequencing in analyzing heterogeneous cell populations.
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Figure 4. Combined cell type signals in bulk sequencing data from the SHARE-seq
library. (A) Volcano plot showing differential gene expression analysis of NK92 and
HCT116_CMV cell lines using bulk mRNA-seq data. (B) Volcano plot showing
differential analysis of accessible regions between NK92 and HCT116_CMV cell lines
using bulk ATAC-seq data. (C) Genome tracks of bulk-sequenced SHARE-seq libraries
and bulk mRNA-seq and ATAC-seq from NK92 and HCT116 _CMV cell lines were
visualized in IGV focusing on NK92 cell line signature genes. (D) Genome tracks of bulk-
sequenced SHARE-seq libraries and bulk mRNA-seq and ATAC-seq from NK92 and
HCT116_CMV cell lines were visualized in IGV focusing on HCT116 cell line signature

genes.
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3.5. Assessment of quality control metrics for snRNA-seq libraries.

To assess the quality and reliability of the snRNA-seq library, comprehensive quality
control was performed (Figure 5A, 5B). Scanpy®* was used to conduct quality control and
downstream analysis of snRNA-seq data. Key metrics analyzed included the number of
genes detected per nucleus (n_genes_by counts), total read counts (total_counts),
mitochondrial read percentage (pct_counts_mt), and doublet rate (doublet_score). SHARE-
seq relies on combinatorial indexing to distinguish individual nuclei, which results in the
generation of barcodes that do not correspond to actual nuclei. In this experiment, 736,448
barcodes were recognized during the analysis. Therefore, it is crucial to apply quality
control measures to filter out non-nuclear barcodes and focus on actual nuclei.

The cutoff for the number of detected genes per nucleus (n_genes_by_counts) was set
between 1,000 and 6,500. Nuclei with a gene count outside this range were considered
abnormal nuclei and excluded from further analysis. For the number of reads per nucleus
(total_counts), a cutoff range of 1,000 to 20,000 was established. Nuclei with total read
counts below this range were presumed to represent non-nuclear barcodes rather than actual
nuclei and were excluded. The mitochondrial read percentage (pct_counts_mt) was limited
to less than 30%, as a high mitochondrial RNA proportion could indicate stressed or
compromised nuclei. Finally, doublet scores were restricted to below 0.2%. Doublets, an
artifact where two or more nuclei are labeled with a single barcode, were excluded from
the analysis. A key advantage of SHARE-seq is its use of combinatorial indexing to label
individual nuclei, leading to a much lower doublet rate compared to traditional droplet-
based methods®. For example, droplet-based methods have an estimated doublet rate
ranging from 1% to 10%, depending on the number of cells and the platform used®:.

Conversely, the SnRNA-seq data produced in this study exhibited a remarkably low doublet
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rate, highlighting the method's robustness.

By applying these quality control measures, we successfully removed non-nuclear
barcodes and retained 14,610 nuclei for subsequent analysis. This process was essential for
eliminating barcode noise inherent to SHARE-seq and ensuring that only experimental
nuclei were analyzed. Consequently, this dataset provides a reliable foundation for
downstream analyses aimed at understanding transcriptomes at the single-nucleus level.
For cells that passed quality control, we performed a feature selection process to identify
highly variable genes expressed in nuclei. Specifically, genes were chosen according to the
following criteria: normalized mean expression values between 0.0125 and 3, and
dispersion values of at least 0.5. Through this process, 7,788 highly variable genes were

identified and subsequently utilized for downstream analyses (Figure 5C).
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Figure 5. snRNA-seq quality control metrics. (A) Quality control of SnRNA-seq data
analyzed using Scanpy was performed by filtering nuclei with 1,000-6,500 detected genes
(n_genes_by counts), total counts of 1,000-20,000, mitochondrial gene percentage
(pct_counts_mt) below 30%, and a doublet score below 0.2, retaining only 14,610 nuclei
for downstream analysis. (B) Violin plots depicting the distribution of quality control
metrics for retained nuclei after filtering, including the number of detected genes
(n_genes_by counts), total counts, percentage of mitochondrial gene expression
(pct_counts_mt), and doublet scores. (C) Identification of highly variable genes based on
their mean expression (x-axis) and dispersion (y-axis) using cutoffs of 0.0125 < mean
expression < 3 and 0.5 <dispersion, resulting in the selection of 7,788 highly variable genes

for downstream analysis.
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3.6. Assessment of quality control metrics for snATAC-seq libraries.

To evaluate the quality and reliability of the sSnATAC-seq library, comprehensive
quality control was conducted on the sSnATAC-seq data (Figure 6A, 6B). Signac®was used
to conduct quality control and downstream analysis of ShnATAC-seq data. Key metrics
analyzed included the number of detected peaks per nucleus (nCount_peaks), transcription
start site enrichment (TSS.enrichment), blacklist ratio (blacklist_fraction), nucleosome
signal (nucleosome_signal), and the proportion of reads within peaks (Pct_reads_in_peaks).
SHARE-seq relies on combinatorial indexing to distinguish individual nuclei, which results
in the generation of barcodes that do not correspond to actual nuclei. In this experiment,
884,378 barcodes were recognized during the analysis. Therefore, it is crucial to apply
quality control measures to filter out non-nuclear barcodes and focus on actual nuclei for
subsequent analyses.

The cutoff for the number of detected peaks per nucleus (nCount_peaks) was set
between 2,000 and 50,000. Nuclei with a peak count outside this range were excluded, as
they likely represented poorly barcoded nuclei. The TSS enrichment value, which
guantifies the signal-to-noise ratio at transcription start sites, was required to exceed a
cutoff of 4. Nuclei meeting this threshold were considered to have undergone successful
ATAC-seq and were included in further analyses. The blacklist ratio (blacklist_fraction),
reflecting the proportion of reads mapping to artifact-prone genomic regions, was limited
to below 0.05 to exclude spurious signals. Additionally, the nucleosome signal, which
assesses whether tagmentation predominantly occurred in nucleosome-free regions (NFR),
was set at less than 2.5. This metric, calculated as the ratio of mononucleosome reads to NFR
reads, ensured that nuclei with high-quality ATAC-seq data targeting euchromatic regions

were selected. Finally, the fraction of reads in peak (FRiP) was set to a minimum of 0.1,
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indicating a well-constructed library with minimal background noise and robust peak
detection.

By applying these quality control measures, we successfully removed barcode
artifacts and retained 17,833 nuclei for subsequent analysis. This process was critical for
mitigating barcode noise inherent to SHARE-seq and ensuring that only experimental
nuclei were analyzed. Consequently, this dataset provides a robust foundation for
downstream analyses aimed at understanding chromatin dynamics at the single-nucleus
level. This quality control process underscores the reliability of the dataset for advanced

investigations into chromatin accessibility and its regulatory implications.
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Figure 6. ShATAC-seq quality control metrics. (A) Quality control of SnATAC-seq data
was performed by filtering nuclei with 2,000-50,000 peaks detected (nCount_peaks),
transcription start site enrichment (TSS.enrichment) greater than 4, blacklist fraction below
0.05, nucleosome signal below 2.5, and fraction of reads in peaks (FRiP) above 0.1,
retaining only 17,833 nuclei for downstream analysis. (B) Violin plots showing the
distribution of quality control metrics for retained nuclei after filtering, including the
number of detected peaks (nCount_peaks), TSS enrichment, blacklist fraction, nucleosome

signal and fraction of reads in peak (FRIP).
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3.7. Defining individual cell types within a sample through gene

expression and chromatin accessibility using SHARE-seq.

From the initial 20,000 nuclei processed using SHARE-seq, we applied quality control
criteria to identify 14,610 nuclei from the snRNA-seq data and 17,833 nuclei from the
SnATAC-seq data. These high-quality nuclei were used for downstream analyses, including
visualizing clusters of nuclei with similar characteristics in the SHARE-seq data using
UMAP®, Figure 7A shows UMAP clustering based on the snRNA-seq data, revealing
three distinct clusters: Cluster 0, Cluster 1, and Cluster 2. Similarly, Figure 7B shows the
UMAP clustering from the snATAC-seq data, identifying two distinct clusters: Cluster 0
and Cluster 1. Given that the SHARE-seq experiment involved a mixture of cancer and
immune cells, we hypothesized that the clusters from each modality correspond to NK92
and HCT116 nuclei. To prioritize snRNA-seq clusters, the expression levels of genes
differentially expressed across clusters were examined (Figure 7C). This analysis
identified the top 200 genes with the highest statistical significance for each cluster, which
were used in subsequent analyses. Cell typing was performed on the SnRNA-seq data using
Panglao DB® and the ARCHS4 Cell Lines database®. Additionally, functional
characteristics and pathway enrichment for each cluster were analyzed using the Elsevier
Pathway Collection.

Cluster 0 exhibited significant enrichment in pathways related to cancer cell motility,
invasion, and survival, such as "Integrins in Cancer Cell Motility, Invasion, and Survival"
and "Proteins with Altered Expression in Cancer Metastasis", as determined by the Elsevier
Pathway Collection. Cell typing using the ARCHSA4 Cell Lines database identified HCT116

and CPAC1 cell lines as representative of this cluster. These findings suggest that Cluster
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0 predominantly represents HCT116 cells (Figure 8A).

Cluster 1 showed strong enrichment for immune-related pathways, particularly those
associated with NK cells, such as "Natural Killer Cell Activation through ITAM-
Containing Receptors" and "Natural Killer Cell Precursor - Natural Killer Cell Surface
Expression Markers." Cell type analysis with Panglao DB identified NK cell-related
populations, such as natural killer cells. These results indicate that Cluster 1 represents
NK92 cells (Figure 8B).

Cluster 2 was enriched in pathways related to translation, including "Translation and
rRNA Translation and Processing”. Cell typing using the ARCHS4 Cell Lines database
identified HCT116 and SKOV3 cell lines. Cluster 2 was characterized by high ribosomal
RNA expression, as the top 200 uniquely expressed genes included numerous ribosomal
RNA genes. These findings suggest that Cluster 2 exhibits the expression of some genes
characteristic of HCT116. However, the majority of ribosomal RNA genes predominantly
represent the features of Cluster 2. This observation indicates the presence of nuclei
contaminated with ribosomal RNA in a subset of HCT116 cells (Figure 8C).

In contrast, cell type classification and pathway analysis of the top 200 uniquely active
genes in the snATAC-seq data failed to identify specific cell types. The challenge in
performing cell typing using gene activity stems from the inherent nature of ATAC-seq,
which measures chromatin accessibility rather than direct gene expression. Consequently,
it infers gene activity indirectly, leading to lower accuracy in ranking the expressed genes.
Next, we visualized the expression profiles of signature genes for NK92 and HCT116 cell
lines on UMAP plots for both the sSnRNA-seq and snATAC-seq datasets and validated these
findings using dot plots. Signature genes for NK92 and HCT116 were selected based on

differentially expressed genes (DEG) and gene expression levels derived from bulk
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MRNA-seq data. In the sSnRNA-seq data, NK92 signature genes showed higher expression
in Cluster 1, with dot plots demonstrating that the average expression levels and the number
of cells expressing these signature genes were higher compared to Clusters 0 and 2 (Figure
9A, 9B). Similarly, HCT116 signature genes showed higher expression in Clusters 0 and
2, with dot plots confirming that both the average expression levels and the number of cells
expressing these signature genes were higher compared to Cluster 1 (Figure 10A, 10B).
These observations led to the classification of Cluster 1 as NK92 and Cluster 0 as HCT116
in the snRNA-seq data. In Cluster 2, although the expression of HCT116 signature genes
was observed to be high, the preceding analysis revealed that ribosomal RNA constituted
the majority of the cluster's representative genes. Therefore, Cluster 2 was classified as an
rRNA-enriched HCT116 cluster.

We performed a similar analysis on the sSnATAC-seq data using the previously
identified signature genes. NK92 signature genes exhibited higher activity in Cluster 1, with
dot plots indicating that cells with high signature gene activity were more abundant in
Cluster 1 compared to Cluster 0 (Figure 11A, 11B). Conversely, HCT116 signature genes
showed higher activity in Cluster 0, with dot plots confirming that cells with high gene
activity were more prevalent in Cluster O than in Cluster 1 (Figure 12A, 12B). These results
led usto classify Cluster 0 as representing the HCT116 cell line and Cluster 1 as representing
the NK92 cell line in the snATAC-seq data.

In summary, the analysis classified NK92 and HCT116 clusters in both snRNA-seq
and snATAC-seq data, clearly mapping cell types based on gene expression and chromatin

accessibility.
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Figure 7. UMAP visualization of SHARE-seq data. (A) SHARE-seq UMAP plot of
single nuclei from a mixed HCT116 and NK92 cell line sample, with UMAP coordinates
based on snRNA-seq data. (B) SHARE-seq UMAP plot of single nuclei from a mixed
HCT116 and NK92 cell line sample, with UMAP coordinates derived from snATAC-seq
data. (C) Top 25 signature genes for each of the three clusters from snRNA-seq analysis,

ranked by statistical significance (Wilcoxon test, - logio(p-value)).
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Figure 8. Cell typing of snRNA-seq clusters. (A) Elsevier Pathway Collection and
ARCHS4 Cell lines analysis for 200 genes specifically expressed in Cluster 0 from snRNA-
seq, visualizing the top 5 pathways ranked by - logio(P-value) and the top 5 related cell
lines ranked by -logio(P-value). (B) Elsevier Pathway Collection and
PanglaoDB_Augmented_2021 analysis for 200 genes specifically expressed in Cluster 1
from snRNA-seq, visualizing the top 5 pathways ranked by - logio(P-value) and the top 5
related cell lines ranked by -logio(P-value). (C) Elsevier Pathway Collection, ARCHS4 Cell
lines, PanglaoDB_Augmented_2021 analysis for 200 genes specifically expressed in
Cluster 2 from snRNA-seq, visualizing the top 5 pathways ranked by -log10(P-value) and

the top 5 related cell lines ranked by - logio(P-value).
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Figure 9. Expression of NK92 cell line signature genes in sSnRNA-seq clusters. (A)
UMAP projection showing the expression patterns of 16 NK92 signature genes across
snRNA-seq clusters. The NK92 signature genes were identified through bulk mRNA-seq
analysis of NK92 and HCT116_CMV, selecting genes that are exclusively expressed in the
NK92 cell line and are highly expressed with functional relevance to NK92. (B) Dot plot
showing the fraction of cells (dot size) and mean expression levels (color intensity) of 16

NK?92 signature genes across SnRNA-seq clusters.
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Figure 10. Expression of HCT116 cell line signature genes in sSnRNA-seq clusters. (A)
UMAP projection showing the expression patterns of 16 HCT116 signature genes across
snRNA-seq clusters. The HCT116 signature genes were identified through bulk mRNA-
seq analysis of HCT116_CMV and NK92, selecting genes that are exclusively expressed
in the HCT116_CMV cell line and are highly expressed with functional relevance to
HCT116. (B) Dot plot showing the fraction of cells (dot size) and mean expression levels

(color intensity) of 16 HCT116 signature genes across ShRNA-seq clusters.
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Figure 11. Gene activity of NK92 cell line signature genes in ShATAC-seq clusters. (A)
UMAP projection showing the gene activity patterns of 16 NK92 signature genes across
SNATAC-seq clusters. The NK92 signature genes were identified through bulk ATAC-seq
analysis of NK92 and HCT116_CMV, selecting genes that show exclusive gene activity in
the NK92 cell line and are highly expressed with functional relevance to NK92. (B) Dot
plot showing the fraction of cells (dot size) and average expression levels (color intensity)

of 16 NK92 signature genes across SnATAC-seq clusters.
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Figure 12. Gene activity of HCT116 cell line signature genes in SnATAC-seq clusters.
(A) UMAP projection showing the gene activity patterns of 16 HCT116 signature genes
across SnATAC-seq clusters. The HCT116 signature genes were identified through bulk
ATAC-seq analysis of HCT116_CMYV and NK92, selecting genes that show exclusive gene
activity in the HCT116_CMV cell line and are highly expressed with functional relevance
to HCT116. (B) Dot plot showing the fraction of cells (dot size) and average expression

levels (color intensity) of 16 HCT116 signature genes across SNATAC-seq clusters.
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3.8. Comparison of cluster-specific IGV profiles with bulk mMRNA-seq
and ATAC-seq data.

To further validate the identity and characteristics of cell clusters identified through
UMAP analysis of snRNA-seq and snATAC-seq data, cluster-specific IGV profiles were
compared with IGV profiles derived from bulk mRNA-seq and ATAC-seq data of NK92
and HCT116_CMYV cell lines. Bulk mRNA-seq and ATAC-seq data provide an averaged
transcriptional landscape and chromatin accessibility across entire cell populations. In this
study, bulk mRNA-seq and ATAC-seq profiles were used as references to compare with
the cluster-specific IGV profiles generated from snRNA-seq and sSnATAC-seq data. This
comparative analysis confirmed whether the transcriptional and chromatin accessibility
profiles of the identified clusters matched the known expression patterns of NK92 and
HCT116 cells, thereby enhancing the reliability of cell typing and cluster classification.

From snRNA-seq, Cluster 0 was confirmed to represent the HCT116 cell line, while
Cluster 1 represented the NK92 cell line. Additionally, Cluster 2 was identified as an
HCT116-derived cluster enriched for rRNA expression. Similarly, from snATAC-seq,
Cluster 0 was validated as representing the HCT116 cell line, and Cluster 1 was identified
as representing the NK92 cell line.

We first compared IGV profiles for the NK92 signature genes GNLY and GZMA from
NK92 and HCT116 bulk mRNA-seq data with cluster-specific IGV profiles from snRNA-
seq. The results revealed pronounced expression of GNLY and GZMA in Cluster 1,
consistent with the signature expression pattern of NK92 cells. In contrast, GNLY and
GZMA expression was minimal in Clusters 0 and 2. These findings strongly suggest that

Cluster 1 represents NK92 cells (Figure 13A). Next, IGV profiles for GNLY and GZMA
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from NK92 and HCT116 bulk ATAC-seq data were compared with cluster-specific IGV
profiles from snATAC-seq. Similar to the mRNA-seq data, Cluster 1 exhibited high
chromatin accessibility in the promoter and surrounding regions of GNLY and GZMA. This
pattern closely resembled the NK92 bulk ATAC-seq data, indicating that Cluster 1 is
associated with NK92 cells. In contrast, Cluster 0 displayed low chromatin accessibility for
GNLY and GZMA (Figure 13B).

Next, IGV profiles for the HCT116 signature genes AREG and EPCAM from NK92
and HCT116 bulk mRNA-seq data were compared with cluster-specific IGV profiles from
snRNA-seq. The results demonstrated strong expression of AREG and EPCAM in Clusters
0 and 2, consistent with the signature expression pattern of HCT116 cells. In contrast,
Cluster 1 exhibited minimal expression of these genes, strongly indicating that Clusters 0
and 2 represent HCT116 cells (Figure 13C). Furthermore, IGV profiles for AREG and
EPCAM from NK92 and HCT116 bulk ATAC-seq data were compared with cluster-
specific IGV profiles from snATAC-seq. Similar to the mRNA-seq results, Clusters 0
exhibited high chromatin accessibility in the promoter and surrounding regions of AREG
and EPCAM, resembling the HCT116 bulk ATAC-seq data. In contrast, Cluster 1 showed
low chromatin accessibility for these genes (Figure 13D).

Finally, to distinguish the rRNA-enriched HCT116 cluster in SnRNA-seq data, the
expression patterns of rRNA genes were analyzed. The results revealed significantly
elevated ribosomal RNA (rRNA) expression in Cluster 2, a distinct feature compared to
Clusters 0 and 1. These findings clearly demonstrate that Cluster 2 is an rRNA-enriched
subcluster derived from HCT116 cells (Figure 14A).

In summary, the results confirmed that in shRNA-seq, Cluster 0 represents HCT116,

Cluster 1 represents NK92, and Cluster 2 is an rRNA-enriched HCT116 subcluster.
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Similarly, in sSnATAC-seq, Cluster 0 represents HCT116, and Cluster 1 represents NK92.
These findings demonstrate the utility of RNA expression and chromatin accessibility data
in precisely analyzing the differential expression of cell-type-specific genes and chromatin

accessibility across different cell types.

61



A Gnys 1 kb GZMA> 1kb
=1 ol . t i H—)
Cluster 0
Cluster 1
i.h i i. i l b A ~
Cluster 2 §
—~ A o - - — . — >
e N . 1 I | W
HCT116
chr2:85,678,468-85,714,726 chr5:55,080,170-55,134,525
B s kb GZMA> 1kb
o1 o= ] t i H———
Cluster 0
Cluster 1
e e >
..‘..j.‘-_.__.______._._.-_ AAhh.l_l...Ln.l_.._“_.—‘ NK92 g
- - " | n u HCT116
chr2:85,678,468-85,714,726 chr5:55,080,170-55,134,525
C AREG> 1 kb EPCAM > 2 kb
—h —1 ¥ = L H——t—H—+ .
l ‘ Cluster 0
'R M a N TP ki i [ | ii k
Cluster 1
Cluster 2
] l i i a - N '] l‘ l ll k
NK92
VI I Y T A1 | A | were

chr4:74,421,616-74,478,569

chr2:47,341,827-47,414,344

D AREG> 1kb EPCAM > 2 kb
—F ] } } u L -+t .
. Cluster 0
.h e
Cluster 1
- = —
NK92
rF Y~
' ) I HCT116
| h

chrd:74,421,616-74,478,569

chr2:47,341,827-47,414,344

6 2

YINY

VIV



Figure 13. Genome tracks of NK92 and HCT116 signature genes in shnRNA-seq and
SNATAC-seq clusters. (A) IGV tracks visualizing the expression of NK92 signature genes
GNLY and GZMA based on snRNA-seq clusters and bulk mRNA-seq data. (B) IGV tracks
showing chromatin accessibility of NK92 signature genes GNLY and GZMA based on
SnATAC-seq clusters and bulk ATAC-seq data. (C) IGV tracks visualizing the expression
of HCT116 signature genes AREG and EPCAM based on snRNA-seq clusters and bulk
mRNA-seq data. (D) IGV tracks showing chromatin accessibility of HCT116 signature
genes AREG and EPCAM based on snATAC-seq clusters and bulk ATAC-seq data.
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Figure 14. Genome tracks of rRNA genes in snRNA-seq clusters. (A) IGV tracks
visualizing the expression of NK92 ribosomal RNA-coding genes RPS18, RPS12, RPL12,

and RPL11 based on snRNA-seq clusters.
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3.9. Identification of nuclei capable of simultaneously assessing

chromatin accessibility and gene expression.

After completing cell typing for each modality (Figure 15A, 15B), nuclei with
matching barcodes across both modalities were identified. UMAP clustering of each
dataset revealed distinct clusters corresponding to the two cell lines. We identified 14,007
nuclei with matching barcodes between the two modalities using high-quality nuclei that
passed quality control, including 14,610 snRNA-seq nuclei and 17,833 snATAC-seq nuclei.
These nuclei were identified as those containing both transcriptome information and
chromatin accessibility data within a single nucleus, enabling the analysis of multimodal
data.

To assess whether single nuclei clustered in sSnRNA-seq and snATAC-seq matched
across the two modalities, nuclei sharing the same barcode were visualized by connecting
them with lines on the UMAP plots (Figure 15C). This analysis revealed that clusters
identified as NK92 cells in both modalities exhibited a high degree of barcode matching
between the UMAP plots of snRNA-seq and snATAC-seq. However, a portion of the
clusters classified as HCT116 cells in snRNA-seq was found to share barcodes with clusters
identified as NK92 cells in snATAC-seq (Figure 15C). These mismatched nuclei appear
to exhibit signals from two different cell types depending on the modality, suggesting that
they may result from technical artifacts introduced during the experimental process.
Barcode matching analysis can help identify such nuclei, which may introduce bias into
multimodal analyses, thereby enabling more accurate interpretation of the data.

Additionally, we observed that Cluster 2 in the snRNA-seq data, characterized by

globally high ribosomal RNA expression, corresponded to the HCT116 cluster in the
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SnATAC-seq data. These findings indicates the presence of a subset of HCT116 cells
contaminated with ribosomal RNA within the HCT116 cell cluster identified in the
SnATAC-seq data.

These findings demonstrate that integrating snRNA-seq and snATAC-seq data
enables the precise identification of cell types in mixed samples of different cell lines.
Moreover, this integrated analysis compensates for technical errors and enhances the

reliability of cell-type classification.
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Figure 15. Barcode matching between snRNA-seq and snATAC-seqg UMAP. (A)
UMAP visualization of snRNA-seq data showing cluster-specific cell typing of single
nuclei derived from a mixed sample of HCT116 and NK92 cell lines. (B) UMAP
visualization of sSnATAC-seq data showing cluster-specific cell typing of single nuclei
derived from a mixed sample of HCT116 and NK92 cell lines. (C) UMAP visualization of
snRNA-seq and snATAC-seq data, illustrating the connection of cells with identical

barcodes.
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4. DISCUSSION

SHARE-seq is an experimental platform that enables the combined analysis of
chromatin accessibility and gene expression at single-cell resolution, providing a cost-
effective and highly scalable solution. SHARE-seq enables researchers to elucidate the
functional relationships of regulatory elements that control gene expression by leveraging
chromatin accessibility and gene expression data. Furthermore, temporal changes in
chromatin accessibility and gene expression data can be analyzed to reconstruct cellular
lineages and differentiation processes. In this study, SHARE-seq was performed on 20,000
nuclei derived from a mixture of NK92 and HCT116 cells (Figure 1A). A portion of the
SHARE-seq library was first analyzed through bulk sequencing to confirm that the average
gene expression and chromatin accessibility of the mixed cell population could be captured
at the bulk level (Figure 4C, 4D). Subsequently, single-nucleus sequencing was performed.
After quality control, 14,610 nuclei were included in the snRNA-seq dataset (Figure 5A,
5B), and 17,833 nuclei were retained in the SnATAC-seq dataset (Figure 6A, 6B). UMAP
visualization was employed to delineate modality-specific clusters, and three distinct
clusters were identified in the SnRNA-seq data (Figure 7A). Cell typing for the sSnRNA-
seq data was conducted by analyzing the top 200 genes uniquely expressed in each cluster
(Figure 7C) using the Panglao DB_Augmented_2021 and ARCHS4 Cell-lines databases
(Figure 8A, 8B, 8C). Functional characteristics and pathway enrichment for each cluster
were analyzed using the Elsevier Pathway Collection (Figure 8A, 8B, 8C). Additionally,
differential gene expression (DEG) analysis was performed using bulk mRNA-seq data
from NK92 and HCT116 cell lines, identifying genes that were uniquely and highly

expressed at the bulk level in each cell line (Figure 4A). These genes were classified as
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cell-type signature genes, and their expression levels across clusters were examined to cell
typing (Figure 9A, 9B, 10A, 10B). Cell typing of the clusters detected in the SnRNA-seq
data differentiated the NK92 and HCT116 cell lines and revealed that a subset of HCT116
cells was contaminated with ribosomal RNA. For the snATAC-seq data, UMAP
visualization revealed two distinct clusters (Figure 7B). Similar to the snRNA-seq analysis,
cell typing and pathway enrichment analyses were performed using the top 200 genes with
high gene activity scores. Although these analyses did not yield cell-type-specific results
for snATAC-seq, the activity of signature genes previously used for snRNA-seq cell typing
was examined, revealing differences in gene activity across clusters (Figure 11A, 11B,
12A, 12B). Cell typing of the clusters identified in the SnATAC-seq data distinguished the
NK92 and HCT116 cell lines. To further validate the identity and characteristics of the cell
clusters identified through UMAP analysis of snRNA-seq and snATAC-seq data, cluster-
specific IGV profiles were compared with IGV profiles derived from bulk mMRNA-seq and
ATAC-seq data of NK92 and HCT116 cell lines (Figure 13A, 13B, 13C, 13D, 14A). This
comparative analysis allowed for a precise confirmation of whether the transcriptional and
chromatin accessibility profiles of the identified clusters aligned with the previously known
expression and chromatin accessibility patterns of NK92 and HCT116 cells.

In summary, snRNA-seq analysis confirmed that Cluster O represents HCT116,
Cluster 1 represents NK92, and Cluster 2 corresponds to rRNA-enriched HCT116 (Figure
15A). Similarly, snATAC-seq analysis validated that Cluster O represents HCT116, and
Cluster 1 represents NK92 (Figure 15B). These findings demonstrate the utility of RNA
expression and chromatin accessibility data in accurately analyzing cell-type-specific gene
expression and chromatin accessibility differences across distinct cell types.

These analyses enabled the elucidation of chromatin accessibility and gene expression
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profiles of individual nuclei, which could not be resolved by bulk sequencing. Furthermore,
chromatin accessibility and gene expression profiling enabled identifying each nucleus's
cell type. After completing cell typing for each modality, barcodes of nuclei identified in
snRNA-seq and snATAC-seq analyses were matched (Figure 15C). This process yielded
a dataset of 14,007 nuclei with jointly profiled gene expression and chromatin accessibility
data. This dataset of 14,007 nuclei, containing information from two modalities, can be
utilized not only for future clustering analyses across both modalities but also for
investigating the functional relationships of regulatory elements controlling gene
expression. Additionally, this study validated the reliability of cluster identities by
comparing the transcriptomic landscapes and chromatin accessibility patterns of NK92 and
HCT116, as previously established in bulk-level experiments, with those of the identified
clusters. This comparison confirmed the validity and accuracy of single-nucleus analysis
in distinguishing between cell types. By analyzing a mixed sample of NK92 and HCT116
at the single-nucleus level, this study demonstrated that immune and cancer cells can be
reliably distinguished using two modalities in future multimodal sequencing studies of the
tumor microenvironment (TME). Through this study, high-quality nuclei containing both
transcriptome and chromatin accessibility data for each cell type were identified. This study
highlights the potential of multimodal data integration for cell-type analysis and suggests
its applicability to more complex systems, such as the tumor microenvironment (TME) or

tissues with diverse cell types.
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S. CONCLUSION

In this study, SHARE-seq was used to simultaneously analyze chromatin accessibility
and gene expression at the single-nucleus level in a cancer-immune cell mixture composed
of NK92 and HCT116 cells. This approach enabled the integrated analysis of gene
expression and chromatin accessibility in individual nuclei, demonstrating the capability to
accurately distinguish cell types based on these profiles. While bulk sequencing provided
only the average gene expression and chromatin accessibility of the mixed cell population,
single-cell sequencing revealed detailed information specific to each cell type. Additionally,
by comparing IGV profiles of bulk mMRNA-seq and ATAC-seq data with those from single-
nucleus data, we validated the reliability and accuracy of cluster classification, confirming
that the identified clusters aligned with known transcriptomic and chromatin accessibility
patterns of NK92 and HCT116 cells (Figure 16A). Furthermore, barcodes from both
snRNA-seq and snATAC-seq datasets were matched, yielding a high-quality dataset of
14,007 nuclei that integrates information from both modalities.

This dataset provides a robust foundation for future clustering analyses and for
exploring the functional relationships of regulatory elements controlling gene expression.
These findings highlight the utility of single-cell multiomics in resolving cellular
heterogeneity and identifying cell-type-specific regulatory mechanisms, which bulk
sequencing cannot achieve. By analyzing a mixed sample of NK92 and HCT116 cells at
the single-nucleus level, this study demonstrated that immune cells and cancer cells can be
reliably distinguished. This approach holds great potential for investigating cell-cell
interactions and cellular diversity in complex biological systems, such as the tumor

microenvironment (TME). In conclusion, the multimodal single-cell analysis enabled by
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SHARE-seq offers a powerful tool for unraveling the complexities of diverse biological
environments, paving the way for deeper insights into the molecular mechanisms

underlying cellular function and disease progression.
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Figure 16. cell type identification of single nuclei through two distinct modalities using
SHARE-seq. (A) Schematic of cell type identification of single nuclei through two distinct

modalities using SHARE-seq.
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