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ABSTRACT 

 

Generation and quality control of single-nucleus  

multi-omics data in a cancer-immune cell mixture 

 

 

Single-cell studies have enabled the exploration of cellular heterogeneity, the 

identification of rare cell types, and the investigation of developmental processes and cell 

fate. However, single-cell studies focusing on a single modality provide only partial 

insights into the complex gene regulatory networks within cells. To address these 

limitations, experimental methods have been developed to simultaneously analyze the 

genome, epigenome, transcriptome, and proteome within the same cells. Currently, droplet-

based methodologies are widely used for multiomics studies, but they are costly and have 

low throughput. In this study, SHARE-seq (Simultaneous High-throughput ATAC and 

RNA Expression with Sequencing) was applied to generate and analyze libraries from a 

mixed sample of the immune cell line NK92 and the colorectal cancer cell line HCT116. 

SHARE-seq, a combinatorial indexing-based method, offers higher throughput and 

improved cost efficiency compared to conventional droplet-based multiomics techniques. 

Using this method, chromatin accessibility and gene expression profiles specific to each 

cell line were identified at the single-nucleus level within the mixed sample. Furthermore, 

UMAP analysis revealed distinct clusters corresponding to the NK92 and HCT116 cell 

lines for each modality. Finally, nuclei with matching barcodes in both snATAC-seq and 

snRNA-seq clusters were identified. These nuclei represent high-quality samples for 

further analyses, such as Weighted Nearest Neighbor (WNN) analysis or studies on the 
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functional relationships of regulatory elements controlling gene expression. 

This study demonstrates that simultaneous analysis of chromatin accessibility and 

gene expression at the single-nucleus level in a cancer-immune cell mixture enables the 

precise distinction between immune and cancer cell lines by leveraging data from two 

modalities within the same nucleus. Additionally, it highlights the potential to identify 

high-quality nuclei for future analyses aimed at exploring the functional relationships of 

regulatory elements governing gene expression. These findings are expected to contribute 

to the precise identification of cell types and enhance our understanding of cell-cell 

interactions and gene regulatory networks in complex biological systems, such as the tumor 

microenvironment (TME). Moving forward, the integration of single-cell multiomics data 

is anticipated to be widely applied for characterizing and analyzing cell types in tissues 

composed of diverse cell populations or within specific in vivo environments. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                

Key words : single nucleus, multimodal sequencing, chromatin accessibility, transcriptome
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1. INTRODUCTION 

 

1.1. Chromatin dynamics and transcriptional regulation 

The central dogma, a fundamental principle in molecular biology, describes the 

unidirectional flow of genetic information from DNA to RNA to protein1. According to 

this concept, an organism’s genome sequence contains all the necessary information to 

define its state. However, the field of epigenetics emerged to account for biological 

phenomena that cannot be fully explained within the central dogma’s framework. Broadly 

speaking, epigenetics serves as a bridge between genotype and phenotype, altering gene 

expression at specific loci or chromosomes without changing the underlying DNA 

sequence2. Among the various epigenetic mechanisms, chromatin accessibility plays a 

particularly critical role. 

Chromatin, composed of DNA and histone proteins, is located in the nucleus of 

eukaryotic cells and is organized into a tightly packed structure of nucleosomes. Each 

nucleosome consists of a histone octamer core around which 147 base pairs of DNA are 

wound3,4. Chromatin exists in euchromatic or heterochromatic states, and gene expression 

is regulated by chromatin accessibility5. Accessible chromatin regions across the genome, 

including enhancers, promoters, insulators, and transcription factor binding sites, 

collectively control gene expression6. In contrast, inaccessible chromatin represents areas 

where transcription factors cannot bind, leading to minimal transcriptional activity7. 

Currently, ATAC-seq is recognized as a pivotal technique for identifying euchromatin 

regions8,9. This method employs transposase to target accessible chromatin regions. The 

enzyme cleaves DNA in euchromatin regions, where chromatin structure is open, and 
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inserts adaptors. These DNA fragments are subsequently analyzed using next-generation 

sequencing (NGS), enabling precise mapping of accessible chromatin locations across the 

genome. In living organisms, controlling chromatin accessibility is essential for defining 

cellular identity and function10. It regulates the development of stem cells into specific cell 

types during embryonic development and mediates responses to environmental stimuli and 

cellular signals11,12. ATAC-seq provides valuable insights into how cells regulate their 

functions and respond to changes. Additionally, it allows researchers to understand how 

disruptions in these regulatory mechanisms can lead to disease. As a result, ATAC-seq is 

a crucial tool for deepening our knowledge of chromatin dynamics and its relevance to 

cellular biology and disease. 

Transcription is regulated by various mechanisms, including chromatin accessibility. 

Among the resulting RNA transcripts, some undergo 5' capping13, polyadenylation14,15, and 

RNA splicing16,17 to become mature mRNAs ready for protein translation. Regulating 

mRNA expression enables cells to adapt to external signals and internal needs, ensuring 

functional diversity and specificity. Currently, mRNA-seq (messenger RNA sequencing) is 

a widely utilized and powerful technique for transcriptome analysis, providing 

comprehensive insights into gene expression profiles at the cellular level18-20. This method 

leverages next-generation sequencing (NGS) to quantify and sequence mRNA molecules, 

enabling the identification of expressed genes, transcript variants, and novel transcripts. By 

capturing the transcriptome, mRNA-seq provides a representation of the cellular functional 

state, revealing genes actively being transcribed under specific conditions. Accurate control 

of mRNA expression is essential for physiological processes like cell differentiation, 

growth, and stress adaptation. By controlling the timing and specificity of gene expression, 

cells can execute specialized functions and maintain harmony across tissues and organs. 
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As a robust and versatile tool, mRNA-seq has become a cornerstone in functional genomics, 

systems biology, and disease modeling. With its ability to provide high-resolution and 

comprehensive transcriptome data, mRNA-seq continues to advance our understanding of 

gene regulation and its profound implications for cellular biology and therapeutic 

development. 

 

1.2. Single-cell multiomics technology 

Unlike traditional bulk-level experiments, single-cell RNA sequencing technology has 

revolutionized molecular biology by enabling unprecedented scale and resolution in 

transcriptome profiling20. With the advent of single-cell transcriptome analysis, efforts 

have expanded to explore the genome21, epigenome22,23 and proteome24 at the single-cell 

level, making it possible to analyze these dimensions individually. However, experiments 

targeting a single modality capture only one aspect of the intricate regulatory elements that 

control cellular differentiation, function, and signal transduction. 

To overcome the limitations of single-cell unimodal sequencing, various experimental 

approaches have emerged that enable multimodal analysis at single-cell resolution, 

incorporating diverse modalities such as chromatin accessibility25-27, histone 

modifications28,29, surface protein expression30,31 and spatial location32. Single-cell 

transcriptomics, the leading single-cell omics approach, is frequently integrated with other 

omics methods to investigate the link between gene expression and phenotypic 

heterogeneity without bias33. Furthermore, this integrative analysis provides important 

insights into the interactions between distal regulatory elements, like enhancers, and their 

target genes, facilitating the study of intercellular communication and regulatory networks 

at single-cell resolution. Single-cell multiomics has been transformative in developmental 
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biology by enabling lineage tracing and identifying epigenetic changes that drive cell fate 

decisions. In disease research, it has offered valuable understanding of cancer progression, 

immune cell heterogeneity in autoimmune diseases, and the molecular mechanisms behind 

neurodegenerative disorders. The integration of spatially resolved techniques with single- 

cell multiomics further adds a crucial layer of spatial context, particularly valuable for 

studying tumor microenvironments and tissue architecture. Progress in multimodal 

sequencing has enabled the concurrent analysis of various molecular characteristics within 

individual cells, offering a more comprehensive understanding of how different regulatory 

layers interact and function together at single-cell resolution. 

 

1.3. SHARE-seq 

SHARE-seq (Simultaneous High-throughput ATAC and RNA Expression with 

Sequencing) is an experimental platform designed to jointly analyze chromatin 

accessibility and transcriptomic data at the single-cell level34. By integrating chromatin 

accessibility and transcriptomic data generated through SHARE-seq, regulatory elements 

controlling gene expression can be identified. This joint profiling approach establishes a 

direct link between transcriptional regulation and its downstream outputs, enabling greater 

insight into the molecular processes underlying cellular physiology35. Moreover, the 

concurrent measurement of various molecular features in individual cells provides a 

comprehensive insight into the interactions and functions of regulatory layers within cells. 

SHARE-seq enables the identification of functional links between regulatory elements that 

govern gene expression and supports the reconstruction of cellular lineages and 

differentiation pathways through temporal data analysis. In contrast to traditional droplet-

based single-cell separation methods, SHARE-seq employs multiple rounds of 
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hybridization-ligation to simultaneously label mRNA and chromatin fragments originating 

from the same cell36. This process involves three rounds of combinatorial indexing, with 

96 unique barcodes ligated to gDNA and cDNA in each round, resulting in a total of 

884,736 possible barcode combinations. This high-throughput combinatorial indexing 

method offers significant advantages over widely used droplet-based single-cell 

multimodal sequencing, including higher efficiency and cost-effectiveness. 

SHARE-seq is not limited to single-cell applications but is also compatible with 

single-nucleus profiling, enabling its use in tissues where traditional single-cell sequencing 

is challenging. For instance, adipocytes, which are large and high lipid-rich content, pose 

significant difficulties for droplet-based single-cell sequencing37. Similarly, 

cardiomyocytes, characterized by their single or dual nucleus configuration and 

intercalated disc-mediated connectivity, are challenging to sequence at the single-cell 

level38. However, SHARE-seq can be applied at the single-nucleus level, enabling the 

acquisition of chromatin accessibility and gene expression dataset even from tissues where 

single-cell sequencing is challenging. In summary, SHARE-seq represents a robust and 

versatile approach for concurrent profiling of chromatin accessibility and gene expression, 

enabling high-throughput and cost-effective analyses across diverse sample types, 

including those from challenging tissues, at both single-cell and single-nucleus resolutions. 
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2. MATERIALS AND METHODS 

 

 2.1. Cell line culture 

The HCT116 human colorectal cancer cell line (ATCC) was maintained at 37°C in an 

atmosphere of 5% CO₂ using RPMI 1640 medium (HyClone) supplemented with 10% FBS 

(HyClone), 100 U/mL penicillin, and 100 µg/mL streptomycin (HyClone). The human NK 

cell line NK-92 (ATCC) was cultured at 37°C with 5% CO₂ in α-MEM medium (Gibco) 

supplemented with 20% FBS (HyClone), 55 µM 2-mercaptoethanol (Gibco), 100 U/mL 

penicillin, 100 µg/mL streptomycin (HyClone), and 100 U/mL IL-2 (Roche). 

 

 2.2. SHARE-seq library preparation 

SHARE-seq was conducted using methods described in prior studies34,39,40, with minor 

modifications introduced by Dr. Chul Min Yang and Dr. Eun-Chong Lee. 

 

  2.2.1. Annealing oligo plates 

Linker strands and barcode sequences used during the hybridization rounds were 

prepared in 96-well plates, with each well holding 10 µL of oligos at defined concentrations. 

In Round 1, the concentrations were 9 µM for the linker and 10 µM for the barcodes; in 

Round 2, 11 µM for the linker and 12 µM for the barcodes; and in Round 3, 13 µM for the 

linker and 14 µM for the barcodes. The linker oligos were prepared in STE buffer 

containing 10 mM Tris-HCl, pH 8.0, 50 mM NaCl, and 1 mM EDTA. Annealing was 

achieved by heating the plates to 95°C for 2 minutes, followed by gradual cooling to 20°C 

at a rate of - 1°C per minute. Each round contained 96 barcodes. For the full sequences, 
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refer to Supplementary Table S1 in the SHARE-seq publication34. 

 

  2.2.2. Adaptor annealing 

Adaptors were annealed following the manufacturer's instructions. Adaptor A and 

Adaptor B were annealed separately, differing only in the use of the Read 1 oligo for 

Adaptor A and the Read 2 oligo for Adaptor B (Table 1). For each reaction, 100 µM of the 

respective Read oligo and 100 µM of the ME oligo (Table 1) were prepared in annealing 

buffer (10 mM Tris-HCl, pH 8.0, 50 mM NaCl, 1 mM EDTA). Annealing was carried out 

by heating the plates to 95°C for 2 minutes, then slowly cooling to 20°C at a rate of 1°C 

per minute. The reaction was finalized with a cooling step at 20°C for 2 minutes. Annealed 

oligos were stored at -20°C. 

 

Table 1. Oligo sequences for adaptor annealing 

Index Oligo sequence 

ME oligo TCTACACATATTCTCTGTC 

Read 1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 

Read 2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG 

 

  2.2.3. Tn5 transposome assembly 

The Tn5 transposome was prepared according to the manufacturer's guidelines. In a 

PCR tube, 100 µM of the Read 1 adaptor and 100 µM of the Read 2 adaptor were mixed in 

equal volumes to create the adaptor mixture. An equal volume of the adaptor mixture was 

then combined with unloaded Tn5 (Diagenode) and gently mixed using a pipette. The 

assembled Tn5 complex was stored at -20°C. 
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  2.2.4. Fixation 

Briefly, 1 million cells were collected by centrifugation and resuspended in fresh 

formaldehyde (Thermo Fisher Scientific) to achieve a final concentration of 0.1%. The 

sample was incubated at room temperature for 5 minutes with rotation. Quenching solution 

was added to neutralize the formaldehyde, and the cells were incubated on ice for 5 minutes. 

The cell pellet was washed twice with 1 mL PBS-2RI (1X PBS, 0.835% BSA, 0.03 U/µL 

SUPERase RNase Inhibitor, 0.06 U/µL Enzymatics RNase inhibitor). 

 

  2.2.5. Nuclei isolation 

The cells were lysed in MNIB-2 buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 3 

mM MgCl₂, 0.1% NP-40, 0.1% Tween-20, 0.01% Digitonin) for 3 minutes. This was 

followed by incubation in MNIB-3 buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 3 mM 

MgCl₂, 0.01% Digitonin) on ice for 10 minutes. After the nuclei isolation, the nuclei were 

washed once with NIB-2RI buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 3 mM MgCl₂, 

0.1% NP-40, 0.03 U/µL SUPERase RNase Inhibitor, 0.06 U/µL Enzymatics RNase 

inhibitor). The isolated nuclei were counted, and 300,000 nuclei were distributed across 

four tubes for downstream processing. 

 

  2.2.6. Transposition and reverse transcription 

The extracted nuclei were suspended in 50 µL of PBS-2RI buffer and transferred to a 

new tube. Prior to performing tagmentation, a 2x TB buffer (0.066 M Tris-acetate, 0.132 

M K-acetate, 0.02 M Mg-acetate, 0.2% NP-40, 32% DMF) was prepared. Next, 150 µL of 
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tagmentation mixture (1x TB buffer, 0.01% Digitonin, 1x Proteinase inhibitor, 1.2 U/µL 

Enzymatic RNase Inhibitor) was added to the sample, followed by incubation at room 

temperature for 10 minutes. Subsequently, 4 µL of assembled Tn5 was added, and the 

sample was aliquoted into PCR tubes at 50 µL per tube. The aliquots were maintained at 

37°C with shaking at 500 rpm for 30 minutes. After the transposition step, the samples 

were washed with NIB-2RI buffer. The washed samples were resuspended in 100 µL of 

reverse transcription mix (0.3 M Betaine, 571 µM dNTPs, 2.38 µM RT-primer, 4.76 mM 

DTT, 0.01% Triton X-100, 16.7% PEG 8000, 1x RT buffer, 19.05 U/µL Maxima H Minus 

Reverse Transcriptase, SUPERase RNase Inhibitor 0.29 U/µL, Enzymatic RNase Inhibitor 

0.57 U/µL) and aliquoted into 50 µL portions. The aliquots were heated at 50°C for 10 

minutes, followed by three thermal cycles (8°C for 12 seconds, 15°C for 45 seconds, 20°C 

for 45 seconds, 30°C for 30 seconds, 42°C for 120 seconds, and 50°C for 180 seconds), 

and then incubated at 50°C for 5 minutes. After completing the reverse transcription, the 

samples were washed with NIB-2RI buffer. 

 

Table 2. Primer sequence used for reverse transcription 

Index Primer sequence 

RT_ 

primer 

/5Phos/ GTCTCGTGGGCTCGGAGATGTGTATAAGAGAC

AG[10-bp UMI]/iBiodT/TTTTTTTTTTTTTTVN 

 

  2.2.7. Hybridization and ligation 

The samples resuspended in NIB-2RI were mixed with Hybridization buffer (1.67x 

T4 ligase buffer, 0.17% NP-40, 0.084 U/µL SUPERase RNase Inhibitor, 0.533 U/µL 

Enzymatic RNase Inhibitor) and dispensed into each well of the Round 1 plate at 40 µL 

per well. The plate was incubated at 450 rpm and 24°C for 30 minutes. Subsequently, 10 µL 
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of Blocking Oligo 1 was dispensed into each well, followed by incubation of the plate at 

450 rpm and 24°C for 30 minutes. After incubation, all samples were transferred to a 

reservoir and redistributed into the Round 2 plate at 55 µL per well, followed by incubation 

at 450 rpm and 24°C for 30 minutes. Next, 10 µL of Blocking Oligo 2 was dispensed into 

each well, followed by incubating the plate for 30 minutes under the same conditions. 

Finally, the samples were transferred back to a reservoir and distributed into the Round 3 

plate at 65 µL per well, followed by a final incubation at 450 rpm and 24°C for 30 minutes. 

The barcoded samples were washed with NIB-2RI buffer and resuspended in 80 µL of NIB-

2RI buffer. The samples were subsequently suspended in 320 µL of ligation mixture (1.25x 

T4 Ligase buffer, 0.125% NP-40, 25 U/µL T4 DNA ligase, 0.0625 U/µL SUPERase RNase 

Inhibitor, 0.4 U/µL Enzymatic RNase Inhibitor) and incubated at 24°C with shaking at 450 

rpm for 30 minutes. After completing the ligation step, the samples were washed with NIB-

2RI buffer and aliquoted into 50 µL sublibraries at 20,000 nuclei per aliquot. The 20,000-

nuclei sublibraries were stored in a -80°C deep freezer. 

 

Table 3. Oligo sequences for combinatorial indexing 

Index Oligo sequence 

R1 barcodes 
/5Phos/ CGCGCTGCATACTTG[8-bp 

Barcode1]CCCATGATCGTCCGA 

R1 linker CCGAGCCCACGAGACTCGGACGATCATGGG 

R2 barcodes 
/5Phos/CATCGGCGTACGACT[8-bp 

Barcode2]ATCCACGTGCTTGAG 

R2 linker CAAGTATGCAGCGCGCTCAAGCACGTGGAT 

R3 barcodes 
CAAGCAGAAGACGGCATACGAGAT[8-bp 

Barcode3]GTGGCCGATGTTTCG 

R3 linker AGTCGTACGCCGATGCGAAACATCGGCCAC 

R1 blocking CCCATGATCGTCCGAGTCTCGTGGGCTCGG 

R2 blocking ATCCACGTGCTTGAGCGCGCTGCATACTTG 
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R3 blocking GTGGCCGATGTTTCGCATCGGCGTACGACT 

 

  2.2.8. Reverse crosslinking and affinity pull-down 

For the 20,000 nuclei stored in 50 µL, 1x reverse crosslinking buffer (prepared by 

diluting 2x reverse crosslinking buffer: 100 mM Tris-HCl, pH 8.0, 100 mM NaCl, 0.004% 

SDS), 0.2 µg/µL Proteinase K (New England Biolabs), and 0.4 U/µL SUPERase RNase 

Inhibitor (Thermo Fisher Scientific) were added. The mixture was incubated at 450 rpm at 

55°C for 1 hour. After incubation, 5 µL of 100 mM PMSF was added to inactivate 

Proteinase K, followed by incubation at room temperature for 10 minutes. For affinity pull-

down preparation, Dynabeads MyOne Streptavidin T1 (Invitrogen) were washed twice 

with 1x B&W-T buffer (5 mM Tris-HCl, pH 8.0, 1 M NaCl, 0.5 mM EDTA, and 0.05% 

Tween 20) and once with 1x B&W-T buffer supplemented with 0.8 U/µL SUPERase 

RNase Inhibitor (Thermo Fisher Scientific). Add the prepared beads to the sample after 

Proteinase K inactivation, and incubate with rotation at 10 rpm at room temperature for 60 

minutes. 

 

  2.2.9. snATAC-seq library preparation 

The transposed DNA in the supernatant was purified using the QIAGEN MinElute 

PCR Purification Kit and eluted with 22 µL of QIAGEN Elution Buffer. The fragments 

were amplified in a 50 µL PCR reaction containing 1x NEBNext buffer (New England 

Biolabs), 0.5 µM library-specific Ad1 primer, and 0.5 µM P7 primer. The PCR reaction 

was performed under the following conditions: 72°C for 5 minutes, 98°C for 30 seconds, 

followed by 5 cycles of 98°C for 10 seconds, 63°C for 30 seconds, and 72°C for 1 minute. 

A quantitative PCR was conducted to estimate the number of additional cycles needed for 



１２ 

 

library amplification. This was done using 1 µL of the pre-PCR sample in a total reaction 

volume of 10 µL. The amplified library, following additional PCR, was purified using the 

QIAGEN MinElute PCR Purification Kit. The final libraries underwent size selection with 

0.9X AMPure XP beads (Beckman Coulter) and were sequenced on the Illumina NovaSeq 

X platform with the following read specifications: Read 1 – 50 bp, Read 2 – 50 bp, Index 

1 – 99 bp, and Index 2 – 8 bp. 

 

  2.2.10. cDNA library preparation 

After the supernatant (snATAC-seq library) was removed, the beads were washed 

three times with 1x B&W-T buffer containing 0.2 U/µL SUPERase RNase Inhibitor 

(Thermo Fisher Scientific) and once with STE buffer (10 mM Tris-HCl, pH 8.0, 50 mM 

NaCl, and 1 mM EDTA). The washed beads were suspended in 50 µL of template switch 

mix containing 1 mM dNTPs, 1 M Betaine, 10% PEG 8000, 1x Maxima RT buffer, 2% 

Ficoll PM-400, 4 U/µL NxGen RNase Inhibitor, 2.5 µM TSO, and 10.12 U/µL Maxima H 

Minus Reverse Transcriptase. The mixture was incubated with rotation at 10 rpm at room 

temperature for 30 minutes, followed by shaking at 300 rpm at 42°C for 90 minutes. After 

the TSO reaction, 100 µL of distilled water was added, and the beads were washed with 

STE buffer. The cDNA was amplified in a 50 µL PCR reaction containing template DNA, 

1x KAPA HiFi HotStart ReadyMix, 0.4 µM RNA primer, 0.4 µM P7 primer. The PCR 

reaction was performed under the following conditions: 95°C for 3 minutes, followed by 5 

cycles of 98°C for 20 seconds, 65°C for 45 seconds, and 72°C for 3 minutes; then an 

additional 5 cycles of 98°C for 20 seconds, 67°C for 20 seconds, and 72°C for 5 minutes; 

and a final extension at 72°C for 5 minutes. To determine the number of additional cycles 

required for library amplification, a quantitative PCR was performed using a 1 µL aliquot 



１３ 

 

of the PCR product in a total reaction volume of 10 µL containing 1x EvaGreen (Biotium). 

Based on the qPCR results, the remaining samples were amplified with additional PCR 

cycles under the conditions of 95°C for 3 minutes, followed by the additional cycles of 

98°C for 20 seconds, 67°C for 20 seconds, 72°C for 1 minute, and a final extension at 72°C 

for 5 minutes. 

 

Table 4. Primer sequences used for cDNA library preparation   

Index Primer sequence 

TSO AAGCAGTGGTATCAACGCAGAGTGAATrGrG+G 

RNA primer AAGCAGTGGTATCAACGCAGAGT 

 

  2.2.11. Tagmentation and snRNA-seq library preparation 

A tagmentation mixture was prepared with 1x TD buffer (prepared by diluting 2x TD 

buffer consisting of 20 mM Tris-HCl, pH 7.6, 10 mM MgCl₂, 20% dimethylformamide 

with distilled water), 50 ng of cDNA, and distilled water to a final volume of 100 µL. 

Subsequently, 10 µL of a 1:80 diluted ME-A adaptor-loaded Tn5 transposase was added, 

and the reaction was incubated at 55°C with shaking at 300 rpm for 5 minutes. The 

tagmented samples were purified using the QIAGEN MinElute PCR Clean-Up Kit and 

eluted in 22 µL of QIAGEN Elution Buffer. The purified samples were amplified through 

a 50 µL PCR reaction with the following thermal cycling conditions: 72°C for 5 minutes 

and 98°C for 30 seconds, followed by 7 cycles of 98°C for 10 seconds, 65°C for 30 seconds, 

and 72°C for 1 minute, with a final extension at 72°C for 5 minutes. The final libraries were 

size-selected using 0.7x AMPure XP beads (Beckman Coulter) and sequenced on the 

Illumina NovaSeq X platform with the following specifications: Read 1 – 50 bp, Read 2 – 
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50 bp, Index 1 – 99 bp, and Index 2 – 8 bp. 

 

 2.3. SHARE-seq library quality control 

  2.3.1. Polymerase chain reaction and electrophoresis for library size 

distribution analysis 

The obtained library was quantified, and 100 pg of the SHARE-seq library was used 

for PCR. The PCR conditions were as follows: an initial denaturation at 95°C for 2 minutes, 

followed by 20 cycles consisting of denaturation at 95°C for 20 seconds, annealing at 63°C 

for the snATAC-seq library or 67°C for the snRNA-seq library for 30 seconds, and 

extension at 72°C for 1 minute. A final extension step was performed at 72°C for 5 minutes. 

The resulting libraries were evaluated via agarose gel electrophoresis to verify their size 

distribution. 

 

Table 5. Primer sequences for library size distribution analysis 

Index Primer sequence 

Illumina P5 AATGATACGGCGACCACCGAGATCTACAC 

Illumina P7 CAAGCAGAAGACGGCATACGAGAT 

Read 1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 

Read 2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG 

Index 1 CTGTCTCTTATACACATCTCCGAGCCCACGAGAC 

 

  2.3.2. TA cloning and DNA elution for library sequence confirmation 

DNA amplified with Illumina P5 and Illumina P7 primers (Table 5) was purified 

using the Expin™ CleanUp SV (GeneAll). The purified DNA insert was cloned into a TA 

vector (Enzynomics), and transformation was performed in DH5α competent cells 
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(Enzynomics) according to the manufacturer's instructions. Libraries from the resulting 

colonies were purified using the Exprep™ plasmid SV (GeneAll) and sequenced by Sanger 

sequencing with the universal primers listed in Table 6. 

 

Table 6. Sequencing primer for reading DNA sequence after cloning 

Index Primer sequence 

M13R-pUC CAGGAAACAGCTATGAC 

 

 2.4. Bioinformatic analysis 

Most of the bioinformatic analyses of the omics data generated in this dissertation 

were conducted by Jieun Seo. The HCT116_CMV bulk mRNA-seq and ATAC-seq 

datasets used in this dissertation were generated by Dr. Bobae Yang, while the NK92 bulk 

mRNA-seq and ATAC-seq datasets were generated by Dr. Eun-Chong Lee. 

 

  2.4.1. mRNA-seq data processing 

Paired-end sequencing reads were processed using Trim Galore41 (v0.6.10) with the 

command-line option trim_galore --paired for adapter trimming. The trimmed reads were 

aligned to the Human hg38 genome assembly using STAR (v2.5.2b) with the parameters --

chimSegmentMin 20 --twopassMode Basic --quantMode TranscriptomeSAM. Gene 

expression quantification was performed with RSEM42 (v1.3.1) using the options --paired- 

end --estimated-rspd. Differentially expressed protein-coding genes were identified using 

the DESeq2 R package43 (v1.44.0), applying a log₂ fold-change cutoff of 2 and an adjusted 

p-value threshold of 0.01. Strand-specific reads were extracted with SAMtools (v1.19.2)44 

and normalized to generate strand-specific mRNA-seq genome tracks using the 
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bamCoverage function from deepTools (v3.5.5)45 with the normalization method –

normalizeUsing CPM. 

 

  2.4.2. ATAC-seq data processing 

Paired-end sequencing reads were trimmed using Trim Galore with the same 

parameters applied in mRNA-seq preprocessing. The trimmed reads were aligned to the 

Human hg38 reference genome using Bowtie2 (v2.5.3) with the settings --end-to-end -- 

very-sensitive --maxins 2000. Reads with low mapping quality, duplicates, and 

mitochondrial origin were identified and filtered out using SAMtools and Picard Tools 

(v2.14.1). Nucleosome-free regions were selected, and adaptor insertion sites induced by 

Tn5 transposase were adjusted with the alignmentSieve function from deepTools, using the 

command-line options --maxFragmentLength 140 –ATACshift. Nucleosome-free reads 

were normalized with deepTools in the same way as for ChIP-seq data to produce genome- 

wide ATAC-seq signal tracks. Peak calling for ATAC-seq data was performed with 

MACS2 (v2.2.9.1)46 without incorporating input control data. Differentially accessible 

regions were identified using the DESeq2 R package, based on read counts from each 

sample and customized size factors that accounted for the proportion of nucleosome-free 

reads between samples, with thresholds set at an adjusted p-value of 0.01 and a log₂ fold- 

change of 2. 

 

  2.4.3. SHARE-seq data pre-processing 

Pre-processing of SHARE-seq data (.fastq.gz) was performed using previously 

described scripts (available at https://github.com/masai1116/SHARE-seq-alignmentV2/)34. 

Gene annotation and sequence files (Genome Reference Consortium Human Build 38 patch 
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release 13; GRCh38.p13)  from  the  GENCODE47  website  were  used.  

Barcode demultiplexing was performed allowing one mismatch based on the introduced 

barcodes in split-pool barcoding. Reads with disabled adapters and low-quality sequences 

were trimmed using fastp48 (v0.23.4). For snRNA-seq data, due to the characteristic 

presence of polyA tails in mRNA, the read2 sequence was excluded, and only the read1 

FASTQ file was aligned to the reference genome using STAR49 (v.2.5.2b). The number of 

reads mapped to genomic regions was quantified using FeatureCount50 (v2.0.6), and unique 

UMI-based read grouping was performed using UMI-tools51 (v1.1.5) to obtain unique reads 

by removing duplicated reads. For snATAC-seq (SHARE-ATAC) data, alignment was 

performed using bowtie252 (v2.5.3). Reads that were unmapped, not primary aligned, or 

aligned to chrM and chrY were removed. Barcodes with fewer than 50 reads were filtered 

out. The read distribution was checked using RseQC53 (v5.0.2). This process resulted in a 

count matrix (.h5 file) representing gene expression and a fragment profile (.bed file) for 

each cell. To process the .h5 files for generating count matrices, the scanpy.read_10x_h5 

function from Scanpy54 (v1.9.8) was used. 

 

  2.4.4. snRNA-seq data processing 

All snRNA-seq analysis were executed on Scanpy. Cells with fewer than 1,000 or 

more than 6,500 genes detected, as well as cells with fewer than 1,000 reads or more than 

20,000 reads, were removed from the gene count matrix. Genes present in fewer than 50 

cells were also excluded. Cells with more than 30% mitochondrial reads were removed, 

and doublet detection was performed using the scanpy.external.pp.scrublet function. The 

expected doublet rate was set to 0.06, and the number of neighbors was set to 30. Cells with 

doublet scores exceeding 0.2 were annotated as suspected doublets and excluded from 
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analysis. The data were subsequently normalized and log-transformed. Highly variable 

genes (7,788 genes) were identified using the scanpy.pp.highly_variable_genes function 

with parameters min_mean=0.0125, max_mean=3, and min_disp=0.5. The effects of total 

counts per cell and the proportion of mitochondrial reads per cell were regressed out using 

the scanpy.pp.regress_out function. The data were then scaled, followed by dimensionality 

reduction using principal component analysis (PCA) with the scanpy.tl.pca function 

(svd_solver='arpack'). A neighborhood graph was computed using the scanpy.pp.neighbors 

function with the number of neighbors set to 15 (metric='cosine'). The neighborhood graph 

was embedded into two dimensions using the scanpy.tl.umap function, with the minimum 

effective distance between embedded points set to 0.5. Leiden clustering was performed 

using the scanpy.tl.leiden function. For single-cell cluster annotation, a set of marker genes 

was compiled. Each marker gene was qualitatively visualized in UMAP space to confirm 

its spatial distribution.  

 

  2.4.5. snATAC-seq data processing 

Chromatin analysis was conducted using the CreateChromatinAssay function from 

Signac to generate a chromatin assay from the count matrix, followed by conversion into a 

Seurat object using the CreateSeuratObject function from Seurat55 (v5.1.0). For each cell, 

nucleosome signal intensity, transcription start site (TSS) enrichment score, fraction of 

reads in peaks (FRiP), and the proportion of counts overlapping the hg38 genome blacklist 

were calculated using the NucleosomeSignal, TSS Enrichment, FRiP, and 

FractionCountsInRegion functions, respectively. For quality control, cells with 2,000 to 

50,000 peaks, a nucleosome signal value below 2.5, a TSS enrichment score above 4, a 

FRiP value greater than 0.1, and a blacklist overlap ratio below 0.05 were retained for 
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downstream analysis. The data was then normalized using the TF-IDF (term frequency- 

inverse document frequency) method implemented in the RunTFIDF function. Singular 

value decomposition (SVD) was performed on the TF-IDF matrix for linear dimensionality 

reduction using the RunSVD function. Graph-based clustering, non-linear dimensionality 

reduction, and UMAP visualization were performed using the FindNeighbors, FindClusters, 

and RunUMAP functions, respectively, with parameters dims = 2:30, min.dist = 0.5, and 

n.neighbors = 30. Notably, cells with relatively low FRiP values were carefully excluded 

during the analysis to avoid artifacts associated with low-FRiP clusters. Gene annotation 

was performed using the GeneActivity function, which computed counts for each cell 

across gene bodies and 2,000 bp upstream of transcription start sites (including promoter 

regions). Peak calling was repeated for each cluster, resulting in the identification of a total 

of 184,399 features. All snATAC-seq analyses described above were based on the 

previously constructed peak-by-cell matrix. 
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3. RESULTS 

 

3.1. SHARE-seq workflow to concurrently profile chromatin 

accessibility and gene expression in a cancer-immune cell mixture. 

SHARE-seq (Simultaneous High-throughput ATAC and RNA Expression with 

Sequencing) is an innovative multiomics platform that allows for concurrent analysis of 

chromatin accessibility and gene expression at single-cell resolution34. In SHARE-seq, 

cells are first fixed, and their nuclei are isolated. Subsequently, the Tn5 transposase tags 

regions of open chromatin in the DNA. mRNA is reverse-transcribed using poly(T) primers 

that include unique molecular identifiers (UMIs) and biotin tags. The transposed DNA and 

poly(T) cDNA undergo three rounds of hybridization-ligation with 8-bp barcodes in 96-

well plates. This process creates 884,736 unique barcode combinations, each of which 

labels a single nucleus. Reverse crosslinking releases both transposed DNA and poly(T) 

cDNA, ensuring that each carries the same barcode corresponding to the same cell. The 

poly(T) cDNA, tagged with biotin, is isolated using streptavidin beads, while the transposed 

DNA remains in the supernatant. These paired profiles are subsequently identified by 

matching the well-specific barcode combinations, ensuring that the chromatin accessibility 

and transcriptomic data are correctly linked for each individual cell (Figure 1A). 

In this study, the nuclei of the NK92 cell line (immune cells) and the HCT116 cell line 

(colon cancer cells) were mixed. SHARE-seq was performed on the mixed nuclei to 

determine whether the two cell lines could be distinguished at the single-nucleus level. 

Each cell line was fixed, and nuclei were isolated from 1 million cells. Prior to tagmentation, 

150,000 nuclei from each cell line were combined, resulting in a total of 300,000 nuclei for 
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tagmentation. Finally, sublibraries were constructed from 20,000 barcoded samples. Using 

SHARE-seq, chromatin accessibility and gene expression were simultaneously profiled at 

single-nucleus resolution in the cancer-immune cell mixture, demonstrating that immune 

and cancer cell lines could be effectively distinguished.  
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Figure 1. Workflow of SHARE-seq. (A) Schematic representation of SHARE-seq 

workflow. 
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3.2. SHARE-seq library quality control via polymerase chain reaction 

and TA cloning. 

To separate individual nuclei through combinatorial indexing, the library structure 

generated by SHARE-seq is more complex compared to conventional single-cell 

sequencing libraries (Figure 2A, 2B). These constructs include well-specific barcodes 

(BC1, BC2, and BC3), linker sequences, and molecular identifiers (for the snRNA-seq 

library) to enable the accurate identification of paired profiles. By employing three 

barcodes, SHARE-seq integrates both chromatin accessibility and gene expression data 

from individual cells at single-nucleus resolution. 

To confirm the accurate assembly of the SHARE-seq library structure, the barcode 

construct length and sequence composition generated during snRNA-seq and snATAC-seq 

were analyzed using electrophoresis (Figure 2C, 2D). PCR was conducted using primers 

targeting the sequencing primers of the SHARE-seq library (Read 1, Read 2, and Index 1) 

and linker sequences that bind to the Illumina flow cell (Illumina P5 and Illumina P7). For 

samples amplified with combinations of primers Illumina P5 and Illumina P7, Read1 and 

Illumina P7, or Read2 and Illumina P5, smeared bands were observed during electrophoresis, 

indicating the presence of inserts in the amplified DNA. In contrast, samples amplified with 

Index 1 and Illumina P7, targeting only the barcode region, showed a single, distinct band. 

This result confirms that the three rounds of barcoding were successfully completed and 

that the library structures within the SHARE-seq libraries were correctly assembled. 

To ensure no sequence alterations occurred in the SHARE-seq library, the constructed 

libraries were amplified with Illumina P5 and P7 primers and subjected to TA cloning. 

After extracting the transformed libraries on a per-colony basis, sanger sequencing was 
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conducted to evaluate the structural integrity of the libraries and their concordance with the 

reference sequences. The analysis demonstrated strong concordance between the snRNA-

seq and snATAC-seq library sequences and their respective references, confirming the 

correct library structure (Figure 2E, 2F). This result validates the reliability of the 

barcoding and library construction processes in SHARE-seq.  
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Figure 2. Quality control of SHARE-seq libraries using gel electrophoresis and TA 

cloning. (A) Schematic overview of the snRNA-seq library construction (B) Schematic 

overview of the snATAC-seq library construction (This schematic overview was adapted 

and modified with reference to the original overview designed by Dr. Chul Min Yang). (C) 

The distribution of DNA fragments in snRNA-seq libraries was visualized by gel 

electrophoresis. (D) The distribution of DNA fragments in snATAC-seq libraries was 

visualized by gel electrophoresis. (E) Comparison of actual sequences from snRNA-seq 

libraries obtained via TA cloning with reference sequences. (F) Comparison of actual 

sequences from snATAC-seq libraries obtained via TA cloning with reference sequences. 
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3.3. Validation of SHARE-seq library quality using bulk sequencing. 

To assess the reliability of snRNA-seq and snATAC-seq data generated by SHARE-

seq from a cancer-immune cell mixture, a portion of the library underwent bulk sequencing 

to evaluate its overall quality. Bulk sequencing provides information about the inserts 

within each library but does not capture barcode information, offering insights into all cell 

types within the sample. Initially, TapeStation analysis was performed to examine the insert 

size distribution of the SHARE-seq library. The generated SHARE-seq libraries conformed 

well to established criteria40, indicating their high quality (Figure 3A, 3B). Additionally, 

quality control at the bulk level confirmed the high quality of SHARE-seq libraries (Table 

7, 8). 

Further quality control assessments revealed that snRNA-seq datasets typically 

include a significant proportion of unspliced RNA, resulting in a large number of reads from 

intronic regions. Bulk sequencing of the snRNA-seq library from the cancer-immune cell 

mixture revealed an intron rate of approximately 40% (Figure 3C), which is significantly 

higher than that typically observed in mRNA-seq experiments56. Additionally, bulk 

sequencing of the snATAC-seq library showed distinct insert size distributions, with a clear 

separation of nucleosome-free regions (NFR) at ≤147 bp and mononucleosomes (Figure 

3D). These findings collectively confirm that the SHARE-seq library was properly 

constructed at the bulk level and meets the quality requirements for subsequent single-

nucleus sequencing. 

To further validate the SHARE-seq library, RNA and ATAC signals for housekeeping 

genes were compared to previously generated bulk mRNA-seq and bulk ATAC-seq data 

from NK92 and HCT116 cells. Genome browser tracks of housekeeping genes, including 

PGK1 (Phosphoglycerate Kinase 1) and ACTB (Actin Beta), were evaluated through IGV 
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visualization (Figure 3E). In the NK92 and HCT116 cell lines, a comparison of signals 

from SHARE-seq bulk sequencing and bulk-level mRNA-seq and ATAC-seq at 

housekeeping genes revealed a high level of consistency between the two experiments. 

These results confirm the reliability and accuracy of the SHARE-seq library, 

demonstrating its consistency with bulk sequencing. Furthermore, the SHARE-seq library 

was confirmed to possess the quality required for single-nucleus sequencing. 
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Figure 3. Quality control of SHARE-seq libraries via bulk sequencing. (A) Fragment 

distribution of snRNA-seq libraries as visualized by TapeStation HS D5000 

electropherogram. (B) Fragment distribution of snATAC-seq libraries as visualized by 

TapeStation HS D5000 electropherogram. (C) Distribution of reads in the bulk-sequenced 

snRNA-seq library inserts was analyzed. (D) Insert size distribution of the bulk-sequenced 

snATAC-seq library. (E) Genome tracks of bulk-sequenced SHARE-seq libraries and bulk 

mRNA-seq and ATAC-seq from NK92 and HCT116_CMV cell lines were visualized in 

IGV focusing on housekeeping gene regions. 
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Table 7. Quality of snRNA-seq libraries validated by bulk sequencing 

Uniquely mapping 

reads (%) 

Percent of reads mapped 

to multiple loci 

Duplication rate 

(%) 

98.13 21.38 42.17 

 

Table 8. Quality of snATAC-seq libraries validated by bulk sequencing 

Mapping 

rate(%) 

Duplication 

rate(%) 

FRiP 

(%) 

FRiB 

(%) 

Number 

Peaks 

98.13 21.38 62.17 0.53 72,195 
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3.4. Bulk mRNA-seq and ATAC-seq provide integrated insights into 

the cancer-immune cell mixture. 

Bulk mRNA-seq and ATAC-seq aggregate signals from all cell types in a sample, 

providing a global view of transcriptional profiles and chromatin dynamics. However, they 

lack the resolution necessary to differentiate signals from specific cell types. Differential 

gene expression (Figure 4A) and differential accessible region analyses (Figure 4B) were 

conducted using bulk mRNA-seq and ATAC-seq datasets generated for the NK92 and 

HCT116_CMV cell lines in our laboratory. This allowed for the identification of genes 

uniquely expressed and active in each cell line, which were subsequently compared with 

data obtained from bulk-sequenced SHARE-seq libraries. 

For NK92 cells, GZMA and GNLY were selected as markers due to their high 

expression levels, the presence of ATAC-seq signals in accessible promoter regions to 

NK92 cell, and the absence of similar characteristics in HCT116 cells. Granzyme A (GZMA) 

is abundantly expressed in NK92 cells, inducing caspase-independent cell death by 

targeting the SET complex to cause DNA damage57. Granulysin (GNLY) is also highly 

expressed in NK92 cells, inducing lysis or apoptosis in target cells, tumor cells, or cells 

infected by intracellular pathogens58. These attributes made GZMA and GNLY ideal 

signature genes for NK92 cells. Similarly, for HCT116 cells, genes AREG and EPCAM were 

selected based on analogous criteria. Amphiregulin (AREG) is highly expressed in HCT116 

cells, mediating EGFR signaling to drive key oncogenic traits59. EPCAM is a 

transmembrane glycoprotein associated with cell-cell adhesion, playing a critical role in 

tumorigenesis and metastasis60. These genes were chosen as HCT116 s i g n a t u r e  

genes due to their specific characteristics. 



３３ 

 

To verify that bulk sequencing represents integrated data from multiple cell types 

within a sample, IGV genome tracks were utilized to compare signals from bulk mRNA-

seq and ATAC-seq datasets with those from bulk-sequenced SHARE-seq libraries. For 

NK92 signature genes, signals were exclusively observed in NK92 bulk mRNA-seq and 

ATAC-seq datasets, with no detectable RNA signals or ATAC peaks in the HCT116 

datasets. In the SHARE-seq libraries generated from a cancer-immune cell mixture, both 

RNA signals and ATAC peaks for these signature genes were detected, confirming 

successful signal integration from both cell types (Figure 4C). Similarly, analysis of 

HCT116 signature genes, such as AREG and EPCAM, revealed that RNA signals and 

ATAC peaks were only present in HCT116 bulk datasets, with no corresponding signals in 

NK92 datasets. However, in the SHARE-seq libraries from a cancer-immune cell mixture, 

both RNA signals and ATAC peaks for these HCT116 signature genes were detected, further 

demonstrating effective signal integration from both cell populations (Figure 4D). 

These results confirm that NK92 and HCT116 cell lines were effectively mixed during 

SHARE-seq preparation, with the libraries capturing the transcriptome and chromatin 

dynamics of the mixed sample. In summary, when bulk sequencing was performed on the 

SHARE-seq library generated from a cancer-immune cell mixture, it provided an overview 

of the average transcriptome and chromatin dynamics across the mixed cell types in the 

sample. However, it failed to resolve the transcriptome and chromatin dynamics specific to 

each individual cell type. These findings highlight the inherent limitations of bulk 

sequencing in analyzing heterogeneous cell populations. 
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Figure 4. Combined cell type signals in bulk sequencing data from the SHARE-seq 

library. (A) Volcano plot showing differential gene expression analysis of NK92 and 

HCT116_CMV cell lines using bulk mRNA-seq data. (B) Volcano plot showing 

differential analysis of accessible regions between NK92 and HCT116_CMV cell lines 

using bulk ATAC-seq data. (C) Genome tracks of bulk-sequenced SHARE-seq libraries 

and bulk mRNA-seq and ATAC-seq from NK92 and HCT116_CMV cell lines were 

visualized in IGV focusing on NK92 cell line signature genes. (D) Genome tracks of bulk-

sequenced SHARE-seq libraries and bulk mRNA-seq and ATAC-seq from NK92 and 

HCT116_CMV cell lines were visualized in IGV focusing on HCT116 cell line signature 

genes. 
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3.5. Assessment of quality control metrics for snRNA-seq libraries. 

To assess the quality and reliability of the snRNA-seq library, comprehensive quality 

control was performed (Figure 5A, 5B). Scanpy54 was used to conduct quality control and 

downstream analysis of snRNA-seq data. Key metrics analyzed included the number of 

genes detected per nucleus (n_genes_by_counts), total read counts (total_counts), 

mitochondrial read percentage (pct_counts_mt), and doublet rate (doublet_score). SHARE-

seq relies on combinatorial indexing to distinguish individual nuclei, which results in the 

generation of barcodes that do not correspond to actual nuclei. In this experiment, 736,448 

barcodes were recognized during the analysis. Therefore, it is crucial to apply quality 

control measures to filter out non-nuclear barcodes and focus on actual nuclei. 

The cutoff for the number of detected genes per nucleus (n_genes_by_counts) was set 

between 1,000 and 6,500. Nuclei with a gene count outside this range were considered 

abnormal nuclei and excluded from further analysis. For the number of reads per nucleus 

(total_counts), a cutoff range of 1,000 to 20,000 was established. Nuclei with total read 

counts below this range were presumed to represent non-nuclear barcodes rather than actual 

nuclei and were excluded. The mitochondrial read percentage (pct_counts_mt) was limited 

to less than 30%, as a high mitochondrial RNA proportion could indicate stressed or 

compromised nuclei. Finally, doublet scores were restricted to below 0.2%. Doublets, an 

artifact where two or more nuclei are labeled with a single barcode, were excluded from 

the analysis. A key advantage of SHARE-seq is its use of combinatorial indexing to label 

individual nuclei, leading to a much lower doublet rate compared to traditional droplet-

based methods34. For example, droplet-based methods have an estimated doublet rate 

ranging from 1% to 10%, depending on the number of cells and the platform used61. 

Conversely, the snRNA-seq data produced in this study exhibited a remarkably low doublet 



３７ 

 

rate, highlighting the method's robustness. 

By applying these quality control measures, we successfully removed non-nuclear 

barcodes and retained 14,610 nuclei for subsequent analysis. This process was essential for 

eliminating barcode noise inherent to SHARE-seq and ensuring that only experimental 

nuclei were analyzed. Consequently, this dataset provides a reliable foundation for 

downstream analyses aimed at understanding transcriptomes at the single-nucleus level. 

For cells that passed quality control, we performed a feature selection process to identify 

highly variable genes expressed in nuclei. Specifically, genes were chosen according to the 

following criteria: normalized mean expression values between 0.0125 and 3, and 

dispersion values of at least 0.5. Through this process, 7,788 highly variable genes were 

identified and subsequently utilized for downstream analyses (Figure 5C). 
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Figure 5. snRNA-seq quality control metrics. (A) Quality control of snRNA-seq data 

analyzed using Scanpy was performed by filtering nuclei with 1,000–6,500 detected genes 

(n_genes_by_counts), total counts of 1,000–20,000, mitochondrial gene percentage 

(pct_counts_mt) below 30%, and a doublet score below 0.2, retaining only 14,610 nuclei 

for downstream analysis. (B) Violin plots depicting the distribution of quality control 

metrics for retained nuclei after filtering, including the number of detected genes 

(n_genes_by_counts), total counts, percentage of mitochondrial gene expression 

(pct_counts_mt), and doublet scores. (C) Identification of highly variable genes based on 

their mean expression (x-axis) and dispersion (y-axis) using cutoffs of 0.0125 ≤ mean 

expression ≤ 3 and 0.5 ≤ dispersion, resulting in the selection of 7,788 highly variable genes 

for downstream analysis.  
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3.6. Assessment of quality control metrics for snATAC-seq libraries. 

To evaluate the quality and reliability of the snATAC-seq library, comprehensive 

quality control was conducted on the snATAC-seq data (Figure 6A, 6B). Signac62 was used 

to conduct quality control and downstream analysis of snATAC-seq data. Key metrics 

analyzed included the number of detected peaks per nucleus (nCount_peaks), transcription 

start site enrichment (TSS.enrichment), blacklist ratio (blacklist_fraction), nucleosome 

signal (nucleosome_signal), and the proportion of reads within peaks (Pct_reads_in_peaks). 

SHARE-seq relies on combinatorial indexing to distinguish individual nuclei, which results 

in the generation of barcodes that do not correspond to actual nuclei. In this experiment, 

884,378 barcodes were recognized during the analysis. Therefore, it is crucial to apply 

quality control measures to filter out non-nuclear barcodes and focus on actual nuclei for 

subsequent analyses. 

The cutoff for the number of detected peaks per nucleus (nCount_peaks) was set 

between 2,000 and 50,000. Nuclei with a peak count outside this range were excluded, as 

they likely represented poorly barcoded nuclei. The TSS enrichment value, which 

quantifies the signal-to-noise ratio at transcription start sites, was required to exceed a 

cutoff of 4. Nuclei meeting this threshold were considered to have undergone successful 

ATAC-seq and were included in further analyses. The blacklist ratio (blacklist_fraction), 

reflecting the proportion of reads mapping to artifact-prone genomic regions, was limited 

to below 0.05 to exclude spurious signals. Additionally, the nucleosome signal, which 

assesses whether tagmentation predominantly occurred in nucleosome-free regions (NFR), 

was set at less than 2.5. This metric, calculated as the ratio of mononucleosome reads to NFR 

reads, ensured that nuclei with high-quality ATAC-seq data targeting euchromatic regions 

were selected. Finally, the fraction of reads in peak (FRiP) was set to a minimum of 0.1, 
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indicating a well-constructed library with minimal background noise and robust peak 

detection. 

By applying these quality control measures, we successfully removed barcode 

artifacts and retained 17,833 nuclei for subsequent analysis. This process was critical for 

mitigating barcode noise inherent to SHARE-seq and ensuring that only experimental 

nuclei were analyzed. Consequently, this dataset provides a robust foundation for 

downstream analyses aimed at understanding chromatin dynamics at the single-nucleus 

level. This quality control process underscores the reliability of the dataset for advanced 

investigations into chromatin accessibility and its regulatory implications. 
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Figure 6. snATAC-seq quality control metrics. (A) Quality control of snATAC-seq data 

was performed by filtering nuclei with 2,000–50,000 peaks detected (nCount_peaks), 

transcription start site enrichment (TSS.enrichment) greater than 4, blacklist fraction below 

0.05, nucleosome signal below 2.5, and fraction of reads in peaks (FRiP) above 0.1, 

retaining only 17,833 nuclei for downstream analysis. (B) Violin plots showing the 

distribution of quality control metrics for retained nuclei after filtering, including the 

number of detected peaks (nCount_peaks), TSS enrichment, blacklist fraction, nucleosome 

signal and fraction of reads in peak (FRiP). 
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3.7. Defining individual cell types within a sample through gene 

expression and chromatin accessibility using SHARE-seq. 

From the initial 20,000 nuclei processed using SHARE-seq, we applied quality control 

criteria to identify 14,610 nuclei from the snRNA-seq data and 17,833 nuclei from the 

snATAC-seq data. These high-quality nuclei were used for downstream analyses, including 

visualizing clusters of nuclei with similar characteristics in the SHARE-seq data using 

UMAP63. Figure 7A shows UMAP clustering based on the snRNA-seq data, revealing 

three distinct clusters: Cluster 0, Cluster 1, and Cluster 2. Similarly, Figure 7B shows the 

UMAP clustering from the snATAC-seq data, identifying two distinct clusters: Cluster 0 

and Cluster 1. Given that the SHARE-seq experiment involved a mixture of cancer and 

immune cells, we hypothesized that the clusters from each modality correspond to NK92 

and HCT116 nuclei. To prioritize snRNA-seq clusters, the expression levels of genes 

differentially expressed across clusters were examined (Figure 7C). This analysis 

identified the top 200 genes with the highest statistical significance for each cluster, which 

were used in subsequent analyses. Cell typing was performed on the snRNA-seq data using 

Panglao DB64 and the ARCHS4 Cell Lines database65. Additionally, functional 

characteristics and pathway enrichment for each cluster were analyzed using the Elsevier 

Pathway Collection. 

Cluster 0 exhibited significant enrichment in pathways related to cancer cell motility, 

invasion, and survival, such as "Integrins in Cancer Cell Motility, Invasion, and Survival" 

and "Proteins with Altered Expression in Cancer Metastasis", as determined by the Elsevier 

Pathway Collection. Cell typing using the ARCHS4 Cell Lines database identified HCT116 

and CPAC1 cell lines as representative of this cluster. These findings suggest that Cluster 
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0 predominantly represents HCT116 cells (Figure 8A). 

Cluster 1 showed strong enrichment for immune-related pathways, particularly those 

associated with NK cells, such as "Natural Killer Cell Activation through ITAM-

Containing Receptors" and "Natural Killer Cell Precursor - Natural Killer Cell Surface 

Expression Markers." Cell type analysis with Panglao DB identified NK cell-related 

populations, such as natural killer cells. These results indicate that Cluster 1 represents 

NK92 cells (Figure 8B). 

Cluster 2 was enriched in pathways related to translation, including "Translation and 

rRNA Translation and Processing". Cell typing using the ARCHS4 Cell Lines database 

identified HCT116 and SKOV3 cell lines. Cluster 2 was characterized by high ribosomal 

RNA expression, as the top 200 uniquely expressed genes included numerous ribosomal 

RNA genes. These findings suggest that Cluster 2 exhibits the expression of some genes 

characteristic of HCT116. However, the majority of ribosomal RNA genes predominantly 

represent the features of Cluster 2. This observation indicates the presence of nuclei 

contaminated with ribosomal RNA in a subset of HCT116 cells (Figure 8C). 

In contrast, cell type classification and pathway analysis of the top 200 uniquely active 

genes in the snATAC-seq data failed to identify specific cell types. The challenge in 

performing cell typing using gene activity stems from the inherent nature of ATAC-seq, 

which measures chromatin accessibility rather than direct gene expression. Consequently, 

it infers gene activity indirectly, leading to lower accuracy in ranking the expressed genes. 

Next, we visualized the expression profiles of signature genes for NK92 and HCT116 cell 

lines on UMAP plots for both the snRNA-seq and snATAC-seq datasets and validated these 

findings using dot plots. Signature genes for NK92 and HCT116 were selected based on 

differentially expressed genes (DEG) and gene expression levels derived from bulk 
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mRNA-seq data. In the snRNA-seq data, NK92 signature genes showed higher expression 

in Cluster 1, with dot plots demonstrating that the average expression levels and the number 

of cells expressing these signature genes were higher compared to Clusters 0 and 2 (Figure 

9A, 9B). Similarly, HCT116 signature genes showed higher expression in Clusters 0 and 

2, with dot plots confirming that both the average expression levels and the number of cells 

expressing these signature genes were higher compared to Cluster 1 (Figure 10A, 10B). 

These observations led to the classification of Cluster 1 as NK92 and Cluster 0 as HCT116 

in the snRNA-seq data. In Cluster 2, although the expression of HCT116 signature genes 

was observed to be high, the preceding analysis revealed that ribosomal RNA constituted 

the majority of the cluster's representative genes. Therefore, Cluster 2 was classified as an 

rRNA-enriched HCT116 cluster. 

We performed a similar analysis on the snATAC-seq data using the previously 

identified signature genes. NK92 signature genes exhibited higher activity in Cluster 1, with 

dot plots indicating that cells with high signature gene activity were more abundant in 

Cluster 1 compared to Cluster 0 (Figure 11A, 11B). Conversely, HCT116 signature genes 

showed higher activity in Cluster 0, with dot plots confirming that cells with high gene 

activity were more prevalent in Cluster 0 than in Cluster 1 (Figure 12A, 12B). These results 

led us to classify Cluster 0 as representing the HCT116 cell line and Cluster 1 as representing 

the NK92 cell line in the snATAC-seq data. 

In summary, the analysis classified NK92 and HCT116 clusters in both snRNA-seq 

and snATAC-seq data, clearly mapping cell types based on gene expression and chromatin 

accessibility. 
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Figure 7. UMAP visualization of SHARE-seq data. (A) SHARE-seq UMAP plot of 

single nuclei from a mixed HCT116 and NK92 cell line sample, with UMAP coordinates 

based on snRNA-seq data. (B) SHARE-seq UMAP plot of single nuclei from a mixed 

HCT116 and NK92 cell line sample, with UMAP coordinates derived from snATAC-seq 

data. (C) Top 25 signature genes for each of the three clusters from snRNA-seq analysis, 

ranked by statistical significance (Wilcoxon test, - log10(p-value)). 
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Figure 8. Cell typing of snRNA-seq clusters. (A) Elsevier Pathway Collection and 

ARCHS4 Cell lines analysis for 200 genes specifically expressed in Cluster 0 from snRNA-

seq, visualizing the top 5 pathways ranked by - log10(P-value) and the top 5 related cell 

lines ranked by -log10(P-value). (B) Elsevier Pathway Collection and 

PanglaoDB_Augmented_2021 analysis for 200 genes specifically expressed in Cluster 1 

from snRNA-seq, visualizing the top 5 pathways ranked by - log10(P-value) and the top 5 

related cell lines ranked by -log10(P-value). (C) Elsevier Pathway Collection, ARCHS4 Cell 

lines, PanglaoDB_Augmented_2021 analysis for 200 genes specifically expressed in 

Cluster 2 from snRNA-seq, visualizing the top 5 pathways ranked by -log10(P-value) and 

the top 5 related cell lines ranked by - log10(P-value).  
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Figure 9. Expression of NK92 cell line signature genes in snRNA-seq clusters. (A) 

UMAP projection showing the expression patterns of 16 NK92 signature genes across 

snRNA-seq clusters. The NK92 signature genes were identified through bulk mRNA-seq 

analysis of NK92 and HCT116_CMV, selecting genes that are exclusively expressed in the 

NK92 cell line and are highly expressed with functional relevance to NK92. (B) Dot plot 

showing the fraction of cells (dot size) and mean expression levels (color intensity) of 16 

NK92 signature genes across snRNA-seq clusters. 
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Figure 10. Expression of HCT116 cell line signature genes in snRNA-seq clusters. (A) 

UMAP projection showing the expression patterns of 16 HCT116 signature genes across 

snRNA-seq clusters. The HCT116 signature genes were identified through bulk mRNA-

seq analysis of HCT116_CMV and NK92, selecting genes that are exclusively expressed 

in the HCT116_CMV cell line and are highly expressed with functional relevance to 

HCT116. (B) Dot plot showing the fraction of cells (dot size) and mean expression levels 

(color intensity) of 16 HCT116 signature genes across snRNA-seq clusters. 
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Figure 11. Gene activity of NK92 cell line signature genes in snATAC-seq clusters. (A) 

UMAP projection showing the gene activity patterns of 16 NK92 signature genes across 

snATAC-seq clusters. The NK92 signature genes were identified through bulk ATAC-seq 

analysis of NK92 and HCT116_CMV, selecting genes that show exclusive gene activity in 

the NK92 cell line and are highly expressed with functional relevance to NK92. (B) Dot 

plot showing the fraction of cells (dot size) and average expression levels (color intensity) 

of 16 NK92 signature genes across snATAC-seq clusters. 
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Figure 12. Gene activity of HCT116 cell line signature genes in snATAC-seq clusters. 

(A) UMAP projection showing the gene activity patterns of 16 HCT116 signature genes 

across snATAC-seq clusters. The HCT116 signature genes were identified through bulk 

ATAC-seq analysis of HCT116_CMV and NK92, selecting genes that show exclusive gene 

activity in the HCT116_CMV cell line and are highly expressed with functional relevance 

to HCT116. (B) Dot plot showing the fraction of cells (dot size) and average expression 

levels (color intensity) of 16 HCT116 signature genes across snATAC-seq clusters. 
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3.8. Comparison of cluster-specific IGV profiles with bulk mRNA-seq 

and ATAC-seq data. 

To further validate the identity and characteristics of cell clusters identified through 

UMAP analysis of snRNA-seq and snATAC-seq data, cluster-specific IGV profiles were 

compared with IGV profiles derived from bulk mRNA-seq and ATAC-seq data of NK92 

and HCT116_CMV cell lines. Bulk mRNA-seq and ATAC-seq data provide an averaged 

transcriptional landscape and chromatin accessibility across entire cell populations. In this 

study, bulk mRNA-seq and ATAC-seq profiles were used as references to compare with 

the cluster-specific IGV profiles generated from snRNA-seq and snATAC-seq data. This 

comparative analysis confirmed whether the transcriptional and chromatin accessibility 

profiles of the identified clusters matched the known expression patterns of NK92 and 

HCT116 cells, thereby enhancing the reliability of cell typing and cluster classification. 

From snRNA-seq, Cluster 0 was confirmed to represent the HCT116 cell line, while 

Cluster 1 represented the NK92 cell line. Additionally, Cluster 2 was identified as an 

HCT116-derived cluster enriched for rRNA expression. Similarly, from snATAC-seq, 

Cluster 0 was validated as representing the HCT116 cell line, and Cluster 1 was identified 

as representing the NK92 cell line. 

We first compared IGV profiles for the NK92 signature genes GNLY and GZMA from 

NK92 and HCT116 bulk mRNA-seq data with cluster-specific IGV profiles from snRNA-

seq. The results revealed pronounced expression of GNLY and GZMA in Cluster 1, 

consistent with the signature expression pattern of NK92 cells. In contrast, GNLY and 

GZMA expression was minimal in Clusters 0 and 2. These findings strongly suggest that 

Cluster 1 represents NK92 cells (Figure 13A). Next, IGV profiles for GNLY and GZMA 
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from NK92 and HCT116 bulk ATAC-seq data were compared with cluster-specific IGV 

profiles from snATAC-seq. Similar to the mRNA-seq data, Cluster 1 exhibited high 

chromatin accessibility in the promoter and surrounding regions of GNLY and GZMA. This 

pattern closely resembled the NK92 bulk ATAC-seq data, indicating that Cluster 1 is 

associated with NK92 cells. In contrast, Cluster 0 displayed low chromatin accessibility for 

GNLY and GZMA (Figure 13B). 

Next, IGV profiles for the HCT116 signature genes AREG and EPCAM from NK92 

and HCT116 bulk mRNA-seq data were compared with cluster-specific IGV profiles from 

snRNA-seq. The results demonstrated strong expression of AREG and EPCAM in Clusters 

0 and 2, consistent with the signature expression pattern of HCT116 cells. In contrast, 

Cluster 1 exhibited minimal expression of these genes, strongly indicating that Clusters 0 

and 2 represent HCT116 cells (Figure 13C). Furthermore, IGV profiles for AREG and 

EPCAM from NK92 and HCT116 bulk ATAC-seq data were compared with cluster-

specific IGV profiles from snATAC-seq. Similar to the mRNA-seq results, Clusters 0 

exhibited high chromatin accessibility in the promoter and surrounding regions of AREG 

and EPCAM, resembling the HCT116 bulk ATAC-seq data. In contrast, Cluster 1 showed 

low chromatin accessibility for these genes (Figure 13D). 

Finally, to distinguish the rRNA-enriched HCT116 cluster in snRNA-seq data, the 

expression patterns of rRNA genes were analyzed. The results revealed significantly 

elevated ribosomal RNA (rRNA) expression in Cluster 2, a distinct feature compared to 

Clusters 0 and 1. These findings clearly demonstrate that Cluster 2 is an rRNA-enriched 

subcluster derived from HCT116 cells (Figure 14A). 

In summary, the results confirmed that in snRNA-seq, Cluster 0 represents HCT116, 

Cluster 1 represents NK92, and Cluster 2 is an rRNA-enriched HCT116 subcluster. 
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Similarly, in snATAC-seq, Cluster 0 represents HCT116, and Cluster 1 represents NK92. 

These findings demonstrate the utility of RNA expression and chromatin accessibility data 

in precisely analyzing the differential expression of cell-type-specific genes and chromatin 

accessibility across different cell types. 
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Figure 13. Genome tracks of NK92 and HCT116 signature genes in snRNA-seq and 

snATAC-seq clusters. (A) IGV tracks visualizing the expression of NK92 signature genes 

GNLY and GZMA based on snRNA-seq clusters and bulk mRNA-seq data. (B) IGV tracks 

showing chromatin accessibility of NK92 signature genes GNLY and GZMA based on 

snATAC-seq clusters and bulk ATAC-seq data. (C) IGV tracks visualizing the expression 

of HCT116 signature genes AREG and EPCAM based on snRNA-seq clusters and bulk 

mRNA-seq data. (D) IGV tracks showing chromatin accessibility of HCT116 signature 

genes AREG and EPCAM based on snATAC-seq clusters and bulk ATAC-seq data. 
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Figure 14. Genome tracks of rRNA genes in snRNA-seq clusters. (A) IGV tracks 

visualizing the expression of NK92 ribosomal RNA-coding genes RPS18, RPS12, RPL12, 

and RPL11 based on snRNA-seq clusters. 
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3.9. Identification of nuclei capable of simultaneously assessing 

chromatin accessibility and gene expression. 

After completing cell typing for each modality (Figure 15A, 15B), nuclei with 

matching barcodes across both modalities were identified. UMAP clustering of each 

dataset revealed distinct clusters corresponding to the two cell lines. We identified 14,007 

nuclei with matching barcodes between the two modalities using high-quality nuclei that 

passed quality control, including 14,610 snRNA-seq nuclei and 17,833 snATAC-seq nuclei. 

These nuclei were identified as those containing both transcriptome information and 

chromatin accessibility data within a single nucleus, enabling the analysis of multimodal 

data. 

To assess whether single nuclei clustered in snRNA-seq and snATAC-seq matched 

across the two modalities, nuclei sharing the same barcode were visualized by connecting 

them with lines on the UMAP plots (Figure 15C). This analysis revealed that clusters 

identified as NK92 cells in both modalities exhibited a high degree of barcode matching 

between the UMAP plots of snRNA-seq and snATAC-seq. However, a portion of the 

clusters classified as HCT116 cells in snRNA-seq was found to share barcodes with clusters 

identified as NK92 cells in snATAC-seq (Figure 15C). These mismatched nuclei appear 

to exhibit signals from two different cell types depending on the modality, suggesting that 

they may result from technical artifacts introduced during the experimental process. 

Barcode matching analysis can help identify such nuclei, which may introduce bias into 

multimodal analyses, thereby enabling more accurate interpretation of the data. 

Additionally, we observed that Cluster 2 in the snRNA-seq data, characterized by 

globally high ribosomal RNA expression, corresponded to the HCT116 cluster in the 
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snATAC-seq data. These findings indicates the presence of a subset of HCT116 cells 

contaminated with ribosomal RNA within the HCT116 cell cluster identified in the 

snATAC-seq data. 

These findings demonstrate that integrating snRNA-seq and snATAC-seq data 

enables the precise identification of cell types in mixed samples of different cell lines. 

Moreover, this integrated analysis compensates for technical errors and enhances the 

reliability of cell-type classification. 
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Figure 15. Barcode matching between snRNA-seq and snATAC-seq UMAP. (A) 

UMAP visualization of snRNA-seq data showing cluster-specific cell typing of single 

nuclei derived from a mixed sample of HCT116 and NK92 cell lines. (B) UMAP 

visualization of snATAC-seq data showing cluster-specific cell typing of single nuclei 

derived from a mixed sample of HCT116 and NK92 cell lines. (C) UMAP visualization of 

snRNA-seq and snATAC-seq data, illustrating the connection of cells with identical 

barcodes.  
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4. DISCUSSION 

 

SHARE-seq is an experimental platform that enables the combined analysis of 

chromatin accessibility and gene expression at single-cell resolution, providing a cost-

effective and highly scalable solution. SHARE-seq enables researchers to elucidate the 

functional relationships of regulatory elements that control gene expression by leveraging 

chromatin accessibility and gene expression data. Furthermore, temporal changes in 

chromatin accessibility and gene expression data can be analyzed to reconstruct cellular 

lineages and differentiation processes. In this study, SHARE-seq was performed on 20,000 

nuclei derived from a mixture of NK92 and HCT116 cells (Figure 1A). A portion of the 

SHARE-seq library was first analyzed through bulk sequencing to confirm that the average 

gene expression and chromatin accessibility of the mixed cell population could be captured 

at the bulk level (Figure 4C, 4D). Subsequently, single-nucleus sequencing was performed. 

After quality control, 14,610 nuclei were included in the snRNA-seq dataset (Figure 5A, 

5B), and 17,833 nuclei were retained in the snATAC-seq dataset (Figure 6A, 6B). UMAP 

visualization was employed to delineate modality-specific clusters, and three distinct 

clusters were identified in the snRNA-seq data (Figure 7A). Cell typing for the snRNA-

seq data was conducted by analyzing the top 200 genes uniquely expressed in each cluster 

(Figure 7C) using the Panglao DB_Augmented_2021 and ARCHS4 Cell-lines databases 

(Figure 8A, 8B, 8C). Functional characteristics and pathway enrichment for each cluster 

were analyzed using the Elsevier Pathway Collection (Figure 8A, 8B, 8C). Additionally, 

differential gene expression (DEG) analysis was performed using bulk mRNA-seq data 

from NK92 and HCT116 cell lines, identifying genes that were uniquely and highly 

expressed at the bulk level in each cell line (Figure 4A). These genes were classified as 
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cell-type signature genes, and their expression levels across clusters were examined to cell 

typing (Figure 9A, 9B, 10A, 10B). Cell typing of the clusters detected in the snRNA-seq 

data differentiated the NK92 and HCT116 cell lines and revealed that a subset of HCT116 

cells was contaminated with ribosomal RNA. For the snATAC-seq data, UMAP 

visualization revealed two distinct clusters (Figure 7B). Similar to the snRNA-seq analysis, 

cell typing and pathway enrichment analyses were performed using the top 200 genes with 

high gene activity scores. Although these analyses did not yield cell-type-specific results 

for snATAC-seq, the activity of signature genes previously used for snRNA-seq cell typing 

was examined, revealing differences in gene activity across clusters (Figure 11A, 11B, 

12A, 12B). Cell typing of the clusters identified in the snATAC-seq data distinguished the 

NK92 and HCT116 cell lines. To further validate the identity and characteristics of the cell 

clusters identified through UMAP analysis of snRNA-seq and snATAC-seq data, cluster-

specific IGV profiles were compared with IGV profiles derived from bulk mRNA-seq and 

ATAC-seq data of NK92 and HCT116 cell lines (Figure 13A, 13B, 13C, 13D, 14A). This 

comparative analysis allowed for a precise confirmation of whether the transcriptional and 

chromatin accessibility profiles of the identified clusters aligned with the previously known 

expression and chromatin accessibility patterns of NK92 and HCT116 cells. 

In summary, snRNA-seq analysis confirmed that Cluster 0 represents HCT116, 

Cluster 1 represents NK92, and Cluster 2 corresponds to rRNA-enriched HCT116 (Figure 

15A). Similarly, snATAC-seq analysis validated that Cluster 0 represents HCT116, and 

Cluster 1 represents NK92 (Figure 15B). These findings demonstrate the utility of RNA 

expression and chromatin accessibility data in accurately analyzing cell-type-specific gene 

expression and chromatin accessibility differences across distinct cell types. 

These analyses enabled the elucidation of chromatin accessibility and gene expression 
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profiles of individual nuclei, which could not be resolved by bulk sequencing. Furthermore, 

chromatin accessibility and gene expression profiling enabled identifying each nucleus's 

cell type. After completing cell typing for each modality, barcodes of nuclei identified in 

snRNA-seq and snATAC-seq analyses were matched (Figure 15C). This process yielded 

a dataset of 14,007 nuclei with jointly profiled gene expression and chromatin accessibility 

data. This dataset of 14,007 nuclei, containing information from two modalities, can be 

utilized not only for future clustering analyses across both modalities but also for 

investigating the functional relationships of regulatory elements controlling gene 

expression. Additionally, this study validated the reliability of cluster identities by 

comparing the transcriptomic landscapes and chromatin accessibility patterns of NK92 and 

HCT116, as previously established in bulk-level experiments, with those of the identified 

clusters. This comparison confirmed the validity and accuracy of single-nucleus analysis 

in distinguishing between cell types. By analyzing a mixed sample of NK92 and HCT116 

at the single-nucleus level, this study demonstrated that immune and cancer cells can be 

reliably distinguished using two modalities in future multimodal sequencing studies of the 

tumor microenvironment (TME). Through this study, high-quality nuclei containing both 

transcriptome and chromatin accessibility data for each cell type were identified. This study 

highlights the potential of multimodal data integration for cell-type analysis and suggests 

its applicability to more complex systems, such as the tumor microenvironment (TME) or 

tissues with diverse cell types. 
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5. CONCLUSION 
 

In this study, SHARE-seq was used to simultaneously analyze chromatin accessibility 

and gene expression at the single-nucleus level in a cancer-immune cell mixture composed 

of NK92 and HCT116 cells. This approach enabled the integrated analysis of gene 

expression and chromatin accessibility in individual nuclei, demonstrating the capability to 

accurately distinguish cell types based on these profiles. While bulk sequencing provided 

only the average gene expression and chromatin accessibility of the mixed cell population, 

single-cell sequencing revealed detailed information specific to each cell type. Additionally, 

by comparing IGV profiles of bulk mRNA-seq and ATAC-seq data with those from single-

nucleus data, we validated the reliability and accuracy of cluster classification, confirming 

that the identified clusters aligned with known transcriptomic and chromatin accessibility 

patterns of NK92 and HCT116 cells (Figure 16A). Furthermore, barcodes from both 

snRNA-seq and snATAC-seq datasets were matched, yielding a high-quality dataset of 

14,007 nuclei that integrates information from both modalities.  

This dataset provides a robust foundation for future clustering analyses and for 

exploring the functional relationships of regulatory elements controlling gene expression. 

These findings highlight the utility of single-cell multiomics in resolving cellular 

heterogeneity and identifying cell-type-specific regulatory mechanisms, which bulk 

sequencing cannot achieve. By analyzing a mixed sample of NK92 and HCT116 cells at 

the single-nucleus level, this study demonstrated that immune cells and cancer cells can be 

reliably distinguished. This approach holds great potential for investigating cell-cell 

interactions and cellular diversity in complex biological systems, such as the tumor 

microenvironment (TME). In conclusion, the multimodal single-cell analysis enabled by 
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SHARE-seq offers a powerful tool for unraveling the complexities of diverse biological 

environments, paving the way for deeper insights into the molecular mechanisms 

underlying cellular function and disease progression.   
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Figure 16. cell type identification of single nuclei through two distinct modalities using 

SHARE-seq. (A) Schematic of cell type identification of single nuclei through two distinct 

modalities using SHARE-seq.  
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Abstract in Korean 

 

암-면역 세포 혼합체에서 단일 핵 다중유전체  

데이터 생산 및 품질 관리 

 

단일 세포에 대한 연구는 세포 간 이질성 탐구, 희귀 세포 유형의 식별, 

발달 과정 및 세포 운명에 관한 연구를 가능하게 했다. 그러나 단일 

모달리티에 의존한 단일 세포 연구는 세포 내 복잡한 유전자 조절 네트워크에 

대한 제한된 정보를 제공한다. 이러한 한계를 극복하기 위해 동일 세포에서 

게놈, 후성유전체, 전사체 및 프로테옴을 함께 분석할 수 있는 실험적 

방법들이 개발되었다. 현재, 다중유전체학에서 드롭릿 기반의 방법들이 널리 

사용되지만, 비용이 높고 처리량이 낮은 단점이 있다. 본 연구에서는 

SHARE-seq (Simultaneous High-throughput ATAC and RNA Expression 

with Sequencing)을 적용하여 면역 세포주인 NK92와 대장암 세포주인 

HCT116의 혼합체에서 라이브러리를 생산하고 분석했다. SHARE-seq은 

조합 인덱싱 기반의 방법으로, 기존의 드롭릿 기반 다중유전체 기술에 비해 

더 높은 처리량과 비용 효율성을 제공한다. 이 방법을 통해 면역세포와 

암세포가 혼합된 샘플 내에서 각 세포주에 특이적인 염색질 접근성과 유전자 

발현 프로파일을 단일 핵 수준에서 확인했다. 또한 UMAP 분석을 통해 

NK92와 HCT116 세포주에 해당하는 뚜렷한 클러스터를 각각의 

모달리티에서 구분했다. 마지막으로 snATAC-seq과 snRNA-seq 각각의 
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클러스터에서 일치하는 바코드를 가진 핵들을 확인하였다. 이 핵들은 추후 

가중 최근접 이웃(WNN) 분석이나 유전자 발현을 조절하는 조절 요소들의 

관계 연구에 활용 가능한 고품질 핵이다. 

본 연구는 종양-면역 세포주 혼합 샘플에서 단일 핵 수준으로 염색질 

접근성과 유전자 발현을 동시에 분석함으로써, 하나의 핵에서 두 가지의 

모달리티를 활용해 면역 세포주와 대장암 세포주를 정밀하게 구분할 수 

있음을 입증했다. 또한 향후 염색질 접근성과 유전자 발현 데이터를 통합하여 

유전자 발현을 조절하는 조절 요소들의 기능적 관계를 연구할 수 있는 

고품질의 핵들을 식별할 수 있음을 보여준다. 이러한 결과는 종양 

미세환경(TME)과 같은 복잡한 생물학적 시스템에서 세포 유형을 정밀하게 

식별하고, 세포 간 상호작용과 유전자 조절 네트워크를 이해하는 데 기여할 

것으로 기대된다. 단일 세포 다중유전체 데이터 통합이 다양한 세포 유형으로 

구성된 조직이나 특정 생체 내 환경에서 세포 유형 특성화와 정밀한 분석에 

널리 활용될 것으로 기대된다. 
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핵심되는 말 : 단일 핵, 다중유전체 시퀀싱, 염색질 접근성, 전사체 
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