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ABSTRACT 

 

Integrated analysis of chromatin accessibility  

and gene expression at the single-nucleus level  

in a cancer-immune cell mixture 
 

Understanding cellular heterogeneity is crucial for unraveling the complexity of tissue 

function and disease progression. SHARE-seq, a single-cell multiomics technology, 

provides an opportunity to explore the epigenomic and transcriptomic landscapes at the 

level of individual cells, surpassing previous approaches that average profiles across 

populations of cells. In this study, a bioinformatics analysis pipeline for investigating 

epigenomic heterogeneity was validated using public SHARE-seq data and applied to an 

in-house SHARE-seq dataset from a mixture of cancer and immune cells to identify cellular 

heterogeneity. To verify the reproducibility of the pipeline, publicly available SHARE-seq 

data from human kidney tissue were used. This analysis successfully reconstructed the 

transcriptomic and epigenomic heterogeneity of various cell types from kidney, identifying 

clear cell clusters based on transcriptomic and chromatin accessibility profiles that aligned 

with results from previous studies. Furthermore, the validated pipeline was utilized to 

integratively analyze the two modalities of an in-house SHARE-seq dataset from a mixture 

of a colorectal cancer cell line and an immune cell line, successfully distinguishing the two 

cell types. Additionally, we identified regulatory chromatin regions with strong 

correlations between the two modalities and analyzed their associations with super-

enhancer regions. This revealed that chromatin accessibility and gene expression are 

differentially regulated depending on the cell type, and factors such as the degree of peak-

gene association and accessibility levels can collectively influence the expression of cell 
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type-specific genes. Moreover, the analysis highlighted that the activity of transcription 

factors varies across cell types, affecting the expression of genes that have cell type-specific 

functions. This reaffirms that the complex interplay among chromatin accessibility, gene 

regulation, and transcription factor activity collectively contributes to defining cell type-

specific identities. 

In conclusion, this study comprehensively explored the relationship between gene 

expression and chromatin accessibility through the integrative analysis of single-cell 

multiomics data, identifying key regulatory elements that define cellular identity and 

function. These findings are expected to provide critical insights into the regulatory 

environment and heterogeneity of individual cells in diseases such as cancer, advancing 

our understanding of cellular mechanisms at a single-cell resolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                

Key words : cellular heterogeneity, single-cell multiomics, SHARE-seq, bioinformatics, integrated 
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1. Introduction 

 

Tissues in multicellular organisms perform diverse functions, and the cells that make 

up these tissues share almost identical genome sequences but exhibit distinct gene 

expression patterns, enabling them to carry out different cellular functions. The regulation 

of gene expression and the resulting cellular heterogeneity are actively studied, particularly 

due to their important roles in diseases such as cancer1-4. Gene expression is initiated 

through the transcription of genomic DNA into messenger RNA (mRNA), a process that 

can be controlled by the interaction of proteins, including transcription factors and initiators, 

with cis-regulatory elements such as promoters and enhancers5-7. Additionally, cellular  

heterogeneity in gene expression arises from epigenetic features such as nucleosome 

positioning and composition, histone tail modifications, and three-dimensional structural 

interactions8-10. Therefore, a comprehensive understanding of gene expression 

heterogeneity requires investigating the interplay of these various regulatory mechanisms. 

Bulk-cell experiments, which analyze large populations of cells simultaneously, 

provide an aggregate signal representing the cell population. These methods are insufficient 

for distinguishing cellular differences in transcriptomic and epigenetic features. However, 

advances in single-cell multi-omics research have overcome this limitation by enabling the 

analysis of transcriptomes for each cell within a sample11. Single-cell sequencing is 

particularly valuable for identifying rare cell types that are difficult to identify in bulk 

sequencing, thereby helping to optimize therapeutic strategies for issues such as tumor 

formation and therapy resistance12. 
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Nevertheless, unimodal single cell technologies can only reveal cellular heterogeneity 

for individual epigenetic and transcriptomic features and cannot simultaneously profile 

multiple ones, chromatin accessibility, and gene expression within the same single cell. As 

a result, while these methods suggest potential correlations between epigenetic phenomena 

and transcription levels, they cannot directly investigate these relationships13. To address 

this limitation, multimodal single-cell sequencing technologies have been introduced that 

can simultaneously analyze gene expression and additional aspects of chromatin state. 

Simultaneous high-throughput ATAC and RNA expression sequencing (SHARE-

seq)14 is a technique that allows for the investigation of both epigenomic and transcriptomic 

dynamics from the same cell. This approach enables large-scale, cost-effective 

measurements of chromatin accessibility and gene expression in single cells, either 

individually or jointly. Through SHARE-seq, accurate cell type definition can be achieved 

by elucidating the correlations between chromatin accessibility and gene expression. By 

leveraging cellular heterogeneity, this method also can infer chromatin accessibility and 

transcription relationships and identify high-density peak-gene associations, known as 

domains of regulatory chromatin (DORCs). 

This study focuses on integrating multimodal datasets for analyzing transcriptome and 

chromatin accessibility from the same cell simultaneously. Specifically, this study validates 

and applies bioinformatic analysis methods for SHARE-seq data. By applying it to in-house 

SHARE-seq data from a mixed sample of two heterogeneous cell lines, this study aims to 

identify the unique biological characteristics of each cell line by separating them and 

investigate the relationships between regulatory chromatin and gene expression that can 

define the distinct identity of each cell line.
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2. Materials and methods 

 

2.1. Datasets 

2.1.1. SHARE-seq data from a mixed sample of HCT116 and NK92 cell lines  

In-house SHARE-seq data from a mixed sample of HCT116 and NK92 cell lines was 

generated by Heon-Woo Kwon using protocol published at Ma et al. 202014 and optimized 

by Ph.D. Chul Min Yang and Ph.D. Eun-Chong Lee. 

 

2.1.2. SHARE-seq data from human kidney tissue 

SHARE-seq data from human kidney tissue was obtained from GSE23478815. 

 

2.1.3. H3K27ac CUT&Tag of HCT116 cells 

H3K27ac CUT&Tag data from HCT116 cell line was generated by Heon-Woo Kwon. 

 

2.1.4. H3K27ac ChIP-seq of NK92 cells 

H3K27ac ChIP-seq data from NK92 cells was obtained from GSE22766416. 

 

2.1.5. Bulk RNA-seq and RUNX2 ChIP-seq data of human NK cells 

Intersected gene list data of bulk RNA-seq and RUNX2 ChIP-seq from human NK 

cells in each condition of RUNX2 knockdown and RUNX2 overexpression were obtained 

from Wahlen et al. 202217.  

 

 

 



４ 

 

2.2. Bulk sequencing data processing 

2.2.1. CUT&Tag analysis 

The adapter sequences from paired-end sequencing reads which are 101 bp were 

trimmed using trim_galore18 (v0.6.10). Processed reads subsequently were aligned to the 

hg38 reference genome using bowtie219 (v2.5.1) with --local. Duplicate reads were marked 

using Picard20 (v2.26.0) with default parameters and duplicates, mitochondrial reads, and 

low-quality reads were filtered out using SAMtools21 (v1.17) with -q 30 –F 1804 –f 2. The 

preceding analyses were individually performed for H3K27ac CUT&Tag sample and input 

data from the HCT116 cell line. Since H3K27ac is a narrow histone mark, narrowpeaks 

were identified using callpeak in MACS222 (v 2.2.7.1) with -g hs -f BAMPE --nomodel -q 

0.05 and input reference signal data. Peaks located in blacklist and patch regions were 

filtered out. 

 

2.2.2. ChIP-seq analysis 

The adapter sequences from paired-end sequencing reads which are 101 bp were 

trimmed using trim_galore. Processed reads subsequently were aligned to the hg38 

reference genome using bwa23 (v0.7.17) with default parameter settings. Duplicate reads 

were marked using Picard with default parameters and duplicates, mitochondrial reads, and 

low-quality reads were filtered out using SAMtools with -q 30 –F 1804 –f 2. The preceding 

analyses were individually performed for H3K27ac ChIP-seq sample and input data from 

the NK92 cell line. Narrowpeaks were identified using callpeak in MACS2 with -g hs -f 

BAMPE --nomodel -q 0.05 and input reference signal data. Peaks located in blacklist and 

patch regions were filtered out. 
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2.3. SHARE-seq data processing 

2.3.1. SHARE-seq data pre-processing 

SHARE-seq data (.fastq.gz) was pre-processed using scripts previously described and 

available at https://github.com/masai1116/SHARE-seq-alignmentV2/14. Gene annotation 

and sequence files from the GENCODE website24 were used. The Genome Reference 

Consortium Human Build 37 patch release 13 (GRCh37.p13; hg19) was used for analyzing 

SHARE-seq data of human kidney tissue, while the Genome Reference Consortium Human 

Build 38 patch release 13 (GRCh38.p13; hg38) was used for in-house SHARE-seq data of 

the mixed sample of HCT116 and NK92 cell lines. Barcode demultiplexing was performed 

allowing one mismatch based on the introduced barcodes in split-pool barcoding. Reads 

with disabled adapters and low-quality sequences were trimmed using fastp25 (v0.23.4). 

For snRNA-seq (SHARE-RNA) data, due to the characteristic presence of polyA tails in 

mRNA, the read2 sequences were excluded, and only the read1 FASTQ file was aligned to 

the reference genome using STAR26 (v2.5.2b). The number of reads mapped to genomic 

regions was quantified using FeatureCount27 (v2.0.6), and unique UMI-based read 

grouping was performed using UMI-tools28 (v1.1.5) to obtain unique reads by removing 

duplicated reads. The alignment of snATAC-seq (SHARE-ATAC) data was conducted 

using bowtie2 (v2.5.3). Reads that were unmapped, not primarily aligned, or aligned to 

chrM or chrY were removed. Barcodes with fewer than 100 reads in the SHARE-seq data 

from human kidney tissue and fewer than 50 reads for SHARE-seq data from the mixed 

sample of HCT116 and NK92 cell lines were filtered out. The read distribution was 

checked using RSeQC29 (v5.0.2). This process produced a count matrix (.h5 file) 

representing gene expression and a fragment profile (.bed file) for each individual cell. The 
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bigWig files were generated by bamCoverage in deepTools (v3.5.5) with the --

normalizeUsing CPM option. 

The .h5 files were processed to generate count matrices using the scanpy.read_10x_h5 

function from Scanpy30 (v1.9.8). For SHARE-seq data from human kidney tissue, count 

matrices from data sequenced on different NovaSeq flowcells were combined using the 

anndata.concat function. For the processing of the .bed files for snATAC-seq analysis, 

Tabix31 (v1.20) was used to merge all fragment profiles of human kidney tissue from 

different flowcells, and the CreateFragmentObject function of Signac32 (v1.14.0) was used 

to create a single object from the fragment profile. Peaks were identified using the 

CallPeaks function (extsize=150), which utilizes MACS2 (v2.2.9.1), and a count matrix 

was generated using the FeatureMatrix function resulting in the identification of a total of 

189,184 features for human kidney data and 184,399 features for in-house mixed sample 

data. 

 

2.3.2. snRNA-seq data analysis 

All snRNA-seq analysis was executed on Scanpy. For SHARE-RNA data from human 

kidney tissue, all key parameters were followed as outlined in the paper15. In brief, cells 

with fewer than 200 or more than 5,000 genes detected, as well as cells with fewer than 

300 reads or more than 20,000 reads, were excluded from the gene count matrix. Genes 

present in fewer than 50 cells were also excluded. Cells with barcode errors (0.4% of total 

cells) were excluded. Cells with more than 4% mitochondrial reads were removed, and 

doublet detection was performed using the scanpy.external.pp.scrublet function. The 

anticipated doublet rate was set to 0.06, and the number of neighbors was configured to 30. 

Cells with doublet scores exceeding 0.2 were annotated as suspected doublets and excluded 
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from analysis. The data were subsequently normalized and log-transformed. Highly 

variable genes (5,332 genes) were identified using the scanpy.pp.highly_variable_genes 

function with parameters min_mean=0.0125, max_mean=3, and min_disp=0.5. The effects 

of total counts per cell and the proportion of mitochondrial reads per cell were regressed 

out using the scanpy.pp.regress_out function. The data were then scaled, followed by 

dimensionality reduction using principal component analysis (PCA) with the scanpy.tl.pca 

function (svd_solver='arpack'). Batch effects between SHARE-seq batches were corrected 

using the scanpy.external.pp.harmony_integrate function, with cells stratified by flowcell. 

A neighborhood graph was computed using the scanpy.pp.neighbors function with 30 

neighbors (metric='cosine'). This graph was embedded into two dimensions using the 

scanpy.tl.umap function, with the minimum effective distance between embedded points 

set to 0.1. Leiden clustering was carried out using the scanpy.tl.leiden function. For single-

cell cluster annotation, a curated list of marker genes mentioned in the original paper15 was 

compiled from established cellular reference datasets. 

For SHARE-RNA from mixed cell line of HCT116 and NK92 cell lines, cells with 

fewer than 1,000 genes or more than 6,500 genes detected, as well as those with fewer than 

1,000 or more than 20,000 reads, were excluded from the gene count matrix. Additionally, 

genes present in fewer than 50 cells were removed. The percentage of mitochondrial reads 

was calculated for each cell and cells with over 30% mitochondrial reads were filtered out. 

Cell doublets were estimated using the same expected overall doublet rate and the number 

of neighbors previously. Cells with the doublet score greater than 0.2 were labeled as 

potential doublets and excluded from further analysis. Following normalization and log-

transformation of the data, 7,788 highly variable genes were identified (min_mean = 0.0125, 

max_mean = 3, min_disp = 0.5). The effects of total counts per cell and mitochondrial read 
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percentage were regressed out. The data were then scaled and dimensionality reduction was 

performed using PCA with the svd_solver set to ‘arpack’. A neighborhood graph of cells 

was generated using 15 neighbors (metric = ‘cosine’) and this graph was embedded in two 

dimensions using uniform manifold approximation and projection (UMAP) with an 

effective minimum distance of 0.5 between embedded points. Leiden clustering was 

conducted and differentially expressed genes for each leiden cluster were identified using 

the scanpy.tl.rank_genes_groups function (method = ‘wilcoxon’). These DEGs were 

subsequently used for cluster annotation. 

 

2.3.3. snATAC-seq data analysis 

All snATAC-seq analysis was conducted on Signac. For SHARE-ATAC data from 

human kidney tissue, all key parameters were followed as outlined in the paper15. 

Chromatin profiling began with the generation of a chromatin assay from the count matrix 

using the CreateChromatinAssay function in Signac, followed by its conversion into a 

seurat object using the CreateSeuratObject function from Seurat33 (v5.1.0). For each cell, 

nucleosome signal intensity, transcription start site (TSS) enrichment score, fraction of 

reads in peaks (FRiP), and the proportion of counts overlapping the hg19 genome blacklist 

were calculated using the NucleosomeSignal, TSSEnrichment, FRiP, and 

FractionCountsInRegion functions, respectively. Cells were retained if they met the 

following criteria: 400 to 50,000 peaks, nucleosome signal value below 2.5, TSS 

enrichment score above 1, FRiP value greater than 0.1, and a blacklist overlap ratio below 

0.05. The data were then normalized using the TF-IDF (term frequency-inverse document 

frequency) method implemented in the RunTFIDF function. Linear dimensionality 

reduction was achieved through singular value decomposition (SVD) of the TF-IDF matrix 
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using the RunSVD function. Harmony was used to eliminate potential batch effects across 

cells, stratified by flowcell. Cell clustering, non-linear dimensionality reduction, and 

UMAP visualization were carried out using the FindNeighbors, FindClusters, and 

RunUMAP functions, respectively, with parameters set to dims = 2:30, min.dist = 0.1, and 

n.neighbors = 50. Gene annotation was performed using the GeneActivity function, which 

computed counts for each cell across gene bodies and 2,000 bp upstream of transcription 

start sites (including promoter regions) and genes mentioned in the original paper15. 

For SHARE-ATAC data from mixed cell line of HCT116 and NK92 cell lines, a 

chromatin assay was constructed from the count matrix and subsequently converted into a 

seurat object. Quality control criteria for cells included having 2,000 to 50,000 peaks, a 

nucleosome signal value below 2.5, a TSS enrichment score above 4, a FRiP value 

exceeding 0.1, and a blacklist overlap ratio below 0.05 for the hg38 genome. The data were 

then normalized and dimensionality reduction was performed. Graph-based clustering, 

non-linear dimensionality reduction, and UMAP visualization were performed respectively, 

with parameters dims = 2:30, min.dist = 0.5, and n.neighbors = 30. Gene annotation was 

performed using the GeneActivity function, which computed counts for each cell across 

gene bodies and 2,000 bp upstream of transcription start sites (including promoter regions) 

and DEG lists derived from the SHARE-RNA data. 

 

2.3.4. Integration of snRNA-seq and snATAC-seq across modalities 

Cells that met the quality control criteria for both snRNA-seq and snATAC-seq were 

used for cross-modality integration. After quality control for each modality, the datasets 

were combined into a seurat object, and dimensionality reduction was performed for each 

modality following the same procedures as described previously. The Weighted Nearest 
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Neighbor (WNN) graph34 was computed using the FindMultiModalNeighbors function, 

which integrated the dimensionality reduction results from both modalities. For the human 

kidney data, the following parameters were used: dims.list = list(1:30, 2:30) and k.nn = 30. 

For the in-house mixed sample data, the following parameters were used: dims.list = 

list(1:50, 2:50) and k.nn = 20. The WNN graph was then used for UMAP visualization and 

clustering. For the human kidney data, the parameters min.dist = 0.001 and n.neighbors = 

30 were used, while for the in-house mixed sample data, the parameters min.dist = 0.1 and 

n.neighbors = 50 were applied. 

 

2.4. Linked Peak-gene association in cis chromatin and identification 

of DORC  

To identify peak-gene associations in cis chromatin, FigR35 (v0.1.0) R package was 

used. Briefly, FigR calculates Spearman correlation coefficient of each peak-gene pair by 

considering all peak counts from snATAC-seq located in 100kb window around TSS of 

each gene and their gene expression values. To estimate the background, chromVAR36 

(v1.26.0) was utilized to generate a null distribution of Spearman correlations between 

peaks and genes, independent of their peak-gene proximity. It then computes the expected 

population mean (pop.mean) and standard deviation (pop.sd) from the expected Spearman 

correlations. The Z score is calculated using the formula z = (obs-pop.mean)/pop.sd, and 

p-values are determined. Only peak-gene associations with the most significant p-values 

are retained when a peak is linked to multiple genes. To identify a set of proximal peaks 

for each gene, referred to as DORCs, genes are ranked based on the count of peaks with 

significant associations (50 kb around TSSs, p < 0.05). A cutoff of 5 peaks per gene is 

applied for in-house SHARE-seq data from a mixed sample of HCT116 and NK92 cell 
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lines. Then peak counts are normalized by the total number of unique fragments in peaks 

per cell and DORC scores for each gene in each cell were determined by summing the 

mapped read counts of all significantly correlated peaks per gene, based on a recalculated 

peak-gene association. The DORC score for each cell type was computed as the average 

across all cells within that cell type. 

 

2.5. Gene ontology (GO) analysis 

GO analysis was conducted using enrichR37 (v3.2) R package with the GO Biological 

Process 2023 dataset. 

 

2.6. Super-enhancer calling 

Super enhancer regions were identified using ROSE38,39. Briefly, this algorithm links 

adjacent enhancers if they are within 12,500 bp of each other and ranks them based on their 

H3K27ac signal after subtracting the input signal. It then ranks enhancers in descending 

order based on H3K27ac signal and identifies super-enhancers as those above the inflection 

point of the signal. All enhancer regions that overlap with the promoter region  

(transcription start site ± 2,000 bp) were excluded before stitching. 

 

2.7. Data visualization 

Genome tracks were visualized using pyGenomeTracks40. 

 

2.8. TF-DORC association inference 

The inference of TF-DORC associations was performed using the runFigRGRN 

function by FigR, leveraging the human motif database derived from cisBP. Briefly, this 



１２ 

 

process utilizes the frequency of matches between transcription factor (TF) motifs and 

peaks to calculate the relative enrichment of TF motifs through the Z-tests. Based on this, 

the regulation score is defined by combining the significance levels of correlation and peak 

enrichment, where the correlation is calculated as the Spearman correlation between 

smoothed DORC accessibility scores and smoothed RNA expression levels across all cells. 

 

2.9. Motif enrichment analysis 

Motif enrichment analysis was performed on peak regions associated with DORC 

genes using findMotifsGenome.pl in HOMER41. The known motif analysis was utilized for 

data interpretation. 
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3. Results 

 
3.1. Validation of reproducibility in cross-modality integrated analysis 

pipeline for single-cell transcriptomic and epigenomic data from human 

kidney tissue 

To evaluate the reproducibility and reliability of a bioinformatic pipeline designed for 

the simultaneous integrated analysis of single-nucleus RNA sequencing (snRNA-seq) and 

ATAC sequencing (snATAC-seq) from the same cells (Figure 1A), the SHARE-seq public 

data from Li et al.15, profiling transcriptomic and epigenomic landscapes at single-cell 

resolution across diverse anatomical regions of human kidney tissue were employed. In the 

upstream processing steps, barcode demultiplexing, alignment to the reference genome, 

and the generation of a single-cell-level gene expression and fragment-per-cell count 

matrices for downstream analysis were performed (Tables 1, 2). For the snRNA-seq data, 

the count matrix was processed by filtering out cells with abnormal gene expression, 

followed by log normalization and batch correction to minimize technical biases and 

enhance the comparability of biologically derived expression differences (Figure 1B). To 

ensure clear separation of cell type clusters and reduce noise, highly variable genes (n = 

5,322) and principal components (PCs) that explained the major sources of variability were 

selected (Figure 1C). Clustering was then applied to distinguish similar from dissimilar 

ones, and cell type annotation was conducted using marker gene expression patterns. For 

the snATAC-seq data, peaks were identified from the fragments-per-cell information as 

regions with high chromatin accessibility and converted into a peak-by-cell count matrix. 

Cells with abnormal accessibility patterns were filtered (Figure 1D), followed by TF-IDF 

normalization, batch correction, selection of key latent semantic indexing (LSI) 
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components, dimensionality reduction, and clustering (Figure 1B). Cell type annotation 

was subsequently performed based on marker gene activity profiles of each cell type. The 

integration of snRNA-seq and snATAC-seq across modalities was performed using the 

intersected barcodes shared between the two modalities, incorporating both gene 

expression and chromatin accessibility information (Figure 1B). The process included data 

normalization, dimensional reduction, and batch correction, which were re-performed for 

both modalities. Using the results of dimensionality reduction from each modality, a 

weighted nearest neighbor method was applied (Figure 1B). The WNN graph was 

constructed using the principal components (dimensions 1–30) from RNA and the latent 

semantic indexing components (dimensions 2–30) from ATAC, which were considered to 

explain the primary sources of variation. 

Our analysis successfully reproduced the transcriptional and epigenetic UMAP 

representations of human kidney tissue, identifying 29 distinct clusters for snRNA-seq and 

21 for snATAC-seq (Figures 2A, 2C). These results revealed distinct clustering patterns 

that closely matched those reported in the original study. Additionally, the gene expression 

profiles were faithfully reproduced, with clear and distinct expression patterns observed for 

marker genes representing each cell type (Figure 2B). Joint analysis of both modalities 

using the WNN method on cells with shared barcodes (n = 324,701), as mentioned in the 

original paper, defined precise cellular states based on multiple data types and revealed 

similar patterns of cell-type-specific regulatory features and marker gene expression, 

effectively reflecting the characteristics observed in the individual modality analyses 

(Figure 2D).  
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Figure 1. Overview of SHARE-seq data analysis from human kidney tissue. (A) The 

structure of snRNA-seq and snATAC-seq libraries of SHARE-seq. (B) The upstream and 

downstream analysis processing workflow of SHARE-seq data. (C) The violin plot 

illustrates the filtering results from downstream QC performed on snRNA-seq data from 

human kidney tissue, alongside the results of highly variable gene selection. (D) The violin 

plot illustrates the filtering results from downstream QC performed on snATAC-seq data 

from human kidney tissue. 
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Figure 2. Reproducing the cellular heterogeneity of the human kidney tissue was 

achieved through SHARE-seq multiomics analysis. (A, C) The UMAP visualization  

displays (A) 446,267 single-cell transcriptomes and (C) 401,875 single-cell chromatin 

ccessibility profiles. (B) The dot plot highlights the marker gene expression specific to each 

cluster. (D) An integrative analysis of both modalities was conducted using WNN on 

324,701 intersected cells.  
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Table 1. Upstream QC for snRNA-seq from human kidney tissue 

flowcells 
Uniquely mapped 

reads (%) 

mapped to 

multiple loci (%) 

Duplication 

Rate (%) 

Number of 

barcodes 

S2 65.37% 32.42% 67.35% 

  582,354 S4-1 61.07% 36.15% 43.11% 

S4-2 68.78% 28.65% 64.49% 

 
Table 2. Upstream QC for snATAC-seq from human kidney tissue 

flowcells 
Alignment 

Rate (%) 

Duplication 

Rate (%) 

MT 

Rate (%) 

TSS 

Rate 

Number of 

barcodes 

S2 98.69% 40.37% 7.7% 11.79 

970,490 S4-1 98.72% 40.68% 8.17% 12.08 

S4-2 98.59% 51.05% 2.28% 7.68 
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3.2. Distinct transcriptional and chromatin accessibility profiles of 

each cell type revealed by single-cell analysis of in-house SHARE-seq 

data from a mixed sample of HCT116 and NK92 cell lines 

Building upon the successful reproduction of integrative analysis from the public 

SHARE-seq data, we utilized the same pipeline on in-house SHARE-seq data from a mixed 

sample of two distinct cell lines: HCT116 (human colorectal carcinoma) and NK92 (natural 

killer cells). These cell lines exhibit markedly different transcriptional and chromatin 

accessibility profiles, making it a biologically heterogeneous sample. First, to ensure the 

reliability of the analysis results, we performed upstream QC using the same process as 

mentioned above (Figures 3A, 3B; Tables 3, 4). The results showed that 75.45% of the 

snRNA-seq library consisted of uniquely mapped reads, while 23.13% were multimapped 

reads, indicating a high mapping rate to the human genome reference (hg38). The 

duplication rate was approximately 46%, and a total of 736,448 barcodes were identified. 

This number is much higher than the 20,000 cells used in library preparation, a 

phenomenon observed similarly in the snATAC-seq data. This discrepancy is likely due to 

the characteristics of SHARE-seq’s split-pool barcoding method, which uses around 

1,000,000 barcodes (96*96*96), leading to barcode assignment to molecules not 

originating from the nucleus, among other factors. In terms of functional distribution, the 

majority of reads (~41%) mapped to intronic regions, reflecting the capture of nuclear RNA 

such as pre-mRNA in the splicing intermediate state. Other reads mapped to intergenic 

regions (~30%), protein coding sequences (CDS, ~20%), and untranslated regions (UTR, 

~10%), and they show high signal in specific marker gene expression of each cell type 

(Figure 3C). For the snATAC-seq library, the alignment rate was 98.59%, with a relatively 
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low duplication rate of 17.35%, indicating a satisfactory level of library complexity. The 

mitochondrial read ratio was 4.96%, suggesting minimal contamination by 

extrachromosomal DNA, and the TSS enrichment score was 21.76, indicating a strong 

signal in active promoter regions. The insert size distribution, as expected in ATAC-seq, 

showed the highest percentage of fragments corresponding to the nucleosome-free region 

(NFR), with distinct regions in the areas between the NFR and 200 bp, 400 bp, and 600 bp, 

corresponding to nucleosome-bound DNA fragments. The signal decreased progressively 

in these regions, highlighting the strong chromatin accessibility at transcriptionally active 

sites and a high signal-to-noise ratio (Figure 3C).  

 

Table 3. Upstream QC for snRNA-seq from a mixed sample of HCT116 and NK92 

Uniquely mapped 

reads (%) 

mapped to 

multiple loci (%) 

Duplication Rate 

(%) 

Number of 

barcodes 

75.45 % 23.13 % 46.14 % 736,448 

 

 
Table 4. Upstream QC for snATAC-seq from a mixed sample of HCT116 and NK92 

Alignment 

Rate (%) 

Duplication 

Rate (%) 

MT 

Rate (%) 

TSS 

Rate 

Number of 

barcodes 

98.59 % 17.35 % 4.96 % 21.76 884,378 
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Figure 3. The upstream QC results from in-house SHARE-seq data from a mixed 

sample of HCT116 and NK92 cell lines. (A) Read distribution of snRNA-seq from a 

mixed sample of HCT116 and NK92 cell lines. (B) Insert size histogram for all reads of 

snATAC-seq from a mixed sample of HCT116 and NK92 cell lines. (C) Gene expression 

and chromatin accessibility profiles of cell-type specific marker genes. 
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In the downstream QC of the snRNA-seq gene expression per cell count matrix, 

excessive barcode detection resulted in notably low total counts and expressed gene 

numbers in most cells. Furthermore, a distinct barcode distribution pattern was identified, 

with cells showing very low counts clustered in one region and another group forming a 

secondary cluster slightly above this region (Figure 4A). Cells with appropriate levels of 

expression and read counts in this region were considered as derived from the 20,000 cells 

initially used, and cells exhibiting abnormally low or high read counts or expressed gene 

numbers were filtered out. The mitochondrial rate for each cell was calculated, and cells 

with excessively high mitochondrial gene expression were removed. Potential doublets 

were identified and removed by filtering out cells with high scores indicating the presence 

of the same barcode in two cells, resulting in a final count of 14,610 cells (Figures 4B, 4C) 

and 7,788 highly variable genes (Figure 4D). Following dimensionality reduction via PCA, 

three main approaches were applied to identify the appropriate number of principal 

components (PCs) for clustering. The first method involved selecting PCs based on 

cumulative variance, considering the point where the cumulative variance exceeded 90% 

and excluding PCs where the individual variance explained was less than 1%. The second 

approach determined the number of PCs by identifying the point where the difference in 

variance between consecutive PCs exceeded 0.1%. Finally, the third method utilized visual 

assessment through a Scree plot, excluding PCs beyond the point where the variance 

explained showed a sharp decline. As the number of selected PCs increases, more variance 

can naturally be explained. However, beyond a certain point, overfitting may occur, 

potentially introducing noise into the data. From this perspective, it was determined that 

PCs selected solely through computational methods do not always yield optimal results in 

reflecting the characteristics of the cell types on clustering. Specifically, PCs chosen based 
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on cumulative variance or variance differences between consecutive PCs were found to be 

prone to overfitting or insufficient for clearly distinguishing subtle differences or biological 

features between the two cell types. Taking all three approaches into account, the optimal 

number of PCs was determined to be 5, as this corresponded to the elbow point in the Scree 

plot, where the variance explained by additional PCs became negligible (Figure 4E). 

Subsequently, UMAP dimensionality reduction was applied to evaluate the separation 

between cell types. The number of neighbors in UMAP was tested across a range of values, 

and the dimensionality reduction results were compared across different combinations of 

PC numbers in the Scree plot above and neighbor sizes (Figure 5A). Based on the UMAP 

results for various combinations of PCs and neighbor sizes, the combination of PC 5 and 

neighbor 15 was most likely to effectively distinguish the two cell types and accurately 

capture their characteristic features. This process enabled the identification of the optimal 

combination of PC number and neighbor size, which resulted in the delineation of three 

clusters, thereby optimizing cell type separation. Analysis of the differentially expressed 

genes (DEGs) in each cluster revealed that Cluster 0, in particular, contains a significant 

number of genes regulating biological processes closely associated with cancer cell 

characteristics (Figure 6A). Gene Ontology analysis showed that the DEGs in this cluster 

are significantly enriched in processes such as regulation of epithelial cell proliferation,  

regulation of epidermal growth factor receptor activity, regulation of cell migration, 

angiogenesis, and the ERBB2-EGFR signaling pathway, all of which are hallmark features 

of cancer. These findings suggest that this cluster exhibits properties resembling those of 

cancer cells, including invasiveness, metastatic potential, enhanced proliferation, and 

modulation of the tumor microenvironment, consistent with the characteristics of the 

HCT116 cell line (Figure 5B). Cluster 1 contains a significant number of genes involved 
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in several key biological processes related to natural killer (NK) cells (Figure 6A). Gene 

Ontology (GO) analysis revealed that the DEGs in this cluster are significantly associated 

with immune processes, such as antigen receptor-mediated signaling pathway, positive 

regulation of cytokine production, cellular defense response, regulation of interleukin-2 

production. Notably, GO terms related to regulation of natural killer cell mediated 

cytotoxicity and positive regulation of natural killer cell mediated immunity were 

prominently represented, suggesting that this cluster exhibits characteristics similar to those 

of NK cell lines, reflecting immune cell-like properties. On the other hand, for Cluster 2, 

no significant GO terms were identified among the DEGs. The DEGs of cluster 2 show a 

pattern that is more similar to cluster 0, which is predicted to be the HCT116 cell line, 

rather than cluster 1, which is predicted to be NK92 cells. However, the overall expression 

profile of cluster 2 appears to be characterized by a high expression of ribosomal RNA 

genes (Figure 6B). This suggests that the influx of rRNA into the HCT116 cell line during 

the snRNA-seq experiment may have influenced the gene expression data of these cells. 

The expression of well-known marker genes for both HCT116 and NK92 cells was found 

to be divided into two distinct patterns across the clusters. Clusters 0 and 2 showed similar 

marker gene expression patterns to the HCT116 cell line, while cluster 1 exhibited a clear 

expression pattern characteristic of the NK92 cell line (Figures 6C–6E). 
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Figure 4. Downstream processing results of in-house snRNA-seq data from a mixed 

sample of HCT116 and NK92 cell lines. (A) The QC distribution patterns of snRNA-seq 

data from a mixed sample of HCT116 and NK92 cell lines. The overall trends are depicted 

by the density plot. (B-C) The first QC results of snRNA-seq data from a mixed sample of 

HCT116 and NK92 cell lines. (D) The distribution of dispersions for 7,788 highly variable 

genes. Highly variable genes are represented as black dots. (E) A Scree plot presenting the 

cumulative variance accounted for by each principal component. The number of principal 

components that explain more than 90% of the variance is indicated by a gray dashed line, 

while the point where the variance change becomes negligible is marked by a green line. 
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Figure 5. Cell embedding results of in-house SHARE-seq data from a mixed sample 

of HCT116 and NK92 cell lines reveal cell type characteristics in each cluster. (A) Cell 

embedding of in-house SHARE-seq data from a mixed sample of HCT116 and NK92 cell 

lines. The UMAPs, shown in order from the top left, use PC10, PC38, PC7, and PC5, 

respectively, with a consistent neighbor parameter of 15 across all plots. (B) Identification 

of GO terms from biological process associated with differentially expressed genes in 

clusters 0 and 1. 
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Figure 6. Cluster-specific differential gene expression and UMAP visualization in 

SHARE-seq data from a mixed sample of HCT116 and NK92 cell lines. (A, C) 

Differentially expressed genes of each cluster and average expression values. (B) The 

differentially expressed genes of cluster 2 compared to cluster 0, inferred to be associated 

with HCT116. (D) The UMAP visualization of each DEG's expression patterns for cluster 

0, which is inferred to be associated with HCT116. (E) The UMAP visualization of each 

DEG's expression patterns for cluster 1, inferred to be associated with NK92. 
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In the downstream QC of the snATAC-seq accessibility per cell count matrix, as 

mentioned in the snRNA-seq analysis, an excessive number of barcodes were identified. 

This led to a notable decrease in fragment counts within peaks from cells that were not 

derived from normal cells across most barcodes. Cells with appropriate levels of fragment 

counts within accessible regions were considered as originating from the 20,000 cells 

initially used, and those with abnormally low or high counts were filtered out. Additionally, 

cells with excessively low enrichment ratios of reads at TSS or low FRiP values (Figure 

7A) were removed. Cells with high fractions of reads in blacklist regions or excessive 

nucleosome signal, which resulted in a lack of enrichment in the NFR, were also excluded 

from the analysis. After reducing the dimensionality of the data using latent semantic 

indexing, an appropriate number of LSI components (LSI30) was selected to sufficiently 

explain the variability in the data while avoiding overfitting. This selection was based on 

the Scree plot and commonly used metrics. The correlation between sequencing depth and 

each LSI component was also assessed. For LSI1, the correlation coefficient was nearly 1, 

indicating that LSI1 primarily explained variability related to technical sequencing depth 

rather than accessibility patterns (Figure 7B). As a result, LSI1 was excluded from further 

analysis. UMAP dimensionality reduction was subsequently applied to evaluate the 

separation between cell types. By comparing UMAP results across various combinations 

of LSI numbers and neighbor sizes, the combination of LSI30 and neighbor 20 was 

determined to most effectively distinguish between the two cell types and accurately 

capture their characteristics (Figure 7C). Gene activity within accessible regions for each 

cluster was assessed in the ATAC-seq data. In Cluster 0, gene activity of differentially 

expressed genes in snRNA-seq associated with cancer cell characteristics were enriched. 

This suggests that cells in Cluster 0 are accessible at genes that exhibit properties 
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characteristic of cancer cells, being likely to correspond to the HCT116 cell line (Figure 

8A). In Cluster 1, gene activity of DEGs in snRNA-seq associated with immune cell 

characteristics was enriched. This suggests that cells in Cluster 1 are accessible at genes 

that exhibit properties resembling those of natural killer (NK) cells, reflecting key immune 

functions (Figure 8B). 

The analysis of the in-house SHARE-seq data from the mixed sample of HCT116 and 

NK92 cell lines revealed distinct chromatin accessibility patterns and gene expression 

profiles between the two cell types. Gene activity and expression patterns of each cell type 

showed high similarity. These findings underscore the potential of the SHARE-seq method 

in capturing the complexity of heterogeneous cell populations and demonstrate its utility in 

studying the molecular signatures of distinct cell types. 
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Figure 7. Downstream processing and cell embedding results of in-house SHARE-

ATAC data from a mixed sample of HCT116 and NK92 cell lines. (A) The distribution 

patterns of QC features for snATAC-seq data from the mixed sample of HCT116 and NK92 

cell lines, shown before (top) and after (bottom) filtering. The overall trends are depicted 

by the density plot. (B) A correlation plot between sequencing depth and individual LSI 

components. (C) The UMAP-based cell embedding results of snATAC-seq data. 
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Figure 8. Gene activity of cell type-specific DEGs in in-house snATAC-seq data. (A) 

Patterns of gene activity that exhibit differential accessibility across clusters. 
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3.3. Integration of snRNA-seq and snATAC-seq for enhanced cell-type 

annotation and characterization of cellular heterogeneity  

Cells that passed the quality control criteria for both snRNA-seq and snATAC-seq 

were subsequently analyzed. A total of 14,007 barcodes were matched, corresponding to 

approximately 95% of the snRNA-seq cells and 80% of the snATAC-seq cells. Integrative 

analysis of both modalities (snRNA-seq and snATAC-seq) by WNN on the 14,007 cells 

revealed that cell clustering based on both snRNA-seq and snATAC-seq data largely 

reflected similar patterns in the cell embeddings (Figures 9A, 9B). However, some cells, 

which were grouped into the same cluster in the snRNA-seq analysis, were separated into 

distinct clusters upon integration, highlighting differences in cell embedding based on both 

modalities. For instance, in the snRNA-seq clustering results, among the cells in cluster 0, 

which was identified as HCT116, the cells that showed differences in marker gene 

expression patterns within cluster 0 (Figure 6D) exhibited a shift in embedding towards a 

cluster displaying the marker gene expression patterns of NK92 in the WNN clustering 

(Figure 9A). This observation suggests that integrating multimodal data enhances the 

accuracy of identifying complex differences between cell clusters and improves cell type 

annotation. To further refine cell typing, clustering was performed based on the WNN 

embedding results (Figure 9C), and these results were compared with the snRNA-seq and 

snATAC-seq cluster annotations. Cells showing consistent characteristics across cluster 

annotations from both modalities were classified as HCT116 and NK92 cells, comprising 

3,937 cells and 6,036 cells, respectively (Figure 9D). The remaining cells were classified 

as Unknown1 or Unknown2, representing states that were somewhat different from the 

typical characteristics of the two cell types. These results demonstrate the effectiveness of 
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integrating data from both modalities in improving cell-type annotation accuracy and 

uncovering subtle cellular heterogeneity. The enhanced resolution of gene expression and 

chromatin accessibility patterns could be valuable for exploring complex regulatory 

landscapes and understanding cell-specific functions in various biological contexts. 
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Figure 9. Cross-modality integration of snRNA-seq and snATAC-seq. Integrated cell 

embedding results of snRNA-seq and snATAC-seq data from a mixed sample of HCT116 

and NK92 cell lines using WNN analysis. (A) Cell type annotation was performed based 

on snRNA-seq clusters. (B) Cell type annotation was performed based on snATAC-seq 

clusters. (C) Cell type annotation was performed based on clusters defined by the WNN 

graph. (D) Final cell type annotation from the integrated analysis of snRNA-seq and 

snATAC-seq data from SHARE-seq of mixed sample (HCT116 & NK92). 
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3.4. Linking gene expression and chromatin accessibility through 

SHARE-seq data in cell-type specific domains of regulatory chromatin 

(DORCs) region 

Based on the correlation between peak accessibility near genes in snATAC-seq, which 

is considered to have a high potential for physical accessibility and therefore the ability to 

regulate gene expression, and gene expression in snRNA-seq, the cell type-specific cis-

regulatory landscape was examined in the two cell types. From the 14,007 cells commonly 

derived from snRNA-seq and snATAC-seq data, selected HCT116 cells (n = 3,937) and 

NK92 cells (n = 6,036), which clearly exhibited the characteristics of each cell line (Figure 

9D), were used to define domains of regulatory chromatin (DORCs) that would highlight 

the distinct identities of these two cell types. As a result, 76 DORC genes in the HCT116 

cell line and 133 DORC genes in the NK92 cell line were identified (Figures 10A, 10B). 

GO analysis revealed that DORC genes identified in HCT116 were associated with cancer 

cell and epithelial cell-specific processes such as regulation of epidermal growth factor-

activated receptor activity, positive regulation of angiogenesis, and ERBB2-EGFR 

signaling pathway (Figure 10C). These results suggest that the DORC genes in HCT116 

are closely linked to the epithelial cancer cell-specific identity of the cell line. In contrast, 

DORC genes identified in NK92 were enriched in immune-related processes, including 

regulation of lymphocyte differentiation and activation, positive regulation of natural killer 

cell-mediated immunity, and inflammatory response, highlighting the immune cell-specific 

identity of NK92 cells (Figure 10D). To determine whether the peak regions with high 

gene-peak associations could act as enhancers regulating the expression of DORC genes, 

we investigated whether these peaks, particularly those linked to cell type-specific gene 
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expression, correspond to super-enhancer regions which are known as the regulatory 

elements that potentially influence the expression of genes crucial for cell type 

specification42. To compare these DORC regions with the super-enhancer regions of the 

two cell types, bulk H3K27ac CUT&Tag data for HCT116 and H3K27ac ChIP-seq data 

for NK92 were used to identify super-enhancers, providing information on chromatin 

regions activated by the enrichment of active histone markers (Figures 10E, 10F). 618 

peak regions associated with DORC gene promoters in both cell types overlapped with cell 

type-specific super-enhancer regions, accounting for approximately 40% of the total peaks 

(n = 1,505) linked to DORC gene promoters. Notably, when examining the PLEC gene of 

HCT116 DORC and CCL4 gene of NK92 DORC, it can be observed that snATAC-seq 

peaks with high associations with DORC gene expression are located near super-enhancer 

regions (Figures 11A, 11B). This suggests that DORC genes are likely critical in defining 

cell type-specific identity. Furthermore, it indicates that the correlation between cell-type-

specific gene expression and chromatin accessibility can be confirmed using SHARE-seq 

data derived from the same cells. 

In addition, it was assessed whether DORC genes linked to a larger number of 

snATAC-seq peaks have a greater impact on elucidating the identity of the respective cell 

line and whether they exhibit higher chromatin accessibility compared to other genes. The 

snATAC-seq peak regions assigned to the previously identified super-enhancer regions 

were regarded as potential enhancer regions highly correlated with gene expression, 

suggesting that they may potentially influence gene expression. For the putative enhancer 

regions, the snATAC-seq signal occupancy of snATAC-seq peak regions assigned to the 

super-enhancer regions was visualized using the same approach employed to identify the 

super-enhancer regions. The point where the slope of the signal curve decreased to 1 or 
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below was identified, and putative enhancers located above this cutoff were defined as 

enhancers with relatively higher accessibility among the putative enhancers. As a result, 

among the putative enhancer regions containing 56 peak regions in HCT116 and 562 peak 

regions in NK92, 5 DORC genes in HCT116 and 14 DORC genes in NK92 were associated 

with regions exhibiting accessibility above the cutoff (Figures 11C, 11D). Further 

investigation of genes linked to enhancers with relatively higher accessibility revealed that 

DORC genes with a larger number of associated peaks were not necessarily connected to 

putative enhancers located within the super-enhancer regions. Consequently, it was 

confirmed that DORC genes with more associated peaks were not always linked to putative 

enhancers with higher accessibility. Based on the mean DORC scores for each DORC gene 

across all cells calculated as the sum of normalized scATAC-seq reads aligned at 

significantly associated DORC peaks, as previously noted, genes associated with peaks of 

higher accessibility tended to have higher DORC scores compared to genes with a greater 

number of associated peaks. However, the ranking of genes associated with the most 

accessible peaks and genes with higher DORC scores (Figures 12A, 12B) differed, 

suggesting that both the number of gene-peak associations and the accessibility of the 

regions collectively contribute to defining key genes that determine cell identity.  

To identify transcription factors (TFs) that could act as putative regulators driving or 

suppressing the expression of cell type-specific genes as key markers of cell identity, we 

examined the TF-DORC association based on the enrichment of TF binding motifs in 

regions associated with each DORC gene and the correlation between the expression of 

these TFs and their corresponding DORC genes. Ranking TFs based on their mean 

regulatory scores for all DORC genes revealed that BACH1 and STAT3 emerged as the 

top activator TFs in HCT116, while OVOL2, ZNF302 and RUNX2 were identified as key 
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TFs in NK92 cells (Figures 12C, 12D). Specifically in NK92 cells, motif searches 

conducted on the promoter regions of all DORC genes and their associated regulatory 

regions confirmed that RUNX family TFs were consistently enriched, aligning with the 

results shown in Figure 12D (Figure 12E). RUNX2, in particular, is a known 

transcriptional regulator essential for NK cell development and maturation17. The list of 12 

DORC genes (NEAT1, RRM2, PIK3AP1, GLRX, MARS, CEACAM21, RGS1, BMI1, 

KRT80, ZNF683, GEM, LINC00642) identified as potentially regulated by RUNX2 in 

NK92 and bulk RNA-seq and RUNX2 ChIP-seq data in NK cells17 were intersected and 

found that PIK3AP1 and ZNF683 both showed RUNX2 ChIP-seq signals near their 

genomic loci and were downregulated in RUNX2 knockout NK cells, additionally 

PIK3AP1 was upregulated in RUNX2 overexpressing NK cells. These findings suggest 

that RUNX2 may act as an activator of these genes (Figures 12F–12H) in NK cells. The 

PIK3AP1 gene is known to activate phosphoinositide 3-kinase (PI3K) in B cells and NK 

cells, with its role more thoroughly studied in B cells and its potential relevance to NK cell 

functions, such as target cell recognition and lysis, has been suggested43. Meanwhile, 

ZNF683 gene plays a critical role in regulating NK cell differentiation, as it is highly 

upregulated during the differentiation of umbilical cord progenitor cells into NK cells and 

functions as a transcriptional repressor of interferon-gamma (IFN-γ) production during 

terminal NK cell differentiation44. These findings highlight the possibility that the functions 

of these two genes, potentially regulated by RUNX2, may play critical roles in defining 

NK cell identity. In conclusion, this study demonstrates the intricate interplay between 

chromatin accessibility, gene regulation, and transcription factor activity in defining cell 

type-specific identities through single-cell multimodal analysis, offering valuable insights 

into the regulatory mechanisms that underpin cellular identity and function. 
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Figure 10. The DORC genes identified from SHARE-seq data are associated with cell 

identity determination, exhibiting cell type-specific characteristics through their 

interactions with regulatory elements. (A) Cell type-specific DORC genes for HCT116 

cells (n = 3,937) and the number of snATAC-seq peaks associated with each gene. (B) Cell 

type-specific DORC genes for NK92 cells (n = 6,036) and the number of snATAC-seq 

peaks associated with each gene. (C, D) Gene ontology of each cell type-specific DORC 

gene (E) Strength of H3K27ac CUT&Tag peak signals in HCT116 cells. Super enhancer 

peaks are colored in red. (F) Strength of H3K27ac ChIP-seq peak signals in NK92 cells. 

Super enhancer peaks are colored in red. 
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Figure 11. The number of gene-peak associations and the accessibility of the regions 

collectively contribute to defining key genes that determine cell identity. (A) The 

interaction between the HCT116 DORC gene PLEC and the snATAC-seq peak regions 

connected to its promoter. (B) The interaction between the NK92 DORC gene CCL4 and 

the snATAC-seq peak regions connected to its promoter (C) Strength of putative enhancers 

of HCT116 DORC genes. Super enhancer-like snATAC-seq peaks (n=5) are colored in red. 

The DORC genes associated with the top 5 accessible regions are indicated at each point. 

(D) Strength of putative enhancers of NK92 DORC genes. Super enhancer-like snATAC-

seq peaks (n=14) are colored in red. The DORC genes associated with the top 5 accessible 

regions are indicated at each point.  
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Figure 12. TF-DORC association based on single cell multimodal data infers putative 

regulators of cell type-specific gene expression. (A) HCT116 DORC genes that account 

for the top 20 mean DORC scores across all cells. (B) NK92 DORC genes that account for 

the top 20 mean DORC scores across all cells. (C) Putative transcription factor drivers of 

HCT116 are ranked by the overall mean regulation score across all HCT116 DORCs. (D) 

Putative transcription factor drivers of NK92 are ranked by the overall mean regulation 

score across all NK92 DORCs. (E) RUNX family motif is enriched in all NK92 DORC 

gene-associated regions. (F) Genes which can be regulated by RUNX2 are intersected with 

public RNA-seq and ChIP-seq data from human NK cells in conditions of RUNX2 

knockdown and RUNX2 overexpression each. (G, H) The analysis of potential regulatory 

factors for the PIK3AP1 gene (G) and ZNF683 gene (H) suggests that RUNX2 may act as 

an activator for both genes. The x-axis represents the correlation between the TF and the 

DORC gene, while the y-axis indicates the degree of enrichment of the corresponding TF 

motif.  
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4. Discussion 

This study reaffirmed a comprehensive bioinformatics pipeline for analyzing single-

cell multiomics data, focusing on the SHARE-seq technique. By applying this pipeline to 

both public datasets and a mixture of two cell lines datasets (HCT116 and NK92), its 

robustness and reproducibility were demonstrated. Through the integrative analysis of 

snRNA-seq and snATAC-seq data obtained from the same cells, we confirmed precise 

interactions between gene expression and chromatin accessibility, revealing distinct 

characteristics and regulatory mechanisms between cell types. The analysis of public 

datasets (human kidney tissue) successfully reproduced transcriptional and epigenomic 

profiles, confirming the reliability of the pipeline. The clear clustering patterns observed 

across both snRNA-seq and snATAC-seq modalities closely matched existing study results, 

showcasing the pipeline's ability to accurately reflect cell-type-specific characteristics. 

Particularly, the Weighted Nearest Neighbor (WNN) integration approach proved highly 

effective for enhancing cell-type annotation using multiomics data. In the in-house mixed 

cell line dataset, distinct transcriptional and chromatin accessibility profiles of HCT116 

and NK92 were used to distinguish features between cell states that could not be accurately 

identified in unimodal analyses. The identification of domains of regulatory chromatin in 

both HCT116 and NK92 provided key insights into the regulatory mechanisms 

underpinning cell identity. DORCs discovered in HCT116 were strongly associated with 

epithelial cancer cell-specific processes, while those identified in NK92 were linked to 

immune-related functions. These findings demonstrate that SHARE-seq data can elucidate 

the relationship between regulatory elements and gene expression at a single-cell level. 

Interestingly, while DORC genes with numerous gene-peak associations were strongly 
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linked to certain super-enhancer regions, indicating that DORCs play a significant role in 

defining cell identity due to the complex regulatory functions of epigenetic elements. The 

identification of transcription factors capable of regulating the expression of cell type-

specific genes revealed that distinct transcription factors act as key regulators depending 

on the cell type. This finding reaffirms that the complex interplay between chromatin 

accessibility, gene regulation, and transcription factor activity collectively contributes to 

defining cell type-specific identities. However, several challenges remain in single cell 

multimodal data analysis. First, cells displaying mixed characteristics between cell types 

were observed during analysis, which could indicate biological intermediate states, 

necessitating careful consideration during cell type annotation. Particularly, cell embedding 

based on dimensionality reduction methods can produce highly variable clustering results 

depending on the number of principal components used. Moreover, marker gene expression 

analyses relying solely on differentially expressed genes are often heavily influenced by 

findings from bulk studies, which may hinder precise annotations. Since the choice of 

marker genes can lead to subjective annotations, it is critical to establish rigorous statistical 

and biological standards to ensure objective and consistent analyses. Balancing automated 

annotation methods with manual review will be essential to achieving this goal. Finally, 

snATAC-seq data alone is insufficient for pinpointing exact enhancer locations. Beyond 

correlation-based linkage analyses, the incorporation of epigenetic histone modification 

data, such as H3K27ac and H3K4me1, at a single-cell level is crucial. Integrating such 

additional data would not only enhance the accuracy of cell type and state definitions but 

also provide a deeper understanding of the functional roles of regulatory elements. 
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 5. Conclusion 

This study validated the bioinformatics pipeline for analyzing single-cell multiomics 

data and demonstrated its capability to effectively characterize transcriptional and 

epigenetic features across various cell types and conditions using both public and in-house 

SHARE-seq datasets. By integrating snRNA-seq and snATAC-seq data from the same cells, 

the study elucidated interactions between gene expression and chromatin accessibility. The 

analysis of human kidney tissue data confirmed the high reliability of the pipeline in 

reproducing transcriptional and epigenomic profiles. Furthermore, the analysis of mixed 

samples of HCT116 and NK92 cell lines effectively resolved cellular heterogeneity and 

identified distinct biological characteristics of each cell type. In particular, the 

identification of domains of regulatory chromatin and their association with super-enhancer 

regions revealed that chromatin accessibility and gene expression are differentially 

regulated depending on cell type and play a critical role in determining cellular identity. 

Furthermore, it was observed that putative enhancers associated with DORC genes 

containing a large number of connected peaks did not always exhibit the highest 

accessibility. Instead, the number of gene-peak associations and accessibility collectively 

influenced the identification of key genes that determine cellular identity. Analysis of TF-

DORC associations revealed that distinct transcription factors regulate the expression of 

cell type-specific genes depending on the cell type. In particular, RUNX2 was suggested 

to act as an activator TF for two DORC genes associated with NK cell function and 

differentiation in NK92 cells, reaffirming previously known characteristics of RUNX2. 

Additionally, the study addressed challenges such as potential subjective bias in cell type 

annotation and the necessity of incorporating additional data, such as histone modification 
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profiles, to accurately identify enhancer regions. These findings underscore the importance 

of establishing objective standards for cell annotation and integrating complementary 

multiomics data to clarify interactions between cis-regulatory elements. In conclusion, this 

study demonstrates that single-cell multimodal analysis using snRNA-seq and snATAC-

seq data can effectively explore cellular heterogeneity and identify key regulatory elements 

that define cellular identity and function. In particular, the ability of SHARE-seq to 

integratively analyze transcriptomic and chromatin accessibility features provides valuable 

insights into the dynamic characteristics and interactions of gene regulation at the single-

cell level.  
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Abstract in Korean 

 

암-면역 세포 혼합체에서 단일핵 수준의  

염색질 접근성과 유전자 발현 통합 분석 

   

  세포 간의 이질성에 관한 이해는 조직의 기능과 질병 진행의 복잡성을 

해독하는 데 필수적이다. 단일 세포 다중오믹스 기술인 SHARE-seq은 

기존의 여러 세포들의 평균적 프로파일링을 탐색하는 수준의 해석을 넘어, 

개별 세포의 후성유전체 및 전사체 환경을 탐색할 수 있는 기회를 제공할 수 

있다. 본 연구에서는 SHARE-seq 데이터를 활용하여 후성유전체 이질성을 

탐색하기 위한 생물정보학 분석 파이프라인을 검증하고, 이를 자체적으로 

생산된 암-면역 세포 혼합체 SHARE-seq 데이터에 적용해 세포 이질성을 

확인하였다. 파이프라인의 재현성을 검증하기 위해 공개된 인간 신장 조직의 

SHARE-seq 데이터에 적용하였으며, 신장 세포의 전사체 및 후성유전체의 

이질성이 성공적으로 재구성되었고, 전사체와 염색질 접근성 프로파일을 

바탕으로 기존 연구의 결과와 일치하는 명확한 세포 클러스터를 식별하였다. 

또한, 검증된 파이프라인을 활용해 대장암 세포주와 면역 세포주를 혼합한 

자체 SHARE-seq 데이터의 두 모달리티를 통합 분석함으로써, 두 개의 

세포주를 성공적으로 구분하였다. 나아가, 두 모달리티 간의 연관성이 매우 

높은 조절 염색질 영역을 식별하고, 슈퍼 인핸서 영역과의 연관성을 

분석함으로써, 염색질 접근성과 유전자 발현이 세포 유형에 따라 다르게 

조절되며, 두 요소의 연관성 정도 및 접근성 수준과 같은 여러 요인들이 세포 
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특이적 유전자의 발현에 함께 영향을 줄 수 있다는 것에 대한 통찰을 얻을 수 

있었다. 추가적으로, 세포에 따라 서로 다른 전사 인자의 활성이 존재하여 

세포 특이적인 기능을 수행하는 유전자의 발현에 영향을 줌으로써, 염색질 

접근성, 유전자 조절, 전사 인자 활성 간의 복잡한 상호작용이 세포 유형 

특이적 정체성을 정의하는 데 복합적으로 기여한다는 점을 재확인할 수 

있었다. 결론적으로, 본 연구는 단일 세포 다중오믹스 데이터의 통합 분석을 

통하여 유전자 발현과 염색질 접근성의 관계를 종합적으로 탐구하였으며, 

세포 정체성과 기능을 정의하는 주요 조절 요소를 식별함으로써 더 나아가 

암과 같은 질병의 개별 세포 간 이질성 및 조절 환경을 이해하는 데 중요한 

통찰을 제공할 수 있을 것으로 기대한다. 
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