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ABSTRACT

Integrated analysis of chromatin accessibility
and gene expression at the single-nucleus level
in a cancer-immune cell mixture

Understanding cellular heterogeneity is crucial for unraveling the complexity of tissue
function and disease progression. SHARE-seq, a single-cell multiomics technology,
provides an opportunity to explore the epigenomic and transcriptomic landscapes at the
level of individual cells, surpassing previous approaches that average profiles across
populations of cells. In this study, a bioinformatics analysis pipeline for investigating
epigenomic heterogeneity was validated using public SHARE-seq data and applied to an
in-house SHARE-seq dataset from a mixture of cancer and immune cells to identify cellular
heterogeneity. To verify the reproducibility of the pipeline, publicly available SHARE-seq
data from human kidney tissue were used. This analysis successfully reconstructed the
transcriptomic and epigenomic heterogeneity of various cell types from kidney, identifying
clear cell clusters based on transcriptomic and chromatin accessibility profiles that aligned
with results from previous studies. Furthermore, the validated pipeline was utilized to
integratively analyze the two modalities of an in-house SHARE-seq dataset from a mixture
of a colorectal cancer cell line and an immune cell line, successfully distinguishing the two
cell types. Additionally, we identified regulatory chromatin regions with strong
correlations between the two modalities and analyzed their associations with super-
enhancer regions. This revealed that chromatin accessibility and gene expression are
differentially regulated depending on the cell type, and factors such as the degree of peak-

gene association and accessibility levels can collectively influence the expression of cell



type-specific genes. Moreover, the analysis highlighted that the activity of transcription
factors varies across cell types, affecting the expression of genes that have cell type-specific
functions. This reaffirms that the complex interplay among chromatin accessibility, gene
regulation, and transcription factor activity collectively contributes to defining cell type-
specific identities.

In conclusion, this study comprehensively explored the relationship between gene
expression and chromatin accessibility through the integrative analysis of single-cell
multiomics data, identifying key regulatory elements that define cellular identity and
function. These findings are expected to provide critical insights into the regulatory
environment and heterogeneity of individual cells in diseases such as cancer, advancing

our understanding of cellular mechanisms at a single-cell resolution.

Key words : cellular heterogeneity, single-cell multiomics, SHARE-seq, bioinformatics, integrated
analysis
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1. Introduction

Tissues in multicellular organisms perform diverse functions, and the cells that make
up these tissues share almost identical genome sequences but exhibit distinct gene
expression patterns, enabling them to carry out different cellular functions. The regulation
of gene expression and the resulting cellular heterogeneity are actively studied, particularly
due to their important roles in diseases such as cancer*. Gene expression is initiated
through the transcription of genomic DNA into messenger RNA (MRNA), a process that
can be controlled by the interaction of proteins, including transcription factors and initiators,
with cis-regulatory elements such as promoters and enhancers®’. Additionally, cellular
heterogeneity in gene expression arises from epigenetic features such as nucleosome
positioning and composition, histone tail modifications, and three-dimensional structural
interactions®1%. Therefore, a comprehensive understanding of gene expression
heterogeneity requires investigating the interplay of these various regulatory mechanisms.

Bulk-cell experiments, which analyze large populations of cells simultaneously,
provide an aggregate signal representing the cell population. These methods are insufficient
for distinguishing cellular differences in transcriptomic and epigenetic features. However,
advances in single-cell multi-omics research have overcome this limitation by enabling the
analysis of transcriptomes for each cell within a sample!. Single-cell sequencing is
particularly valuable for identifying rare cell types that are difficult to identify in bulk
sequencing, thereby helping to optimize therapeutic strategies for issues such as tumor

formation and therapy resistance®?.



Nevertheless, unimodal single cell technologies can only reveal cellular heterogeneity
for individual epigenetic and transcriptomic features and cannot simultaneously profile
multiple ones, chromatin accessibility, and gene expression within the same single cell. As
a result, while these methods suggest potential correlations between epigenetic phenomena
and transcription levels, they cannot directly investigate these relationships®®. To address
this limitation, multimodal single-cell sequencing technologies have been introduced that
can simultaneously analyze gene expression and additional aspects of chromatin state.

Simultaneous high-throughput ATAC and RNA expression sequencing (SHARE-
seq)** is a technique that allows for the investigation of both epigenomic and transcriptomic
dynamics from the same cell. This approach enables large-scale, cost-effective
measurements of chromatin accessibility and gene expression in single cells, either
individually or jointly. Through SHARE-seq, accurate cell type definition can be achieved
by elucidating the correlations between chromatin accessibility and gene expression. By
leveraging cellular heterogeneity, this method also can infer chromatin accessibility and
transcription relationships and identify high-density peak-gene associations, known as
domains of regulatory chromatin (DORCs).

This study focuses on integrating multimodal datasets for analyzing transcriptome and
chromatin accessibility from the same cell simultaneously. Specifically, this study validates
and applies bioinformatic analysis methods for SHARE-seq data. By applying it to in-house
SHARE-seq data from a mixed sample of two heterogeneous cell lines, this study aims to
identify the unique biological characteristics of each cell line by separating them and
investigate the relationships between regulatory chromatin and gene expression that can

define the distinct identity of each cell line.



2. Materials and methods

2.1. Datasets

2.1.1. SHARE-seq data from a mixed sample of HCT116 and NK92 cell lines
In-house SHARE-seq data from a mixed sample of HCT116 and NK92 cell lines was

generated by Heon-Woo Kwon using protocol published at Ma et al. 2020'* and optimized

by Ph.D. Chul Min Yang and Ph.D. Eun-Chong Lee.

2.1.2. SHARE-seq data from human kidney tissue
SHARE-seq data from human kidney tissue was obtained from GSE234788%.

2.1.3. H3K27ac CUT&Tag of HCT116 cells
H3K27ac CUT&Tag data from HCT116 cell line was generated by Heon-Woo Kwon.

2.1.4. H3K27ac ChlP-seq of NK92 cells
H3K27ac ChIP-seq data from NK92 cells was obtained from GSE227664.

2.1.5. Bulk RNA-seq and RUNX2 ChlIP-seq data of human NK cells
Intersected gene list data of bulk RNA-seq and RUNX2 ChlP-seq from human NK
cells in each condition of RUNX2 knockdown and RUNX2 overexpression were obtained

from Wahlen et al. 2022%".



2.2. Bulk sequencing data processing
2.2.1. CUT&Tag analysis

The adapter sequences from paired-end sequencing reads which are 101 bp were
trimmed using trim_galore® (v0.6.10). Processed reads subsequently were aligned to the
hg38 reference genome using bowtie2® (v2.5.1) with --local. Duplicate reads were marked
using Picard® (v2.26.0) with default parameters and duplicates, mitochondrial reads, and
low-quality reads were filtered out using SAMtools? (v1.17) with -q 30 —F 1804 —f 2. The
preceding analyses were individually performed for H3K27ac CUT&Tag sample and input
data from the HCT116 cell line. Since H3K27ac is a narrow histone mark, narrowpeaks
were identified using callpeak in MACS222 (v 2.2.7.1) with -g hs -f BAMPE --nomodel -q
0.05 and input reference signal data. Peaks located in blacklist and patch regions were

filtered out.

2.2.2. ChlP-seq analysis

The adapter sequences from paired-end sequencing reads which are 101 bp were
trimmed using trim_galore. Processed reads subsequently were aligned to the hg38
reference genome using bwa? (v0.7.17) with default parameter settings. Duplicate reads
were marked using Picard with default parameters and duplicates, mitochondrial reads, and
low-quality reads were filtered out using SAMtools with -q 30 —F 1804 —f 2. The preceding
analyses were individually performed for H3K27ac ChiP-seq sample and input data from
the NK92 cell line. Narrowpeaks were identified using callpeak in MACS2 with -g hs -f
BAMPE --nomodel -q 0.05 and input reference signal data. Peaks located in blacklist and

patch regions were filtered out.



2.3. SHARE-seq data processing
2.3.1. SHARE-seq data pre-processing

SHARE-seq data (.fastq.gz) was pre-processed using scripts previously described and
available at https://github.com/masail116/SHARE-seg-alignmentV2/*4, Gene annotation
and sequence files from the GENCODE website** were used. The Genome Reference
Consortium Human Build 37 patch release 13 (GRCh37.p13; hg19) was used for analyzing
SHARE-seq data of human kidney tissue, while the Genome Reference Consortium Human
Build 38 patch release 13 (GRCh38.p13; hg38) was used for in-house SHARE-seq data of
the mixed sample of HCT116 and NK92 cell lines. Barcode demultiplexing was performed
allowing one mismatch based on the introduced barcodes in split-pool barcoding. Reads
with disabled adapters and low-quality sequences were trimmed using fastp?® (v0.23.4).
For snRNA-seq (SHARE-RNA) data, due to the characteristic presence of polyA tails in
MRNA, the read2 sequences were excluded, and only the readl FASTQ file was aligned to
the reference genome using STAR?® (v2.5.2b). The number of reads mapped to genomic
regions was quantified using FeatureCount?” (v2.0.6), and unique UMI-based read
grouping was performed using UMI-tools?® (v1.1.5) to obtain unique reads by removing
duplicated reads. The alignment of snATAC-seq (SHARE-ATAC) data was conducted
using bowtie2 (v2.5.3). Reads that were unmapped, not primarily aligned, or aligned to
chrM or chrY were removed. Barcodes with fewer than 100 reads in the SHARE-seq data
from human kidney tissue and fewer than 50 reads for SHARE-seq data from the mixed
sample of HCT116 and NK92 cell lines were filtered out. The read distribution was
checked using RSeQC? (v5.0.2). This process produced a count matrix (.h5 file)

representing gene expression and a fragment profile (.bed file) for each individual cell. The



bigwWig files were generated by bamCoverage in deepTools (v3.5.5) with the --
normalizeUsing CPM option.

The .h5 files were processed to generate count matrices using the scanpy.read_10x_h5
function from Scanpy® (v1.9.8). For SHARE-seq data from human kidney tissue, count
matrices from data sequenced on different NovaSeq flowcells were combined using the
anndata.concat function. For the processing of the .bed files for snATAC-seq analysis,
Tabix® (v1.20) was used to merge all fragment profiles of human kidney tissue from
different flowcells, and the CreateFragmentObject function of Signac®? (v1.14.0) was used
to create a single object from the fragment profile. Peaks were identified using the
CallPeaks function (extsize=150), which utilizes MACS2 (v2.2.9.1), and a count matrix
was generated using the FeatureMatrix function resulting in the identification of a total of
189,184 features for human kidney data and 184,399 features for in-house mixed sample

data.

2.3.2. snRNA-seq data analysis
All snRNA-seq analysis was executed on Scanpy. For SHARE-RNA data from human

kidney tissue, all key parameters were followed as outlined in the paper®. In brief, cells
with fewer than 200 or more than 5,000 genes detected, as well as cells with fewer than
300 reads or more than 20,000 reads, were excluded from the gene count matrix. Genes
present in fewer than 50 cells were also excluded. Cells with barcode errors (0.4% of total
cells) were excluded. Cells with more than 4% mitochondrial reads were removed, and
doublet detection was performed using the scanpy.external.pp.scrublet function. The
anticipated doublet rate was set to 0.06, and the number of neighbors was configured to 30.

Cells with doublet scores exceeding 0.2 were annotated as suspected doublets and excluded



from analysis. The data were subsequently normalized and log-transformed. Highly
variable genes (5,332 genes) were identified using the scanpy.pp.highly_variable_genes
function with parameters min_mean=0.0125, max_mean=3, and min_disp=0.5. The effects
of total counts per cell and the proportion of mitochondrial reads per cell were regressed
out using the scanpy.pp.regress_out function. The data were then scaled, followed by
dimensionality reduction using principal component analysis (PCA) with the scanpy.tl.pca
function (svd_solver="arpack’). Batch effects between SHARE-seq batches were corrected
using the scanpy.external.pp.harmony_integrate function, with cells stratified by flowcell.
A neighborhood graph was computed using the scanpy.pp.neighbors function with 30
neighbors (metric='cosine’). This graph was embedded into two dimensions using the
scanpy.tl.umap function, with the minimum effective distance between embedded points
setto 0.1. Leiden clustering was carried out using the scanpy.tl.leiden function. For single-
cell cluster annotation, a curated list of marker genes mentioned in the original paper®® was
compiled from established cellular reference datasets.

For SHARE-RNA from mixed cell line of HCT116 and NK92 cell lines, cells with
fewer than 1,000 genes or more than 6,500 genes detected, as well as those with fewer than
1,000 or more than 20,000 reads, were excluded from the gene count matrix. Additionally,
genes present in fewer than 50 cells were removed. The percentage of mitochondrial reads
was calculated for each cell and cells with over 30% mitochondrial reads were filtered out.
Cell doublets were estimated using the same expected overall doublet rate and the number
of neighbors previously. Cells with the doublet score greater than 0.2 were labeled as
potential doublets and excluded from further analysis. Following normalization and log-
transformation of the data, 7,788 highly variable genes were identified (min_mean = 0.0125,

max_mean = 3, min_disp = 0.5). The effects of total counts per cell and mitochondrial read



percentage were regressed out. The data were then scaled and dimensionality reduction was
performed using PCA with the svd_solver set to ‘arpack’. A neighborhood graph of cells
was generated using 15 neighbors (metric = ‘cosine’) and this graph was embedded in two
dimensions using uniform manifold approximation and projection (UMAP) with an
effective minimum distance of 0.5 between embedded points. Leiden clustering was
conducted and differentially expressed genes for each leiden cluster were identified using
the scanpy.tl.rank_genes_groups function (method = ‘wilcoxon’). These DEGs were

subsequently used for cluster annotation.

2.3.3. SnATAC-seq data analysis
All snATAC-seq analysis was conducted on Signac. For SHARE-ATAC data from

human kidney tissue, all key parameters were followed as outlined in the paper®.
Chromatin profiling began with the generation of a chromatin assay from the count matrix
using the CreateChromatinAssay function in Signac, followed by its conversion into a
seurat object using the CreateSeuratObject function from Seurat®® (v5.1.0). For each cell,
nucleosome signal intensity, transcription start site (TSS) enrichment score, fraction of
reads in peaks (FRiP), and the proportion of counts overlapping the hg19 genome blacklist
were calculated using the NucleosomeSignal, TSSEnrichment, FRiP, and
FractionCountsInRegion functions, respectively. Cells were retained if they met the
following criteria: 400 to 50,000 peaks, nucleosome signal value below 2.5, TSS
enrichment score above 1, FRIP value greater than 0.1, and a blacklist overlap ratio below
0.05. The data were then normalized using the TF-IDF (term frequency-inverse document
frequency) method implemented in the RunTFIDF function. Linear dimensionality

reduction was achieved through singular value decomposition (SVD) of the TF-IDF matrix



using the RunSVD function. Harmony was used to eliminate potential batch effects across
cells, stratified by flowcell. Cell clustering, non-linear dimensionality reduction, and
UMAP visualization were carried out using the FindNeighbors, FindClusters, and
RunUMAP functions, respectively, with parameters set to dims = 2:30, min.dist = 0.1, and
n.neighbors = 50. Gene annotation was performed using the GeneActivity function, which
computed counts for each cell across gene bodies and 2,000 bp upstream of transcription
start sites (including promoter regions) and genes mentioned in the original paper®.

For SHARE-ATAC data from mixed cell line of HCT116 and NK92 cell lines, a
chromatin assay was constructed from the count matrix and subsequently converted into a
seurat object. Quality control criteria for cells included having 2,000 to 50,000 peaks, a
nucleosome signal value below 2.5, a TSS enrichment score above 4, a FRIiP value
exceeding 0.1, and a blacklist overlap ratio below 0.05 for the hg38 genome. The data were
then normalized and dimensionality reduction was performed. Graph-based clustering,
non-linear dimensionality reduction, and UMAP visualization were performed respectively,
with parameters dims = 2:30, min.dist = 0.5, and n.neighbors = 30. Gene annotation was
performed using the GeneActivity function, which computed counts for each cell across
gene bodies and 2,000 bp upstream of transcription start sites (including promoter regions)

and DEG lists derived from the SHARE-RNA data.

2.3.4. Integration of snRNA-seq and snATAC-seq across modalities
Cells that met the quality control criteria for both snRNA-seq and snATAC-seq were

used for cross-modality integration. After quality control for each modality, the datasets
were combined into a seurat object, and dimensionality reduction was performed for each

modality following the same procedures as described previously. The Weighted Nearest



Neighbor (WNN) graph3 was computed using the FindMultiModalNeighbors function,
which integrated the dimensionality reduction results from both modalities. For the human
kidney data, the following parameters were used: dims.list = list(1:30, 2:30) and k.nn = 30.
For the in-house mixed sample data, the following parameters were used: dims.list =
list(1:50, 2:50) and k.nn = 20. The WNN graph was then used for UMAP visualization and
clustering. For the human Kkidney data, the parameters min.dist = 0.001 and n.neighbors =
30 were used, while for the in-house mixed sample data, the parameters min.dist = 0.1 and

n.neighbors = 50 were applied.

2.4. Linked Peak-gene association in cis chromatin and identification
of DORC

To identify peak-gene associations in cis chromatin, FigR* (v0.1.0) R package was
used. Briefly, FigR calculates Spearman correlation coefficient of each peak-gene pair by
considering all peak counts from snATAC-seq located in 100kb window around TSS of
each gene and their gene expression values. To estimate the background, chromVAR®
(v1.26.0) was utilized to generate a null distribution of Spearman correlations between
peaks and genes, independent of their peak-gene proximity. It then computes the expected
population mean (pop.mean) and standard deviation (pop.sd) from the expected Spearman
correlations. The Z score is calculated using the formula z = (obs-pop.mean)/pop.sd, and
p-values are determined. Only peak-gene associations with the most significant p-values
are retained when a peak is linked to multiple genes. To identify a set of proximal peaks
for each gene, referred to as DORCs, genes are ranked based on the count of peaks with
significant associations (50 kb around TSSs, p < 0.05). A cutoff of 5 peaks per gene is
applied for in-house SHARE-seq data from a mixed sample of HCT116 and NK92 cell

10



lines. Then peak counts are normalized by the total number of unique fragments in peaks
per cell and DORC scores for each gene in each cell were determined by summing the
mapped read counts of all significantly correlated peaks per gene, based on a recalculated
peak-gene association. The DORC score for each cell type was computed as the average

across all cells within that cell type.

2.5. Gene ontology (GO) analysis
GO analysis was conducted using enrichR%" (v3.2) R package with the GO Biological

Process 2023 dataset.

2.6. Super-enhancer calling

Super enhancer regions were identified using ROSE®#*°. Briefly, this algorithm links
adjacent enhancers if they are within 12,500 bp of each other and ranks them based on their
H3K27ac signal after subtracting the input signal. It then ranks enhancers in descending
order based on H3K27ac signal and identifies super-enhancers as those above the inflection
point of the signal. All enhancer regions that overlap with the promoter region

(transcription start site + 2,000 bp) were excluded before stitching.

2.7. Data visualization

Genome tracks were visualized using pyGenomeTracks®.

2.8. TF-DORC association inference

The inference of TF-DORC associations was performed using the runFigRGRN

function by FigR, leveraging the human motif database derived from cisBP. Briefly, this

11



process utilizes the frequency of matches between transcription factor (TF) motifs and
peaks to calculate the relative enrichment of TF motifs through the Z-tests. Based on this,
the regulation score is defined by combining the significance levels of correlation and peak
enrichment, where the correlation is calculated as the Spearman correlation between

smoothed DORC accessibility scores and smoothed RNA expression levels across all cells.

2.9. Motif enrichment analysis

Motif enrichment analysis was performed on peak regions associated with DORC
genes using findMotifsGenome.pl in HOMER*!, The known motif analysis was utilized for

data interpretation.
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3. Results

3.1. Validation of reproducibility in cross-modality integrated analysis
pipeline for single-cell transcriptomic and epigenomic data from human
kidney tissue

To evaluate the reproducibility and reliability of a bioinformatic pipeline designed for
the simultaneous integrated analysis of single-nucleus RNA sequencing (SnRNA-seq) and
ATAC sequencing (SnATAC-seq) from the same cells (Figure 1A), the SHARE-seq public
data from Li et al.!®, profiling transcriptomic and epigenomic landscapes at single-cell
resolution across diverse anatomical regions of human kidney tissue were employed. In the
upstream processing steps, barcode demultiplexing, alignment to the reference genome,
and the generation of a single-cell-level gene expression and fragment-per-cell count
matrices for downstream analysis were performed (Tables 1, 2). For the snRNA-seq data,
the count matrix was processed by filtering out cells with abnormal gene expression,
followed by log normalization and batch correction to minimize technical biases and
enhance the comparability of biologically derived expression differences (Figure 1B). To
ensure clear separation of cell type clusters and reduce noise, highly variable genes (n =
5,322) and principal components (PCs) that explained the major sources of variability were
selected (Figure 1C). Clustering was then applied to distinguish similar from dissimilar
ones, and cell type annotation was conducted using marker gene expression patterns. For
the snATAC-seq data, peaks were identified from the fragments-per-cell information as
regions with high chromatin accessibility and converted into a peak-by-cell count matrix.
Cells with abnormal accessibility patterns were filtered (Figure 1D), followed by TF-IDF

normalization, batch correction, selection of key latent semantic indexing (LSI)
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components, dimensionality reduction, and clustering (Figure 1B). Cell type annotation
was subsequently performed based on marker gene activity profiles of each cell type. The
integration of snRNA-seq and snATAC-seq across modalities was performed using the
intersected barcodes shared between the two modalities, incorporating both gene
expression and chromatin accessibility information (Figure 1B). The process included data
normalization, dimensional reduction, and batch correction, which were re-performed for
both modalities. Using the results of dimensionality reduction from each modality, a
weighted nearest neighbor method was applied (Figure 1B). The WNN graph was
constructed using the principal components (dimensions 1-30) from RNA and the latent
semantic indexing components (dimensions 2-30) from ATAC, which were considered to
explain the primary sources of variation.

Our analysis successfully reproduced the transcriptional and epigenetic UMAP
representations of human kidney tissue, identifying 29 distinct clusters for snRNA-seq and
21 for snATAC-seq (Figures 2A, 2C). These results revealed distinct clustering patterns
that closely matched those reported in the original study. Additionally, the gene expression
profiles were faithfully reproduced, with clear and distinct expression patterns observed for
marker genes representing each cell type (Figure 2B). Joint analysis of both modalities
using the WNN method on cells with shared barcodes (n = 324,701), as mentioned in the
original paper, defined precise cellular states based on multiple data types and revealed
similar patterns of cell-type-specific regulatory features and marker gene expression,
effectively reflecting the characteristics observed in the individual modality analyses

(Figure 2D).
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Figure 1. Overview of SHARE-seq data analysis from human kidney tissue. (A) The
structure of SnRNA-seq and snATAC-seq libraries of SHARE-seq. (B) The upstream and
downstream analysis processing workflow of SHARE-seq data. (C) The violin plot
illustrates the filtering results from downstream QC performed on snRNA-seq data from
human kidney tissue, alongside the results of highly variable gene selection. (D) The violin
plot illustrates the filtering results from downstream QC performed on snATAC-seq data

from human kidney tissue.
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Figure 2. Reproducing the cellular heterogeneity of the human kidney tissue was
achieved through SHARE-seq multiomics analysis. (A, C) The UMAP visualization
displays (A) 446,267 single-cell transcriptomes and (C) 401,875 single-cell chromatin
ccessibility profiles. (B) The dot plot highlights the marker gene expression specific to each
cluster. (D) An integrative analysis of both modalities was conducted using WNN on

324,701 intersected cells.
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Table 1. Upstream QC for snRNA-seq from human kidney tissue

i I Uniquely mapped mapped to Duplication Number of
owcells
reads (%) multiple loci (%) Rate (%) barcodes
S2 65.37% 32.42% 67.35%
S4-1 61.07% 36.15% 43.11% 582,354
S4-2 68.78% 28.65% 64.49%
Table 2. Upstream QC for snATAC-seq from human kidney tissue
Alignment Duplication MT TSS Number of
flowcells
Rate (%) Rate (%) Rate (%) Rate barcodes
S2 98.69% 40.37% 7.7% 11.79
S4-1 98.72% 40.68% 8.17% 12.08 970,490
S4-2 98.59% 51.05% 2.28% 7.68
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3.2. Distinct transcriptional and chromatin accessibility profiles of
each cell type revealed by single-cell analysis of in-house SHARE-seq

data from a mixed sample of HCT116 and NK92 cell lines

Building upon the successful reproduction of integrative analysis from the public
SHARE-seq data, we utilized the same pipeline on in-house SHARE-seq data from a mixed
sample of two distinct cell lines: HCT116 (human colorectal carcinoma) and NK92 (natural
killer cells). These cell lines exhibit markedly different transcriptional and chromatin
accessibility profiles, making it a biologically heterogeneous sample. First, to ensure the
reliability of the analysis results, we performed upstream QC using the same process as
mentioned above (Figures 3A, 3B; Tables 3, 4). The results showed that 75.45% of the
snRNA-seq library consisted of uniquely mapped reads, while 23.13% were multimapped
reads, indicating a high mapping rate to the human genome reference (hg38). The
duplication rate was approximately 46%, and a total of 736,448 barcodes were identified.
This number is much higher than the 20,000 cells used in library preparation, a
phenomenon observed similarly in the sSnATAC-seq data. This discrepancy is likely due to
the characteristics of SHARE-seq’s split-pool barcoding method, which uses around
1,000,000 barcodes (96*96*96), leading to barcode assignment to molecules not
originating from the nucleus, among other factors. In terms of functional distribution, the
majority of reads (~41%) mapped to intronic regions, reflecting the capture of nuclear RNA
such as pre-mRNA in the splicing intermediate state. Other reads mapped to intergenic
regions (~30%), protein coding sequences (CDS, ~20%), and untranslated regions (UTR,
~10%), and they show high signal in specific marker gene expression of each cell type

(Figure 3C). For the SnATAC-seq library, the alignment rate was 98.59%, with a relatively
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low duplication rate of 17.35%, indicating a satisfactory level of library complexity. The
mitochondrial read ratio was 4.96%, suggesting minimal contamination by
extrachromosomal DNA, and the TSS enrichment score was 21.76, indicating a strong
signal in active promoter regions. The insert size distribution, as expected in ATAC-seq,
showed the highest percentage of fragments corresponding to the nucleosome-free region
(NFR), with distinct regions in the areas between the NFR and 200 bp, 400 bp, and 600 bp,
corresponding to nucleosome-bound DNA fragments. The signal decreased progressively
in these regions, highlighting the strong chromatin accessibility at transcriptionally active

sites and a high signal-to-noise ratio (Figure 3C).

Table 3. Upstream QC for snRNA-seq from a mixed sample of HCT116 and NK92

Uniquely mapped mapped to Duplication Rate Number of
reads (%) multiple loci (%) (%) barcodes
75.45 % 23.13 % 46.14 % 736,448

Table 4. Upstream QC for snATAC-seq from a mixed sample of HCT116 and NK92

Alignment Duplication MT TSS Number of
Rate (%) Rate (%) Rate (%) Rate barcodes
98.59 % 17.35% 4.96 % 21.76 884,378
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In the downstream QC of the SnRNA-seq gene expression per cell count matrix,
excessive barcode detection resulted in notably low total counts and expressed gene
numbers in most cells. Furthermore, a distinct barcode distribution pattern was identified,
with cells showing very low counts clustered in one region and another group forming a
secondary cluster slightly above this region (Figure 4A). Cells with appropriate levels of
expression and read counts in this region were considered as derived from the 20,000 cells
initially used, and cells exhibiting abnormally low or high read counts or expressed gene
numbers were filtered out. The mitochondrial rate for each cell was calculated, and cells
with excessively high mitochondrial gene expression were removed. Potential doublets
were identified and removed by filtering out cells with high scores indicating the presence
of the same barcode in two cells, resulting in a final count of 14,610 cells (Figures 4B, 4C)
and 7,788 highly variable genes (Figure 4D). Following dimensionality reduction via PCA,
three main approaches were applied to identify the appropriate number of principal
components (PCs) for clustering. The first method involved selecting PCs based on
cumulative variance, considering the point where the cumulative variance exceeded 90%
and excluding PCs where the individual variance explained was less than 1%. The second
approach determined the number of PCs by identifying the point where the difference in
variance between consecutive PCs exceeded 0.1%. Finally, the third method utilized visual
assessment through a Scree plot, excluding PCs beyond the point where the variance
explained showed a sharp decline. As the number of selected PCs increases, more variance
can naturally be explained. However, beyond a certain point, overfitting may occur,
potentially introducing noise into the data. From this perspective, it was determined that
PCs selected solely through computational methods do not always yield optimal results in

reflecting the characteristics of the cell types on clustering. Specifically, PCs chosen based

23



on cumulative variance or variance differences between consecutive PCs were found to be
prone to overfitting or insufficient for clearly distinguishing subtle differences or biological
features between the two cell types. Taking all three approaches into account, the optimal
number of PCs was determined to be 5, as this corresponded to the elbow point in the Scree
plot, where the variance explained by additional PCs became negligible (Figure 4E).
Subsequently, UMAP dimensionality reduction was applied to evaluate the separation
between cell types. The number of neighbors in UMAP was tested across a range of values,
and the dimensionality reduction results were compared across different combinations of
PC numbers in the Scree plot above and neighbor sizes (Figure 5A). Based on the UMAP
results for various combinations of PCs and neighbor sizes, the combination of PC 5 and
neighbor 15 was most likely to effectively distinguish the two cell types and accurately
capture their characteristic features. This process enabled the identification of the optimal
combination of PC number and neighbor size, which resulted in the delineation of three
clusters, thereby optimizing cell type separation. Analysis of the differentially expressed
genes (DEGS) in each cluster revealed that Cluster O, in particular, contains a significant
number of genes regulating biological processes closely associated with cancer cell
characteristics (Figure 6A). Gene Ontology analysis showed that the DEGs in this cluster
are significantly enriched in processes such as regulation of epithelial cell proliferation,
regulation of epidermal growth factor receptor activity, regulation of cell migration,
angiogenesis, and the ERBB2-EGFR signaling pathway, all of which are hallmark features
of cancer. These findings suggest that this cluster exhibits properties resembling those of
cancer cells, including invasiveness, metastatic potential, enhanced proliferation, and
modulation of the tumor microenvironment, consistent with the characteristics of the

HCT116 cell line (Figure 5B). Cluster 1 contains a significant number of genes involved

24



in several key biological processes related to natural killer (NK) cells (Figure 6A). Gene
Ontology (GO) analysis revealed that the DEGs in this cluster are significantly associated
with immune processes, such as antigen receptor-mediated signaling pathway, positive
regulation of cytokine production, cellular defense response, regulation of interleukin-2
production. Notably, GO terms related to regulation of natural killer cell mediated
cytotoxicity and positive regulation of natural Killer cell mediated immunity were
prominently represented, suggesting that this cluster exhibits characteristics similar to those
of NK cell lines, reflecting immune cell-like properties. On the other hand, for Cluster 2,
no significant GO terms were identified among the DEGs. The DEGs of cluster 2 show a
pattern that is more similar to cluster 0, which is predicted to be the HCT116 cell line,
rather than cluster 1, which is predicted to be NK92 cells. However, the overall expression
profile of cluster 2 appears to be characterized by a high expression of ribosomal RNA
genes (Figure 6B). This suggests that the influx of rRNA into the HCT116 cell line during
the snRNA-seq experiment may have influenced the gene expression data of these cells.
The expression of well-known marker genes for both HCT116 and NK92 cells was found
to be divided into two distinct patterns across the clusters. Clusters 0 and 2 showed similar
marker gene expression patterns to the HCT116 cell line, while cluster 1 exhibited a clear

expression pattern characteristic of the NK92 cell line (Figures 6C—6E).
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Figure 4. Downstream processing results of in-house snRNA-seq data from a mixed
sample of HCT116 and NK92 cell lines. (A) The QC distribution patterns of SnRNA-seq
data from a mixed sample of HCT116 and NK92 cell lines. The overall trends are depicted
by the density plot. (B-C) The first QC results of sSnRNA-seq data from a mixed sample of
HCT116 and NK92 cell lines. (D) The distribution of dispersions for 7,788 highly variable
genes. Highly variable genes are represented as black dots. (E) A Scree plot presenting the
cumulative variance accounted for by each principal component. The number of principal
components that explain more than 90% of the variance is indicated by a gray dashed line,

while the point where the variance change becomes negligible is marked by a green line.
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Figure 5. Cell embedding results of in-house SHARE-seq data from a mixed sample
of HCT116 and NK92 cell lines reveal cell type characteristics in each cluster. (A) Cell
embedding of in-house SHARE-seq data from a mixed sample of HCT116 and NK92 cell
lines. The UMAPs, shown in order from the top left, use PC10, PC38, PC7, and PC5,
respectively, with a consistent neighbor parameter of 15 across all plots. (B) Identification
of GO terms from biological process associated with differentially expressed genes in

clusters 0 and 1.

29



A

2vs0

otgsn:

2 vsrest

454y
osa
vootsen
85YONN
£6PE6L0V
1N
1060100
2010
2w
vorBzeV
WSS
seacoczas
10600000¥
180EOWINY
304
£0zT1L988
vozTTL9ds
i
£CRT9E244
wn wn wn wn
8 8 8B R = M N
2l0ds
954)
SHIVLT
roLotsew
85PN
TN
wian
£ 6r66L0W
TOL60TON
9%
2
TovoazeT
S'€8£9E2ds
w5001
10600000V
OEQUINY
V304
02114943
B
T
£€8E9E2ad

R 8 8 B 88 & 8

1vsrest

0 vsrest

$1:
e
Tawn
Q40
434N
4000
16V
8EQ>
vasAIY
01%00
AN
19185
x01
VN
SONTN
510
VHZ9
9600
wza
dLd
w "3 w
® 8 ~ R ©
v
Vzdnveg
LHOM
UEE9BION
zansdl
150
TVXNY
HasY
ZveEds
o3
2yorH
SVdSH
1SV-ZHdIZ
TS
v
uz3
2w
[
OHIEHI
201830

15

10
ranking

10
ranking

10
ranking

15

10
ranking

64
62
60
58
56
54
52

;08
e
geo-g
feos
§ 2
is
H1 H
-
i Ug
~
(=]
-l

954y
savum
Torotee
aswown
1809
Wi
£6066000¥
Tousotow

TorezeTV
Seeroczas
tvsons
T0600000Y
woEquY
veaod

CESE9ELa
ANHY
Wanm

MO
eE9e900v
zamau

o343
ovom
v
tSvenasz

w3

P
0
s
N
1m0

ﬂoo 00000000000000000
2

GZMA

TOX

ERRFI1
ZFPM2-AS1
CD9%

NCAM1

MIR31HG
SYT.
B2M

KCNQS

DCBLD2
FAT1
PTPRC

30




Figure 6. Cluster-specific differential gene expression and UMAP visualization in
SHARE-seq data from a mixed sample of HCT116 and NK92 cell lines. (A, C)
Differentially expressed genes of each cluster and average expression values. (B) The
differentially expressed genes of cluster 2 compared to cluster 0, inferred to be associated
with HCT116. (D) The UMAP visualization of each DEG's expression patterns for cluster
0, which is inferred to be associated with HCT116. (E) The UMAP visualization of each

DEG's expression patterns for cluster 1, inferred to be associated with NK92.
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In the downstream QC of the snATAC-seq accessibility per cell count matrix, as
mentioned in the SNnRNA-seq analysis, an excessive number of barcodes were identified.
This led to a notable decrease in fragment counts within peaks from cells that were not
derived from normal cells across most barcodes. Cells with appropriate levels of fragment
counts within accessible regions were considered as originating from the 20,000 cells
initially used, and those with abnormally low or high counts were filtered out. Additionally,
cells with excessively low enrichment ratios of reads at TSS or low FRiP values (Figure
7A) were removed. Cells with high fractions of reads in blacklist regions or excessive
nucleosome signal, which resulted in a lack of enrichment in the NFR, were also excluded
from the analysis. After reducing the dimensionality of the data using latent semantic
indexing, an appropriate number of LSI components (LSI130) was selected to sufficiently
explain the variability in the data while avoiding overfitting. This selection was based on
the Scree plot and commonly used metrics. The correlation between sequencing depth and
each LSI component was also assessed. For LSI1, the correlation coefficient was nearly 1,
indicating that LSI1 primarily explained variability related to technical sequencing depth
rather than accessibility patterns (Figure 7B). As a result, LSI1 was excluded from further
analysis. UMAP dimensionality reduction was subsequently applied to evaluate the
separation between cell types. By comparing UMAP results across various combinations
of LSI numbers and neighbor sizes, the combination of LSI30 and neighbor 20 was
determined to most effectively distinguish between the two cell types and accurately
capture their characteristics (Figure 7C). Gene activity within accessible regions for each
cluster was assessed in the ATAC-seq data. In Cluster 0, gene activity of differentially
expressed genes in sSnRNA-seq associated with cancer cell characteristics were enriched.

This suggests that cells in Cluster 0 are accessible at genes that exhibit properties
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characteristic of cancer cells, being likely to correspond to the HCT116 cell line (Figure
8A). In Cluster 1, gene activity of DEGs in snRNA-seq associated with immune cell
characteristics was enriched. This suggests that cells in Cluster 1 are accessible at genes
that exhibit properties resembling those of natural Killer (NK) cells, reflecting key immune
functions (Figure 8B).

The analysis of the in-house SHARE-seq data from the mixed sample of HCT116 and
NK92 cell lines revealed distinct chromatin accessibility patterns and gene expression
profiles between the two cell types. Gene activity and expression patterns of each cell type
showed high similarity. These findings underscore the potential of the SHARE-seq method
in capturing the complexity of heterogeneous cell populations and demonstrate its utility in

studying the molecular signatures of distinct cell types.
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Figure 7. Downstream processing and cell embedding results of in-house SHARE-

ATAC data from a mixed sample of HCT116 and NK92 cell lines. (A) The distribution

patterns of QC features for snATAC-seq data from the mixed sample of HCT116 and NK92

cell lines, shown before (top) and after (bottom) filtering. The overall trends are depicted

by the density plot. (B) A correlation plot between sequencing depth and individual LSI

components. (C) The UMAP-based cell embedding results of snATAC-seq data.
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Figure 8. Gene activity of cell type-specific DEGs in in-house sSnATAC-seq data. (A)
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3.3. Integration of sSnRNA-seq and snATAC-seq for enhanced cell-type

annotation and characterization of cellular heterogeneity

Cells that passed the quality control criteria for both snRNA-seq and snATAC-seq
were subsequently analyzed. A total of 14,007 barcodes were matched, corresponding to
approximately 95% of the snRNA-seq cells and 80% of the sSnATAC-seq cells. Integrative
analysis of both modalities (ShnRNA-seq and snATAC-seq) by WNN on the 14,007 cells
revealed that cell clustering based on both snRNA-seq and snATAC-seq data largely
reflected similar patterns in the cell embeddings (Figures 9A, 9B). However, some cells,
which were grouped into the same cluster in the ShRNA-seq analysis, were separated into
distinct clusters upon integration, highlighting differences in cell embedding based on both
modalities. For instance, in the SnRNA-seq clustering results, among the cells in cluster 0,
which was identified as HCT116, the cells that showed differences in marker gene
expression patterns within cluster 0 (Figure 6D) exhibited a shift in embedding towards a
cluster displaying the marker gene expression patterns of NK92 in the WNN clustering
(Figure 9A). This observation suggests that integrating multimodal data enhances the
accuracy of identifying complex differences between cell clusters and improves cell type
annotation. To further refine cell typing, clustering was performed based on the WNN
embedding results (Figure 9C), and these results were compared with the shnRNA-seq and
SnATAC-seq cluster annotations. Cells showing consistent characteristics across cluster
annotations from both modalities were classified as HCT116 and NK92 cells, comprising
3,937 cells and 6,036 cells, respectively (Figure 9D). The remaining cells were classified
as Unknownl or Unknown2, representing states that were somewhat different from the

typical characteristics of the two cell types. These results demonstrate the effectiveness of
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integrating data from both modalities in improving cell-type annotation accuracy and
uncovering subtle cellular heterogeneity. The enhanced resolution of gene expression and
chromatin accessibility patterns could be valuable for exploring complex regulatory

landscapes and understanding cell-specific functions in various biological contexts.
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Figure 9. Cross-modality integration of snRNA-seq and snATAC-seq. Integrated cell
embedding results of sSnRNA-seq and SnATAC-seq data from a mixed sample of HCT116
and NK92 cell lines using WNN analysis. (A) Cell type annotation was performed based
on snRNA-seq clusters. (B) Cell type annotation was performed based on snATAC-seq
clusters. (C) Cell type annotation was performed based on clusters defined by the WNN
graph. (D) Final cell type annotation from the integrated analysis of snRNA-seq and

SnATAC-seq data from SHARE-seq of mixed sample (HCT116 & NK92).
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3.4. Linking gene expression and chromatin accessibility through
SHARE-seq data in cell-type specific domains of regulatory chromatin
(DORCs) region

Based on the correlation between peak accessibility near genes in sSnATAC-seq, which
is considered to have a high potential for physical accessibility and therefore the ability to
regulate gene expression, and gene expression in SnRNA-seq, the cell type-specific cis-
regulatory landscape was examined in the two cell types. From the 14,007 cells commonly
derived from snRNA-seq and snATAC-seq data, selected HCT116 cells (n = 3,937) and
NK92 cells (n = 6,036), which clearly exhibited the characteristics of each cell line (Figure
9D), were used to define domains of regulatory chromatin (DORCs) that would highlight
the distinct identities of these two cell types. As a result, 76 DORC genes in the HCT116
cell line and 133 DORC genes in the NK92 cell line were identified (Figures 10A, 10B).
GO analysis revealed that DORC genes identified in HCT116 were associated with cancer
cell and epithelial cell-specific processes such as regulation of epidermal growth factor-
activated receptor activity, positive regulation of angiogenesis, and ERBB2-EGFR
signaling pathway (Figure 10C). These results suggest that the DORC genes in HCT116
are closely linked to the epithelial cancer cell-specific identity of the cell line. In contrast,
DORC genes identified in NK92 were enriched in immune-related processes, including
regulation of lymphocyte differentiation and activation, positive regulation of natural killer
cell-mediated immunity, and inflammatory response, highlighting the immune cell-specific
identity of NK92 cells (Figure 10D). To determine whether the peak regions with high
gene-peak associations could act as enhancers regulating the expression of DORC genes,

we investigated whether these peaks, particularly those linked to cell type-specific gene
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expression, correspond to super-enhancer regions which are known as the regulatory
elements that potentially influence the expression of genes crucial for cell type
specification®?. To compare these DORC regions with the super-enhancer regions of the
two cell types, bulk H3K27ac CUT&Tag data for HCT116 and H3K27ac ChlP-seq data
for NK92 were used to identify super-enhancers, providing information on chromatin
regions activated by the enrichment of active histone markers (Figures 10E, 10F). 618
peak regions associated with DORC gene promoters in both cell types overlapped with cell
type-specific super-enhancer regions, accounting for approximately 40% of the total peaks
(n =1,505) linked to DORC gene promoters. Notably, when examining the PLEC gene of
HCT116 DORC and CCL4 gene of NK92 DORC, it can be observed that SnATAC-seq
peaks with high associations with DORC gene expression are located near super-enhancer
regions (Figures 11A, 11B). This suggests that DORC genes are likely critical in defining
cell type-specific identity. Furthermore, it indicates that the correlation between cell-type-
specific gene expression and chromatin accessibility can be confirmed using SHARE-seq
data derived from the same cells.

In addition, it was assessed whether DORC genes linked to a larger number of
SnATAC-seq peaks have a greater impact on elucidating the identity of the respective cell
line and whether they exhibit higher chromatin accessibility compared to other genes. The
SnATAC-seq peak regions assigned to the previously identified super-enhancer regions
were regarded as potential enhancer regions highly correlated with gene expression,
suggesting that they may potentially influence gene expression. For the putative enhancer
regions, the snATAC-seq signal occupancy of snATAC-seq peak regions assigned to the
super-enhancer regions was visualized using the same approach employed to identify the

super-enhancer regions. The point where the slope of the signal curve decreased to 1 or
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below was identified, and putative enhancers located above this cutoff were defined as
enhancers with relatively higher accessibility among the putative enhancers. As a result,
among the putative enhancer regions containing 56 peak regions in HCT116 and 562 peak
regions in NK92, 5 DORC genes in HCT116 and 14 DORC genes in NK92 were associated
with regions exhibiting accessibility above the cutoff (Figures 11C, 11D). Further
investigation of genes linked to enhancers with relatively higher accessibility revealed that
DORC genes with a larger number of associated peaks were not necessarily connected to
putative enhancers located within the super-enhancer regions. Consequently, it was
confirmed that DORC genes with more associated peaks were not always linked to putative
enhancers with higher accessibility. Based on the mean DORC scores for each DORC gene
across all cells calculated as the sum of normalized scATAC-seq reads aligned at
significantly associated DORC peaks, as previously noted, genes associated with peaks of
higher accessibility tended to have higher DORC scores compared to genes with a greater
number of associated peaks. However, the ranking of genes associated with the most
accessible peaks and genes with higher DORC scores (Figures 12A, 12B) differed,
suggesting that both the number of gene-peak associations and the accessibility of the
regions collectively contribute to defining key genes that determine cell identity.

To identify transcription factors (TFs) that could act as putative regulators driving or
suppressing the expression of cell type-specific genes as key markers of cell identity, we
examined the TF-DORC association based on the enrichment of TF binding motifs in
regions associated with each DORC gene and the correlation between the expression of
these TFs and their corresponding DORC genes. Ranking TFs based on their mean
regulatory scores for all DORC genes revealed that BACH1 and STAT3 emerged as the

top activator TFs in HCT116, while OVOL2, ZNF302 and RUNX2 were identified as key
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TFs in NK92 cells (Figures 12C, 12D). Specifically in NK92 cells, motif searches
conducted on the promoter regions of all DORC genes and their associated regulatory
regions confirmed that RUNX family TFs were consistently enriched, aligning with the
results shown in Figure 12D (Figure 12E). RUNX2, in particular, is a known
transcriptional regulator essential for NK cell development and maturation®’. The list of 12
DORC genes (NEAT1, RRM2, PIK3AP1, GLRX, MARS, CEACAM21, RGS1, BMI1,
KRT80, ZNF683, GEM, LINC00642) identified as potentially regulated by RUNX2 in
NK92 and bulk RNA-seq and RUNX2 ChIP-seq data in NK cells'” were intersected and
found that PIK3AP1 and ZNF683 both showed RUNX2 ChiIP-seq signals near their
genomic loci and were downregulated in RUNX2 knockout NK cells, additionally
PIK3AP1 was upregulated in RUNX2 overexpressing NK cells. These findings suggest
that RUNX2 may act as an activator of these genes (Figures 12F-12H) in NK cells. The
PIK3AP1 gene is known to activate phosphoinositide 3-kinase (PI3K) in B cells and NK
cells, with its role more thoroughly studied in B cells and its potential relevance to NK cell
functions, such as target cell recognition and lysis, has been suggested*®. Meanwhile,
ZNF683 gene plays a critical role in regulating NK cell differentiation, as it is highly
upregulated during the differentiation of umbilical cord progenitor cells into NK cells and
functions as a transcriptional repressor of interferon-gamma (IFN-y) production during
terminal NK cell differentiation*4. These findings highlight the possibility that the functions
of these two genes, potentially regulated by RUNX2, may play critical roles in defining
NK cell identity. In conclusion, this study demonstrates the intricate interplay between
chromatin accessibility, gene regulation, and transcription factor activity in defining cell
type-specific identities through single-cell multimodal analysis, offering valuable insights

into the regulatory mechanisms that underpin cellular identity and function.
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Figure 10. The DORC genes identified from SHARE-seq data are associated with cell
identity determination, exhibiting cell type-specific characteristics through their
interactions with regulatory elements. (A) Cell type-specific DORC genes for HCT116
cells (n = 3,937) and the number of snATAC-seq peaks associated with each gene. (B) Cell
type-specific DORC genes for NK92 cells (n = 6,036) and the number of snATAC-seq
peaks associated with each gene. (C, D) Gene ontology of each cell type-specific DORC
gene (E) Strength of H3K27ac CUT&Tag peak signals in HCT116 cells. Super enhancer
peaks are colored in red. (F) Strength of H3K27ac ChIP-seq peak signals in NK92 cells.

Super enhancer peaks are colored in red.
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Figure 11. The number of gene-peak associations and the accessibility of the regions
collectively contribute to defining key genes that determine cell identity. (A) The
interaction between the HCT116 DORC gene PLEC and the snATAC-seq peak regions
connected to its promoter. (B) The interaction between the NK92 DORC gene CCL4 and
the snATAC-seq peak regions connected to its promoter (C) Strength of putative enhancers
of HCT116 DORC genes. Super enhancer-like snATAC-seq peaks (n=5) are colored in red.
The DORC genes associated with the top 5 accessible regions are indicated at each point.
(D) Strength of putative enhancers of NK92 DORC genes. Super enhancer-like SnATAC-
seq peaks (n=14) are colored in red. The DORC genes associated with the top 5 accessible

regions are indicated at each point.
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Figure 12. TF-DORC association based on single cell multimodal data infers putative
regulators of cell type-specific gene expression. (A) HCT116 DORC genes that account
for the top 20 mean DORC scores across all cells. (B) NK92 DORC genes that account for
the top 20 mean DORC scores across all cells. (C) Putative transcription factor drivers of
HCT116 are ranked by the overall mean regulation score across all HCT116 DORCs. (D)
Putative transcription factor drivers of NK92 are ranked by the overall mean regulation
score across all NK92 DORCs. (E) RUNX family motif is enriched in all NK92 DORC
gene-associated regions. (F) Genes which can be regulated by RUNX2 are intersected with
public RNA-seq and ChlP-seq data from human NK cells in conditions of RUNX2
knockdown and RUNX2 overexpression each. (G, H) The analysis of potential regulatory
factors for the PIK3AP1 gene (G) and ZNF683 gene (H) suggests that RUNX2 may act as
an activator for both genes. The x-axis represents the correlation between the TF and the
DORC gene, while the y-axis indicates the degree of enrichment of the corresponding TF

motif.
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4. Discussion

This study reaffirmed a comprehensive bioinformatics pipeline for analyzing single-
cell multiomics data, focusing on the SHARE-seq technique. By applying this pipeline to
both public datasets and a mixture of two cell lines datasets (HCT116 and NK92), its
robustness and reproducibility were demonstrated. Through the integrative analysis of
snRNA-seq and snATAC-seq data obtained from the same cells, we confirmed precise
interactions between gene expression and chromatin accessibility, revealing distinct
characteristics and regulatory mechanisms between cell types. The analysis of public
datasets (human kidney tissue) successfully reproduced transcriptional and epigenomic
profiles, confirming the reliability of the pipeline. The clear clustering patterns observed
across both snRNA-seq and snATAC-seq modalities closely matched existing study results,
showcasing the pipeline's ability to accurately reflect cell-type-specific characteristics.
Particularly, the Weighted Nearest Neighbor (WNN) integration approach proved highly
effective for enhancing cell-type annotation using multiomics data. In the in-house mixed
cell line dataset, distinct transcriptional and chromatin accessibility profiles of HCT116
and NK92 were used to distinguish features between cell states that could not be accurately
identified in unimodal analyses. The identification of domains of regulatory chromatin in
both HCT116 and NK92 provided key insights into the regulatory mechanisms
underpinning cell identity. DORCs discovered in HCT116 were strongly associated with
epithelial cancer cell-specific processes, while those identified in NK92 were linked to
immune-related functions. These findings demonstrate that SHARE-seq data can elucidate
the relationship between regulatory elements and gene expression at a single-cell level.

Interestingly, while DORC genes with numerous gene-peak associations were strongly
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linked to certain super-enhancer regions, indicating that DORCs play a significant role in
defining cell identity due to the complex regulatory functions of epigenetic elements. The
identification of transcription factors capable of regulating the expression of cell type-
specific genes revealed that distinct transcription factors act as key regulators depending
on the cell type. This finding reaffirms that the complex interplay between chromatin
accessibility, gene regulation, and transcription factor activity collectively contributes to
defining cell type-specific identities. However, several challenges remain in single cell
multimodal data analysis. First, cells displaying mixed characteristics between cell types
were observed during analysis, which could indicate biological intermediate states,
necessitating careful consideration during cell type annotation. Particularly, cell embedding
based on dimensionality reduction methods can produce highly variable clustering results
depending on the number of principal components used. Moreover, marker gene expression
analyses relying solely on differentially expressed genes are often heavily influenced by
findings from bulk studies, which may hinder precise annotations. Since the choice of
marker genes can lead to subjective annotations, it is critical to establish rigorous statistical
and biological standards to ensure objective and consistent analyses. Balancing automated
annotation methods with manual review will be essential to achieving this goal. Finally,
SnATAC-seq data alone is insufficient for pinpointing exact enhancer locations. Beyond
correlation-based linkage analyses, the incorporation of epigenetic histone modification
data, such as H3K27ac and H3K4mel, at a single-cell level is crucial. Integrating such
additional data would not only enhance the accuracy of cell type and state definitions but

also provide a deeper understanding of the functional roles of regulatory elements.
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5. Conclusion

This study validated the bioinformatics pipeline for analyzing single-cell multiomics
data and demonstrated its capability to effectively characterize transcriptional and
epigenetic features across various cell types and conditions using both public and in-house
SHARE-seq datasets. By integrating sSnRNA-seq and snATAC-seq data from the same cells,
the study elucidated interactions between gene expression and chromatin accessibility. The
analysis of human kidney tissue data confirmed the high reliability of the pipeline in
reproducing transcriptional and epigenomic profiles. Furthermore, the analysis of mixed
samples of HCT116 and NK92 cell lines effectively resolved cellular heterogeneity and
identified distinct biological characteristics of each cell type. In particular, the
identification of domains of regulatory chromatin and their association with super-enhancer
regions revealed that chromatin accessibility and gene expression are differentially
regulated depending on cell type and play a critical role in determining cellular identity.
Furthermore, it was observed that putative enhancers associated with DORC genes
containing a large number of connected peaks did not always exhibit the highest
accessibility. Instead, the number of gene-peak associations and accessibility collectively
influenced the identification of key genes that determine cellular identity. Analysis of TF-
DORC associations revealed that distinct transcription factors regulate the expression of
cell type-specific genes depending on the cell type. In particular, RUNX2 was suggested
to act as an activator TF for two DORC genes associated with NK cell function and
differentiation in NK92 cells, reaffirming previously known characteristics of RUNX2.
Additionally, the study addressed challenges such as potential subjective bias in cell type

annotation and the necessity of incorporating additional data, such as histone modification
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profiles, to accurately identify enhancer regions. These findings underscore the importance
of establishing objective standards for cell annotation and integrating complementary
multiomics data to clarify interactions between cis-regulatory elements. In conclusion, this
study demonstrates that single-cell multimodal analysis using snRNA-seq and snATAC-
seq data can effectively explore cellular heterogeneity and identify key regulatory elements
that define cellular identity and function. In particular, the ability of SHARE-seq to
integratively analyze transcriptomic and chromatin accessibility features provides valuable
insights into the dynamic characteristics and interactions of gene regulation at the single-

cell level.
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