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ABSTRACT

Evaluation and prediction of the efficiency of prime editor

The prime editor is a highly promising technology capable of inducing all forms of
genomic corrections at desired locations, with vast potential for future applications.
However, the complexity of designing prime editing guide RNAs (pegRNAs) and the
sheer number of possible designs have posed challenges in selecting high-efficiency
prime editors. In this study, we measured the efficiency of a large number of pegRNAs
using high-throughput screening techniques and identified factors that influence prime
editing efficiency. We compared not only the basic PE2 form but also various advanced
prime editing systems, including PEmax, PE4, and epegRNA. Additionally, we
developed a deep learning model to predict prime editing efficiency based on the data
obtained from these experiments. The predictive model we developed demonstrated high
correlation in predicting the efficiency of pegRNAs for inducing prime editing in cellular
genomes, showing its potential utility in developing gene correction therapies for
mutations that cause genetic diseases. This study is expected to play a crucial role in the
selection of optimal prime editors for various applications and in advancing research and

therapeutic development through gene editing.

Key words : prime editor, high-throughput screening, deep learning, genetic disease



1. Introduction

1.1. The Genetic Blueprint of Life

The information required for various functions essential to the survival of living organisms is
encoded within their genomes as DNA sequences. DNA, composed of four types of nucleotides
bases (A, T, G, C), carries the instructions for expressing a wide array of proteins through its specific
sequences. Organisms rely on these proteins to perform vital functions that enable them to thrive in
their respective environments. The genetic code is organized into codons, each consisting of three
nucleotide bases, which are translated into amino acids. Humans, too, have a multitude of DNA
sequences within the nucleus of each cell, forming a genome that encodes for approximately 20,000
proteins. Each protein plays a specific role, such as acting as an enzyme for phosphorylation,
transporting ions across cell membranes, or ensuring proper muscle function. These functions are
all dependent on the precise formation of amino acids according to the encoded genetic sequences,
leading to proteins with specific molecular structures and functions. However, if a mutation occurs
in the genetic sequence, it can alter the amino acids that are translated, affecting the protein’s
physical and chemical interactions, structure, and function. Certain mutations can have significant
impacts on a protein's structure or function. Such mutations can manifest as genetic disorders in
living organisms, which, in severe cases, can disrupt vital functions or lead to death.

Just a decade ago, mutations in the human genome were considered irreversible, and we had to
accept the resulting diseases. If we were fortunate, we could find drugs that could replace the
function of the damaged gene, but more often, that was not the case. It was believed that once a
mutation occurred, it couldn't be changed. However, we now live in an era where we can correct the
genes of living organisms into desired forms.

1.2. Technology for editing genomic information

To study and treat genetic disorders like those mentioned above, we need technology that
allows for precise gene editing at specific genomic sites. Early gene editing techniques relied on
DNA-binding proteins that could specifically attach to the target genomic site. For instance, the Zinc
Finger (ZF) domain, found in transcription factors, can specifically recognize and bind to 3-
nucleotide sequences of DNA. By combining multiple ZF modules, researchers could design
systems to target specific DNA sequences that were 15-20 nucleotides long. Similarly, the later-
discovered Transcription Activator-Like Effector (TALE) modules can specifically recognize 1-
nucleotide sequences of DNA, allowing the creation of systems that target particular DNA sequences.
Researchers connected these site-specific DNA binding modules to FoklI, developing programmable
nucleases known as ZFNs (Zinc Finger Nucleases) or TALENs (TALE Nucleases). These tools were
utilized in many studies to elucidate gene functions. However, genome editing techniques using ZF
and TALE had significant limitations: designing modules that worked well for each target site was
extremely challenging. High-performance gene editing tools require validation under various
experimental conditions, but creating precise protein combinations for each condition using ZF or
TALE was a complex, time-consuming, and costly process. With the advent of the CRISPR



(clustered regularly interspaced short palindromic repeats) system, nearly all genome editing
research shifted to using this technology. Unlike complex proteins, the CRISPR gene-editing system
uses a simple molecule called RNA. Since RNA is much easier to design and produce compared to
proteins, the pace of research in gene correction significantly accelerated.

1.3. Prime editing for precise genome editing

Prime editing enables the introduction of all 12 possible substitutions, small insertions and
deletions, as well as combinations of these changes into genomic DNA!. The prime editor system
consists of a fusion protein made up of Cas9 nickase and reverse transcriptase, along with a prime
editing guide RNA (pegRNA). A pegRNA contains a spacer sequence, the tracrRNA scaffold, a
reverse transcription template (RTT), and a primer binding site (PBS). This prime editor-pegRNA
complex identifies the target genomic site within cells, binds accurately to it, and synthesizes the
new genetic information directly at that location. Unlike previous technologies, prime editing’s
ability to create new genetic information at the precise site of action makes it an exceptionally
versatile and powerful genome editing tool.

To date, several prime editors have been developed from PE1 to PE5"2. PE2, an improved
version of PE1, is widely used due to its higher efficiency. PE3 combines PE2 with an additional
nicking guide RNA (ngRNA) and generally achieves higher editing efficiency, though it also tends
to cause more unintended indels compared to PE2. The PE4 and PES systems enhance the efficiency
of prime editing by inhibiting the mismatch repair (MMR) system in host cells. When prime editing
induces a new cDNA to replace the existing DNA and cause a mutation, the cell recognizes this as
a type of DNA damage and initiates a repair mechanism. If this repair process is too efficient, the
area targeted by prime editing may revert to its original state, preventing the intended prime editing
from taking place. To inhibit this, genes such as MLHI, MSH2, and MSH6 are knocked out or
knocked down. A representative method is to deliver a dominant-negative form of MLH1 (MLH1dn)
along with the prime editor. The PEmax is further enhancements of their respective predecessors?.

Prime editing offers two major advantages over other existing CRISPR systems. The first
advantage is its safety. If a genome editing tool malfunctions and damages healthy genes in our
bodies, it could lead to unexpected side effects. Therefore, the safety of genome editing tools is of
paramount importance. Early CRISPR genome editing tools completely cut the gene, which raised
safety concerns among researchers. However, prime editing is a technology that can correct genes
without fully cutting them. Due to its enhanced safety, it is anticipated that prime editing could be
used in future gene therapies. The second advantage is its significantly higher versatility compared
to existing genome editing tools. Until now, all genome editing tools had limitations on the types of
changes they could make to genes. Some tools could only cut DNA, while others could only
recognize a single type of nucleotide. In contrast, prime editing has no such limitations. It allows for
virtually any type of gene correction using a single genome editing tool.

One of the primary challenges in prime editing is designing effective pegRNAs. The vast
number of possible pegRNA designs makes it difficult to identify the most efficient one. For a single
target edit, there could be hundreds or even thousands of potential pegRNA designs, necessitating
extensive experimentation to determine the best option"**. Moreover, there is a shortage of
comprehensive data on prime editing efficiency across different cell lines, and there has been limited
reporting on the effectiveness of newer prime editing systems like PEmax, PE4, and epegRNA.



1.4. Content and Significance of This Study

This study utilized high-throughput screening techniques to measure the efficiency of prime
editing on a large scale. Through this approach, we were able to generate a dataset of prime editing
efficiency for hundreds of thousands of pegRNAs. Through this approach, we were able to
understand the factors that determine prime editing efficiency based on the characteristics of
pegRNAs. This knowledge has revealed that the mechanism operates differently from the
conventional CRISPR system using sgRNAs and has laid the foundation for effectively utilizing
prime editing in the future. Using this dataset, we developed a deep learning model that can predict
prime editing efficiency. This model accurately predicts the efficiency of a given pegRNA, allowing
researchers to select the optimal pegRNA without manually experimenting with numerous options.
Notably, the model provides various specialized versions tailored to different PE systems and cell
lines, enabling researchers to use it according to their specific needs. This model, offering a range
of options, is expected to become an essential tool for future applications of prime editing.



2. Materials and Methods

2.1. Construction of vectors

2.1.1. General molecular techniques
For obtaining plasmid vectors or PCR products cut by restriction enzymes at precise sizes,
electrophoresis was performed on a 1-2% agarose gel, followed by purification using the
MEGAquick-spin™ Plus Total Fragment DNA Purification Kit (iNtRON Biotechnology). In
molecular cloning, the DNA fragments used as backbone vectors were treated with Quick CIP (NEB)
at 37°C for 10 minutes after digestion with restriction enzymes.

2.1.2. Construction of prime editor 2 expressing vector
To create a lentiviral vector expressing PE2, LentiCas9-Blast (Addgene #52962) was
digested with Agel and BamHI and used as the backbone vector. The resulting linearized plasmid
was then gel purified. The coding sequence of Prime Editor 2 (PE2) was amplified by PCR from
pCMV-PE2 (Addgene #132775) and gel purified. The PCR products were then assembled with the
linearized LentiCas9-Blast using the NEBuilder HiFi DNA assembly kit (NEB), resulting in
pLenti-PE2-BSD (Addgene #161514).

2.1.3. Preparation of PE variant expressing vector
We constructed lentiviral plasmid vectors expressing PE variants using SpCas9, SpCas9-
NG-PE2, and NRCH-Cas9. The cloning process was conducted similarly to the procedure used for
creating pLenti-PE2-BSD. The primers used for cloning are described in Table 3.

2.1.4. Preparation of MLH1dn-GFP expressing vector
The pEGIP® was digested with EcoRV and used as the backbone vector. The coding
sequences of MLH1dn and eGFP were amplified by PCR from pEFla-hMLH1dn and pEGIP,
respectively, and gel purified. The backbone vector and PCR products were assembled using Gibson
assembly, resulting in the construction of the pLenti-EF1a-hMLH1dn-eGFP plasmid (Addgene
#191104).

2.1.5. Preparation of MLH1dn expressing empty vector for library cloning
The pLenti-gRNA_Puro plasmid was linearized with the BsiWI restriction enzyme and
subsequently assembled with the MLH1dn coding sequence, which was PCR-amplified from the
pEFla-hMLH1dn plasmid, using Gibson assembly. To prevent early transcription termination, a
mutation was introduced at position 134 of hMLH1dn, disrupting an AATAAA signal sequence®.

2.2. Library design

2.2.1. Design of Library-1 and Library-2
Library-1 was designed to examine the effect of PBS and RTT lengths on prime editing
efficiency. It consists of pegRNAs with 24 PBS-RTT combinations for a single guide-target
sequence. The 24 PBS-RTT combinations were made up of six PBS lengths (7, 9, 11, 13, 15, and



17nt) and four RTT lengths (10, 12, 15, and 20nt). The intended prime editing in the RTT was
fixed as a +5 G to C substitution. To measure prime editing efficiency across various target
sequences, we selected 2,000 guide-target sequences from a previous study where Cas9 efficiency
had been measured’, and for each target, we designed 24 pegRNA combinations, resulting in a
total of 48,000 pegRNA-target pairs.

Additionally, we created a second library (Library-2) to evaluate how editing position,
type, and length affect PE2 efficiencies. From the 2,000 sequences in Library-1, we randomly
chose 200 target sequences and designed 34 distinct templates for each. The templates were
structured as follows:

1) The effect of editing position (11 RTTs): RTTs were designed to introduce transversion
mutations at positions +1, +2, ..., +8, 49, +11, and +14 from the nicking site, with PBS
and RTT lengths fixed at 13 and 20 nucleotides, respectively.

ii) The effect of editing type and length (14 RTTs): RTTs were designed for insertions
(sequences A, G, C, T, AG, AGGAA, and AGGAATCATG), deletions (1, 2, 5, and 10
nucleotides), and single nucleotide substitutions (all possible 1-nucleotide substitutions) at
the +1 position from the nicking site. The PBS and right homology arm of the RTT were
set at 13 and 14 nucleotides, respectively.

iii) The effect of PAM editing (9 RTTs): RTTs were designed to introduce 2-bp transversion
mutations at various positions (e.g., +1 & +2, +1 & +5, +1 & +10, etc.), with PBS and
RTT lengths fixed at 13 and 16 nucleotides, respectively.

Moreover, we included 36 pairs of pegRNAs and target sequences from the initial prime
editing study', each tagged with five unique barcodes. This set was used to compare the prime
editing efficiencies between integrated sequences and endogenous sites. In total, Libraries 1 and 2
encompassed 54,836 pegRNA-target pairs: 48,000 pairs from Library-1, 6,800 pairs from Library-
2, and 36 pairs from the original prime editing study.

2.2.2. Design of Library-3
To assess the factors influencing prime editing efficiency, we created a library called
Library-3, comprising 47,839 pegRNA and target sequence pairs. We selected 40 seed target
sequences (20-nucleotide regions near the PAM) from Library-1 that showed high SpCas9-induced
indel frequencies: 20 sequences where paired sgRNAs resulted in 70% - 75% indel frequencies,
and another 20 sequences with 50% - 55% indel frequencies.

For each seed target sequence, we designed 74-nt target sequences (Figure 2) and
pegRNAs with varying PBS and RTT lengths, as well as different editing positions, lengths, and
types. We excluded 81 oligonucleotides containing the BsmBI cut site. The pegRNA-target pairs
were categorized into seven groups as detailed below. Some pairs were assessed but omitted from
the final analysis, with all details provided in Table S1.

2.2.3. Design of Library-4
To measure a wide range of prime editing efficiencies and obtain comprehensive data,
we created a library containing 600,000 pegRNA-target pairs. We identified variants with 1-3 bp
mutations from ClinVar and collected all possible spacers surrounding these mutations.
Subsequently, we generated all possible pegRNAs for each mutation with RTT lengths up to 40



nucleotides. From these, we randomly selected eight pegRNAs per target. Detailed information
can be found in Figure 23.

2.2.4. Design of Library-5

To test the editing efficiencies of PE variants and pegRNAs with standard or optimized’
scaffolds across different cell lines, we created Library-5, comprising 6,000 pegRNA and target
sequence pairs. First, we selected 2,990 pairs (1,495 for disease modeling and 1,495 for
therapeutic purposes) from the CV-train dataset. Half were randomly chosen, while the other half
were proportionally selected from editing efficiency ranges of 0%, 0 to 1%, 1 to 5%, and over 5%.
Additionally, we generated 2,990 more pairs by randomly altering the NGG PAM sequence to
NNN to assess the PAM compatibility of PE variants. Lastly, 20 pegRNAs with the highest editing
efficiencies from our previous study were included at 5-fold redundancy (5 x 4 pegRNAs) as
positive controls.

2.2.5. Design of Library-6
To evaluate the editing efficiencies of engineered pegRNAs (epegRNAs), we designed
Library-6, consisting of 6,000 epegRNA sequences paired with their corresponding target
sequences. Each epegRNA included an 8-nt linker and a tevopreQ1 structural motif at the 3’ end.
Aside from the added linkers, the 6,000 epegRNAs were identical to the pegRNAs in Library-5.
The 8-nt linker sequences were specifically designed using the pegRNA Linker Identification Tool
(pegLIT)'°.

2.3. Plasmid library construction

We constructed a plasmid library from an oligonucleotide pool containing pegRNA and target
sequences, which was synthesized by Twist Bioscience (San Francisco, CA). Each oligonucleotide
was designed with the following elements: a 19-nt guide sequence, a BsmBI restriction site #1, a
10-15 nt spacer sequence (barcode stuffer), a second BsmBI restriction site, the RTT sequence, the
PBS sequence, a poly-T sequence, a 14-18 nt identification barcode, and a corresponding target
sequence including a PAM and an RTT binding region. The spacer sequence was included to
minimize the risk of template switching during PCR amplification, but was later removed by BsmBI
digestion, while the identification barcode enabled precise identification of pegRNAs after deep
sequencing’!!. Oligonucleotides containing unintended BsmBI restriction sites were excluded. The
construction of the plasmid libraries, which contained paired pegRNA-encoding and corresponding
target sequences, was performed using a two-step cloning process. This involved cutting with
restriction enzymes followed by ligation and Gibson assembly. The method was adapted and
modified from a previously published approach'? to ensure the integrity of paired guide and target
sequences during PCR amplification of oligonucleotides'>.

2.3.1. Creation of initial plasmid libraries containing pegRNA-target pairs
The oligonucleotide pool was first amplified by PCR for 15 cycles, followed by gel
purification. Next, the Lenti gRNA-Puro (Addgene #84752) and Lenti gRNA-Puro-hMLHdn
plasmids were digested with BsmBI at 55°C, and the resulting linearized vectors were treated with
Quick CIP, then gel-purified. The amplified oligonucleotide pool was then inserted into the
linearized vectors using Gibson assembly. The assembled plasmids were concentrated through
isopropanol precipitation and transformed into electrocompetent cells (Lucigen) via a MicroPulser



(Bio-Rad). The transformation mixture was incubated with SOC medium at 37°C for an hour,
followed by spreading onto LB agar plates with 50 pg/ml carbenicillin. The library coverage was
assessed by plating small portions of the culture (0.1, 0.01, and 0.001 pl) separately. Colonies were
harvested, and plasmids were extracted using a QIAGEN Plasmid Maxi kit (QIAGEN). The
calculated coverages of these initial plasmid libraries were 113X, 986X, 2,210X, and 500X the
number of oligonucleotides in each library for Library1/2, Library-3/4, Library-5-PE2, and
Library-5-PE4, respectively.

2.3.2. Insertion of sgRNA scaffold

The plasmid libraries produced in Step I were digested with BsmBI for at least 6 hours,
treated with Quick CIP at 37°C for 10 minutes, and then underwent size-selection on a 0.6%
agarose gel followed by gel purification. Insert DNA fragments containing either a conventional or
optimized scaffold sequence were PCR-amplified from the lentiGuide-Puro plasmid (Addgene
#52963) or chemically synthesized oligonucleotides (IDT) using Phusion DNA polymerase with
primers containing BsmBI recognition sites. The resulting amplicons were cloned into T-blunt
vectors. The T-blunt vectors containing scaffold sequence were digested with BsmBI, and the
conventional or optimized scaffold sequences with proper 5'- and 3’-overhangs were gel-purified.
After purification, the scaffold insert sequence was ligated into the initial plasmid library vector
using T4 ligase (Enzynomics) at 16°C for 3 hours at a 1:10 vector-to-insert ratio (w/w). The
ligated products were purified via isopropanol precipitation and transformed into Endura
electrocompetent cells (Lucigen). Colonies were collected, and the final plasmid library was
obtained by plasmid extraction using a QTAGEN Plasmid Maxi kit.

2.4. Culture and preparation of cell lines

2.4.1. Cell culture

We cultured HEK293T, HeLa, HCT-116, DLD-1, A-549, and NIH-3T3 cells in DMEM,
which was supplemented with 10% FBS. MDA-MB-231 cells were grown in RPMI 1640 medium
with HEPES (Thermo Fisher Scientific) and 10% FBS. All cell cultures were kept at a temperature
of 37°C with 5% CO2, ensuring they remained below 80% confluency. The cells were passaged
every 3-4 days. Cells that were transduced with lentivirus encoding PE2 or PE variants were
selected using 10 pg/ml blasticidin S, while those transduced with pairwise libraries were selected
using 1 pg/ml puromycin.

2.4.2. Lentivirus production

HEK?293T cells were seeded onto 150-mm dishes in DMEM medium at a density of
55,000 cells/cm?. After 15 hours, the medium was replaced with fresh medium containing 25 pM
chloroquine diphosphate and incubated for up to 5 hours. For lentivirus production, a plasmid mix
composed of the plasmid encoding protein of interest, psPAX2, and pMD2.G in a 4:3:1 weight
ratio was transfected into the HEK293T cells using PEI MAX (Polysciences). After 15 hours, the
medium was refreshed, and 48 hours later, the lentivirus-containing supernatant was harvested,
filtered through a Millex-HV 0.45-um low protein-binding membrane (Millipore), aliquoted, and
stored at -80°C. The viral titer was estimated by transducing cells with serial dilutions of the viral
aliquot in the presence of polybrene (8 ng/ml) and selecting transduced cells with puromycin.
Selected cells were counted to calculate the titer, following a previously established method!*,



2.4.3. Preparation of PE expressing cell lines

To create cell lines expressing PE2 or its variants, HEK293T, HCT-116, MDA-MB-231,
HeLa, DLD-1, A-549, and NIH-3T3 cells were transduced with lentivirus encoding PE2 or its
variants at a multiplicity of infection (MOI) of 0.3, along with 0.8 pg/mL of polybrene. Within
24-48 hours post-transduction, untransduced cells were eliminated using 10 pg/mL blasticidin
S. The successful lentiviral delivery of PE2- or PE variant-encoding sequences was verified
by PCR and Sanger sequencing. All cell lines were maintained in culture with 10 pg/ml of
blasticidin S.

2.5. Evaluation of prime editing efficiency

2.5.1. High-throughput evaluation using Library1/2 in HEK293T cell line

HEK?293T cells were seeded in nine 150-mm dishes at a density of 1.6 x 107 cells per dish
and incubated overnight in preparation for lentiviral transduction. The lentiviral library was
transduced at a multiplicity of infection (MOI) of 0.3, ensuring over 500x coverage relative to the
number of initial oligonucleotides. After overnight incubation, untransduced cells were eliminated
by maintaining the culture in 2 ug/ml puromycin for 5 days. To maintain the diversity of the library,
the cell count was kept above 3.0 x 107 cells throughout the experiment. Then, 3.0 % 107 cells (from
three 150-mm culture dishes) expressing pegRNAs from Libraryl/2 were transfected with the
pLenti-PE2-BSD plasmid (80 ug per dish) using 80 pl Lipofectamine 2000 (Thermo Fisher
Scientific) according to the manufacturer’s instructions. Six hours after transfection, the medium
was replaced with DMEM supplemented with 10% fetal bovine serum and 20 pg/ml blasticidin S
(InvivoGen). The cells were harvested 4.8 days post-transfection.

2.5.2. Prime editing in HCT-116 and MDA-MB-231 cell lines

Seventy-five plasmids, each carrying a pegRNA-target sequence pair, were randomly
selected from plasmid Library-1 and identified by Sanger sequencing. From this pool, a small
lentiviral library was generated as described earlier. PE2-expressing HCT-116 and MDA-MB-231
cells were seeded in 6-well plates at a density of 2.0 x 10° cells per well, incubated overnight, and
then transduced with the lentiviral library. After overnight incubation, the medium was replaced with
DMEM containing 1 pg/ml puromycin and 10 pg/ml blasticidin S for HCT-116 cells, or with RPMI
containing 2 pg/ml puromycin and 10 pg/ml blasticidin S for MDA-MB-231 cells. The cells were
harvested and analyzed 4.5 days post-transduction.

2.5.3. High-throughput evaluation of PE2 and its variants using Library-3/4,
Library-5, and Library-6

Twenty-four hours before introducing the lentiviral libraries, PE-expressing cells were
plated in 150-mm culture dishes. The cells were then transduced with a lentivirus containing one of
the libraries at an MOI of 0.5 in the presence of 8 pug/ml polybrene. For the Library-3/4, a total of 6
x 10® cells were used to ensure 500x coverage of the pegRNA-target sequence pairs, while 2.4 x 10°
cells were utilized to achieve 2,000x coverage for the Library-5 and Library-6. After transduction,
the culture medium was replaced with DMEM containing 10% FBS and 2 pug/ml puromycin 12
hours later. The cells were harvested 7 days after transduction for Library-5 and Library-6 and 8
days after for Library-3/4.



2.5.4. High-throughput evaluation of PE4max and NRCH-PE4max using
Library-5 and Library-6

For an in-depth analysis of the editing capabilities of PE4max and NRCH-PE4max, we
carried out high-throughput evaluations in HEK293T cells utilizing Library-5. The hMLH1dn
element was introduced via transient transfection using the pLenti-EF la-hMLH1dn-eGFP plasmid
(Addgene #191104). Specifically, 3.6 x 107 PE2max-expressing HEK293T cells were plated across
three 150-mm dishes and transfected with 30 pg of the pLenti-hMLH1dn-eGFP plasmid using PEIL
After 12 hours, these cells were transduced with Library-5 at an MOI of 0.5 in the presence of 8
pg/ml polybrene. Following puromycin selection, cells were collected 7 days after the library
transduction. For the assessment of PE4max and NRCH-PE4max editing efficiencies in HEK293T,
DLD-1, A-549, and NIH-3T3 cells, using either Library-5 or Library-6, hMLH1dn was delivered
using a lentiviral vector. Cells were then transduced with either Library-5-hMLH1dn or Library-6-
hMLH1dn at an MOI of 0.5 with 8 pg/ml polybrene. After 48 hours, the medium was refreshed with
one containing puromycin, and the cells were harvested 7 days post-transduction for deep
sequencing analysis. Details of the primers used for cloning can be found in Table 3.

2.5.5. Prime editing at endogenous sites

To confirm the results from high-throughput experiments conducted using Library-1/2, 33
pegRNA-encoding plasmids were randomly selected from the library. For transfection, HEK293T
cells were plated on 48-well plates at a density of 5.0 x 10* or 1.0 x 10° cells per well, 16-18 hours
before transfection. Cells were then transfected with a mixture containing 75 ng of PE2-encoding
plasmid (pLenti-PE2-BSD) and 25 ng of pegRNA-encoding plasmid per 1.0 % 10* cells, using 1 pl
of Lipofectamine 2000 or TransIT-2020 transfection reagent per 1,000 ng of DNA, following the
manufacturer’s guidelines. After overnight incubation, the medium was replaced with DMEM
supplemented with 2 pg/ml puromycin. The cells were harvested either 4.5 days (for Endo-BR1 and
Endo-BR2) or 7 days (for Endo-BR3) post-transfection. To evaluate prime editing efficiencies at
endogenous genomic loci, sequences for 77 pegRNAs with an optimized scaffold were cloned into
pU6-pegRNA-GG-acceptor (Addgene #132777, Table S4). For the analysis of the edit type (Figure
S2E) and editing efficiencies in BRCA2 (Figure 6F), HEK293T cells were seeded on 48-well plates
at a density of 5.0 x 10* cells per well, 22 hours prior to transfection. These cells were then
transfected with a mix of 300 ng of PE2max-encoding plasmid (pLenti-EF1a-PE2max-BSD) and
100 ng of pegRNA-encoding plasmid, using 0.8 pl Lipofectamine 3000 and 0.6 pl P3000 reagent
according to the manufacturer’s instructions. The culture medium was replaced with DMEM
containing 2 mg/ml puromycin after overnight incubation. Cells were harvested 7 days after
transfection.

2.6. pegRNASs design for validation

2.6.1. Designing pegRNAs to Assess the Impact of Edit Type on Prime Editing
Efficiency
To investigate how different types of edits affect prime editing efficiency at endogenous
sites, we selected 13 pegRNAs known for their high efficiency (ranging from 15% to 35%) in
inducing pathogenic or likely pathogenic 1-bp substitutions from the CV-train dataset. For each of
these pegRNAs, two additional variants were designed with identical reverse homology arm (RHA)
lengths to introduce either a 1-bp insertion or deletion at the same target site.



2.6.2. Rational design of pegRNAs

The rational design of pegRNA for creating pegRNAs to model ClinVar mutations began
with identifying an NGG PAM sequence within a +60-nucleotide range of the target edit site,
followed by generating all possible pegRNAs using spacers derived from this PAM, with RTT
lengths capped at 40 nucleotides. The next step involved evaluating these pegRNAs using the
DeepSpCas9 scoring system, where those with scores of 30 or higher were selected. In cases where
no pegRNAs met this criterion, the spacer with the highest DeepSpCas9 score among all options
was used to generate pegRNAs. Following this, pegRNAs were filtered to include only those with
intended edit positions at +5 or +6; pegRNAs not meeting this criterion were excluded. Among the
filtered pegRNAs, the one with the shortest RTT ending with a 'C' nucleotide and an RHA length of
at least 7 nucleotides was selected. If no pegRNAs had an RHA length of 7 or more, the one with
the longest RHA was chosen instead. Finally, depending on the length of the RTT from the selected
pegRNA, the PBS length was adjusted accordingly: if the RTT was 12 nucleotides or shorter, the
PBS length was set to 11 nucleotides, while if the RTT was 13 nucleotides or longer, the PBS length
was set to 12 nucleotides.

2.7. Analysis of prime editing efficiencies

2.7.1. Deep sequencing
To assess the efficiency of prime editing in high-throughput experiments, cells were
collected, and their genomic DNA was extracted.
For Library-1/2, we initiated the process with 400 pg of genomic DNA, which, considering 10
pg of DNA per 1076 cells, provided a coverage exceeding 700% over the library. We conducted 80
separate 50-ul PCR reactions, each containing 5 pg of genomic DNA. The resulting PCR products
were pooled and gel-purified. Subsequently, 100 ng of this purified DNA was subjected to a second
PCR using primers equipped with Illumina adaptors and barcode sequences (see Supplementary
Table 6). For analyzing PE2 efficiencies at endogenous sites, we performed an initial PCR in a 40-
pl volume containing 200 ng of genomic DNA per sample. A second PCR was carried out with 20
ng of the purified first PCR product in a 30-pl reaction to add the Illumina adaptors and barcodes.
After gel purification, the amplicons were sequenced using [llumina HiSeq or MiniSeq platforms.
The primers used are listed in Supplementary Table 6.

For the Library-3 and Library-4 experiments, we used 5,760 pg of genomic DNA from
HEK293T cells for PCR, which provided coverage over 960, assuming 10 mg of DNA per 10°
cells. A total of 576 individual 50-ul PCR reactions were performed using 10 mg of genomic DNA,
200 nM of each primer set, and 25 pL of 2X Taq PCR Smart mix (SolGent) under the following
conditions: initial denaturation at 95°C for 10 min, followed by 22 cycles of 95°C for 30 s, 60°C for
30 s, 72°C for 40 s, with a final extension at 72°C for 5 min. For achieving over 2,000X coverage
in Library-5 and Library-6, PCR was conducted using at least 120 mg and 1 mg of genomic DNA
for each sample, respectively. For Library-5, 24 independent 50-ul PCR reactions were performed
using 5 mg of genomic DNA, while for Library-6, 200 independent reactions were conducted. Each
reaction contained 500 nM of primers, 200 mM of dNTPs, DNA polymerase, and a reaction buffer.
We used Q5 High-Fidelity DNA polymerase for Library-5 and Phusion DNA Polymerase for
Library-6. After PCR amplification, products were pooled, gel-purified, and sequenced on Illumina
NovaSeq.

For determining prime editing efficiencies at endogenous sites, cells were lysed in 100 pL of
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lysis buffer (10 mM Tris—HCI, 0.05% SDS, 025 mg/ml proteinase K, and pH 7) at 37°C for 1 hour.
To deactivate the enzymes, the lysate was incubated at 80°C for 15 minutes. The first round of PCR
was performed in a 50-pL volume containing 25 pL of 2X Taq PCR Smart mix, 5 pL of cell lysate,
and 200 nM of the primer set under the following conditions: initial denaturation at 95°C for 1 min,
followed by 35 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 30 s, with a final extension at
72°C for 2 minutes. The second PCR, aimed at adding Illumina adaptors, was performed using 0.5
pL of the first PCR product in a 50-pL reaction under the same conditions, but with 12 cycles. Gel
purification of the PCR products was followed by deep sequencing. The pegRNA-encoding regions,
barcodes, and target sequences were amplified from genomic DNA using PCR primers that included
Illumina adapters and unique i7 and i5 barcodes (as listed in Table S4).

2.7.2. Calculate the prime editing efficiency

To process and analyze the deep sequencing data, we modified existing Python scripts.
The pegRNA and target sequence pairs were identified using a 22-nt sequence (comprising an 18-nt
barcode and a 4-nt sequence upstream of the barcode) for Library-1/2, and a 36-nt sequence
(consisting of a 12-nt PBS domain of the pegRNA, an 18-nt barcode, and a 6-nt sequence that
includes 4-nt upstream and 2-nt of the target sequence) for other libraries. Reads containing the
intended edits without unintended mutations within the target sequence were considered to represent
PE2-induced mutations. To correct for background prime editing frequency, observed prime editing
frequencies were normalized by subtracting the background frequency (determined in the absence
of PE2) using the formula:

Read counts with intended edit and specified barcode—
__ (Total read counts with specified barcode xbackground prime editing frequency)-+100
- Total read counts with specified barcode— X 100
(Total read counts with specified barcode xbackground prime editing frequency)+100

To improve the accuracy of our analysis, we applied several filters to the deep sequencing data.
PegRNA and target sequence pairs with deep sequencing read counts below 200 or with background
editing frequencies above 5% were excluded. We implemented steps to reduce noise from random
errors by first categorizing sequencing reads as wild type (WT) or edited based on the barcode.
Reads with random errors in WT or variants other than the intended edit in edited sequences were
removed. Pairs with fewer than 200 reads in total or those with background frequencies above 5%
were also excluded. Finally, the read counts of replicates were pooled based on barcodes, and prime
editing efficiency data were obtained, following previously established protocols”!:13-17 for Library-
4, -Profiling, -Small, and -epegRNA.

2.8. Development of computational models

2.8.1. Data preparation for machine learning

To extract features from pegRNAs and their corresponding target sequences, we employed
tools such as Biopython (version 1.79)!® the ViennaRNA package (version 2.5.0) !°, and
DeepSpCas9’ to compute metrics like GC count, GC content, melting temperature (Tm), minimum
free energy, and the DeepSpCas9 score. These metrics were combined with other sequence-derived
characteristics, including the lengths of PBS, RTT, RT-PBS, and RHA, along with the type, position,
and length of the intended edits, using custom Python scripts. We divided each dataset into training
and testing subsets using stratified random sampling, ensuring no overlap of target sequences
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between the training and test datasets used for model development.

2.8.2. Generation of conventional machine learning-based models

For comparing machine learning models trained on the CV-test dataset, we utilized Scikit-
learn®, Pycaret?!, and other specialized machine learning pipeline packages to generate various
regression models. During model training, we extracted both position-dependent and position-
independent nucleotide and dinucleotide features from the wide target, PBS, and RTT sequences.
Additionally, the z-score normalized Tm, GC count, GC content, minimum free energy, and
DeepSpCas9 score were included. This comprehensive set of 2,956 features was used to train the
conventional machine learning models. We optimized model parameters through a random grid
search of 150 models. To evaluate performance, we used the Spearman correlation between the
observed and predicted efficiencies, conducted 5-fold cross-validation, and compared Spearman’s
correlation across each fold.

2.8.3. Generation of DeepPE

DeepPE, a deep learning-based computational model, predicts the optimal combination of
PBS and RTT lengths required to introduce a G-to-C transversion mutation at position +5 from the
nicking site. The model was trained on a dataset that included prime editing efficiencies induced by
PE2 and 38,692 pegRNAs. The training data encompassed 47-nt-wide target sequences, RTT plus
PBS sequences (17-37 nt), and 20 additional features, such as melting temperature, GC count, GC
content, and minimum self-folding free energy. Nucleotide sequences were encoded into four-
dimensional binary matrices via one-hot encoding. DeepPE was developed using a convolutional
layer coupled with a fully connected layer. The convolutional layer extracted two embedding vectors
from the wide target sequences and RTT plus PBS sequences using ten filters of 3 nt in length. These
embedding vectors were then combined with the 20 biological features. To maintain local
information, the pooling layer was omitted, and a deep reinforcement learning algorithm was
implemented??. The fully connected layer, containing 1,000 units, applied the ReLU activation
function to multiply the vectors. The regression output layer performed a linear transformation of
the outputs, predicting PE2 efficiency scores. After testing nine different models with varying
hyperparameters (filters: 10, 20, 40; units: 200, 500, 1,000), we selected the model with the highest
Spearman correlation between experimentally observed and predicted activity levels during 5-fold
cross-validation. Dropout was used with a rate of 0.3 to prevent overfitting, and mean squared error
served as the objective function. The model was optimized using the Adam optimizer with a learning
rate of 0.001 and was implemented using TensorFlow?. For predicting PE2 efficiencies across
various editing types and positions, we used a multilayer perceptron (MLP) instead of a
convolutional neural network, as the latter yielded poor performance in initial trials. We conducted
cross-validation to select from 18 MLP models with architectures and parameter counts similar to
DeepPE but without convolutions. The hyperparameter configurations included the number of layers
(2 or 3), the number of units per hidden layer (1,000, 200, 50 in the first layer, 50 in the second), the
dropout rate, the learning rate (0.01, 0.001, 0.0001), and the ReL U activation function.

2.8.4. Generation of DeepPrime
DeepPrime is a deep learning-based model designed to predict the efficiencies of prime
editing using pegRNAs with varying PBS and RTT lengths, aimed at introducing 1- to 3-bp at
positions +1 to +30. Developed using PyTorch, DeepPrime processes input sequences consisting of
unedited and prime-edited sequences. The input sequence processing module includes four
convolutional layers followed by a gated recurrent unit (GRU) layer. Each convolutional layer used
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a kernel width of 3 and a stride of 1, with zero padding to preserve sequence length. The four
convolutional layers contained 128, 108, 108, and 128 channels, respectively, with average pooling
applied after the 2nd, 3rd, and 4th convolution operations. A pooling kernel size of 2 and a stride of
2 were utilized. Input sequences, one-hot encoded into four channels (A, T, G, C), were fed into the
convolutional module. The output from the final convolutional layer was then passed through a
bidirectional GRU to capture long-distance interactions and retain positional information of the input
sequences’*. The GRU’s hidden state was 128-dimensional, and the final hidden state was projected
linearly into a 12-dimensional vector. In addition, DeepPrime includes a separate four-layer
perceptron module to analyze the physicochemical properties of pegRNAs and target sequences,
referred to as "biofeatures," which includes metrics like Tm, GC count, GC content, the minimum
self-folding free energy of the guide and RTT-PBS, and the DeepSpCas9 score. These biofeatures
were transformed into a 128-dimensional latent vector, which was concatenated with the 12-
dimensional GRU output to form a 140-dimensional vector. This vector was then projected linearly
to produce a single regression output through softplus activation. We applied GELU activations®
for the convolutional layers and ReLU for other layers, and batch normalization was used after each
convolution and before the final linear projection to accelerate model training?®. The model's
hyperparameters—including hidden dimensions, the number of layers, kernel sizes, strides, channels,
learning rate, and number of epochs—were optimized using Bayesian search with Optuna. The
AdamW optimizer?” with cosine annealing learning rate scheduling and warm restarts was employed
for model training. We independently trained five models with different random seeds and averaged
their predictions to achieve the final prediction. The optimal hyperparameters for DeepPrime are as
follows:

Table 1. Optimal hyperparameters for DeepPrime

Optimizer Scheduler Model
Ba}tch Learning Weight ~ Number of T o T mult  Hidden size Number of
size rate decay epochs - - models
2048 5.00E-03  5,00E-02 10 10 1 128 5

2.8.5. Addressing imbalance in data representation

The training dataset exhibited a significant skew towards data points with low prime
editing (PE) efficiencies, which hindered the model's ability to adequately represent cases with high
PE efficiencies. To mitigate this imbalance, we employed a strategy that involved amplifying the
loss for the underrepresented high-efficiency data. This was achieved by introducing a high offset,
allowing the model to become more responsive to these rarer instances. The amplification () was
derived by simulating the reciprocal square root of the data distribution using a straightforward
function, as shown below.

u = min(exp(6(log(x + 1) —3) +1),5)

o (e+ D"
= min (m-F 1,5>

where, x indicates the measured prime editing efficiency (%).

Moreover, to specifically address the imbalance among different types of edits, we applied
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weight adjustments to the loss functions for insertions and deletions, which were less common than
substitutions. Specifically, the losses associated with insertions and deletions were scaled by factors
of 0.7 and 0.6, respectively. These weights were determined through analysis using 5-fold cross-
validation.

2.8.6. Generation of DeepPrime-FT

For the enhancement of the base DeepPrime model, we utilized transfer learning
techniques. We developed eighteen models by fine-tuning the base model with eighteen distinct
datasets that represented prime editing efficiencies across eight different prime editing systems,
including two scaffold sequence types in seven different cell types. The final weights from
DeepPrime served as the starting point for these models. We maintained a batch size of 512 for all
the fine-tuned models, while the optimal hyperparameters—including learning rates, weight decay,
and epoch counts—were identified using Optuna. Table 2 provides the optimal hyperparameters for
the eighteen models.

2.8.7. Interpretation and feature analysis of tree-based machine learning models

To assess the impact of individual features on the prediction model for PE efficiency, we
calculated Shapley values using the SHAP (Shapley Additive exPlanations, 0.40.0) Python
package?®. For data derived from Library-1/2, we extracted features and trained XGBoost models,
employing the best hyperparameter configurations identified through 5-fold cross-validation as
previously described. Similarly, for the Library-4 dataset, we trained LightGBM models, both with
and without the exclusion of features with correlation of 0.7 or higher. To understand the global
impact of each feature on the prediction models, we used SHAP values across the entire training
dataset and compared Shapley values from each feature to assess local interaction effects.

2.9, Statistics

To evaluate the variation in prime editing efficiencies across different experiments utilizing
distinct pegRNAs, a one-way ANOVA followed by a two-sided Tukey’s post hoc test was performed.
The Spearman correlation between prediction scores from various models was assessed using a two-
sided Steiger’s test, which is tailored for comparing two dependent correlation derived from the
same dataset. We determined statistical significance using tools such as GraphPad Prism 8, PASW
Statistics (version 17.0, IBM), and Microsoft Excel (version 2302, Microsoft Corporation). For the
high-throughput assessment of PE2 efficiency using pairwise libraries, sequencing read counts from
two independent replicates performed by different experimenters were pooled together. When
presenting scatter plots, the number of data points (n), along with the Spearman's (R) and Pearson's
(r) correlation, are also indicated for each graph. In the box plot, the top, middle, and bottom lines
of each box represent the 25th, 50th, and 75th percentiles of the overall distribution, respectively.
The upper and lower whiskers correspond to the 10th and 90th percentiles, while any outliers are
indicated by dots. When comparing three or more groups, one-way ANOVA was performed followed
by a two-sided Tukey's post hoc test, and groups with no statistical differences were indicated by
letters such as a, b, ¢, etc.
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Table 2. Optimal hyperparameters for the DeepPrime-FT models

Optimizer Scheduler Model
cell line PE system . Learning Weight Numberof T 0 (if using Hidden Number of

Lekize £ rate decay epochs scheduler) U size models
A-549 PE2max 512 1.E-02 2.E-02 40 20 ! 128 20
A-549 PE2max-e 512 2.E-03 1.E-02 100 - - 128 20
A-549 PE4max 512 5.E-03 2.E-02 50 25 1 128 20
A-549 PE4max-e 512 1.E-02 2.E-02 100 50 1 128 20
DLD-1 NRCH-PE4max 512 4.E-03 2.E-02 100 - - 128 20
DLD-1 PE2max 512 2.E-03 2.E-02 100 - - 128 20
DLD-1 PE4max 512 1.E-03 0.E+00 100 - - 128 20
HCT-116 PE2 512 8.E-03 1.E-02 50 - - 128 20
HEK293T NRCH-PE2 512 1.E-02 1.E-02 50 - - 128 20
HEK293T NRCH-PE2max 512 4.E-03 1.E-02 50 - - 128 20
HEK293T PE2 512 2.E-03 1.E-02 100 - - 128 20
HEK293T PE2max 512 1.E-03 0.E+00 100 - - 128 20
HEK293T PE2max-¢ 512 1.E-02 1.E-02 100 50 1 128 20
HEK293T PE4max 512 5.E-03 1.E-02 100 - - 128 20
HEK293T PE4max-e 512 5.E-03 1.E-02 50 - - 128 20
HeLa PE2max 512 1.E-02 2.E-02 50 25 1 128 20
MDA-MB-231 PE2 512 5.E-03 1.E-02 100 - - 128 20
NIH-3T3 NRCH-PE4max 512 2.E-03 2.E-02 100 - - 128 20
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Table 3. Primers for molecular cloning

Primer sequence (5' to 3")

Target construct Template Primer FP: forward primer, RP: reverse primer
FP GAACACAGGACCGGTTCTAGAGCCACCATGAAACGGACAGC
‘ CMV-PE2 RP TCTGAGGCACGATAGCGTCCACATCGTAGTCGGACAGCCGGTTGATG
pLenti-PE-BSD FP TACGATGTGGACGCTATCGTGCCTCAGAGCTTTCTGAAGGACGACTCCA
CMV-PE2 RP AGAAGTTTGTTGCGCCGGATCCGACTTTCCTCTTCTTCTTGGGCTCGA
pCMV-PEmax- FP GCAACGGGTTTGCCGCCAGAACACAGGACCGGTTCTAGAGCCACCATGAAACGGACAGC
pLenti-PEmax- P2A-BSD RP GCTTCCGCCGCTAGAGCCTCCGCT
BSD pCMV-PEmax- FP GATCCACCAGAGCATCACCG
P2A-BSD RP TTTGTAATCCAGAGGTTGATTACCGATAAGCTTGATATCGACCGGTTAGCCCTCCCACAC
pLenti-NRCH- FP GCAACGGGTTTGCCGCCAGAACACAGGACCGGTTCTAGAGCCACCATGAAACGGACAGC
PE2-BSD RP CCAGCTTTCTGCTCTTGCTCAGTC
pLenti-NRCH- FP GAGCAAGAGCAGAAAGCTGGAAAAT
pLenti-NRCH- PE2-BSD RP GTCCTCTCTCTTCAGCTTCACGAGC
PEmax-BSD pLenti-NRCH- FP CTCGTGAAGCTGAAGAGAGAGGAC
PE2-BSD RP GTCACCTCCCAGCTGAGA
pCMV-PEmax- FP TCTCAGCTGGGAGGTGAC
P2A-BSD RP TTTGTAATCCAGAGGTTGATTACCGATAAGCTTGATATCGACCGGTTAGCCCTCCCACAC
FP TCAAGCCTCAGACAGTGGTTC
pEFla hMLH1dn
RP GTTCTCGATCATCTCCTTGATTGCATTGGCAGGTCTCTGG
pLenti_crRNA_h FP CCAGAGACCTGCCAATGCAATCAAGGAGATGATCGAGAAC
MLH1dn_Puro pEF1a_hMLH1dn RP GAAAACCTTATAAAGGTCGGGCAGGTTG
pLenti FNLS P2 FP CCTGCAGCTGGCCAACCTGCCCGACCTTTATAAGGTTTTCGCTAGCGGCAGCGGCGCCAC
A_Puro RP GTTCTTGCAGCTCGGTGACC
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Table 4. Target sequence and pegRNA information

Reli?;ed Target sequence (4 bp + 20 bp Protospacer + PAM (3bp) + extended target context) 3' extension sequence of pegRNA
Figure 4c TGGGTCCGCTGGTGCACTACGAGCTGGGAGCGCTGGCTGAAGCAGCT GCTCCgAGCTCGTAGTGCACCAG

Figure 4c AGTTCTACGTGAACAGCACACTTAAGGAACTGAGGAGGCTCTTAGCT TCCTCAGTTCETTAAGTGTGCTGTTC

Figure 4c TGCTCAATTCTGAAGTCACTTTTTTGGTTGTAGAAATGACTGTAGCT TTTCTACAACZAAAAAAGTGACTTCAGAAT
Figure 4c GTAAATACCTGAAAATGCTTAAAGAGGAAAAGAGGGAAGAAGAAGCT TTCTTCCCTCTTTTCETCTTTAAGCATTTICAGGT
Figure 4c CTGCCATCTTCATTTTTGAACTTTTGGGTTCAAACTCAGAAGGAGCT TTCTGAGTTTGAACCgAAAAGTTCAAA

Figure 4c CAGGGGTGGCTCACCTCTAGGTACCGGCTTTCCCCTCTTAGAGAGCT GGAAAGCgGGTACCTAGAG

Figure 4c GTGGTGAGCCAAGTGAAAATAGCGAGGAACCCAAACTGTGGGGAGCT AGTTTGGGTTggTCGCTATTTTCACTTGG

Figure 4c CACAGCTACCCACTTGTTGCCACCAGGTAAGTAAGACTAAAGAAGCT CTTACgTGGTGGCAACAAG

Figure 4c CCTACCGTCTTGGAATCTAACTCATGGTGGGGCTGACCTAATAAGCT TCAGCCCCACgATGAGTTAGAT

Figure 4c AAGAACCTTCCTGTTAATGTACGTTGGCTACTTTGTGGCTGCCAGCT GTAGCgAACGTACATTAAC

Figure 4c AGCAGTTCCTTCTAGAGAAGCTGAAGGTAAGCCTGTTACTTGAAGCT GGCTTACETTCAGCTTCTCTAGA

Figure 4c CGTTTGTCCCTCCAGCATCTGCTCTGGCTCCATGGCGGACCCTAGCT ATGGAGCgAGAGCAGATGCTGGA

Figure 4c ATGTGCGAGTTCAAGTGCTACCCGAGGTGCGAGGCCAGCTCGGAGCT CTCGCACgTCGGGTAGCAC

Figure 4c GAGTGCACTGTCACGGGTTTTCTGCGGGACAAGCTGCAGTACAAGCT TACTGCAGCTTGTCCgGCAGAAAACCCGTGA
Figure 4c AGCAGATTTGTAATCTCGATGTTTTGGTAGTTTCTCAATAAAGAGCT AAACTACgAAAACATCGAGAT

Figure 4c TCACATTGTTGTTCACCTCCTCGATGGCATTCACCCTCTTCGAAGCT AGGGTGAATGCCAagGAGGAGGTGAACAA
Figure 4c TACCCACCTGGCCGTTGGCCTTCGCGGGGGAAGCGCCTGCTGCAGCT GCGCTTCCCCgGCGAAGGCCAACGGC

Figure 4c CCCAAAGCGCATCCAGCACCGACATGGTGAACAAGGCCCGTGGCAGG TGCCACGGGCCTTGCGGTGCTGGATGC

Figure 4c CCTCAACATCTATAAAGACCGTCCTGGCAGATACATCTGGATCAGCT TCCAGATGTATCTGCgAGGACGGTCTTTATAGATGTT
Figure 4c CCTCTACGCCCTGCTTCGCGCATTCGGCTGGGCGCGCGTGGCCAGCT CCAGCgGAATGCGCGAAGCAGGGCG

Figure 4c TGAAGGGAGCCCTGACAAGGTGTATGGGTCGGTGTGTGGCCTTAGCT ACCGACCgATACACCTTGTCAGGGCTCCC
Figure 4c CATCTGCAGAGTTTCTGCCATTACTGGGTCGATTTGCAGTCGGAGCT ATCGACCgAGTAATGGCAG

Figure 4c TGTAGGCGCCGATGACCTCGTCCACGGTCACATTCTGGGCTGCAGGC CTGCAGCCCAGAATACGAGGTCATCGG

Figure 4c GGCCACACAATAGTGACAACTGTGAGGCATGTCTGCAGGGCTTAGCT GACATGCgTCACAGTTGTCACTATTGTGT

Figure 4c CAGGACTTGTGGAATGTGAGGATCAGGATCCACTTAATCCTGAAGCT GGATCgTGATCCTCACA

Figure 4c TGACCTAGACGGGTCGGGGGATCCTGGCGGCTTAGGGGACTGGAGCT AAGCCGCgAGGATCCCCCGAC

Figure 4c GATAACTTTAGCACCTTATTCCTTTGGCCCAGACAGCTTTGTTAGCT CAAAGCTGTCTGGGCgAAAGGAATAAGGTGCTA
Figure 4c GGTGGATTTGTGTGTACCCATAACAGGGTCATTTTCCATGTCAAGCT AATGACCgTGTTATGGGTACACACAAA

Figure 4c CCTAAGAAGGTCGACCTCATCATCTGGGAGATCGAGGTGCCAAAGCT GGCACCTCGATCTCCgAGATGATGAGG

Figure 4c TCCTGTATGAATCTTTCCACGCCCTGGCTCCGAGGGTCTTCAGAGCT GGAGCZgAGGGCGTGGAAAGATTCAT

Figure 4c GCCCACATCACCCAGTCCCGAACATGGGTTTCTGTCCACTGCCAGCT AAACCgATGTTCGGGACTGGGTGAT

Figure 4c CTGAGTTTCAAAGATGCATAGCGTAGGGTTGCTCCTTCAAACTAGCT AGCAACCETACGCTATGCATC

Figure 4c AGTCCCCTTTATGAAGAGTGTGTGAGGATGAATGATGGATTTTAGCT ATTCATCgTCACACACTCTTC

Figure 4c TCACTCTTCCAGCCGCGTTGTCCATGGTGAGGATGCGGTCCCCAGCT CCTCACCATGeACAACGCGGCTGG

Figure 4c AGTTGACAAGACATTATCAGCTACTGGTTGGCCGTTATTTATCAGCT AACGGCCAACgAGTAGCTGATAATGT

Figure 4c CTGGGCATCTGGAGGATTGTGATCAGGATCCAAAGAGGTAATGAGCT TTACCTCTTTGGATCgTGATCACAATCCTCCAGATGC
Figure 4c CTTCAATAATCAGCCAGCCTTCACTGGAGATGAACATGGCTCAAGCT TCATCTCgAGTGAAGGCTG

Figure 4c GCCTGGGCATCTTCGTCAGCAAAGTGGAGGAAGGCAGCAGTGCAGCT TCCTCgACTTTGCTGACGAAGAT

Figure 4c AAGGGGGATATGGTAGCTCCAACTGGGTGACCAGCTACCTCCTAGCT GTCACgCAGTTGGAGCTACCATA

Figure 4c GCTGGGGGTTACATGGCCGTAGCGTGGGCTGACGAATAAGGGTAGCT GTCAGCCgACGCTACGGCC

Figure 4c GCAGGAACTCAAAGCAGCCGCTGATGGCGTACTATCTGAAGTGAGCT GATAGTACGCgATCAGCGGCTGCTTTGAGTTC
Figure 4c ACCTGAAGAAAAGAGCAAGCGCACAGGGTTACTTCGTGGGGAGAGCT TAACCgTGTGCGCTTGCTCTTTTCT

Figure 4c CCTTCACTCGAACTTTGACTTGATCGGGTTCAAAACCGCATACAGCT TTGAACCgGATCAAGTCAAAG

Figure 4c TCATTGCCATAGGCACCATTGTCATGGTGACGGGCTTCCTCGGAGCT AGCCCGTCACgATGACAATGGTGCCTATGGCA
Figure 4c GGGCTGACACTAAGACGGTTAGTGTGGTTGTGGGCCGTGCTCTAGCT CCACAACZACACTAACCGTCTTA

Figure 4c GCTTCACTGCTACGTCCTCGCCGTTGGTGGTGGTGATGCCCAGAGCT ACCACgAACGGCGAGGACG
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Figure 4c TTTCGAAGTTCTATCAGTTCTCGACGGAGATATTTCACCTGACAGCT ATATCTCgGTCGAGAACTG

Figure 4¢ TGGTCGGCCTGAAGAAAAAGAGTGCGGATGATGTGAAGAAGGTAGCT TCATCgGCACTCTTTTTCTTCAG

Figure 4¢ CCAAAGAATCTTTCATTTTCTTTCAGGGTCACGATCACCGGTGAGCT TGACCgTGAAAGAAAATGAAA

Figure 4¢ TGTTTTGATAGTTGCCTTATGCTTTGGATACAGAATGTTGACAAGCT TCAACATTCTGTATCgAAAGCATAAGGCAAC
Figure 4¢ TCATCAACACTAAGTTTATGTTTTTGGAACAGCTCCTATATAAAGCT TGTTCgAAAAACATAAACTTAGT

Figure 4¢ GATCAGGCAGCTAGAGACATGAAGAGGCTTGAAGAAAAGGACAAGCT TTCAAGCETCTTCATGTCTCTAGCTGC

Figure 4¢ TGCTCAGGAACTACATCTCGATGCTGGTTTTGAGAAACTGACAAGCT TTCTCAAAACgAGCATCGAGATGTAGTTCC
Figure 4¢ AGCAATTCCGAAACACTGACATCCAGGAGTTCAAGCAACAGACAGCT GCTTGAACTCgTGGATGTCAGTGT

Figure 4¢ AGTTGATGACAGTCCAAGCACTAGTGGAGGAAGTTCCGATGGAAGCT TCCTCgACTAGTGCTTGGACTGT

Figure 4¢ CAGCTGACCCCACGTCAGAAAGCAAGGAAGATCAGTGGATGGGAGCT TCTTCgTTGCTTTCTGACGTG

Figure 4¢ TAAAGTCCCGTTACCGTGAATATCTGGTTACAGTTGTTTAAAGAGCT GTAACgAGATATTCACG

Figure 4¢ GGGCCCGCGCTCACCTGGGAGATGTGGGACTGGGTCCTCTCGCAGCT AGTCCgACATCTCCCAG

Figure 4c ACTAATTCGACATCAGTTTCATCGAGGAAAGGTAAGAAGAGCCAGCT ACCTTTCgTCGATGAAACTGA

Figure 4¢ CTCCTGAGCCCATTCGCCTCCTTTTGGATGGCTGGGTCCCATCAGCT TCAGCgGGATGGGCTGG

Figure 26e CCCTCCCCACCCCCAGGCTCAGAGTGGGTGGCTGCCCTGCAGGGGCTGACAGAGCACACATCGATACTGGTGAA GCAGCCACCTACTCTGAGCCTGGGGGTG

Figure 26e AGGCCCTGGTGGTCCAATGGGACCTGGATGTCCACTGGTTCCATCTTTGCCAGGAGGTCCACTGGGTCCAACAG GACATCCAGATCCCATTGG

Figure 26e CGCCCGCTGCCTGGGACCTCCACACGGTAAGCCCCCCAGACTGGGTCCTGGGAAAAACGCACCTGCTGGCTGTT GGGGCTTACTGTGTGGAGGTCC

Figure 26e GGATTGGAGCGGCGCTGGGCTCGGCGGGCACAGGCCCGGATGATGAGGTACACCACCTCGGCCACATTGAGGAT GGGCCTGTGCCCGCTGAGCCCAGCG

Figure 26e ACAAGCTGATGGTGGCCGTGTCGGAGGATGTCCTGCAGGTCTATGCGGACTGGCAGCGCTGGCTGTTTGGGGAG CTGCCAGTCCGCATAGACCTACAGGACATCCTCCGACACGGCCACCATC
Figure 26e TAAGTGAGTGCAAGAAGCGCGCCGAGGAGAAGAAACTGGAGAACGAGCGCATGGAGCGCAAGGTGGGCGCACCC TTCTTCTCCTAGGCGCGCTTCTTGCA

Figure 26e CTGGCAACACCTCCACGGCCGAGGAGGAGCTCTGTCGCCTTAAGCTGCTGGCCAAGCACCCCTGCCACATCAAG AGAGCTCCTACTCGGCCGTGGAG

Figure 26e TGAATGAGATGCGCTGCGCCTACGAGGTGACCCAGGCCAACGGAAAGTGGGAGGTGCTGATAGGTGAGTGGCCG TGGCCTAGGTCACCTCGTAGGCGCAG

Figure 26e TGGCCCTGAAGATCGACCTCACAGAGGCGCGAGTCCAGGTACGCGCGCCTGGAAACCGACCCCGCTCCGCCGCA ACTCCCGCCTCTGTGAGGTCGATC

Figure 26e GCATGGAGCTGCTTGTCCTGGTGGAGGGCATGGGCCAGCTGGTTCACAGTCTGATGGCAGAGGAAGGAAAGAAA GGCCTATGCCCTCCACCAGGAC

Figure 26e TTGTACGTCTTCTGCAGCCAGGAGGGGATGGCCGGCTGGAACCAGCGGTGGAAATTATCCAGGGCCAGGACTCC GTTCTAGCCGGCCATCCCCTCCTGGCTGCAGAAG
Figure 26e TTCAGACTGTGTCAGCTCTGCACAGGGTGAGTGGGACACAGCCCCAGCCAACTTGGCTCCCCATCTGCCCAACC CTGCGCAGAGCTGA

Figure 26e TGCGGGCGCGCCGGCGTGAGCTGCGGGTCCCACTGGTACTGCTGCTGGTAGAGCTGGTCACGGTGGAAGTGGCT AGTAGGACCCGCAGCTCACGC

Figure 26e CCCTCCCCACCCCCAGGCTCAGAGTGGGTGGCTGCCCTGCAGGGGCTGACAGAGCACACATCGATACTGGTGAA CAGCCACCCGACTCTGAGCCTGGGGGTG
Figure 26e AGGCCCTGGTGGTCCAATGGGACCTGGATGTCCACTGGTTCCATCTTTGCCAGGAGGTCCACTGGGTCCAACAG ACATCCAGGCTCCCATTGG

Figure 26e CGCCCGCTGCCTGGGACCTCCACACGGTAAGCCCCCCAGACTGGGTCCTGGGAAAAACGCACCTGCTGGCTGTT GGGCTTACCGGTGTGGAGGTCC

Figure 26e GGATTGGAGCGGCGCTGGGCTCGGCGGGCACAGGCCCGGATGATGAGGTACACCACCTCGGCCACATTGAGGAT GGCCTGTGCCCGCCCGAGCCCAGCG

Figure 26e ACAAGCTGATGGTGGCCGTGTCGGAGGATGTCCTGCAGGTCTATGCGGACTGGCAGCGCTGGCTGTTTGGGGAG TGCCAGTCCGCATAGACCTGTCAGGACATCCTCCGACACGGCCACCATC
Figure 26e TAAGTGAGTGCAAGAAGCGCGCCGAGGAGAAGAAACTGGAGAACGAGCGCATGGAGCGCAAGGTGGGCGCACCC TCTTCTCCTCGGGCGCGCTTCTTGCA

Figure 26e CTGGCAACACCTCCACGGCCGAGGAGGAGCTCTGTCGCCTTAAGCTGCTGGCCAAGCACCCCTGCCACATCAAG GAGCTCCTCACTCGGCCGTGGAG

Figure 26e TGAATGAGATGCGCTGCGCCTACGAGGTGACCCAGGCCAACGGAAAGTGGGAGGTGCTGATAGGTGAGTGGCCG GGCCTGCGGTCACCTCGTAGGCGCAG

Figure 26e TGGCCCTGAAGATCGACCTCACAGAGGCGCGAGTCCAGGTACGCGCGCCTGGAAACCGACCCCGCTCCGCCGCA CTCGCCGCCTCTGTGAGGTCGATC

Figure 26e GCATGGAGCTGCTTGTCCTGGTGGAGGGCATGGGCCAGCTGGTTCACAGTCTGATGGCAGAGGAAGGAAAGAAA GCCCCATGCCCTCCACCAGGAC

Figure 26e TTGTACGTCTTCTGCAGCCAGGAGGGGATGGCCGGCTGGAACCAGCGGTGGAAATTATCCAGGGCCAGGACTCC TTCCGAGCCGGCCATCCCCTCCTGGCTGCAGAAG
Figure 26e TTCAGACTGTGTCAGCTCTGCACAGGGTGAGTGGGACACAGCCCCAGCCAACTTGGCTCCCCATCTGCCCAACC TGTTGCAGAGCTGA

Figure 26e TGCGGGCGCGCCGGCGTGAGCTGCGGGTCCCACTGGTACTGCTGCTGGTAGAGCTGGTCACGGTGGAAGTGGCT GTGAGGACCCGCAGCTCACGC

Figure 26e CCCTCCCCACCCCCAGGCTCAGAGTGGGTGGCTGCCCTGCAGGGGCTGACAGAGCACACATCGATACTGGTGAA GCAGCCACCACTCTGAGCCTGGGGGTG

Figure 26e AGGCCCTGGTGGTCCAATGGGACCTGGATGTCCACTGGTTCCATCTTTGCCAGGAGGTCCACTGGGTCCAACAG GACATCCAGTCCCATTGG

Figure 26e CGCCCGCTGCCTGGGACCTCCACACGGTAAGCCCCCCAGACTGGGTCCTGGGAAAAACGCACCTGCTGGCTGTT GGGGCTTACGTGTGGAGGTCC

Figure 26e GGATTGGAGCGGCGCTGGGCTCGGCGGGCACAGGCCCGGATGATGAGGTACACCACCTCGGCCACATTGAGGAT GGGCCTGTGCCCGCGAGCCCAGCG

Figure 26e ACAAGCTGATGGTGGCCGTGTCGGAGGATGTCCTGCAGGTCTATGCGGACTGGCAGCGCTGGCTGTTTGGGGAG CTGCCAGTCCGCATAGACCTCAGGACATCCTCCGACACGGCCACCATC
Figure 26e TAAGTGAGTGCAAGAAGCGCGCCGAGGAGAAGAAACTGGAGAACGAGCGCATGGAGCGCAAGGTGGGCGCACCC TTCTTCTCCTGGCGCGCTTCTTGCA

Figure 26e CTGGCAACACCTCCACGGCCGAGGAGGAGCTCTGTCGCCTTAAGCTGCTGGCCAAGCACCCCTGCCACATCAAG AGAGCTCCTCTCGGCCGTGGAG

Figure 26e TGAATGAGATGCGCTGCGCCTACGAGGTGACCCAGGCCAACGGAAAGTGGGAGGTGCTGATAGGTGAGTGGCCG TGGCCTGGTCACCTCGTAGGCGCAG

Figure 26e TGGCCCTGAAGATCGACCTCACAGAGGCGCGAGTCCAGGTACGCGCGCCTGGAAACCGACCCCGCTCCGCCGCA ACTCCGCCTCTGTGAGGTCGATC

Figure 26e GCATGGAGCTGCTTGTCCTGGTGGAGGGCATGGGCCAGCTGGTTCACAGTCTGATGGCAGAGGAAGGAAAGAAA GGCCATGCCCTCCACCAGGAC

Figure 26e TTGTACGTCTTCTGCAGCCAGGAGGGGATGGCCGGCTGGAACCAGCGGTGGAAATTATCCAGGGCCAGGACTCC GTTCAGCCGGCCATCCCCTCCTGGCTGCAGAAG
Figure 26e TTCAGACTGTGTCAGCTCTGCACAGGGTGAGTGGGACACAGCCCCAGCCAACTTGGCTCCCCATCTGCCCAACC CTGGCAGAGCTGA
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Figure 26e

TGCGGGCGCGCCGGCGTGAGCTGCGGGTCCCACTGGTACTGCTGCTGGTAGAGCTGGTCACGGTGGAAGTGGCT

AGTGGACCCGCAGCTCACGC

Figure 41a-b TTTAGTTGAAGAAGCACCCTTTCTGGGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATTCCATAGC AATAGATGCCTAACCCCAGAAAGGGTGCTTCTT
Figure 41a-b CAGCATCTCTGCATTCCTCAGAAGTGGTCTTTAAGATAGTCATCTGGTTTTCAGGCACTTCAAATGTACTCTTC AAGGCCACTTCTGAGGAATGC

Figure 41a-b TTTAGTTGAAGAAGCACCCTTTCTGGGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATTCCATAGC AATAGATGTCTAAGCCCAGAAAGGGTGCTTCTT
Figure 41a-b TTTAGTTGAAGAAGCACCCTTTCTGGGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATTCCATAGC AATAGATGCATAAGCCCAGAAAGGGTGCTTCTT
Figure 41a-b TTTAGTTGAAGAAGCACCCTTTCTGGGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATTCCATAGC AATAGATGCGTAAGCCCAGAAAGGGTGCTTCTT
Figure 41a-b CAGCATCTCTGCATTCCTCAGAAGTGGTCTTTAAGATAGTCATCTGGTTTTCAGGCACTTCAAATGTACTCTTC AAGAGCACTTCTGAGGAATGC

Figure 41a-b TTTTGTAATGAAGCATCTGATACCTGGACAGATTTTCCACTTGCTGTGCTAAAAATCCCACAAGTATTTGCAGA AGTGGAAAATCAGTCCAGGTATCAGATGCTTCA
Figure 41a-b CAGCTATGGAATGTGCCTTTCCTAAGGAATTTGCTAATAGATGCCTAAGCCCAGAAAGGGTGCTTCTTCAACTA CAATTTCCTTAGGAAAGGCAC

Figure 41a-b TTTAGTTGAAGAAGCACCCTTTCTGGGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATTCCATAGC AATAGATGCCTAAGCTCAGAAAGGGTGCTTCTT
Figure 41a-b TTTAGTTGAAGAAGCACCCTTTCTGGGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATTCCATAGC AATAGATCCCTAAGCCCAGAAAGGGTGCTTCTT
Figure 41a-b CAGCATCTCTGCATTCCTCAGAAGTGGTCTTTAAGATAGTCATCTGGTTTTCAGGCACTTCAAATGTACTCTTC AAGACCACTGCTGAGGAATGC

Figure 41a-b GCTAATAGATGCCTAAGCCCAGAAAGGGTGCTTCTTCAACTAAAATACAGGCAAGTTTAAAGCATTACATTACG AAGAAGCCCCCTTTCTGGGCTTAGGC

Figure 41a-b TGAAGAAGCACCCTTTCTGGGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATTCCATAGCTGCCAG ATAGATGCCTAACCCCAGAAAGG

Figure 41a-b CAGCATCTCTGCATTCCTCAGAAGTGGTCTTTAAGATAGTCATCTGGTTTTCAGGCACTTCAAATGTACTCTTC TTAAAGGCCACTTCTGAGGAATGC

Figure 41a-b TGAAGAAGCACCCTTTCTGGGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATTCCATAGCTGCCAG ATAGATGTCTAAGCCCAGAAAGG

Figure 41a-b TGAAGAAGCACCCTTTCTGGGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATTCCATAGCTGCCAG ATAGATGCATAAGCCCAGAAAGG

Figure 41a-b TGAAGAAGCACCCTTTCTGGGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATTCCATAGCTGCCAG ATAGATGCGTAAGCCCAGAAAG

Figure 41a-b CAGCATCTCTGCATTCCTCAGAAGTGGTCTTTAAGATAGTCATCTGGTTTTCAGGCACTTCAAATGTACTCTTC TTAAAGAGCACTTCTGAGGAATGCA

Figure 41a-b TTTTGTAATGAAGCATCTGATACCTGGACAGATTTTCCACTTGCTGTGCTAAAAATCCCACAAGTATTTGCAGA GGAAAATCAGTCCAGGTATCAGATGCTT

Figure 41a-b TGAAGAAGCACCCTTTCTGGGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATTCCATAGCTGCCAG AAGGAAATTGCTAATAGATGCCTAAGCCCAGAAAGGGT
Figure 41a-b CAGCTATGGAATGTGCCTTTCCTAAGGAATTTGCTAATAGATGCCTAAGCCCAGAAAGGGTGCTTCTTCAACTA TTTCTGAGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATT
Figure 41a-b TGAAGAAGCACCCTTTCTGGGCTTAGGCATCTATTAGCAAATTCCTTAGGAAAGGCACATTCCATAGCTGCCAG ATAGATCCCTAAGCCCAGAAAGG

Figure 41a-b CAGCATCTCTGCATTCCTCAGAAGTGGTCTTTAAGATAGTCATCTGGTTTTCAGGCACTTCAAATGTACTCTTC TTAAAGACCACTGCTGAGGAATGCA

Figure 41a-b CTAATAGATGCCTAAGCCCAGAAAGGGTGCTTCTTCAACTAAAATACAGGCAAGTTTAAAGCATTACATTACGT AGAAGCCCCCTTTCTGGGCTTAGG
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3. Results

3.1. Predicting prime editing efficiency in a limited form

3.1.1. High-throughput evaluation of PE2 efficiency

To conduct a comprehensive analysis of PE2 efficiencies on a large scale, we adapted
and refined a paired library method that has been previously employed by our team and others to
investigate the activities and outcomes of Cas12a and Cas9 across thousands of target
sequences’~!1162%-32 We constructed a lentiviral plasmid library, referred to as Library-1, derived
from a collection of oligonucleotides. This library comprised 48,000 pegRNA-target sequence
pairs, encompassing 2,000 distinct target sequences each paired with 24 different combinations of
PBS and RTTs (Figure ).

PBS RT template

H —— Six PBS lengths
Library 1 e — (7,9, 11,13, 15, 17)
1) GACAGCGCAAACTTCTCACC : )

2) GCACATCTTCCATCTCCATT = FONERT it
—— gths
. : (10, 12, 15, 20)
: 1l
2,000) GGCACCGCAGAAGCTGATAT [ a— 24 combinations of PBS
: ___ . and RT template
3 Editing position
2,000 24, combinations of
il s X PBS and RT templates = 48,000 pegRNAs
19 nt 1024nt  7-17nt _7nt _ 18nt 43-47nt
——
m Scaffold : RTT :- BC - Protospacer PAM _
pegRNA Wide target sequence
200 X 1pes X 4ARTtemplates = 6,800 pegRNAs

guide sequences

PBS RT template . .
Editing positions

Transversion at position +1, +2,
... +8, 49, +11, and +14

Library 2
1) GGAGGTGGAGCTGCTCTACG

2) GTGGCTGCAGAAGCGCATCG
3) GTGTCCTTACCAAGCGTGAG

Editing types

1-, 2-, 5-, 10-nt insertion,
deletion, and substitution at
position +1

200) GCGCCGCTACAAAGCTTTGG

Two-position editing
Transversion at position
142, 145, 1+10, 2+3, 2+5,
2+10, 5+6, 5+10 and 10+11

(N

{3 Editing positions
Figure 1. Construction of libraries 1 and 2. In Library-1, a total of 2,000 guide sequences were

20



paired with 24 distinct combinations of primer binding site (PBS) and reverse transcriptase (RT)
template lengths, leading to the creation of 48,000 pegRNAs. Meanwhile, in Library-2, 200 guide
sequences were combined with 34 unique PBS and RTT pairings, each designed to induce specific
edits at various positions, resulting in a total of 6,800 pegRNAs.

To examine how variations in PBS and RTT lengths influence outcomes, the library was
designed with 24 different combinations of these lengths—six PBS lengths (7, 9, 11, 13, 15, and
17 nucleotides) combined with four RTT lengths (10, 12, 15, and 20 nucleotides). This resulted in
24 distinct combinations for each of the 2,000 guide and target sequence pairs, aiming to induce a
G-to-C transversion mutation at the +5 position from the nicking site (position 22 within the target
sequence). This configuration produced 48,000 pegRNA-target sequence pairs in total (24
combinations x 2,000 pairs; see Figure , Library-1).

Additionally, to assess the impact of factors other than PBS and RTT lengths on PE2 efficiency,
we created a second library, termed Library-2. This library contained 6,800 pairs of pegRNA
sequences and their corresponding targets, specifically designed to evaluate variables such as
editing positions, the type of edits (insertion, deletion, or substitution), and the locations for two-
position edits (refer to Figure , Library-2). The numbering system used to describe the pegRNA
and target sequences in this study is illustrated in Figure 2.

RT template
1 4 +19 +20
3 1 A~ ,
b N
Edit
(A) s (1)1 2 16 17 18 19 20\ PAM 36 37
5 21 22 23

3N / 5

Figure 2. Schematic of the position of pegRNA and target in this study. The numbering of
positions within the pegRNA and the cDNA produced from the pegRNA begins at the Cas9
nickase's nicking site. For the broader target sequence, positions are assigned starting from the
20th nucleotide upstream of the PAM, which is labeled as position 1, while the nucleotides in the
NGG PAM are labeled as positions 21 through 23.

HEK293T cells were infected with lentivirus produced from the plasmid library to create a cell
library at a multiplicity of infection (MOI) of 0.3, with non-infected cells eliminated via
puromycin selection (refer to Figure 3). Each cell in this library harbored a pegRNA and the
corresponding integrated target sequence. The cells were then transfected with a plasmid encoding
PE2, and blasticidin was used to remove cells that were not successfully transfected. Four and a
half days post-transfection, genomic DNA was extracted from the cells, and the target sequences
were amplified through PCR.
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Oligonucleotides Plasmid library Lentiviral library
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Figure 3. Schematic representation of the experimental procedure.

The amplicons underwent deep sequencing to assess the mutation rates triggered by PE2.
Sanger sequencing revealed that 8.5% (12 out of 142) of the plasmid library copies contained at
least one mutation within the guide sequence, scaffold, PBS, RTT, or target sequence regions
(Table 5a). These mutations likely resulted from errors introduced during the synthesis of
oligonucleotides and PCR amplification. Additionally, when using lentiviral vectors for high-
throughput assessments, distant elements can sometimes rearrange or shuffle’3-*°, The uncoupling
rate between the pegRNA-encoding and barcode-target sequences in the cell library was found to
be 4.2% (Table 5b), which is consistent with previously reported rates'>33-3¢, Since prime editing
is unlikely to occur with these mutated or uncoupled sequences, the observed PE2 efficiency
would be approximately 87% of the actual PE2 efficiency (i.e., if the actual PE2 efficiency is 25%,
the observed efficiency would be 25% x 87% = 22%)).

Table 5. Error rates in the plasmid and cell library
(a) Error rate in the plasmid library

Copies without any errors 130
Copies containing any error in the pegRNAs or target sequence regions 12
Copies with shuffling 0
Error rate in the plasmid library 12/142 = 8.5%
(b) Lentiviral vector-induced shuffling efficiency
Initial template Observed shuffling efficiency by deep sequencing
Plasmid library 11/1,101 (1.00%)
Genomic DNA from cell library 27 /520 (5.19%)

Lentiviral vector-induced shuffling (%) 5.19% - 1.00% = 4.2%

(a) The error rates in the copies in the plasmid library were evaluated by Sanger sequencing. (b) The
lentiviral vector-induced shuffling frequency was evaluated using deep sequencing. Given that the
PCR used for the deep sequencing sample preparation induces shuffling, the shuffling efficiency
observed in the plasmid library using deep sequencing was subtracted from the total observed
shuffling frequencies in the cell library".
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We identified a strong correlation between replicates transfected by two different researchers
(Figure 4a). This consistency led us to merge the data from these replicates for further analysis.
These findings align with the robust correlation observed in our prior experiments involving Cas9
711 Subsequently, we assessed the relationship between editing efficiencies measured at integrated
sequences using a high-throughput method and those at endogenous sites measured through
individual tests. Our analysis of a previously published dataset of PE3 efficiencies from the initial
study1 revealed a notable correlation (Figure 4b; Spearman’s R = 0.59, Pearson’s r = 0.69).
Additionally, we created six new datasets evaluating PE2 efficiencies at 20 to 31 endogenous sites,
selected randomly from the 54,836 pegRNAs in libraries 1 and 2. During these experiments, PE2
and pegRNA plasmids were transiently transfected. We found a consistent and high correlation
between PE2 efficiencies at endogenous sites and their corresponding integrated target sequences
(Figure 4c¢). The average PE2 efficiency with libraries 1 and 2 was 9.9%, which is comparable to
the 9.5% efficiency recorded in the initial s'cudy1 (Figure 4d).
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Figure 4. High-throughput evaluation of PE2 activity. (a) The correlation of PE2 efficiencies
was evaluated by comparing results from separate transfections with the PE2-encoding plasmid.
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three times the dot size). The analysis included 49,301 pegRNA and target sequence pairs. (b-c)
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Comparisons of PE2 efficiencies at endogenous sites versus corresponding integrated target
sequences. Data were sourced from the initial study (b, ref.' , 36 pegRNA and target sequence
pairs in HEK293T cells) and from newly generated PE2-Endo data in this study (c). (d) The
distribution of PE2 efficiencies was compared to those from the initial study. The number of
pegRNAs analyzed were 49,301 (from this study’s libraries 1 and 2) and 186 (from the initial
study?).

3.1.2. The correlation between SpCas9 and PE2 activities
In prime editing, SpCas9 must bind to the target site and create a single-strand break'.
Given this requirement, a significant correlation between the activities of PE2-pegRNA and Cas9-
sgRNA is anticipated. Our previous research assessed the indel frequencies linked to Cas9-sgRNA
at 2,000 different target sites’. When we analyzed the correlation between PE2-pegRNA and Cas9-
sgRNA activities at these same sites, we observed a moderate level of correlation, as expected
(Figure 5).
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Figure 5. The correlation between SpCas9 indel frequencies and PE2 efficiencies. To reduce the
impact of the length of PBS and RTT, the pegRNA with the highest efficiency out of 24 different
PBS and RTT length combinations was selected for each target sequence. The color intensity of each
dot represents the density of neighboring dots (i.e., dots within a radius three times the dot's size).
This analysis involved 1,956 pegRNA and target sequence pairs.

The moderate correlation, rather than a strong one, can be attributed to the additional steps
involved in prime editing that are not directly related to the indel formation facilitated by Cas9.
These steps include the reverse transcription of pegRNA, cleavage of the 5' flap, and subsequent
DNA repair processes. We will discuss these factors in more detail below. The efficiency of both
PE2 and Cas9 nucleases generally exhibited uniform distributions, though high-efficiency
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instances were relatively rare (Figure 6). Additionally, while PE2 efficiencies exhibited a slight
bimodal distribution—with one mode indicating very low editing activity (below 2%) and another
around 25% —Cas9 efficiencies did not display this pattern. When considering all pegRNAs across
the 24 different PBS and RTT length combinations, the frequency of pegRNAs tended to decline

as PE2 efficiency increased.
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Figure 6. Distribution of indel frequencies caused by Cas9 and efficiencies of PE2. The
histograms (left) and ranked scatter plots (right) display the distribution of SpCas9-induced indel
frequencies (a) and PE2 efficiencies (b, ¢) across 1,956 target sequences. (b) The pegRNA with the
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highest efficiency among the 24 different PBS and RTT length combinations was selected for each
target sequence. (c) All pegRNAs, considering all 24 PBS and RTT length combinations, were
included in the analysis.

3.1.3. Impact of PBS and RTT lengths on PE2 efficiency

The efficiency of prime editing at a specific target site is influenced by the lengths of the
PBS and RTT regions in the pegRNA, with various combinations potentially affecting the overall
efficiency!. To investigate this, we examined how different lengths of PBS and RTTs impacted
PE2 efficiency across 2,000 target sequences. Our analysis revealed that the average editing
efficiencies across the different PBS and RTT lengths followed a unimodal distribution. The
highest average efficiency of 13.4% was achieved using pegRNAs with an 11- to 13-nt PBS and a
10- to 12-nt RTT (Figure 7a-c). When categorizing pegRNAs as poorly performing if their PE2
efficiency was below 5%, we found that 28% to 81% (with an average of 43%) of pegRNAs fell
into this category depending on the PBS and RTT lengths (Figure 7d). Conversely, 19% to 72%
(averaging 57%) of pegRNAs demonstrated PE2 efficiencies above 5% (Figure 7e).
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Figure 7. The impact of PBS and RTT length on PE2 efficiency. (a, d-¢) Heat maps display the
average editing efficiencies (a), and the frequencies of pegRNAs with PE2 efficiencies greater than
(d) or less than (e) 5% for different lengths of PBS and RTTs. (b-c) PE efficiencies were assessed
by varying the lengths of the PBS (b) or the RTT (c) while keeping the RTT (b) and PBS (c)
lengths fixed at 12 nt and 13 nt, respectively.
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Our findings indicate that the ideal combination of PBS and RTT lengths varies by target
sequence, consistent with previous studies in human cells' and plants®’. To further explore this, we
assessed how often each PBS and RTT length combination resulted in the highest editing
efficiencies for specific targets. These results also followed a unimodal distribution, with the most
frequent high efficiencies observed using a 9- to 13-nt PBS and a 10- to 12-nt RTT (Figure 8a).
Previous investigations into the effect of PBS and RTT lengths on editing efficiency had not
clarified whether these factors operated independently. Our extensive dataset analysis revealed that
these parameters are indeed independent (p = 0.25 by Chi-square test; Figure 8b-c).
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Figure 8. The ideal pairing of PBS and RTT lengths. (a) The heat maps illustrate the
frequencies of different PBS and RTT length combinations that produced the highest editing
efficiencies for each target sequence. (b-c) The correlation between PBS lengths and RTT lengths
was analyzed by selecting the most efficient combination of these two parameters for each target
sequence. Target sequences were excluded from the analysis if all 24 PE2 efficiencies (resulting
from the 24 PBS and RTT length combinations) were below 10%, in order to reduce random errors
and enhance comparison accuracy. No significant association was found between PBS and RTT
lengths (p = 0.25, Chi-square test). Each dot represents n = 651 target sequences.

We also compared the average editing efficiencies of the most effective pegRNAs for each
target sequence based on PBS and RTT lengths. Interestingly, the highest average efficiencies were
achieved with shorter PBS and RTT lengths (e.g., a 7-nt PBS and a 10- to 12-nt RTT), with
efficiency decreasing as the lengths increased (Figure 9). Based on these results, we recommend
initially testing PE2 efficiencies with a 13-nt PBS and a 12-nt RTT, followed by further testing
with a 9- to 15-nt PBS and a 10- to 15-nt RTT. This approach aligns with the length
recommendations from the initial study', which suggested approximately a 13-nt PBS and a 10- to
16-nt RTT based on evaluations from five target sequences.
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editing efficiency for each specific target.

In our analysis of pegRNAs featuring a 13 nt PBS and identical target sequences, we noted that
variations in RTT lengths yielded relatively high correlations in their efficiencies (Figure 10). This
indicates that additional variables may influence the performance of PE2 beyond just the template
length.
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3.1.4. Factors influencing PE2 efficiency

To systematically analyze factors affecting PE2 efficiency, we employed Tree SHAP?,
using 1,766 features. These included metrics such as melting temperature, GC counts, GC content,
and minimum self-folding free energy of various pegRNA regions, along with PBS and RTT
lengths, DeepSpCas9 scores (which predict Cas9 nuclease activity at specific target sequences)’,
and direct sequence information like mono- and dinucleotides (Figure 11). Features associated
with high and low prime editing efficiencies were categorized as advantageous and
disadvantageous, respectively.

Feature
rank

DeepSpCas9score 1
GC counts in PBS

Tm of PBS ¥

Number of UU in the PBS + RT template region

Tm of target DNA region corresponding to the RT template 1
T at position 16 of wide target sequence !
Length of the PBS + RT template region
C at position 17 of wide target sequence
Length of the RT template

o © o N O g~ W N

e

G at position 24 of wide target sequence

GC contents in PBS

Length of PBS

CG at position 21 and 24 of wide target sequence 13

=
Feature value

1---I-....I.IIlII|

e
N

Tm of the wide target sequence 14

A at position 21 of wide target sequence 15 High
MFE of pegRNA 16
G at position 27 of wide target sequence 17
C at position 2 of wide target sequence 18
G at position 1 of wide target sequence 19

CA at position 18 and 19 of wide target sequence 20 Low

-0.1 0.0 01 000 002 004
SHAP value Mean absolute SHAP value

(impact on model output) (Average impact)
Figure 11. Features influencing PE2 efficiency identified by Tree SHAP analysis. In the
summary violin plot (left), each target sequence is depicted as a dot on the x-axis, where the
position reflects its SHAP value. High SHAP values are associated with elevated prime editing
efficiencies, while low SHAP values correspond to reduced efficiencies. The color of each dot
indicates the magnitude of the relevant feature for that target sequence, with red and blue denoting
high and low values, respectively. The term "Tm" refers to the melting temperature. The dataset
includes 38,692 pegRNA and target sequence pairs, represented by the number of dots in the
summary plot.

The most influential feature was the DeepSpCas9 score (beneficial), consistent with the
observed correlation between SpCas9-induced indel frequencies and PE2 efficiencies. GC counts
within the PBS region (beneficial) ranked second in importance, and GC content in PBS
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(beneficial) was the 11" most significant feature. Higher GC content in the PBS contributes to

stronger binding of the pegRNA to the target DNA, essential for effective reverse transcription.
Systematic evaluation revealed that increased GC content and GC counts in the PBS positively
correlated with higher PE2 efficiencies (Figure 12).
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Figure 12. Effect of GC in PBS and RTT on PE2 efficiency. The pegRNAs were categorized
based on the GC content (a) and GC count (b) within the PBS and RTT regions. For all groups, the
PBS length was fixed at 13 nt, and the RTT length was 12 nt.

When GC content in the PBS was below 30%, PE2 efficiencies were generally low across all
PBS lengths, though longer PBS sequences (e.g., 15 nt) showed relatively better efficiency.
Conversely, when GC content exceeded 60%, shorter PBS sequences (7 to 11 nt) yielded higher
PE2 efficiency. Based on these observations, we recommend using a 15-nt PBS for GC contents
below 40% and a 9-nt PBS for GC contents above 60% (Figure 13). The impact of GC content
and counts in the RTT on PE2 efficiency was minimal, with extreme GC values generally leading
to lower efficiencies. Accordingly, these features were not among the top 40 most significant.
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Figure 13. Effect of GC contents in PBS and PBS lengths on PE2 efficiency. The pegRNAs
were categorized based on their GC content and PBS lengths. The efficiency of PE2 was then
assessed for these categories across all RTT lengths tested.

Other notable features included the melting temperature of the PBS (beneficial) and the melting
temperature of the target DNA region corresponding to the RTT (detrimental if above 35°C). A
higher melting temperature of the PBS likely correlates with a higher GC count, enhancing the
pegRNA’s binding to the target DNA and facilitating reverse transcription. We observed that
higher PBS melting temperatures corresponded with increased PE2 efficiencies (Figure 14a).
However, excessively high melting temperatures of the target DNA region could impede the
conversion of the 3' flap into a 5' flap, crucial for integrating the reverse-transcribed DNA into the
genome. We found that PE2 efficiency decreased slightly when the melting temperature of this
region exceeded 35°C, though the difference was not statistically significant (Figure 14b). The
number of UUs in the RT + PBS region (detrimental) was another important factor. High numbers
of Ts in pegRNA-encoding sequences result in many Us in the pegRNAs, potentially reducing
RNA polymerase I1I transcription efficiency®3® and leading to lower intracellular pegRNA levels.
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Additional significant features included the presence of T at position 16 (detrimental) and C at
position 17 (beneficial) in the target sequence (where Position 1 is the 20th nucleotide from the
NGG PAM). A T at position 16 has been associated with reduced Cas9 nuclease activity*>*+* and
lowers GC counts in the PBS, which impairs reverse transcription, especially with shorter PBS
lengths. Conversely, a C at position 17 has been linked to increased Cas9 activity and higher GC
counts in the PBS, enhancing reverse transcription. The RT-PBS lengths, as well as the RTT length
(only detrimental when long), were also significant factors, as discussed earlier. The fixed type of
prime editing (+5 G to C) would replace a G at position 22, which would alter the PAM sequence
and block the re-binding of Cas9 to the target DNA. However, if the nucleotide at position 24 is a
G, it could create a GG PAM sequence across positions 23 and 24. This change could enable Cas9
to re-bind to the target site, potentially resulting in the nicking of the reverse-transcribed DNA
strand prior to the repair of the complementary strand’!!41-43,

3.1.5. Influence of editing type and position on PE2 efficiency

We previously assessed PE2 efficiency for G to C conversions at a fixed position (+5
from the nicking site) across 2,000 target sequences using Library-1. In our extended analysis, we
explored a broader range of genome edits using Library-2, which included 6,800 pegRNA-target
sequence pairs (200 target sequences x 1 PBS/target sequence x 34 RTTs/target sequence). This
analysis aimed to evaluate how different types of editing (such as insertions versus deletions
versus substitutions), the position of the edit, and the number of nucleotides inserted or deleted
affect PE2 efficiency. Our initial findings revealed that, generally, the efficiency of generating 1-bp
insertions, deletions, and substitutions could be ranked as follows: insertions > deletions >
substitutions, with the difference between insertion and substitution efficiencies being statistically
significant (Figure 15). We then examined the impact of varying the number of inserted
nucleotides and discovered that while 1-bp and 2-bp insertions yielded similar efficiencies, the
efficiency dropped for 5-bp insertions and decreased even further for 10-bp insertions (Figure 15).
Similarly, for deletions, the efficiency for 1-, 2-, and 5-bp deletions was comparable, whereas 10-
bp deletions showed a marked reduction in efficiency.

32



D
o

- ab bc ab a ¢ d 60
< 9 — — a b
S > 40 g
> > ~
1< 2 2 40
(] [} c .
8 E;::) 20 ‘g ::
% ) % 20 L E
L
* S Q 0(\ * z YS~ i«@ o 0 = il
& &F S vee 0@ SN 1 2 5
& ¥ & Yo YYQ‘OQ ‘
@ N Length of deletion
Type of editing Inserted sequence v (nt)

Figure 15. Prime editing efficiency depending on edit type. (a) PE2 efficiencies for single-base
insertions, deletions, and substitutions. (b) Impact of the type and quantity of inserted nucleotides
on PE2 efficiency. (c) Influence of deletion length on PE2 efficiency. Editing was targeted at
position +1 relative to the Cas9 nickase's nicking site, with a PBS length of 13 nt. The total length
of the RTT's left and right homology arms was 14 nt.

We also investigated how the identity of substituted nucleotides influenced PE2 efficiency.
Testing all possible 1-bp substitutions at position +1 from the nicking site (which is between
positions 17 and 18 in the target sequence) showed that PE2 efficiencies varied slightly depending
on the substitution type, with C to T conversions achieving the highest efficiency and T to G
conversions the lowest (Figure 16).
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Figure 16. Effect of the type of substitutions on prime editing efficiency.

To understand these effects mechanistically, we analyzed the temporary base pairing between
the cDNA from the RTT and the complementary nucleotide in the PAM-opposite strand. The
efficiency rankings for various nucleotide pairings were as follows: T (cDNA) — G (PAM-
opposite) and G—T pairings > C-T and T—C pairings > C—A and A—C pairings > A—G and G-A
pairings. The significant differences between T-G/G-T pairings and A—G/G—A pairings suggest
that temporary base pairing between cDNA and the PAM-opposite strand affects PE2 efficiency.
Pairings involving identical nucleotides, such as T-T, G-G, C-C, and A—A, produced comparable
efficiencies for conversions like A to T and C to G (Figure 16a). Additionally, when examining
these conversions at different positions (+9, +11, and +14 from the nicking site), efficiencies
remained consistent across all tested positions (Figure 16b), supporting our findings at position
+1.

We also studied the effect of the edit position on 1-bp substitution efficiencies. Editing
efficiencies were generally similar across all positions from +1 to +14, with the exception of +3,
+5, and +6 (Figure 17a). The lowest efficiency was noted at position +3, though the cause is
unclear. The highest efficiencies were observed at positions +5 and +6, where the GG PAM is
located. If the PAM is not altered, Cas9 can re-bind to the target and nick the reverse-transcribed
DNA strand, which reduces PE2 efficiency. This PAM editing effect was also evident in 2-bp
substitution efficiencies. Editing efficiencies were higher when one or both nucleotides in the PAM
(positions +5 and +6) were edited (e.g., at positions +1 and +5, +2 and +5, +5 and +6) compared to
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when the PAM remained intact (e.g., at positions +1 and +2, +1 and +10) (Figure 17b). These
results suggest that employing SpCas9 variants with different PAM specificities could enhance

PE2 efficiency for certain targets.
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Figure 17. Impacts of editing type and location on PE2 efficiency. (a) The influence of editing
location on PE2 efficiency for single-base transversion substitutions. The positions on the x-axis
represent distances from the nicking site. (b) The effect of editing position on prime editing
efficiency for single-base transversion substitutions at two distinct locations. (¢) Frequency
distribution of partial editing based on the separation between the two editing sites mentioned in
(b). (d) A heatmap illustrating the average occurrence rates of partial (1 nt) and full (2 nt) edits as

outlined in (b).

Interestingly, up to a median of 20% of sequences with at least one intended edit contained only
a single edit (Figure 17¢-d). Partial editing was more common at positions further from the
nicking site and increased as the distance between the two editing sites grew.

3.1.6. Computational models that predict PE2 efficiencies

We aimed to create a computational model to predict PE2 efficiencies for various target
sequences using 24 distinct pegRNAs with differing PBS and RTT lengths. Building on our
previous success with deep learning models for predicting Cas12a and Cas9 efficiencies”!-*, we
applied similar techniques to develop a model for PE2. For this purpose, we utilized data from
Library-1, which contained 48,000 pegRNA-target sequence pairs. This data was divided into two
subsets: HT-training (38,692 pairs) and HT-test (4,457 pairs), ensuring no overlap of target
sequences between the two groups. Using the HT-training subset, we trained our model to predict
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PE2 efficiencies for 24 pegRNAs with varying PBS and RTT lengths, focusing on G to C

conversions at position +5 (Figure 18).
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Figure 18. Development of computational models for predicting PE2 efficiencies. (a) Cross-
validation of predictive models based on different machine learning approaches. Each point
represents the Spearman’s correlation derived from five-fold cross-validation of predicted PE2
efficiencies versus observed values (total, n = 5). (b) Comparison of DeepPE's performance with
other predictive models using the HT-Test dataset. The bar graph displays Spearman’s correlation
between observed PE2 efficiencies and predicted scores. Error bars indicate 95% confidence
intervals, with the analysis based on n = 4,457 pegRNA and target sequence pairs. For brevity,
statistical comparisons are shown only between the top-performing model and the next best model;
NS indicates no significant difference; statistical significance was tested using two-sided Steiger’s
test. (¢) Assessment of DeepPE with the HT-Test dataset (n = 4,457 pegRNA and target sequence
pairs). Dot colors reflect the density of neighboring points (i.e., points within a radius three times
the size of the dot).

Our cross-validation results indicated that the deep learning approach performed the best,
though its advantage over L1 regression, the second most effective method, was not statistically
significant (Figure 18a). Testing on the HT-test dataset showed that DeepPE, our deep learning
model, slightly outperformed other conventional machine learning models (Figure 18b-c),
consistent with our earlier findings for Cas12a and Cas9”-*°. Evaluation using six independent
replicates at endogenous sites yielded Spearman and Pearson correlation of R =0.67 to 0.77
(average 0.73) and r = 0.63 to 0.74 (average 0.69), respectively (Figure 19), demonstrating
DeepPE's reliability in predicting PE2 efficiencies in endogenous site.
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Figure 19. Benchmark of DeepPE using six datasets. Three biological replicates (BR1, BR2,
and BR3) were evaluated in HEK293T cell and each biological replicate had one, two, or three
technical replicates (TRs).

Further testing of DeepPE in HCT-116 (a colorectal carcinoma cell line) and MDA-MB-231 (a
human breast adenocarcinoma cell line) on novel target sequences confirmed its robust
performance across biological and technical replicates (HCT-116: R = 0.70 to 0.77 (average 0.74),
r=0.57 to 0.61 (average 0.59); MDA-MB-231: R =0.76 to 0.81 (average 0.79), r = 0.62 to 0.65
(average 0.64)) (Figure 20).
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The correlation between predicted vs. measured PE2 efficienciesin HCT116 and MDA-MB-231 cells

HCT-BR1-TR1 HCT-BR1-TR2 HCT-BR2-TR1 HCT-BR2-TR2
R=0.70 R=0.72 R=0.77 R=0.75
r=0.58 r=0.57 r=0.61 r=0.60
n=72 n=75 n=75 n=75
[
<]
o
12}
g ¢
B 20 30 20 30 20 30 0 10 20 30
el
g MDA-BR1-TR1 MDA-BR1-TR2 MDA-BR2-TR1 MDA-BR2-TR2
w 60 60 60
o R=0.76 R=0.80 R=0.80 R=0.81
] r=0.62 r=0.64 r=0.65 r=0.65
a n=71 n=73 49 n=74
40 60 60 0 20 40 60 0 20 40 60

Measured PE2 efficiency (%)
Figure 20. Evaluation of DeepPE using HCT-116 and MDA-MB-231 cells. Eight datasets of
PE2 efficiencies were generated using HCT-116 (abbreviated as HCT) and MDA-MB-231
(abbreviated as MDA) cell lines at lentivirally integrated target sequences that were never used for
the training of DeepPE. Two biological replicates (BR1 and BR2) per cell line were evaluated and
each biological replicate had two technical replicates (TR1 and TR2).

We also evaluated the effectiveness of DeepPE in selecting the optimal PBS and RTT lengths
out of 24 possible combinations for any given target sequence. The use of DeepPE led to an
average absolute PE2 efficiency improvement of 1.2% and a relative efficiency improvement of
8.3% compared to initial recommendations based on a 13-nt PBS and a 12-nt RTT (Figure 21).
DeepPE's advantage extends to selecting the most efficient target sequence among multiple

options for a given edit.
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Figure 21. Performance comparison of DeepPE and other approaches. “13-nt PBS & 12-nt
RTT” refers to choosing this combination of lengths regardless of the target sequence. Initial study
recommendations A and B are based on using a 13-nt PBS and a 12-nt RTT (RTT) and avoiding a
G as the last templated nucleotide by changing the RTT length as necessary. In recommendation A,
if the last templated nucleotide is a G, then a 10-nt, rather than a 12-nt, RTT is chosen. If after this
change the last templated nucleotide is again a G, then a 15-nt RTT is chosen. In recommendation
B, if the last templated nucleotide is a G, then a 15-nt, rather than a 12-nt, RTT is chosen. If after
this change the last templated nucleotide is again a G, then a 10-nt RTT is chosen. As controls, we
also selected pegRNAs randomly (Random 1 and Random 2). Statistical significances determined
by using the two-sided paired t-test are shown. The number of target sequences n = 97 per group.

Additionally, we developed two more computational models using data from Library-2 to
predict PE2 efficiencies for various editing types and positions. The dataset was divided into Type-
training, Type-test, Position-training, and Position-test sets, ensuring no overlap of target
sequences (Methods). Random forest emerged as the most effective model for both type-based
and position-based predictions, though the differences from other frameworks were not
statistically significant (Figure 22a-b). Deep learning models showed limited performance, likely
due to the smaller dataset size. The random forest-based models PE_type and PE _position
demonstrated useful performance in predicting efficiencies (PE_type: R =0.47, r = 0.48;
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PE position: R = 0.56, r = 0.56) (Figure 22c-d). Expanding the dataset to include more target
sequences and diverse pegRNAs may improve model performance.
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Figure 22. Development of PE_type and PE_position. (a-b) Cross-validation of predictive
models based on different machine learning methodologies. Each point in the plot corresponds to
the Spearman’s correlation comparing the actual PE2 efficiency with predictions obtained from
five-fold cross-validation (total, n = 5). Statistical comparisons are shown only between the top-
performing model and the second-best one; NS indicates no significant difference; comparisons
were made using a two-sided Steiger’s test. (c-d) Assessment of models for PE_type (c) and
PE_position (d).

PE_position prediction score

We offer a web tool at http://deepcrispr.info/DeepPE that provides predictions from DeepPE,
PE type, and PE_position for any given target sequence. By entering a target sequence, users
receive efficiency predictions for 57 pegRNAs, including 24 from DeepPE, 23 from PE_type
(covering various deletions, insertions, and substitutions), and 10 from PE_position (covering
substitutions at multiple positions).
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3.2. Predicting prime editing efficiency in various PE systems

3.2.1. High-throughput evaluation of PE2 efficiencies using four pairwise
libraries

To assess PE2 efficiencies on a large scale, we used lentiviral libraries that combined
pegRNA sequences with their corresponding target sequences (Figure 2) and introduced them into
HEK293T cells expressing PE2. We prepared four distinct libraries—Library-3, Library-4,
Library-5, and Library-6 (see Methods and Figure 23a). These libraries were transduced into
HEK?293T cells that also expressed prime editor proteins, and editing efficiencies were evaluated
through deep sequencing. The results from two independent experiments showed a high level of
correlation, with Pearson correlation of 0.90 and 0.92 for Library-3 and Library-4, respectively,
and Spearman correlation of 0.94 and 0.92 (Figure 23b).
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Figure 23. High-throughput assessment of prime editing efficiencies. (a) An overview of the
process for selecting pegRNAs in Library-4 is illustrated. Pathogenic or likely pathogenic
mutations, including substitutions, insertions, and deletions ranging from 1 to 3 base pairs, were
extracted from the ClinVar database. Target sequences were selected, and pegRNAs were designed
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with randomly assigned PBS and RTT lengths, ensuring a minimum RTT length based on the edit
position. Since the ClinVar database predominantly contains single nucleotide variants, the number
of pegRNAs designed for 2- and 3-bp edits was increased by decreasing the number of target
sequences for 1-bp edits and incorporating randomly generated 3-bp variants. (b) The correlations
between prime editing efficiencies observed in high-throughput experiments with Library-3 (left)
and Library-4 (right) are shown. The color of each point reflects the density of surrounding points.

3.2.2. Analyses of factors influencing prime editing efficiency
We explored how the length of the PBS affects editing efficiency using pegRNAs with
RTTs of 12 and 20 nucleotides. Our findings revealed that the highest average efficiencies were
achieved with 11-nt (13%) and 12-nt (8.5%) long PBSs (Figure 24a), supporting previous results,
though 12-nt PBSs had not been previously tested.
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Figure 24. Effect of PBS, RTT, edit position, and RHA. Heatmaps illustrating the mean
efficiencies for (a) PBSs with lengths ranging from 1 to 17 nucleotides and (b) RTTs spanning
from 5 to 35 nucleotides.

4 2



PBS length (nt)
1234567 8 91011121314 151617 Al

1
2
3 . !
4 : 510.69 0.78 0.59
5 0.66 1.55 1.14 0.86 1.47 1.26 (&l 1.33 1.47 0.97 0.72 0.82
6 0.88 1.14£J26]2.42 2.11 1.93 1.46 1.77 1.55 1.41 1.16 1.21
7 0.711.72 1.96 1.51 PRE] 1.54 1.73 1.95 1.85 1.56 1.04 1.13}
8 0.78 1.52 2.16 2.21 2.76 2.73 2.61 2.74 P44 2.07 1.63 1.66)
9 0.77 1.54 1.91 2.57 % 2.593.052.21 2.42 1.91 2.23
10 0.47 1.10 1.88 2.85 2.77 3.36 3.81 k-4 64 2.94 2.49 2.35|
1" 1.022.472.82 35 461k
12 0.09 0.46 1.40 2.34 3.42 3.95 5.27]4.65 3.60 2.90 2.49) |
13 4.91 ﬂ §
14 . <
<15 1.36 2.02 2.52 8,93 4.64 ABOLK:K] Pry
£ 16 1.05 1.912.76 492 2.283.18 E
o 17 0.76 1.63 2.50 455 2.92257281 ©
5 18 0.53 1.42 2,62 1 2.492.192.34) b
c 19 0.70 1.00 2.68 3.80 3.36 et
2 20 0.87 1.712.24 2.58 2.98 ; 2.532.07 1.94 LUl
= 21 0.76 1.29 1.88 2.413.16 . 258 1.96 1.94 -
= 22 0.53 1.58 1.90 2.36/3.38 3.46/8 1243204170 o
X ,; 1.151.77 310 : 2.20 1.96 1.86] S
24 1.18 1.78 1.57 2.63 3.09F} 2.392.07 1.60 1.63 2
25 0.96 1.78 2.25 2.79FN¥13.01 2.98 2.84 2.37 1.37 1.62 <
26 0.99 1.48 2.08PX2.72 2.90 2.71 2.52 1.81 1.44 1.05
27 0.75 1.88 2.28 2.05 2.81 2.44 PXEE1 2,50 2.06 1.38 1.53
28 0.75 1.11 2.23 2,07 2.20 2.04 4] 2.05 1.85 0.82 1.31
29 0.92 1.39 1.95 2.28 1.99 2.51PN(512.25 1.66 1.05 0.90)
30 0.72 1.09 1.76 2.04 X4 2.57 2.53 2.21 1.67 0.73 1.59
31 0.70 1.26 1.71 2.16 1.90 2.29 1 1.82 1.39 0.99 0.93
32 0.631.35 1.62 1.91 1.93 2.09pX#12.25 1.49 1.11 1.17
33 0.69 1.08 1.20 1.50XF11.89 1.90 1.93 1.10 1.05 0.91
34 1.45 1.54 1.52 1.95 K| 2.75 1.46 1.60 0.91 0.87,
35 1.09 1.53 2.51 X1 1.94 1.99 1.45 1.42 0.91 1.27,
36 52 1.01 1.80 1.28 2.62F K11 2.48 1.44 1.66 0.76 0.92
37 0.91 152 1.63 2.03F[] 1.48 1.16 1.20 0.75 1.28
38 0.90 1.47 1.31 PEE]2.21 2.27 1.37 1.10 0.74 0.7:
39 0.95FFX11.33 1.61 1.44 1.98 2.06 1.82 0.93 1.39

i
o

0.75 1.310.74 1.20 k] 1.68 1.06 0.91 1.79

All

Figure 25. Effect of PBS and RTT on prime editing efficiency. A heatmap depicting the average
prime editing efficiencies for various PBS and RTT lengths. In this map, yellow and green boxes
represent the maximum average efficiencies observed for each PBS length when evaluated across
all RTT lengths, and for each RTT length when tested with all PBS lengths, respectively.
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A similar trend was observed in the analysis with Library-4 (Figure 25). Based on these
observations, we recommend using an 11-nt PBS for RTTs of 12 nt or shorter and a 12-nt PBS for
longer RTTs. Further analysis of RTT length indicated that the highest prime editing efficiencies
were achieved with RTTs ranging from 10 to 14 nt in length (Figure 24b). This pattern was also
seen in the Library-4 data (Figure 25) and aligns with earlier studies. We also examined the impact
of editing position, noting that efficiency dropped sharply starting approximately 5 nucleotides
before the end of the RTT (e.g., with a 12-nt RTT, a significant drop began around position +7)
(Figure 24c). This suggests a need for a minimum length of the right homology arm (RHA).
Unlike PBS and RTT lengths, the influence of RHA length has not been widely studied !. Short
RHAs might favor the formation of a 3' flap over the necessary 5' flap for integrating edited
sequences into the genome (Figure 24d)".

When investigating RHA length requirements across different editing types and positions, we
found that 5-nt, 7-nt, and 9-nt RHAs were necessary for substitutions, insertions, and deletions,
respectively (Figure 26a-c). Similar requirements were noted in Library-4 (Figure 26d). Based on
these findings, we suggest using a minimum of 9-nt RHAs for all editing types and positions,
although 7-nt RHAs could suffice in some cases. Additionally, we observed that overall prime
editing efficiencies for substitutions were marginally higher compared to insertions and deletions,
though this difference was not statistically significant (Figure 26d). A comparable trend was noted
in prime editing at endogenous sites (Figure 26e).
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Figure 26. Effect of right homology arm length and the edit type on PE2 efficiency. (a-c)
Average prime editing efficiency as a function of RHA length for different types of edits:
substitution (a), insertion (b), and deletion (c). Editing positions are categorized as +1, +5, +12,
and +20. (d) A heatmap illustrating the average prime editing efficiencies for 1- to 3-bp
substitutions (Sub), insertions (Ins), and deletions (Del) across various RHA lengths. () Impact of
the edit type on prime editing efficiency at endogenous sites. Each point represents the efficiency
observed at a specific target sequence, with the total number of target sequences (n) = 13 for each
type of edit.
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We also evaluated how the number of edited nucleotides affects efficiency. Substitutions up to 3
nucleotides in length showed similar efficiencies, while those involving 4 to 10 nucleotides had
reduced efficiencies as the number of edited nucleotides increased (Figure 27a). Similarly,
efficiencies for insertions and deletions up to about 3 to 5 nucleotides were comparable, but
decreased for longer sequences (Figure 27b-c¢). This indicates that PE2 efficiencies generally
decline with an increase in the number of edited nucleotides, especially beyond three nucleotides.
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Figure 27. Impact of edit length of prime editing efficiency. (a) Influence of the number of base
pairs edited on prime editing efficiency, with error bars representing the 95% confidence intervals.
(b-c) Line graphs depicting the average prime editing efficiency for insertions (b) and deletions (c)
of varying lengths.

The optimal nucleotides at the final templated position for efficient prime editing were found to
be in the order: C > T > A > G, irrespective of editing type or RTT length (Figure 28).
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Figure 28. Impact of last templated nucleotide on prime editing efficiency. The heatmap
illustrates how the nucleotide at the last templated position influences the average prime editing
efficiencies. The pegRNAs from Library-4 were categorized based on RTT lengths and the type of
edits they encode. Each cell in the heatmap reflects the average efficiency of editing.
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We conducted SHAP analysis to identify key determinants of prime editing efficiency,
considering both with and without multicollinearity (Figure 29). The GC content of the PBS was
identified as the most critical factor, favoring higher GC counts and influencing the PBS length,
melting temperature (Tm), and the number of C and G nucleotides. The RHA length was the
second most significant feature, favoring longer RHAs (without multicollinearity) and higher Tm
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values (with multicollinearity), related to the GC content and count of the RHA. The DeepSpCas9
score at the target sequence was the third most important feature, consistent with previous studies
(Figure 11). Although we determined the optimal range for each feature, the values often varied
depending on other factors, complicating the manual design of efficient pegRNAs (Figure 30).
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3.2.3. Development of DeepPrime

Previously, our PE2-activity prediction models—DeepPE, PE type, and PE position
(Figure 18 and Figure 22)—were constrained by their training datasets, which limited their ability
to predict various types of editing, positions, and lengths of PBS and RTT. To address these
limitations, we utilized a comprehensive dataset from Library-4, which includes 288,793 pegRNA-
target sequence pairs covering 850 different PBS and RTT length combinations. This dataset spans
all edit types (substitutions, insertions, and deletions) across 1, 2, or 3 base pairs, and encompasses
editing positions from +1 to +30. This data was divided into two subsets: CV-train (n = 259,910)
and CV-test (n = 28,883), with no overlap in target sequences between the two sets. CV-train is 6.7
times larger than the dataset used for DeepPE and features a 35-fold broader range of PBS-RTT
length combinations (Figure 31a), 582-fold more editing type and position combinations (Figure
31b), and 30 times more target sequences.
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illustrate the quantity of pegRNA and target sequence pairs associated with each intended edit.
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We trained various machine learning and deep learning models using CV-train to predict PE2
efficiencies for different target sequences. Among the 15 algorithms tested, a convolutional neural
network (CNN) combined with a gated recurrent unit (GRU)(Figure 32a) outperformed all other
models, including the next best CNN with an attention module (P <9.3 x 10”-3 and 8.8 x 10"-3;
Steiger’s tests of Pearson’s and Spearman’s correlations) (Figure 32b-c). This model was named
DeepPrime. Analysis of how training dataset size affected model performance revealed that
accuracy stabilized once the dataset reached around 180,000 data points (Figure 32d-e).
Nonetheless, prediction accuracies for deletions and 3-bp edits were relatively lower, likely due to
their limited representation in the dataset despite our efforts to enrich it (Figure 23a).
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Figure 32. Development of DeepPrime. (a) Diagram illustrating the deep learning architecture
utilized for creating DeepPrime. GRU, gated recurrent unit. (b-c) Evaluation of machine learning
models for predicting prime editing efficiencies through cross-validation. Each point denotes the
Pearson’s (b) or Spearman’s correlation (c) between actual and predicted efficiencies from five-
fold cross-validation, with a total of 5 per analysis. Statistical comparisons between the top two
algorithms are presented using two-sided Steiger’s test. The bars and error bars represent the mean
correlation and their standard deviations, respectively. Algorithms include CNN, GRU, LSTM,
LightGBM, XGBoost, GBR, and RT. (d-e) The impact of model training on performance was
assessed using smaller training datasets created by random subsampling. The results are shown for
different edit types (d) and edit lengths (e), with y-axis values representing the averages from five-
fold cross-validation.
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To evaluate DeepPrime's effectiveness across different editing types, we analyzed its
performance on nine subsets of CV-test, each representing a specific edit type (1-, 2-, or 3-bp
substitutions, insertions, or deletions). The model demonstrated strong Pearson (r) and Spearman
(R) correlation, ranging from 0.76 to 0.89 for Pearson and from 0.70 to 0.88 for Spearman (Figure
33a). Overall, DeepPrime achieved a Pearson correlation of 0.84 and a Spearman correlation of
0.86 when applied to CV-test across all editing types (Figure 33b). The model's performance
varied by editing position, with Pearson correlations from 0.68 to 0.85 (average 0.79, median 0.80)
for positions +1 to +30 and Spearman correlations from 0.63 to 0.88 for positions +1 to +27, with
lower values from 0.47 to 0.58 for positions +28 to +30 (average 0.75, median 0.78) (Figure 33c).
These findings suggest that DeepPrime provides accurate predictions of prime editing efficiencies
across diverse editing types, lengths, and positions.
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Figure 33. Assessment of DeepPrime with CV-test as the evaluation set. (a-b) Dot colors were
assigned based on Kernel density estimation utilizing a Gaussian kernel. The CV-test dataset was
divided into either 9 subsets based on edit type and length (b) or 30 subsets according to edit
position (c) for model assessment. (¢) The Pearson’s and Spearman’s correlation between observed
and predicted PE2 efficiencies are represented by red and blue lines, respectively.

In previous high-throughput evaluations to identify the most efficient pegRNA for specific
edits®, DeepPrime's predictions correlated highly with experimental results (Figure 34a).
Furthermore, for 100 possible pegRNAs targeting a given edit, DeepPrime recommended the same
pegRNA that was experimentally validated. Additionally, when tested with PE2 efficiency data
from an independent prime editing study at endogenous sites !, DeepPrime showed high Pearson
and Spearman correlation of r = 0.74 and R = 0.74, respectively, demonstrating its effectiveness in
predicting PE2 efficiencies in endogenous contexts (Figure 34b).
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Figure 34. Assessment of DeepPrime using independent datasets. Previously recorded prime
editing efficiencies were utilized for evaluation, including data from integrated target sequences (a,
Jang et al.’) and endogenous sites (b, initial study by the Liu group on prime editing!).

3.2.4. Enhancing prime editing efficiency through optimized pegRNA scaffolds,
PAM co-editing, and PE variants

We investigated the impact of an enhanced sgRNA scaffold—a 5-nt longer loop with
TTTC instead of TTTT—on prime editing efficiency, drawing from research indicating improved
Cas9 activity with such modifications®. Using Library-5, we compared the efficiency of pegRNAs
with the standard scaffold versus those with the optimized scaffold. Results showed that optimized
pegRNAs outperformed conventional ones in 79% of tested pegRNA-target pairs (1,674 out of
2,132), yielding a significant 1.25-fold increase in average efficiency (Figure 35a). This suggests
that employing an optimized pegRNA scaffold can often boost prime editing performance.
Additionally, co-editing of the NGG PAM site along with the intended edit has been shown to
enhance editing efficiency !. We assessed the effects of such co-editing by utilizing pegRNAs with
all 15 possible types of PAM co-editing. This approach resulted in a 1.7 to 1.2-fold increase in
average prime editing efficiency, with the most substantial improvement observed when the NGG
PAM was altered to NAT (Figure 35b).
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Evaluation of PE2 efficiencies, comparing pegRNAs with conventional scaffolds versus those with
optimized scaffolds. (b) Impact of PAM co-editing on PE2 efficiency, where average prime editing
efficiencies with PAM co-editing are shown relative to those without it.

To extend the applicability of prime editing where NGG PAM sequences are scarce, we
developed two alternative PE2 variants: SpCas9-NG (NG-PE2)? and SpCas9-NRCH (NRCH-
PE2)*. Comparison of average prime editing efficiencies and nuclease-induced indel generation
across these variants revealed high correlations (Pearson’s r from 0.85 to 0.97 and Spearman’s R
from 0.75 to 0.89) (Figure 36a-e), indicating that the Cas9 variants and their associated PE
systems have compatible PAM recognition profiles. We further evaluated the performance of PE2,
NRCH-PE2, and NG-PE2 at target sequences containing 3-nt PAMs (NXXX, where X varies). We
defined a PAM as effective if it resulted in an average prime editing efficiency greater than 1%
seven days post-transduction of the pegRNA-target library (with optimized scaffold). The analysis
showed that 12 of 64 (19%) PAM sequences were effective for PE2, 30 of 64 (47%) for NRCH-
PE2, and 26 of 64 (41%) for NG-PE2 (Figure 36f-h). Overall, 35 out of 64 (55%) potential 3-nt
PAM sequences were usable by at least one of the PE2 variants.
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Figure 36. PAM compatibility analysis for PE2, NRCH-PE2, and NG-PE2. (a—¢) The
relationships between the activities of SpCas9 variants and PE2 modifications at target sequences
with identical PAM motifs are examined. This includes average indel frequencies induced by
SpCas9 variants and average prime editing efficiencies by PE2 variants across 64 different PAM
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sequences (NXXX, with X varying). The total number of PAM sequences analyzed is n = 64. (f~h)
Heatmaps displaying the average prime editing efficiencies achieved by PE2 (f), NRCH-PE2 (g),
and NG-PE2 (h) at target sequences with 64 distinct PAM sequences. PAM sequences yielding
average prime editing efficiencies exceeding 1% are highlighted in red.

The efficiency of prime editing can also be significantly improved by utilizing advanced prime
editors such as PE2max and PE4max?. PE4max combines the enhanced PE2max with MLH1dn,
an inhibitor of mismatch repair (MMR). Comparative analysis revealed strong correlations
between PE2 and PE2max (Pearson’s r = 0.91, Spearman’s R = 0.96) and between PE2 and
PE4max (r = 0.88, R = 0.96). PE2max and PE4max demonstrated 1.9-fold and 2.7-fold increases
in efficiency, respectively, compared to PE2 in HEK293T cells (Figure 37a-b). Prime editing
efficiency is cell-type dependent, likely due to variations in MMR component expression levels?. A
comparison of efficiencies in HEK293T cells versus other cell types—HCT-116, MDA-MB-231,
HeLa, A-549, DLD-1, and NIH-3T3—showed variable correlations (Pearson’s r from 0.63 to 0.89,
Spearman’s R from 0.80 to 0.93) (Figure 37c-i), highlighting the influence of cell type on editing

efficiency.

a b d e
o 5 100
gz w §2 - 2 >
= St S = S
gg o 58 55 i5 38
s x < = 3 a Sa
sx 40 guw SE £= %3
£ T ~Q © < s
~I 20 N T o~ < g
e &= oE a8 ik
0 0 20 40 60 80 100 Y = *
. 0 20 40 6_0_ 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
PE2 efficiency PE2 efficiency . ) "
in HEK293T (%) in HEK293T (%) ‘PE2 efficiency YF‘EZ efficiency Pv82max efficiency
f in HEK293T (%) in HEK293T (%) in HEK293T (%)
9
.. 1007 r=072 » 100 7 r=085 h o 1007 r=076 L 7 107 r=078
2 R=0.80 e R=0.91 3 g _ g _ =
G 80 = g S g = ; S R=0.83 §<80{ R=086 3
3L n=1619 - 8 _ n=1574 Y 3 /;80 n=1618 - é s n=1601 .
52 60 ’ 5 g 560 - 65 60 4
32 i< s 83 40
£z 40 £5 EQ40 EC
c ER c
a 2 0 Wz w20
s L e 3
0 s x5 70 ki 0 gy
5]
0 20 40 60 80 10 nz: 0 20 40 60 80 10f DZ: 0 20 40 60 80 100 0 20 40 60 80 100
PE4max efficiency NRCH-PE4max efficiency PE4max efficiency PE4max efficiency
in HEK293T (%) in HEK293T (%) in HEK293T (%) in HEK293T (%)

Figure 37. Comparison of prime editing types. (a-b) The relationship between prime editing
efficiencies achieved with PE2 and PE2max (a), as well as PE4max (b), at target sites with NGG
PAM sequences. (c—1) Comparisons of prime editing efficiencies between PE2, PE2max, PE4max,
and NRCH-PE4max in HEK293T cells versus other cell types, specifically at target sites with

NGG PAM sequences.

Moreover, while epegRNAs have been shown to enhance prime editing efficiency, the
magnitude of improvement varies with cell type and prime editor!. In HEK293T cells and A-549
cells, the use of epegRNAs increased average PE2max efficiencies by 1.5-fold in HEK293T cells
and by 4.1-fold and 0.89-fold for PE2max and PE4max, respectively, in A-549 cells (Figure 38).
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Figure 38. Comparison of prime editing outcomes with pegRNAs versus epegRNAs. (a—)
Correlations between prime editing efficiencies achieved with pegRNAs compared to epegRNAs.
(d-e) Average prime editing efficiencies are marked with red plus signs. (d) Statistical significance
is indicated through paired t-tests. Prime editing conducted with epegRNAs is denoted by
appending “-¢” to the prime editor’s name.

3.2.5. Development of DeepPrime-FT

Accurately predicting the efficiency of prime editing across different prime editors and
cell types can significantly aid in selecting the most suitable PE variant and pegRNA for diverse
experimental scenarios. To address this need, we have developed a set of computational models
designed to estimate prime editing efficiencies under various conditions. These models leverage
eighteen datasets encompassing prime editing efficiencies for PE2, PE2max, PE2max-e (PE2 with
epegRNAs), PE4max, PE4max-e (PE4max with epegRNAs), NRCH-PE2, NRCH-PE2max, and
NRCH-PE4max, across seven distinct cell lines (HEK293T, HCT-116, DLD-1, MDA-MB-231, A-
549, HeLa, and NIH-3T3). These datasets were created using Library-5 and were divided into
training and test sets. We then fine-tuned the DeepPrime model to create a set of 18 distinct
computational models, collectively referred to as DeepPrime-FT. Comparative performance analysis
between the original DeepPrime and the fine-tuned DeepPrime-FT showed that while DeepPrime
demonstrated reliable performance across various cell types, scaffolds, and prime editors (Pearson’s
1, average 0.58, median 0.57; Spearman’s R, average 0.73, median 0.75), fine-tuning resulted in
improved accuracy (Pearson’s r, average 0.71, median 0.74; Spearman’s R, average 0.80, median
0.82) (Figure 39).
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Figure 39. Development and performance of DeepPrime-FT. (a-b) Heatmaps displaying
Pearson’s (a) and Spearman’s (b) correlation, illustrating how predicted versus actual prime editing
efficiencies vary based on experimental factors such as cell type, pegRNA scaffold, prime editor,
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and PAM sequence. Prime editing with epegRNAs is denoted by appending “-e” to the prime editor’s
name. Each highlighted box represents the correlation for a model assessed using a test dataset that
mirrors the experimental conditions of the training dataset.

Our analysis revealed that the Spearman correlation for DeepPrime were generally higher than
the Pearson across different cell types, scaffolds, and prime editor systems. This suggests that
DeepPrime is better at preserving the rank order of pegRNA efficiencies than capturing their
precise relative values. SHAP analysis indicated that key factors influencing prime editing
efficiency were consistent across cell types and prime editor systems, although the specific effects
varied slightly (data not shown). This consistency supports the effectiveness of DeepPrime across
different conditions. Researchers can thus rely on DeepPrime for general predictions of pegRNA
efficiencies across various experimental settings. However, for enhanced accuracy, particularly
when specific experimental conditions are critical, using the fine-tuned DeepPrime-FT models
tailored to particular cell types, scaffolds, and prime editor versions is recommended.

3.2.6. Applications of DeepPrime

To evaluate the utility of DeepPrime and DeepPrime-FT in generating and correcting
pathogenic mutations documented in ClinVar, we employed these tools alongside other pegRNA
design strategies. Specifically, we designed pegRNAs using three different methods: (i) predictions
from DeepPrime, (ii) rational design based on known characteristics of highly efficient pegRNAs,
and (iii) design using DeepSpCas9 scores’, which predict Cas9 activity and correlate with prime
editing efficiency. Random pegRNA designs were used as negative controls. When comparing these
approaches for correcting mutations, DeepPrime significantly outperformed the other methods, with
mean and median expected prime editing efficiencies of 9.0% and 7.6%, respectively. This was
markedly higher than the efficiencies from rational design (4.6% and 2.4%), DeepSpCas9 score-
based design (3.2% and 1.1%), and random designs (both 1.2% and 0.3%) (Figure 40a). Similar
trends were observed for generating mutations, where DeepPrime again led with mean and median
efficiencies of 10% and 9.2% (Figure 40b). The efficiency boost offered by DeepPrime—up to 3.2-
fold higher for correcting mutations and up to 2.9-fold higher for generating mutations compared to
rational designs—demonstrates its potential for designing highly efficient pegRNAs.

In a recent study by Erwood et al., prime editing was used to introduce variants in NPC1 and
BRCA2%. We found that using DeepPrime-designed pegRNAs could have increased the average
efficiency of variant generation by 2.1-fold compared to their rationally designed counterparts
(Figure 40c). Furthermore, if NRCH-PE2 combined with DeepPrime-FT or PE2max with
DeepPrime-FT had been utilized, the efficiency could have been increased by 4.5-fold or 7.7-fold,
respectively, relative to the rational design using PE2. These findings suggest that combining
DeepPrime or DeepPrime-FT with optimized prime editors can significantly enhance the
functional study of genetic variants. We also examined the efficiency ranking of DeepPrime-
selected pegRNAs among eight possible designs for specific edits in CV-test. Notably, 50% of the
DeepPrime-selected pegRNAs ranked first, and 25% ranked second (Figure 40d). In comparison,
when applying similar analysis to previously conducted experiments at endogenous sites, 56% of
DeepPrime-selected pegRNAs ranked within the top 10%, and 11% ranked within the top 20%
(Figure 40e).
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Figure 40. Applications of DeepPrime. (a-b) Projected efficiencies of pegRNAs designed
through DeepPrime, a method leveraging the characteristics of highly effective pegRNAs, the
DeepSpCas9 score, or random selection, aimed at correcting (a) and generating (b) pathogenic or
likely pathogenic mutations documented in ClinVar. The dataset includes n = 64,327 pegRNAs per
design. (c) Forecasted editing efficiencies of pegRNAs selected via DeepPrime, DeepPrime-FT,
and a previously employed rational design approach (Erwood et al.*), for introducing alterations
into NPC1 and BRCA2. This includes n = 426 pegRNAs per design. (d) The distribution of
measured prime editing efficiency ranks for pegRNAs with the highest DeepPrime scores among
the top eight pegRNAs per target, with a total of n = 845 pegRNA sets. (¢) The distribution of
measured prime editing efficiency percentile ranks for pegRNAs with the highest DeepPrime
scores across all tested pegRNAs per target, with n = 9 pegRNA sets.

Further, we compared the prime editing efficiencies at endogenous sites predicted by
DeepPrime-FT with those from earlier designs. DeepPrime-FT predicted a 2.3-fold increase in
average PE2max efficiencies compared to previously published designs. Experimentally,
pegRNAs designed using DeepPrime in HEK293T cells achieved a 3.5-fold higher average
efficiency than those from earlier designs (Figure 41a). The correlation between observed prime
editing efficiencies at endogenous sites and DeepPrime-FT predictions was robust (r = 0.82 and R
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= 0.83) (Figure 41b), underscoring the effectiveness of DeepPrime-FT in designing efficient
prime editing strategies.
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Figure 41. Validation of DeepPrime performance for application. (a-b) Comparison of
forecasted versus experimentally observed prime editing efficiencies at endogenous BRCA2 sites.
The data include n = 12 pairs of pegRNA and target sequences for both DeepPrime-FT and Erwood
et al., 2022. Each value represents the average of duplicate measurements. (c-¢) Analysis of the
correlation between predicted and actual prime editing efficiencies for PE3 and PES at endogenous
sites.

Finally, we explored whether DeepPrime could predict the efficiencies of untested prime editing
systems like PE3 and PES5 at endogenous sites using previously published data . While DeepPrime
demonstrated good predictive performance for PE3 (r = 0.65, 0.63; R =0.61, 0.59) and PES (r =
0.68; R =0.64), its accuracy was slightly lower than for systems it had been explicitly trained on
(Figure 41c-e). This may be due to the additional influence of sgRNA activities, which are not
predicted by DeepPrime, on the efficiency of these systems.
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4. Discussion

When targeting a specific genetic edit, there are often multiple possible target sequences located
near the intended edit site. For each of these sequences, it is theoretically possible to design over
850 pegRNAs, considering the combination of 17 PBS lengths and 50 RTT lengths. If four such
potential target sequences exist, the total number of possible pegRNAs increases to 3,400. With
DeepPrime and DeepPrime-FT, it is feasible to predict the efficiency of thousands of these
pegRNAs, allowing researchers to identify the most effective ones within minutes, without the
need for time-consuming laboratory experiments.

In this study, we generated a comprehensive dataset of prime editing efficiencies with high
accuracy and precision. We systematically analyzed the factors influencing prime editing success
and developed computational models capable of predicting editing efficiencies across different cell
types and prime editors. Additionally, we evaluated prime editing efficiencies at sequences with
mismatches and created a predictive model for these scenarios.

While our research offers tailored predictions for eight prime editing systems in seven different
cell lines, it does not cover many other cell types, such as primary cultured cells and pluripotent
stem cells. Furthermore, we did not assess prime editing efficiencies in living animals or embryos.
The use of SpCas9-NRCH instead of wild-type SpCas9 expanded the range of targetable
sequences; employing other Cas9 variants with different PAM preferences could further extend
this range. Although we primarily used lentiviral vectors to deliver pegRNAs and prime editing
proteins, other delivery methods—such as adeno-associated viruses, lipid nanoparticles, virus-like
particles***7 or the electroporation of ribonucleoprotein complexes**—could influence editing
efficiency at both matched and mismatched target sequences.

Moreover, our predictions did not extend to prime editing systems that use dual pegRNAs (like
TwinPE*, Prime-Del*°, and HOPE®'") or those that combine a pegRNA with an sgRNA (like PE3
and PES). However, it is possible that the efficiency of these systems could be estimated by
separately predicting the performance of each pegRNA or the combination of sgRNA and
pegRNA. Finally, while our computational models are robust, their accuracy could be further
enhanced with larger training datasets, particularly those enriched with specific types of edits, such
as 3-bp modifications or deletions.
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5. Conclusion

The prime editor can be considered a "universal genome-editing tool" when it comes to its
ability to correct genes. However, with the improvement in its capabilities, the complexity of the
tool has also significantly increased, offering a wide range of options that users can choose from.
While the traditional CRISPR-Cas9 genome-editing tool only required determining the location of
the genome to cut, the prime editor allows for precise control over the type, location, and length of
the desired genetic edits.

This study has enabled a deeper understanding of the complex prime editing system by
leveraging extensive experimental data. We have gained insights into the biochemical factors that
influence prime editing, providing clues on how to design new prime editors to enhance editing
efficiency. Moreover, the Al models developed in this research have significantly lowered the
barrier for researchers, allowing them to utilize prime editing without the need for extensive
experimental work or background knowledge. Our research has demonstrated that it is possible to
design a prime editor that is much more efficient than those used in previous studies, suggesting
that prime editing could be effectively applied in research and treatment of mutations related to
genetic diseases.

The development of genome-editing technology has progressed at an astonishing pace. It has
been about a decade since the invention of CRISPR genome-editing tools, and the first therapy
based on this technology has already received FDA approval and is being marketed. Although the
next-generation genome-editing tool, the prime editor, has not yet been clinically applied, we
expect numerous attempts to bring this technology into therapeutic use in the near future. Given
that it is a new technology, many aspects of its efficiency and safety still need to be validated. This
will likely be a challenge for all researchers to tackle together moving forward.
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