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실시간 독립성분분석 방법을 이용한 심장박동유발전위, 심장박동 관련 

주파수 변동 모니터링 및 분류 모델 구성 

 

 

  심장박동과 같은 신체 내부 생리학적 상태에 대한 인식은 심전도의 R 피크와 동기화된 

심장박동 유발 전위(Heartbeat-evoked potential, HEP)를 비롯한 특정 전기생리학적 반응을 

유발한다. HEP 대신 본 연구는 각 R 피크에 맞춰 정렬된 뇌파 신호의 시간-주파수 특성인 

심장박동 관련 주파수 변동(Heartbeat-related spectral perturbation, HRSP)에 중점을 둔다. 

동적으로 변화하는 뇌 상태의 바이오 마커로서 HRSP의 활용 가능성을 다루기 위해, 뇌파의 독립 

성분 분석을 통해 식별된 뇌 성분에서 추출한 HRSP를 소개하며 3D 합성곱 신경망을 활용하는 

분류 접근법을 사용했다. 본 연구에서는 심장박동 소리와 백색 소음에 집중하는 과제를 포함한 

이진 및 4가지 과제 분류 실험의 분류 정확도를 측정했다. 여러 주파수 대역에 대해 내수용 감각 

상태를 효과적으로 구별하는지 평가하고, HRSP가 이러한 상태의 변화를 신뢰성 있게 반영하기 

위해 필요한 최소한의 평균 입력 시행 수를 결정했다. 또한, 새로운 참가자의 HRSP를 분류하기 

위해 집단 수준의 ICA와 CNN 모델을 개별 ICA 및 CNN 모델과 함께 평가했다. HRSP CNN은 

Sham R 피크 기반 HRSP CNN에 비해 유의하게 높은 분류 정확도를 보였다. Grad-CAM 분석은 

200-600 ms R 피크 이후 감각 운동 영역, 주의 네트워크 영역, 후두엽 내의 세타 및 알파 

대역의 중요한 역할을 수행함을 나타냈으며, 이는 Sham HRSP를 사용한 분류에서는 나타나지 

않은 특징이다. 온라인 분류는 개별 EEG 데이터 수집 없이 집단 수준의 ICA 와 사전 학습된 

CNN 분류 모델을 사용하는 이점과 함께 신뢰할 수 있는 정확성을 보장한다. 이러한 결과는 

HRSP가 내수용 감각 상태를 반영할 수 있는 잠재력을 시사하며, 치료 응용에 있어 변혁적인 

함의를 제안한다. 
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1. 서론 

1.1. 연구 배경 

내수용 감각은 심장박동 및 호흡과 같은 내부 신체 상태에 대한 무의식적 혹은 

의도적인 인식으로, 뇌 상태 조절과 항상성 유지에 중요한 역할을 한다. 이는 

항상성 조절의 중심 개념으로 감정을 경험하고 해석하는 데 기반이 되는 

감각이다. 1  2  내수용 감각의 변화는 불안 및 우울증과 같은 정신 건강 상태를 

반영하기도 하며, 주로 심장박동 감지 과제를 통해 확인된다.3 4 5 6 따라서 내수용 

감각을 강화하는 것이 다양한 정신과적 장애의 치료에 상당한 이점을 제공하는 

치료 방법으로 점점 더 주목받고 있다.7 8 9 10 

  심장박동에 집중하는 것은 심장박동유발전위(Heartbeat evoked potential, 

HEP)와 같은 특정 전기 생리학적 반응을 유도하며, 이는 심전도의 R 피크와 

동기화하여 생성한 사건유발전위(Event related potential, ERP)의 일종이다.11 12 

13  14  HEP는 R 피크에 대한 뇌의 일관된 전기적 활동을 반영하여 뇌와 내수용 

감각간의 연관성을 탐구하는 수단을 제공한다. 예를 들어 참가자들이 자신의 

심장박동에 집중할 때, R 피크 후 350-550ms 사이에 전두엽 영역의 EEG 

채널에서 차이를 관찰했고12, 유사하게 심장박동에 집중하는 동안 Cz 및 

전두중앙부 전극 영역에서 524-620ms 사이에 HEP 진폭이 유의미하게 증가한 

것을 보고하였다.15 이 외에도 심장박동감지과제 동안의 HEP 가 휴식 상태에 비해 

전두중앙부 영역에서 더 높은 HEP 진폭을 나타냄을 보고하는 등 여러 연구결과를 

찾아볼 수 있다.16 이러한 연구들은 심장박동에 집중하는 것이 내수용 감각에 대한 

뇌의 반응을 효과적으로 조절할 수 있음을 시사한다. 

HEP 분석에서의 주요 쟁점은 심전도에 의해 생성되어 뇌파에 포함되어 있는 

불필요한 성분을 제거하는 것이다. 하지만 HEP는 R 피크로 표시된 각각의 시행을 

평균화하여 도출하기 때문에, 심장박동 및 ECG에 의해 발생되는 노이즈 성분을 

선택적으로 제거하는 것은 간단하지 않다.17 18 HEP 관련 메타 분석 연구에 따르면, 

42개의 HEP 관련 연구를 검토한 결과, 연구 결과가 심박에 의한 노이즈를 전처리 

하는데 사용된 방법과 같은 요인에 의해 크게 영향을 받을 수 있다는 점을 

강조했다. 19  따라서 HEP 연구의 신뢰성과 재현성을 높이기 위해서는 이러한 

노이즈 성분을 효과적으로 처리하는 것과 더불어 표준화된 측정 및 분석 방법의 

개발이 필수적이다. 

본 연구에서는 내수용 감각에 대한 뇌의 반응을 조사하는 주요 지표로 HEP 
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대신 심장박동 관련 주파수 변동(Heartbeat-Related Spectral Perturbation, 

HRSP)을 사용하였다. HRSP는 시간과 주파수에 따른 변동성을 나타내기 위해 

웨이블릿 변환을 사용하여 도출된 R 피크 고정 뇌파의 시간-주파수 분석의 

일환으로 심장에 의한 노이즈 성분의 주파수 성분을 분리하여 효과적으로 제거할 

수 있다는 장점이 있다.20 21 

  기존 HRSP 분석 방법20 21은 연속적인 EEG 시행의 시간-주파수 변환맵의 

평균을 강조하며, 시행 간 일관성(Inter-trial coherence, ITC) 분석을 주로 

수행한다. 이는 실험 전반에 걸친 단일 시행 HRSP의 변동성을 조사하는 데 중점을 

두어 심장박동 유발 반응의 정적인 특징에 집중하는 반면, 개인 내의 상태에 대한 

변동적인 특징을 간과할 수 있다. HEP, ERSP 또는 induced gamma 연구가 실험의 

모든 시행에서 데이터를 집계하는 것과 달리, 현재 연구의 접근법은 슬라이딩 

윈도우를 사용하여 단일 시행의 HRSP를 평균화하여 단 기간의 동적 변화를 

나타내는 HRSP를 생성하고 내수용 감각 상태의 변화를 반영하는 것이 특징이다. 

이에 더하여 HRSP를 내수용 감각의 바이오마커로서 평가하기 위해, 합성곱 

신경망을 사용한 분류 문제로 접근했다. 이러한 이유는 내수용 감각의 변동 상황, 

다변량 접근법이 단변량 분석보다 유리하고 CNN은 다변량 분석방법으로서 시간 

및 주파수 영역에서의 활동 간의 복잡한 상호작용을 포착하는 데 유리하기 

때문이다.22 

 

1.2. 연구 목적 

CNN 기반의 HRSP 분류를 통한 현재 연구는 내수용 감각 기반 실시간 분류를 

가능하게 하여, 내수용 감각 인식 향상을 위한 뉴로피드백 훈련에 크게 기여할 수 

있다. 예를 들어 현재 사용되는 Aligning Dimensions of Interoceptive Experience, 

ADIE 7 프로토콜은 전통적인 치료법에 비해 자폐 스펙트럼 장애 환자의 내수용 

감각 정확도와 불안 지표를 향상시킨 것으로 나타났으며, 신체 감각에 집중하는 

훈련도 불안감을 크게 감소시키는 것으로 나타나 23 내수용 감각 기반 훈련이 정신 

건강을 증진시킬 잠재력이 강조되고 있다. 효과적인 내수용 감각 기반 실시간 

분류를 위해서 독립성분분석을 통해 뇌파 데이터에서 뇌 성분을 신뢰성 있게 

신속히 추출하는 것이 중요하기 때문에 이러한 방법을 고안하여 실제 데이터를 

사용하여 분류 정확도를 측정하고, 최적의 파라미터를 찾아내어 이후 뉴로피드백 

훈련의 토대를 마련하였다. 또한, 새로운 개인을 위한 집단 수준 분류 모델을 

사용하는 방법을 통해 새로운 참가자의 EEG 데이터 수집의 필요성을 피할 수 있어, 

내수용 감각 기반 훈련의 임상 적용 가능성을 높일 수 있다. 
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1.3. 연구 범위 

본 연구는 세 가지 주요 부분으로 구성되어 있다. 먼저, 두가지 종류의 실험 

데이터를 사용한 HRSP 생성 절차 및 HRSP를 위한 CNN 모델의 구조를 소개한다. 

다음으로, CNN을 사용하여 내수용 감각 상태 분류에서 HRSP 기반의 오프라인 

평가를 수행한 후, 이 분석을 온라인 HRSP 분류로 확장한다. 마지막으로, 집단 

독립성분과 HRSP 분류 모델의 새로운 개인으로의 전이 가능성을 탐구하여 이러한 

포괄적인 평가를 통해 우리의 발견을 종합하고 다양한 분석적 관점에서 HRSP의 

특성을 규명한다. 

 

2. 재료 및 방법 

2.1. 뇌파 및 심전도 데이터 

본 연구에서는 내수용 감각 관련 실험을 진행한 실험 데이터를 사용하였으며, 

이진 과제를 수행한 실험 데이터와 네 가지 과제를 수행한 실험 데이터를 

사용하였다. 이진 과제 실험 데이터는 오픈 소스 데이터 15 로 실험 참가자들은 

심장박동에 집중하는 과제와 외부 백색 소음에 집중하는 과제를 번갈아 수행하였다. 

심박 집중 과제(H)에서는 심장 이미지를 보고 20초 동안 자신의 심박에 

집중하였다. 백색 소음 집중 과제(S)에서는 헤드폰 이미지를 보고 20초 동안 백색 

소음의 변화를 집중하였다. 실험 시퀀스는 H-S-H-S-S-H-H-S-H-S-H-S-

S-H-S-H-H-S-H-S로, 총 20회 반복되었으며 각각의 과제가 마친 후, 각 

과제에 얼마나 집중하였는지 1에서 10까지 자가 평가하였다. 뇌파 데이터는 

64채널으로 코에 기준 전극을 위치시켜 심전도와 함께 500Hz 샘플링 속도로 

기록되었으며, 17명의 참가자가 참여하였다. 

네 가지 과제 데이터는 12명의 건강한 성인(남성 5명, 여성 7명, 평균 연령 

24.16 ± 3.01세)이 참여하였다. 참가자들은 심장박동, 백색 소음, 시간 경과, 

발가락에 집중하는 네 가지 과제를 무작위로 30초 동안 수행하였으며, 이를 각각 

다섯 번 반복하였다. 과제는 도입부(2초), 네 가지 과제 중 하나(30초), 평가(8초), 

그리고 10초의 간격으로 구성되었다. 평가 단계에서는 참가자들은 각 과제에 

얼마나 집중하였는지 1에서 10까지 자가 평가하였다. 뇌파 데이터는 

BrainProducts GmbH EEG 증폭기와 64채널 BrainCap을 사용하여 500 Hz로 

기록되었으며, Afz를 접지, FCz를 기준 전극으로 기록하였다. T9 와 T10 전극은 

심전도 기록을 위해 각각 발목에 배치되었다.  
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2.2. 데이터 전처리 

2.2.1.  심전도 데이터 전처리 

심전도 데이터에서 R 피크를 검출하기 위해, HEPLAB 24  툴박스를 

사용하였다. 이 툴박스는 Pan-Tompkins 알고리즘 25 을 포함하고 있으며, 5Hz 

HPF 와 15Hz LPF을 포함한 이 알고리즘은 실시간 연속 QRS 복합체 검출에 

효과적인 것으로 잘 알려져 있다. 이는 본 연구에서 요구되는 정밀한 심전도 

분석에 적합한 방법이다. 

 

2.2.2.  뇌파 데이터 전처리 

  뇌파 데이터 전처리를 위해, MATLAB (2023b, Mathworks Inc.)에서 

EEGLAB과 Fieldtrip를 사용하였다. 전체 전처리 절차는 그림 1에 제시되어 

있다. 250Hz로 다운 샘플링한 후, 0.3Hz 하이패스 필터링과 30Hz 로우패스 

필터링을 수행하였다. 이후 공통 평균 재참조 방식을 적용하였다. 26 27 

 

 

 

 

그림 1. 뇌파 및 심전도 데이터 전처리 과정을 나타낸 그림. 이 그림은 HRSP 추출을 위한 EEG 

데이터 전처리 단계의 순서를 나타내었다. EEG 신호에 대해 필터링과 공통 평균 참조를 수행한

이후, 각 데이터셋에 대해 개별 독립성분분석 (Individual ICA) 이 수행되어 각 참가자의 고유한

뇌 성분이 추출하는 방법과, 반면에 집단 독립성분분석 (Group ICA) 은 모든 개별 데이터셋을

시간적으로 연결한 후, 주성분 분석(PCA)과 독립 성분 분석(ICA)을 통해 참가자 간의 공통 뇌

성분을 식별한다. 추출된 뇌 성분의 시계열 데이터는 Morlet 필터를 사용한 연속 웨이블릿 변환

과 거쳐 R 피크에 동기화 되어 각각의 시행 데이터로 분할된다. 마지막 단계에는 시행별 정규화

및 기준선 보정을 통해 분산을 줄이고 시행 데이터간의 일관성을 높여 HRSP를 생성한다.  
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  전극에서의 뇌파 신호는 종종 잡음 및 다양한 구성 요소에 의한 영향을 받는다. 

이러한 뇌파 외의 외부 요인을 최소화하고 실험 간 변동성을 줄이기 위해, 전처리된 

뇌파 신호에 독립성분분석 (Independent Components Analysis, ICA)을 적용하여 

직접적인 뇌파 전극 기반 분석이 아닌 뇌 구성 요소의 시계열 데이터에 초점을 맞추었다. 

  참가자별로 고유한 독립성분을 추출하기 위해 Infomax ICA 28 알고리즘을 사용하였다. 

또한 집단의 공통된 독립성분을 추출하여 이를 분류 및 테스트 작업에 사용한 결과를 

통해 집단 기반의 독립성분분석 (Group ICA) 29  30  의 활용 가능성을 확인하였다.  

N명의 참가자의 뇌파 데이터에 대한 Group ICA를 위해, 기존에 알려진 Group ICA 

방법을 적용하였다. 

  Group ICA은 모든 참가자의 뇌파 데이터 𝑋௜, 𝑖 ∈ {1, … , 𝑁} 는 [𝐸 × 𝑇] (뇌파 전극 수 × 

시간 샘플 수)으로 이루어져 있으며, 이를 시간축으로 모두 연결한 데이터 𝑋  에 

적용하였다. 연결된 데이터 𝑋 는 우선 주성분 분석을 사용하여 채널 축을 따라 

주성분으로 분해되었으며, 기본 행렬 𝑊௣௖௔가 사용되었다. Group ICA는 이러한 주성분에 

적용되어 혼합 행렬 𝑊௜௖௔ 를 추정하였다. 𝑊௣௖௔ 와 𝑊௜௖௔ 를 곱하여 𝑊 를 계산하였고, 이를 

통해 각 참가자의 뇌파 데이터 𝑋௜ 를 공통 독립 구성 요소 데이터 𝑆௜ 의 [𝐶 × 𝑇]  (독립 

성분수 × 시간 샘플수) 차원으로 변환할 수 있었다. 기존의 Group ICA 방법 29 30 과의 

한가지 차이점은 각 참가자의 뇌파 데이터에 주성분 분석을 적용한 후 시간적으로 

연결하는 과정을 생략하였다. 각 참가자에 대한 개별 주성분 가중치를 계산 과정을 

생략함으로써, 사전 계산된 분해 행렬을 개별 뇌파 데이터에 투영할 수 있게 되어 

실시간 적용을 위한 처리 속도가 크게 향상되었다. 

뇌 신호원에 해당하는 독립성분을 추출하기 위해, ICA 이후, ICLABEL 함수를 

사용하여 뇌와 관련된 활동의 높은 확률을 가진 뇌 구성 요소를 식별하였다. 이러한 

식별 과정은 분해 행렬이 뇌와 관련된 독립성분, 즉 뇌 구성 요소만을 나타내도록 

보장하여 정확한 뇌 상태 분류에 필수적이다. 

 

2.2.3.  심장박동관련 주파수 변동 

2.2.3.1. 웨이블릿 변환 

  사건 유발 전위 연구에서의 주파수 분석 방법은 특정 길이를 가지는 

EEG 시행 데이터에 이산 웨이블릿 변환을 적용하는 것이 일반적이었다. 

그러나 이와 같은 방법은 짧은 길이로 구성되어 있는 시행 데이터에 

적용할 경우, 각 시행의 시작과 끝에서 경계 효과로 인해 저주파 대역 

신호가 왜곡될 위험이 있다. 이를 보완하기 위해, 현재 연구에서는 하나의 

과제를 수행한 EEG의 전체 시간 블록 범위에 대해 Morlet 웨이블릿을 

사용한 연속 웨이블릿 변환을 활용하여 전체 시간 범위에 해당하는 시간-

주파수 스펙트럼 변환맵을 생성하였다. 주파수 범위는 5Hz에서 20Hz까지 
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1Hz 간격으로 설정하여, 저주파 대역의 여러 아티팩트의 영향을 줄이기 

위해 5Hz 이하의 주파수를 의도적으로 제외하였다.20 21 

 

2.2.3.2. HRSP 분할 및 보간 

  웨이블릿 변환 이후, 스펙트럼 변환맵을 R 피크에 동기화된 각각의 

시행 단위로 분할하여, R 피크에 따라 -0.2초부터 0.6초까지를 HRSP로 

지정하였다.15 19 21 이전 HEP 연구 15 에서는 분할 단계에서 RR 간격이 

0.7초 미만인 R 피크를 제외한 이후, 나머지 R 피크만을 사용하여 -

0.1초에서 0.652초까지 EEG 데이터를 분할하여 HEP를 생성하였다. 이진 

상태 데이터에서는 평균 RR 간격이 0.92s ± 0.13로, 대부분의 R 피크에 

대해 분석이 가능하였다. 반면, 네 가지 상태 데이터에서는 평균 RR 

간격이 0.81s ± 0.074 이며, 특히 한 참가자는 평균 RR 간격이 0.66s ± 

0.024로 0.7초 임계 값 이하이기 때문에 고정된 분할 길이를 사용하는 

기존의 방법보다 유연한 접근 방법이 필요하였다. 

0.8초 미만의 짧은 RR 간격을 가지는 R 피크에 적용하기 위해, HRSP 

보간 방법을 고안하였다. HRSP 분할 이후, 네 부분으로 나누어 현재 R 

피크 기준으로 이전 R 피크와의 구간에서 1/4 부분을 Pre-HRSP으로, 

현재 R 피크 기준 이후 R 피크와의 구간에서 3/4 부분을 Post-HRSP로 

지정하였다. 이후, 이 구간에 해당하는 부분 HRSP를 보간 하여 모든 단일 

시행 데이터에 대해 HRSP 길이를 일치하도록 하였다. 이러한 분할 및 

보간 방법은 그림 2(B)에 나타내었다. 

 

2.2.3.3. 단일 시행 정규화 및 기준선 교정 

  각각의 R 피크에 해당하는 단일 시행 HRSP은 각 주파수에서 전체 

시간 축 동안의 평균과 표준 편차를 사용하여 시행 간 변동성을 줄이는 

것을 목표로 하여 Z-변환을 사용하여 정규화 31  되었으며, 이어서 각 

주파수의 기준선에 해당하는 시간 축 평균 및 표준편차를 통해 기준선 

교정을 실시하였다. 이 과정은 R 피크에 대한 영향이 최소화되는 -

0.2초에서 -0.1초 사이를 기준선으로 설정하여 진행하였다. 이러한 과정은 

시간-주파수 분석의 정확성과 일관성을 높이기 위함으로 전체 과정은 

그림 2(A)에 나타내었다. 
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2.3. 3D CNN 기반 분류 모델 

  HRSP 기반의 분류 모델을 학습하기 위해 3D 컨볼루션 레이어 32 33 를 사용한 딥러닝 

모델을 구축하였으며, 모델 구조는 그림 3에 나타나 있다. 분류 모델은 정의된 HRSP 

주파수 대역 세트를 처리하는 특징 추출 모듈을 가지고 있다. 특징 추출 모듈은 3D 

컨볼루션 레이어, 배치 정규화, ReLU 활성화를 포함하는 BR 모듈, 그리고 3D 맥스 풀링 

레이어로 구성된다. 이 레이어들에서 추출된 특징은 평탄화되어 다층 퍼셉트론에 전달되며, 

여기에는 두 개의 완전 연결 레이어, 드롭아웃 레이어 34  , 그리고 소프트맥스 출력 

레이어가 포함된다. 이 설계는 뇌 독립성분(C)×주파수(F)×시간(T) 크기의 3차원 

HRSP 데이터를 효율적으로 처리하여, 채널 독립성을 유지하면서도 뚜렷한 시간-주파수 

특성을 추출할 수 있다. 

  모델 훈련을 위해 Adam 옵티마이저 35  를 사용하였으며, 초기 학습률은 0.001로 

설정하고 최대 30 에포크로 훈련하였다. 과적합을 방지하기 위해 검증 손실을 기준으로 

한 조기 종료 기준을 적용하여 연속된 다섯 에포크 동안 검증 손실 측면에서 개선이 없는 

경우 훈련을 중단하였다. 상대적으로 작은 데이터셋 크기(개별 데이터셋의 경우 약 400 

샘플)를 고려하여 미니 배치 크기는 32로 설정하였다. 더 큰 그룹 데이터셋 (400×17, 

그림 2. HRSP 생성 및 보간 과정을 나타낸 그림. A는 EEG 데이터에서 HRSP를 추출하는 과정

을 나타낸다. 먼저, 독립 성분 분석을 통해 추출된 단일 뇌 성분 데이터가 Morlet 커널을 사용한

연속 웨이블릿 변환을 통해 시간-주파수 도메인으로 변환되는 과정 (FieldTrip 함수

ft_freqanalysis.m, width=7 사용) 이후, 심전도 데이터에서 감지된 각 R-피크를 기준으로 -

0.2초에서 0.6초까지의 데이터에 대해 분할되어 단일 시행 데이터로 생성된다. 단일 시행 데이터

에서의 x축은 시간 범위(-0.2s ~ 0.6s)를 표시하고, y축은 주파수 범위(5Hz에서 20Hz)를 의미

한다. 기준선 기간(-0.2s ~ 0.1s)은 모든 주파수에서 흰색 점선으로 표시되어 기준선 보정 전후

의 상태를 나타내었다.  B.1) R-R 간격이 0.8초보다 길면, 보간과정 없이 분할이 수행되는 과정

을 나타내며,  B.2) R-R 간격이 0.8초보다 짧을 때 단일 시행간 시간 길이를 표준화하기 위해

보간 과정을 적용하는 것을 나타낸다.  
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약 6,800 샘플)의 경우, 배치 크기는 128로 증가시켜 더 광범위한 데이터 수집으로부터 

학습을 최적화하였다. 모델 구성 및 훈련은 Matlab(R2023b) 환경에서 수행되었다. 

 

그림 3. 3D CNN 기반 HRSP 분류 모델 구조 및 파라미터를 나타낸 그림. 이 그림은 HRSP의 

3D 입력 형태를 처리하도록 설계된 CNN 모델 구조로서 HRSP는 뇌 성분(C) × 주파수(F) × 

시간(T)을 나타내는 차원으로 구성된다. 참가자별로 뇌 성분의 수가 다양하기 때문에, 모델은 이

러한 차원의 다양성을 처리하도록 형성되었다. 아키텍처는 특징 추출을 위한 세 가지 주요 모듈

을 포함한다: 컨볼루션 레이어, BR 모듈(배치 정규화 및 ReLU), 그리고 맥스 풀링 레이어. 특징 

추출 후, 아키텍처는 두 개의 완전 연결 층, 드롭아웃 층 및 분류를 위한 소프트맥스 층으로 구

성된 다층 퍼셉트론을 포함한다. 컨볼루션 레이어는 최적의 특징 감지를 위해 필터 크기, 스트라

이드, 필터 수가 설정되어 있다. 각 레이어에서 추출된 특징은 평탄화 층에서 연결되어 최종 분

류 층으로 전달되는 종합적인 구조를 형성한다. 
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2.4. 오프라인 학습 및 평가 

본 연구에서는 특정 과제를 진행하면서 발생하는 내수용 감각 상태에 대해 

분류하기 위해 HRSP의 세 가지 주요 측면을 평가하는 데 중점을 두었다. 첫째, 두 

가지 유형의 독립성분분석(ICA)을 적용하였다. 참가자별로 고유한 뇌 구성 요소를 

추출하기 위해 개별 EEG 데이터에 대한 개별 ICA, 그리고 참가자들 간의 공통 

구성 요소를 식별하기 위해 결합된 데이터셋에 대한 Group ICA를 사용하여 

진행하였다. Group ICA 방법이 분류의 견고성을 향상시키고 훈련에 필요한 개별 

데이터의 필요성을 줄이는 데 도움이 될 것으로 기대하였다. 둘째, HRSP에서 특정 

뇌 상태를 가장 잘 나타내는 주파수 대역을 파악하여 보다 정확한 상태 분류를 

수행하도록 하였다. 마지막으로, HRSP에서 평균화 할 시행 수를 분석하여 높은 

분류 정확도를 위해 잡음을 줄이면서 동시에 HRSP의 동적 표현을 유지하는 

균형점을 찾았다. 이러한 분석은 심박 집중과 소리 집중 조건을 구별하는 이진 

분류 실험을 바탕으로 이루어졌으며 네 가지 상태 실험 데이터를 추가로 사용하여 

분류 정확도를 평가하였다. 

 

2.4.1.  개별 독립성분 기반 분류 

  개별 독립성분분석 방법을 적용할 때, 참가자별 고유한 뇌 구성 요소와 해당 

시간 시계열을 활용하여 HRSP를 생성하였으며 학습 및 분류 과정에 

사용하였다. 각 참가자의 CNN 모델의 분류 정확도는 과제의 순서에 관련없이 

무작위 방식으로 5개의 부분으로 나누어 5겹 교차 검증방법을 사용하여 

평가하였다. 이러한 방법은 그림 5(B,1)에 나타나있다. 

 

2.4.2.  집단 독립성분 기반 분류 

집단 독립성분분석을 사용한 방식에서는 분류 모델의 활용 가능성을 

평가하기 위해 새로운 참가자의 개별 데이터를 분류하도록 하는 leave-one-

out 전략을 구현하였다. 이 접근 방식에서, 16명의 참가자 데이터를 사용하여 

모델을 훈련하고 나머지 1명의 참가자 데이터를 테스트하였다. 이 과정을 

반복하여 각 참가자의 데이터가 한 번씩 훈련 세트에서 제외되도록 하여, 각 

개인의 데이터가 독립적으로 테스트 데이터로 사용되었다. 16명의 참가자 

데이터를 훈련할 때, 그들의 데이터를 연결하고 5겹 교차 검증을 수행하였다. 이 

절차를 17명의 모든 참가자에 대해 반복하여 그룹 훈련 모델을 새로운 개별 

데이터에 적용했을 때, 사전에 훈련된 5개의 분류 모델을 적용하여 평균 분류 

정확도를 측정하였다. 이러한 방법은 그림 5 (B,2)에 나타나있다. 
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2.4.3.  주파수 대역과 시행 평균 횟수 최적화 

특정 뇌 상태를 가장 효과적으로 반영하는 HRSP의 주파수 대역을 확인하기 

위해 다섯 개의 주파수 대역에 대한 분류 정확도를 비교 분석하였다. 이 접근 

방식은 이전 연구를 참조하였으며 21, 다음과 같은 주파수 대역을 포함하였다: 

Theta (5-8Hz), Alpha (9-12Hz), Low beta (13-20Hz), Theta, Alpha 결합 

(5-12Hz), 그리고 Theta, Alpha, Low beta 결합 (5-20Hz) 대역. 이러한 

평가는 개별 ICA와 Group ICA에서 파생된 구성 요소를 사용한 모든 분류 

과정에서 진행하여, 뇌 상태의 실시간 분류를 위한 파라미터를 최적화하는 것을 

목표로 하였다. 

뇌파에 포함되어 있는 여러 노이즈 성분으로부터 사건 관련 전위(ERP) 또는 

사건 관련 스펙트럼 변동(ERSP)을 효과적으로 분석하기 위해, 시행 간 

평균화를 사용하여 원하지 않는 EEG 신호를 최소화하는 방법이 주로 사용된다. 

36  37  이러한 방법은 EEG 신호나 시간-주파수 스펙트럼이 정적이라는 가정 

하에 전체 시행에 걸쳐 평균화를 수행한다. 그러나 동적 뇌 상태를 분류하려는 

경우, 소수의 시행의 HRSP를 평균화하는 것이 중요하다. 평균화를 위한 시행 

수를 선택할 때는 노이즈 감소와 뇌 상태의 동적 특성 보존 간의 균형을 

맞추어야 한다.  

최소한의 노이즈의 영향으로 뇌 상태를 신뢰성 있게 나타내는 최적의 시행 

간 평균화 갯수를 찾기 위해, 우리는 연속적인 시행 수 (1, 3, 5, 7, 9) 를 

평균화하여 HRSP의 분류 정확도를 평가하였다. 또한, 모든 시행 HRSP 간의 

유사성 분석을 수행하였다. 유사성은 각 HRSP의 모든 뇌 구성 요소와 주파수에 

대해 시간축으로 상관 분석을 실시하였다. HRSP 평균화 예시는 그림 5 에 

나타나 있다. 그림 5A는 심장박동 감지 과제를 수행하면서 생성된 한 성분을 

나타낸 그림으로 평균 시행 횟수에 따른 차이를 시각화하였으며, 그림 5B는 

소리 집중 과제의 결과를 의미한다. 그림 5C는 평균 시행 수에 따른 심장박동 

감지 과제 중 서로 다른 시행들 간의 HRSP 유사성을 보여준다.  
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그림 4. 시행 평균 HRSP 예시 및 시행 수에 따른 HRSP 간 유사성 매트릭스를 나타낸 그림. (A 

& B) 그림은 각각 심장 박동과 소리에 집중하는 과제 동안 평균 시행 수에 따른 Component 3

의 HRSP 를 보여준다. 각 HRSP 내의 기준선 기간은 흰색 점선으로 강조되었다. 심장 박동 집

중 조건 (A) 에서는 한 참가자에 대해 단일 시행과 3, 5, 7, 9 개의 단일 시행 HRSP 를 평균하

여 생성된 다중 시행 HRSP 에 대해 나타내었다. 유사하게, 소리 집중 조건 (B) 에서도 동일한

방식을 적용하여 나타내었다. (C)에서는 10개의 심장 박동 주의 과제 블록 동안 모든 HRSP 시

행 간의 유사성 매트릭스를 보여준다. 각 블록은 20초 동안 지속되며 (평균 약 22번의 심장 박

동 횟수) 흰색 점선으로 분할됨을 나타내었다. 각 매트릭스는 x축과 y축에 HRSP의 순서를 표시

하여 모든 시행에 걸친 다양한 시행 간의 유사성 정도를 의미한다. 이러한 시각화는 HRSP 패턴

의 시간 경과 및 다양한 평균 시행 수에 따른 안정성과 일관성을 식별하는 데 기여한다. 
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2.4.4.  HRSP의 특이성 평가 

2.4.4.1. Sham R 피크 기반 비교 분석 

내수용 감각 상태 분류 결과가 R 피크에 시간적으로 고정된 뇌 반응에 

의해 유도되었는지 확인하기 위해, 기존 연구들에서 사용된 것 38 39 처럼 

원래 R 피크 위치에 -500ms에서 500ms 사이의 무작위 오차를 추가하여 

sham R 피크를 생성하였다. 이러한 sham R 피크를 사용하여 실제 R 피크 

기반 HRSP와 동일한 방법으로 sham HRSP를 생성하였다. 분류 과정은 

Group ICA 기반 방법을 사용한 오프라인 분류 과정에서 가장 높은 분류 

정확도를 보인 입력 주파수 대역 조건과 평균 시행 수를 사용하여 

동일하게 수행하였으며, 이러한 분류 과정을 10번 반복하여 실제 R 피크를 

사용한 분류 정확도와 비교 분석을 실시하였다.  

 

2.4.4.2. Grad-CAM 분석 

Group ICA를 통해 식별된 여러 개의 뇌 구성 요소 및 입력 주파수 

대역과 시간 범위에서 내수용 감각 상태를 통한 분류 과정 중 모델이 

사용하는 주요 요소를 파악하기 위해 Grad-CAM 분석 40 을 수행하였다. 

Grad-CAM 분석은 CNN 모델에서 특정 입력에 대한 예측을 생성하는 데 

가장 중요한 입력 특징을 시각화하는 기법이다. 이를 위해, 모든 참가자의 

HRSP 데이터를 연결하여 전체 그룹 데이터를 생성하였다. 연결된 

데이터는 무작위로 5개의 폴드로 나누어 각 실험에서 하나의 폴드를 

테스트 데이터로 사용하였다. 나머지 4개의 폴드에서는 데이터의 20%를 

무작위로 추출하여 모델을 훈련하고 정확도를 측정하기 위한 검증 

데이터로 사용하였다. 테스트 결과가 무작위성에 의해 영향을 받지 않도록 

이 전체 과정을 5번 반복하였다. 훈련을 마친 이후 각 훈련된 모델과 훈련 

데이터 세트에 대해 Grad-CAM 기법을 적용하였다. 이러한 방법은 그림 

5(B,3)에 나타나 있다. 

 

2.4.4.3. 집중도 점수를 통한 분류 

심장박동 집중 과제를 수행하면서 측정한 자가 평가 점수를 사용하여, 

HRSP 만을 이용해 집중 수준의 차이를 구별할 수 있는지 여부를 

확인하기 위해 분류 실험을 수행했다. 실험 데이터는 이진 상태 데이터를 

사용하였다. 각각의 참가자로부터 측정된 10개의 집중도 평가 점수를 

개별적으로 상, 중, 하의 세가지 수준으로 나누어 구분한 이후, 각 평가 

점수에 해당하는 HRSP를 통해 Leave-one-out 방식으로 분류 모델을 

학습 및 평가하였다. 
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2.5. 온라인 분류 학습 및 평가 

오프라인 분류 이후, HRSP를 기반으로 한 뇌 상태의 온라인 분류 정확도를 

평가하는 과정을 수행하였다. 오프라인 분류 중 개인 고유 성분 및 모델을 사용한 

방법은 독립성분분석을 위해 전체 뇌파 데이터를 활용하는 반면, 온라인 분류는 

실험 데이터의 초기 부분만을 사용하여 독립성분분석과 분류 모델을 훈련하고, 

이후 수집된 실험 데이터에 적용한다. 오프라인 방법에서는 분류 정확도를 

평가하기 위해 훈련 및 테스트 데이터셋을 무작위로 섞는 반면, 온라인 분류는 

초기 데이터나 미리 수집된 데이터를 전략적으로 사용하여 모델을 훈련하고, 남은 

데이터나 새로운 참가자의 EEG 데이터에서 모델의 정확도를 테스트한다. 

온라인 분류는 심박 간격 내에서 모든 처리 단계를 신속하게 수행할 수 있는 

방법을 추가로 요구하며, 분류 성능의 저하를 최소화해야 한다. 이는 심장 주기와 

같은 짧은 시간내에서의 분석을 가능하게 하면서도 분류 결과의 정확성과 신뢰성을 

보장하는 전략이 필요하다. 

 

2.5.1. 개별 독립성분분석 및 CNN 모델 학습 방법 

사전에 획득된 EEG 데이터가 없는 경우, 각 개인의 EEG 데이터를 수집하여 

개별 ICA를 수행하고 분류 모델을 학습하여야 한다. 이 방법은 각 참가자의 

EEG 데이터의 초기 부분에서 도출된 독립 성분 분해 행렬을 활용한다. 우선, 

최적의 길이를 결정하기 위해, 각 개인의 EEG 데이터의 첫 번째부터 10 번째 

블록까지 길이를 늘려가면서 ICA를 수행하였다. 각각의 길이에 따른 HEP 와 

HRSP를 생성하여 이를 전체 EEG 데이터를 사용하여 생성된 것과 비교를 통해 

ICA에 적합한 최적의 길이를 선택했다. 

  최적의 길이를 선택한 후, 초기 블록에 대해서 ICA를 수행하였고, 계산된 

독립 성분 분해 행렬을 사용하여 HRSP를 생성하였다. 분류 모델 학습은 초기 

구간의 HRSP 만을 사용하였으며, 나머지 블록에서 생성된 HRSP는 분류 

정확도를 측정하기 위한 테스트 데이터로 사용되었다. 이 방법은 신뢰할 수 

있는 온라인 개별 독립성분분석 적용을 위해 필요한 최소 EEG 데이터 길이를 

평가하기 위해 수행되었다. 이러한 평가 방법은 그림 5. B(4)에 제시되어 있다. 

 

2.5.2. 집단 독립성분분석 및 CNN 모델 학습 방법 

  사전 기록된 EEG 데이터가 있는 상황에서는, 참가자 개별 EEG 부분에서 

고유한 독립 성분 요소를 추출하는 대신 공통 뇌 구성 요소를 통해 온라인 

분류에 사용하는 방법을 고려하였다. 이 접근 방식은 뇌 구성 요소가 서로 다른 

개인들 간에 일관성이 있다는 가정을 전제로 한다. 
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  Group ICA 기반의 온라인 분류 방식을 평가하기 위해, 먼저 한 명을 제외한 

모든 참가자의 데이터를 사용하여 Group ICA 을 수행하였다. 이렇게 얻어진 

그룹 데이터의 분해 행렬을 제외된 참가자의 뇌파 데이터에 적용하여 뇌 구성 

요소 시간 시계열과 해당 HRSP를 추출하였다. 또한 사전 데이터 집단에서 

계산된 HRSP를 사용하여 CNN 모델을 구성하고, 5겹 교차 검증을 수행하여 

다섯 개의 다른 모델을 생성하였다. 그런 다음, 모델 훈련에 포함되지 않은 각 

새로운 개인에 대해 개별적인 조정 과정 없이 모델을 사용하여 평균 분류 

정확도를 평가하였다. 방법론은 그림 5. B(5)에 제시되어 있다. 
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그림 5. 오프라인 및 온라인 분류 및 평가 방법을 나타낸 그림. (A) HRSP 분류 방법에는 주파수

대역 및 온라인 분류를 위한 평균 시행 수와 같은 최적의 파라미터를 결정하는 것이 포함된다. 

이러한 결정은 개별 ICA 및 Group ICA 방법을 사용하여 오프라인 분류 정확도를 기반으로 수행

된다. 오프라인 분류에서는 분류 정확도의 세부적인 평가를 통해 결정된다. 개별 모델은 5겹 교

차 검증(CV)을 사용하여 평가되며, 집단 모델은 훈련 중 집단 데이터에서 한 개인을 제외하는

방법인 leave-one-out  CV 를 사용하여 평가된다. 온라인 분류에서는 오프라인 평가에서 최적

화된 특징이 온라인 설정에 적용되며, 개별 모델은 초기 데이터로 훈련되고 동일 개인의 후반 데

이터로 테스트 과정을 수행한다. 집단 모델은 테스트 데이터로 사용되는 개인 데이터를 제외한

집단 데이터로 훈련되고 개인의 후반 데이터에 적용하여 분류 정확도를 측정하였다. Grad-CAM 

평가에서는 HRSP의 어느 부분이 분류에 가장 중요한지 시각화하고 이해하기 위해 5겹 교차 검

증이 사용되었다. 이 방법은 분류 결정에 기여하는 HRSP 데이터 내의 중요한 특징을 강조한다. 

(B) 위에서 설명한 각 평가에 대한 상세한 방법론을 보여준다. 
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3. 결과 

3.1. 오프라인 분류 결과 

3.1.1.  개별 독립성분 기반 분류 결과 

이진 상태 실험에서 개별 ICA를 수행한 결과, 탐지된 뇌 구성 요소의 수는 

11.71 ± 6.29 이다. 개별 구성 요소를 사용한 분류는 단일 HRSP를 사용하는 

것보다 여러 HRSP를 평균화하는 것이 일반적으로 더 높은 분류 정확도를 

달성함을 보여주었다. 9개의 시행을 평균화하여 입력하였을 때, 단일 세타 

대역과 세타 대역과 알파 대역을 합한 대역을 사용하였을 때, 각각 98.08 ± 

0.81%, 98.05 ± 1.11%의 분류 정확도를 나타내었다. 

네 가지 상태 데이터를 사용한 결과, 8.08 ±  4.12의 뇌 구성 요소의 수를 

나타내었다. 이진 상태 실험 데이터와 동일한 절차로 진행하였을 때, 세타 및 

알파 대역을 결합하여 5개의 시행을 평균화한 후, 입력 결과, 91.01 ± 5.01%의 

분류 정확도를 나타내었다. 개별 성분을 사용한 오프라인 분류 결과는 사용한 

실험 데이터에 따라 각각 표1, 표2에 나타내었다. 

 

표 1. 개별 성분 방식 오프라인 분류 정확도 결과 (이진 과제 실험 데이터, N = 17) 

표 2. 개별 성분 방식 오프라인 분류 정확도 결과 (네 가지 과제 실험 데이터, N = 12) 
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3.1.2.  집단 독립성분 기반 분류 결과 

이진 상태 실험 데이터에서 Group ICA를 수행한 결과, 11개의 공통 뇌 구성 

요소가 탐지되었다. 이후, leave one out 교차 검증 모델을 사용한 분류 정확도는 

세타 주파수 대역의 9개의 단일 HRSP 시행을 평균화 조건에서 가장 높은 분류 

정확도, 97.45 ± 1.53%로 측정되었다. 온라인 분류 작업에 가장 적합한 주파수 

대역을 식별한 결과, 세타 대역을 포함한 구성에서 가장 높은 분류 정확도가 

나타났으며, 더 많은 에포크를 평균화할수록 HRSP의 분류 정확도가 

증가하였으나, 5회 이상의 평균화 이후로는 정확도 차이가 크지 않았다. 이 

결과는 표3에 제시되어 있다. 

  네 가지 상태 실험에서, Group ICA를 수행한 결과 9개의 뇌 구성 요소가 

탐지되었다. 이진 상태 데이터의 결과와 일관되게, leave-one-out 분류 모델의 

정확도는 입력 전에 여러 HRSP를 평균화하는 것이 단일 HRSP를 사용하는 

것보다 일반적으로 더 높은 분류 정확도를 나타내었다. 세타 대역과 7회의 

평균을 사용한 경우가 가장 높은 분류 정확도로 85.67 ±  4.77% 값을 

나타내었다. 이 결과는 표4에 기록되어 있다. 

 

 

표 3. 집단 성분 방식 오프라인 분류 정확도 결과 (이진 과제 실험 데이터, N = 17) 

표 4. 집단 성분 방식 오프라인 분류 정확도 결과 (네 가지 과제 실험 데이터, N = 12) 
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3.1.3.  HRSP의 특이성 평가 결과 

3.1.3.1. Sham R 피크 기반 비교 분석 결과 

  그림 5은 Group ICA 기반 방식을 사용하였을 때, 실제 HRSP와 Sham 

HRSP의 각각의 분류 정확도를 비교한 결과를 나타낸다. Sham HRSP를 

사용한 이진 상태 데이터에서 세타 대역과 아홉 개의 시행 평균화 

조건에서의 분류 정확도가 86.45 ±  12.07% 였으며, 네 가지의 상태 

데이터에서는 세타 대역과 일곱 개의 시행 평균화 조건에서의 분류 

정확도가 76.19 ±  4.88 % 으로 측정되었다. 이 값들은 실제 HRSP를 

사용한 결과와 비교했을 때, 유의한 수준으로 낮은 정확도를 나타내었다. 

실제 HRSP를 사용한 경우 각각 97.45 ± 1.53 % (p=0.002) 와 85.67 ± 

4.47 % (p<0.001) 이다. 

 

 

 

 

 

 

그림 6. Sham R 피크를 사용한 분류 정확도 비교 결과. 실제 HRSP 와

Sham HRSP를 사용하여 가장 높은 정확도를 보인 집단 기반 방법을 통해

분류 정확도를 비교 실험을 수행하였다. Sham HRSP의 경우 각기 다른 오차

를 더하여 생성된 R 피크를 사용하여 10회 반복한 결과를 나타내었다. 통계

적 유의성은 **는 p<0.01, ***는 p<0.001로 표시하였다. 



19 

 

 

3.1.3.2. Grad-CAM 분석 결과 

HRSP 기반 분류 모델이 어떠한 HRSP 영역을 주로 결정에 

활용하였는지 나타내는 Grad-CAM 분석을 시행하여 실제 HRSP 와 

Sham HRSP 에 대한 결과를 그림 7에 나타내었다. 실제 HRSP의 경우, 

Supplementary Motor Area (SMA) 와 Middle cingulate cortex 을 

포함한 전두중앙부 영역의 시간-주파수 영역이 주로 R 피크 후 0.2s 에서 

0.6s 사이의 시간 범위를 사용하며, 주로 세타 대역 (Component 3) 에 

집중되었다. Superior parietal 영역 (Component 8) 은 주로 R 피크 후 

0.35s 까지 영역이 사용되었으며, 세타 및 알파 대역에서 관찰되었다. 

또한, R 피크 후 0.45초에서 0.6초 사이에 세타 대역의 사용이 눈에 띄게 

증가하는 Precuneus 영역 (Component 6) 이 있었다. Right insula 영역을 

포함하는 Right centro-lateral (Component 5) 은 알파 및 세타 주파수 

대역을 주로 사용되는 것으로 나타났다. 이러한 Grad-CAM 결과는 

내수용 감각과 연관된 영역이 분류에 있어서 중요한 역할을 수행함을 

시사한다. 

  반면, Sham HRSP의 결과에서는 left lateral occipital 영역 

(Component 2), precuneus 영역 (Component 6), left central 영역 

(Component 7), superior parietal 영역 (Component 8) 이 전체 시간 

영역에서 일관되게 관여했다. Sham 조건에서 다양한 뇌 영역에 걸친 

이러한 확산된 활동은 실제 HRSP 조건에서 관찰된 국소적(시간적 및 

주파수 영역)인 결과에 대조적으로 일반화된 뇌 반응을 나타낸다. 이러한 

결과는 실제 HRSP가 내수용 감각 상태와 관련된 R 피크에 의한 뇌 

반응을 포착하는 데 있어 Sham HRSP보다 높은 특이성을 가지고 있음을 

강조한다. 
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그림 7. Group ICA 기반 분류를 수행 결과, 생성된 Grad-CAM 결과의 독립 구성 요소를 나타

낸 그림. 집단 공통의 뇌 구성 요소의 원천 위치 추정은 pop_dipfit_loreta.m 함수를 사용하여

LORETA 방법으로 수행되었다. A는 실제 R 피크를 사용하여 심장 박동과 소리 조건을 분류할

때 주로 사용된 각 뇌 구성 요소에 대한 Grad-CAM 결과를 나타낸다. 분류에 유의미하게 영향

을 미치는 구성 요소는 빨간색 글씨로 표시하였다. Grad-CAM 의 시간-주파수 맵에서 붉은 색

상은 분류의 중요도를 나타낸다.  B는 Sham R 피크를 사용하여 심장 박동과 소리 조건을 분류

할 때의 Grad-CAM 결과를 나타내며,  R 피크 타이밍이 변경되었을 때 분류 특성이 어떻게 달

라지는지를 보여준다. 
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3.1.3.3. 집중도 점수 분류 결과 

  집중도 점수 분류 실험에서는 심장박동과제를 진행하면서 측정된 

집중도 점수를 통해 상, 중, 하의 단계로 분류가 가능한지 평가하였다. 

집단 독립성분분석방법을 사용하여 단일 세타 주파수 대역을 입력하였을 

때의 정확도 결과는 84.24 ±  9.16 %으로 측정되었다. 학습 및 테스트 

데이터에서 상, 중, 하로 나누어진 집중 수준의 비율을 동일하게 구성하기 

위해 마지막 10번째 과제 데이터를 제외하고 9개의 과제만 사용하여 분류 

실험을 수행한 결과는 분류 정확도가 88.34 ± 6.44 %로 측정되었다. 

 

 

 

 

 

 

 

 

 

 

 

그림 8. 집중도 점수 분류 실험 결과를 나타낸 그림. 이진

상태 실험에서 자기 응답 평가 점수에 따라 정렬된 세 가지

주의 수준의 평균 분류 정확도. 행렬의 각 행은 100%로 합

산되어 각 모델 접근 방식에 따른 다양한 클래스 간 분류

분포를 반영한다. 
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3.2. 온라인 분류 결과 

3.2.1.  개별 독립성분 기반 분류 결과 

온라인 개별 독립성분기반 분류실험을 수행하기 전, 신뢰할 수 있는 

독립성분분석을 위한 EEG 샘플 길이에 대한 실험을 진행하였다. 그림 7에 

나타난 바와 같이, 전체 데이터셋을 사용한 결과와 비교했을 때, 평균 제곱 

오차(MSE) 값의 가장 큰 감소는 7개의 블록을 사용했을 때 발생했으며, 

0.29에서 0.14로 감소했다. 따라서, 개별 독립성분분석 방법을 적용할 때, 전체 

EEG 데이터셋을 사용하여 얻은 분해 성능과 유사한 성능을 달성하려면 총 

EEG 데이터의 최소 35% (20개의 블록 중 7개 블록)를 사용해야 한다. 본 

연구에서는 실험 설계에서 4가지 조건의 과제 블록을 고려하여 7개 대신 8개의 

블록을 온라인 방법에 적용하였다. 

온라인 개별 독립성분기반 분류 실험에서는 두 가지 주파수 입력 방법(세타, 

세타 알파를 합한 대역)을 5개의 HRSP 평균 시행 조건하에 분류 정확도를 

평가하였고, 이진 상태 실험 데이터를 사용하여 세타 대역만 사용했을 때 분류 

정확도는 95.51 ± 3.90%으로 측정되었다. 

 

그림 9. 개별 EEG 데이터에서 신뢰할 수 있는 독립성분분석(ICA)을 위해 필요한

EEG 샘플 수에 대한 실험 결과 그림. 개인 내에서 다양한 수의 EEG 블록을 사용하

여 ICA를 수행할 때의 Mean Square Error(MSE)값을 평가한 결과를 나타낸다. x축

은 분석에 사용된 EEG 블록의 수를 나타내고, y축은 오프라인 결과와 비교하여 HEP 

및 HRSP를 생성할 때 0 (오류 없음) 에서 1 (최대 오류) 까지의 상대적인 MSE 값

을 나타낸다. 이진 상태 실험에서는 각 블록이 20초로 구성되며, 네 가지 상태 실험에

서는 각 블록이 30초로 구성된다. 이러한 분석은 후속 EEG 데이터에서 생성한

HRSP 분석을 위해 신뢰할 수 있는 ICA 결과를 도출하는 데 필요한 최소 EEG 데이

터 양을 결정하는 데 도움을 준다. 
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3.2.2.  집단 독립성분 기반 분류 결과 

이진 상태 실험의 온라인 분류 과정에서, 집단 독립성분분석 기반의 분류 

모델을 사용한 경우, 세타 대역을 입력한 조건에서 정확도는 96.83 ± 1.38%로 

나타나, 집단 데이터와 개별적인 사전 정보를 활용하는 데 있어 유의미한 

차이가 없음을 나타냈다. 

네 가지 상태 실험 데이터의 경우, 전체 20개 블록 중 초기 8개 블록의 

HRSP 세타 대역을 사용하여 CNN 모델을 학습하고 후반부 12개 블록을 

테스트한 결과, 개인 독립 구성 성분과 개별 CNN 모델을 사용한 분류 정확도는 

77.31 ±  5.23% 이다. 하지만, 집단 독립성분분석 기반 방식을 사용한 경우, 

후반부 12개 블록에 대한  분류 정확도는 88.02 ± 3.30%로 증가했다. 

통계 분석 결과, 반복 측정 ANOVA 는 주파수 대역과 모델 유형에 대한 

유의한 주요 효과를 나타냈다 F(3,33) = 38.17, p<0.001. 사후 paired t-test는 

세타 대역만 사용하는 것이 개인 방법(p=0.0029)과 집단 방법(p<0.001) 

모두에서 세타와 알파 주파수 대역을 결합한 것보다 분류에 더 유리함을 

나타냈다. 또한, 세타 대역만 사용할 경우, 개인 방법과 그룹 방법을 비교했을 

때 그룹 방법의 정확도가 유의미하게 더 높다는 것을 확인하였다(p<0.001). 

각 실제 범주에 대한 예측 결과의 백분율 분포를 나타낸 그림 8에 표시된 

바와 같이, 개인 및 집단 기반 접근 방식에서 세타 대역을 사용하는 분류 

모델은 실제 심장박동 HRSP를 예측하는 데 있어 높은 True Positive rate 

(96.48 ±  9.34% 및 98.21 ± 1.60%)을 달성했지만, 시간 및 발가락 조건에 

대해서는 비교적 낮은 정확도를 나타냈다. 
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그림 10. 이진 상태 실험에서 온라인 분류 정확도를 나타낸 그림. 개별 구성 요소 및 모델을 사

용한 경우, 처음 8개의 EEG 데이터 블록이 ICA 및 분류 모델 훈련에 사용되었고, 이후 12개의

블록이 테스트에 사용되었다(“individual comp & model”로 표시). “group comp & model”

는 개별 훈련 없이 동일한 이후 12개 블록에 Group ICA 를 적용한 그룹 모델을 사용하여 분류

정확도를 보여준다. 검은 점은 데이터에서의 이상치를 나타내며, 반복 측정 ANOVA 결과, 접근

방식 간의 분류 정확도에 유의미한 차이가 없었으며, p-값은 0.20으로, 개별 모델과 그룹 모델의

성능이 유사함을 나타낸다. 

그림 11. 네 가지 상태 데이터 온라인 분류 정확도를 나타낸 그림. 이 그림은 네 가지 상태

실험에서 새로운 개인의 데이터에 대한 분류 정확도를 주파수 대역별로 분류하여 나타낸다. 분류

과정은 두 가지 접근 방식으로 나뉜다. (개별 구성 요소 및 모델 과 그룹 구성 요소 및 모델) 

검은 점은 데이터에서의 이상치를 나타낸다. Paired t-검정에서 유의미한 수준은 **는 p<0.01, 

***는 p<0.001 로 표시되어, 개별 독립성분 기반 접근 방식과 집단 독립성분 기반 접근 방식

간의 성능 차이를 보여준다. 
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4. 고찰 

  이 연구에서는 딥러닝을 활용한 HRSP 분류 분석을 통해 심장박동에 대한 주의가 

내수용 감각 상태에서 어떠한 방식으로 활성화 및 조절할 수 있는지 탐구하였다. 특히 분류 

접근 방식과 관련된 두 가지 중요한 질문을 다룬다. 1) 분류 모델이 주로 R 피크에 

시간적으로 고정된 뇌 반응을 활용하는가? 2) R 피크 고정 뇌 반응이 내수용 감각 처리와 

구체적으로 관련이 있는가? 
 

4.1. 분류 모델의 R 피크 고정 뇌 반응 활용 여부 

실험 과제는 심장박동과 외부 자극에 집중하는 것으로, 각각 과제에 대해 다양한 

뇌 활동 측면에서 다양한 복잡성을 제공한다. 특히, 자신의 심장박동에 집중하는 

것은 외부 자극에 반응하거나 시간을 모니터링하거나 신체 감각에 주의를 기울이는 

것보다 일반적으로 더 많은 인지적 노력을 요구한다. 각 과제가 30초 동안 

지속되므로 지속적인 인지 과정이 과제 간에 상이할 수 있으며, 이러한 특징이 

HRSP에 장기적인 시간-주파수 활동으로 나타날 수 있다. 이러한 부분을 연구하기 

위해 Sham R 피크로 생성된 HRSP를 사용하여 분류 테스트를 수행했다. Sham 

HRSP는 실제 HRSP에 비해 분류 정확도가 크게 감소하여 HRSP가 R 피크에 

시간적으로 고정되고 심장박동 감지와 관련된 뇌 반응을 반영한다는 개념을 

강화했다. 

그림 6B에 나타난 Grad-CAM 분석 결과는, Sham HRSP를 훈련한 CNN 

모델이 모든 시간 범위에 걸쳐 광범위하게 분포된 특징, 특히 고주파 

대역(component 1, 2, 4, 6) 및 거의 전체 주파수 스펙트럼(component 7, 8)에서의 

특징을 강조하고 있음을 보여준다. Sham HRSP가 특정 R 피크 유발 반응을 

반영하지 않지만, 내수용 감각 뇌 상태와 다른 상태를 구별하기 위한 지속적인 뇌 

활동 패턴을 포착할 수 있음을 시사한다. 

반면, 실제 HRSP를 훈련한 CNN 모델의 Grad-CAM 결과는, 이 모델이 주로 

세타 및 알파 주파수 대역 내에서 R 피크에 고정된 반응과 더불어 높은 주파수 

대역 또는 전체 주파수 대역에 걸친 광범위한 지속적 신경 진동을 식별하는 능력을 

강조한다. 특정 시간 영역 내에서의 특정 뇌 구성 요소(component 3, 6, 8)의 

기여가 두드러지며, 이는 R 피크 관련 뇌 반응과 일치할 가능성이 크다. 동시에, 더 

확장된 기간에 걸친 구성 요소(component 4, 5)는 지속적인 주의 또는 각성 

상태에 기여하는 주기적인 뇌 활동 패턴을 활용하는 것을 의미한다. 

  기존 연구 21 에 의해 확인된 세타 대역의 중요성은 R 피크에 대한 일관된 뇌 

반응과 일치한다. 이 결과는 심장박동 주의와 백색 소음 청취 동안 뇌 상태를 

구별하는 데 중요한 주파수로 세타 대역을 식별한 현재 연구의 HRSP 분석 

결과와도 부합하다. Grad-CAM 분석의 이러한 결과는 모든 HRSP 구성 요소가 R 
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피크 유발 뇌 반응을 직접 반영하지는 않을지라도, 특히 R 피크 이후 200-

600ms의 세타 및 알파 대역 내에서 중요한 구성 요소가 내수용 감각 주의 상태를 

다른 상태와 구별하는 데 중요한 역할을 한다는 것을 확인하며, 이는 HRSP의 

심박수에 대한 선택적 민감성을 강조한다. 

 

 

4.2. R 피크 고정 뇌 반응의 내수용 감각 처리 관련성 

  심박박동에 대한 주의 집중이 내수용 감각 처리를 조절하는지에 대한 문제는 본 

연구에서 부분적으로 해결되지 않았다. 내수용 감각과 그에 대한 신경학적 

상관성은 종종 무의식적인 처리와 관련이 있다. 우리는 자신의 심박수에 주의를 

기울여 내수용 감각 인식을 높이면 이 무의식적인 R 피크 고정 뇌 반응 또한 

영향을 받아, CNN 모델이 심장박동 주의 과제와 그렇지 않은 과제와 구별할 수 

있을 것이라는 가설을 세웠다. 

Grad-CAM 분석에서 국소적인 스펙트럼을 보이는 뇌 구성 요소의 뇌 신호원 

위치와 시간-주파수적 특징은 내수용 감각 처리를 암시한다. 내수용 감각 처리는 

일반적으로 insula 및 somatosensory cortex 와 같은 뇌 영역과 관련이 있다고 

알려져 있다.8 15 41 42 43 또한 precuneus 영역 역시 내수용 감각 정보를 처리하여 

감정 상태의 주관적 경험을 형성하는 데 관여한다. 44 45 

본 연구의 Grad-CAM 분석은 내수용 감각 처리와 겹치는 뇌 구성 요소를 

강조했다. 대표적인 뇌 구성 요소는 감각운동 영역 및 주의 네트워크의 내측 

부분과 관련된 보조 운동 영역(SMA) 및 중간 대상 피질을 포함하는 component 3 

43 46, 부분적으로 insula 영역으로 확장되는 right centro-lateral component 58 41 

42 47  48 , 그리고 precuneus 에 해당하는 component 6 44 45 이다. 이러한 구성 

요소들은 분류에 중요한 역할을 했다. superior parietal cortex  (component 8) 48 

49 50 역시 R 피크에 대한 초기 반응을 보였으며, 내수용 감각 활성화 상태 동안 R 

피크 이후 200-600 ms 사이에 스펙트럼 증가를 나타내며, 이는 기존 연구의 

결과와 일치한다.  

  이에 더하여 참가자들의 심장박동 집중 상태에 대한 설문지 응답을 바탕으로 

주의 수준을 세 가지 범주로 효과적으로 분류했다. 그러나 이러한 수준은 내수용 

감각의 직접적인 측정이 아닌 주관적인 자기 보고 결과에서 도출되었기 때문에, 

HRSP 기반 분류 시스템의 높은 예측 성능을 HRSP가 상세한 내수용 감각 주의 

상태를 구별할 수 있는 바이오 마커로 결론 짓기에는 어려움이 있다. 그럼에도 

불구하고 HRSP는 참가자가 인식할 수 있는 주의 수준을 반영하는 데 사용할 수 

있다. 
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5. 결론 

본 연구는 HRSP가 내부 신체 신호에 대한 민감성을 향상시키는 데 있어 임상적 응용 

가능성을 강조한다. 내수용 감각 기반 훈련은 정신 질환의 치료 결과를 크게 개선하고 감정 

조절을 향상시키는 것으로 알려져 있다. 7 23 51  효과적인 훈련 관리는 실시간 진행 상황 

모니터링과 참가자에게 적시에 피드백을 제공함으로써 효율적인 훈련이 가능하게 한다. 

예를 들어, 알츠하이머병 및 기타 신경퇴행성 질환 환자를 대상으로 한 연구에서는 적절한 

피드백이 내수용 감각 정확성을 개선하여 치매 및 전두엽-섬엽 뇌졸중과 같은 상태를 

향상시켰다. 52 53 54   
이와 같은 맥락에서 뉴로 피드백은 실시간 측정 및 분석을 통해 참가자가 뇌 활동을 

인식하고 조절하는 데 중요한 역할을 한다. HRSP 매개변수를 평가하는 기술과 Group ICA 

및 분류 모델의 구현은 뉴로 피드백 응용에 특히 유용하다. 

본 연구는 몇 가지 고려할 점이 있는 한계를 가지고 있다. 첫째, 결과에 대한 해석은 

특정 실험 설정을 기반으로 하며, 이러한 결과를 확고히 하기 위해서는 추가적인 검증이 

필요하다. 특히, 심장박동에 주의를 기울임으로써 발생하는 무의식적인 내수용 감각 과정의 

조절과 의식적인 활동을 명확히 구분하지 못하는 한계점이 분명하다. 
둘째, 현재 연구에서의 초점은 최적의 분류 성능을 위한 합성곱 신경망(CNN) 아키텍처 

최적화에 있지 않았다. 따라서, 추후 진행할 신경망 설계 개선은 최종적으로 응용에 도움이 

되어 분류 정확성과 견고성을 향상시킬 수 있다. 
셋째, 다양한 수준의 내수용 감각 처리를 평가하지 않았다. 참가자의 응답을 기반으로 

한 세 가지 범주로 분류된 주의 수준을 사용하여 분류 분석을 수행하였고 높은 예측 성능을 

보였지만, 사용된 설문지는 내수용 감각을 직접 측정하지 않았다. 따라서 높은 분류 

정확도는 HRSP를 내수용 감각 주의 상태의 결정적 지표로 확립하지 못한다. 내수용 

감각의 다양한 수준과 그 의미를 예측하고 이해하는 것은 향후 연구의 주요 영역으로 남아 

있다. 

결론적으로, 본 연구는 심장박동 주의에 의해 유발된 뇌파 신호의 시간-주파수 특성을 

이해하는 데 있어 HRSP를 탐구하는 유용한 바이오마커로 소개한다. 또한, 우리는 뇌 상태 

변화를 모니터링하는 동적 접근 방식을 제안하여 다양한 뇌 상태에 대한 HRSP의 실시간 

분류 방법론을 제안하였다. 실시간 HRSP 분류의 잠재적 유용성은 뉴로 피드백 및 맞춤형 

의료 개입과 같은 응용 방법에서 유망하지만, 이러한 응용 방법에서의 효과를 검증하기 

위한 실증적 테스트가 필수적이다. 따라서 HRSP의 잠재력을 임상 및 치료 환경에서 

완전히 실현하기 위해 이러한 연구 방향을 지속적으로 추구하는 것이 중요하다. 
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ABSTRACT 
 

Real-time monitoring and classification model construction of heartbeat evoked 

potentials and heartbeat-related spectral perturbations using real-time 

independent component analysis 

 

 

  Attending to heartbeats for interoceptive awareness initiates specific electrophysiological responses, including 

the heartbeat-evoked potential (HEP), synchronized with the R-peaks of an electrocardiogram (ECG). Extending 

beyond HEP, this study explores heartbeat-related spectral perturbation (HRSP), which represents the time-

frequency characteristics of EEG signals aligned with each R-peak. Employing an online classification approach, 

we investigated HRSP's properties and its capacity to indicate interoceptive attention states. A convolutional 

neural network (CNN) specifically designed for analyzing HRSPs from brain components identified via EEG's 

independent component analysis (ICA) was applied in binary and four-class classification experiments. These 

experiments involved tasks focused on attending to self-heartbeats and white noise. We evaluated the primary 

frequency bands of HRSP and the minimal number of averaging epochs required to detect frequent changes in 

interoceptive attention states without compromising accuracy. 

Further, the study assessed the utility of group ICA and CNN models alongside individual ICA and CNN models 

for classifying HRSP in new participants. The HRSP CNN demonstrated significantly higher classification 

accuracy compared to the sham R-peak-based HRSP CNN. Grad-CAM analysis highlighted the prominent role 

of theta and alpha bands within the sensorimotor area, salience network areas, and precuneus between 200-600 

ms post-R-peak—features absent in classifications using sham HRSPs. Online classification benefits from 

employing a group CNN model with group ICA, ensuring reliable accuracy without additional individual EEG 

data collection. These findings suggest HRSP's potential to reflect interoceptive attention states, proposing 

transformative implications for therapeutic applications. 
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Keywords : interoception, heartbeat related spectral perturbation, interoceptive attention 
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