creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Development of Prognostic Marker using Spatial Total
RNA Sequencing based Multimodal Validation in
Pediatric Crohn Disease

Sooyoung Jang

The Graduate School
Y onsei University
Department of Medicine



Development of Prognostic Marker using Spatial Total
RNA Sequencing based Multimodal Validation in
Pediatric Crohn Disease

A Dissertation Submitted
to the Department of Medicine
and the Graduate School of Yonsei University
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Medical Science

Sooyoung Jang

December 2024



This certifies that the Dissertation
of Sooyoung Jang is approved

Thesis Supervisor ~ Yu Rang Park

Thesis Committee Member  Hong Koh

Thesis Committee Member  Younghee Lee

Thesis Committee Member ~ Sangwoo Kim

Thesis Committee Member  Ju Yeong Kim

The Graduate School

Yonsei University
December 2024



ACKNOWLEDGEMENTS

I would like to thank my supervisor, Professor Yu Rang Park, for her
consistent support and guidance during the course of this project. [ am
especially grateful for the unwavering support and advice from
Professor Hong Koh. I am also grateful to Professor Sowon Park, Eun
Joo Lee, and Hyeji Lim in the Department of Pediatrics, as well as
MinDong Sung in the Department of Pulmonary Medicine, for their
help with specimen collection and advice. And I would also like to
express my appreciation to Bo Kyu Choi, Chan Young Ko, Jong Hyun
Kim, JooHyun Lee, Min Kyoon Yoo and Jae Seong Hong for their
invaluable assistance with the analysis. I am also grateful to the
members of DHLab and MCU for their research-related feedback and
emotional support, as well as to my college friends. I want to extend my
heartfelt thanks to my beloved wife Minji Seo. Lastly, I would like to
thank my father and my mother for raising me with love and always
supporting me, and my brother. Thank you all.

This research was made possible through a grant from the MD-
PhD/Medical Scientist Training Program, funded by the Korea Health
Industry Development Institute (KHIDI) and the Ministry of Health &
Welfare of the Republic of Korea.



TABLE OF CONTENTS

LIST OF FIGURES ........................................................................................... 111
LIST OF TABLES ........................................................................................... \%
ABSTRACT IN ENGLISH ................................................................................. Vi
1. INTRODUCTION .......................................................................................... 1
2. MATERIALS AND METHODS ......................................................................... 2
2‘ 1 . Participant and EtthS ............................................................................... 2
22 Sample Collection and Storage .................................................................... 3
23 Spatlal Total RNA Sequencing .................................................................... 4
24 Bulk Shotgun Metagenome Sequencing ......................................................... 5
25 HOSt Transcriptome Analysis ...................................................................... 6
26 Spatlal MiCrObiOme Proﬁling ...................................................................... 6
2.7. Microbiome Profiling in Bulk Shotgun Metagenome Data -+« «-wcrreererereeeeereeeee. 6
28 Spatlal MiCrObiOme Decontamination Process .................................................. 7
29 Comparative Analysis Of Bacterial Inﬁltration .................................................. 9
2.10. Differential Gene Expression and Gene Set Enrichment Analysis:-««-««-«-eoeeeereeeeeees 9
2.11. Quantification of Microbial Effects on Cell Viability ««-«cocoeeoreeerrerreereneeeeeee. 10
212 Coexistence Of bacteria across Cell types ..................................................... 10
2.13. Correlation Analysis of Microbiome and Host Transcriptome -« -« -+« cereeeeeeeeeees 10
2.14. Deep Learning Analysis of Bacterial Translocation ««««-««xreeoreerrresreereeaeeeneeeees 11
2.15. Advanced decontamination method using semi-supervised learning model----+--+--- 11
3. RESULTS .................................................................................................. 12
3.1. Spatial Microbiome Profiling Reveals Bacterial Translocation Patterns -+« «--+«-v+--- 12
3.2. Bacterial Translocation Predicts Crohn’s Disease Prognosis:««««««x«srereeereeeeeeee 16
3.3. Bacterial Presence Activates Host Immune Responses « -« -« orxrerereseseeeeeeenes 19
3.4. Bacterial Species Distinctly Impact Cell Viability in Crohn’s Disease -« <+« ++-vooe 21
3.5. Beneficial and Pathogenic Microbiomes Distinctly Modulate Host Transcription------ 24
3.6. Deep Learning Detect Bacterial Translocation in Histological Images -+« <+« «+--+--- 29
3.7. Semi-supervised Learning Discriminates True Bacteria from False Positives- -+« 30
4. DISCUSSION ............................................................................................. 31
5. CONCLUSION ........................................................................................... 37
REFERENCES ............................................................................................. 38



APPENDICES -+

ABSTRACT IN KOREAN ...............................................................................

PUBLICATION LIST



LIST OF FIGURES

<Fig 1> Schematic Diagram of the Overall Study Design «««««==++++ssssserrerrrrrrr. 4
<Fig 2> Schematic Diagram of the Spatial Host-Microbiome Profiling «-«««-«-xxovrereeeeereenees 5
<Fig 3> Determination of Bacterial Species for Analysis in the Pediatric Crohn’s Disease Spatial
MICTODIOMIE SHUAY -+« + s+ s s e e e e e e e et 8
<Fig 4> Comparison of Spatial Microbiome Profiling and Bulk Shotgun Sequencing with Human
Read Removal Approaches for Accurate Bacterial Identification ==« «-«-xvoeeerreereaerereeeeeees 8
<Fig 5> Schema of dimension reduction for analysis of bacteria coexistence «-«-«+-«-«-+=x-xove+- 10
<Fig 6> Schema of Deep learning for bacterial translocation-induced tissue changes--«-+=-+-+-+- 11
<Fig 7> Cell type annotation using Cell21ocation -« ++«+««««««ssrrremrinrri 14
<Fig 8> Stacked Percentage Bar Chart of Cell Types by sample and tissue type:--------+=+===---+- 14
<Fig 9> Distribution of total bacterial read counts between tissue types «««««-«-x-xrereeerereeeees 15

<Fig 10> Distribution of various bacteria in different tissue types, showing patterns for
Faecalibacterium prausnitzii and Escherichia coli in control and Crohn’s disease tissues =*--+- 15
<Fig 11> Comparison of total bacterial read counts between tissue types and cell types -+~ 16
<Fig 12> Comparison of bacterial infiltration, time to relapse, and endoscopic severity in CD-- 17
<Fig 13> Cell-cell interaction analysis using CellChat. Interaction networks in control and CD
tissues ....................................................................................................... 17
<Fig 14> Cell-cell interaction analysis in bacteria-scarce and bacteria-abundant regions. ---+-+- 18
<Fig 15> Differential gene expression and pathway analysis in response to bacterial presence:- 19
<Fig 16> Differential gene expression and pathway analysis in immune cell-rich and enterocyte-
rich QTGS ©*r v vttt 20
<Fig 17> Relative risk (RR) of reduced cell viability following bacterial exposure. Visualization of
RR for specific bacterial species with a focus on those affecting CD rigk -« --xoeeeeerereeeees 21

<Fig 18> Population Attributable Risk Percent (PARP) for intestinal barrier disruption by bacterial

Species, hlghllghtlng their OVerall impact .............................................................. 22
<Fig 19> RR of reduced cell viability in different cell types «-««-«---rorrereererreereeeeeees 23
<Fig 20> Relative risk of reduced cell viability for different Escherichia coli strains----+-+--+- 24

<Fig 21> Differential gene expression between cells exposed to beneficial and pathogenic
miCrObiOmeS ................................................................................................ 25

<Fig 22> Differential gene expression in immune cell-rich and enterocyte-rich areas when exposed
to beneﬁcial and pathogenic miCrObiOmes ............................................................. 26

<Fig 23> Correlation analysis of microbiome and host transcriptome « -« -« «=x-xoeeeerrereeeess 27



<Fig 24> Coexistence of bacteria across cell types «««««««««««ssrrsssssssssrerrriiriis 27
<Fig 25> Coexistence of bacteria across specific cell types «-««-x-werrrrrrerrrerreereneeeeeen. 28
<Fig 26> Performance of Deep Learning Model in Differentiating Bacterial Translocation ----- 29
<Fig 27> Relationship between tissue morphology and bacterial presence based on deep learning
clustering of H&E-stained images ...................................................................... 30
<Fig 28> Schematic overview of increased bacterial infiltration in Crohn's disease, comparing

normal and CD intestines ................................................................................. 32



LIST OF TABLES

<Table 1> Patient characteristics of this Study««««««««««««rrrmrrnnnerters 12
<Table 2> Performance of Semi-Supervised Deep Learning Model in Differentiating True Bacteria
and False pOSitiVG SpeCies. ................................................................................ 31

<Table 3> Phylum and Clostridium Cluster Classification of Beneficial and Pathogenic

Microbiomes il'l CrOhn'S Disease ........................................................................ 34



ABSTRACT

Development of Prognostic Marker using Spatial Total RNA
Sequencing based Multimodal Validation in Pediatric Crohn Disease

Crohn’s disease is a chronic inflammatory bowel disease that is considered to be caused by the
interaction between the gut microbiome and the host immune system. Numerous studies have
characterized gut microbiome composition in CD patients. Advancements in high-throughput
transcriptomics approaches have enhanced understanding of cellular heterogeneity in various
disease contexts. The complex relationship between tissue-resident bacteria and the host immune
network in CD pathogenesis remains unclear. Previous spatial transcriptomics methods were limited
in identifying bacterial RNA. Here we show a novel spatial host-microbiome profiling approach that
utilizes in situ poly adenylation with spatial transcriptomics for simultaneous detection of host and
bacterial RNA. We developed a pipeline to detect bacteria in spatial transcriptomics data at high
taxonomic resolution, including strain-level identification. Using this approach, we demonstrate that
bacterial infiltration is significantly elevated in CD tissues and correlates with disease prognosis.
This approach identified beneficial and pathogenic microbiome associated with CD. These findings
reveal interactions between host cells and bacteria in CD, providing insights into CD pathogenesis
at cellular resolution. This study offers a new approach for investigating host-microbiome
interactions in various microbiome-associated diseases, potentially leading to new strategies for

microbiome-based therapeutics and prognostic markers.

Key words: Gastrointestinal Microbiome; Multiomics; Bacterial translocation; Host-microbiome
interactions

Vi



1. INTRODUCTION

The etiology of Crohn’s disease (CD) is not clearly understood, but it is considered to be caused
by an interaction between the gut microbiome and the aberrant host immune response in patients
with a genetic predisposition (Neurath 2019). Several findings have emphasized the importance of
bacteria in the pathogenesis of CD. Genome-wide association studies (GWAS) have reported that
defects in microbe sensing, epithelial barrier function, microbicidal mechanisms, cytokine
regulation, and adaptive immunity are associated with CD (Graham and Xavier 2020). Furthermore,
mouse models of CD do not develop the disease when raised in germ-free conditions, but they
develop CD in the presence of bacteria (Balish and Warner 2002; Kim et al. 2005). Recently, Ha et
al. have reported that there is a subset of mucosa-associated gut bacteria that translocate to the
intestinal tissue in CD, and these bacteria may contribute to the progression of the disease (Ha et al.
2020).

Consequently, numerous large-cohort studies have been conducted to characterize the gut
microbiome composition in patients with CD (Wright et al. 2015; Hansen et al. 2012; Gevers et al.
2014; Kansal et al. 2019; Haberman et al. 2014). A notable example is the study by Gevers et al.,
who conducted microbiome profiling using ileal tissue samples from 447 pediatric patients with CD
and 221 controls (Gevers et al. 2014). These studies suggested that the gut microbiome in CD is
characterized by an increase in pathogenic bacteria such as Cutibacterium acnes and Haemophilus
parainfluenzae, and a decrease in beneficial bacteria like Faecalibacterium prausnitzii (Kansal et al.
2019; Hansen et al. 2012; Gevers et al. 2014).

The identification of these alterations, particularly the reduction of beneficial bacteria, holds
significant potential for the development of microbiome-based therapeutics in CD (Sorbara and
Pamer 2022; Mohebali et al. 2023). The underlying mechanisms of microbiome-mediated effects
are not fully understood, but evidence suggests that certain gut bacteria, particularly Clostridium
clusters XIVa and IV, promote the accumulation of regulatory T (Treg) cells (Sefik et al. 2015;
Ohnmacht et al. 2015; Atarashi et al. 2011; 2013). These accumulation of Treg cells in the intestinal
mucosa subsequently regulate excessive immune responses in inflammatory bowel disease.

Recent advancements in high-throughput transcriptomic approaches, such as spatial
transcriptomics, have revolutionized our understanding of cellular heterogeneity and spatial
organization in complex biological systems (Tian, Chen, and Macosko 2023). However, previously

developed spatial transcriptomics methods relied on poly A tail-targeting approaches, limiting their



application to mRNA from eukaryotic organisms, such as humans and mice (Stéhl et al. 2016). These
methods faced challenges in identifying non-host RNA, particularly bacterial RNA, which lacks
poly A tails (McKellar et al. 2022). This limitation has hindered a comprehensive understanding of
host-microbiome interactions and their potential roles in the pathogenesis of microbiome-associated
diseases, such as CD. Nevertheless, Galeano et al. recently demonstrated that bacteria within tumors
may play a crucial role in cancer metastasis using a spatial transcriptomics method targeting bacterial
16S rRNA (Galeano Nifio et al. 2022). However, these 16S rRNA-targeting approaches have limited
taxonomic resolution when profiling the microbiome, restricting the identification of bacteria to the
genus level, thereby hindering species-level discrimination (Galeano Nifio et al. 2022; Saarenpéé et
al. 2023; Lotstedt et al. 2023).

In this study, we aim to investigate the interactions between bacteria and host cells at cellular
resolution in pediatric CD tissue samples using recently developed spatial total RNA sequencing,
which utilizes yeast poly A polymerase to simultaneously detect both host and non-host RNAs. We
also assess the prognostic value of tissue microbiome analysis in CD and explore the impact of
tissue-resident bacteria on the immune response within CD tissues. Furthermore, we aim to identify
pathogenic and beneficial microbiomes associated with CD at the cellular level and investigate the
alteration of the host transcriptome in response to these microbiomes. Our study incorporates deep
learning approaches of histology image to detect tissue morphology changes associated with
bacterial infiltration in CD. Additionally, we have developed a refined decontamination process
using semi-supervised learning methods to identify bacterial presence without the need for

metagenomic shotgun sequencing validation.

2. MATERIALS AND METHODS

2.1. Participant and ethics

This prospective study included patients with CD from the division of Gastroenterology,
Hepatology, and Nutrition, Department of Pediatrics, Sinchon Severance Hospital, in Seoul. This
tertiary teaching hospital diagnoses approximately 25 new CD cases annually. Ethical approval was
obtained from the Institutional Review Board of Severance Hospital, Yonsei University College of
Medicine (IRB number: 4-2022-1127).

We recruited pediatric patients aged between 7 and 18 years between Nov 01, 2022, and Apr 30,



2024. For the CD group, we included patients newly diagnosed with CD. The control group
consisted of patients with irritable bowel syndrome who underwent endoscopy but showed no
evidence of inflammation on endoscopic examination, histopathological analysis of biopsy
specimens, and blood tests. For all participants, both the patients and their parents or legal guardians
provided informed consent for participation in the study. Clinical relapse of pediatric CD was

defined as a Pediatric Crohn’s Disease Activity Index (PCDAI) score of =30, indicating a

worsening of the disease (Hyams et al. 1991).

2.2. Sample collection and storage

Tissue samples were collected from the terminal ileum during endoscopic examination. For
pediatric CD patients, both inflamed and non-inflamed tissues were obtained, while control group
samples consisted of only non-inflamed tissue. Immediately after collection, these tissue samples
were embedded in optimum cutting temperature (OCT) compound (SciGen Scientific, Gardena, CA,
USA), frozen and stored at -80°C. The storage periods ranged from 1 week to 3 months. The stored
samples were subsequently process for spatial total RNA sequencing and bulk shotgun metagenome
sequencing. The quality of RNA extracted from the samples was assessed using the RNA Integrity
Number (RIN), with samples falling below the quality threshold being excluded from further

analysis.
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Figure 1. Schematic diagram of the overall study design

2.3. Spatial total RNA sequencing

The quality of tissue blocks was evaluated by isolating RNA from consecutive tissue sections and
measuring the RNA integrity number (RIN) using an Agilent 4200 TapeStation system (Agilent
Technologies, Santa Clara, CA, USA). Samples with a RIN = 4 were considered suitable for
further experiment. Due to the small size of the tissues, multiple sections were placed on each sample
block for analysis. For CD group, both inflamed and non-inflamed tissue sections from the same
patient were mounted side by side, while only non-inflamed tissue sections were mounted for control
group. Following the Visium protocol (CG000160, Rev D, 10x Genomics), the tissue samples
underwent methanol fixation and H&E staining. The stained sections were imaged using a Nikon

Eclipse Ti2 microscope.



Based on the approach of McKellar et al., we conducted in situ polyadenylation (McKellar et al.
2022). This procedure included equilibration with wash buffer containing Protector RNase Inhibitor
(Roche, catalog no. 3335402001), followed by incubation with an enzyme mix containing yeast poly
A polymerase (Thermo Scientific, catalog no. 742257Z25KU). We used the Visium Tissue
Optimization Kit from 10x Genomics to determine the optimal tissue permeabilization time. After
the in situ polyadenylation step, we prepared final sequencing libraries using standard Visium library
preparation protocol (CG000239, Rev F, 10x Genomics). The prepared libraries were combined and
sequenced on a NovaSeq 6000 system (Illumina, San Diego, CA, USA) using the NovaSeq 6000 S1
Reagent Kit v1.5 (200 cycles, 20028318, Illumina). We sequenced to a depth of approximately
120M reads per sample.

Spatial transcriptomics reads (FASTQ files)
]

Bowtie2 : human
read removal

!
Space Ranger : Umi-tools :
Host split by cell
transcriptome barcodes
detection 1
Kraken2 : bacterial
read count
] !

Downstream analysis
: scanpy, seurat, CellChat,
Pearson correlation

Figure 2. Schematic diagram of the spatial host-microbiomeo profiling

2.4. Bulk shotgun metagenome sequencing
Genomic DNA quality and quantity were assessed via fluorometry (Qubit, Invitrogen) and gel
electrophoresis. Samples with a DNA Integrity Number >6, as measured by an Agilent 4200

TapeStation, were used for further analysis. The library was prepared using the Illumina TruSeq



Nano DNA Library Prep Kit. For each sample, 100 ng of DNA was fragmented to 350 bp using a
Qsonica 800 R2, followed by Illumina adapter ligation and PCR amplification. Libraries sized 500—
600 bp were selected and quantified using TapeStation 4200 (Agilent Technologies) and KAPA
Library Quantification Kit (Kapa Biosystems). Sequencing was performed on an Illumina NovaSeq

6000 platform using 150 bp paired-end reads.sample.

2.5. Host transcriptome analysis

Host transcriptomics data were preprocessed using Space Ranger v1.3.1 (10x Genomics).
Downstream analyses with the output count matrices were performed using Scanpy v1.9.3 (Wollf,
Angerer, and Theis 2018). As the Visium method captures multiple cells within each spot, we
employed Cell2location, a computational tool that maps single-cell RNA sequencing data onto
spatial transcriptomics data (Kleshchevnikov et al. 2022). For this process, we utilized previous
single-cell RNA sequencing data from pediatric patients with CD (Elmentaite et al. 2020).
Cell2location integrates this single-cell data with our spatial transcriptomics data, allowing us to
identify areas enriched with specific cell types across the analyzed tissue samples. Low-quality spots

with >40% mitochondrial reads were excluded from the analysis (Elmentaite et al. 2021).

2.6. Spatial microbiome profiling

We used Bowtie2 v2.5.1 to align the spatial transcriptomics read to the GRCh38 human reference
genome for human read removal (Langmead and Salzberg 2012). UMI-tools v1.1.1 was used to
separate the fastq files by cell barcode for independent analysis per spots (Smith, Heger, and Sudbery
2017). Bacterial reads were identified using Kraken2 v2.1.1 with the publicly available PlusPF
database (version 2022/09/08, https://benlangmead.github.io/aws-indexes/k2) (Wood, Lu, and
Langmead 2019). It contains RefSeq reference sequences for archaea, bacteria, viruses, plasmids,
protozoa, fungi, and humans, as well as UniVec_Core sequences. We calculated counts per million

(CPM) mapped reads by dividing bacterial read counts by total sequencing reads for normalization.

2.7. Microbiome profiling in bulk shotgun metagenome data

In the analysis of bulk shotgun metagenome data, we employed a process similar to our spatial

microbiome detection method. Bowtie2 aligned reads to the GRCh38 human reference genome for



human read removal (Langmead and Salzberg 2012). Subsequently, we identified bacterial reads
using Kraken2 with the same publicly available PlusPF database used in our spatial analysis (Wood,

Lu, and Langmead 2019).

2.8. Spatial microbiome decontamination process

We developed a stepwise decontamination process to reduce false positive species in our spatial
microbiome profiling data. Initially, we excluded species with low spatial microbiome sequencing
read counts across all samples, specifically those with <50 total reads across all spatial microbiome
sequencing samples. We then compared the profiling results with the bulk metagenome sequencing
data from the same tissue samples. Species with <50 reads from bulk sequencing or with >1.5 ratio
of spatial and bulk sequencing read percentages were removed from our spatial microbiome dataset.

To mitigate potential false positives arising from host read contamination, we evaluated the results
of single and double human read-removal processes (Garrido-Sanz, Senar, and Pifiol 2022). The
single human read-removal process used Bowtie2, while the double human read-removal process
used both Bowtie2 and BWA v0.7.17; all aligned with the GRCh38 human reference genome
(Langmead and Salzberg 2012; Li and Durbin 2009). This process led to two observations. First,
certain species exhibited a drastic reduction in read counts following the double human read removal,
indicating that they might be false positive; second, the read counts from genuine gut-residing
species also decreased moderately, suggesting that certain true signals were affected (Figure 4). We
classified the species as potential false positives if their read counts after double removal dropped

to <2% of those observed after the single removal.
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Figure 3. Determination of bacterial species for analysis in the pediatric Crohn’s disease spatial

microbiome study
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2.9. Comparative analysis of bacterial infiltration

The average number of bacterial reads, in CPM, per spot was compared across the control, CD
non-inflamed, and CD inflamed tissues. The number of cells with bacterial infiltration was assessed
for each cell type. For each patient, we compared the average number of bacterial reads per spot

with their time to relapse and the Rutgeerts score of ileal endoscopic findings (Rutgeerts et al. 1990).

2.10. Differential gene expression and gene set enrichment analysis

Differentially expressed genes were identified based on the presence of specific bacterial species.
This analysis was conducted separately for each detected bacteria, and we assessed the consistency
of gene expression changes across different bacterial species. Each cell type previously identified
by Cell2location was analyzed, enabling cell type-specific characterization of host-microbiome
interactions. Gene set enrichment analysis was performed using the BioPlanet 2019 database to
identify biological pathways associated with genes consistently expressed differentially in the
presence of bacteria (Huang et al. 2019). Additionally, we conducted an analysis of tissue-specific

gene expression between cells exposed to beneficial and pathogenic microbiomes.

2.11. Quantification of microbial effects on cell viability

We investigated the impact of specific bacterial species on cell viability using the percentage of
mitochondrial reads, a widely used marker of cell viability in single-cell RNA sequencing and spatial
transcriptomics analyses (Ilicic et al. 2016). Cells with =<10% mitochondrial reads were defined as
viable, while those with >10% were defined as damaged. We calculated the relative risk (RR) of
reduced cell viability following exposure to specific bacterial species to quantify the effect of
bacterial exposure on cellular integrity. This analysis was performed exclusively on samples from
participants with CD to examine the impact of bacterial exposure. Multiple testing correction was
performed using the Benjamini—Hochberg method to control the false discovery rate at 0.05. The

RR was calculated as follows:

Number of damaged cells exposed to bacteria / Total number of cells exposed to bacteria

RR =

Number of damaged cells not exposed to bacteria / Total number of cells not exposed to bacteria

We also calculated Population Attributable Risk Percent (PARP) by integrating the RR values of

specific bacteria with their tissue prevalence. This provided a measure of the overall contribution of



each bacterial species to cellular damage within the entire tissue environment. The PARP was
calculated using the following formula, where P is the proportion of cells exposed to the specific

bacteria:

Px(RR-1)
Px(RR-1)+1

PARP (%) = ( )x 100

2.12 Coexistence of bacteria across cell types

To analyzea bacterial distribution patterns, we assessed the spatial location of specific bacteria
across spots using dimension reduction. We performed Uniform Manifold Approximation and
Projection (UMAP) analysis on the spatial presence information of bacteria, compressing it into
two-dimensional data for visualization. For each spot, we examined which cell types coexisted with
specific bacteria using Cell2location analysis. Additionally, for each spot, we integrated the cell type
proportions estimated by Cell2location with bacterial presence data to determine the frequency of

coexistence between specific bacterial species and various cell types.

2.13. Correlation analysis of microbiome and host transcriptome

We performed Pearson correlation analysis to evaluate the relationship between the presence of
each bacterial species and host gene expression levels. This analysis was performed exclusively on
samples from participants with CD. Principal Component Analysis (PCA) was then applied to the
resulting correlation matrix for dimension reduction. We analyzed the contribution of individual
genes to principal component 2 (PC2) and displayed the top 20 genes with the highest absolute

contribution.

spot 00001 | spot_00002 . spot 13464 | spot_13465 X-axis Yeaxis

Eshcherichia coli 1 0 1 1 Eshcherichia coli 53 21

Faecalibacterium prausnitzii 1 0 Y 1 ' Faecalibacterium prausnitzii 49 18

Dimension
Dysosmobacter welbionis 0 0 o 1 reduction Dysosmobacter welbionis 72 58
using
Phocaeicola vulgatus 0 0 0 1 UMAP Phocaeicola vulgatus -8.1 -49

Figure 5. Schema of dimension reduction for analysis of bacteria coexistence



2.14. Deep Learning Analysis of Bacterial Translocation

We developed deep learning models to detect bacterial translocation in high-resolution H&E-
stained images of the same tissue sections used for spatial transcriptomics. We trained separate
models to identify the presence of all bacteria, beneficial microbiomes, pathogenic microbiomes,
and individual bacterial species. To prepare the data, we divided the images into 224x224 pixel
patches centered on barcode locations, selecting only those containing over 60% tissue. We fine-
tuned pre-trained DenseNet121 models using an Adam optimizer (learning rate 0.001) for up to 25
epochs.

To further analyze the relationship between cell morphology and bacterial infiltration, we clustered
the 224x224 pixel patches from the H&E-stained images into five groups based on their
morphological characteristics. Pearson correlation analysis was then used to evaluate the association

between these morphological clusters and the presence of various bacterial types.

224 pixel

. Bacterial infiltration
- Deep learning model

(DenseNet121) No infiltration

Figure 6. Schema of Deep learning for bacterial translocation induced tissue changes

2.15. Advanced decontamination method using semi-supervised learning

model

When performing sequencing on specimens with mixed human and bacterial content,
misidentification of human DNA as bacterial DNA produce substantial false positive
species.(Gihawi et al. 2023; Gihawi, Cooper, and Brewer 2023) While our study validated the
presence of bacterial species through metagenomic shotgun sequencing of identical specimens, such
validation may not be feasible for all reasearch settings. We hypothesized that true bacterial species

and contamination species would differentially affect host gene expression patterns. Using deep



learning models, we evaluated whether Pearson correlation values between bacterial presence and
host gene expression changes, which represent host-bacterial interactions, could distinguish true
bacterial species from contaminants.

Considering situations where bulk microbiome validation is not available, we classified species
into definitive bacterial candidates, definitive false contaminant candidates, and unlabeled species
by only comparing single and double human read removal processes. We employed the
ContrastiveMixup model, a semi-supervised deep learning approach that utilizes both labeled and
unlabeled data to improve classification performance.(Darabi et al. 2021) This model enhances the
learning of labeled data through unlabeled data while simultaneously predicting labels for unlabeled

data.

3. RESULTS

3.1. Spatial Microbiome Profiling Reveals Bacterial Translocation Patterns

A total of 14 terminal ileal tissue samples were biopsied, including 12 from inflamed and non-
inflamed tissues of six children with pediatric CD (mean age 13.5 years, SD 2.1) and two from non-
inflamed tissues of two children without CD as the control group (mean age 15.0 years, SD 1.0).
Spatial host-microbiome sequencing and bulk shotgun metagenome sequencing were performed on

all collected tissues. For the CD group, tissues were collected at the time of diagnosis.

Table 1. Patient characteristics of this study

Control
(Irritable bowel syndrome)

Crohn's disease

number of tissues 12 2
number of patients 6 2
PCDAI score 34.7(4.5) -
Age 13.5(2.1) 15.0(1.0)
Gender

male 5 0

female 1 2



initial CRP 21.1(27.8) 3.9(3.7)
Location, n (%) -

L1 terminal ileum 0(0%) -

L2 colon 0(0%)

L3 ileocolon 6(100%) -
Behavior, n(%) -

B1 inflammatory 6(100%)

B2 stricturing 0(0%) -
B3 penetrating 0(0%) -
perianal involvement, n (%) 4(66%) -

* Abbreviations: PCDALI: Pediatric Crohn's Disease Activity Index; CRP: C-reactive protein

To capture both host RNA and bacterial RNA simultaneously, in-situ polyadenylation was
performed using yeast poly A polymerase prior to host spatial transcriptome sequencing, following
the method of McKellar et al (McKellar et al. 2022). Spatial microbiome profiling was conducted
by removing human reads using Bowtie2, followed by the identification of bacterial reads using
Kraken2 (Langmead and Salzberg 2012; Wood, Lu, and Langmead 2019). Additionally, bacterial
species that were nearly absent in the bulk metagenome shotgun sequencing performed on the same
tissue were excluded from the spatial microbiome profiling results. Furthermore, bacterial species
that were markedly reduced after additional human read removal using BWA were also excluded, as
they were considered potential human read contaminants (Figure 1) (Li and Durbin 2009). As a
result, 81 species of bacteria were identified, which are commonly found in the gut.

Cell2location was used to map the spatial distribution of cell types in our spatial transcriptomics
data by integrating previously published single-cell RNA sequencing data from pediatric patients
with CD (Kleshchevnikov et al. 2022; Elmentaite et al. 2020). This approach identified various areas
enriched with certain cell-types, such as enterocyte-rich, immune cell-rich, and Tuft cell-rich areas
(Figure 7). Considering the samples from the same participant, the immune cell-rich areas were
found to be more abundant in the inflamed CD tissues compared to the non-inflamed tissues (Figure
8).
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Figure 7. Cell type annotation using Cell2location. Cell type deconvolution was performed using
Cell2location. Based on the results, areas were annotated according to co-occurring cell type
combinations, such as immune cell-rich area, enterocyte-rich area, Tuft cell-rich area, and Paneth

cell-rich area. The composition of cell types for each area is displayed.

Cell Type
enterocyte-rich area
immune cell-rich area
Tuft cell-rich area

TA cell-rich area

M cell-rich area
myofibroblast-rich area
Paneth cell-rich area
monocyte-rich area

early enterocyte-rich area

Percentage
Percentage

CD1 noninflammed
CD3 noninflammed
CD4 noninflammed
CD5 noninflammed
CD6 noninflammed
CD7 noninflammed
CD1 inflammed
CD3 inflammed
CD4 inflammed
CD5 inflammed
CD6 inflammed
CD7 inflammed
CD noninflammed
CD inflammed

Library Tissues

Figure 8. Stacked Percentage Bar Chart of Cell Types by sample and tissue type. a. Stacked
Percentage Bar Chart of Cell Types by sample. b. Stacked Percentage Bar Chart of Cell Types by
sample. CD: Crohn’s disease; Ctrl: Control
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Figure 9. Distribution of total bacterial read counts between tissue types. Distribution of total
bacterial read counts in contol group tissue (Ctrl 2). b. Distribution of cell types in contol group
tissue (Ctrl 2). c. Distribution of total bacterial read counts in CD patient tissue (CD4).
noninflammed tissue(left), inflammed tissue(right). d. Distribution of cell types in CD patient
tissue (CD4). CD: Crohn’s disease; Ctrl: Control
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Figure 10. Distribution of various bacteria in various tissue types. Faecalibacterium prausnitzii

and Escherichia coli infiltration patterns in control (Ctrl 1-2) and Crohn’s disease (CD 1-7) tissues.
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CD: Crohn’s disease; Ctrl: Control

Furthermore, the bacterial read count per cell was higher in both non-inflamed (0.409 + 0.028,
mean = standard error) and inflamed CD tissues (0.892 £ 0.115) compared with that in the controls
(0.011 £ 0.002), with the highest count observed in inflamed CD tissues (Figure 11a). Notably, we
observed increased counts in M cell-rich areas (8.660 + 2.516) (Figure 11b), consistent with the

known function of M cells in sampling luminal bacteria (Dillon and Lo 2019).
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Figure 11. Comparison of total bacterial read counts between tissue types a. The average number
of total bacterial reads per cells in control, CD non-inflamed, and CD inflamed tissue were
compared. b. The average number of total bacterial reads per cell were compared between each

cell types. P-values indicate statistical significance (*P < 0.05 and **P < 0.005, ***P < 0.0005)

3.2. Bacterial Translocation Predicts Crohn’s Disease Prognosis

The bacterial read count per cell was highest in the CD group with relapse, followed by the CD
group without relapse, and lowest in the control group. Within the relapse group, the time to relapse
was shorter for participants who had a higher count at the time of diagnosis (Figure 12a). We also
observed an association between bacterial read counts and the severity of endoscopic findings in the

ileum, which was assessed by the Rutgeerts score (Figure 12b) (Rutgeerts et al. 1990). These
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findings suggest the potential for predicting CD prognosis by assessing the extent of bacterial

translocation in intestinal tissues.

a 5
BN Normalized Bacterial Read (CPM) i 12
B Time to relapse (month) '
—e— Rutgeerts score of ileum H
4 | 10 4
= 1
a 1
< 1 =
® i s 5
5
&3 H E f3
T H o
= ! w
g ! g
3 | 6
o 1 -
° 2 | S F2
& ! @
© I 4 E
E | £
S |
=1 ! b1
1 2
l
1
1
0 g 7 r .
Q& Q& e
& & s
b <Control group> <CD non-relapse group>

Figure 12. Comparison of bacterial infiltration, time to relapse, and endoscopic severity in CD.

a. The graph displays normalized bacterial read counts (blue bars), time to relapse (orange bars),

and Rutgeerts scores (red line) across control, non-relapse CD, and relapse CD groups. b.

Endoscopic images of ileum for each participants, showing varying degree of mucosal

inflammation corresponding to their group classification.
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CellChat (Jin et al. 2021). a. Cell-cell interaction analysis in control tissue. b. Cell-cell interaction

analysis in CD noninflammed tissue. c. Cell-cell interaction analysis in CD inflammed tissue.
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Figure 14. Cell-cell interaction analysis between tissue in bacteria-scarce region and bacteria-
abundant region. Cell-cell interactions were analyzed using CellChat (Jin et al. 2021). a. Cell-cell
interaction analysis of control tissue in bacteria scarce region. b. Cell-cell interaction analysis of

CD noninflammed tissue in bacteria scarce region. c. Cell-cell interaction analysis of CD

inflammed tissue in bacteria scarce region. d. Cell-cell interaction analysis of control tissue in
bacteria abundant region. e. Cell-cell interaction analysis of CD noninflammed tissue in bacteria

abundant region. f. Cell-cell interaction analysis of CD inflammed tissue in bacteria abundant
region. Bacteria scarce regions and bacteria abundant regions were divided by a CPM normalized

bacteria read count value of 5.

Given that Crohn's disease (CD) is characterized by impaired microbial sensing, defects in

microbicidal mechanisms, and dysregulated cytokine responses, we conducted a cell-cell interaction
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analysis to explore potential differences in immune response networks. We analyzed these
interactions separately in bacteria-scarce and bacteria-abundant regions. In control tissue, signaling
from enterocytes to other cells increased significantly in bacteria-abundant regions. However, in CD
tissue, this signaling showed minimal variation between bacteria-scarce and bacteria-abundant
regions. These findings suggest that the mechanism by which enterocytes sense bacteria and transmit

signals to initiate immune responses is weakened in CD.

3.3. Bacterial Presence Activates Host Immune Responses

Genes differentially expressed based on the presence of 81 bacterial species were identified.
Subsequently, the consistency of this expression pattern was examined across different bacterial
species to identify genes whose expression was consistently induced or suppressed by the presence
of bacteria. Furthermore, using the BioPlanet database, we investigated the functions of gene that
showed consistent overexpression in the presence of the 81 bacterial species (Huang et al. 2019).
Gene expression analysis in all cells showed that bacterial presence induced upregulation of immune
system components, including B cell receptor signaling (Figure 15a, 15b). Meanwhile, lipid
absorption pathway of the intestine, such as chylomicron-mediated lipid transport, were

downregulated in the presence of bacteria (Figure 15c¢).
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Figure 15. Differential gene expression and pathway analysis in response to bacterial presence in

all cells. a. The top panel shows the rate of significant differential gene expression in response to
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various bacteria in all cells. The heatmap below displays Z-scores of differential gene expression
for specific bacterial species. b. Gene set enrichment analysis of upregulated genes in all cells in
response to bacterial presence. c. Gene set enrichment analysis of downregulated genes in all cells

in response to bacterial presence.

Gene expression analysis of immune cell-rich and enterocyte-rich areas demonstrated consistent
upregulation of genes encoding immunoglobulin components in response to bacterial presence,
including IGHG4, IGKC, IGHA1, JCHAIN, and IGHG3 in immune cell-rich areas and IGHGI,
IGHG3, IGHG4, IGLC2, IGKC, IGHA1, IGLC3, and IGHM in enterocyte-rich areas (Figure 16a,
16b) (Mikocziova, Greiff, and Sollid 2021). Functional enrichment analysis revealed that
upregulated genes in both areas were involved in bacterial defense mechanisms, including
interleukin signaling and innate immune system pathway (Figure 16c, 16d) (Huang et al. 2019).
Moreover, the genes in the immune cell-rich areas showed a higher degree of consistency in their
differential expression compared with those in the enterocyte-rich areas, suggesting that the
transcriptional response of immune cells to bacterial presence is more uniform and robust,

underlining their central role in the bacterial defense response.
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Figure 16. Differential gene expression and pathway analysis in response to bacterial presence. a.
The top panel shows the rate of significant differential gene expression in response to various
bacteria in immune cell-rich area. The heatmap below displays Z-scores of differential gene
expression for specific bacterial species in immune cell-rich area. b. The top panel shows the rate
of significant differential gene expression in response to various bacteria in enterocyte-rich area.
The heatmap below displays Z-scores of differential gene expression for specific bacterial species
in enterocyte-rich area. c. Gene set enrichment analysis of upregulated genes in immune cell-rich

areas in response to bacterial presence. d. Gene set enrichment analysis of upregulated genes in

20



response to bacterial presence in enterocyte-rich area.

3.4. Bacterial Species Distinctly Impact Cell Viability in Crohn’s Disease
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Figure 17. Relative risk of reduced cell viability following various bacterial exposure. Cells with
< 10% mitochondrial reads were defined as viable cells, while those with > 10% were defined as
damaged cells. We performed multiple testing correction using the Benjamini-Hochberg method
with a significance threshold of 0.05, and only statitically significant results after this correction
were visualized. Species previously reported to increase the risk of CD are shown in red, while those

known to decrease the CD risk are shown in green.

We investigated intestinal barrier disruption, a hallmark of CD, at the cellular level by using the
percentage of mitochondrial reads, a widely used marker of cell viability in single-cell RNA
sequencing and spatial transcriptomics analyses (Neurath 2019; Boyapati et al. 2018; Ilicic et al.
2016; D’inca et al. 2006). The RR values of reduced cell viability were calculated following

exposure to specific bacterial species to quantify the effect of bacterial exposure on intestinal barrier



disruption. We performed multiple testing corrections using the Benjamini—Hochberg method with
a significance threshold of 0.05 and visualized only the significant results after this correction. This
analysis was performed solely on samples from participants with CD, without including those from
control participants, to specifically focus on the impact of bacterial exposure on intestinal barrier
integrity in the context of CD. The RR values and their 95% confidence intervals were displayed for
various bacterial species (Figure 17). Species previously reported to increase CD risk are shown in
red, while those known to decrease it are shown in green (Gevers et al. 2014; Kansal et al. 2019)
(Supplementary Table 1). This demonstrates that previously known beneficial and pathogenic
microbiomes were consistently observed in our study.

Bacteroides caccae (RR = 0.53; 95% confidence interval [CI], 0.39-0.71), F. prausnitzii (RR =
0.54; 95% CI, 0.49-0.60), Phocaeicola vulgatus (RR = 0.85; 95% CI, 0.80—0.92), and Ruminococcus
gnavus (RR = 0.91; 95% CI, 0.84-0.98) were confirmed as beneficial microbes, aligning with
previous findings. Anaerostipes hadrus (RR = 0.64; 95% CI, 0.48-0.85), Hungatella hathewayi (RR
=0.43; 95% CI, 0.33-0.57), Faecalibacterium sp. 13333 (RR = 0.57; 95% CI, 0.41-0.79), and sp.
13389 (RR = 0.38; 95% CI, 0.31-0.47) were previously identified as beneficial at the genus level,
even though their species-level association with CD were not reported. Cutibacterium acnes (RR =
1.50; 95% CI, 1.22-1.83), H. parainfluenzae (RR = 1.40; 95% CI, 1.10-1.17), and Sutterella
wadsorthensis (RR = 1.11; 95% CI, 1.03-1.19) were confirmed as pathogenic microbes at the

species level, consistent with prior studies.
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Figure 18. Population Attributable Risk Percent (PARP) for intestinal barrier disruption by
bacterial species. Cells with < 10% mitochondrial reads were defined as viable cells, while those
with > 10% were defined as damaged cells. We performed multiple testing correction using the
Benjamini-Hochberg method with a significance threshold of 0.05, and only statitically
significant results after this correction were visualized. Species previously reported to increase

the risk of CD are shown in red, while those known to decrease the CD risk are shown in green.

We also calculated the PARP by integrating the RR values of specific bacteria with their gut
prevalence. This provided a measure of the overall contribution of each bacterial species to intestinal
barrier disruption within the entire gut environment. F. prausnitzii, a highly abundant gut bacterium

known for its beneficial properties in CD, was the most influential in reducing intestinal barrier

disruption (by -3.1%).
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Figure 19. Relative risk of reduced cell viability following bacterial exposure in various cell
types. Relative risk (RR) of reduced cell viability after bacterial exposure in a. enterocyte-rich
areas, b. immune cell-rich areas, and c. tuft cell-rich areas. We performed multiple testing
correction using the Benjamini-Hochberg method with a significance threshold of 0.05, and only
statitically significant results after this correction were visualized. Species previously reported to
increase the risk of CD are shown in red, while those known to decrease the CD risk are shown in

green.

When the RR was examined specifically in enterocyte-rich areas (Figure 19a), all bacteria were
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found to reduce cell viability, even species such as Phocaeicola vulgatus, which was initially found
to inhibit this reduction during analysis of the entire cell population. In contrast, analyses of immune
cell- and tuft cell-rich areas revealed that some bacteria exhibited a protective effect by inhibiting
the reduction in cell viability (Figure 19b, 19c). Additionally, bacterial exposure increased the
fraction of damaged cells in enterocyte-rich areas, but decreased it in tuft cell-rich, immune cell-
rich, and myofibroblast-rich areas. This suggests that the beneficial effect of certain gut microbiomes
may be facilitated through interactions with cell types other than enterocytes, potentially including
immune and tuft cells. These findings highlight the complex interplay between various host gut cell

types and the resident bacteria.
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Figure 20. Relative risk of reduced cell viability following exposure to various Escherichia coli
strains. Relative risk (RR) of reduced cell viability after exposure of various Escherichia coli

strains.

To account for the heterogeneity of Escherichia coli, a highly abundant species with diverse strains
ranging from commensal to pathogenic, we calculated the RR values for 42 different E. coli strains
characterized at the strain level, although only 15.2% were identified at this taxonomic resolution.
We identified E. coli APEC O1 (RR = 1.66; 95% CI, 1.29-2.14), O157:H7 (RR = 1.43; 95% CI,
1.22-1.68), and CFT073 (RR = 1.32; 95% CI, 1.14-1.53) as part of the pathogenic microbiome,
which is consistent with previous reports (Johnson et al. 2007; Kao et al. 1997; Riley et al. 1983).

3.5. Beneficial and Pathogenic Microbiomes Distinctly Modulate Host

Transcription

We analyzed differentially expressed genes between cells exposed to beneficial and to pathogenic
microbiomes. Using 16 beneficial and nine pathogenic members identified in this study, we formed

144 beneficial-pathogenic microbiome pairs. For each pair, we compared gene expressions in
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response to the beneficial versus pathogenic microbiome. We assessed the consistency of these
changes across the different pairs, identifying genes consistently upregulated or downregulated in

the presence of beneficial or pathogenic bacteria.
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Figure 21. Differential gene expression between beneficial and pathogenic microbiome exposure
in all cells. a. Differential expressed gene between cells exposed to beneficial and pathogenic
microbiomes were visualized. The top panel shows the rate of significant differential gene
expression between beneficial and pathogenic microbiome exposure in all cells in all cells. The

heatmap below displays Z-scores of differential gene expression.

Across all cells, beneficial microbiomes increased the expression of immunoglobulin genes,
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including IGHG3, IGHG4, IGLC1, IGHM, IGKC, IGLC2, IGHG2, and IGHA1 (Figure 21)
(Mikocziova, Greiff, and Sollid 2021). This suggests that beneficial microbiomes may exert their
effects through immune cells. In immune cell-rich areas, genes such as REG1A and TNFRSF6B
showed increased expression in regions with beneficial microbiomes (Figure 22a). Similarly, in

enterocytes, genes including IGKC and REG1A were upregulated in such areas (Figure 22b).
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Figure 22. Differential gene expression between beneficial and pathogenic microbiome exposure
in immune cell-rich area and enterocyte rich area. a. Differential expressed gene between cells
exposed to beneficial and pathogenic microbiomes were visualized in exposure in a. immune cell-
rich area and b. enterocyte rich area. The top panel shows the rate of significant differential gene
expression between beneficial and pathogenic microbiome exposure in all cells in all cells. The

heatmap below displays Z-scores of differential gene expression.
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Figure 23. Correlation analysis of microbiome and host transcriptome. a. Principal Component

pathogenic (red), and beneficial (green) microbiome candidates.

plot of pearson’s correlation between bacterial presence and gene expression levels, with

b. Bar chart displaying the top

20 gene contributors to Principal Component 2 (PC2). PCA: Principal Component Analysis; PC:

Principal Component

To assess species-specific bacterial effects on host gene expression, we calculated Pearson

correlations for bacterial presence and gene expression levels. We then applied PCA for dimension

reduction of the correlation matrix. The results showed a clear distinction between beneficial and

pathogenic microbial species along PC2 (Figure 23a). Furthermore, the expression of genes such as
REGI1A and TNFRSF6B had substantial contributions in PC2 (Figure 23b).
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of Crohn’s disease patients. Dimension reduction was performed on the spatial information of
bacteria in different cell types using UMAP, compressing it into two-dimensional data and
visualizing this on a 2D plane. For beneficial microbiome candidates and pathogenic microbiome
candidates, the previously determined Relative Risk values were represented using colors. b.
Heatmap visualization of bacterial abundance by cell in each bacteria cluster in tissue of Crohn’s

disease patients. CPM normalized values by bacteria were summed for each cluster.

On the UMAP plot, beneficial microbiome candidates were positioned near each other, as were
pathogenic microbiome candidates. Beneficial microbiome candidates were more concentrated in
M cell-rich and immune cell-rich areas, while pathogenic candidates were more prevalent in

Enterocyte-rich and Tuft cell-rich area.
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Figure 25. Coexistence of bacteria across specific cell types a. Heatmap visualization of bacterial
abundance by specific cell type in each bacteria in tissue of Crohn’s disease patients. Estimated
cell type proportions using Cell2location were summed for each bacteria. b. Heatmap visualization

of bacterial abundance by regulator T cells in each bacteria in tissue of Crohn’s disease patients.

Estimation of coexistence frequencies between each bacterial species and 42 cell types revealed
distinct patterns between beneficial and pathogenic microbiome candidates. Beneficial microbiome
candidates showed higher frequencies particulary with M cells and Memory B cells, while
pathogenic candidates predominantly found with enterocytes and tuft cells. Notably, Treg cells, which

play a key role in the protective effects of beneficial microbiomes, showed accumulation in regions
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containing beneficial microbiome candidates.

3.6. Deep Learning Detect Bacterial Translocation in Histological Images

Our deep learning model, designed to detect bacterial infiltration, demonstrated varying
effectiveness across different bacterial categories. For the beneficial microbiome category, it showed
the highest discriminative ability with an AUROC of 0.7616 and the best accuracy at 0.7454. The
whole bacteria category, on the other hand, exhibited the most balanced performance, achieving the
highest F1 score of 0.6582 and the best precision (0.5588) among all categories. In contrast, the
pathogenic microbiome category, while having comparable accuracy (0.6978) to the whole bacteria

category, showed the lowest F1 score (0.2836).
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Figure 26. Performance of Deep Learning Model in Differentiating Bacterial Translocation a.
AUROC, Accuracy, and F1 Score of the deep learning model for whole bacteria, beneficial
microbiome, and pathogenic microbiome categories. b. AUROC values for individual bacterial
species detected by the deep learning model. AUROC: Area Under the Receiver Operating

Characteristic curve.

To further investigate the relationship between tissue morphology and bacterial presence, we
employed a deep learning-based approach to cluster tissue images. Using features extracted from
the images, we performed K-Means clustering, resulting in five distinct morphological clusters.
Notably, cluster 4, characterized by neutrophil infiltration, demonstrated significant positive
correlations with all beneficial microbiome species (mean r = 0.097). These correlations were
statistically significant after FDR correction (p < 0.05) for all beneficial bacterial species. This
finding suggests a potential association between neutrophil-rich tissue environments and the

presence of beneficial bacteria.
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Cluster images of cluster 4

Figure 27. Performance of Deep Learning Model in Differentiating Bacterial Translocation a.
AUROC, Accuracy, and F1 Score of the deep learning model for whole bacteria, beneficial
microbiome, and pathogenic microbiome categories. b. AUROC values for individual bacterial
species detected by the deep learning model. AUROC: Area Under the Receiver Operating

Characteristic curve.

3.7. Semi-supervised Learning Discriminates True Bacteria from False

Positives

Several bacterial species showd near-complete signal loss following double human read removal
compared to single human read removal (Figure 4a). These species showed significantly redued
abundance in bulk metagenome sequencing of identical tissue samples, indicating they were likely
contaminants from misidentified human reads (Figure 4b). However, we noted that overly stringent
human read procedures, while reducing false positives, could potentially diminish genuine
biological signals of true pathogen ((Figure 4c).

Based on these findings, we established comprehensive criteria for bacterial identification by
comparing single and double human read removal process with bulk metagenome sequencing results.
However, conducting bulk metagenome sequencing in addition to spatial transcriptomics analysis,
as done in this study, may not be feasible in other research settings. Considering situations where
metagenome sequencing for validation is not available, we classified species into three categories
based solely on comparing single and double human read removal processes: 54 definitive true
bacteria that retained substantial signals after double human read removal, 43 definitive contaminant

species that showed complete signal loss after double huamn read removal, and remaining unlabeled
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species.

Among the 81 bacterial species validated by both single-double human read removal comparison
and metagenome sequencing, our semi-supervised deep learning model achived an AUC of 1.00 for
labeled species and 0.84 for the whole species. The model classified the unlabeled species with an
accuracy of 0.875, demonstrating its utility for bacterial identification in settings where metagenome

validationa is not available.

Metri Total Labeled Unlabeled
ctres dataset dataset dataset

Accuracy 0.68 0.98 0.66

AUROC 0.84 1.00 0.79

Table 2. Performance of Semi-Supervised Deep Learning Model in Differentiating True Bacteria

and False positive species. AUROC: Area Under the Receiver Operating Characteristic curve.

4. DISCUSSION

The critical roles of bacteria-host interactions in CD are increasingly acknowledged. However, the
intricate relationships between various cell types and bacterial species at the cellular level is still
poorly understood (Neurath 2019; Graham and Xavier 2020; Haberman et al. 2014). Therefore, we
developed a novel spatial host-microbiome profiling approach that, to the best of our knowledge, is
the first to enable simultaneous species-level identification of bacteria and host transcriptomics.
Using this method, we demonstrated increased bacterial translocation in CD, with a significant
association between the extent of translocation and disease prognosis, while also revealing distinct
host transcriptome alterations in response to translocation of various bacterial species. Furthermore,
we identified and characterized potentially beneficial and pathogenic microbial species associated
with CD, including several newly discovered risk-modulating bacterial species. Our spatial host-
microbiome profiling approach not only provides profound insights regarding CD, but also offers
potential applications for studying various microbiome-associated diseases such as gastrointestinal
cancer and infectious diseases. It reveals intricate interactions between translocating gut bacteria and
various host cell types in CD pathophysiology at the cellular level. Moreover, the identification of

beneficial and pathogenic microbiome members enables the development of microbiome-based
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therapeutic strategies.

Our results highlighted the importance of bacterial translocation in CD, revealing that CD tissues
exhibited increased bacterial presence compared with that in controls. Furthermore, within CD
samples, compared with non-inflamed tissues, inflamed tissues showed increased bacterial
translocation. These findings suggest a more active bacterial invasion in CD, potentially due to
impaired host defense mechanisms, which aligns with the findings of Sun, D, et al., who also
reported an increase in bacterial translocation in inflamed tissues compared with non-inflamed
tissues in CD.(Sun et al. 2021) Moreover, the extent of bacterial translocation at diagnosis not only
predicted disease prognosis in patients with CD but also showed a strong association with the
severity of endoscopic findings in the ileum. This indicates that the level of bacterial infiltration in

intestinal tissues could serve as a potential prognostic marker for predicting disease course in

pediatric CD.
Microbiome Microbiome
Decreased intestinal permeability Increased intlestinal permeability
<Normal intestine> <CD intestine>
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Figure 28. Schematic overview of increased bacterial infiltration in Crohn's disease Schematic
comparison of bacterial infiltration in normal (left) and Crohn's disease (CD) intestines (right). CD
intestines exhibit increased permeability, leading to enhanced bacterial infiltration compared to

normal intestines.

Analysis of differentially expressed genes in response to the presence of bacterial species revealed
a specific and targeted response to bacterial infiltration. The consistent upregulation of genes
encoding immunoglobulin components appears to be an effect of bacterial translocation on host gene
expression, which was further confirmed by gene enrichment analysis revealing the involvement of
these upregulated genes in bacterial defense functions. Notably, the higher degree of consistency in
the differential expression of genes in immune cell-rich areas compared with enterocyte-rich areas
shows the uniform and robust transcriptional response of immune cells to bacterial presence,
highlighting their crucial role in orchestrating an effective defense against bacterial translocation.
Furthermore, our data showed the upregulation of IncRNA, such as LINC02739, in response to
bacterial infiltration, suggesting their potential involvement in the host-microbe interaction and
disease pathogenesis. While the specific functions of these IncRNAs remain unclear, their
differential expression warrants further investigation into their roles in modulating the immune
response and disease progression in CD (Atianand, Caffrey, and Fitzgerald 2017).

To identify potentially beneficial and pathogenic microbes in CD, we assessed the impact of
specific bacterial species on intestinal barrier integrity by determining the RRs of reduced cell
viability upon exposure to these bacteria (Table 3). Our analysis identified 16 beneficial and nine
pathogenic microbiome candidates. Among these, six were previously reported to have a confirmed
impact on CD at the species level, while eight were known to affect only at the genus level (Gevers
et al. 2014; Kansal et al. 2019). Interestingly, the majority of the beneficial microbiome members
we identified (13 out of 16 species) belong to Bacillota (Firmicutes), with a substantial number (11
species) belonging to Clostridium clusters XIVa and IV, which have been previously associated with
areduced risk of CD (Andoh et al. 2011; Liu et al. 2008; Seo et al. 2016; Taras et al. 2002; Mahowald
etal. 2009; Allen-Vercoe et al. 2012; Schoch et al. 2020; Haas and Blanchard 2020; Kaur et al. 2014;
Le Roy et al. 2020). In contrast, five out of nine pathogenic microbiome members, including
Citrobacter freundii, Escherichia fergusonii, H. parainfluenzae, Escherichia albertii, and Sutterella

wadsworthensis, belong to Pseudomonadota (Proteobaccteria). This aligns with previous studies
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suggesting an association between increased abundance of Pseudomonadota (Proteobaccteria) and
CD (Haberman et al. 2014; Vester-Andersen et al. 2019). Notably, we identified five beneficial
microbiome members that were not reported in previous studies. Four of these newly identified
beneficial microbes belong to Bacillota (Firmicutes), showing similar phylogeny to other known
beneficial microbes. Interestingly, three of these newly identified species, Sellimonas intestinalis,
Turicimonas muris, and Dysosmobacter welbionis, have been reclassified or newly discovered after
the publication of the reference studies we used (Gevers et al., 2014; Kansal et al., 2019) (Gevers et
al. 2014; Kansal et al. 2019; Seo et al. 2016; Le Roy et al. 2020; Lagkouvardos et al. 2016). These
findings demonstrate that our newly identified beneficial microbes are aligned with those from
previous reports and highlight how our understanding of the microbiome deepens as bacterial

databases expand and taxonomic classifications become more precise.

Bacteria Ri?ive Phylum Cl(():iflrsiglei:m
Bacteroides nordii 1.58 Bacteroidota
Cutibacterium acnes 1.497 Actinomycetota
Citrobacter freundii 1.452  Pseudomonadota
Escherichia fergusonii 1.426  Pseudomonadota
Haemophilus parainfluenzae 1.397  Pseudomonadota
Blautia argi 1.368 Bacillota cluster XIVa
Simiaoa sunii 1.202 Bacillota
Escherichia albertii 1.202  Pseudomonadota
Sutterella wadsworthensis 1.106  Pseudomonadota
[Ruminococcus] gnavus 0.908 Bacillota cluster XIVa
Phocaceicola vulgatus 0.854 Bacteroidota
Sellimonas intestinalis 0.715 Bacillota cluster XIVa
Dorea longicatena 0.701 Bacillota cluster XIVa
Lachnospira eligens 0.699 Bacillota cluster XIVa
Anacrostipes hadrus 0.642 Bacillota cluster XIVa
Faecalibacterium sp. [3333 0.574 Bacillota cluster IV
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Faecalibacterium prausnitzii 0.54 Bacillota cluster IV

Turicimonas muris 0.531 Bacillota

Bacteroides caccae 0.529 Bacteroidota
Erysipelatoclostridium ramosum 0.489 Bacillota cluster XVIII
Eggerthella lenta 0.448 Actinomycetota

Lacrimispora sphenoides 0.445 Bacillota cluster XIVa
Hungatella hathewayi 0.431 Bacillota cluster XIVa
Dysosmobacter welbionis 0.387 Bacillota cluster IV
Faecalibacterium sp. 13389 0.383 Bacillota cluster IV

Table 3. Phylum and Clostridium Cluster Classification of Beneficial and Pathogenic
Microbiomes in Crohn's Disease List of bacterial species identified as beneficial or pathogenic
microbiomes in our Crohn's Disease (CD) study. The table presents the phylum and Clostridium

cluster classification of each bacterium when relevant.

The mechanisms underlying the protective effects of gut microbiota in inflammatory bowel disease
are not yet fully understood, but evidence points to their interaction with Treg cells as a key
immunological pathway(Sefik et al. 2015; Ohnmacht et al. 2015; Atarashi et al. 2011; 2013; Vignali,
Collison, and Workman 2008). Atarashi et al. demonstrated that Clostridium clusters IV and XIVa
promote Treg cell accumulation in the colon, playing a critical role in maintaining immune
homeostasis (Atarashi et al. 2011). Their subsequent study confirmed that mixtures of Clostridia
strains isolated from human microbiota could effectively induce accumulation of Trg cells and
reduce colitis severity (Atarashi et al. 2013). In our study, beneficial microbiome candidates not only
inhibited the reduction in cell viability in pediatric Crohn's disease tissue samples but also
demonstrated Treg cell accumulation in human intestinal tissue in situ.

Our study highlights the impact of gut microbes on CD pathogenesis is not uniform, even within
the same genus, as demonstrated by the Faecalibacterium genus. While F. prausnitzii,
Faecalibacterium sp. 13389, and Faecalibacterium sp. 13333 were identified as beneficial microbes
in this study, Faecalibacterium sp. 12392, Faecalibacterium sp. 14179, Faecalibacterium sp. 14384,
and Faecalibacterium sp. IP329 did not have statistically significant RR values. Additionally, our
spatial microbiome analysis at the strain level confirmed that E. coli, which have various strains

ranging from commensal to pathogenic, showed varying associations with CD risk (Johnson et al.
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2007; Riley et al. 1983; Kao et al. 1997; Kaper, Nataro, and Mobley 2004).

Comparing tissue-specific gene expression between cells exposed to beneficial and pathogenic
microbiomes, we observed increased expression of genes such as REG1A and TNFRSF6B in the
presence of beneficial microbiomes. According to Mao et al., REG1A plays a crucial role in tissue
regeneration and the repair of intestinal epithelial damage (Mao et al. 2021). In their study, inducing
REGIA expression in a DSS colitis mouse model promoted the recovery of the intestinal barrier.
TNFRSF6B, also known as DcR3, is a well-known inhibitor of FASL and LIGHT, which are
essential for cell apoptosis (Su et al. 2023). The upregulation of TNFRSF6B in the presence of
beneficial bacteria suggests that these microbes may be associated with the maintenance of intestinal
epithelial integrity, potentially through their influence on host cell apoptosis pathways. These
findings provide insights into the potential mechanisms by which beneficial microbiomes may
provide protection against CD pathogenesis, emphasizing the need for further research to understand
the complex interactions between gut microbes and host cellular processes.

Our spatial host-microbiome sequencing approach offers several advantages over traditional
methods. Unlike dissociation-based single-cell RNA sequencing methods such as Chromium, our
approach allows for the accurate identification of host cells exposed to bacteria, as it avoids the
potential dissociation of bacteria and host cells during sample preparation (Zheng et al. 2017).
Additionally, our method minimizes the risk of contamination by ambient RNA, a common issue in
droplet-based methods, resulting from cell lysis and RNA release within the microfluidic droplets,
ensuring that the detected bacterial reads accurately reflect the true bacterial distribution within the
tissue (Caglayan, Liu, and Konopka 2022). Furthermore, our approach enables the analysis of
damaged cells, which are typically removed in dead cell removal processes prior to single-cell RNA
sequencing studies (Ilicic et al. 2016). This is particularly considerable in the context of CD, where
removing damaged cells may inadvertently exclude the more inflamed portion of the tissue, leading
to a potential bias in the results.

Previous studies using 16s rRNA targeting approaches identified bacterial distributions only at the
genus level (Durazzi et al. 2021). In contrast, the Kraken2-based shotgun metagenomic profiling
approach employed in our study allows for the detection of even small amounts of bacteria and
enables differentiation at the strain level (Wood, Lu, and Langmead 2019). Moreover, our approach
eliminates the need for creating probes, allowing for the evaluation of a wide range of bacteria,

including those less frequently reported in the literature, some of which may have potential as
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therapeutic targets (Galeano Nifio et al. 2022; Saarenpaa et al. 2023; Lotstedt et al. 2023). Unlike
probe-based methods that restrict analysis to pre-selected bacterial targets, our shotgun metagenomic
approach enables comprehensive identification of all bacterial species present in the sample. This is
achieved through a simple sample preparation step with the addition of yeast poly A polymerase,
eliminating the need for the cumbersome preparation of new probes for specific bacteria.

This study has several limitations. First, the small sample size and limited age range may introduce
potential biases, although the total number of cells analyzed was substantial (13,876). Future studies
should include more samples from diverse ethnic backgrounds to improve the generalizability of the
findings. Second, the spatial transcriptomic technology lacks single-cell resolution, resulting in the
mixing of various cell types within spots (Kleshchevnikov et al. 2022). Although we employed
Cell2location to classify areas based on cell combinations, heterogeneity within areas of the same
cell-type may still exist, meaning that there could be slight differences in cellular composition among
areas classified as the same type. This heterogeneity could potentially influence the comparisons
made within these areas, such as those for differentially expressed genes in immune cell-rich areas
due to bacterial exposure. However, the emergence of high-resolution single-cell spatial
transcriptomics techniques offers opportunities to apply our algorithm to more refined spatial data
in future investigations, which could help reduce the impact of cellular heterogeneity on our analyses

(Chen et al. 2023).

5. CONCLUSION

In conclusion, our study introduces a novel spatial host-microbiome profiling approach that
enables the simultaneous profiling of the host transcriptome and bacterial species at a high
taxonomic resolution in the ileal tissues of pediatric patients with CD. This approach allowed us to
identify increased bacterial translocation in CD tissues, as well as the potential prognostic value of
assessing bacterial infiltration in intestinal tissues. We also discovered specific beneficial and
pathogenic microbiomes associated with CD pathogenesis and suggested potential mechanisms by
which these microbes may influence disease progression, such as the modulation of host cell
apoptosis pathways. The identification of several newly discovered beneficial microbiomes provides
promising candidates for the development of novel microbiome-based therapeutics for CD. Our
spatial host-microbiome sequencing approach offers a valuable method to understand the intricate

interactions between gut microbes and host cells in the context of CD pathogenesis.
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APPENDICES

Supplementary Table 1. Results of prior research on the identified bacterial
species and Crohn's disease risk.

Bacteria

Gevers et al. 2014 Kansal et al. 2019

Aggregatibacter aphrophilus
Anaerobutyricum hallii

Anacrostipes caccae
Anaerostipes hadrus
Bacteroides caccae

Bacteroides fragilis
Bacteroides nordii
Bacteroides ovatus
Bacteroides sp. PHL 2737
Bacteroides thetaiotaomicron

Bacteroides uniformis

Bacteroides xylanisolvens
Bifidobacterium bifidum
Bifidobacterium longum
Bifidobacterium

pseudocatenulatum
Blautia argi

Blautia hansenii

Blautia massiliensis
Blautia producta

Blautia sp. NBRC 113351
Blautia sp. SC05B48

Citrobacter freundii

Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(species-level confirmed)

Decreased CD risk
(species-level confirmed)

Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)
discovered in 2018

Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)

discovered in 2018
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Citrobacter sp. RHBSTW-00986
Clostridioides difficile
Clostridium sp. M62/1

Coprococcus catus
Coprococcus comes
Coprococcus sp. ART55/1
Cutibacterium acnes

Dorea longicatena
Dysosmobacter welbionis
Eggerthella lenta
Enterocloster bolteae
Enterocloster clostridioformis
Enterococcus casseliflavus
Enterococcus faccium

Erysipelatoclostridium ramosum

Escherichia coli

Escherichia fergusonii
Escherichia marmotae
Escherichia sp. E4742

Faecalibacterium prausnitzii
Faecalibacterium sp. 12392
Faecalibacterium sp. 13333
Faecalibacterium sp. 13389
Faecalibacterium sp. 14179
Faecalibacterium sp. 14384

Faecalibacterium sp. [P329

Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)

discovered in 2019

Decreased CD risk
(genus-level confirmed)

Decreased CD risk

(species-level confirmed)

Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)
Decreased CD risk
(genus-level confirmed)

47

Decreased CD risk
(species-level confirmed)

Increased CD risk
(species-level confirmed)

discovered in 2019

Paradoxical
treds(EXCEL, SIMPER)



Faecalitalea cylindroides

Flintibacter sp. KGMB00164

Fusobacterium nucleatum Increased CD risk
(genus-level confirmed)
Fusobacterium ulcerans Increased CD risk

(genus-level confirmed)
Gemella morbillorum

Haemophilus parainfluenzae Increased CD risk Increased CD risk
(species-level confirmed) (species-level confirmed)
Hungatella hathewayi Decreased CD risk

(genus-level confirmed)
Klebsiella michiganensis

Klebsiella oxytoca
Lachnoclostridium phocaeense
Lachnoclostridium sp. YL32

Lachnospira eligens Decreased CD risk
(genus-level confirmed)
Lacrimispora saccharolytica

Lacrimispora sphenoides
Massilistercora timonensis

Parabacteroides distasonis Decreased CD risk
(genus-level confirmed)
Phocaeicola dorei

Phocaceicola vulgatus Decreased CD risk
(species-level confirmed)
Pseudomonas aeruginosa

Qiania dongpingensis

Roseburia hominis Decreased CD risk Decreased CD risk
(genus-level confirmed) (species-level confirmed)
Roseburia intestinalis Decreased CD risk Decreased CD risk
(genus-level confirmed) (genus-level confirmed)
Roseburia sp. NSJ-69 Decreased CD risk Decreased CD risk
(genus-level confirmed) (genus-level confirmed)
Rothia mucilaginosa Increased CD risk

(genus-level confirmed)
Ruthenibacterium lactatiformans

Sellimonas intestinalis

Shigella dysenteriae
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Simiaoa sunii
Streptococcus intermedius

Sutterella wadsworthensis

Turicimonas muris

Veillonella atypica
Veillonella nakazawae
Veillonella parvula

Wansuia hejianensis

[Clostridium] innocuum
[Clostridium] scindens

[Ruminococcus] gnavus

discovered in 2021

discovered in 2016

Increased CD risk
(genus-level confirmed)

Increased CD risk
(genus-level confirmed)

Increased CD risk
(genus-level confirmed)

Decreased CD risk
(genus-level confirmed)

Decreased CD risk
(genus-level confirmed)

Increased CD risk
(species-level confirmed)

discovered in 2021

Increased CD risk
(species-level confirmed)
discovered in 2016

Increased CD risk
(species-level confirmed)

Increased CD risk
(species-level confirmed)
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