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ABSTRACT 
 

Development of Prognostic Marker using Spatial Total RNA 
Sequencing based Multimodal Validation in Pediatric Crohn Disease 

 
 

Crohn’s disease is a chronic inflammatory bowel disease that is considered to be caused by the 

interaction between the gut microbiome and the host immune system. Numerous studies have 

characterized gut microbiome composition in CD patients. Advancements in high-throughput 

transcriptomics approaches have enhanced understanding of cellular heterogeneity in various 

disease contexts. The complex relationship between tissue-resident bacteria and the host immune 

network in CD pathogenesis remains unclear. Previous spatial transcriptomics methods were limited 

in identifying bacterial RNA. Here we show a novel spatial host-microbiome profiling approach that 

utilizes in situ poly adenylation with spatial transcriptomics for simultaneous detection of host and 

bacterial RNA. We developed a pipeline to detect bacteria in spatial transcriptomics data at high 

taxonomic resolution, including strain-level identification. Using this approach, we demonstrate that 

bacterial infiltration is significantly elevated in CD tissues and correlates with disease prognosis. 

This approach identified beneficial and pathogenic microbiome associated with CD. These findings 

reveal interactions between host cells and bacteria in CD, providing insights into CD pathogenesis 

at cellular resolution. This study offers a new approach for investigating host-microbiome 

interactions in various microbiome-associated diseases, potentially leading to new strategies for 

microbiome-based therapeutics and prognostic markers. 

                                                                                

Key words: Gastrointestinal Microbiome; Multiomics; Bacterial translocation; Host-microbiome 
interactions
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1. INTRODUCTION 
The etiology of Crohn’s disease (CD) is not clearly understood, but it is considered to be caused 

by an interaction between the gut microbiome and the aberrant host immune response in patients 

with a genetic predisposition (Neurath 2019). Several findings have emphasized the importance of 

bacteria in the pathogenesis of CD. Genome-wide association studies (GWAS) have reported that 

defects in microbe sensing, epithelial barrier function, microbicidal mechanisms, cytokine 

regulation, and adaptive immunity are associated with CD (Graham and Xavier 2020). Furthermore, 

mouse models of CD do not develop the disease when raised in germ-free conditions, but they 

develop CD in the presence of bacteria (Balish and Warner 2002; Kim et al. 2005). Recently, Ha et 

al. have reported that there is a subset of mucosa-associated gut bacteria that translocate to the 

intestinal tissue in CD, and these bacteria may contribute to the progression of the disease (Ha et al. 

2020). 

Consequently, numerous large-cohort studies have been conducted to characterize the gut 

microbiome composition in patients with CD (Wright et al. 2015; Hansen et al. 2012; Gevers et al. 

2014; Kansal et al. 2019; Haberman et al. 2014). A notable example is the study by Gevers et al., 

who conducted microbiome profiling using ileal tissue samples from 447 pediatric patients with CD 

and 221 controls (Gevers et al. 2014). These studies suggested that the gut microbiome in CD is 

characterized by an increase in pathogenic bacteria such as Cutibacterium acnes and Haemophilus 

parainfluenzae, and a decrease in beneficial bacteria like Faecalibacterium prausnitzii (Kansal et al. 

2019; Hansen et al. 2012; Gevers et al. 2014).  

The identification of these alterations, particularly the reduction of beneficial bacteria, holds 

significant potential for the development of microbiome-based therapeutics in CD (Sorbara and 

Pamer 2022; Mohebali et al. 2023). The underlying mechanisms of microbiome-mediated effects 

are not fully understood, but evidence suggests that certain gut bacteria, particularly Clostridium 

clusters XIVa and IV, promote the accumulation of regulatory T (Treg) cells (Sefik et al. 2015; 

Ohnmacht et al. 2015; Atarashi et al. 2011; 2013). These accumulation of Treg cells in the intestinal 

mucosa subsequently regulate excessive immune responses in inflammatory bowel disease. 

Recent advancements in high-throughput transcriptomic approaches, such as spatial 

transcriptomics, have revolutionized our understanding of cellular heterogeneity and spatial 

organization in complex biological systems (Tian, Chen, and Macosko 2023). However, previously 

developed spatial transcriptomics methods relied on poly A tail-targeting approaches, limiting their 
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application to mRNA from eukaryotic organisms, such as humans and mice (Ståhl et al. 2016). These 

methods faced challenges in identifying non-host RNA, particularly bacterial RNA, which lacks 

poly A tails (McKellar et al. 2022). This limitation has hindered a comprehensive understanding of 

host-microbiome interactions and their potential roles in the pathogenesis of microbiome-associated 

diseases, such as CD. Nevertheless, Galeano et al. recently demonstrated that bacteria within tumors 

may play a crucial role in cancer metastasis using a spatial transcriptomics method targeting bacterial 

16S rRNA (Galeano Niño et al. 2022). However, these 16S rRNA-targeting approaches have limited 

taxonomic resolution when profiling the microbiome, restricting the identification of bacteria to the 

genus level, thereby hindering species-level discrimination (Galeano Niño et al. 2022; Saarenpää et 

al. 2023; Lötstedt et al. 2023). 

In this study, we aim to investigate the interactions between bacteria and host cells at cellular 

resolution in pediatric CD tissue samples using recently developed spatial total RNA sequencing, 

which utilizes yeast poly A polymerase to simultaneously detect both host and non-host RNAs. We 

also assess the prognostic value of tissue microbiome analysis in CD and explore the impact of 

tissue-resident bacteria on the immune response within CD tissues. Furthermore, we aim to identify 

pathogenic and beneficial microbiomes associated with CD at the cellular level and investigate the 

alteration of the host transcriptome in response to these microbiomes. Our study incorporates deep 

learning approaches of histology image to detect tissue morphology changes associated with 

bacterial infiltration in CD. Additionally, we have developed a refined decontamination process 

using semi-supervised learning methods to identify bacterial presence without the need for 

metagenomic shotgun sequencing validation. 

 

2. MATERIALS AND METHODS 
2.1. Participant and ethics 

This prospective study included patients with CD from the division of Gastroenterology, 

Hepatology, and Nutrition, Department of Pediatrics, Sinchon Severance Hospital, in Seoul. This 

tertiary teaching hospital diagnoses approximately 25 new CD cases annually. Ethical approval was 

obtained from the Institutional Review Board of Severance Hospital, Yonsei University College of 

Medicine (IRB number: 4-2022-1127). 

We recruited pediatric patients aged between 7 and 18 years between Nov 01, 2022, and Apr 30, 
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2024. For the CD group, we included patients newly diagnosed with CD. The control group 

consisted of patients with irritable bowel syndrome who underwent endoscopy but showed no 

evidence of inflammation on endoscopic examination, histopathological analysis of biopsy 

specimens, and blood tests. For all participants, both the patients and their parents or legal guardians 

provided informed consent for participation in the study. Clinical relapse of pediatric CD was 

defined as a Pediatric Crohn’s Disease Activity Index (PCDAI) score of ≥30, indicating a 

worsening of the disease (Hyams et al. 1991). 

 

2.2. Sample collection and storage 
Tissue samples were collected from the terminal ileum during endoscopic examination. For 

pediatric CD patients, both inflamed and non-inflamed tissues were obtained, while control group 

samples consisted of only non-inflamed tissue. Immediately after collection, these tissue samples 

were embedded in optimum cutting temperature (OCT) compound (SciGen Scientific, Gardena, CA, 

USA), frozen and stored at -80°C. The storage periods ranged from 1 week to 3 months. The stored 

samples were subsequently process for spatial total RNA sequencing and bulk shotgun metagenome 

sequencing. The quality of RNA extracted from the samples was assessed using the RNA Integrity 

Number (RIN), with samples falling below the quality threshold being excluded from further 

analysis. 
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Figure 1. Schematic diagram of the overall study design 

 

2.3. Spatial total RNA sequencing 
The quality of tissue blocks was evaluated by isolating RNA from consecutive tissue sections and 

measuring the RNA integrity number (RIN) using an Agilent 4200 TapeStation system (Agilent 

Technologies, Santa Clara, CA, USA). Samples with a RIN ≥ 4 were considered suitable for 

further experiment. Due to the small size of the tissues, multiple sections were placed on each sample 

block for analysis. For CD group, both inflamed and non-inflamed tissue sections from the same 

patient were mounted side by side, while only non-inflamed tissue sections were mounted for control 

group. Following the Visium protocol (CG000160, Rev D, 10x Genomics), the tissue samples 

underwent methanol fixation and H&E staining. The stained sections were imaged using a Nikon 

Eclipse Ti2 microscope.  
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Based on the approach of McKellar et al., we conducted in situ polyadenylation (McKellar et al. 

2022). This procedure included equilibration with wash buffer containing Protector RNase Inhibitor 

(Roche, catalog no. 3335402001), followed by incubation with an enzyme mix containing yeast poly 

A polymerase (Thermo Scientific, catalog no. 74225Z25KU). We used the Visium Tissue 

Optimization Kit from 10x Genomics to determine the optimal tissue permeabilization time. After 

the in situ polyadenylation step, we prepared final sequencing libraries using standard Visium library 

preparation protocol (CG000239, Rev F, 10x Genomics). The prepared libraries were combined and 

sequenced on a NovaSeq 6000 system (Illumina, San Diego, CA, USA) using the NovaSeq 6000 S1 

Reagent Kit v1.5 (200 cycles, 20028318, Illumina). We sequenced to a depth of approximately 

120M reads per sample. 

 

 
 

Figure 2. Schematic diagram of the spatial host-microbiomeo profiling 

 

2.4. Bulk shotgun metagenome sequencing 
Genomic DNA quality and quantity were assessed via fluorometry (Qubit, Invitrogen) and gel 

electrophoresis. Samples with a DNA Integrity Number ≥6, as measured by an Agilent 4200 

TapeStation, were used for further analysis. The library was prepared using the Illumina TruSeq 
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Nano DNA Library Prep Kit. For each sample, 100 ng of DNA was fragmented to 350 bp using a 

Qsonica 800 R2, followed by Illumina adapter ligation and PCR amplification. Libraries sized 500–

600 bp were selected and quantified using TapeStation 4200 (Agilent Technologies) and KAPA 

Library Quantification Kit (Kapa Biosystems). Sequencing was performed on an Illumina NovaSeq 

6000 platform using 150 bp paired-end reads.sample. 

 

2.5. Host transcriptome analysis 
Host transcriptomics data were preprocessed using Space Ranger v1.3.1 (10x Genomics). 

Downstream analyses with the output count matrices were performed using Scanpy v1.9.3 (Wolf, 

Angerer, and Theis 2018). As the Visium method captures multiple cells within each spot, we 

employed Cell2location, a computational tool that maps single-cell RNA sequencing data onto 

spatial transcriptomics data (Kleshchevnikov et al. 2022). For this process, we utilized previous 

single-cell RNA sequencing data from pediatric patients with CD (Elmentaite et al. 2020). 

Cell2location integrates this single-cell data with our spatial transcriptomics data, allowing us to 

identify areas enriched with specific cell types across the analyzed tissue samples. Low-quality spots 

with >40% mitochondrial reads were excluded from the analysis (Elmentaite et al. 2021). 

 

2.6. Spatial microbiome profiling 
We used Bowtie2 v2.5.1 to align the spatial transcriptomics read to the GRCh38 human reference 

genome for human read removal (Langmead and Salzberg 2012). UMI-tools v1.1.1 was used to 

separate the fastq files by cell barcode for independent analysis per spots (Smith, Heger, and Sudbery 

2017). Bacterial reads were identified using Kraken2 v2.1.1 with the publicly available PlusPF 

database (version 2022/09/08, https://benlangmead.github.io/aws-indexes/k2) (Wood, Lu, and 

Langmead 2019). It contains RefSeq reference sequences for archaea, bacteria, viruses, plasmids, 

protozoa, fungi, and humans, as well as UniVec_Core sequences. We calculated counts per million 

(CPM) mapped reads by dividing bacterial read counts by total sequencing reads for normalization.  

 

2.7. Microbiome profiling in bulk shotgun metagenome data 
In the analysis of bulk shotgun metagenome data, we employed a process similar to our spatial 

microbiome detection method. Bowtie2 aligned reads to the GRCh38 human reference genome for 
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human read removal (Langmead and Salzberg 2012). Subsequently, we identified bacterial reads 

using Kraken2 with the same publicly available PlusPF database used in our spatial analysis (Wood, 

Lu, and Langmead 2019). 

  

2.8. Spatial microbiome decontamination process 
We developed a stepwise decontamination process to reduce false positive species in our spatial 

microbiome profiling data. Initially, we excluded species with low spatial microbiome sequencing 

read counts across all samples, specifically those with <50 total reads across all spatial microbiome 

sequencing samples. We then compared the profiling results with the bulk metagenome sequencing 

data from the same tissue samples. Species with <50 reads from bulk sequencing or with >1.5 ratio 

of spatial and bulk sequencing read percentages were removed from our spatial microbiome dataset.  

To mitigate potential false positives arising from host read contamination, we evaluated the results 

of single and double human read-removal processes (Garrido-Sanz, Senar, and Piñol 2022). The 

single human read-removal process used Bowtie2, while the double human read-removal process 

used both Bowtie2 and BWA v0.7.17; all aligned with the GRCh38 human reference genome 

(Langmead and Salzberg 2012; Li and Durbin 2009). This process led to two observations. First, 

certain species exhibited a drastic reduction in read counts following the double human read removal, 

indicating that they might be false positive; second, the read counts from genuine gut-residing 

species also decreased moderately, suggesting that certain true signals were affected (Figure 4). We 

classified the species as potential false positives if their read counts after double removal dropped 

to <2% of those observed after the single removal.  
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Figure 3. Determination of bacterial species for analysis in the pediatric Crohn’s disease spatial 

microbiome study 

 

 
Figure 4. Comparison of Spatial Microbiome Profiling and Bulk Shotgun Sequencing with 

Human Read Removal Approaches for Accurate Bacterial Identification 

 

Total bacterial species detected by 

spatial metagenome sequencing 

(no. =2741)

bacterial species with sufficient spatial 

metagenome sequencing read 

(threshold = 50) (no. = 249) 

bacterial species analyzed in this study 

(no. = 81)

bacterial species with sufficient bulk 

metagenome sequencing read 

(threshold = 50) (no. = 121) 

Excluding species with low spatial 

metagenome sequencing read

(threshold = 50) (no. = 2492)

Excluding species with low bulk 

metagenome sequencing read 

compared to spatial metagenome 

sequencing read

(threshold = 50, threshold  ratio = 

0.00015% ) (no. = 128)

Excluding species which is not preset in 

double human read removal process

(threshold ratio 2%) 

(no. = 26)
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2.9. Comparative analysis of bacterial infiltration 
The average number of bacterial reads, in CPM, per spot was compared across the control, CD 

non-inflamed, and CD inflamed tissues. The number of cells with bacterial infiltration was assessed 

for each cell type. For each patient, we compared the average number of bacterial reads per spot 

with their time to relapse and the Rutgeerts score of ileal endoscopic findings (Rutgeerts et al. 1990). 

 

2.10. Differential gene expression and gene set enrichment analysis 
Differentially expressed genes were identified based on the presence of specific bacterial species. 

This analysis was conducted separately for each detected bacteria, and we assessed the consistency 

of gene expression changes across different bacterial species. Each cell type previously identified 

by Cell2location was analyzed, enabling cell type-specific characterization of host-microbiome 

interactions. Gene set enrichment analysis was performed using the BioPlanet 2019 database to 

identify biological pathways associated with genes consistently expressed differentially in the 

presence of bacteria (Huang et al. 2019). Additionally, we conducted an analysis of tissue-specific 

gene expression between cells exposed to beneficial and pathogenic microbiomes.  

 

2.11. Quantification of microbial effects on cell viability 
We investigated the impact of specific bacterial species on cell viability using the percentage of 

mitochondrial reads, a widely used marker of cell viability in single-cell RNA sequencing and spatial 

transcriptomics analyses (Ilicic et al. 2016). Cells with ≤10% mitochondrial reads were defined as 

viable, while those with >10% were defined as damaged. We calculated the relative risk (RR) of 

reduced cell viability following exposure to specific bacterial species to quantify the effect of 

bacterial exposure on cellular integrity. This analysis was performed exclusively on samples from 

participants with CD to examine the impact of bacterial exposure. Multiple testing correction was 

performed using the Benjamini–Hochberg method to control the false discovery rate at 0.05. The 

RR was calculated as follows: 

RR = !"#$%&	()	*+#+,%*	-%../	%01(/%*	2(	$+-2%&3+	 	4(2+.	5"#$%&	()	-%../	%01(/%*	2(	$+-2%&3+⁄
!"#$%&	()	*+#+,%*	-%../	5(2	%01(/%*	2(	$+-2%&3+	 	4(2+.	5"#$%&	()	-%../	5(2	%01(/%*	2(	$+-2%&3+⁄  

We also calculated Population Attributable Risk Percent (PARP) by integrating the RR values of 

specific bacteria with their tissue prevalence. This provided a measure of the overall contribution of 
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each bacterial species to cellular damage within the entire tissue environment. The PARP was 

calculated using the following formula, where P is the proportion of cells exposed to the specific 

bacteria: 

PARP (%) = ! 7×(::;<)
7×(::;<)><

" × 	100 

 

2.12 Coexistence of bacteria across cell types 
To analyzea bacterial distribution patterns, we assessed the spatial location of specific bacteria 

across spots using dimension reduction. We performed Uniform Manifold Approximation and 

Projection (UMAP) analysis on the spatial presence information of bacteria, compressing it into 

two-dimensional data for visualization. For each spot, we examined which cell types coexisted with 

specific bacteria using Cell2location analysis. Additionally, for each spot, we integrated the cell type 

proportions estimated by Cell2location with bacterial presence data to determine the frequency of 

coexistence between specific bacterial species and various cell types. 

 

2.13. Correlation analysis of microbiome and host transcriptome 
We performed Pearson correlation analysis to evaluate the relationship between the presence of 

each bacterial species and host gene expression levels. This analysis was performed exclusively on 

samples from participants with CD. Principal Component Analysis (PCA) was then applied to the 

resulting correlation matrix for dimension reduction. We analyzed the contribution of individual 

genes to principal component 2 (PC2) and displayed the top 20 genes with the highest absolute 

contribution. 

 
 

Figure 5. Schema of dimension reduction for analysis of bacteria coexistence 
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2.14. Deep Learning Analysis of Bacterial Translocation 
We developed deep learning models to detect bacterial translocation in high-resolution H&E-

stained images of the same tissue sections used for spatial transcriptomics. We trained separate 

models to identify the presence of all bacteria, beneficial microbiomes, pathogenic microbiomes, 

and individual bacterial species. To prepare the data, we divided the images into 224x224 pixel 

patches centered on barcode locations, selecting only those containing over 60% tissue. We fine-

tuned pre-trained DenseNet121 models using an Adam optimizer (learning rate 0.001) for up to 25 

epochs. 

To further analyze the relationship between cell morphology and bacterial infiltration, we clustered 

the 224x224 pixel patches from the H&E-stained images into five groups based on their 

morphological characteristics. Pearson correlation analysis was then used to evaluate the association 

between these morphological clusters and the presence of various bacterial types. 

 
Figure 6. Schema of Deep learning for bacterial translocation induced tissue changes 

 

2.15. Advanced decontamination method using semi-supervised learning 

model 
When performing sequencing on specimens with mixed human and bacterial content, 

misidentification of human DNA as bacterial DNA produce substantial false positive 

species.(Gihawi et al. 2023; Gihawi, Cooper, and Brewer 2023) While our study validated the 

presence of bacterial species through metagenomic shotgun sequencing of identical specimens, such 

validation may not be feasible for all reasearch settings. We hypothesized that true bacterial species 

and contamination species would differentially affect host gene expression patterns. Using deep 
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learning models, we evaluated whether Pearson correlation values between bacterial presence and 

host gene expression changes, which represent host-bacterial interactions, could distinguish true 

bacterial species from contaminants. 

Considering situations where bulk microbiome validation is not available, we classified species 

into definitive bacterial candidates, definitive false contaminant candidates, and unlabeled species 

by only comparing single and double human read removal processes. We employed the 

ContrastiveMixup model, a semi-supervised deep learning approach that utilizes both labeled and 

unlabeled data to improve classification performance.(Darabi et al. 2021) This model enhances the 

learning of labeled data through unlabeled data while simultaneously predicting labels for unlabeled 

data. 

 

3. RESULTS 
3.1. Spatial Microbiome Profiling Reveals Bacterial Translocation Patterns 

A total of 14 terminal ileal tissue samples were biopsied, including 12 from inflamed and non-

inflamed tissues of six children with pediatric CD (mean age 13.5 years, SD 2.1) and two from non-

inflamed tissues of two children without CD as the control group (mean age 15.0 years, SD 1.0). 

Spatial host-microbiome sequencing and bulk shotgun metagenome sequencing were performed on 

all collected tissues. For the CD group, tissues were collected at the time of diagnosis.  

 

Table 1. Patient characteristics of this study 

 Crohn's disease Control 
(Irritable bowel syndrome) 

number of tissues 12 2 

number of patients 6 2 

PCDAI score 34.7(4.5) - 

Age 13.5(2.1) 15.0(1.0) 

Gender   

         male 5 0 

         female 1 2 
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initial CRP 21.1(27.8) 3.9(3.7) 

Location, n (%)  - 

          L1 terminal ileum 0(0%) - 

          L2 colon 0(0%)  

          L3 ileocolon 6(100%) - 

Behavior, n(%)  - 

          B1 inflammatory 6(100%)  

          B2 stricturing 0(0%) - 

          B3 penetrating 0(0%) - 

perianal involvement, n (%) 4(66%) - 

* Abbreviations: PCDAI: Pediatric Crohn's Disease Activity Index; CRP: C-reactive protein 

 

To capture both host RNA and bacterial RNA simultaneously, in-situ polyadenylation was 

performed using yeast poly A polymerase prior to host spatial transcriptome sequencing, following 

the method of McKellar et al (McKellar et al. 2022). Spatial microbiome profiling was conducted 

by removing human reads using Bowtie2, followed by the identification of bacterial reads using 

Kraken2 (Langmead and Salzberg 2012; Wood, Lu, and Langmead 2019). Additionally, bacterial 

species that were nearly absent in the bulk metagenome shotgun sequencing performed on the same 

tissue were excluded from the spatial microbiome profiling results. Furthermore, bacterial species 

that were markedly reduced after additional human read removal using BWA were also excluded, as 

they were considered potential human read contaminants (Figure 1) (Li and Durbin 2009). As a 

result, 81 species of bacteria were identified, which are commonly found in the gut. 

Cell2location was used to map the spatial distribution of cell types in our spatial transcriptomics 

data by integrating previously published single-cell RNA sequencing data from pediatric patients 

with CD (Kleshchevnikov et al. 2022; Elmentaite et al. 2020). This approach identified various areas 

enriched with certain cell-types, such as enterocyte-rich, immune cell-rich, and Tuft cell-rich areas 

(Figure 7). Considering the samples from the same participant, the immune cell-rich areas were 

found to be more abundant in the inflamed CD tissues compared to the non-inflamed tissues (Figure 

8).  
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Figure 7. Cell type annotation using Cell2location. Cell type deconvolution was performed using 

Cell2location. Based on the results, areas were annotated according to co-occurring cell type 

combinations, such as immune cell-rich area, enterocyte-rich area, Tuft cell-rich area, and Paneth 

cell-rich area. The composition of cell types for each area is displayed. 

 

 
Figure 8. Stacked Percentage Bar Chart of Cell Types by sample and tissue type. a. Stacked 

Percentage Bar Chart of Cell Types by sample. b. Stacked Percentage Bar Chart of Cell Types by 

sample. CD: Crohn’s disease; Ctrl: Control 
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Figure 9. Distribution of total bacterial read counts between tissue types. Distribution of total 

bacterial read counts in contol group tissue (Ctrl 2). b. Distribution of cell types in contol group 

tissue (Ctrl 2). c. Distribution of total bacterial read counts in CD patient tissue (CD4). 

noninflammed tissue(left), inflammed tissue(right). d. Distribution of cell types in CD patient 

tissue (CD4). CD: Crohn’s disease; Ctrl: Control 

 

 
Figure 10. Distribution of various bacteria in various tissue types. Faecalibacterium prausnitzii 

and Escherichia coli infiltration patterns in control (Ctrl 1-2) and Crohn’s disease (CD 1-7) tissues. 
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CD: Crohn’s disease; Ctrl: Control 

 

Furthermore, the bacterial read count per cell was higher in both non-inflamed (0.409 ± 0.028, 

mean ± standard error) and inflamed CD tissues (0.892 ± 0.115) compared with that in the controls 

(0.011 ± 0.002), with the highest count observed in inflamed CD tissues (Figure 11a). Notably, we 

observed increased counts in M cell-rich areas (8.660 ± 2.516) (Figure 11b), consistent with the 

known function of M cells in sampling luminal bacteria (Dillon and Lo 2019). 

 

 
Figure 11. Comparison of total bacterial read counts between tissue types a. The average number 

of total bacterial reads per cells in control, CD non-inflamed, and CD inflamed tissue were 

compared. b. The average number of total bacterial reads per cell were compared between each 

cell types.  P-values indicate statistical significance (*P < 0.05 and **P < 0.005, ***P < 0.0005) 

 

3.2. Bacterial Translocation Predicts Crohn’s Disease Prognosis 

The bacterial read count per cell was highest in the CD group with relapse, followed by the CD 

group without relapse, and lowest in the control group. Within the relapse group, the time to relapse 

was shorter for participants who had a higher count at the time of diagnosis (Figure 12a). We also 

observed an association between bacterial read counts and the severity of endoscopic findings in the 

ileum, which was assessed by the Rutgeerts score (Figure 12b) (Rutgeerts et al. 1990). These 
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findings suggest the potential for predicting CD prognosis by assessing the extent of bacterial 

translocation in intestinal tissues. 

 

 
Figure 12. Comparison of bacterial infiltration, time to relapse, and endoscopic severity in CD. 

a. The graph displays normalized bacterial read counts (blue bars), time to relapse (orange bars), 

and Rutgeerts scores (red line) across control, non-relapse CD, and relapse CD groups. b. 

Endoscopic images of ileum for each participants, showing varying degree of mucosal 

inflammation corresponding to their group classification. 

 

 

 
Figure 13. Cell-cell interaction analysis between tissue. Cell-cell interaction were analyzed using 
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CellChat (Jin et al. 2021). a. Cell-cell interaction analysis in control tissue. b. Cell-cell interaction 

analysis in CD noninflammed tissue. c. Cell-cell interaction analysis in CD inflammed tissue. 

 

 
Figure 14. Cell-cell interaction analysis between tissue in bacteria-scarce region and bacteria-

abundant region. Cell-cell interactions were analyzed using CellChat (Jin et al. 2021). a. Cell-cell 

interaction analysis of control tissue in bacteria scarce region. b. Cell-cell interaction analysis of 

CD noninflammed tissue in bacteria scarce region. c. Cell-cell interaction analysis of CD 

inflammed tissue in bacteria scarce region. d. Cell-cell interaction analysis of control tissue in 

bacteria abundant region. e. Cell-cell interaction analysis of CD noninflammed tissue in bacteria 

abundant region. f. Cell-cell interaction analysis of CD inflammed tissue in bacteria abundant 

region. Bacteria scarce regions and bacteria abundant regions were divided by a CPM normalized 

bacteria read count value of 5. 

 

Given that Crohn's disease (CD) is characterized by impaired microbial sensing, defects in 

microbicidal mechanisms, and dysregulated cytokine responses, we conducted a cell-cell interaction 
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analysis to explore potential differences in immune response networks. We analyzed these 

interactions separately in bacteria-scarce and bacteria-abundant regions. In control tissue, signaling 

from enterocytes to other cells increased significantly in bacteria-abundant regions. However, in CD 

tissue, this signaling showed minimal variation between bacteria-scarce and bacteria-abundant 

regions. These findings suggest that the mechanism by which enterocytes sense bacteria and transmit 

signals to initiate immune responses is weakened in CD. 

 

3.3. Bacterial Presence Activates Host Immune Responses 
Genes differentially expressed based on the presence of 81 bacterial species were identified. 

Subsequently, the consistency of this expression pattern was examined across different bacterial 

species to identify genes whose expression was consistently induced or suppressed by the presence 

of bacteria. Furthermore, using the BioPlanet database, we investigated the functions of gene that 

showed consistent overexpression in the presence of the 81 bacterial species (Huang et al. 2019). 

Gene expression analysis in all cells showed that bacterial presence induced upregulation of immune 

system components, including B cell receptor signaling (Figure 15a, 15b). Meanwhile, lipid 

absorption pathway of the intestine, such as chylomicron-mediated lipid transport, were 

downregulated in the presence of bacteria (Figure 15c).  

 
Figure 15. Differential gene expression and pathway analysis in response to bacterial presence in 

all cells. a. The top panel shows the rate of significant differential gene expression in response to 
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various bacteria in all cells. The heatmap below displays Z-scores of differential gene expression 

for specific bacterial species. b. Gene set enrichment analysis of upregulated genes in all cells in 

response to bacterial presence. c. Gene set enrichment analysis of downregulated genes in all cells 

in response to bacterial presence. 

 

Gene expression analysis of immune cell-rich and enterocyte-rich areas demonstrated consistent 

upregulation of genes encoding immunoglobulin components in response to bacterial presence, 

including IGHG4, IGKC, IGHA1, JCHAIN, and IGHG3 in immune cell-rich areas and IGHG1, 

IGHG3, IGHG4, IGLC2, IGKC, IGHA1, IGLC3, and IGHM in enterocyte-rich areas (Figure 16a, 

16b) (Mikocziova, Greiff, and Sollid 2021). Functional enrichment analysis revealed that 

upregulated genes in both areas were involved in bacterial defense mechanisms, including 

interleukin signaling and innate immune system pathway (Figure 16c, 16d) (Huang et al. 2019). 

Moreover, the genes in the immune cell-rich areas showed a higher degree of consistency in their 

differential expression compared with those in the enterocyte-rich areas, suggesting that the 

transcriptional response of immune cells to bacterial presence is more uniform and robust, 

underlining their central role in the bacterial defense response. 

 
Figure 16. Differential gene expression and pathway analysis in response to bacterial presence. a. 

The top panel shows the rate of significant differential gene expression in response to various 

bacteria in immune cell-rich area. The heatmap below displays Z-scores of differential gene 

expression for specific bacterial species in immune cell-rich area. b. The top panel shows the rate 

of significant differential gene expression in response to various bacteria in enterocyte-rich area. 

The heatmap below displays Z-scores of differential gene expression for specific bacterial species 

in enterocyte-rich area. c. Gene set enrichment analysis of upregulated genes in immune cell-rich 

areas in response to bacterial presence. d. Gene set enrichment analysis of upregulated genes in 
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response to bacterial presence in enterocyte-rich area. 

 

3.4. Bacterial Species Distinctly Impact Cell Viability in Crohn’s Disease 

 
Figure 17. Relative risk of reduced cell viability following various bacterial exposure. Cells with 

≤ 10% mitochondrial reads were defined as viable cells, while those with > 10% were defined as 

damaged cells. We performed multiple testing correction using the Benjamini-Hochberg method 

with a significance threshold of 0.05, and only statitically significant results after this correction 

were visualized. Species previously reported to increase the risk of CD are shown in red, while those 

known to decrease the CD risk are shown in green. 

 

We investigated intestinal barrier disruption, a hallmark of CD, at the cellular level by using the 

percentage of mitochondrial reads, a widely used marker of cell viability in single-cell RNA 

sequencing and spatial transcriptomics analyses (Neurath 2019; Boyapati et al. 2018; Ilicic et al. 

2016; D’incà et al. 2006). The RR values of reduced cell viability were calculated following 

exposure to specific bacterial species to quantify the effect of bacterial exposure on intestinal barrier 
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disruption. We performed multiple testing corrections using the Benjamini–Hochberg method with 

a significance threshold of 0.05 and visualized only the significant results after this correction. This 

analysis was performed solely on samples from participants with CD, without including those from 

control participants, to specifically focus on the impact of bacterial exposure on intestinal barrier 

integrity in the context of CD. The RR values and their 95% confidence intervals were displayed for 

various bacterial species (Figure 17). Species previously reported to increase CD risk are shown in 

red, while those known to decrease it are shown in green (Gevers et al. 2014; Kansal et al. 2019) 

(Supplementary Table 1). This demonstrates that previously known beneficial and pathogenic 

microbiomes were consistently observed in our study.  

Bacteroides caccae (RR = 0.53; 95% confidence interval [CI], 0.39–0.71), F. prausnitzii (RR = 

0.54; 95% CI, 0.49–0.60), Phocaeicola vulgatus (RR = 0.85; 95% CI, 0.80–0.92), and Ruminococcus 

gnavus (RR = 0.91; 95% CI, 0.84–0.98) were confirmed as beneficial microbes, aligning with 

previous findings. Anaerostipes hadrus (RR = 0.64; 95% CI, 0.48–0.85), Hungatella hathewayi (RR 

= 0.43; 95% CI, 0.33–0.57), Faecalibacterium sp. I3333 (RR = 0.57; 95% CI, 0.41–0.79), and sp. 

I3389 (RR = 0.38; 95% CI, 0.31–0.47) were previously identified as beneficial at the genus level, 

even though their species-level association with CD were not reported. Cutibacterium acnes (RR = 

1.50; 95% CI, 1.22–1.83), H. parainfluenzae (RR = 1.40; 95% CI, 1.10–1.17), and Sutterella 

wadsorthensis (RR = 1.11; 95% CI, 1.03–1.19) were confirmed as pathogenic microbes at the 

species level, consistent with prior studies.  

 



２３ 

 

Figure 18. Population Attributable Risk Percent (PARP) for intestinal barrier disruption by 

bacterial species. Cells with ≤ 10% mitochondrial reads were defined as viable cells, while those 

with > 10% were defined as damaged cells. We performed multiple testing correction using the 

Benjamini-Hochberg method with a significance threshold of 0.05, and only statitically 

significant results after this correction were visualized. Species previously reported to increase 

the risk of CD are shown in red, while those known to decrease the CD risk are shown in green. 

 

We also calculated the PARP by integrating the RR values of specific bacteria with their gut 

prevalence. This provided a measure of the overall contribution of each bacterial species to intestinal 

barrier disruption within the entire gut environment. F. prausnitzii, a highly abundant gut bacterium 

known for its beneficial properties in CD, was the most influential in reducing intestinal barrier 

disruption (by -3.1%). 

 

 
Figure 19. Relative risk of reduced cell viability following bacterial exposure in various cell 

types. Relative risk (RR) of reduced cell viability after bacterial exposure in a. enterocyte-rich 

areas, b. immune cell-rich areas, and c. tuft cell-rich areas. We performed multiple testing 

correction using the Benjamini-Hochberg method with a significance threshold of 0.05, and only 

statitically significant results after this correction were visualized. Species previously reported to 

increase the risk of CD are shown in red, while those known to decrease the CD risk are shown in 

green. 

 

When the RR was examined specifically in enterocyte-rich areas (Figure 19a), all bacteria were 
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found to reduce cell viability, even species such as Phocaeicola vulgatus, which was initially found 

to inhibit this reduction during analysis of the entire cell population. In contrast, analyses of immune 

cell- and tuft cell-rich areas revealed that some bacteria exhibited a protective effect by inhibiting 

the reduction in cell viability (Figure 19b, 19c). Additionally, bacterial exposure increased the 

fraction of damaged cells in enterocyte-rich areas, but decreased it in tuft cell-rich, immune cell-

rich, and myofibroblast-rich areas. This suggests that the beneficial effect of certain gut microbiomes 

may be facilitated through interactions with cell types other than enterocytes, potentially including 

immune and tuft cells. These findings highlight the complex interplay between various host gut cell 

types and the resident bacteria.  

 
Figure 20. Relative risk of reduced cell viability following exposure to various Escherichia coli 

strains. Relative risk (RR) of reduced cell viability after exposure of various Escherichia coli 

strains. 

 

To account for the heterogeneity of Escherichia coli, a highly abundant species with diverse strains 

ranging from commensal to pathogenic, we calculated the RR values for 42 different E. coli strains 

characterized at the strain level, although only 15.2% were identified at this taxonomic resolution. 

We identified E. coli APEC O1 (RR = 1.66; 95% CI, 1.29–2.14), O157:H7 (RR = 1.43; 95% CI, 

1.22–1.68), and CFT073 (RR = 1.32; 95% CI, 1.14–1.53) as part of the pathogenic microbiome, 

which is consistent with previous reports (Johnson et al. 2007; Kao et al. 1997; Riley et al. 1983). 

 

3.5. Beneficial and Pathogenic Microbiomes Distinctly Modulate Host 

Transcription 
We analyzed differentially expressed genes between cells exposed to beneficial and to pathogenic 

microbiomes. Using 16 beneficial and nine pathogenic members identified in this study, we formed 

144 beneficial-pathogenic microbiome pairs. For each pair, we compared gene expressions in 
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response to the beneficial versus pathogenic microbiome. We assessed the consistency of these 

changes across the different pairs, identifying genes consistently upregulated or downregulated in 

the presence of beneficial or pathogenic bacteria. 

 

 
Figure 21. Differential gene expression between beneficial and pathogenic microbiome exposure 

in all cells. a. Differential expressed gene between cells exposed to beneficial and pathogenic 

microbiomes were visualized. The top panel shows the rate of significant differential gene 

expression between beneficial and pathogenic microbiome exposure in all cells in all cells. The 

heatmap below displays Z-scores of differential gene expression. 

 

Across all cells, beneficial microbiomes increased the expression of immunoglobulin genes, 
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including IGHG3, IGHG4, IGLC1, IGHM, IGKC, IGLC2, IGHG2, and IGHA1 (Figure 21) 

(Mikocziova, Greiff, and Sollid 2021). This suggests that beneficial microbiomes may exert their 

effects through immune cells. In immune cell-rich areas, genes such as REG1A and TNFRSF6B 

showed increased expression in regions with beneficial microbiomes (Figure 22a). Similarly, in 

enterocytes, genes including IGKC and REG1A were upregulated in such areas (Figure 22b). 

 
Figure 22. Differential gene expression between beneficial and pathogenic microbiome exposure 

in immune cell-rich area and enterocyte rich area. a. Differential expressed gene between cells 

exposed to beneficial and pathogenic microbiomes were visualized in exposure in a. immune cell-

rich area and b. enterocyte rich area. The top panel shows the rate of significant differential gene 

expression between beneficial and pathogenic microbiome exposure in all cells in all cells. The 

heatmap below displays Z-scores of differential gene expression. 
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Figure 23. Correlation analysis of microbiome and host transcriptome. a. Principal Component 

plot of pearson’s correlation between bacterial presence and gene expression levels, with 

pathogenic (red), and beneficial (green) microbiome candidates.  b. Bar chart displaying the top 

20 gene contributors to Principal Component 2 (PC2). PCA: Principal Component Analysis; PC: 

Principal Component 

 

To assess species-specific bacterial effects on host gene expression, we calculated Pearson 

correlations for bacterial presence and gene expression levels. We then applied PCA for dimension 

reduction of the correlation matrix. The results showed a clear distinction between beneficial and 

pathogenic microbial species along PC2 (Figure 23a). Furthermore, the expression of genes such as 

REG1A and TNFRSF6B had substantial contributions in PC2 (Figure 23b). 

 

 
Figure 24. Coexistence of bacteria across cell types a. UMAP plot of coexisting bacteria in tissue 
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of Crohn’s disease patients. Dimension reduction was performed on the spatial information of 

bacteria in different cell types using UMAP, compressing it into two-dimensional data and 

visualizing this on a 2D plane. For beneficial microbiome candidates and pathogenic microbiome 

candidates, the previously determined Relative Risk values were represented using colors. b. 

Heatmap visualization of bacterial abundance by cell in each bacteria cluster in tissue of Crohn’s 

disease patients. CPM normalized values by bacteria were summed for each cluster. 

 

On the UMAP plot, beneficial microbiome candidates were positioned near each other, as were 

pathogenic microbiome candidates. Beneficial microbiome candidates were more concentrated in 

M cell-rich and immune cell-rich areas, while pathogenic candidates were more prevalent in 

Enterocyte-rich and Tuft cell-rich area. 

 

 
Figure 25. Coexistence of bacteria across specific cell types a. Heatmap visualization of bacterial 

abundance by specific cell type in each bacteria in tissue of Crohn’s disease patients. Estimated 

cell type proportions using Cell2location were summed for each bacteria. b. Heatmap visualization 

of bacterial abundance by regulator T cells in each bacteria in tissue of Crohn’s disease patients. 

 

Estimation of coexistence frequencies between each bacterial species and 42 cell types revealed 

distinct patterns between beneficial and pathogenic microbiome candidates. Beneficial microbiome 

candidates showed higher frequencies particulary with M cells and Memory B cells, while 

pathogenic candidates predominantly found with enterocytes and tuft cells. Notably, Treg cells, which 

play a key role in the protective effects of beneficial microbiomes, showed accumulation in regions 
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containing beneficial microbiome candidates. 

 

3.6. Deep Learning Detect Bacterial Translocation in Histological Images 
Our deep learning model, designed to detect bacterial infiltration, demonstrated varying 

effectiveness across different bacterial categories. For the beneficial microbiome category, it showed 

the highest discriminative ability with an AUROC of 0.7616 and the best accuracy at 0.7454. The 

whole bacteria category, on the other hand, exhibited the most balanced performance, achieving the 

highest F1 score of 0.6582 and the best precision (0.5588) among all categories. In contrast, the 

pathogenic microbiome category, while having comparable accuracy (0.6978) to the whole bacteria 

category, showed the lowest F1 score (0.2836). 

 
Figure 26. Performance of Deep Learning Model in Differentiating Bacterial Translocation a. 

AUROC, Accuracy, and F1 Score of the deep learning model for whole bacteria, beneficial 

microbiome, and pathogenic microbiome categories. b. AUROC values for individual bacterial 

species detected by the deep learning model. AUROC: Area Under the Receiver Operating 

Characteristic curve. 

 

To further investigate the relationship between tissue morphology and bacterial presence, we 

employed a deep learning-based approach to cluster tissue images. Using features extracted from 

the images, we performed K-Means clustering, resulting in five distinct morphological clusters. 

Notably, cluster 4, characterized by neutrophil infiltration, demonstrated significant positive 

correlations with all beneficial microbiome species (mean r = 0.097). These correlations were 

statistically significant after FDR correction (p < 0.05) for all beneficial bacterial species. This 

finding suggests a potential association between neutrophil-rich tissue environments and the 

presence of beneficial bacteria. 
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Figure 27. Performance of Deep Learning Model in Differentiating Bacterial Translocation a. 

AUROC, Accuracy, and F1 Score of the deep learning model for whole bacteria, beneficial 

microbiome, and pathogenic microbiome categories. b. AUROC values for individual bacterial 

species detected by the deep learning model. AUROC: Area Under the Receiver Operating 

Characteristic curve. 

 

3.7. Semi-supervised Learning Discriminates True Bacteria from False 

Positives 
Several bacterial species showd near-complete signal loss following double human read removal 

compared to single human read removal (Figure 4a). These species showed significantly redued 

abundance in bulk metagenome sequencing of identical tissue samples, indicating they were likely 

contaminants from misidentified human reads (Figure 4b). However, we noted that overly stringent 

human read procedures, while reducing false positives, could potentially diminish genuine 

biological signals of true pathogen ((Figure 4c). 

Based on these findings, we established comprehensive criteria for bacterial identification by 

comparing single and double human read removal process with bulk metagenome sequencing results. 

However, conducting bulk metagenome sequencing in addition to spatial transcriptomics analysis, 

as done in this study, may not be feasible in other research settings. Considering situations where 

metagenome sequencing for validation is not available, we classified species into three categories 

based solely on comparing single and double human read removal processes: 54 definitive true 

bacteria that retained substantial signals after double human read removal, 43 definitive contaminant 

species that showed complete signal loss after double huamn read removal, and remaining unlabeled 
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species.  

Among the 81 bacterial species validated by both single-double human read removal comparison 

and metagenome sequencing, our semi-supervised deep learning model achived an AUC of 1.00 for 

labeled species and 0.84 for the whole species. The model classified the unlabeled species with an 

accuracy of 0.875, demonstrating its utility for bacterial identification in settings where metagenome 

validationa is not available. 

 

Metrics Total 
dataset 

Labeled 
dataset 

Unlabeled 
dataset 

Accuracy 0.68 0.98 0.66 

AUROC 0.84 1.00 0.79 
 

Table 2. Performance of Semi-Supervised Deep Learning Model in Differentiating True Bacteria 

and False positive species. AUROC: Area Under the Receiver Operating Characteristic curve. 

 

4. DISCUSSION 
The critical roles of bacteria-host interactions in CD are increasingly acknowledged. However, the 

intricate relationships between various cell types and bacterial species at the cellular level is still 

poorly understood (Neurath 2019; Graham and Xavier 2020; Haberman et al. 2014). Therefore, we 

developed a novel spatial host-microbiome profiling approach that, to the best of our knowledge, is 

the first to enable simultaneous species-level identification of bacteria and host transcriptomics. 

Using this method, we demonstrated increased bacterial translocation in CD, with a significant 

association between the extent of translocation and disease prognosis, while also revealing distinct 

host transcriptome alterations in response to translocation of various bacterial species. Furthermore, 

we identified and characterized potentially beneficial and pathogenic microbial species associated 

with CD, including several newly discovered risk-modulating bacterial species. Our spatial host-

microbiome profiling approach not only provides profound insights regarding CD, but also offers 

potential applications for studying various microbiome-associated diseases such as gastrointestinal 

cancer and infectious diseases. It reveals intricate interactions between translocating gut bacteria and 

various host cell types in CD pathophysiology at the cellular level. Moreover, the identification of 

beneficial and pathogenic microbiome members enables the development of microbiome-based 
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therapeutic strategies. 

Our results highlighted the importance of bacterial translocation in CD, revealing that CD tissues 

exhibited increased bacterial presence compared with that in controls. Furthermore, within CD 

samples, compared with non-inflamed tissues, inflamed tissues showed increased bacterial 

translocation. These findings suggest a more active bacterial invasion in CD, potentially due to 

impaired host defense mechanisms, which aligns with the findings of Sun, D, et al., who also 

reported an increase in bacterial translocation in inflamed tissues compared with non-inflamed 

tissues in CD.(Sun et al. 2021) Moreover, the extent of bacterial translocation at diagnosis not only 

predicted disease prognosis in patients with CD but also showed a strong association with the 

severity of endoscopic findings in the ileum. This indicates that the level of bacterial infiltration in 

intestinal tissues could serve as a potential prognostic marker for predicting disease course in 

pediatric CD. 
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Figure 28. Schematic overview of increased bacterial infiltration in Crohn's disease Schematic 

comparison of bacterial infiltration in normal (left) and Crohn's disease (CD) intestines (right). CD 

intestines exhibit increased permeability, leading to enhanced bacterial infiltration compared to 

normal intestines. 

 

Analysis of differentially expressed genes in response to the presence of bacterial species revealed 

a specific and targeted response to bacterial infiltration. The consistent upregulation of genes 

encoding immunoglobulin components appears to be an effect of bacterial translocation on host gene 

expression, which was further confirmed by gene enrichment analysis revealing the involvement of 

these upregulated genes in bacterial defense functions. Notably, the higher degree of consistency in 

the differential expression of genes in immune cell-rich areas compared with enterocyte-rich areas 

shows the uniform and robust transcriptional response of immune cells to bacterial presence, 

highlighting their crucial role in orchestrating an effective defense against bacterial translocation. 

Furthermore, our data showed the upregulation of lncRNA, such as LINC02739, in response to 

bacterial infiltration, suggesting their potential involvement in the host-microbe interaction and 

disease pathogenesis. While the specific functions of these lncRNAs remain unclear, their 

differential expression warrants further investigation into their roles in modulating the immune 

response and disease progression in CD (Atianand, Caffrey, and Fitzgerald 2017). 

To identify potentially beneficial and pathogenic microbes in CD, we assessed the impact of 

specific bacterial species on intestinal barrier integrity by determining the RRs of reduced cell 

viability upon exposure to these bacteria (Table 3). Our analysis identified 16 beneficial and nine 

pathogenic microbiome candidates. Among these, six were previously reported to have a confirmed 

impact on CD at the species level, while eight were known to affect only at the genus level (Gevers 

et al. 2014; Kansal et al. 2019). Interestingly, the majority of the beneficial microbiome members 

we identified (13 out of 16 species) belong to Bacillota (Firmicutes), with a substantial number (11 

species) belonging to Clostridium clusters XIVa and IV, which have been previously associated with 

a reduced risk of CD (Andoh et al. 2011; Liu et al. 2008; Seo et al. 2016; Taras et al. 2002; Mahowald 

et al. 2009; Allen-Vercoe et al. 2012; Schoch et al. 2020; Haas and Blanchard 2020; Kaur et al. 2014; 

Le Roy et al. 2020). In contrast, five out of nine pathogenic microbiome members, including 

Citrobacter freundii, Escherichia fergusonii, H. parainfluenzae, Escherichia albertii, and Sutterella 

wadsworthensis, belong to Pseudomonadota (Proteobaccteria). This aligns with previous studies 
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suggesting an association between increased abundance of Pseudomonadota (Proteobaccteria) and 

CD (Haberman et al. 2014; Vester-Andersen et al. 2019). Notably, we identified five beneficial 

microbiome members that were not reported in previous studies. Four of these newly identified 

beneficial microbes belong to Bacillota (Firmicutes), showing similar phylogeny to other known 

beneficial microbes. Interestingly, three of these newly identified species, Sellimonas intestinalis, 

Turicimonas muris, and Dysosmobacter welbionis, have been reclassified or newly discovered after 

the publication of the reference studies we used (Gevers et al., 2014; Kansal et al., 2019) (Gevers et 

al. 2014; Kansal et al. 2019; Seo et al. 2016; Le Roy et al. 2020; Lagkouvardos et al. 2016). These 

findings demonstrate that our newly identified beneficial microbes are aligned with those from 

previous reports and highlight how our understanding of the microbiome deepens as bacterial 

databases expand and taxonomic classifications become more precise. 

 

Bacteria Relative  
Risk Phylum Clostridium  

cluster 

Bacteroides nordii 1.58 Bacteroidota  

Cutibacterium acnes 1.497 Actinomycetota  

Citrobacter freundii 1.452 Pseudomonadota  

Escherichia fergusonii 1.426 Pseudomonadota  

Haemophilus parainfluenzae 1.397 Pseudomonadota  

Blautia argi 1.368 Bacillota cluster XIVa  

Simiaoa sunii 1.202 Bacillota  

Escherichia albertii 1.202 Pseudomonadota  

Sutterella wadsworthensis 1.106 Pseudomonadota   

[Ruminococcus] gnavus 0.908 Bacillota cluster XIVa  

Phocaeicola vulgatus 0.854 Bacteroidota  

Sellimonas intestinalis 0.715 Bacillota cluster XIVa  

Dorea longicatena 0.701 Bacillota cluster XIVa  

Lachnospira eligens 0.699 Bacillota cluster XIVa  

Anaerostipes hadrus 0.642 Bacillota cluster XIVa  

Faecalibacterium sp. I3333 0.574 Bacillota cluster IV  
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Faecalibacterium prausnitzii 0.54 Bacillota cluster IV  

Turicimonas muris 0.531 Bacillota  

Bacteroides caccae 0.529 Bacteroidota  

Erysipelatoclostridium ramosum 0.489 Bacillota cluster XVIII 

Eggerthella lenta 0.448 Actinomycetota  

Lacrimispora sphenoides 0.445 Bacillota cluster XIVa  

Hungatella hathewayi 0.431 Bacillota cluster XIVa  

Dysosmobacter welbionis 0.387 Bacillota cluster IV  

Faecalibacterium sp. I3389 0.383 Bacillota cluster IV  
Table 3. Phylum and Clostridium Cluster Classification of Beneficial and Pathogenic 

Microbiomes in Crohn's Disease List of bacterial species identified as beneficial or pathogenic 

microbiomes in our Crohn's Disease (CD) study. The table presents the phylum and Clostridium 

cluster classification of each bacterium when relevant. 

 

The mechanisms underlying the protective effects of gut microbiota in inflammatory bowel disease 

are not yet fully understood, but evidence points to their interaction with Treg cells as a key 

immunological pathway(Sefik et al. 2015; Ohnmacht et al. 2015; Atarashi et al. 2011; 2013; Vignali, 

Collison, and Workman 2008). Atarashi et al. demonstrated that Clostridium clusters IV and XIVa 

promote Treg cell accumulation in the colon, playing a critical role in maintaining immune 

homeostasis (Atarashi et al. 2011). Their subsequent study confirmed that mixtures of Clostridia 

strains isolated from human microbiota could effectively induce accumulation of Treg cells and 

reduce colitis severity (Atarashi et al. 2013). In our study, beneficial microbiome candidates not only 

inhibited the reduction in cell viability in pediatric Crohn's disease tissue samples but also 

demonstrated Treg cell accumulation in human intestinal tissue in situ.  

Our study highlights the impact of gut microbes on CD pathogenesis is not uniform, even within 

the same genus, as demonstrated by the Faecalibacterium genus. While F. prausnitzii, 

Faecalibacterium sp. I3389, and Faecalibacterium sp. I3333 were identified as beneficial microbes 

in this study, Faecalibacterium sp. I2392, Faecalibacterium sp. I4179, Faecalibacterium sp. I4384, 

and Faecalibacterium sp. IP329 did not have statistically significant RR values. Additionally, our 

spatial microbiome analysis at the strain level confirmed that E. coli, which have various strains 

ranging from commensal to pathogenic, showed varying associations with CD risk (Johnson et al. 
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2007; Riley et al. 1983; Kao et al. 1997; Kaper, Nataro, and Mobley 2004). 

Comparing tissue-specific gene expression between cells exposed to beneficial and pathogenic 

microbiomes, we observed increased expression of genes such as REG1A and TNFRSF6B in the 

presence of beneficial microbiomes. According to Mao et al., REG1A plays a crucial role in tissue 

regeneration and the repair of intestinal epithelial damage (Mao et al. 2021). In their study, inducing 

REG1A expression in a DSS colitis mouse model promoted the recovery of the intestinal barrier. 

TNFRSF6B, also known as DcR3, is a well-known inhibitor of FASL and LIGHT, which are 

essential for cell apoptosis (Su et al. 2023). The upregulation of TNFRSF6B in the presence of 

beneficial bacteria suggests that these microbes may be associated with the maintenance of intestinal 

epithelial integrity, potentially through their influence on host cell apoptosis pathways. These 

findings provide insights into the potential mechanisms by which beneficial microbiomes may 

provide protection against CD pathogenesis, emphasizing the need for further research to understand 

the complex interactions between gut microbes and host cellular processes. 

Our spatial host-microbiome sequencing approach offers several advantages over traditional 

methods. Unlike dissociation-based single-cell RNA sequencing methods such as Chromium, our 

approach allows for the accurate identification of host cells exposed to bacteria, as it avoids the 

potential dissociation of bacteria and host cells during sample preparation (Zheng et al. 2017). 

Additionally, our method minimizes the risk of contamination by ambient RNA, a common issue in 

droplet-based methods, resulting from cell lysis and RNA release within the microfluidic droplets, 

ensuring that the detected bacterial reads accurately reflect the true bacterial distribution within the 

tissue (Caglayan, Liu, and Konopka 2022). Furthermore, our approach enables the analysis of 

damaged cells, which are typically removed in dead cell removal processes prior to single-cell RNA 

sequencing studies (Ilicic et al. 2016). This is particularly considerable in the context of CD, where 

removing damaged cells may inadvertently exclude the more inflamed portion of the tissue, leading 

to a potential bias in the results. 

Previous studies using 16s rRNA targeting approaches identified bacterial distributions only at the 

genus level (Durazzi et al. 2021). In contrast, the Kraken2-based shotgun metagenomic profiling 

approach employed in our study allows for the detection of even small amounts of bacteria and 

enables differentiation at the strain level (Wood, Lu, and Langmead 2019). Moreover, our approach 

eliminates the need for creating probes, allowing for the evaluation of a wide range of bacteria, 

including those less frequently reported in the literature, some of which may have potential as 
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therapeutic targets (Galeano Niño et al. 2022; Saarenpää et al. 2023; Lötstedt et al. 2023). Unlike 

probe-based methods that restrict analysis to pre-selected bacterial targets, our shotgun metagenomic 

approach enables comprehensive identification of all bacterial species present in the sample. This is 

achieved through a simple sample preparation step with the addition of yeast poly A polymerase, 

eliminating the need for the cumbersome preparation of new probes for specific bacteria.  

This study has several limitations. First, the small sample size and limited age range may introduce 

potential biases, although the total number of cells analyzed was substantial (13,876). Future studies 

should include more samples from diverse ethnic backgrounds to improve the generalizability of the 

findings. Second, the spatial transcriptomic technology lacks single-cell resolution, resulting in the 

mixing of various cell types within spots (Kleshchevnikov et al. 2022). Although we employed 

Cell2location to classify areas based on cell combinations, heterogeneity within areas of the same 

cell-type may still exist, meaning that there could be slight differences in cellular composition among 

areas classified as the same type. This heterogeneity could potentially influence the comparisons 

made within these areas, such as those for differentially expressed genes in immune cell-rich areas 

due to bacterial exposure. However, the emergence of high-resolution single-cell spatial 

transcriptomics techniques offers opportunities to apply our algorithm to more refined spatial data 

in future investigations, which could help reduce the impact of cellular heterogeneity on our analyses 

(Chen et al. 2023). 

 

5. CONCLUSION 
In conclusion, our study introduces a novel spatial host-microbiome profiling approach that 

enables the simultaneous profiling of the host transcriptome and bacterial species at a high 

taxonomic resolution in the ileal tissues of pediatric patients with CD. This approach allowed us to 

identify increased bacterial translocation in CD tissues, as well as the potential prognostic value of 

assessing bacterial infiltration in intestinal tissues. We also discovered specific beneficial and 

pathogenic microbiomes associated with CD pathogenesis and suggested potential mechanisms by 

which these microbes may influence disease progression, such as the modulation of host cell 

apoptosis pathways. The identification of several newly discovered beneficial microbiomes provides 

promising candidates for the development of novel microbiome-based therapeutics for CD. Our 

spatial host-microbiome sequencing approach offers a valuable method to understand the intricate 

interactions between gut microbes and host cells in the context of CD pathogenesis. 
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APPENDICES 
 

Supplementary Table 1. Results of prior research on the identified bacterial 
species and Crohn's disease risk. 

Bacteria Gevers et al. 2014 Kansal et al. 2019 
Aggregatibacter aphrophilus 

  

Anaerobutyricum hallii 
  

Anaerostipes caccae Decreased CD risk 
(genus-level confirmed) 

 

Anaerostipes hadrus Decreased CD risk 
(genus-level confirmed) 

 

Bacteroides caccae 
 

Decreased CD risk 
(species-level confirmed) 

Bacteroides fragilis 
  

Bacteroides nordii 
  

Bacteroides ovatus 
  

Bacteroides sp. PHL 2737 
  

Bacteroides thetaiotaomicron 
  

Bacteroides uniformis Decreased CD risk 
(species-level confirmed) 

 

Bacteroides xylanisolvens 
  

Bifidobacterium bifidum Decreased CD risk 
(genus-level confirmed) 

 

Bifidobacterium longum Decreased CD risk 
(genus-level confirmed) 

 

Bifidobacterium 
pseudocatenulatum 

Decreased CD risk 
(genus-level confirmed) 

 

Blautia argi discovered in 2018 discovered in 2018 

Blautia hansenii Decreased CD risk 
(genus-level confirmed) 

 

Blautia massiliensis Decreased CD risk 
(genus-level confirmed) 

 

Blautia producta Decreased CD risk 
(genus-level confirmed) 

 

Blautia sp. NBRC 113351 Decreased CD risk 
(genus-level confirmed) 

 

Blautia sp. SC05B48 Decreased CD risk 
(genus-level confirmed) 

 

Citrobacter freundii 
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Citrobacter sp. RHBSTW-00986 
  

Clostridioides difficile 
  

Clostridium sp. M62/1 Decreased CD risk 
(genus-level confirmed) 

 

Coprococcus catus Decreased CD risk 
(genus-level confirmed) 

 

Coprococcus comes Decreased CD risk 
(genus-level confirmed) 

Decreased CD risk 
(species-level confirmed) 

Coprococcus sp. ART55/1 Decreased CD risk 
(genus-level confirmed) 

 

Cutibacterium acnes 
 

Increased CD risk 
(species-level confirmed) 

Dorea longicatena 
  

Dysosmobacter welbionis discovered in 2019 discovered in 2019 

Eggerthella lenta 
  

Enterocloster bolteae 
  

Enterocloster clostridioformis 
  

Enterococcus casseliflavus 
  

Enterococcus faecium 
  

Erysipelatoclostridium ramosum Decreased CD risk 
(genus-level confirmed) 

Paradoxical 
treds(EXCEL, SIMPER) 

Escherichia coli 
  

Escherichia fergusonii 
  

Escherichia marmotae 
  

Escherichia sp. E4742 
  

Faecalibacterium prausnitzii Decreased CD risk 
(species-level confirmed) 

 

Faecalibacterium sp. I2392 Decreased CD risk 
(genus-level confirmed) 

 

Faecalibacterium sp. I3333 Decreased CD risk 
(genus-level confirmed) 

 

Faecalibacterium sp. I3389 Decreased CD risk 
(genus-level confirmed) 

 

Faecalibacterium sp. I4179 Decreased CD risk 
(genus-level confirmed) 

 

Faecalibacterium sp. I4384 Decreased CD risk 
(genus-level confirmed) 

 

Faecalibacterium sp. IP329 Decreased CD risk 
(genus-level confirmed) 
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Faecalitalea cylindroides 
  

Flintibacter sp. KGMB00164 
  

Fusobacterium nucleatum 
 

Increased CD risk 
(genus-level confirmed) 

Fusobacterium ulcerans 
 

Increased CD risk 
(genus-level confirmed) 

Gemella morbillorum 
  

Haemophilus parainfluenzae Increased CD risk 
(species-level confirmed) 

Increased CD risk 
(species-level confirmed) 

Hungatella hathewayi Decreased CD risk 
(genus-level confirmed) 

 

Klebsiella michiganensis 
  

Klebsiella oxytoca 
  

Lachnoclostridium phocaeense 
  

Lachnoclostridium sp. YL32 
  

Lachnospira eligens Decreased CD risk 
(genus-level confirmed) 

 

Lacrimispora saccharolytica 
  

Lacrimispora sphenoides 
  

Massilistercora timonensis 
  

Parabacteroides distasonis Decreased CD risk 
(genus-level confirmed) 

 

Phocaeicola dorei 
  

Phocaeicola vulgatus 
 

Decreased CD risk 
(species-level confirmed) 

Pseudomonas aeruginosa 
  

Qiania dongpingensis 
  

Roseburia hominis Decreased CD risk 
(genus-level confirmed) 

Decreased CD risk 
(species-level confirmed) 

Roseburia intestinalis Decreased CD risk 
(genus-level confirmed) 

Decreased CD risk 
(genus-level confirmed) 

Roseburia sp. NSJ-69 Decreased CD risk 
(genus-level confirmed) 

Decreased CD risk 
(genus-level confirmed) 

Rothia mucilaginosa Increased CD risk 
(genus-level confirmed) 

 

Ruthenibacterium lactatiformans 
  

Sellimonas intestinalis 
  

Shigella dysenteriae 
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Simiaoa sunii discovered in 2021 discovered in 2021 

Streptococcus intermedius 
  

Sutterella wadsworthensis 
 

Increased CD risk 
(species-level confirmed) 

Turicimonas muris discovered in 2016 discovered in 2016 

Veillonella atypica Increased CD risk 
(genus-level confirmed) 

Increased CD risk 
(species-level confirmed) 

Veillonella nakazawae Increased CD risk 
(genus-level confirmed) 

 

Veillonella parvula Increased CD risk 
(genus-level confirmed) 

Increased CD risk 
(species-level confirmed) 

Wansuia hejianensis 
  

[Clostridium] innocuum Decreased CD risk 
(genus-level confirmed) 

 

[Clostridium] scindens Decreased CD risk 
(genus-level confirmed) 

 

[Ruminococcus] gnavus Increased CD risk 
(species-level confirmed) 
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Abstract in Korean 

소아 크론병에서 공간 전체 RNA 시퀀싱 기반 멀티모달 검증을 

이용한 예후 마커 개발 

 

 

크론병은 장내 미생물군과 숙주 면역 체계 간 상호작용으로 발생하는 것으로 

여겨지는 만성 염증성 장질환의 한 유형이다. 다수의 연구에서 크론병 환자의 장내 

미생물 구성이 확인되었으며, 고처리량 전사체학 접근법의 발전으로 다양한 질병 

상황에서의 세포 이질성에 대한 이해가 향상되었다. 그러나 크론병에서 조직 상주 

세균과 숙주 면역 네트워크 간의 복잡한 관계는 여전히 불분명하며, 기존의 공간 

전사체학 방법들은 세균 RNA 식별에 한계가 있었다. 이러한 제한점을 극복하고자 

우리는 새로운 공간 숙주-미생물군 프로파일링 접근법을 개발했다. 이 방법은 공간 

전사체학과 in situ 폴리아데닐화를 결합하여 숙주와 세균 RNA를 동시에 검출한다. 

우리는 이를 통해 크론병 조직에서 대조군에 비해 세균 침투가 증가했음을 

확인했으며, 이는 질병 예후와 연관됨을 보여준다. 또한 우리의 방법은 공간 

전사체학 데이터에서 고분류학적 해상도로 세균을 검출하여 균주 수준의 식별을 

가능케 한다. 이를 통해 크론병과 관련된 유익 및 병원성 미생물군을 식별했으며, 

크론병에서 숙주 세포와 세균 간의 상호작용을 통한 세포 수준에서 크론병 병인에 

대한 통찰을 제공한다. 본 연구는 다양한 미생물군 관련 질병에서 숙주-미생물군 

상호작용을 조사하는 새로운 접근법을 제시하며, 잠재적으로 미생물군 기반 치료법과 

예후 마커 개발의 새로운 전략을 제시할 수 있다. 

_______________________________________________________________________________ 

핵심되는 말 : 장내미생물군, 멀티오믹스, 박테리아 침투, 숙주-

미생물 상호작용 
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