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ABSTRACT

Enhancing Stroke Prediction in Atrial Fibrillation: Integrating
Polygenic Risk Scores with Artificial Intelligence-Guided Clinical
Models

Background: Atrial fibrillation (AF) significantly increases the risk of ischemic stroke, and current
risk stratification models like CHA;DS,-VASc have limitations. This study aimed to develop a
predictive model combining polygenic risk scores (PRS) with Artificial Intelligence (Al)-guided
analysis of age and sex to improve stroke risk prediction in AF patients.

Methods: We included 3,190 AF patients who undergoing AF catheter ablation (AFCA) from the
Yonsei AF Ablation Cohort. Patients were categorized into two groups: 320 with a history of early
ischemic stroke before AFCA, and 2,870 stroke-free controls. We developed a polygenic risk score
(PRS) based on genome-wide association studies (GWAS) and combined it with Al-guided analysis
of age and sex derived from ECG data. The predictive performance of the integrated model for the
prediction of ischemic stroke history before AFCA was compared to the CHA,DS,-VASc score
(excluding the stroke/T1A component) using logistic regression analysis and area under the receiver
operating characteristic curve (AUC) metrics.

Results: The integrated model, combining multi-ethnic AF PRS with Al-guided age and sex
predictions, significantly improved stroke risk stratification compared to the CHA2DS,-VASc score
alone. The inclusion of PRS increased the AUC from 0.615 to 0.621, while the addition of Al-guided
analysis further increased the AUC to 0.632. The integrated multi-ethnic AF PRS and Al-guided
CHA:DS>-VASc risk model showed a significantly improved statistical fit (y2 P<0.001) and
modestly improved discrimination.

Conclusions: Integrating PRS with Al-guided analysis of age and sex improves risk stratification in
AF patients, enabling more precise identification of individuals at higher risk for ischemic stroke.

This approach enhances the early detection model, allowing for more proactive preventive measures.

Key words : Atrial fibrillation, Stroke, Polygenic Risk Score, Artificial Intelligence



I. INTRODUCTION

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia with a nearly five-fold
increased risk of ischemic stroke. While advances in diagnostic techniques have led to earlier
detection of AF and the adoption of advanced rhythm control strategies including catheter ablation
have improved patient outcomes, stroke remains a persistent complication. Moreover, many
patients only begin rhythm control after the occurrence of a stroke, highlighting the need for more
effective early risk stratification to prevent such events.

Traditional clinical risk stratification models, such as the CHA,DS>-VVASc score, have been
instrumental in guiding stroke prevention strategies in AF patients. However, these models have
limitations in their ability to accurately predict stroke risk, particularly in patients with early-onset
and late-diagnosed AF. As a result, there is a growing need for more precise predictive tools that
can identify high-risk patients before a stroke occurs.

Recent advances in genomics and artificial intelligence (Al) can offer an opportunity to enhance
stroke risk prediction beyond the capabilities of previous conventional models. Genome-wide
association studies (GWAS) have identified numerous genetic variants associated with AF and
stroke risk, leading to the development of polygenic risk scores (PRS) that aggregate the effects of
these variants. PRS holds potential as a powerful tool for refining stroke risk stratification,
especially when integrated with traditional clinical variables.

Concurrently, the application of Al in medicine has shown remarkable potential in analyzing
complex datasets, uncovering patterns, and improving predictive models. By incorporating Al-
guided models that consider age, sex, and other demographic factors, alongside genetic
information, it is possible to generate a more personalized and accurate risk assessment tool. Such
a tool could surpass the predictive performance of existing clinical scoring systems, thereby
improving patient outcomes by enabling more targeted and timely interventions. This study aims
to develop and validate a novel predictive model that integrates polygenic risk scores with Al-
guided analysis of age and sex to predict early onset ischemic stroke in patients with AF who
undergoing catheter ablation. We hypothesize that this model will outperform traditional clinical
scoring systems, offering a more precise stratification of stroke risk, which is crucial for

optimizing preventive strategies in this high-risk population.



Il. METHODS
2.1. Study population

The study protocol adhered to the principles of the Declaration of Helsinki and was approved by

the Institutional Review Board of the Yonsei University Health System. All the patients provided

written informed consent for inclusion in the Yonsei AF Ablation Cohort Database
(ClinicalTrials.gov Identifier: NCT02138695). Among the 7,058 patients who underwent AF
catheter ablation (AFCA) in the Yonsei AF Ablation Cohort from 2009 to 2024, 3,190 patients

with Al ECG data and available PRS data were enrolled in the study. The case group consisted of

320 patients with ischemic stroke history before AFCA, and stroke-free 2,870 controls who

undergoing AFCA. Study protocol is presented in Figure 1. The diagnosis of ischemic stroke was

defined as a clinical diagnosis confirmed by a neurologist at either our institution or at a referring

hospital. An ischemic stroke was considered confirmed if the neurologist documented the

diagnosis based on standard clinical assessments, neuroimaging (such as brain computed

tomography [CT] or magnetic resonance imaging [MRI]), and other relevant diagnostic criteria.

Only cases explicitly labeled as "ischemic stroke" in the patient's medical record by the attending

neurologist were included in this study. Cases of transient ischemic attack (T1A) were specifically

excluded from the analysis.

7058 AF patients

in YAF cohort from 2009 to 2024

Genetic distribution ‘ 4075 AF patients with phenotype and ECG data |

Al ECG distribution

Exclusion
- no data of genetic and PRS data

Multi-ethnic GWAS data for AF
: AF 137 PRS sum

| 3190 AF patients with GWAS data |

‘ o o a1 l» | PRSforstroke | l [al ECGAge&Se‘x| <

1. Conventional CHA;DS;VASc (excluding stroke/TIA) vs.

Multi-ethnic GWAS data for 2. Al ECG Age & Sex guided CHA,DS,VASc vs
ischemic stroke 3. CHA,DS,VASc+PRS vs.
:1S57 PRS sum 4. Al ECG Age & Sex guided CHA,DS,VASc + PRS
v !
2870 320
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Figure 1. Study Flow Chart
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2.2. Genome-wide association study

Genomic deoxyribonucleic acid (DNA) was obtained from blood samples using the QuckGene
DNA Whole Blood Kit S with a QuickGene mini 80 (KURABO, Osaka, Japan). DNA genotyping
data were obtained using the Axiom Precision Medicine Research Array (PMRA,; Thermo Fisher
Scientific, MA, USA). We searched a specific phenotype -associated single nucleotide
polymorphism (SNP) in a gene, the most common AF-associated genome, using PMRA data.
Using AF-associated SNP, we calculated polygenic risk score (PRS) and investigated the
association between history of ischemic stroke before catheter ablation and PRS among the

included patients.

2.3. Derivation of Polygenic risk score

We adopted a study design similar to previous published PRS studies, following the recommended
methodological and reporting guidance. Briefly, the process involved four key steps; (1) curation of
previously published genome-wide association study (GWAS) summary statistics, (2) accounting
for linkage disequilibrium in GWAS summary statistics using the R package lassosum, (3)
constructing PRS within our YAF cohort with eighty different PRS were constructed across the
lassosum hyperparameters (A and s), and (4) identifying the most accurate PRS in the YAF cohort.

Detailed methods were presented in our previous studies.

2.4. Artificial Intelligence-guided Age and Sex prediction

We developed a ResNet-based model for ECG sex prediction. This framework has been
demonstrated to successfully create models to predict age, sex, as well as mortality from a standard
12-lead ECG. The ResNet architecture includes residual blocks composed of 1D convolutional
layers each followed by batch normalization, ReLU activation, and dropout layers. Detailed
information on 12-lead ECG pre-processing and ResNet architecture is provided in the prior studies.
We developed ECG sex prediction model using 500,000 ECGs from the development set of MIMIC-

IV cohort. Following development, the model was validated on four independent multinational



datasets that were not used the development process. These validation sets included a total of
410,816 ECGs from the MIMIC-1V hold out set (n=13,628), CODE-15% (n=345,779), UK Biobank
(n=45,595), Yonsei AF registry (n=5,814) datasets.

For predicting AI-ECG age, we utilized a pre-trained ResNet-based model. Previous research has
demonstrated the ResNet's proficiency in identifying ECG abnormalities and estimating ECG-based
age.[27, 28] Our Al model was trained using 85% of the ECG data (n=1,340,246) from the CODE
study cohort. We then validated the model using four distinct multinational datasets that were not
part of the training phase. These validation datasets comprised a total of 414,804 ECGs from CODE-
15% (n=345,779), Physionet (n=21,799), Sami-Trop (h=1,631), and the UK Biobank (n=45,595).
Further details regarding each validation cohort can be found in other sources.

For ECG pattern recognition, we employed Gradient-weighted Class Activation Mapping (Grad-
CAM) to emphasize the ECG signatures identified by our age and sex prediction model.
Additionally, we developed and implemented a black-box interpretation method to further analyze
the ECG data (Figure 2). This method quantifies the significance of ECG components in 4,000
samples using calculations derived from Grad-CAM. It was designed to identify patterns associated
with the prediction of repetitive PQRST rhythms observed in the ECG data over 10 seconds. We
extracted ECG beats and identified the R peaks to isolate the PQRST rhythms utilizing the Neurokit2
library. Subsequently, we calculated the median beat, standardized it to a length of 600 samples, and
extracted the ECG components (P waves, PR intervals, PR segments, QRS complexes, ST segments,
QT intervals, and T waves). Finally, we visualized the importance of each ECG component by

averaging the Grad-CAM importance scores for the respective intervals.
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Figure 2. Black-box Al interpretation algorithm for long-term 12-lead ECG analysis



2.5. Statistical Analysis

Descriptive statistics were used to characterize baseline characteristics. Categorical variables
are reported as numbers (percentages) and compared using the Chi-square or Fisher’s exact test.
Continuous variables were tested for a normal distribution using the Shapiro-Wilk or Kolmogorov-
Smirnov tests. Continuous variables without a normal distribution are presented as medians with
the interquartile range (IQR), while those with a normal distribution are presented as the mean +
standard deviation. Normally distributed continuous data were compared using unpaired Student’s
t-test. The Mann-Whitney U test was used to compare the continuous variables without a normal
distribution between the two groups.

The association of the CHA2DS2-VASc score excluding history of stroke or transient ischemic
attack (T1A), with the presence of stroke history at the time of catheter ablation was assessed by
logistic regression. We used the area under curve (AUC) of receiver operating characteristics
(ROC) and likelihood ratio test to assess the discrimination power and model fit of the logistic
regression model. To assess amount of risk in PRS, multivariate logistic regression was performed
adjusting for CHA,DS,-VASc score and Al-guided CHA;DS,-VASc score. Multiple subgroup
analyses according to chronological age, biological sex, and underlying comorbid conditions were
performed. All analyses were performed using R statistics, version 4.0.2 software (R Foundation

for Statistical Computing); and a two-sided p-value < 0.05 was considered statistically significant.



1. RESULTS

3.1. Patient characteristics

The baseline clinical characteristics of the study population are listed in Table 1. There were
3,190 total study population with AF who undergoing AFCA, of which 320 had a history of

ischemic stroke, and 2,870 did not. After reweighting, 530933 single nucleotide variants (SNVs)

had a nonzero effect size and were included in our PRS.

Table 1. Baseline characteristics according to occurrence of early ischemic stroke before AF ablation.

Overall No IS IS _value

(n=3190) (n=2870) (n=320) P
Age, years (median) 61[53.0,67.0]  60.0[52.0,67.0]  65.0[59.0,71.0] <0.001
AI-ECG predicted age 63.9[52.5,73.3]  63.1[52.0,72.5]  70.1[59.9,78.1] <0.001
(median)
Male 2320 (72.7%) 2092 (72.9%) 228 (71.2%) 0.576
AI-ECG predicted male 2487 (78%) 2238 (78.0%) 249 (77.8%) >0.999
Hypertension 1500 (47.0%) 1322 (46.1%) 178 (55.6%) 0.001
Diabetes mellitus 476 (14.9%) 402 (14.0%) 74 (23.1%) <0001
Heart failure 446 (14.0%) 394 (13.7%) 52 (16.2%) 0.251
Vascular disease 272 (8.5%) 222 (7.7%) 50 (15.6%) <0.001
Age gap (mean) 3.05+12.16 2.93+12.27 415+ 11.05 0.063
The aged ECG group 1367 (43.85%) 1239 (43.17%) 128 (40.00%) 0.304
(Age gap>10)
Al sex mismatch 379 (11.88%) 338 (11.78%) 41 (12.81%) 0.651
CHADS;VASC score 1.0 [1.0, 2.0] 1.0 [0.0, 2.0] 2.0[1.0,3.0] <0.001
Al-guided 2.0[1.0,3.0] 1.0[1.0, 3.0] 2.0[1.0, 3.0] <0.001
CHA:DS2VASc score
Multi-ethnic AF PRS, sum 6.1[5.8,6.4] 6.1[5.8, 6.4] 6.1[5.9, 6.4] 0.103
European AF PRS, sum 422 +031 422+031 426+0.32 0.041

1.84+0.15 1.84+0.15 1.85+0.15 0.403

Stroke PRS, sum

+ AF indicated atrial fibrillation; Al, artificial intelligence; ECG, electrocardiogram; PRS, polygenic risk score.



3.2. Stroke prediction

The logistic regression analyses for stroke were presented in Table 2. The analyses using AF
PRS (multi-ethnic AF PRS sum) revealed a PRS odds ratio (OR), 1.33 per SD (95% CI, 1.01-1.77;
Table 2 and Figure 3).

Table 2. Logistic regression for early ischemic stroke before AF ablation

Variables Odds ratio (95% CI) P-value
Age 1.05 (1.04-1.06) <0.001
Al-ECG predicted age 1.04 (1.03-1.05) <0.001
Male 0.92 (0.71-1.19) 0.532
Al-ECG predicted male 0.99 (0.75-1.31) 0.946
Hypertension 1.47 (1.16-1.85) 0.001
Diabetes mellitus 1.85 (1.40-2.44) <0.001
Heart failure 1.22 (0.89-1.67) 0.218
Vascular disease 2.21 (1.59-3.08) <0.001
CHA:;DS,VASc score 1.35 (1.25-1.47) <0.001
Multi-ethnic AF PRS, sum 1.33 (1.01-1.77) 0.044
European AF PRS, sum 1.48 (1.02-2.15) 0.041
Stroke PRS, sum 1.39 (0.64-2.99) 0.403
+ AF indicated atrial fibrillation; Al, artificial intelligence; ECG, electrocardiogram; PRS, polygenic risk score.
A. Multi-ethnic AF PRS B. European AF PRS C. Multi-ethnic ischemic stroke PRS

; Stroket factor
Stroke1_factor Stroked_factor & -

AF137_PRS_sum . . 157_PRS._sum

Figure 3. Polygenic risk score distribution. Histogram of participants with AF, color representing those that had an
iscvhemic stroke (green) or not (red). PRS with multi-ethnic AF SNP (A), European AF SNP (B), and multi-ethnic
ischemic stroke SNP (C).

Performance power analyses demonstrated an area under the receiver operating characteristics
for CHA;DS>-VASc score (excluding the stroke/TIA component) of: 0.615 (95% Cl, 0.583-0.647),
with the addition of multi-ethnic AF PRS this rose to 0.621 (95% CI, 0.588-0.655) and
corresponded to a PRS odds ratio of 1.44 per SD (95% Cl, 1.09-1.91) (Table 3).



Table 3. Performance power of risk model for early ischemic stroke before AF catheter ablation

p-value in LR
Risk model Odd ratio (95% CI) AUC (95% CI) test
Overall AF patients
CHA2DS2VASc score 1.35(1.25-1.47) of CVS, p<0.001  0.615 (0.583-0.647) Reference
CHA:2DS2VASC score 1.44 (1.09-1.91) of PRS, p=0.011  0.621 (0.588-0.655) 0.011
+ Multi-ethnic AF PRS, sum
CHA:2DS2VASC score 1.54 (1.06-2.25) of PRS, p=0.023  0.617 (0.583-0.650) 0.023
+ European AF PRS, sum
CHA:DS2VASc score 1.37 (0.63-2.97) of PRS, p=0.424  0.617 (0.583-0.650) 0.424

+ stroke PRS, sum

Al-guided CHA2DS2VASC 1.37 (1.26-1.48) of CVS, p<0.001  0.625 (0.592-0.658) Reference

Al-guided CHA2DS2VASCc 1.43 (1.07-1.90) of PRS, p=0.014  0.632 (0.598-0.665) 0.014
+ Multi-ethnic AF PRS, sum

Al-guided CHA2DS2VASCc 1.52 (1.04-2.21) of PRS, p=0.029  0.626 (0.592-0.660) 0.029
+ European AF PRS, sum

Al-guided CHA2DS2VASC 1.36 (0.63-2.95) of PRS, p=0.434  0.627 (0.593-0.660) 0.434

+ Stroke PRS, sum

LR=likelihood ratio

The same analysis adjusting for age and sex by Al guided ECG showed a higher C statistic
(0.625 [95% ClI, 0.592-0.658]), and this rose to 0.632 (95% Cl, 0.598-0.665) with the addition of
multi-ethnic AF PRS. The integrated multi-ethnic AF PRS and Al-guided CHA;DS,-VASC risk
model showed a significantly improved statistical fit (y2 P<0.001) and modestly improved
discrimination (Figure 4 and Table 4). Subgroup analyses were conducted based on age groups
and the number of comorbidities, but no statistically significant differences were observed in any
of the groups (Table 5).



Traditional CHA2DS2-VASc vs Al-guided
CHA2DS2-VASc

‘«/

Sensinvity
04

v Traditional CHA2DS2-VASc score — AUC 0.615
v Al-guided CHA2DS2-VASc score - AUC 0.625

Traditional CHA2DS2-VASc vs Al-guided CHA2DS2-VASc + Multi-

ethnic AF PRS

v Al-guided CHA2DS2-VASCc score + AF PRS — AUC 0.632

Figure 4. AUC-ROC curve of each risk model

Table 4. Model-Fit-LR test for the comparison between two models

Modell Model2 LR_Chi LR_P value
CVS _traditional_model CVS _traditional _AF111 model 5.184573668 0.022788263
CVS_traditional_model CVS _traditional _AF137_model 6.477965127 0.010921995
CVS _traditional_model CVS _traditional _1S57_model 0.638124859 0.42439063
CVS_traditional_model CVS_AI_AF111_model 12.29295633 0.000454671
CVS_traditional_model CVS_AI_AF137_model 13.5956169 0.000226714
CVS_traditional_model CVS_AI_IS57_model 8.129308168 0.004355536
CVS_traditional
“AFT11.model CVS_AI_model 2.333040514 0.126654275
CVS _traditional
" AF137 model CVS_AI_model 1.039649055 0.307903106
CVS_traditional CVS_AI model 6.879489323 0008719047
_1S57_model
CVS_AI_model CVS_AI_AF111_model 4775342153 0.028870109
CVS_AIl_model CVS_AI_AF137_model 6.07800272 0.013687544
CVS_Al _model CVS_Al_IS57_model 0.611693986 0.434150707

LR=likelihood ratio



Table 5. Subgroup analysis for performance power of risk model for early ischemic stroke before AF

ablation
p-value in LR
Risk model Odd ratio (95% CI) AUC (95% CI) test
Low cormobidities AF patients (n=1294, stroke n=97)*
CHA;DS,VASc score 1.39 (1.08-1.80), p=0.012 0.562 Reference
CHA,DS,VASCc score 0.96 (0.58-1.59) of PRS, p=0.881 0.568 0.881
+ Multi-ethnic AF PRS, sum
CHA;DS,VASc score 0.97 (0.49-1.92) of PRS, p=0.937 0.566 0.937
+ European AF PRS, sum
CHA;DS,;VASc score 0.87 (0.22-3.49) of PRS, p=0.841 0.570 0.841
+ Stroke PRS, sum
Al-guided CHA,DS,VASCc 1.33 (1.05-1.68), p=0.016 0.553 Reference
Al-guided CHA,;DS,VASc 0.96 (0.58-1.58) of PRS, p=0.862 0.559 0.862
+ Multi-ethnic AF PRS, sum
Al-guided CHA,DS,VASc 0.98 (0.50-1.92) of PRS, p=0.955 0.556 0.955
+ European AF PRS, sum
Al-guided CHA,DS,VASc 0.81 (0.20-3.27) of PRS, p=0.767 0.560 0.767
+ Stroke PRS, sum
Young AF patients (<65 years) (n=2082, stroke n=156)
CHA;DS,VASc score 1.28 (1.07-1.52), p=0.007 0.558 (0.512-0.603) Reference
CHA,DS,VASC score 1.15 (0.77-1.72) of PRS, p=0.501 0.560 (0.511-0.609) 0.500
+ Multi-ethnic AF PRS, sum
CHA;DS,VASc score 0.91 (0.53-1.56) of PRS, p=0.730 0.558 (0.510-0.605) 0.730
+ European AF PRS, sum
CHA;DS,VASc score 1.13 (0.38-3.35) of PRS, p=0.821 0.559 (0.509-0.608) 0.821
+ Stroke PRS, sum
Al-guided CHA,DS,VASc 1.33(1.17-1.50), p<0.001 0.595 (0.547-0.643) Reference
Al-guided CHA;DS,;VASC 1.18 (0.78-1.77) of PRS, p=0.429 0.596 (0.546-0.645) 0.428
+ Multi-ethnic AF PRS, sum
Al-guided CHA;DS,VASc 0.93 (0.54-1.60) of PRS, p=0.788 0.598 (0.550-0.647) 0.788
+ European AF PRS, sum
Al-guided CHA,DS,VASc 1.13(0.38-3.33) of PRS, p=0.824 0.596 (0.546-0.646) 0.824

+ Stroke PRS, sum

LR=likelihood ratio. *The AF patients after excluding hypertension, diabetes mellitus, heart failure, and vascular disease
which are consisted of CHA2DS2VASc score.
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V. DISCUSSION
4.1. Main findings

In this study, we developed and validated a novel predictive model that integrates polygenic
risk scores (PRS) with Al-guided analysis of age and sex to predict early-onset ischemic stroke in
patients with atrial fibrillation (AF) undergoing catheter ablation. Our findings suggest that this
combined approach offers modest but statistically significant improvements in stroke risk
stratification over the conventional CHA,DS>-VASc scoring system. The integration of PRS into
the risk model provided a significant enhancement in predictive performance, as indicated by the
improvement in the area under the receiver operating characteristic curve (AUC). Specifically, the
inclusion of the multi-ethnic AF PRS increased the AUC from 0.615 to 0.621, with a
corresponding odds ratio of 1.44 per SD. These findings suggest the potential of PRS to capture
genetic predispositions that are not accounted for by traditional clinical risk factors. Moreover, the
Al-guided analysis, which incorporated age and sex predictions derived from ECG data, further
improved the model's discriminative power. The final integrated model, which combined PRS
with Al-guided age and sex adjustments, achieved the highest AUC of 0.632 and demonstrated a
significantly better fit compared to the CHA,DS>-VASc score alone.

4.2. Genetic predisposition for ischemic stroke in AF

Although AF itself is a well-established risk factor for ischemic stroke, the variability in stroke
occurrence among individuals with similar clinical profiles suggests that genetic factors may play
a significant role in modulating this risk. However, the CHA2DS,-VASc score, the current risk
stratification system, does not account for genetic risk of ischemic stroke, despite its significant
heritability (about 40%). Genome-wide association studies (GWAS) have identified several
genetic loci associated with AF, many of which are also implicated in stroke risk. In this study,
the PRS for AF shows a stronger statistical association with ischemic stroke in AF patients
compared to the stroke-specific PRS. These findings indicate a shared genetic basis between AF
and ischemic stroke. Common variants in genes related to atrial remodeling, ion channel function,
and inflammation may be associated with the pathophysiology of both conditions, and these
genetic associations suggest that certain individuals may be predisposed to an elevated stroke risk

due to their genetic background, independent of traditional clinical risk factors.
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4.3. Al-ECG guided Age and Sex
In the epidemiology of AF,[37, 38] each sex is linked to distinct risk factors for both AF and

stroke. For instance, men are more prone to coronary artery disease, left atrial enlargement, and
thicker left ventricular walls, whereas women are more likely to have hypertension, valvular heart
disease, and heart failure with preserved ejection fraction. These sex-specific risk factors can be
identified from a single raw ECG tracing, and misclassifying the sex on an ECG could reveal risk
factors typically linked to the opposite sex, possibly changing the ischemic stroke risk profile.
Chronological aging leads to electroanatomic changes in the heart, and both AF and ischemic
stroke are especially common in older populations. This suggests that some individuals may
experience either accelerated or delayed cardiac aging relative to their chronological age. In this
study, adjusting for age and sex—typically seen as non-modifiable factors—shows that these often
overlooked variables can improve the accuracy of risk assessment. This highlights the importance
of reevaluating their role in predictive models, which could enhance risk stratification and enable
more personalized patient care.

While the use of AI-ECG has shown promise in various cardiovascular risk assessments,
directly predicting ischemic stroke in AF patients based solely on ECG data presents significant
challenges. Stroke risk in AF is influenced by a wide range of clinical variables, including
comorbidities like hypertension, diabetes, and previous history of stroke, as well as structural heart
changes that cannot be fully captured by ECG alone. These multifactorial influences make the
direct prediction of ischemic stroke from ECG data a highly complex task. Moreover, in previous
attempts to leverage AI-ECG for direct stroke prediction, the predictive accuracy was found to be
lower than anticipated. Despite the potential of Al to identify subtle ECG changes, the inherent
complexity of stroke risk—where multiple, non-ECG factors play a critical role—limited the
model's ability to reliably predict stroke events. As a result, the focus of this study shifted toward
more fundamental and well-established risk factors, namely age and sex. Both of these factors,
though traditionally considered non-modifiable, have a profound impact on stroke risk in AF and

are easily integrated into predictive models.
4.4. Clinical implications

Aggressive rhythm control in atrial fibrillation (AF) has been shown to reduce stroke incidence,

improve various morbidities, and confer a mortality benefit. However, some patients still
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experience a stroke before the initiation of rhythm control and catheter ablation. Identifying these
patients early is crucial, as it not only improves individual outcomes but also has significant
implications for reducing long-term healthcare costs. Early prediction and intervention could,
therefore, play a pivotal role in both patient care and the broader socioeconomic impact of AF

management.

4.5. Limitations

This study had several limitations. First, this was an observational cohort study from a single
center that included a limited number of highly selected patients referred for AF ablation.
Morevoer, ischemic stroke events were defined retrospectively as those that had already occurred
at the time of the procedure, rather than prospectively. Second, the polygenic risk scores (PRS)
were developed based on genetic data predominantly from populations of Japan, European, and
multiethnic ancestry. The generalizability of these scores to other ethnicities may be limited,
potentially leading to less accurate risk stratification in Korean populations. Third, while Al-
guided models have demonstrated potential in improving predictive accuracy, the "black box"
nature of Al algorithms may pose challenges in clinical practice. Lastly, the effectiveness of Al-
guided models and PRS depends heavily on the quality and completeness of the input data.
Missing or inaccurate data can significantly compromise the accuracy and reliability of the

predictions made by the model.
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V. CONCLUSIONS

This study developed and validated a novel predictive model that combines PRS with Al-guided
analysis of age and sex to enhance ischemic stroke prediction in atrial fibrillation (AF) patients
undergoing catheter ablation. Our results demonstrate that this integrated model significantly
improves stroke risk stratification compared to the conventional CHA;DS,-VASc score. This
approach provides a more refined tool for identifying patients at heightened risk, facilitating earlier
recognition of potential stroke risk and enabling more proactive intervention strategies. Rather
than predicting stroke events directly, this model supports pre-detection efforts aimed at better
anticipating the development of stroke in high-risk individuals. Further research is needed to
validate these findings across diverse populations and assess their practical application in routine

care.
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Abstract in Korean
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