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ABSTRACT 

 

Enhancing Stroke Prediction in Atrial Fibrillation: Integrating 

Polygenic Risk Scores with Artificial Intelligence-Guided Clinical 

Models 

 

 
Background: Atrial fibrillation (AF) significantly increases the risk of ischemic stroke, and current 

risk stratification models like CHA2DS2-VASc have limitations. This study aimed to develop a 

predictive model combining polygenic risk scores (PRS) with Artificial Intelligence (AI)-guided 

analysis of age and sex to improve stroke risk prediction in AF patients. 

Methods: We included 3,190 AF patients who undergoing AF catheter ablation (AFCA) from the 

Yonsei AF Ablation Cohort. Patients were categorized into two groups: 320 with a history of early 

ischemic stroke before AFCA, and 2,870 stroke-free controls. We developed a polygenic risk score 

(PRS) based on genome-wide association studies (GWAS) and combined it with AI-guided analysis 

of age and sex derived from ECG data. The predictive performance of the integrated model for the 

prediction of ischemic stroke history before AFCA was compared to the CHA2DS2-VASc score 

(excluding the stroke/TIA component) using logistic regression analysis and area under the receiver 

operating characteristic curve (AUC) metrics. 

Results: The integrated model, combining multi-ethnic AF PRS with AI-guided age and sex 

predictions, significantly improved stroke risk stratification compared to the CHA2DS2-VASc score 

alone. The inclusion of PRS increased the AUC from 0.615 to 0.621, while the addition of AI-guided 

analysis further increased the AUC to 0.632. The integrated multi-ethnic AF PRS and AI-guided 

CHA2DS2-VASc risk model showed a significantly improved statistical fit (χ2 P<0.001) and 

modestly improved discrimination. 

Conclusions: Integrating PRS with AI-guided analysis of age and sex improves risk stratification in 

AF patients, enabling more precise identification of individuals at higher risk for ischemic stroke. 

This approach enhances the early detection model, allowing for more proactive preventive measures. 

                                                                                

Key words : Atrial fibrillation, Stroke, Polygenic Risk Score, Artificial Intelligence
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I. INTRODUCTION 

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia with a nearly five-fold 

increased risk of ischemic stroke. While advances in diagnostic techniques have led to earlier 

detection of AF and the adoption of advanced rhythm control strategies including catheter ablation 

have improved patient outcomes, stroke remains a persistent complication. Moreover, many 

patients only begin rhythm control after the occurrence of a stroke, highlighting the need for more 

effective early risk stratification to prevent such events. 

Traditional clinical risk stratification models, such as the CHA2DS2-VASc score, have been 

instrumental in guiding stroke prevention strategies in AF patients. However, these models have 

limitations in their ability to accurately predict stroke risk, particularly in patients with early-onset 

and late-diagnosed AF. As a result, there is a growing need for more precise predictive tools that 

can identify high-risk patients before a stroke occurs.  

Recent advances in genomics and artificial intelligence (AI) can offer an opportunity to enhance 

stroke risk prediction beyond the capabilities of previous conventional models. Genome-wide 

association studies (GWAS) have identified numerous genetic variants associated with AF and 

stroke risk, leading to the development of polygenic risk scores (PRS) that aggregate the effects of 

these variants. PRS holds potential as a powerful tool for refining stroke risk stratification, 

especially when integrated with traditional clinical variables. 

Concurrently, the application of AI in medicine has shown remarkable potential in analyzing 

complex datasets, uncovering patterns, and improving predictive models. By incorporating AI-

guided models that consider age, sex, and other demographic factors, alongside genetic 

information, it is possible to generate a more personalized and accurate risk assessment tool. Such 

a tool could surpass the predictive performance of existing clinical scoring systems, thereby 

improving patient outcomes by enabling more targeted and timely interventions. This study aims 

to develop and validate a novel predictive model that integrates polygenic risk scores with AI-

guided analysis of age and sex to predict early onset ischemic stroke in patients with AF who 

undergoing catheter ablation. We hypothesize that this model will outperform traditional clinical 

scoring systems, offering a more precise stratification of stroke risk, which is crucial for 

optimizing preventive strategies in this high-risk population. 
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II. METHODS 

2.1. Study population 

The study protocol adhered to the principles of the Declaration of Helsinki and was approved by 

the Institutional Review Board of the Yonsei University Health System. All the patients provided 

written informed consent for inclusion in the Yonsei AF Ablation Cohort Database 

(ClinicalTrials.gov Identifier: NCT02138695). Among the 7,058 patients who underwent AF 

catheter ablation (AFCA) in the Yonsei AF Ablation Cohort from 2009 to 2024, 3,190 patients 

with AI ECG data and available PRS data were enrolled in the study. The case group consisted of 

320 patients with ischemic stroke history before AFCA, and stroke-free 2,870 controls who 

undergoing AFCA. Study protocol is presented in Figure 1. The diagnosis of ischemic stroke was 

defined as a clinical diagnosis confirmed by a neurologist at either our institution or at a referring 

hospital. An ischemic stroke was considered confirmed if the neurologist documented the 

diagnosis based on standard clinical assessments, neuroimaging (such as brain computed 

tomography [CT] or magnetic resonance imaging [MRI]), and other relevant diagnostic criteria. 

Only cases explicitly labeled as "ischemic stroke" in the patient's medical record by the attending 

neurologist were included in this study. Cases of transient ischemic attack (TIA) were specifically 

excluded from the analysis. 

 

 

Figure 1. Study Flow Chart 
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2.2. Genome-wide association study 

Genomic deoxyribonucleic acid (DNA) was obtained from blood samples using the QuckGene 

DNA Whole Blood Kit S with a QuickGene mini 80 (KURABO, Osaka, Japan). DNA genotyping 

data were obtained using the Axiom Precision Medicine Research Array (PMRA; Thermo Fisher 

Scientific, MA, USA). We searched a specific phenotype -associated single nucleotide 

polymorphism (SNP) in a gene, the most common AF-associated genome, using PMRA data. 

Using AF-associated SNP, we calculated polygenic risk score (PRS) and investigated the 

association between history of ischemic stroke before catheter ablation and PRS among the 

included patients.  

 

2.3. Derivation of Polygenic risk score 

We adopted a study design similar to previous published PRS studies, following the recommended 

methodological and reporting guidance. Briefly, the process involved four key steps; (1) curation of 

previously published genome-wide association study (GWAS) summary statistics, (2) accounting 

for linkage disequilibrium in GWAS summary statistics using the R package lassosum, (3) 

constructing PRS within our YAF cohort with eighty different PRS were constructed across the 

lassosum hyperparameters (λ and s), and (4) identifying the most accurate PRS in the YAF cohort. 

Detailed methods were presented in our previous studies.  

 

2.4. Artificial Intelligence-guided Age and Sex prediction 

We developed a ResNet-based model for ECG sex prediction. This framework has been 

demonstrated to successfully create models to predict age, sex, as well as mortality from a standard 

12-lead ECG. The ResNet architecture includes residual blocks composed of 1D convolutional 

layers each followed by batch normalization, ReLU activation, and dropout layers. Detailed 

information on 12-lead ECG pre-processing and ResNet architecture is provided in the prior studies. 

We developed ECG sex prediction model using 500,000 ECGs from the development set of MIMIC-

IV cohort. Following development, the model was validated on four independent multinational 
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datasets that were not used the development process. These validation sets included a total of 

410,816 ECGs from the MIMIC-IV hold out set (n=13,628), CODE-15% (n=345,779), UK Biobank 

(n=45,595), Yonsei AF registry (n=5,814) datasets. 

For predicting AI-ECG age, we utilized a pre-trained ResNet-based model. Previous research has 

demonstrated the ResNet's proficiency in identifying ECG abnormalities and estimating ECG-based 

age.[27, 28] Our AI model was trained using 85% of the ECG data (n=1,340,246) from the CODE 

study cohort. We then validated the model using four distinct multinational datasets that were not 

part of the training phase. These validation datasets comprised a total of 414,804 ECGs from CODE-

15% (n=345,779), Physionet (n=21,799), Sami-Trop (n=1,631), and the UK Biobank (n=45,595). 

Further details regarding each validation cohort can be found in other sources. 

For ECG pattern recognition, we employed Gradient-weighted Class Activation Mapping (Grad-

CAM) to emphasize the ECG signatures identified by our age and sex prediction model. 

Additionally, we developed and implemented a black-box interpretation method to further analyze 

the ECG data (Figure 2). This method quantifies the significance of ECG components in 4,000 

samples using calculations derived from Grad-CAM. It was designed to identify patterns associated 

with the prediction of repetitive PQRST rhythms observed in the ECG data over 10 seconds. We 

extracted ECG beats and identified the R peaks to isolate the PQRST rhythms utilizing the Neurokit2 

library. Subsequently, we calculated the median beat, standardized it to a length of 600 samples, and 

extracted the ECG components (P waves, PR intervals, PR segments, QRS complexes, ST segments, 

QT intervals, and T waves). Finally, we visualized the importance of each ECG component by 

averaging the Grad-CAM importance scores for the respective intervals. 

 

Figure 2. Black-box AI interpretation algorithm for long-term 12-lead ECG analysis 
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2.5. Statistical Analysis 

Descriptive statistics were used to characterize baseline characteristics. Categorical variables 

are reported as numbers (percentages) and compared using the Chi-square or Fisher’s exact test. 

Continuous variables were tested for a normal distribution using the Shapiro-Wilk or Kolmogorov-

Smirnov tests. Continuous variables without a normal distribution are presented as medians with 

the interquartile range (IQR), while those with a normal distribution are presented as the mean ± 

standard deviation. Normally distributed continuous data were compared using unpaired Student’s 

t-test. The Mann-Whitney U test was used to compare the continuous variables without a normal 

distribution between the two groups. 

The association of the CHA2DS2-VASc score excluding history of stroke or transient ischemic 

attack (TIA), with the presence of stroke history at the time of catheter ablation was assessed by 

logistic regression. We used the area under curve (AUC) of receiver operating characteristics 

(ROC) and likelihood ratio test to assess the discrimination power and model fit of the logistic 

regression model. To assess amount of risk in PRS, multivariate logistic regression was performed 

adjusting for CHA2DS2-VASc score and AI-guided CHA2DS2-VASc score. Multiple subgroup 

analyses according to chronological age, biological sex, and underlying comorbid conditions were 

performed. All analyses were performed using R statistics, version 4.0.2 software (R Foundation 

for Statistical Computing); and a two-sided p-value < 0.05 was considered statistically significant.  
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III. RESULTS 

3.1. Patient characteristics 

The baseline clinical characteristics of the study population are listed in Table 1. There were 

3,190 total study population with AF who undergoing AFCA, of which 320 had a history of 

ischemic stroke, and 2,870 did not. After reweighting, 530933 single nucleotide variants (SNVs) 

had a nonzero effect size and were included in our PRS.  

 
Table 1. Baseline characteristics according to occurrence of early ischemic stroke before AF ablation. 

 

Overall 

(n=3190) 

No IS 

(n=2870) 

IS 

(n=320) 
p-value 

Age, years (median) 61 [53.0, 67.0] 60.0 [52.0, 67.0] 65.0 [59.0, 71.0] <0.001 

AI-ECG predicted age 

(median) 
63.9 [52.5, 73.3] 63.1 [52.0, 72.5] 70.1 [59.9, 78.1] <0.001 

Male  2320 (72.7%) 2092 (72.9%) 228 (71.2%) 0.576 

AI-ECG predicted male 2487 (78%) 2238 (78.0%) 249 (77.8%) >0.999 

Hypertension 1500 (47.0%) 1322 (46.1%) 178 (55.6%) 0.001 

Diabetes mellitus 476 (14.9%) 402 (14.0%) 74 (23.1%) <0.001 

Heart failure 446 (14.0%) 394 (13.7%) 52 (16.2%) 0.251 

Vascular disease  272 (8.5%) 222 (7.7%) 50 (15.6%) <0.001 

Age gap (mean) 3.05 ± 12.16 2.93 ± 12.27 4.15 ± 11.05 0.063 

The aged ECG group 

(Age_gap≥10) 
1367 (43.85%) 1239 (43.17%) 128 (40.00%) 0.304 

AI sex mismatch  379 (11.88%) 338 (11.78%) 41 (12.81%) 0.651 

CHA2DS2VASc score 1.0 [1.0, 2.0] 1.0 [0.0, 2.0] 2.0 [1.0, 3.0] <0.001 

AI-guided 

CHA2DS2VASc score 
2.0 [1.0, 3.0] 1.0 [1.0, 3.0] 2.0 [1.0, 3.0] <0.001 

Multi-ethnic AF PRS, sum 6.1 [5.8, 6.4] 6.1 [5.8, 6.4] 6.1 [5.9, 6.4] 0.103 

European AF PRS, sum  4.22 ± 0.31 4.22 ± 0.31 4.26 ± 0.32 0.041 

Stroke PRS, sum  1.84 ± 0.15 1.84 ± 0.15 1.85 ± 0.15 0.403 

† AF indicated atrial fibrillation; AI, artificial intelligence; ECG, electrocardiogram; PRS, polygenic risk score. 
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3.2. Stroke prediction 

The logistic regression analyses for stroke were presented in Table 2. The analyses using AF 

PRS (multi-ethnic AF PRS sum) revealed a PRS odds ratio (OR), 1.33 per SD (95% CI, 1.01–1.77; 

Table 2 and Figure 3).  

 

Table 2. Logistic regression for early ischemic stroke before AF ablation  

Variables  Odds ratio (95% CI) P-value 

Age 1.05 (1.04-1.06) <0.001 

AI-ECG predicted age 1.04 (1.03-1.05) <0.001 

Male 0.92 (0.71-1.19) 0.532 

AI-ECG predicted male 0.99 (0.75-1.31) 0.946 

Hypertension 1.47 (1.16-1.85) 0.001 

Diabetes mellitus 1.85 (1.40-2.44) <0.001 

Heart failure 1.22 (0.89-1.67) 0.218 

Vascular disease  2.21 (1.59-3.08) <0.001 

CHA2DS2VASc score 1.35 (1.25-1.47) <0.001 

Multi-ethnic AF PRS, sum 1.33 (1.01-1.77) 0.044 

European AF PRS, sum 1.48 (1.02-2.15) 0.041 

Stroke PRS, sum 1.39 (0.64-2.99) 0.403 

† AF indicated atrial fibrillation; AI, artificial intelligence; ECG, electrocardiogram; PRS, polygenic risk score. 

 

 

Figure 3. Polygenic risk score distribution. Histogram of participants with AF, color representing those that had an 

iscvhemic stroke (green) or not (red). PRS with multi-ethnic AF SNP (A), European AF SNP (B), and multi-ethnic 

ischemic stroke SNP (C). 

 

Performance power analyses demonstrated an area under the receiver operating characteristics 

for CHA2DS2-VASc score (excluding the stroke/TIA component) of: 0.615 (95% CI, 0.583–0.647), 

with the addition of multi-ethnic AF PRS this rose to 0.621 (95% CI, 0.588–0.655) and 

corresponded to a PRS odds ratio of 1.44 per SD (95% CI, 1.09–1.91) (Table 3).  
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Table 3. Performance power of risk model for early ischemic stroke before AF catheter ablation 

Risk model  Odd ratio (95% CI) AUC (95% CI) 
p-value in LR 

test 

Overall AF patients  

CHA2DS2VASc score  1.35 (1.25-1.47) of CVS, p<0.001 0.615 (0.583-0.647) Reference 

CHA2DS2VASc score  

+ Multi-ethnic AF PRS, sum 

1.44 (1.09-1.91) of PRS, p=0.011 0.621 (0.588-0.655) 0.011 

CHA2DS2VASc score  

+ European AF PRS, sum 

1.54 (1.06-2.25) of PRS, p=0.023 0.617 (0.583-0.650) 0.023 

CHA2DS2VASc score  

+ stroke PRS, sum 

1.37 (0.63-2.97) of PRS, p=0.424 0.617 (0.583-0.650) 0.424 

AI-guided CHA2DS2VASc 1.37 (1.26-1.48) of CVS, p<0.001 0.625 (0.592-0.658) Reference 

AI-guided CHA2DS2VASc  

+ Multi-ethnic AF PRS, sum 

1.43 (1.07-1.90) of PRS, p=0.014 0.632 (0.598-0.665) 0.014 

AI-guided CHA2DS2VASc  

+ European AF PRS, sum 

1.52 (1.04-2.21) of PRS, p=0.029 0.626 (0.592-0.660) 0.029 

AI-guided CHA2DS2VASc  

+ Stroke PRS, sum 

1.36 (0.63-2.95) of PRS, p=0.434 0.627 (0.593-0.660) 0.434 

LR=likelihood ratio 

 

The same analysis adjusting for age and sex by AI guided ECG showed a higher C statistic 

(0.625 [95% CI, 0.592–0.658]), and this rose to 0.632 (95% CI, 0.598–0.665) with the addition of 

multi-ethnic AF PRS. The integrated multi-ethnic AF PRS and AI-guided CHA2DS2-VASc risk 

model showed a significantly improved statistical fit (χ2 P<0.001) and modestly improved 

discrimination (Figure 4 and Table 4). Subgroup analyses were conducted based on age groups 

and the number of comorbidities, but no statistically significant differences were observed in any 

of the groups (Table 5).   
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Figure 4. AUC-ROC curve of each risk model 

 

Table 4. Model-Fit-LR test for the comparison between two models 

Model1 Model2 LR_Chi LR_P value 

CVS_traditional_model CVS_traditional _AF111_model 5.184573668 0.022788263 

CVS_traditional_model CVS_traditional _AF137_model 6.477965127 0.010921995 

CVS_traditional_model CVS_traditional _IS57_model 0.638124859 0.42439063 

CVS_traditional_model CVS_AI_AF111_model 12.29295633 0.000454671 

CVS_traditional_model CVS_AI_AF137_model 13.5956169 0.000226714 

CVS_traditional_model CVS_AI_IS57_model 8.129308168 0.004355536 

CVS_traditional 

_AF111_model 
CVS_AI_model 2.333040514 0.126654275 

CVS_traditional 

_AF137_model 
CVS_AI_model 1.039649055 0.307903106 

CVS_traditional 

_IS57_model 
CVS_AI_model 6.879489323 0.008719047 

CVS_AI_model CVS_AI_AF111_model 4.775342153 0.028870109 

CVS_AI_model CVS_AI_AF137_model 6.07800272 0.013687544 

CVS_AI_model CVS_AI_IS57_model 0.611693986 0.434150707 

LR=likelihood ratio 
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Table 5. Subgroup analysis for performance power of risk model for early ischemic stroke before AF 

ablation 

Risk model Odd ratio (95% CI) AUC (95% CI) 

p-value in LR 

test 

Low cormobidities AF patients (n=1294, stroke n=97)* 

CHA2DS2VASc score  1.39 (1.08-1.80), p=0.012 0.562 Reference 

CHA2DS2VASc score  
+ Multi-ethnic AF PRS, sum 

0.96 (0.58-1.59) of PRS, p=0.881 0.568 0.881 

CHA2DS2VASc score  

+ European AF PRS, sum 

0.97 (0.49-1.92) of PRS, p=0.937 0.566 0.937 

CHA2DS2VASc score  
+ Stroke PRS, sum 

0.87 (0.22-3.49) of PRS, p=0.841 0.570 0.841 

AI-guided CHA2DS2VASc 1.33 (1.05-1.68), p=0.016 0.553 Reference 

AI-guided CHA2DS2VASc  

+ Multi-ethnic AF PRS, sum 

0.96 (0.58-1.58) of PRS, p=0.862 0.559 0.862 

AI-guided CHA2DS2VASc  
+ European AF PRS, sum 

0.98 (0.50-1.92) of PRS, p=0.955 0.556 0.955 

AI-guided CHA2DS2VASc  

+ Stroke PRS, sum 

0.81 (0.20-3.27) of PRS, p=0.767 0.560 0.767 

Young AF patients (<65 years) (n=2082, stroke n=156) 

CHA2DS2VASc score  1.28 (1.07-1.52), p=0.007 0.558 (0.512-0.603) Reference 

CHA2DS2VASc score  

+ Multi-ethnic AF PRS, sum 

1.15 (0.77-1.72) of PRS, p=0.501 0.560 (0.511-0.609) 0.500 

CHA2DS2VASc score  

+ European AF PRS, sum 

0.91 (0.53-1.56) of PRS, p=0.730 0.558 (0.510-0.605) 0.730 

CHA2DS2VASc score  

+ Stroke PRS, sum 

1.13 (0.38-3.35) of PRS, p=0.821 0.559 (0.509-0.608) 0.821 

AI-guided CHA2DS2VASc 1.33 (1.17-1.50), p<0.001 0.595 (0.547-0.643) Reference 

AI-guided CHA2DS2VASc  

+ Multi-ethnic AF PRS, sum 

1.18 (0.78-1.77) of PRS, p=0.429 0.596 (0.546-0.645) 0.428 

AI-guided CHA2DS2VASc  
+ European AF PRS, sum 

0.93 (0.54-1.60) of PRS, p=0.788 0.598 (0.550-0.647) 0.788 

AI-guided CHA2DS2VASc  

+ Stroke PRS, sum 

1.13 (0.38-3.33) of PRS, p=0.824 0.596 (0.546-0.646) 0.824 

LR=likelihood ratio. *The AF patients after excluding hypertension, diabetes mellitus, heart failure, and vascular disease 

which are consisted of CHA2DS2VASc score. 
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IV. DISCUSSION 

4.1. Main findings 

In this study, we developed and validated a novel predictive model that integrates polygenic 

risk scores (PRS) with AI-guided analysis of age and sex to predict early-onset ischemic stroke in 

patients with atrial fibrillation (AF) undergoing catheter ablation. Our findings suggest that this 

combined approach offers modest but statistically significant improvements in stroke risk 

stratification over the conventional CHA2DS2-VASc scoring system. The integration of PRS into 

the risk model provided a significant enhancement in predictive performance, as indicated by the 

improvement in the area under the receiver operating characteristic curve (AUC). Specifically, the 

inclusion of the multi-ethnic AF PRS increased the AUC from 0.615 to 0.621, with a 

corresponding odds ratio of 1.44 per SD. These findings suggest the potential of PRS to capture 

genetic predispositions that are not accounted for by traditional clinical risk factors. Moreover, the 

AI-guided analysis, which incorporated age and sex predictions derived from ECG data, further 

improved the model's discriminative power. The final integrated model, which combined PRS 

with AI-guided age and sex adjustments, achieved the highest AUC of 0.632 and demonstrated a 

significantly better fit compared to the CHA2DS2-VASc score alone.  

 

4.2. Genetic predisposition for ischemic stroke in AF 

Although AF itself is a well-established risk factor for ischemic stroke, the variability in stroke 

occurrence among individuals with similar clinical profiles suggests that genetic factors may play 

a significant role in modulating this risk. However, the CHA2DS2-VASc score, the current risk 

stratification system, does not account for genetic risk of ischemic stroke, despite its significant 

heritability (about 40%). Genome-wide association studies (GWAS) have identified several 

genetic loci associated with AF, many of which are also implicated in stroke risk. In this study, 

the PRS for AF shows a stronger statistical association with ischemic stroke in AF patients 

compared to the stroke-specific PRS. These findings indicate a shared genetic basis between AF 

and ischemic stroke. Common variants in genes related to atrial remodeling, ion channel function, 

and inflammation may be associated with the pathophysiology of both conditions, and these 

genetic associations suggest that certain individuals may be predisposed to an elevated stroke risk 

due to their genetic background, independent of traditional clinical risk factors.   
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4.3. AI-ECG guided Age and Sex 

In the epidemiology of AF,[37, 38] each sex is linked to distinct risk factors for both AF and 

stroke. For instance, men are more prone to coronary artery disease, left atrial enlargement, and 

thicker left ventricular walls, whereas women are more likely to have hypertension, valvular heart 

disease, and heart failure with preserved ejection fraction. These sex-specific risk factors can be 

identified from a single raw ECG tracing, and misclassifying the sex on an ECG could reveal risk 

factors typically linked to the opposite sex, possibly changing the ischemic stroke risk profile. 

Chronological aging leads to electroanatomic changes in the heart, and both AF and ischemic 

stroke are especially common in older populations. This suggests that some individuals may 

experience either accelerated or delayed cardiac aging relative to their chronological age. In this 

study, adjusting for age and sex—typically seen as non-modifiable factors—shows that these often 

overlooked variables can improve the accuracy of risk assessment. This highlights the importance 

of reevaluating their role in predictive models, which could enhance risk stratification and enable 

more personalized patient care. 

While the use of AI-ECG has shown promise in various cardiovascular risk assessments, 

directly predicting ischemic stroke in AF patients based solely on ECG data presents significant 

challenges. Stroke risk in AF is influenced by a wide range of clinical variables, including 

comorbidities like hypertension, diabetes, and previous history of stroke, as well as structural heart 

changes that cannot be fully captured by ECG alone. These multifactorial influences make the 

direct prediction of ischemic stroke from ECG data a highly complex task. Moreover, in previous 

attempts to leverage AI-ECG for direct stroke prediction, the predictive accuracy was found to be 

lower than anticipated. Despite the potential of AI to identify subtle ECG changes, the inherent 

complexity of stroke risk—where multiple, non-ECG factors play a critical role—limited the 

model's ability to reliably predict stroke events. As a result, the focus of this study shifted toward 

more fundamental and well-established risk factors, namely age and sex. Both of these factors, 

though traditionally considered non-modifiable, have a profound impact on stroke risk in AF and 

are easily integrated into predictive models. 

 

4.4. Clinical implications 

Aggressive rhythm control in atrial fibrillation (AF) has been shown to reduce stroke incidence, 

improve various morbidities, and confer a mortality benefit. However, some patients still 



１３ 

 

experience a stroke before the initiation of rhythm control and catheter ablation. Identifying these 

patients early is crucial, as it not only improves individual outcomes but also has significant 

implications for reducing long-term healthcare costs. Early prediction and intervention could, 

therefore, play a pivotal role in both patient care and the broader socioeconomic impact of AF 

management.   

 

4.5. Limitations 

This study had several limitations. First, this was an observational cohort study from a single 

center that included a limited number of highly selected patients referred for AF ablation. 

Morevoer, ischemic stroke events were defined retrospectively as those that had already occurred 

at the time of the procedure, rather than prospectively. Second, the polygenic risk scores (PRS) 

were developed based on genetic data predominantly from populations of Japan, European, and 

multiethnic ancestry. The generalizability of these scores to other ethnicities may be limited, 

potentially leading to less accurate risk stratification in Korean populations. Third, while AI-

guided models have demonstrated potential in improving predictive accuracy, the "black box" 

nature of AI algorithms may pose challenges in clinical practice. Lastly, the effectiveness of AI-

guided models and PRS depends heavily on the quality and completeness of the input data. 

Missing or inaccurate data can significantly compromise the accuracy and reliability of the 

predictions made by the model.  
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V. CONCLUSIONS 

This study developed and validated a novel predictive model that combines PRS with AI-guided 

analysis of age and sex to enhance ischemic stroke prediction in atrial fibrillation (AF) patients 

undergoing catheter ablation. Our results demonstrate that this integrated model significantly 

improves stroke risk stratification compared to the conventional CHA2DS2-VASc score. This 

approach provides a more refined tool for identifying patients at heightened risk, facilitating earlier 

recognition of potential stroke risk and enabling more proactive intervention strategies. Rather 

than predicting stroke events directly, this model supports pre-detection efforts aimed at better 

anticipating the development of stroke in high-risk individuals. Further research is needed to 

validate these findings across diverse populations and assess their practical application in routine 

care.   
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Abstract in Korean 

 

심방세동에서 뇌졸중 예측 향상: 다유전자 위험 점수와 인공지능 

기반 임상 모델의 통합 

 

배경: 심방세동은 허혈성 뇌졸중의 위험을 크게 증가시키며, 현재 사용되는 위험 

계층화 모델인 CHA2DS2-VASc 점수체계는 정확한 예측에는 뚜렷한 한계가 있다. 

본 연구는 다유전자 위험 점수(Polygenic Risk Score, PRS)와 나이 및 성별에 대한 

인공지능(AI) 기반 분석을 결합하여 심방세동 환자의 뇌졸중 위험 예측을 개선하는 

예측 모델을 개발하는 것을 목표로 하였다. 

방법: 본 연구는 연세의대 세브란스병원에서 심방세동 절제술을 시행받은 환자 

코호트(Yonsei AF Ablation Cohort)에 속한 3,190명의 심방세동 환자를 대상으로 

했다. 환자들은 심방세동 절제술 전 조기 허혈성 뇌졸중 병력이 있는 320명의 환자와 

뇌졸중 병력이 없는 2,870명의 대조군으로 나누어졌다. 우리는 유전체 연관 

연구(GWAS)에 기반한 PRS를 개발하고 이를 심전도 데이터를 기반으로 한 나이 및 

성별에 대한 AI 기반 분석과 결합했다. 통합된 모델의 허혈성 뇌졸중 병력 예측 

성능은 CHA2DS2-VASc 점수(뇌졸중/TIA 구성 요소 제외)와 비교하여 로지스틱 

회귀 분석 및 수신자 조작 특성 곡선(AUC) 지표를 사용해 평가했다. 

결과: 다인종 심방세동 PRS와 AI 기반 나이 및 성별 예측을 결합한 통합 모델은 

CHA2DS2-VASc 점수만 사용한 것보다 뇌졸중 위험 계층화에 있어 유의미한 개선을 

보였다. PRS를 포함했을 때 AUC가 0.615에서 0.621로 증가했으며, AI 기반 분석을 

추가했을 때 AUC는 0.632로 더 증가하였다. 다인종 심방세동 PRS와 AI 기반 

CHA2DS2-VASc 위험 모델은 통계적으로 유의미한 개선(χ2 P<0.001)과 소폭의 

판별력 향상을 보였다. 

결론: PRS와 AI 기반 나이 및 성별 분석을 통합함으로써 심방세동 환자의 위험 

계층화가 개선되었으며, 허혈성 뇌졸중의 고위험군을 더 정확하게 식별할 수 있게 

되었다. 이러한 접근 방식은 조기 발견 모델을 향상시키며, 더 적극적인 예방 조치를 

가능하게 할 것으로 기대된다. 

_______________________________________________________________________________ 

핵심되는 말 : 심방세동, 뇌졸중, 인공지능, 다유전자 위험점수 
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