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ABSTRACT

Monocytes and NK Cells Modulate Therapeutic Outcomes in Severe
COVID-19: A Single-Cell RNA Sequencing Study

Severe COVID-19 infection is characterized by a profoundly dysregulated immune response,
including hyperactivation and functional impairment of immune cells along with an excessive
inflammatory response. Corticosteroid tocilizumab is used in accordance with guidelines to improve
the prognosis of patients with severe COVID-19. However, the differences in drug response among
patients remain a challenge to be addressed. This study aims to identify the molecular and cellular
determinants that cause differences in treatment outcomes in the combination therapy of tocilizumab,
dexamethasone, and remdesivir in patients with severe COVID-19 using single-cell RNA
sequencing. From June 2021 to January 2022, blood samples were collected from 17 matched
patients with severe COVID-19 at a tertiary hospital according to age, gender, and WHO Clinical
Progression Scale. Patients were categorized into two groups: ten recovered without deterioration,
and seven required intubations due to respiratory failure. Samples were taken on day 1 and day 7.
Dropkick was employed to process and analyze single-cell ribonucleic acid sequencing data derived
from Peripheral Blood Mononuclear Cells. Heatmaps of differentially expressed genes were
generated using the Complex Heatmap package, while Gene Ontology enrichment analysis was
performed using the Enrichr tool from Ma’ayan lab, integrated into Seurat (versions 3.9 and 4). This
study compared differences in immune cells between patient groups by examining patients with
good prognosis (day 1 [n=13,580] and day 7 [n=14,017]) and patients with poor prognosis (day 1
[n=13,747] and day 7 [n=13,630]) after TDR treatment. In the poor prognosis group, the nucleotide-
binding oligomerization domain-like receptor signaling pathway and natural killer (NK) cell-
mediated cytotoxicity were downregulated after TDR treatment. However, inflammatory
macrophage related lysosome, phagosome, and apoptosis pathways persistently remained
upregulated. On the other hand, the good prognosis group showed increased NK cell-mediated
cytotoxicity and decreased inflammatory macrophage related pathways after TDR treatment.
Additionally, the good prognosis group exhibited elevated expression of genes linked to T cell
receptor activation, signaling pathways, and differentiation processes related to immune regulation.
In conclusion, the suppression of the hyperinflammatory pathway by macrophages and the
enhancement of natural killer cell-mediated cytotoxicity, along with the adaptive immune response
induced by T cells, emphasize the importance of maintaining a well-regulated immune balance in
the management of severe COVID-19 cases.

Key words : SARS-CoV-2 infection, COVID-19, Monocytes, Killer Cells Natural, Single-Cell Gene
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I. INTRODUCTION

COVID-19 has emerged a global infectious disease, causing approximately 776,205,140
cumulative cases and 7,064,380 deaths worldwide by September 2024 (1). The clinical spectrum of
COVID-19 varies significantly, ranging from asymptomatic to severe illness, with some patients
experiencing respiratory failure and fatal outcomes (2). The pathophysiology of COVID-19 involves
several mechanisms, including direct viral cytotoxicity, damage to endothelial cells and
microvasculature, immune system dysregulation with a heightened proinflammatory response,
hypercoagulability resulting in thrombosis, and disruption of the angiotensin-converting enzyme 2
(ACEZ2) pathway (2, 3). As an RNA virus, COVID-19 is highly prone to mutations during replication,
facilitating its evolution into various forms (4). In recent times, its severity in terms of causing
critical illness has decreased, while its transmissibility has remained high (4). However, the mortality
rate remains elevated in high-risk populations, including individuals with underlying diseases and
the elderly, underscoring the need for proactive therapeutic interventions (5).

Severe COVID-19 infection is characterized by a profoundly dysregulated immune response,
including hyper activation and functional impairment of immune cells along with an excessive
inflammatory response (3, 6, 7). High concentrations of pro-inflammatory cytokines, including
tumor necrosis factor (TNF)-a, interleukin (IL)-1p, IL-6, 1L-10, and C-C motif chemokine ligand
(CCL)2, are characteristic of severe COVID-19 and correlate with poorer clinical outcomes (3, 7).
Therefore, in addition to strategies that directly target the virus, additional treatments have been
developed that focus on the human immune system using immunomodulators such as corticosteroids
or the IL-6 receptor-targeting antibody Tocilizumab. Dexamethasone, employed as an
immunomodulatory strategy in the RECOVERY trial, was shown to improve survival in COVID-
19 patients dependent on supplemental oxygen (8). Dexamethasone reduces the production of
proinflammatory cytokines, such as TNF, IFN-y, IL-1, IL-2, IL-6, IL-8, and prostaglandins, linked
to severe COVID-19, by regulating gene transcription processes (9). Dexamethasone promotes the
production of anti-inflammatory cytokines, such as lipocortin-1 and IL-10, by activating the
synthesis of glucocorticoid response elements (9). Dexamethasone also impacted circulating
neutrophils by reducing interferon-stimulated genes, expanding immunosuppressive immature
neutrophils, and modifying cellular interactions (10). However, some reports suggest that
dexamethasone is relatively less effective on innate immune cells compared to adaptive immune
cells (11). Tocilizumab, a humanized antibody targeting the IL-6 receptor, has shown improved
survival outcomes in critically ill COVID-19 patients (12). While each drug has its own advantages
and disadvantages, combination therapies have generally demonstrated superior efficacy compared
to single agent treatments in severe COVID-19 patients. In the REMAP-CAP trial, the combination
of corticosteroids and Tocilizumab reduced in-hospital mortality in COVID-19 patients with
respiratory failure (12, 13). However, there are patients who progress to respiratory failure and die



despite immunomodulation with combination therapy, and this variability in drug response remains
a significant challenge in the treatment of COVID-109.

Single-cell sequencing analysis is an effective method to further characterize the heterogeneous
progression of COVID-19-mediated diseases. A prior study using single-cell sequencing revealed a
dominance of HLA-DR' monocytes and immature CD10-°"CD101 CXCR4*" neutrophils with
immunosuppressive characteristics in patients with severe COVID-19 (14, 15). Another single-cell
sequencing study demonstrated that immune dysfunction, encompassing reduced
immunosuppressive activity of blood myeloid cells and the substitution of naive T cells with
pulmonary memory CD8* T cells, is linked to severe symptoms and increased mortality. (3). Most
single-cell sequencing studies conducted to date have focused primarily on identifying cell subsets,
immunological factors, and pathways associated with COVID-19 disease severity. However, there
have been relatively few single-cell sequencing analyses examining the effects of current regimens
in clinical practice for severe COVID-19 patients, with limited attention paid to variations in drug
response, particularly in the context of immunomodulation.

In this study, we aim to explore the underlying pathways determining the drug response of
severe COVID-19 patients to Tocilizumab/dexamethasone/Remdesivir (TDR). Additionally, it
seeks to propose a complementary therapeutic strategy for treating COVID-19.

Il. MATERIALS AND METHODS

2.1. Patients selection

Blood samples were collected from patients with severe COVID-19 admitted to a 2,400-bed
tertiary care hospital between June 2021 and January 2022 (fig S1). Adult patients with a WHO
Clinical Progression Scale of 6 at the time of enrollment were included in the study. All participants
received dexamethasone, tocilizumab, and remdesivir, accordance with the COVID-19 guideline for
the therapeutic management of hospitalized patients. Because the effect of the immunomodulatory
agent may not be fully reflected, patients who died within one week and patients who underwent
intubation prior to tocilizumab administration were excluded. A total of 17 patients were included
after matching for age, sex, and initial ordinal scale. Of the 17 patients, 10 patients recovered without
deterioration (good prognosis), and 7 patients were intubated for respiratory failure (poor prognosis)
(table S1).

The Institutional Review Board (IRB) of Yonsei University College of Medicine (IRB no. 4-
2020-1377) approved this study. Written informed consent was collected from all participants. The



study adhered to the principles of the Declaration of Helsinki and followed Good Clinical Practice
standards.

2.2. Sample selection

Blood samples were obtained at two distinct time points: day 1 and day 7 in hospitalized
COVID-19 patients who recovered without deterioration (n=10) or in hospitalized COVID-19
patients with respiratory failure (n=7). Peripheral Blood Mononuclear Cells (PBMCs) were
extracted from whole blood using a standard density gradient centrifugation method with Ficoll-
Paque (GE Healthcare, Uppsala, Sweden) as described in established protocols (7, 16). The 10x
Genomics Chromium platform was used to capture and barcode the cells to generate single-cell Gel
Beads-in-Emulsion (GEMs). Briefly, along with the reverse transcription master mix, cell
suspensions were loaded onto 10x Genomics Single Cell Chips. During this step, cells were
partitioned into the GEMs along with gel beads coated with oligonucleotides. These
oligonucleotides enable mRNA capture inside the droplets. Following reverse transcription, cONAs
with both barcodes were amplified, and a library was constructed for each sample. The resulting
libraries were sequenced on an Illumina NovaSeq 6000 System in a 2 x 150 bp paired-end mode.

2.3. Single cell RNA sequencing analysis

Sample demultiplexing, barcode processing and UMI counting were performed by using the
official 10x Genomics pipeline Cell Ranger (v7.1.0) (https://support.10xgenomics.com) (17).
Briefly, raw base call files generated by Illumina sequencers were demultiplexed into reads in
FASTQ format using the bcl2fastq developed by Illumina. The raw reads were trimmed from the 3’
end to get the recommended number of cycles for read pairs. The reads of each library were then
processed separately using the “cellranger count” pipeline to generate a gene-barcode matrix for
each library. During this step, the reads were aligned to a human reference genome (version: hg38).
Cell barcodes and UMIs associated with the aligned reads were subjected to correction and filtering.

We utilized Dropkick, an automated software tool, for the quality control and filtering of
scRNA-seq data. Utilizing predictive global heuristics, we employed Dropkick to set initial
thresholds and learn a gene-based representation of real cells and ambient barcodes. Our primary
objectives included excluding ambient barcodes, often indicative of background noise or non-
cellular RNA, while salvaging real cells near the quality threshold. We operated Dropkick on a per-
dataset basis, tailoring analysis and filtering parameters to specific dataset characteristics, thereby
enhancing robustness and applicability across diverse experimental conditions and sequencing
platforms. Overall, Dropkick streamlined preprocessing of SSCRNA-seq data in our study, automating



quality control measures and ensuring the retention of valuable biological information in
downstream analyses (18).

After QC, we employed the Seurat R package to address key analytical challenges in SCRNA-
seq data analysis. Utilizing Seurat’s feature selection capabilities, we identified informative genes
driving cellular heterogeneity and biological processes. Harmony tool allowed us to harmonize
scCRNA-seq datasets from multiple experimental conditions, facilitating comparative analysis and
identification of common and condition-specific cell populations. Leveraging Seurat’s clustering
algorithms, we delineated distinct cell clusters based on transcriptional profiles, enabling the
characterization of cellular diversity and identification of rare cell types. Furthermore, Seurat’s
dimensionality reduction techniques, such as principal component analysis (PCA) and uniform
manifold approximation and projection (UMAP), enabled visualization of high-dimensional
scRNA-seq data in lower-dimensional space, aiding in the interpretation of complex cellular
landscapes (19, 20).

2.4. Uniform manifold approximation and projection

We employed the scType computational platform, utilizing the scTypeDB (Human) database,
to annotate cell clusters identified in our SCRNA-seq data. Leveraging scType’s automated and data-
driven approach, we assigned cell types to each cluster based on gene expression profiles and the
comprehensive cell marker database. This annotation process enabled us to gain insights into the
cellular composition of our scRNA-seq dataset, facilitating the interpretation of the biological
significance of the identified cell populations (21). Differential cell frequencies (expressed as
percentages of total PBMCs) were compared across patient groups for each annotated cell type:
good prognosis Day 1 (n=13,580), good prognosis Day 7 (n=14,017), poor prognosis Day 1
(n=13,747), and poor prognosis Day 7 (n=13,630).

2.5. Heatmap visualization

Heatmaps were created using the Complex Heatmap package to display differentially expressed
genes (10). Cells were categorized into CD4* T cells, CD8* T cells, monocytes, and B cells, with
the FindMarkers function identifying genes differentially expressed for two comparisons: (1) day 1
versus day 7 and (2) respiratory failure versus recovery. Genes with an absolute logFC value
exceeding 0.5 were selected for inclusion in both the heatmap visualization and EnrichR pathway
analysis.



2.6. Gene Ontology enrichement

Neutrophils were extracted from a Seurat object (versions 3.9 and 4) that had been realigned
with scVelo and analyzed following the standard and recommended settings outlined in the SCENIC
vignette (https://github.com/aertslab/SCENIC) using the hgl9 RcisTarget reference (10). Regulon
activity scores, generated as part of the SCENIC workflow ('3.4_regulonAUC.Rds"), were
incorporated into the scVelo object via the Create AssayObject function, allowing trajectory data and
transcription factor (TF) activity to be simultaneously visualized on UMAP embeddings. The target
genes of transcription factors were analyzed using iRegulon, a computational tool available as a
Cytoscape plugin that reverse-engineers transcriptional regulatory networks from co-expressed gene
sets by integrating cis-regulatory sequence analysis, motif discovery, and regulatory tracks such as
ChlP-seq data to identify master regulators and their downstream gene networks (22). Gene
Ontology enrichment analysis was performed using the DEenrichRPlot function in Seurat (versions
3.9 and 4), which incorporates the Ma’ayan lab’s Enrichr tool (23).

2.7. Statistical analysis

PASW Statistics 23 (SPSS) and GraphPad Prism 7.0 (GraphPad Software) were utilized for
statistical analysis. Data are expressed as mean + standard error. Unpaired Student’s t-tests were
used to evaluate differences between means, and the log-rank test was applied for additional
statistical comparisons. Statistical significance was defined as a P-value below 0.05.

1. RESULTS

3.1. Classical monocytes and NK cells exhibit opposite patterns of
compositional changes following TDR treatment in groups with poor and
good prognoses

To discern the distinctions among COVID-19 patients exhibiting either a poor or good
prognosis post-TDR treatment, PBMCs were obtained from three individuals in each category at
day 1 (D1) before treatment initiation and at day 7 (D7) post-treatment (fig 1A). The patients had a
median age of 71 years (66—75 years), with 52.9% being male (Supplementary Table 1). The median
body mass index was 23.5 (22.1-28.0) kg/m?. All patients were receiving high-flow nasal cannula
support, and no notable differences were observed between the two groups in terms of age, sex, body



mass index, or WHO Clinical Progression Scale at the time of enrollment. Subsequently, sScRNA-
seq was conducted on the collected samples. Given the variability in cell viability across samples,
the identified cell numbers in each group were adjusted accordingly, following the dropkick protocol
as reported previously (18). The clustering analysis revealed 11 distinct clusters comprising
CD8*NKT-like cell (NKT), classical monocyte (CM), myeloid dendritic cell, naive B cell, naive
CD4" T cell, natural killer (NK) cell, non-classical monocyte (NCM), plasma B cell, platelet,
progenitor cell, and unknown cell (not classified) (24) (fig 1B and Supplementary fig S1 and S2).
Among patients with a poor prognosis, significant changes in cell populations were observed when
comparing D1 and D7 samples. Specifically, there was an increase in CM, naive B cells, and naive
CD4" T cells, along with a decrease in NK cells and NCM during this period (Fig. 1C, left).
Conversely, the good prognosis group showed an increase in NKT cells, naive B cells, naive CD4*
T cells, and NK cells, while showing a decrease in CM (Fig. 1C, left). The inverse correlation
between good and poor prognosis patients was particularly notable in CM and NK cells. Additionally,
an increase in NKT cells and a decrease in NCM were observed in the good and poor prognosis
groups, with no significant changes observed in the counterpart group. Focusing on CM and NK
cells, a comparison of D1 samples between the poor and good prognosis groups revealed that their
baseline compositions for those were almost identical. Upon comparing the D7 samples from both
groups, the results further reinforced the earlier findings, with the poor prognosis group showing a
higher quantity of CM and a lower quantity of NK cells (Fig. 1C, right).

Good prognosis D1 Good prognosis D7

[

Relative proportion of cell type

B Poor prognosis D1 Relative proportion of cell type I Poor prognosis D1

I Poor prognosis D7

elative proportion of cell type R —— B Poor prognosis D7

B Good prognosis D7 2 B Good prognosis D7

Figure 1. Differential changes in monocyte and natural killer cell composition in COVID-19
patients with poor and good prognosis. (A) Study design: Adult patients with a WHO Clinical
Progression Scale of 6 who received tocilizumab, dexamethasone, and remdesivir (TDR) according
to COVID-19 guidelines were enrolled. Blood samples were collected at two time points: day 1




(before treatment) and day 7 (after treatment) in hospitalized COVID-19 patients who recovered
without deterioration (n=10) or patients with respiratory failure (n=7). Peripheral Blood
Mononuclear Cells (PBMCs) were isolated from whole blood and analyzed by Single-cell RNA
sequencing analysis. (B) Uniform manifold approximation and projection (UMAP) visualization of
PBMC of COVID-19 patients following the dropkick protocol (good prognosis day 1 [n=13580],
good prognosis day 7 [n=14017], poor prognosis day 1 [n=13747], poor prognosis day 7 [n=13630])
(C) Differential changes in major cell composition before and after TDR treatment.

3.2. The featured genes for clustering cell types primarily belong to innate
immunity related pathways

A featured gene set comprising 2000 genes was identified based on standardized variance and
average expression values (see material and method). Subsequent KEGG pathway and gene
ontology (GO) analyses revealed that these genes are associated with various inflammatory
responses. According to the KEGG pathway analysis, viral protein interaction with cytokines and
cytokine receptors, antigen processing and presentation, and hematopoietic cell lineage pathways
were enriched by the gene set (fig 2A). Moreover, inflammation related GO terms such as cytolysis
(Biological Process, BP), chemotaxis (BP), hemostasis (BP), inflammatory responses (BP), innate
immunity (BP), and cytokine (Molecular Function, MF) encompass a significant number of the
featured genes (fig 2A). The KEGG term 'viral protein interaction with cytokine and cytokine
receptor' notably contained a wide array of overlapping genes related to inflammatory activators and
suppressors, encompassing chemokines, cytokines, TNF family members, and TGF-B families (fig
2B). Moreover, the identified featured genes included previously recognized crucial pro-
inflammatory mediators related to monocyte activation in severe COVID-19, such as IL-6, IL-1,
IFN, TNF, CCL2, CCL3, CCL7, CCL8, and CXCL10, along with other relevant genes (25). GO
terms such as ‘chemotaxis’ and ‘innate immunity’ primarily consist of genes associated with anti-
viral related innate immune functions. These genes encompass neutrophil and monocyte
chemotaxis-related genes such as CCL2, CCL3, CCL8, CCL20, CXCL2, CXCL3, CXCLS, ISG15,
S100A8, and S100A9 along with complement activation-related genes such as C1QB, C1QA, and
C1QC (fig S3) (26). Within the KEGG term 'hematopoietic cell lineage', essential genes involved in
the maturation of NK cells, B cells, and myeloid dendritic cell/macrophage were identified (fig 2B).
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Figure 2. The distinguished marker genes for the clustering of cell types belong to innate immunity
related pathways. (A) KEGG pathway and gene ontology (GO) term analysis of 2000-gene set
associated with inflammatory responses (B) Genes associated with KEGG term ‘viral protein
interaction with cytokines and cytokine receptors’ and ‘hematopoietic cell lineage’.
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Figure 3. GO terms related to chemotaxis and innate immunity, highlighting genes involved in
neutrophil chemotaxis and complement activation.

3.3. Classical monocyte- and NK cell-associated genes exhibit opposite
patterns of expressional changes after TDR treatment in groups with good
and poor prognoses

As highlighted above, changes in cell numbers of classical monocytes (CM) and natural killer
(NK) cells demonstrated opposing trends between COVID-19 patients with good and poor
prognoses after TDR treatment. Therefore, genes used to characterize CM and NK in comparison to
others were reorganized based on their log2(FC) expression in relation to other cell types. For
validation, the top 100 genes were subjected to KEGG and GO analyses. Marker genes for CM
indicated involvement of KEGG terms such as antigen processing and presentation, phagosome,
reactive oxygen species, and GO term innate immunity (fig S4A). Similarly, marker genes for NK
cells were linked to a distinct KEGG term such as NK cell-mediated cytotoxicity and reactive
oxygen species, and GO terms including cytolysis and innate immunity (fig S4B).

To further characterize the CM and NK cells that showed distinct changes in their population
between patients with poor and good prognoses, the top 20 gene set from the above top 100 was
further analyzed through UMAP plot visualization. Notably, SI00A9, S100A8, LYZ, S100A12,
CD14, FOS, and SPI1 showed relatively selective expression in monocytes. Post-TDR treatment,
these genes were either maintained or further upregulated in classical monocytes (CM) of the poor
prognosis group. In contrast, in the good prognosis group, expression of these genes decreased to
varying extents in CM following treatment. (fig 3A). Other genes, including S100A6, CEBPD,
CST3, MAFB, and TSPO, exhibited consistent or increased expression in CM of the poor prognosis
group, with partial or no change in the good prognosis group (fig S5A). These genes might represent



an inflammation-related subtype of classical monocytes increased after TDR treatment in the poor
prognosis group. Other genes for CM were excluded due to their nonselective expression across cell
types and lack of meaningful expression changes following TDR treatment.
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As altered markers in the NK cell population according to TDR treatment, SPON2, PTGDS,
IGFBP7, LAIR2, KLRBI1, KLRF1, CD247, and CLIC3 showed relatively specific expression in NK
cells and exhibited reduced expression after treatment in the poor prognosis group, whereas these
genes maintained or increased expression in NK cells of the good prognosis group (fig 3B). Genes
such as CTSW, FGFBP2, KLRDI1, CST7, GNLY, NKG7, PRF1, GZMA, and GZMM mostly showed
a shared downregulation in both NK and NKT cells of the poor prognosis group post-TDR treatment,
while displaying a maintained or upregulated expression in these cells among the good prognosis
group (fig SSA). Other genes were excluded due to their non-specific distribution across cell types

and unexpected expression changes.
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Figure 6. UMAP visualization of differentially expressed genes in Natural killer cells.

3.4. The poor and good prognosis groups display different subtypes of
classical monocytes according to TDR treatment

Classical monocytes, exhibiting noticeable increase in the proportion of the cell numbers post-
treatment in the poor prognosis group, were subjected to further analysis. Cells annotated as
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monocytes were sub-clustered according to gene expression profiles, resulting in the identification
of five distinct clusters (groups 0O to 4) (fig 4A). Group 0, which emerged as a distinct cluster due to
a lack of enriched genes, was excluded from further examination. In the poor prognosis group, a
notable decrease in cell populations was observed in group 3 after treatment, whereas an increase
was detected in the group 1 and 2 populations. Conversely, in the good prognosis group, group 2
cell populations diminished, while group 1 and 3 remained barely changed after treatment (fig. 4B).

Subsequent Gene Ontology (GO) analysis of genes distinguishing groups 1, 2, and 3 revealed
distinct functional involvements (fig. 4C). Genes in group 1 primarily related to defense responses
to fungi and positive regulation of inflammatory responses. Group 2 genes were associated with the
NF-kappa B signaling pathway and apoptotic processes. Group 3 genes primarily involved antigen
processing and presentation of exogenous peptide antigen presentation via MHC class 1. Groups 1
and 2 predominantly related to macrophage mediated inflammatory responses and tissue damage,
while group 3 was linked to regular functions of macrophages and subsequent adaptive immune
system activation. Key representative genes for each group were identified (fig 4D):
proinflammatory S100 protein families such as S100A12, S100A8, and S100A9 for group 1;
proinflammatory CXCL chemokines, NFKBIA, IL1B, CCR1, and CLEC7A for group 2; and genes
primarily related with antigen processing and presentation for group 3. Although group 4 also
exhibited treatment-related changes in cell populations, it was deemed less relevant due to its
comparatively low cell populations.
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Figure 7. Functional Analysis of Monocyte subpopulations in poor and good prognosis groups. (A)
Uniform manifold approximation and projection (UMAP) visualization of monocyte sub-clustering.
(B) Sub-clustering of monocytes based on gene expression profiles. (C) Gene ontology analysis of
Groups 1, 2, and 3. (D) Representation of key expressed genes of groups 1, 2 and 3.

3.5. Impaired NK cell-mediated cytotoxicity ameliorates defense system
to virus, accompanying upregulation of ROS burden in the poor prognosis

group

To determine the most significantly impacted KEGG pathways and GO terms following TDR
treatment in the poor prognosis group, we examined differentially expressed genes (DEGs) with a
fold change greater than |1.5]. DAVID analysis of the DEG set revealed that downregulated genes
on D7 were enriched in KEGG pathways such as NK cell-mediated cytotoxicity and the NOD-like
receptor signaling pathway, as well as in GO-BP terms like response to viruses and innate immune
response (Fig. 5A). The KEGG term 'NK cell-mediated cytotoxicity' encompasses genes critical for
NK cell function, including FCGR3A, KLRD1, and KLRK1 for target cell recognition; CD247,
ZAP70, LCP2, and TYROBP for activation and signaling; and GZMB, PRF1, and TNFSF10 for
cytotoxicity. The 'NOD-like receptor signaling pathway' includes genes essential for inflammasome-
mediated antiviral defense and NK cell activation. The GO-BP terms additionally highlight genes
essential for interferon related anti-viral responses (OAS1, OAS2, OAS3, STAT1, STAT2, IRF7, and
IRF9), inflammasome formation (GBP1, NLRP3, PYCARD, and CASPI1), and inflammatory
regulation (IL-18 and NFKBIA) (Fig. 5B).

Conversely, genes upregulated on D7 were associated with KEGG pathways such as reactive
oxygen species (ROS) and diabetic cardiomyopathy, a reported COVID-19-related complication
(27). GO-BP terms for these genes were primarily associated with cellular respiration (Fig. 5C). The
GO-BP term ‘ROS’ encompasses genes involved in mitochondrial function and ROS generation,
including MT-ATP6, MT-ATP8, MT-ND4L, MT-ND5, MT-CYB, MT-CO1, MT-CO2, MT-CO3,
ATPSF1A, SLC25A5, and SLC25A6 for ATP synthesis and ROS generation, as well as JUN, NCF1,
GRB2, and SOD2 for ROS generation and protection. JUN functions as a key proinflammatory
mediator in response to ROS presence.

14



KEGG

Graf- versus- host disease
Osteoclast differentiation [ ]

Natural killer cell mediated cytoloxicity
Influgnza A

NOD- ke receptor signaling pathway

Yersinia infecti

Hepaltis C

Epstein- Barr vinus infect

Human immunodeficiency virus 1 infect

Coronavirus disease - COVID- 19

9934

i 5 6

KEGG

Leishmaniasis

Chemical carcinogenesis - reactive oxygen species
Oxidative phosphorylation

Diabetic cardiomyopathy

Pricn disease-

Parkinson disease-

Thermogenesis:

Huntington disease

Alzheimer disease-

293

- logio(pvalue)

w oo o~

count
.0
[ JH
® 5
@ =
[ E

- loga(pvalue)

o oo -

count
L
@
® 2
@ i
@

GO-BP

negative regulation of viral genome replication

respanse 10 virus {

- logso(pvalue)
defense response to vius{ () s
0
defense response{ ® 25
20
positive requlation of tumor necrosis factor production | @ 8 ::
%
itive regulation of inflammatory response | @
positive reg y respor count
defense response to bacierum | & : =
)
40
innate immune response {1 : £
immune respanse B}
cell surface receptor signaling pathway
LRURCE:)
elecyon ransport CoUpled pIOION transport .
AT symhesis coupled electron transpon .
- logyg(pvalue)
Vansiational elangation . 2
a8
. s
40
oycobtic process{ @ 3 36
ERAD 1 2
panway ] & .
.
respanse lo hypoxia{ @ on
15
proton ransmenbrane anspon{ @ :m
negative regulation of apopioti process { @)
tive reguiation of sranscription by RNA polymerase 11 ()
[] EEE

15

Poor D7

Poor D7




C KEGG (terms)
ATPEF1A Z-score
NCF1 2

GRB2 !1
MT-ATPS 0
MT-CO2 l-l
MT-CYB -2

MT-CO3

MT-ATPE N Chemical carcinogenesis-

JUN - -
SoD2 reactive oxygen species

MT-ND4L
MT-CO1
MT-ND5
SLC25A6
SLC25A5

Poor D1 Poor D7 Good D1 Good D7
KEGG (terms)

Natural Killer cell
mediated cytotoxicity

Poor D1 Poor D7 Good D1 Good D7

GO-BP (terms)

NFKBIA
CXCL2
MAPK1
NLRP3
GABARAP
IRF9
IL18
CARD16
0AS3
'NAMPT
STAT1
CASP1
NAIP
PYCARD
STAT2
IFI6
0AS2
CARD8
0AS1
GBP1
IRF7

NOD-like
receptor signaling

Poor D1 Poor D7 Good D1 Good D7
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3.6. TDR treatment reduces macrophage-mediated inflammatory
responses and promotes T cell maturation and activation in the good
prognosis group

In the good prognosis group, DAVID analysis showed post-treatment downregulation in
KEGG pathways such as lysosome and phagosome, as well as GO-BP terms including the positive
regulation of TNF-a, IL-6 production, chemotaxis, and innate immune response. The KEGG
pathway term "phagosome” includes CLEC7A, CD14, CD36, MARCO, FCGR2A, and FCGR1A,
which facilitate recognition and phagocytosis by macrophages and neutrophils, and ATP6V0B,
ATP6VOC, ATP6V1F, and CTSL, which contribute to degradation and digestion by phagocytes.
The GO-BP terms "TNF-o and IL-6 production™ contain many of the same genes, such as CLEC7A,
CD14, CD36, FCGR2A, LILRA2, LILRAS, and LILRB2, which are involved in macrophage and
neutrophil phagocytosis, while BTK, TYROBP, and PYCARD promote pro-inflammatory cytokine
release in these cells. For the GO term "chemotaxis,” CCR1, CXCL16, CXCL2, and CXCLS are
key genes for neutrophil recruitment to sites of inflammation. The term "innate immune response"
encompasses genes associated exclusively with macrophage- and neutrophil-mediated activation
and inflammatory responses. Notably, S100A8, S100A9, and S100A12 were decreased after
treatment; these genes play crucial roles in recruiting phagocytes and facilitating ROS production.

Conversely, genes upregulated after treatment were associated with KEGG pathways including
Thl and Th2 cell differentiation, Th17 cell differentiation, and T cell receptor signaling, sharing
many genes critical for T cell functions. CD3D, CD3E, CD3G, LCK, IL2RG, and PTPRC are
involved in T cell activation and signaling. STAT1, HIF1A, and PPP3CA are linked to T cell-
mediated intracellular activation processes. Additionally, CD8B, a cytotoxic T cell marker, was
upregulated post-treatment.
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Figure 9. TDR treatment reduces macrophage-mediated inflammatory responses and promotes T
cell maturation and activation in the good prognosis group. (A) Database for Annotation,
Visualization and Integrated Discovery (DAVID) analysis for downregulated genes in the good
prognosis group. (B) DAVID analysis for upregulated genes in the good prognosis group. (C)
Heatmap of Differential expression of key genes in the good prognosis group.
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3.7. Antiviral response pathways are paradoxically enriched in the poor
prognosis group compared to the good prognosis group

We further analyzed DEGs before treatment between the good and poor prognosis groups. To
compare the baseline differences between these groups, we performed DAVID analysis, as our
cohorts were generated with patients who had relatively similar baseline backgrounds. This analysis
revealed that the KEGG pathway "Th17 cell differentiation" was upregulated in the good prognosis
group, while notably, "ROS" was enriched in both the poor and good prognosis groups. The genes
associated with Th17 cell differentiation in the KEGG pathway include NFKBIA, NFKB1, SMAD3,
TGFBI, and IL6ST, which play critical roles in Th17 cell differentiation and activation. The ROS-
related genes enriched in the good prognosis group include NFE2L2 (NRF2), AHR, PPIF, SOD2,
GSTO1, and CYP1B1, which are involved in ROS sensing, removal, and stress response. In contrast,
ROS-related genes enriched in the poor prognosis group include NCF2, CYBA, NDUFA3, NDUFA7,
NDUFBI1, NDUFB2, NDUFB3, NDUFS6, UQCRQ, UQCRC1, UQCR10, and UQCR11, which are
directly or indirectly involved in ROS generation. In the GO-BP terms, the pathway "negative
regulation of apoptotic process" with genes such as BCL2A1, MCL1, PPIF, FOXO1, HSP90ABI,
HSPB1, SOD2, and PIK3R1 was enriched in the good prognosis group, whereas "defense response
to virus" and "innate immunity" were enriched in the poor prognosis group. The innate immunity
genes included OAS1, OAS2, ISG15, MX1, MX2, IF127, IF16, IF116, and IRF7 as interferon-related
genes; CYBA, TLR4, and MYDS88 as macrophage-related genes; and PYCARD, SAMHD1, CASP1,
HERCS, and PARPY as anti-viral response genes. These results suggest that patients in the poor
prognosis group exhibit pre-existing inflammatory responses and an elevated ROS production status
compared to those in the good prognosis group.
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Figure 10. Antiviral response pathways are paradoxically enriched in the poor prognosis group
compared to the good prognosis group. (A) Database for Annotation, Visualization and Integrated
Discovery (DAVID) analysis for downregulated genes in the poor prognosis group. (B) DAVID
analysis for upregulated genes in the poor prognosis group. (C) Heatmap of Differential expression
of key genes in the poor prognosis group.
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3.8. The poor prognosis group displays sustained activation of CM-
related inflammatory responses and the good prognosis group exhibits
sustained cell-mediated cytotoxicity after TDR treatment

Although major pathways and ontology terms were identified before and after treatment in both
the poor and good prognosis groups, additional DAVID analysis was performed to pinpoint
differences in adaptation after treatment between the two groups. This analysis revealed that KEGG
terms such as Thl, Th2, and Th17 cell differentiation, T cell receptor signaling pathway, and GO
terms related to the positive regulation of T cell-mediated cytotoxicity were more enriched in the
good prognosis group after treatment. The genes associated with these pathways include CD247,
CD3D, CD3E, CD3G, ZAP70, LAT, LCK, FYN, SKAP1, and LIME1, which are involved in antigen
recognition and TCR activation; IL2RB, IL2RG, IFNGR1, and JAK1, which are essential for T cell
proliferation and activation; GATA3, RUNX3, RORA, and TGFB1, which play a role in balanced T
helper cell differentiation; and CD8B, TRBC1, and TRBC2, which are related to CD8 T cell
activation and cytotoxicity. Although it was not among the top 10 representative pathways, natural
killer cell-mediated cytotoxicity was also significantly enriched in the good prognosis group. In
contrast, KEGG pathways such as lysosome and phagosome, as well as GO terms related to the
positive regulation of inflammatory response and innate immune response, were more enriched in
the poor prognosis group after treatment. Genes associated with these pathways include CD14,
S100A8, S100A9, and S100A 12, which are linked to the activation of macrophages and neutrophils;
CYBA and NCF1, which contribute to ROS production; and PYCARD and NAIP, which are
involved in inflammatory cell death. These findings suggest that the D7 sample comparison between
the two groups consistently supports our previous results obtained by comparing D1 and D7 samples
within the same group. Specifically, NK and T cell activity is reduced, while macrophage activity is
upregulated in the poor prognosis group after treatment, compared to the good prognosis group.
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V. DISCUSSION

Severe COVID-19 infection is characterized by a profoundly dysregulated immune
response, including hyper activation and functional impairment of immune cells along with
an excessive inflammatory response. REMAP-CAP and RECOVERY clinical trials have
shown that corticosteroids and tocilizumab can reduce mortality from severe COVID-19
infection by reducing the excessive inflammatory response. However, in some patient
groups, the use of immunomodulatory strategies does not improve prognosis. In this study,
we found that NOD-like receptor signaling pathways and NK cell-mediated cytotoxicity
were significantly downregulated in patients with poor prognosis, while macrophage-
mediated inflammatory pathways remained high even after treatment. On the other hand,
in patients with a good prognosis, the T-cell-mediated adaptive immune response was
strengthened to relieve excessive inflammation while effectively eliminating pathogens.

In a prior single-cell RNA sequencing study, dexamethasone was observed to alter
neutrophil states by suppressing interferon-active pathways while simultaneously
expanding immunosuppressive ARG1+ immature neutrophils (10). Additionally,
dexamethasone has been demonstrated to reverse the dysfunctional HLA-DRIoS100Ahi
monocyte phenotype, suppressing proinflammatory genes such as CCL3 and S100A8/9
while simultaneously upregulating regulatory genes like IL1R2 (28). Moreover, recent
proteomic and transcriptomic studies have demonstrated that tocilizumab reduces
excessive inflammation by rapidly resolving lymphopenia and myeloid dysregulation, as
well as downregulation of IL-6-mediated inflammatory responses (29). Our study showed
that a downregulation of GO-BP terms including inflammatory response, IL-6 production,
TNF-a production and cytokine production was observed in the entire patient population
after treatment, as in the previous study. However, despite a reduction in the excessive
inflammatory response, some patients developed a poor prognosis.

Patients with poor prognosis exhibited a pronounced increase in CMs with a decrease
in NCMs and NK cells after treatment. This group also demonstrated downregulation of
NLR signaling pathway and NK cell-mediated cytotoxicity. NK cells are an essential part
of the innate immune system, tasked with recognizing and eliminating virus-infected cells
while regulating the immune response through the release of cytokines such as IFNy and
TNF (30). Additionally, NK cells influence both innate and adaptive immunity by releasing
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chemokines and cytokines and engaging in cooperative interactions with other immune
cells, such as dendritic cells, monocytes, neutrophils, and macrophages (31). NLRs,
abundantly expressed in monocytes and macrophages, recognize pathogen- or damage-
associated molecular patterns during SARS-CoV-2 infection, facilitating type | IFN and
pro-inflammatory cytokine production to drive innate immunity (32). These findings
suggest a compromised innate immune system and impaired transition to adaptive
immunity. Monocytes are important components of the innate immune response by
processing and presenting antigens to T cells, and producing cytokines that modulate
immune responses (33, 34). In COVID-19 infection, CMs are known to produce pro-
inflammatory cytokines and have been linked to disease severity and the development of
ARDS (35, 36). Conversely, NCMs are essential for pathogen recognition and clearance,
vascular endothelial homeostasis, and resolution of inflammation (37). Alterations in
monocyte and NK cell populations, therefore, lead to immune imbalances that hinder
pathogen elimination and cause persistent inflammation. In subgroup analysis of
monocytes, group 1 such as S100A8, S100A9, and S100A12 were notably overexpressed
in patients with poor prognosis. S100A8/A9, a calcium-binding heterodimer, undergoes
conformational changes to regulate leukocyte migration and inflammatory responses. By
engaging Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products
(RAGE), the NF-xB signaling pathway is activated, driving cytokine storms in severe
COVID-19 through the induction of emergency myelopoiesis and the production of
atypical immature neutrophil subsets (38). Furthermore, in subgroup analysis of monocytes,
group 2 genes like CXCL2, CXCL3, CXCL8, NFKBIA, IL1B, CCR1, and CLEC7A were
upregulated in poor prognosis patients and downregulated in good prognosis patients after
treatment. CXCL2 is crucial for the innate immune defense against COVID-19, facilitating
the recruitment of neutrophils, monocytes, and mononuclear phagocytes to the infection
site (39). CXCLS, secreted by monocytes, macrophages, and alveolar epithelial cells, is an
important factor in the progression of lung disease in COVID-19. It drives neutrophil
recruitment and activation, promotes the formation of neutrophil extracellular traps (NETS)
that induce inflammation and cell damage, and triggers oxidative bursts involving
hydrogen peroxide and superoxide from neutrophils (39). CXCL3 or IL1B can also
significantly induce or enhance the inflammatory response of COVID-19 infection, leading
to additional pulmonary inflammation and tissue damage (40). These findings underscore
the role of aberrant immature neutrophils and monocytes in sustaining inflammation and
inducing cell death via oxidative stress. In addition, dysregulation of antigen processing
and presentation impairs the transition to appropriate adaptive immunity, further
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contributing to excessive tissue damage and fibrosis (7). Notably, macrophage- and
neutrophil-driven inflammatory pathways remained activated even after TDR treatment by
upregulating genes such as S100A8, S100A9, S100A12, CYBA, NCF1, PYCARD, and
NAIP. These genes are implicated in macrophage and neutrophil activation, ROS
production, and inflammatory cell death. The elevated expression of PYCARD and NLRP3,
associated with NET formation and inflammasome activation, suggests persistent
inflammation that disrupts immune regulation and hinders normal restoration process.
Additionally, upregulation of genes like JUN, NCF1, SOD2, and GRB2 highlights
oxidative stress and mitochondrial dysfunction as major contributors to ongoing
inflammation and tissue damage.

Patients with a good prognosis showed a marked increase in NK cells and CD8*NKT-
like cells, along with a simultaneous reduction in CM, after TDR treatment. This immune
shift was characterized by a reduction in TNF, IL-6, chemotaxis and inflammatory
responses, alongside decreased activity in pathways associated with the apoptotic process,
lysosomes and phagosomes, which contribute to the phagocytosis of macrophages and
neutrophils. Additionally, the differentiation of Thl, Th2, and Th17 cells and the T cell
receptor signaling pathway were more enriched in the good prognosis group after treatment.
CD8+NKT-like cells, known for their diverse TCR repertoire and high levels of IFN-y
secretion, play a crucial role in preventing excessive immune responses by suppressing T-
cell responses through the antigen-specific elimination of dendritic cells (41). CD3D and
CD3G, integral components of the TCR-CD3 complex on T lymphocytes, are
phosphorylated by Src family protein tyrosine kinases such as LCK and FYN (42). This
phosphorylation triggers downstream signaling pathways essential for an appropriate
adaptive immune response (43). The upregulation of GATA3, RUNX3, RORA, and
TGFB1 promotes balanced differentiation of Thl, Th2, and Th17 cells, enabling the
effective elimination of pathogens while mitigating excessive inflammation. T-cell-
mediated adaptive immunity plays a vital role in both the sustained control of viral
infections and the successful management of respiratory viral diseases (44). In conclusion,
the good prognosis group exhibited a well-regulated and effective immune response,
highlighted by improved NK and NKT cell activity and robust T cell-mediated immunity.
The downregulation of genes linked to excessive inflammatory responses and tissue
damage further emphasized the role of controlled immune modulation in overcoming
COVID-19. This comprehensive analysis highlights the mechanisms underlying favorable
clinical outcomes in COVID-19 and underscores the potential of targeted therapies like
TDR in fine-tuning the immune response for improved patient recovery.
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We also propose JUN as a key gene to determine the drug response of COVID-19
patients. The JUN gene, a key component of the AP-1 transcription factor complex, is
involved in numerous cellular functions such as proliferation, differentiation, apoptosis,
and the response to infections (45). The Jun N-terminal kinase (JNK) signaling pathway
facilitates viral infection and replication in infections caused by varicella-zoster virus,
herpes simplex virus type 1, dengue virus, and influenza virus (46). The JNK signaling
pathway plays a role in virus-triggered cell death processes, including apoptosis and
autophagy, which are essential for preserving cellular homeostasis and combating viral
infections (46). The JNK signaling pathway modulates apoptosis by inducing c-Jun and
Fos or by suppressing the cell survival pathway of STATs and CREB (47). The JNK
downstream molecule c-Jun is also associated with viral replication and upregulation of
pro-inflammatory cytokines such as TNF-o, IFN-3, and IL-6 in patients with H5N1
influenza virus infection (48). In COVID-19 patients, JUN is involved in activating the NF-
kB signaling pathway, which serves as a crucial regulator of the immune response to the
infection (49). Activation of the INK and JAK-STAT pathways lead to increased cytokines,
inflammation, and eventually, pulmonary fibrosis in COVID-19 infection (47). In poor
prognosis patients of our study, JUN was upregulated, promoting mitochondrial ROS
production and apoptosis, which contributed to sustained inflammation and tissue damage.
On the other hand, in patients with good prognosis, downregulation of JUN appeared to
correlate with reduced tissue damage and immune modulation involving the T cell
differentiation pathway. JNK inhibitors have been shown to prevent pulmonary fibrosis in
preclinical models and in Phase | and Il IPF studies, and to attenuate sepsis-induced lung
injury in experimental animal models (50, 51). These findings suggest that JUN could be a
key biomarker for determining drug response and prognosis in COVID-19 patients.

Our study has several limitations. Firstly, the relatively small sample size may be
viewed as a limitation. However, the sample size was reduced by adjusting for baseline
characteristics that could influence prognosis, such as age, male sex, BMI, and the initial
ordinal scale. By matching these baseline characteristics, we enhanced the study's
reliability by minimizing variability. Secondly, the samples were collected during a period
when the Omicron variant of COVID-19 was predominant, which might not accurately
represent the broader range of COVID-19 strains. Nevertheless, this approach has the
advantage of eliminating differences in immune responses that could arise from variations
between different COVID-19 variants. Furthermore, we standardized the timing of drug
administration and blood sample collection to control for potential confounding factors
related to differences in timing.
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V. CONCLUSION

In conclusion, adaptive immune responses driven by T cells, along with suppression of
macrophage-driven hyperinflammatory pathways and enhancement of NK cell-mediated
cytotoxicity, highlight the importance of maintaining a well-regulated immune balance in managing
severe COVID-19 infection.
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