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ABSTRACT 

 

Monocytes and NK Cells Modulate Therapeutic Outcomes in Severe 

COVID-19: A Single-Cell RNA Sequencing Study 

 

 

Severe COVID-19 infection is characterized by a profoundly dysregulated immune response, 

including hyperactivation and functional impairment of immune cells along with an excessive 

inflammatory response. Corticosteroid tocilizumab is used in accordance with guidelines to improve 

the prognosis of patients with severe COVID-19. However, the differences in drug response among 

patients remain a challenge to be addressed. This study aims to identify the molecular and cellular 

determinants that cause differences in treatment outcomes in the combination therapy of tocilizumab, 

dexamethasone, and remdesivir in patients with severe COVID-19 using single-cell RNA 

sequencing. From June 2021 to January 2022, blood samples were collected from 17 matched 

patients with severe COVID-19 at a tertiary hospital according to age, gender, and WHO Clinical 

Progression Scale. Patients were categorized into two groups: ten recovered without deterioration, 

and seven required intubations due to respiratory failure. Samples were taken on day 1 and day 7. 

Dropkick was employed to process and analyze single-cell ribonucleic acid sequencing data derived 

from Peripheral Blood Mononuclear Cells. Heatmaps of differentially expressed genes were 

generated using the Complex Heatmap package, while Gene Ontology enrichment analysis was 

performed using the Enrichr tool from Ma’ayan lab, integrated into Seurat (versions 3.9 and 4). This 

study compared differences in immune cells between patient groups by examining patients with 

good prognosis (day 1 [n=13,580] and day 7 [n=14,017]) and patients with poor prognosis (day 1 

[n=13,747] and day 7 [n=13,630]) after TDR treatment. In the poor prognosis group, the nucleotide-

binding oligomerization domain-like receptor signaling pathway and natural killer (NK) cell-

mediated cytotoxicity were downregulated after TDR treatment. However, inflammatory 

macrophage related lysosome, phagosome, and apoptosis pathways persistently remained 

upregulated. On the other hand, the good prognosis group showed increased NK cell-mediated 

cytotoxicity and decreased inflammatory macrophage related pathways after TDR treatment. 

Additionally, the good prognosis group exhibited elevated expression of genes linked to T cell 

receptor activation, signaling pathways, and differentiation processes related to immune regulation. 

In conclusion, the suppression of the hyperinflammatory pathway by macrophages and the 

enhancement of natural killer cell-mediated cytotoxicity, along with the adaptive immune response 

induced by T cells, emphasize the importance of maintaining a well-regulated immune balance in 

the management of severe COVID-19 cases. 

                                                                                

Key words : SARS-CoV-2 infection, COVID-19, Monocytes, Killer Cells Natural, Single-Cell Gene 
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I. INTRODUCTION 

 

COVID-19 has emerged a global infectious disease, causing approximately 776,205,140 

cumulative cases and 7,064,380 deaths worldwide by September 2024 (1). The clinical spectrum of 

COVID-19 varies significantly, ranging from asymptomatic to severe illness, with some patients 

experiencing respiratory failure and fatal outcomes (2). The pathophysiology of COVID-19 involves 

several mechanisms, including direct viral cytotoxicity, damage to endothelial cells and 

microvasculature, immune system dysregulation with a heightened proinflammatory response, 

hypercoagulability resulting in thrombosis, and disruption of the angiotensin-converting enzyme 2 

(ACE2) pathway (2, 3). As an RNA virus, COVID-19 is highly prone to mutations during replication, 

facilitating its evolution into various forms (4). In recent times, its severity in terms of causing 

critical illness has decreased, while its transmissibility has remained high (4). However, the mortality 

rate remains elevated in high-risk populations, including individuals with underlying diseases and 

the elderly, underscoring the need for proactive therapeutic interventions (5). 

Severe COVID-19 infection is characterized by a profoundly dysregulated immune response, 

including hyper activation and functional impairment of immune cells along with an excessive 

inflammatory response (3, 6, 7). High concentrations of pro-inflammatory cytokines, including 

tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10, and C-C motif chemokine ligand 

(CCL)2, are characteristic of severe COVID-19 and correlate with poorer clinical outcomes (3, 7). 

Therefore, in addition to strategies that directly target the virus, additional treatments have been 

developed that focus on the human immune system using immunomodulators such as corticosteroids 

or the IL-6 receptor-targeting antibody Tocilizumab. Dexamethasone, employed as an 

immunomodulatory strategy in the RECOVERY trial, was shown to improve survival in COVID-

19 patients dependent on supplemental oxygen (8). Dexamethasone reduces the production of 

proinflammatory cytokines, such as TNF, IFN-γ, IL-1, IL-2, IL-6, IL-8, and prostaglandins, linked 

to severe COVID-19, by regulating gene transcription processes (9). Dexamethasone promotes the 

production of anti-inflammatory cytokines, such as lipocortin-1 and IL-10, by activating the 

synthesis of glucocorticoid response elements (9). Dexamethasone also impacted circulating 

neutrophils by reducing interferon-stimulated genes, expanding immunosuppressive immature 

neutrophils, and modifying cellular interactions (10). However, some reports suggest that 

dexamethasone is relatively less effective on innate immune cells compared to adaptive immune 

cells (11). Tocilizumab, a humanized antibody targeting the IL-6 receptor, has shown improved 

survival outcomes in critically ill COVID-19 patients (12). While each drug has its own advantages 

and disadvantages, combination therapies have generally demonstrated superior efficacy compared 

to single agent treatments in severe COVID-19 patients. In the REMAP-CAP trial, the combination 

of corticosteroids and Tocilizumab reduced in-hospital mortality in COVID-19 patients with 

respiratory failure (12, 13). However, there are patients who progress to respiratory failure and die 
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despite immunomodulation with combination therapy, and this variability in drug response remains 

a significant challenge in the treatment of COVID-19. 

Single-cell sequencing analysis is an effective method to further characterize the heterogeneous 

progression of COVID-19-mediated diseases. A prior study using single-cell sequencing revealed a 

dominance of HLA-DRlow monocytes and immature CD10LowCD101-CXCR4+/- neutrophils with 

immunosuppressive characteristics in patients with severe COVID-19 (14, 15). Another single-cell 

sequencing study demonstrated that immune dysfunction, encompassing reduced 

immunosuppressive activity of blood myeloid cells and the substitution of naïve T cells with 

pulmonary memory CD8+ T cells, is linked to severe symptoms and increased mortality. (3). Most 

single-cell sequencing studies conducted to date have focused primarily on identifying cell subsets, 

immunological factors, and pathways associated with COVID-19 disease severity. However, there 

have been relatively few single-cell sequencing analyses examining the effects of current regimens 

in clinical practice for severe COVID-19 patients, with limited attention paid to variations in drug 

response, particularly in the context of immunomodulation.  

In this study, we aim to explore the underlying pathways determining the drug response of 

severe COVID-19 patients to Tocilizumab/dexamethasone/Remdesivir (TDR). Additionally, it 

seeks to propose a complementary therapeutic strategy for treating COVID-19. 

 

II. MATERIALS AND METHODS 

 

2.1. Patients selection 

Blood samples were collected from patients with severe COVID-19 admitted to a 2,400-bed 

tertiary care hospital between June 2021 and January 2022 (fig S1). Adult patients with a WHO 

Clinical Progression Scale of 6 at the time of enrollment were included in the study. All participants 

received dexamethasone, tocilizumab, and remdesivir, accordance with the COVID-19 guideline for 

the therapeutic management of hospitalized patients. Because the effect of the immunomodulatory 

agent may not be fully reflected, patients who died within one week and patients who underwent 

intubation prior to tocilizumab administration were excluded. A total of 17 patients were included 

after matching for age, sex, and initial ordinal scale. Of the 17 patients, 10 patients recovered without 

deterioration (good prognosis), and 7 patients were intubated for respiratory failure (poor prognosis) 

(table S1). 

The Institutional Review Board (IRB) of Yonsei University College of Medicine (IRB no. 4-

2020-1377) approved this study. Written informed consent was collected from all participants. The 
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study adhered to the principles of the Declaration of Helsinki and followed Good Clinical Practice 

standards. 

 

2.2. Sample selection 

Blood samples were obtained at two distinct time points: day 1 and day 7 in hospitalized 

COVID-19 patients who recovered without deterioration (n=10) or in hospitalized COVID-19 

patients with respiratory failure (n=7). Peripheral Blood Mononuclear Cells (PBMCs) were 

extracted from whole blood using a standard density gradient centrifugation method with Ficoll-

Paque (GE Healthcare, Uppsala, Sweden) as described in established protocols (7, 16). The 10x 

Genomics Chromium platform was used to capture and barcode the cells to generate single-cell Gel 

Beads-in-Emulsion (GEMs). Briefly, along with the reverse transcription master mix, cell 

suspensions were loaded onto 10x Genomics Single Cell Chips. During this step, cells were 

partitioned into the GEMs along with gel beads coated with oligonucleotides. These 

oligonucleotides enable mRNA capture inside the droplets. Following reverse transcription, cDNAs 

with both barcodes were amplified, and a library was constructed for each sample. The resulting 

libraries were sequenced on an Illumina NovaSeq 6000 System in a 2 × 150 bp paired-end mode. 

 

2.3. Single cell RNA sequencing analysis 

Sample demultiplexing, barcode processing and UMI counting were performed by using the 

official 10x Genomics pipeline Cell Ranger (v7.1.0) (https://support.10xgenomics.com) (17). 

Briefly, raw base call files generated by Illumina sequencers were demultiplexed into reads in 

FASTQ format using the bcl2fastq developed by Illumina. The raw reads were trimmed from the 3’ 

end to get the recommended number of cycles for read pairs. The reads of each library were then 

processed separately using the “cellranger count” pipeline to generate a gene-barcode matrix for 

each library. During this step, the reads were aligned to a human reference genome (version: hg38). 

Cell barcodes and UMIs associated with the aligned reads were subjected to correction and filtering. 

We utilized Dropkick, an automated software tool, for the quality control and filtering of 

scRNA-seq data. Utilizing predictive global heuristics, we employed Dropkick to set initial 

thresholds and learn a gene-based representation of real cells and ambient barcodes. Our primary 

objectives included excluding ambient barcodes, often indicative of background noise or non-

cellular RNA, while salvaging real cells near the quality threshold. We operated Dropkick on a per-

dataset basis, tailoring analysis and filtering parameters to specific dataset characteristics, thereby 

enhancing robustness and applicability across diverse experimental conditions and sequencing 

platforms. Overall, Dropkick streamlined preprocessing of scRNA-seq data in our study, automating 
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quality control measures and ensuring the retention of valuable biological information in 

downstream analyses (18). 

After QC, we employed the Seurat R package to address key analytical challenges in scRNA-

seq data analysis. Utilizing Seurat’s feature selection capabilities, we identified informative genes 

driving cellular heterogeneity and biological processes. Harmony tool allowed us to harmonize 

scRNA-seq datasets from multiple experimental conditions, facilitating comparative analysis and 

identification of common and condition-specific cell populations. Leveraging Seurat’s clustering 

algorithms, we delineated distinct cell clusters based on transcriptional profiles, enabling the 

characterization of cellular diversity and identification of rare cell types. Furthermore, Seurat’s 

dimensionality reduction techniques, such as principal component analysis (PCA) and uniform 

manifold approximation and projection (UMAP), enabled visualization of high-dimensional 

scRNA-seq data in lower-dimensional space, aiding in the interpretation of complex cellular 

landscapes (19, 20). 

 

2.4. Uniform manifold approximation and projection 

We employed the scType computational platform, utilizing the scTypeDB (Human) database, 

to annotate cell clusters identified in our scRNA-seq data. Leveraging scType’s automated and data-

driven approach, we assigned cell types to each cluster based on gene expression profiles and the 

comprehensive cell marker database. This annotation process enabled us to gain insights into the 

cellular composition of our scRNA-seq dataset, facilitating the interpretation of the biological 

significance of the identified cell populations (21). Differential cell frequencies (expressed as 

percentages of total PBMCs) were compared across patient groups for each annotated cell type: 

good prognosis Day 1 (n=13,580), good prognosis Day 7 (n=14,017), poor prognosis Day 1 

(n=13,747), and poor prognosis Day 7 (n=13,630). 

 

2.5. Heatmap visualization 

Heatmaps were created using the Complex Heatmap package to display differentially expressed 

genes (10). Cells were categorized into CD4+ T cells, CD8+ T cells, monocytes, and B cells, with 

the FindMarkers function identifying genes differentially expressed for two comparisons: (1) day 1 

versus day 7 and (2) respiratory failure versus recovery. Genes with an absolute logFC value 

exceeding 0.5 were selected for inclusion in both the heatmap visualization and EnrichR pathway 

analysis. 
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2.6. Gene Ontology enrichement 

Neutrophils were extracted from a Seurat object (versions 3.9 and 4) that had been realigned 

with scVelo and analyzed following the standard and recommended settings outlined in the SCENIC 

vignette (https://github.com/aertslab/SCENIC) using the hg19 RcisTarget reference (10). Regulon 

activity scores, generated as part of the SCENIC workflow ('3.4_regulonAUC.Rds'), were 

incorporated into the scVelo object via the CreateAssayObject function, allowing trajectory data and 

transcription factor (TF) activity to be simultaneously visualized on UMAP embeddings. The target 

genes of transcription factors were analyzed using iRegulon, a computational tool available as a 

Cytoscape plugin that reverse-engineers transcriptional regulatory networks from co-expressed gene 

sets by integrating cis-regulatory sequence analysis, motif discovery, and regulatory tracks such as 

ChIP-seq data to identify master regulators and their downstream gene networks (22). Gene 

Ontology enrichment analysis was performed using the DEenrichRPlot function in Seurat (versions 

3.9 and 4), which incorporates the Ma’ayan lab’s Enrichr tool (23). 

 

2.7. Statistical analysis 

PASW Statistics 23 (SPSS) and GraphPad Prism 7.0 (GraphPad Software) were utilized for 

statistical analysis. Data are expressed as mean ± standard error. Unpaired Student’s t-tests were 

used to evaluate differences between means, and the log-rank test was applied for additional 

statistical comparisons. Statistical significance was defined as a P-value below 0.05. 

 

III. RESULTS 

 

3.1. Classical monocytes and NK cells exhibit opposite patterns of 

compositional changes following TDR treatment in groups with poor and 

good prognoses  

To discern the distinctions among COVID-19 patients exhibiting either a poor or good 

prognosis post-TDR treatment, PBMCs were obtained from three individuals in each category at 

day 1 (D1) before treatment initiation and at day 7 (D7) post-treatment (fig 1A). The patients had a 

median age of 71 years (66–75 years), with 52.9% being male (Supplementary Table 1). The median 

body mass index was 23.5 (22.1-28.0) kg/m2. All patients were receiving high-flow nasal cannula 

support, and no notable differences were observed between the two groups in terms of age, sex, body 
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mass index, or WHO Clinical Progression Scale at the time of enrollment. Subsequently, scRNA-

seq was conducted on the collected samples. Given the variability in cell viability across samples, 

the identified cell numbers in each group were adjusted accordingly, following the dropkick protocol 

as reported previously (18). The clustering analysis revealed 11 distinct clusters comprising 

CD8+NKT-like cell (NKT), classical monocyte (CM), myeloid dendritic cell, naïve B cell, naïve 

CD4+ T cell, natural killer (NK) cell, non-classical monocyte (NCM), plasma B cell, platelet, 

progenitor cell, and unknown cell (not classified) (24) (fig 1B and Supplementary fig S1 and S2). 

Among patients with a poor prognosis, significant changes in cell populations were observed when 

comparing D1 and D7 samples. Specifically, there was an increase in CM, naïve B cells, and naïve 

CD4+ T cells, along with a decrease in NK cells and NCM during this period (Fig. 1C, left). 

Conversely, the good prognosis group showed an increase in NKT cells, naïve B cells, naïve CD4+ 

T cells, and NK cells, while showing a decrease in CM (Fig. 1C, left). The inverse correlation 

between good and poor prognosis patients was particularly notable in CM and NK cells. Additionally, 

an increase in NKT cells and a decrease in NCM were observed in the good and poor prognosis 

groups, with no significant changes observed in the counterpart group. Focusing on CM and NK 

cells, a comparison of D1 samples between the poor and good prognosis groups revealed that their 

baseline compositions for those were almost identical. Upon comparing the D7 samples from both 

groups, the results further reinforced the earlier findings, with the poor prognosis group showing a 

higher quantity of CM and a lower quantity of NK cells (Fig. 1C, right). 

 

 

Figure 1. Differential changes in monocyte and natural killer cell composition in COVID-19 

patients with poor and good prognosis. (A) Study design: Adult patients with a WHO Clinical 

Progression Scale of 6 who received tocilizumab, dexamethasone, and remdesivir (TDR) according 

to COVID-19 guidelines were enrolled. Blood samples were collected at two time points: day 1 
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(before treatment) and day 7 (after treatment) in hospitalized COVID-19 patients who recovered 

without deterioration (n=10) or patients with respiratory failure (n=7). Peripheral Blood 

Mononuclear Cells (PBMCs) were isolated from whole blood and analyzed by Single-cell RNA 

sequencing analysis. (B) Uniform manifold approximation and projection (UMAP) visualization of 

PBMC of COVID-19 patients following the dropkick protocol (good prognosis day 1 [n=13580], 

good prognosis day 7 [n=14017], poor prognosis day 1 [n=13747], poor prognosis day 7 [n=13630]) 

(C) Differential changes in major cell composition before and after TDR treatment. 
 

3.2. The featured genes for clustering cell types primarily belong to innate 

immunity related pathways  

A featured gene set comprising 2000 genes was identified based on standardized variance and 

average expression values (see material and method). Subsequent KEGG pathway and gene 

ontology (GO) analyses revealed that these genes are associated with various inflammatory 

responses. According to the KEGG pathway analysis, viral protein interaction with cytokines and 

cytokine receptors, antigen processing and presentation, and hematopoietic cell lineage pathways 

were enriched by the gene set (fig 2A). Moreover, inflammation related GO terms such as cytolysis 

(Biological Process, BP), chemotaxis (BP), hemostasis (BP), inflammatory responses (BP), innate 

immunity (BP), and cytokine (Molecular Function, MF) encompass a significant number of the 

featured genes (fig 2A). The KEGG term 'viral protein interaction with cytokine and cytokine 

receptor' notably contained a wide array of overlapping genes related to inflammatory activators and 

suppressors, encompassing chemokines, cytokines, TNF family members, and TGF-β families (fig 

2B). Moreover, the identified featured genes included previously recognized crucial pro-

inflammatory mediators related to monocyte activation in severe COVID-19, such as IL-6, IL-1β, 

IFN, TNF, CCL2, CCL3, CCL7, CCL8, and CXCL10, along with other relevant genes (25). GO 

terms such as ‘chemotaxis’ and ‘innate immunity’ primarily consist of genes associated with anti-

viral related innate immune functions. These genes encompass neutrophil and monocyte 

chemotaxis-related genes such as CCL2, CCL3, CCL8, CCL20, CXCL2, CXCL3, CXCL8, ISG15, 

S100A8, and S100A9 along with complement activation-related genes such as C1QB, C1QA, and 

C1QC (fig S3) (26). Within the KEGG term 'hematopoietic cell lineage', essential genes involved in 

the maturation of NK cells, B cells, and myeloid dendritic cell/macrophage were identified (fig 2B). 
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Figure 2. The distinguished marker genes for the clustering of cell types belong to innate immunity 

related pathways. (A) KEGG pathway and gene ontology (GO) term analysis of 2000-gene set 

associated with inflammatory responses (B) Genes associated with KEGG term ‘viral protein 

interaction with cytokines and cytokine receptors’ and ‘hematopoietic cell lineage’. 
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Figure 3. GO terms related to chemotaxis and innate immunity, highlighting genes involved in 

neutrophil chemotaxis and complement activation.  

 

3.3. Classical monocyte- and NK cell-associated genes exhibit opposite 

patterns of expressional changes after TDR treatment in groups with good 

and poor prognoses  

As highlighted above, changes in cell numbers of classical monocytes (CM) and natural killer 

(NK) cells demonstrated opposing trends between COVID-19 patients with good and poor 

prognoses after TDR treatment. Therefore, genes used to characterize CM and NK in comparison to 

others were reorganized based on their log2(FC) expression in relation to other cell types. For 

validation, the top 100 genes were subjected to KEGG and GO analyses. Marker genes for CM 

indicated involvement of KEGG terms such as antigen processing and presentation, phagosome, 

reactive oxygen species, and GO term innate immunity (fig S4A). Similarly, marker genes for NK 

cells were linked to a distinct KEGG term such as NK cell-mediated cytotoxicity and reactive 

oxygen species, and GO terms including cytolysis and innate immunity (fig S4B). 

To further characterize the CM and NK cells that showed distinct changes in their population 

between patients with poor and good prognoses, the top 20 gene set from the above top 100 was 

further analyzed through UMAP plot visualization. Notably, S100A9, S100A8, LYZ, S100A12, 

CD14, FOS, and SPI1 showed relatively selective expression in monocytes. Post-TDR treatment, 

these genes were either maintained or further upregulated in classical monocytes (CM) of the poor 

prognosis group. In contrast, in the good prognosis group, expression of these genes decreased to 

varying extents in CM following treatment. (fig 3A). Other genes, including S100A6, CEBPD, 

CST3, MAFB, and TSPO, exhibited consistent or increased expression in CM of the poor prognosis 

group, with partial or no change in the good prognosis group (fig S5A). These genes might represent 
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an inflammation-related subtype of classical monocytes increased after TDR treatment in the poor 

prognosis group. Other genes for CM were excluded due to their nonselective expression across cell 

types and lack of meaningful expression changes following TDR treatment. 

 

 
Figure 4. KEGG and GO analysis of Distinct patterns of gene expression in each cell type. (A) 

Classical monocytes, (B) Natural killer cells 
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As altered markers in the NK cell population according to TDR treatment, SPON2, PTGDS, 

IGFBP7, LAIR2, KLRB1, KLRF1, CD247, and CLIC3 showed relatively specific expression in NK 

cells and exhibited reduced expression after treatment in the poor prognosis group, whereas these 

genes maintained or increased expression in NK cells of the good prognosis group (fig 3B). Genes 

such as CTSW, FGFBP2, KLRD1, CST7, GNLY, NKG7, PRF1, GZMA, and GZMM mostly showed 

a shared downregulation in both NK and NKT cells of the poor prognosis group post-TDR treatment, 

while displaying a maintained or upregulated expression in these cells among the good prognosis 

group (fig S5A). Other genes were excluded due to their non-specific distribution across cell types 

and unexpected expression changes. 

 

 

 

Figure 5. UMAP visualization of differentially expressed genes in Classical monocytes. 
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Figure 6. UMAP visualization of differentially expressed genes in Natural killer cells. 

 

3.4. The poor and good prognosis groups display different subtypes of 

classical monocytes according to TDR treatment  

Classical monocytes, exhibiting noticeable increase in the proportion of the cell numbers post-

treatment in the poor prognosis group, were subjected to further analysis. Cells annotated as 
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monocytes were sub-clustered according to gene expression profiles, resulting in the identification 

of five distinct clusters (groups 0 to 4) (fig 4A). Group 0, which emerged as a distinct cluster due to 

a lack of enriched genes, was excluded from further examination. In the poor prognosis group, a 

notable decrease in cell populations was observed in group 3 after treatment, whereas an increase 

was detected in the group 1 and 2 populations. Conversely, in the good prognosis group, group 2 

cell populations diminished, while group 1 and 3 remained barely changed after treatment (fig. 4B).  

Subsequent Gene Ontology (GO) analysis of genes distinguishing groups 1, 2, and 3 revealed 

distinct functional involvements (fig. 4C). Genes in group 1 primarily related to defense responses 

to fungi and positive regulation of inflammatory responses. Group 2 genes were associated with the 

NF-kappa B signaling pathway and apoptotic processes. Group 3 genes primarily involved antigen 

processing and presentation of exogenous peptide antigen presentation via MHC class II. Groups 1 

and 2 predominantly related to macrophage mediated inflammatory responses and tissue damage, 

while group 3 was linked to regular functions of macrophages and subsequent adaptive immune 

system activation. Key representative genes for each group were identified (fig 4D): 

proinflammatory S100 protein families such as S100A12, S100A8, and S100A9 for group 1; 

proinflammatory CXCL chemokines, NFKBIA, IL1B, CCR1, and CLEC7A for group 2; and genes 

primarily related with antigen processing and presentation for group 3. Although group 4 also 

exhibited treatment-related changes in cell populations, it was deemed less relevant due to its 

comparatively low cell populations. 
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Figure 7. Functional Analysis of Monocyte subpopulations in poor and good prognosis groups. (A) 

Uniform manifold approximation and projection (UMAP) visualization of monocyte sub-clustering.  

(B) Sub-clustering of monocytes based on gene expression profiles. (C) Gene ontology analysis of 

Groups 1, 2, and 3. (D) Representation of key expressed genes of groups 1, 2 and 3. 

 

3.5. Impaired NK cell-mediated cytotoxicity ameliorates defense system 

to virus, accompanying upregulation of ROS burden in the poor prognosis 

group  

To determine the most significantly impacted KEGG pathways and GO terms following TDR 

treatment in the poor prognosis group, we examined differentially expressed genes (DEGs) with a 

fold change greater than ⌊1.5⌋. DAVID analysis of the DEG set revealed that downregulated genes 

on D7 were enriched in KEGG pathways such as NK cell-mediated cytotoxicity and the NOD-like 

receptor signaling pathway, as well as in GO-BP terms like response to viruses and innate immune 

response (Fig. 5A). The KEGG term 'NK cell-mediated cytotoxicity' encompasses genes critical for 

NK cell function, including FCGR3A, KLRD1, and KLRK1 for target cell recognition; CD247, 

ZAP70, LCP2, and TYROBP for activation and signaling; and GZMB, PRF1, and TNFSF10 for 

cytotoxicity. The 'NOD-like receptor signaling pathway' includes genes essential for inflammasome-

mediated antiviral defense and NK cell activation. The GO-BP terms additionally highlight genes 

essential for interferon related anti-viral responses (OAS1, OAS2, OAS3, STAT1, STAT2, IRF7, and 

IRF9), inflammasome formation (GBP1, NLRP3, PYCARD, and CASP1), and inflammatory 

regulation (IL-18 and NFKBIA) (Fig. 5B).  

Conversely, genes upregulated on D7 were associated with KEGG pathways such as reactive 

oxygen species (ROS) and diabetic cardiomyopathy, a reported COVID-19-related complication 

(27). GO-BP terms for these genes were primarily associated with cellular respiration (Fig. 5C). The 

GO-BP term ‘ROS’ encompasses genes involved in mitochondrial function and ROS generation, 

including MT-ATP6, MT-ATP8, MT-ND4L, MT-ND5, MT-CYB, MT-CO1, MT-CO2, MT-CO3, 

ATP5F1A, SLC25A5, and SLC25A6 for ATP synthesis and ROS generation, as well as JUN, NCF1, 

GRB2, and SOD2 for ROS generation and protection. JUN functions as a key proinflammatory 

mediator in response to ROS presence. 
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Figure 8. Impaired NK cell activity, increased ROS burden, and macrophage mediated antiviral 

defense system are associated with the poor prognosis. (A) Database for Annotation, Visualization 

and Integrated Discovery (DAVID) analysis for downregulated genes in the poor prognosis group. 

(B) DAVID analysis for upregulated genes in the poor prognosis group. (C) Heatmap of Differential 

expression of key genes in the poor prognosis group. 
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3.6. TDR treatment reduces macrophage-mediated inflammatory 

responses and promotes T cell maturation and activation in the good 

prognosis group  

In the good prognosis group, DAVID analysis showed post-treatment downregulation in 

KEGG pathways such as lysosome and phagosome, as well as GO-BP terms including the positive 

regulation of TNF-α, IL-6 production, chemotaxis, and innate immune response. The KEGG 

pathway term "phagosome" includes CLEC7A, CD14, CD36, MARCO, FCGR2A, and FCGR1A, 

which facilitate recognition and phagocytosis by macrophages and neutrophils, and ATP6V0B, 

ATP6V0C, ATP6V1F, and CTSL, which contribute to degradation and digestion by phagocytes. 

The GO-BP terms "TNF-α and IL-6 production" contain many of the same genes, such as CLEC7A, 

CD14, CD36, FCGR2A, LILRA2, LILRA5, and LILRB2, which are involved in macrophage and 

neutrophil phagocytosis, while BTK, TYROBP, and PYCARD promote pro-inflammatory cytokine 

release in these cells. For the GO term "chemotaxis," CCR1, CXCL16, CXCL2, and CXCL8 are 

key genes for neutrophil recruitment to sites of inflammation. The term "innate immune response" 

encompasses genes associated exclusively with macrophage- and neutrophil-mediated activation 

and inflammatory responses. Notably, S100A8, S100A9, and S100A12 were decreased after 

treatment; these genes play crucial roles in recruiting phagocytes and facilitating ROS production. 

Conversely, genes upregulated after treatment were associated with KEGG pathways including 

Th1 and Th2 cell differentiation, Th17 cell differentiation, and T cell receptor signaling, sharing 

many genes critical for T cell functions. CD3D, CD3E, CD3G, LCK, IL2RG, and PTPRC are 

involved in T cell activation and signaling. STAT1, HIF1A, and PPP3CA are linked to T cell-

mediated intracellular activation processes. Additionally, CD8B, a cytotoxic T cell marker, was 

upregulated post-treatment. 
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Figure 9. TDR treatment reduces macrophage-mediated inflammatory responses and promotes T 

cell maturation and activation in the good prognosis group. (A) Database for Annotation, 

Visualization and Integrated Discovery (DAVID) analysis for downregulated genes in the good 

prognosis group. (B) DAVID analysis for upregulated genes in the good prognosis group. (C) 

Heatmap of Differential expression of key genes in the good prognosis group. 
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3.7. Antiviral response pathways are paradoxically enriched in the poor 

prognosis group compared to the good prognosis group  

We further analyzed DEGs before treatment between the good and poor prognosis groups. To 

compare the baseline differences between these groups, we performed DAVID analysis, as our 

cohorts were generated with patients who had relatively similar baseline backgrounds. This analysis 

revealed that the KEGG pathway "Th17 cell differentiation" was upregulated in the good prognosis 

group, while notably, "ROS" was enriched in both the poor and good prognosis groups. The genes 

associated with Th17 cell differentiation in the KEGG pathway include NFKBIA, NFKB1, SMAD3, 

TGFB1, and IL6ST, which play critical roles in Th17 cell differentiation and activation. The ROS-

related genes enriched in the good prognosis group include NFE2L2 (NRF2), AHR, PPIF, SOD2, 

GSTO1, and CYP1B1, which are involved in ROS sensing, removal, and stress response. In contrast, 

ROS-related genes enriched in the poor prognosis group include NCF2, CYBA, NDUFA3, NDUFA7, 

NDUFB1, NDUFB2, NDUFB3, NDUFS6, UQCRQ, UQCRC1, UQCR10, and UQCR11, which are 

directly or indirectly involved in ROS generation. In the GO-BP terms, the pathway "negative 

regulation of apoptotic process" with genes such as BCL2A1, MCL1, PPIF, FOXO1, HSP90AB1, 

HSPB1, SOD2, and PIK3R1 was enriched in the good prognosis group, whereas "defense response 

to virus" and "innate immunity" were enriched in the poor prognosis group. The innate immunity 

genes included OAS1, OAS2, ISG15, MX1, MX2, IFI27, IFI6, IFI16, and IRF7 as interferon-related 

genes; CYBA, TLR4, and MYD88 as macrophage-related genes; and PYCARD, SAMHD1, CASP1, 

HERC5, and PARP9 as anti-viral response genes. These results suggest that patients in the poor 

prognosis group exhibit pre-existing inflammatory responses and an elevated ROS production status 

compared to those in the good prognosis group. 
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Figure 10. Antiviral response pathways are paradoxically enriched in the poor prognosis group 

compared to the good prognosis group. (A) Database for Annotation, Visualization and Integrated 

Discovery (DAVID) analysis for downregulated genes in the poor prognosis group. (B) DAVID 

analysis for upregulated genes in the poor prognosis group. (C) Heatmap of Differential expression 

of key genes in the poor prognosis group. 

 



２１ 

 

 

3.8. The poor prognosis group displays sustained activation of CM-

related inflammatory responses and the good prognosis group exhibits 

sustained cell-mediated cytotoxicity after TDR treatment 

Although major pathways and ontology terms were identified before and after treatment in both 

the poor and good prognosis groups, additional DAVID analysis was performed to pinpoint 

differences in adaptation after treatment between the two groups. This analysis revealed that KEGG 

terms such as Th1, Th2, and Th17 cell differentiation, T cell receptor signaling pathway, and GO 

terms related to the positive regulation of T cell-mediated cytotoxicity were more enriched in the 

good prognosis group after treatment. The genes associated with these pathways include CD247, 

CD3D, CD3E, CD3G, ZAP70, LAT, LCK, FYN, SKAP1, and LIME1, which are involved in antigen 

recognition and TCR activation; IL2RB, IL2RG, IFNGR1, and JAK1, which are essential for T cell 

proliferation and activation; GATA3, RUNX3, RORA, and TGFB1, which play a role in balanced T 

helper cell differentiation; and CD8B, TRBC1, and TRBC2, which are related to CD8 T cell 

activation and cytotoxicity. Although it was not among the top 10 representative pathways, natural 

killer cell-mediated cytotoxicity was also significantly enriched in the good prognosis group. In 

contrast, KEGG pathways such as lysosome and phagosome, as well as GO terms related to the 

positive regulation of inflammatory response and innate immune response, were more enriched in 

the poor prognosis group after treatment. Genes associated with these pathways include CD14, 

S100A8, S100A9, and S100A12, which are linked to the activation of macrophages and neutrophils; 

CYBA and NCF1, which contribute to ROS production; and PYCARD and NAIP, which are 

involved in inflammatory cell death. These findings suggest that the D7 sample comparison between 

the two groups consistently supports our previous results obtained by comparing D1 and D7 samples 

within the same group. Specifically, NK and T cell activity is reduced, while macrophage activity is 

upregulated in the poor prognosis group after treatment, compared to the good prognosis group. 
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Figure 11. The poor prognosis group displays sustained activation of CM-related inflammatory 

responses and the good prognosis group exhibits sustained cell-mediated cytotoxicity after TDR 

treatment. (A) Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis 

for upregulated genes in the good prognosis group. (B) DAVID analysis for upregulated genes in 

the poor prognosis group. (C) Heatmap of Differential expression of key genes in the good prognosis 

group and the poor prognosis group. 
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IV. DISCUSSION 

 

Severe COVID-19 infection is characterized by a profoundly dysregulated immune 

response, including hyper activation and functional impairment of immune cells along with 

an excessive inflammatory response. REMAP-CAP and RECOVERY clinical trials have 

shown that corticosteroids and tocilizumab can reduce mortality from severe COVID-19 

infection by reducing the excessive inflammatory response. However, in some patient 

groups, the use of immunomodulatory strategies does not improve prognosis. In this study, 

we found that NOD-like receptor signaling pathways and NK cell-mediated cytotoxicity 

were significantly downregulated in patients with poor prognosis, while macrophage-

mediated inflammatory pathways remained high even after treatment. On the other hand, 

in patients with a good prognosis, the T-cell-mediated adaptive immune response was 

strengthened to relieve excessive inflammation while effectively eliminating pathogens. 

In a prior single-cell RNA sequencing study, dexamethasone was observed to alter 

neutrophil states by suppressing interferon-active pathways while simultaneously 

expanding immunosuppressive ARG1+ immature neutrophils (10). Additionally, 

dexamethasone has been demonstrated to reverse the dysfunctional HLA-DRloS100Ahi 

monocyte phenotype, suppressing proinflammatory genes such as CCL3 and S100A8/9 

while simultaneously upregulating regulatory genes like IL1R2 (28). Moreover, recent 

proteomic and transcriptomic studies have demonstrated that tocilizumab reduces 

excessive inflammation by rapidly resolving lymphopenia and myeloid dysregulation, as 

well as downregulation of IL-6-mediated inflammatory responses (29). Our study showed 

that a downregulation of GO-BP terms including inflammatory response, IL-6 production, 

TNF-α production and cytokine production was observed in the entire patient population 

after treatment, as in the previous study. However, despite a reduction in the excessive 

inflammatory response, some patients developed a poor prognosis.  

Patients with poor prognosis exhibited a pronounced increase in CMs with a decrease 

in NCMs and NK cells after treatment. This group also demonstrated downregulation of 

NLR signaling pathway and NK cell-mediated cytotoxicity. NK cells are an essential part 

of the innate immune system, tasked with recognizing and eliminating virus-infected cells 

while regulating the immune response through the release of cytokines such as IFNγ and 

TNF (30). Additionally, NK cells influence both innate and adaptive immunity by releasing 
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chemokines and cytokines and engaging in cooperative interactions with other immune 

cells, such as dendritic cells, monocytes, neutrophils, and macrophages (31). NLRs, 

abundantly expressed in monocytes and macrophages, recognize pathogen- or damage-

associated molecular patterns during SARS-CoV-2 infection, facilitating type I IFN and 

pro-inflammatory cytokine production to drive innate immunity (32). These findings 

suggest a compromised innate immune system and impaired transition to adaptive 

immunity. Monocytes are important components of the innate immune response by 

processing and presenting antigens to T cells, and producing cytokines that modulate 

immune responses (33, 34). In COVID-19 infection, CMs are known to produce pro-

inflammatory cytokines and have been linked to disease severity and the development of 

ARDS (35, 36). Conversely, NCMs are essential for pathogen recognition and clearance, 

vascular endothelial homeostasis, and resolution of inflammation (37). Alterations in 

monocyte and NK cell populations, therefore, lead to immune imbalances that hinder 

pathogen elimination and cause persistent inflammation. In subgroup analysis of 

monocytes, group 1 such as S100A8, S100A9, and S100A12 were notably overexpressed 

in patients with poor prognosis. S100A8/A9, a calcium-binding heterodimer, undergoes 

conformational changes to regulate leukocyte migration and inflammatory responses. By 

engaging Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products 

(RAGE), the NF-κB signaling pathway is activated, driving cytokine storms in severe 

COVID-19 through the induction of emergency myelopoiesis and the production of 

atypical immature neutrophil subsets (38). Furthermore, in subgroup analysis of monocytes, 

group 2 genes like CXCL2, CXCL3, CXCL8, NFKBIA, IL1B, CCR1, and CLEC7A were 

upregulated in poor prognosis patients and downregulated in good prognosis patients after 

treatment. CXCL2 is crucial for the innate immune defense against COVID-19, facilitating 

the recruitment of neutrophils, monocytes, and mononuclear phagocytes to the infection 

site (39). CXCL8, secreted by monocytes, macrophages, and alveolar epithelial cells, is an 

important factor in the progression of lung disease in COVID-19. It drives neutrophil 

recruitment and activation, promotes the formation of neutrophil extracellular traps (NETs) 

that induce inflammation and cell damage, and triggers oxidative bursts involving 

hydrogen peroxide and superoxide from neutrophils (39). CXCL3 or IL1B can also 

significantly induce or enhance the inflammatory response of COVID-19 infection, leading 

to additional pulmonary inflammation and tissue damage (40). These findings underscore 

the role of aberrant immature neutrophils and monocytes in sustaining inflammation and 

inducing cell death via oxidative stress. In addition, dysregulation of antigen processing 

and presentation impairs the transition to appropriate adaptive immunity, further 
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contributing to excessive tissue damage and fibrosis (7). Notably, macrophage- and 

neutrophil-driven inflammatory pathways remained activated even after TDR treatment by 

upregulating genes such as S100A8, S100A9, S100A12, CYBA, NCF1, PYCARD, and 

NAIP. These genes are implicated in macrophage and neutrophil activation, ROS 

production, and inflammatory cell death. The elevated expression of PYCARD and NLRP3, 

associated with NET formation and inflammasome activation, suggests persistent 

inflammation that disrupts immune regulation and hinders normal restoration process. 

Additionally, upregulation of genes like JUN, NCF1, SOD2, and GRB2 highlights 

oxidative stress and mitochondrial dysfunction as major contributors to ongoing 

inflammation and tissue damage.  

Patients with a good prognosis showed a marked increase in NK cells and CD8+NKT-

like cells, along with a simultaneous reduction in CM, after TDR treatment. This immune 

shift was characterized by a reduction in TNF, IL-6, chemotaxis and inflammatory 

responses, alongside decreased activity in pathways associated with the apoptotic process, 

lysosomes and phagosomes, which contribute to the phagocytosis of macrophages and 

neutrophils. Additionally, the differentiation of Th1, Th2, and Th17 cells and the T cell 

receptor signaling pathway were more enriched in the good prognosis group after treatment. 

CD8+NKT-like cells, known for their diverse TCR repertoire and high levels of IFN-γ 

secretion, play a crucial role in preventing excessive immune responses by suppressing T-

cell responses through the antigen-specific elimination of dendritic cells (41). CD3D and 

CD3G, integral components of the TCR-CD3 complex on T lymphocytes, are 

phosphorylated by Src family protein tyrosine kinases such as LCK and FYN (42). This 

phosphorylation triggers downstream signaling pathways essential for an appropriate 

adaptive immune response (43). The upregulation of GATA3, RUNX3, RORA, and 

TGFB1 promotes balanced differentiation of Th1, Th2, and Th17 cells, enabling the 

effective elimination of pathogens while mitigating excessive inflammation. T-cell-

mediated adaptive immunity plays a vital role in both the sustained control of viral 

infections and the successful management of respiratory viral diseases (44). In conclusion, 

the good prognosis group exhibited a well-regulated and effective immune response, 

highlighted by improved NK and NKT cell activity and robust T cell-mediated immunity. 

The downregulation of genes linked to excessive inflammatory responses and tissue 

damage further emphasized the role of controlled immune modulation in overcoming 

COVID-19. This comprehensive analysis highlights the mechanisms underlying favorable 

clinical outcomes in COVID-19 and underscores the potential of targeted therapies like 

TDR in fine-tuning the immune response for improved patient recovery. 
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We also propose JUN as a key gene to determine the drug response of COVID-19 

patients. The JUN gene, a key component of the AP-1 transcription factor complex, is 

involved in numerous cellular functions such as proliferation, differentiation, apoptosis, 

and the response to infections (45). The Jun N-terminal kinase (JNK) signaling pathway 

facilitates viral infection and replication in infections caused by varicella-zoster virus, 

herpes simplex virus type 1, dengue virus, and influenza virus (46). The JNK signaling 

pathway plays a role in virus-triggered cell death processes, including apoptosis and 

autophagy, which are essential for preserving cellular homeostasis and combating viral 

infections (46). The JNK signaling pathway modulates apoptosis by inducing c-Jun and 

Fos or by suppressing the cell survival pathway of STATs and CREB (47). The JNK 

downstream molecule c-Jun is also associated with viral replication and upregulation of 

pro-inflammatory cytokines such as TNF-α, IFN-β, and IL-6 in patients with H5N1 

influenza virus infection (48). In COVID-19 patients, JUN is involved in activating the NF-

κB signaling pathway, which serves as a crucial regulator of the immune response to the 

infection (49). Activation of the JNK and JAK-STAT pathways lead to increased cytokines, 

inflammation, and eventually, pulmonary fibrosis in COVID-19 infection (47). In poor 

prognosis patients of our study, JUN was upregulated, promoting mitochondrial ROS 

production and apoptosis, which contributed to sustained inflammation and tissue damage. 

On the other hand, in patients with good prognosis, downregulation of JUN appeared to 

correlate with reduced tissue damage and immune modulation involving the T cell 

differentiation pathway. JNK inhibitors have been shown to prevent pulmonary fibrosis in 

preclinical models and in Phase I and II IPF studies, and to attenuate sepsis-induced lung 

injury in experimental animal models (50, 51). These findings suggest that JUN could be a 

key biomarker for determining drug response and prognosis in COVID-19 patients. 

Our study has several limitations. Firstly, the relatively small sample size may be 

viewed as a limitation. However, the sample size was reduced by adjusting for baseline 

characteristics that could influence prognosis, such as age, male sex, BMI, and the initial 

ordinal scale. By matching these baseline characteristics, we enhanced the study's 

reliability by minimizing variability. Secondly, the samples were collected during a period 

when the Omicron variant of COVID-19 was predominant, which might not accurately 

represent the broader range of COVID-19 strains. Nevertheless, this approach has the 

advantage of eliminating differences in immune responses that could arise from variations 

between different COVID-19 variants. Furthermore, we standardized the timing of drug 

administration and blood sample collection to control for potential confounding factors 

related to differences in timing. 
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V. CONCLUSION 

 
In conclusion, adaptive immune responses driven by T cells, along with suppression of 

macrophage-driven hyperinflammatory pathways and enhancement of NK cell-mediated 

cytotoxicity, highlight the importance of maintaining a well-regulated immune balance in managing 

severe COVID-19 infection. 

  



２８ 

 

 

References 
 

1. Organization WH. WHO COVID-19 dashboard. 2024. 

2. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-

acute COVID-19 syndrome. Nat Med. 2021;27(4):601-15. 

3. Bost P, De Sanctis F, Canè S, Ugel S, Donadello K, Castellucci M, et al. Deciphering the 

state of immune silence in fatal COVID-19 patients. Nat Commun. 2021;12(1):1428. 

4. Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI, et al. The 

evolution of SARS-CoV-2. Nat Rev Microbiol. 2023;21(6):361-79. 

5. Zhang JJ, Dong X, Liu GH, Gao YD. Risk and Protective Factors for COVID-19 

Morbidity, Severity, and Mortality. Clin Rev Allergy Immunol. 2023;64(1):90-107. 

6. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological 

features of severe and moderate coronavirus disease 2019. J Clin Invest. 

2020;130(5):2620-9. 

7. Unterman A, Sumida TS, Nouri N, Yan X, Zhao AY, Gasque V, et al. Single-cell multi-

omics reveals dyssynchrony of the innate and adaptive immune system in progressive 

COVID-19. Nat Commun. 2022;13(1):440. 

8. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in 

Hospitalized Patients with Covid-19. N Engl J Med. 2021;384(8):693-704. 

9. Ahmed MH, Hassan A. Dexamethasone for the Treatment of Coronavirus Disease 

(COVID-19): a Review. SN Compr Clin Med. 2020;2(12):2637-46. 

10. Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L, et al. Dexamethasone modulates 

immature neutrophils and interferon programming in severe COVID-19. Nat Med. 

2022;28(1):201-11. 

11. Chen L, Jondal M, Yakimchuk K. Regulatory effects of dexamethasone on NK and T cell 

immunity. Inflammopharmacology. 2018;26(5):1331-8. 

12. Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, Arabi YM, et al. 

Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med. 

2021;384(16):1491-502. 

13. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a 

randomised, controlled, open-label, platform trial. Lancet. 2021;397(10285):1637-45. 

14. Silvin A, Chapuis N, Dunsmore G, Goubet AG, Dubuisson A, Derosa L, et al. Elevated 

Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-

19. Cell. 2020;182(6):1401-18.e18. 

15. Reyes M, Filbin MR, Bhattacharyya RP, Billman K, Eisenhaure T, Hung DT, et al. An 

immune-cell signature of bacterial sepsis. Nat Med. 2020;26(3):333-40. 

16. Wohnhaas CT, Leparc GG, Fernandez-Albert F, Kind D, Gantner F, Viollet C, et al. DMSO 

cryopreservation is the method of choice to preserve cells for droplet-based single-cell 

RNA sequencing. Sci Rep. 2019;9(1):10699. 

17. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel 

digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049. 

18. Heiser CN, Wang VM, Chen B, Hughey JJ, Lau KS. Automated quality control and cell 

identification of droplet-based single-cell data using dropkick. Genome Res. 

2021;31(10):1742-52. 

19. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, et al. Integrated 

analysis of multimodal single-cell data. Cell. 2021;184(13):3573-87.e29. 



２９ 

 

 

20. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and 

accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289-

96. 

21. Ianevski A, Giri AK, Aittokallio T. Fully-automated and ultra-fast cell-type identification 

using specific marker combinations from single-cell transcriptomic data. Nat Commun. 

2022;13(1):1246. 

22. Janky R, Verfaillie A, Imrichová H, Van de Sande B, Standaert L, Christiaens V, et al. 

iRegulon: from a gene list to a gene regulatory network using large motif and track 

collections. PLoS Comput Biol. 2014;10(7):e1003731. 

23. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: 

a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 

2016;44(W1):W90-7. 

24. Chen B, Ramirez-Solano MA, Heiser CN, Liu Q, Lau KS. Processing single-cell RNA-

seq data for dimension reduction-based analyses using open-source tools. STAR Protoc. 

2021;2(2):100450. 

25. Thwaites RS, Sanchez Sevilla Uruchurtu A, Siggins MK, Liew F, Russell CD, Moore SC, 

et al. Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-

CSF in severe COVID-19. Sci Immunol. 2021;6(57). 

26. Qin G, Liu S, Yang L, Yu W, Zhang Y. Myeloid cells in COVID-19 microenvironment. 

Signal Transduct Target Ther. 2021;6(1):372. 

27. Mohiuddin M, Kasahara K. The emerging role of oxidative stress in complications of 

COVID-19 and potential therapeutic approach to diminish oxidative stress. Respir Med. 

2021;187:106605. 

28. Knoll R, Helbig ET, Dahm K, Bolaji O, Hamm F, Dietrich O, et al. The life-saving benefit 

of dexamethasone in severe COVID-19 is linked to a reversal of monocyte dysregulation. 

Cell. 2024;187(16):4318-35.e20. 

29. Shivram H, Hackney JA, Rosenberger CM, Teterina A, Qamra A, Onabajo O, et al. 

Transcriptomic and proteomic assessment of tocilizumab response in a randomized 

controlled trial of patients hospitalized with COVID-19. iScience. 2023;26(9):107597. 

30. Lee MJ, Blish CA. Defining the role of natural killer cells in COVID-19. Nat Immunol. 

2023;24(10):1628-38. 

31. Di Vito C, Calcaterra F, Coianiz N, Terzoli S, Voza A, Mikulak J, et al. Natural Killer Cells 

in SARS-CoV-2 Infection: Pathophysiology and Therapeutic Implications. Front Immunol. 

2022;13:888248. 

32. Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-

CoV-2. Nat Immunol. 2022;23(2):165-76. 

33. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev 

Immunol. 2011;11(11):762-74. 

34. Prame Kumar K, Nicholls AJ, Wong CHY. Partners in crime: neutrophils and 

monocytes/macrophages in inflammation and disease. Cell Tissue Res. 2018;371(3):551-

65. 

35. Rajamanickam A, Kumar NP, Pandiarajan AN, Selvaraj N, Munisankar S, Renji RM, et 

al. Dynamic alterations in monocyte numbers, subset frequencies and activation markers 

in acute and convalescent COVID-19 individuals. Sci Rep. 2021;11(1):20254. 

36. Chen ST, Park MD, Del Valle DM, Buckup M, Tabachnikova A, Thompson RC, et al. A 

shift in lung macrophage composition is associated with COVID-19 severity and recovery. 

Sci Transl Med. 2022;14(662):eabn5168. 



３０ 

 

 

37. Narasimhan PB, Marcovecchio P, Hamers AAJ, Hedrick CC. Nonclassical Monocytes in 

Health and Disease. Annu Rev Immunol. 2019;37:439-56. 

38. Mellett L, Khader SA. S100A8/A9 in COVID-19 pathogenesis: Impact on clinical 

outcomes. Cytokine Growth Factor Rev. 2022;63:90-7. 

39. Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during 

COVID-19 infection. Comput Struct Biotechnol J. 2021;19:976-88. 

40. Lian Q, Zhang K, Zhang Z, Duan F, Guo L, Luo W, et al. Differential effects of 

macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived 

model. Nat Commun. 2022;13(1):2028. 

41. Wang C, Liu X, Li Z, Chai Y, Jiang Y, Wang Q, et al. CD8(+)NKT-like cells regulate the 

immune response by killing antigen-bearing DCs. Sci Rep. 2015;5:14124. 

42. Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and 

disease. Signal Transduct Target Ther. 2021;6(1):412. 

43. Keller B, Kfir-Erenfeld S, Matusewicz P, Hartl F, Lev A, Lee YN, et al. Combined 

Immunodeficiency Caused by a Novel Nonsense Mutation in LCK. J Clin Immunol. 

2023;44(1):4. 

44. Yang B, Fan J, Huang J, Guo E, Fu Y, Liu S, et al. Clinical and molecular characteristics 

of COVID-19 patients with persistent SARS-CoV-2 infection. Nat Commun. 

2021;12(1):3501. 

45. Zheng Y, Liu X, Le W, Xie L, Li H, Wen W, et al. A human circulating immune cell 

landscape in aging and COVID-19. Protein Cell. 2020;11(10):740-70. 

46. Chen J, Ye C, Wan C, Li G, Peng L, Peng Y, et al. The Roles of c-Jun N-Terminal Kinase 

(JNK) in Infectious Diseases. Int J Mol Sci. 2021;22(17). 

47. Farahani M, Niknam Z, Mohammadi Amirabad L, Amiri-Dashatan N, Koushki M, Nemati 

M, et al. Molecular pathways involved in COVID-19 and potential pathway-based 

therapeutic targets. Biomed Pharmacother. 2022;145:112420. 

48. Xie J, Zhang S, Hu Y, Li D, Cui J, Xue J, et al. Regulatory roles of c-jun in H5N1 influenza 

virus replication and host inflammation. Biochim Biophys Acta. 2014;1842(12 Pt 

A):2479-88. 

49. Zhang JY, Whalley JP, Knight JC, Wicker LS, Todd JA, Ferreira RC. SARS-CoV-2 

infection induces a long-lived pro-inflammatory transcriptional profile. Genome Med. 

2023;15(1):69. 

50. Lou L, Hu D, Chen S, Wang S, Xu Y, Huang Y, et al. Protective role of JNK inhibitor 

SP600125 in sepsis-induced acute lung injury. Int J Clin Exp Pathol. 2019;12(2):528-38. 

51. van der Velden JL, Ye Y, Nolin JD, Hoffman SM, Chapman DG, Lahue KG, et al. JNK 

inhibition reduces lung remodeling and pulmonary fibrotic systemic markers. Clin Transl 

Med. 2016;5(1):36. 

 

 

 

  



３１ 

 

 

Abstract in Korean 

 

단핵구와 자연살해세포에 의한 중증 코로나19 감염의 치료 효과 

조절: 단일 세포 RNA 염기서열 분석 연구 

 

중증 코로나19 감염은 과도한 염증 반응과 함께 면역 세포의 과잉 활성화 및 

기능 장애를 포함한 심각한 면역 반응 조절 장애가 특징입니다. 

코르티코스테로이드와 토실리주맙은 중증 코로나19 환자의 예후를 개선하는 데 

도움이 될 수 있습니다. 그러나 환자마다 약물 반응의 차이가 존재한다는 것은 

여전히 해결해야 할 과제입니다. 이 연구는 단일 세포 유전체 분석을 활용하여 중증 

코로나19 환자에서 토실리주맙, 덱사메타손, 렘데시비르의 병용 요법에 대한 치료 

결과의 차이를 유발하는 분자 및 세포 결정 요인을 밝혀내고자 합니다. 연령, 성별, 

세계보건기구 임상 진행 척도의 유의미한 차이가 없는 17명의 중증코로나19 환자의 

혈액 샘플을 2021년 6월부터 2022년 1월까지 3차 병원에서 수집했습니다. 환자는 

두 그룹으로 분류되었습니다: 10명은 악화 없이 회복되었고, 7명은 호흡부전으로 인해 

기도 삽관이 필요했습니다. 샘플은 1일차와 7일차에 채취했습니다. Dropkick 을 

사용하여 말초혈액 단핵세포에서 추출한 단일세포 리보핵산 시퀀싱 데이터를 

처리하고 분석했습니다. 차등 발현된 유전자의 히트맵은 Complex Heatmap 패키지를 

사용하여 생성되었으며, 유전자 온톨로지 농축 분석은 Seurat(버전 3.9 및 4)에 

통합된 Ma'ayan 연구소의 Enrichr 도구를 사용하여 수행되었습니다. 이 연구는 

토실리주맙, 덱사메타손, 렘데시비르 치료 후 좋은 예후(1일째[n=13,580]와 

7일째[n=14,017])와 나쁜 예후 환자(1일째[n=13,747]와 7일째[n=13,630])를 

조사하여 환자 그룹 간의 면역 세포 구성 차이를 비교했습니다. 예후가 좋지 않은 

그룹에서는 치료 후 뉴클레오타이드 결합 올리고머화 도메인 유사 수용체 신호 전달 

경로와 자연살해 세포 매개 세포 독성이 하향 조절되었습니다. 그러나 염증성 

대식세포 관련 리소좀, 식세포, 세포자멸 경로가 지속적으로 상향 조절되었습니다. 

반면, 예후가 좋은 그룹에서는 치료 후 자연살해 세포 매개 세포 독성이 증가하고 

염증성 대식세포 관련 경로가 감소했습니다. 또한, 예후가 좋은 그룹은 T 세포 수용체 

활성화, 신호 전달 경로, 면역 조절과 관련된 분화 과정과 관련된 유전자의 발현이 

증가했습니다. 결론적으로, T 세포에 의해 유도된 적응성 면역 반응과 함께 

대식세포에 의한 과염증 경로 억제 및 자연살해세포 매개 세포 독성 강화는 중증 

코로나19 사례 관리에 있어 잘 조절된 면역 균형을 유지하는 것이 중요하다는 것을 

강조합니다. 

_______________________________________________________________________________ 

핵심되는 말: 코로나19 감염, 단핵구, 자연살해세포, 단일 세포 유전자 발현 분석, 면

역 조절. 
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