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ABSTRACT 

 

Predicting locoregional recurrence in breast cancer following breast-

conserving therapy using learning-based models with multi-

institutional registries 
 

 

 
 

Purpose: Radiotherapy (RT), alongside surgery, is an essential component that consists of breast-

conserving therapy. However, in a small percentage of patients, locoregional recurrence (LRR) may 

occur, leading to achieving the purpose of treatment. This study aims to develop and validate a 

machine learning (ML) model that incorporates radiomics features from multi-institutional registries 

to predict the risk of LRR in breast cancer patients. By utilizing a single magnetic resonance imaging 

(MRI) sequence (T2-weighted with fat suppression) and identifying the key features associated with 

risk of LRR, this study seeks to enhance the robustness and clinical applicability of LRR risk 

predictive models for personalized treatment planning. 

 

Methods: A multi-institutional registry of 352 breast cancer patients was retrospectively collected 

and analyzed. The dataset comprised diagnostic T2-weighted MRI scans with fat suppression, 

manually delineated primary breast tumors, and clinical factors such as age at diagnosis, tumor size, 

pathology, and molecular subtypes. The delineation was performed and confirmed by board-

certified radiation oncologists at each institution. To address class imbalance, various data sampling 

methods, including oversampling techniques, were explored and evaluated. Ultimately, a balanced 

subset was randomly selected to address class imbalance and ensure equal representation of LRR 

and non-LRR cases during model development. Radiomics features, including shape, first-order 

statistics, and texture, were extracted from manually contoured regions of interest (ROIs). During 

feature extraction, the impact of MRI scan normalization on model performance was also assessed. 

A machine learning model was developed using feature selection techniques and principal 

component analysis (PCA), with logistic regression as the classifier. A domain adaptation technique 

was employed to improve model performance. Additionally, a model incorporating both radiomics 

features and clinical factors known to be associated with the risk of LRR was developed to evaluate 
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the added predictive value of combining different data types. The model’s performance was 

evaluated using five-fold cross-validation and an independent test dataset, with calibration applied 

to improve the accuracy of probability estimates. 

 

Results: The model achieved the best performance when MRI scan normalization was applied, 

feature selection was performed using a wrapper method (Recursive Feature Elimination, RFE), and 

both radiomics features and clinical factors were included as inputs. Under these conditions, the 

model achieved an average AUC of 0.757 (95% confidence interval, 0.715-0.799) for cross-

validation and 0.762 for the independent test dataset. 

 

Conclusion: In this study, a predictive model for the risk of LRR in breast cancer patients was 

developed by integrating radiomics features with clinical factors known to be associated with LRR 

risk. The findings suggest that radiomics, as a non-invasive biomarker, could contribute to enhancing 

personalized risk assessment when integrated with clinical factors. To further validate the proposed 

model’s predictive power, prospective datasets should be analyzed in future studies. 

                                                                                

Key words : locoregional recurrence, breast cancer, breast-conserving therapy, machine learning, 

radiomics
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1. INTRODUCTION 

 

1.1. Radiotherapy 

Radiotherapy (RT) is one of essential modalities in the treatment of a range of cancers, as well 

as surgery and chemotherapy1 The fundamental principle of RT is to induce DNA damage within 

malignant tissues by ionizing radiation, thereby inhibiting the ability of these cells to proliferate and 

ultimately leading to their elimination.2,3 To achieve this, RT relies on the precise delivery of 

ionizing radiation directed to the tumor, minimizing exposure to surrounding normal tissues. 

 

Advancements in RT techniques have significantly enhanced its precision and efficacy. These 

advancements include techniques such as Intensity-Modulated Radiotherapy (IMRT), Image-

Guided Radiotherapy (IGRT), and Stereotactic Body Radiotherapy (SBRT), which enable highly 

targeted radiation delivery, effectively sparing adjacent normal tissues and minimizing side 

effects.4,5 These advancements have enabled RT to effectively manage localized tumors while also 

addressing the challenges of advanced-stage cancers, improving treatment outcomes across diverse 

cancer types. 

 

RT is often combined with other treatments to improve overall efficacy. For instance, recent 

advancements have highlighted the potential of combining RT with immunotherapy, leveraging the 

immune-activating effects of radiation to enhance systemic tumor control.6,7 Furthermore, 

Chemoradiotherapy (CRT), which refers to the combined use of RT and chemotherapy, has 

demonstrated synergistic effects in controlling cervical, head and neck, and gastrointestinal 

malignancies, significantly improving survival outcomes compared to either treatment alone.8,9 In 

breast cancer, RT is a key component of Breast-Conserving Therapy (BCT), targeting residual 

cancer cells after surgery to minimize recurrence.10 These combinations highlight the adaptability 

of RT, enabling it to work effectively alongside other treatments in comprehensive cancer therapy. 
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1.2. Predictive modeling 

Advancements in predictive modeling within radiation oncology have shifted the focus from 

generalized, population-based methods to patient-centered approaches. Traditionally, models such 

as the linear-quadratic model have provided foundational insights into radiation-induced biological 

effects, including dose-response relationships, serving as a foundation for understanding and 

optimizing treatment outcomes.11 However, these models were limited in their ability to account for 

the intricacies of patient-specific characteristics. 

 

Artificial Intelligence (AI) has emerged as a powerful tool for medical imaging, enabling the 

automation of complex tasks such as segmentation, classification, and outcome prediction that have 

traditionally been labor-intensive.12-14 Among these applications, AI has demonstrated significant 

potential in improving prediction models through its ability to efficiently analyze complex, high-

dimensional datasets. One of its key strengths comes from identifying noninvasive patterns within 

radiological images, providing valuable insights. By leveraging these patterns, AI-based models 

improve our understanding of patient-specific characteristics, ultimately enhancing more precise 

and personalized treatment strategies. 

 

1.3. Artificial intelligence and radiomics in predictive modeling 

AI-based methods, particularly those using Deep Learning (DL), have demonstrated exceptional 

capabilities in automating tasks such as tumor segmentation12 from Magnetic Resonance Imaging 

(MRI) scans and predicting clinical outcomes (Figure 1 (A)).13 However, deep learning models often 

require extensive labeled datasets and substantial computational resources, making their application 

challenging in situations with limited data availability. In contrast, Machine Learning (ML), a subset 

of AI, is particularly well-suited for handling smaller datasets, making it more feasible in medical 

imaging applications where labeled data is often limited.15,16 Unlike DL models, which often lack 

transparency and provide limited interpretability regarding how they make predictions, ML 

techniques are generally more interpretable, offering a clearer understanding of the relationships 

between features and predicted outcomes, which is essential for decision-making.17-19 
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Figure 1. Workflow of predictive modeling in medical imaging, highlighting the automated feature 

extraction in DL (A) compared to the manual feature extraction and selection process in ML (B). 

 

Radiomics has demonstrated that image-based features can capture subtle variations in tumor 

biology that are not easily discernible through traditional clinical assessments.20 These radiomics 

features, extracted from defined Regions of Interest (ROIs) in radiological images like MRI scans, 

provide quantitative data that describe tumor characteristics such as intensity, shape, and texture 

information that may not be visible to the human perspective. Radiomics offers a way to convert 

standard imaging data into mineable information, potentially serving as a non-invasive prognostic 

biomarker.21,22 When analyzed using learning-based algorithms, these features have shown 

significant potential in predicting outcomes such as risk of recurrence. In the predictive modeling 

process (Figure 1 (B)), radiomics features are first preprocessed to ensure consistent scales, followed 

by feature selection to retain only the most informative features.23 The processed features are then 

used in ML models, like logistic regression, to predict clinical outcomes. This workflow of feature 

extraction, feature selection, and modeling allows radiomics to be effectively used for outcome 

prediction in clinical settings, providing a non-invasive method for understanding tumor 

characteristics. 
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1.4. Locoregional recurrence in breast cancer 

Locoregional Recurrence (LRR), which refers to the recurrence of cancer in the originally treated 

breast, chest wall, or nearby lymph nodes.24,25 In a prospective study with a median follow-up time 

of 3.5 years, the risk of LRR was reported as 7.0% after mastectomy and 5.4% following Breast-

Conserving Surgery (BCS).26 

 

RT is a fundamental treatment for managing breast cancer, which is one of the most commonly 

diagnosed cancers among women worldwide and has shown a steady increase over the past two 

decades, particularly in early-stage cases.27 In Korea, breast cancer is the most common cancer 

among women, following thyroid cancer, and the incidence of early breast cancer has rapidly risen 

as a result of advancements in screening programs and increased public awareness.28 Consequently, 

BCT, which includes partial mastectomy and RT, has become the standard treatment for early breast 

cancer since the 1990s, after studies demonstrated comparable outcomes to total mastectomy.29  

 

Evidence from the Early Breast Cancer Trialists' Collaborative Group (EBCTCG) meta-analysis 

further underscores the critical role of RT in reducing LRR.30 The analysis demonstrated that 

reducing four LRR cases through RT could prevent one breast cancer-related death, highlighting the 

importance of minimizing recurrence to improve long-term outcomes. Moreover, LRR often 

necessitates total mastectomy, making recurrence prevention essential for preserving breast-

conserving strategies and improving patient quality of life. 

 

While RT significantly reduces the risk of LRR, certain patient- and tumor-related factors may 

still increase the likelihood of recurrence. Understanding these factors is crucial in optimizing 

treatment strategies and developing personalized treatment plans for patients at higher risk of 

recurrence. A number of factors have been shown to influence the risk of LRR, including patient 

age, tumor characteristics, and molecular subtypes.31-35 Age at diagnosis has been found to be a 

significant factor, with younger patients more likely to experience recurrence, which may be 

attributed to more aggressive tumor biology in this demographic.31,32 Tumor size is also crucial, 

larger tumors are generally associated with higher recurrence rates, as they are correlated with more 

advanced stages of the disease.33 Additionally, pathology and nodal involvement are significant 
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indicators of a tumor's aggressiveness.34 Molecular subtypes are defined based on hormone receptor 

status and other biological markers, which influence the risk of LRR.35 Traditionally, luminal-type 

breast cancer has been associated with a low risk of LRR, while HER2-positive subtypes historically 

presented a higher risk.36 However, with the advent of anti-HER2 therapies, such as trastuzumab, 

the LRR rates in HER2-positive patients have significantly decreased.37 On the other hand, triple-

negative breast cancer (TNBC) has been identified as having the highest risk of LRR due to its 

aggressive nature and limited treatment options.38 Recently, the use of immuno-oncologic agents, 

such as pembrolizumab, in TNBC has shown a trend toward reduced LRR, reflecting advancements 

in targeted treatment approaches.39 

 

1.5. Previous studies and current research goals 

Several recent studies have explored the potential of using image-derived features from primary 

breast tumors to predict clinical outcomes.40,41 Kim, JH. et al.40 conducted a study on breast cancer 

heterogeneity using MRI texture analysis, which demonstrated that texture features, such as lesion 

heterogeneity, could serve as independent prognostic markers. This study suggested that quantifying 

tumor heterogeneity through texture analysis offers insights into variations in tumor biology that 

may not be visible through conventional imaging, ultimately helping to predict survival outcomes. 

Other studies conducted by Park, H. et al.41 highlighted the utility of radiomics features for 

predicting disease-free survival (DFS) in patients with invasive breast cancer. They developed a 

radiomics nomogram that incorporated texture features and clinicopathological variables. The study 

demonstrated that radiomics features were highly associated with DFS.  

 

This current study aims to develop and validate a predictive model for the risk of LRR in breast 

cancer patients. Specific ML techniques, such as domain adaptation, are employed to improve 

feature alignment and ensure consistent model performance. Additionally, clinical factors were 

integrated with radiomics features to provide a more comprehensive input for the ML model, 

enhancing the understanding of LRR risk. These advanced ML algorithms are employed to identify 

key features associated with the risk of LRR. 
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2. Baseline predictive model development 

 

2.1. Introduction  

Locoregional recurrence remains a critical challenge in the management of breast cancer. Despite 

the effectiveness of BCT including radiotherapy, it still fails to prevent LRR in some patients, which 

negatively impacts overall survival and quality of life. These challenges underline the need for 

accurate predictive models for risk of LRR in breast cancer patients. 

 

The development of a predictive model for risk of LRR in breast cancer patients represents a 

significant step forward. Predictive models, particularly those utilizing radiomics features derived 

from imaging data, appear to hold potential in capturing tumor heterogeneity and identifying factors 

associated with recurrence. 

 

In our previous study42, a radiomics-based ML model was developed to predict LRR risk using 

data from a single registry and multiple MRI sequences. While this model demonstrated potential in 

predicting LRR in breast cancer patients, it was limited by its reliance on a single registry, reducing 

generalizability, and by the need for multiple imaging sequences, which increased the complexity 

of data acquisition in clinical practice. These limitations underscore the need for a model that is both 

more generalizable and clinically practical.  

 

Expanding on our previous work, this chapter aims to integrate multi-institutional patient 

registries to develop the baseline predictive model. Radiomics features derived from a single MRI 

sequence, specifically T2-weighted fat-suppressed images, were utilized to improve and optimize 

the prediction process. 
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2.2. Multi-institutional patient registries 

This study was conducted as part of the Korean Radiation Oncology Group (KROG 22-06) 

clinical research project, approved by the Korean Society of Radiation Oncology. A total of 455 

patients with breast cancer through diagnostic breast MRI scans were initially retrospectively 

collected. Of these, 352 patients from registries of four different institutions were ultimately 

included in the analysis after excluding cases for the following reasons: (1) the lack of access to raw 

MRI scans, which were required for consistent extraction and preprocessing of radiomics features, 

and (2) incompatible MRI sequences that did not meet the study requirements. Specifically, 

Institution 1 contributed 114 patients (28 LRR / 86 non-LRR), Institution 2 contributed 100 patients 

(18 LRR / 82 non-LRR), Institution 3 contributed 88 patients (37 LRR / 51 non-LRR), and Institution 

4 contributed 50 patients (1 LRR / 49 non-LRR). The study was approved by the Institutional 

Review Board of Severance Hospital (4-2024-1225), Yonsei University College of Medicine, Seoul, 

Korea. The requirement for informed consent was waived due to the retrospective nature of the study. 

 

The entire dataset consisted of 84 LRR and 268 non-LRR cases. As illustrated in Figure 2, two 

different approaches were utilized to evaluate the model’s predictive performance. In the Figure 2 

(A) approach, Institution 2 was designated as an independent test set, while the remaining data from 

Institutions 1, 3, and 4 were used for model training. This setup allowed for the evaluation of the 

model's ability to generalize to data from an unseen institution. In the Figure 2 (B) approach, a 5-

fold cross-validation was performed using the entire dataset, ensuring that each fold served as a test 

set while the remaining folds were used for training. This method provided an average evaluation of 

the model's performance across all data. 

 



 

８ 

 

 

Figure 2. Overview of dataset composition and evaluation approaches for predicting the risk of LRR 

with multi-institutional patient registries. 

 

As shown in Figure 2 (C), different sampling methods were applied to handle the class imbalance, 

including original distribution, over-sampling, and balanced-sampling techniques. These sampling 

methods were applied only to the training set in all evaluation approaches and were assessed to 

determine their impact on the model’s predictive performance. For over-sampling, synthetic samples 

were generated using the SMOTE (Synthetic Minority Oversampling Technique)43 method to 

increase the number of LRR cases. As another approach, non-LRR cases were randomly selected to 

match the number of LRR cases, resulting in a balanced dataset. 

 

The entire dataset included three key types of information, which were diagnostic breast MRI 

scans utilizing the T2-weighted with fat-suppressed sequence, the manual delineation of ROIs for 

primary breast tumors, and several clinical factors, including age at diagnosis, tumor size, pathology, 

and molecular subtypes. The manual delineation was performed by one board-certified radiation 

oncologist at each institution, and the contours were confirmed by an experienced breast radiation 

oncologist at the respective institutions. 
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2.3. Radiomics features from multi-institutional data 

Radiomics features were extracted from MRI scans to quantify the characteristics of breast tissue 

relevant to predicting LRR. To account for variations in imaging protocols across different 

institutions, a standardized preprocessing pipeline was employed. This included normalizing the 

image intensities to achieve a consistent distribution across all datasets and resampling the images 

to a uniform voxel spacing of 1x1x1 mm³, thereby ensuring spatial consistency. The impact of 

preprocessing on model performance was assessed to determine its effect on improving predictive 

accuracy by comparing the model's performance with and without the preprocessing steps. 

 

Manually contoured ROIs were used to define the areas of the breast from which features were 

extracted. The ROIs were processed to create binary masks, which were then applied to the 

normalized and resampled images. From the processed images, a comprehensive set of 107 

radiomics features was extracted for each case, including shape, first-order statistics, and texture 

features. Shape features described the structural characteristics of the ROIs, while first-order 

statistics provided insights into the overall intensity distribution within the ROIs. Texture features 

captured the spatial arrangement and intensity patterns of voxels within the ROIs, focusing on the 

relationships and variations in gray levels, which represent the brightness of the pixels. 

 

2.4. Development of baseline model 

With the limited number of samples with known outcomes, ML was chosen over deep learning 

for predicting the risk of LRR in breast cancer patients. DL models require large datasets due to their 

complexity and risk of overfitting, and often exhibit higher variability in performance when data is 

limited. In contrast, ML models like logistic regression are computationally efficient, less prone to 

overfitting, and provide greater interpretability, especially in identifying key features associated 

with LRR risk, making them more suitable for this study.15,16 

 

The ML model for predicting the risk of LRR in breast cancer patients was constructed using 

radiomics features extracted from MRI scans (Figure 3). The baseline model was developed through 

a series of steps, including preprocessing, feature normalization, feature selection using the wrapper 

method44, dimensionality reduction, and applying a calibration step for the classifier. For 

dimensionality reduction, Principal Component Analysis (PCA) was applied to capture the most 
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informative components while transforming the overall set of features into a lower-dimensional 

representation.45 PCA works by transforming the original features into a new set of orthogonal 

components that maximize variance, effectively summarizing the data with fewer dimensions while 

retaining the most critical information. The processed features were used to train a logistic regression 

model, which was subsequently calibrated using Platt scaling to improve the reliability of the 

predicted probabilities.46 In the process of developing the baseline model, the impact of 

preprocessing and various data sampling methods, including original distribution, over-sampling, 

and balanced-sampling, were evaluated to ensure optimal performance. 

 

 

Figure 3. The overview for the development of the baseline predictive model, comparing the 

application of different sampling methods and preprocessing steps. 
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2.5. Evaluation 

To evaluate the model's performance, independent testing and 5-fold cross-validation were 

applied as evaluation strategies. For the independent testing, the training set consisted of 252 cases, 

including 66 LRR and 186 non-LRR cases, while the independent test set from Institution 2 included 

18 LRR and 82 non-LRR cases. For the cross-validation, the entire dataset was divided into five 

folds using a stratified split to ensure balanced representation of LRR and non-LRR cases across the 

folds. Under the original distribution, folds 1 and 2 consisted of 17 LRR and 54 non-LRR cases. 

Fold 3 included 16 LRR and 54 non-LRR cases, while folds 4 and 5 each included 17 LRR and 53 

non-LRR cases. For over-sampling, synthetic samples were generated using the SMOTE to increase 

the number of LRR cases. In this scenario, folds 1 and 2 contained 64 LRR and 64 non-LRR cases, 

and folds 3 and 4 consisted of 63 LRR and 63 non-LRR cases, ensuring an equal representation of 

each class within the folds. For balanced sampling, folds 1 and 2 consisted of 17 LRR and 17 non-

LRR cases, while folds 3, 4, and 5 each included 16 LRR and 16 non-LRR cases. 

 

The performance of the predictive model was assessed using multiple metrics, including accuracy, 

sensitivity, specificity, and the Area Under the Receiver Operating Characteristic curve (AUC)42, as 

defined in Equations (2) through (5). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(3) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(4) 

 

𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)
1

0

(5) 

 

Where, TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and 

false negatives, respectively. TPR (True Positive Rate) is the proportion of actual positives correctly 
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identified by the model, and FPR (False Positive Rate) is the proportion of actual negatives that are 

incorrectly identified as positives (calculated as 1 - specificity). 

 

The radiomics features were extracted using Pyradiomics v.3.047 in Python. The ML models 

utilized scikit-learn v.0.23.248 in Python for domain adaptation, normalization, feature selection, 

PCA, logistic regression, and calibration. The feature selection process employed an optimal number 

of features to select, resulting in the selection of 14 to 18 features out of 107. The number of 

components to be retained for PCA was set to ten. 

 

2.6. Results 

2.6.1. Patient characteristics 

Table 1 presents the clinical characteristics of the multi-institutional patient registries included in 

this study. The four institutions contributed diverse patient populations, with median ages ranging 

from 48 to 52 years. Invasive ductal carcinoma (IDC) was the predominant pathology across all 

institutions, accounting for 75.4% to 98% of cases. Ductal carcinoma in situ (DCIS) and other less 

common pathology constituted a smaller proportion, with Institution 1 reporting the highest 

percentage of non-IDC cases (14.9%). Regarding tumor size, T1 stage tumors were the most 

prevalent across all institutions, with the highest proportion observed in Institution 2 (69%) and 

Institution 4 (66%). In contrast, T3 stage tumors were relatively less frequent, with Institution 1 

reporting the largest proportion (5.3%) of these larger, more advanced tumors. Nodal involvement 

also varied between the institutions. Institution 2 had the highest proportion of patients with N0 

status (78%), indicating no regional lymph node involvement, while Institution 1 had the largest 

percentage of patients with more advanced nodal involvement (N2 and N3 stages combined, 21.1%). 

The distribution of molecular subtypes also showed variation. Luminal A type, which are generally 

associated with a more favorable prognosis, were most frequent at Institution 4 (74%), while 

Institution 1 had the highest proportion of basal-like tumors (55.3%), a subtype associated with more 

aggressive disease. Luminal B, HER2-enriched, and basal-like subtypes were less common across 

all institutions, with significant variation between them. 
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Table 1. Baseline characteristics of the multi-institutional patient registries 

Characteristics 
Institution 1 

(N=114) 

Institution 2 

(N=100) 

Institution 3 

(N=88) 

Institution 4 

(N=50) 

Age (years, median [range]) 49 (23-75) 52 (21-86) 48 (44-69) 50 (41-76) 

Pathology, n (%)     

  IDC 86 (75.4) 84 (84) 82 (93.2) 49 (98) 

  DCIS 11 (9.7) 3 (3) 1 (1.1) 0 (0) 

  Others 17 (14.9) 13 (13) 5 (5.7) 1 (2) 

T stage, n (%)     

  Tis 25 (21.9) 7 (7) 6 (6.8) 0 (0) 

  T1 51 (44.7) 69 (69) 57 (64.8) 33 (66) 

  T2 32 (28.1) 23 (23) 22 (25) 16 (32) 

  T3 6 (5.3) 1 (1) 3 (3.4) 1 (2) 

N stage, n (%)     

  N0 66 (57.9) 78 (78) 48 (54.5) 34 (68) 

  N1 24 (21.0) 18 (18) 22 (25) 13 (26) 

  N2 14 (12.3) 3 (3) 10 (11.4) 3 (6) 

  N3 10 (8.8) 1 (1) 8 (9.1) 0 (0) 

Luminal type, n (%)     

  A 15 (13.2) 39 (39) 32 (36.3) 37 (74) 

  B 16 (14.0) 31 (31) 22 (25) 7 (14) 

  HER2-enriched 20 (17.5) 11 (11) 13 (14.8) 2 (4) 

  Basal-like 63 (55.3) 19 (19) 21 (23.9) 4 (8) 

Abbreviations: LRR, locoregional recurrence; SMD, standardized mean difference; IDC, invasive 

ductal carcinoma; DCIS, ductal carcinoma in situ; HER2, human epidermal growth factor receptor 

2. 
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2.6.2. Impact of preprocessing during radiomics feature extraction 

Table 2 lists the comparison of the predictive model with and without preprocessing during 

radiomics feature extraction. The model with preprocessing during radiomics feature extraction 

showed a significant improvement in performance compared to the model without preprocessing. 

Specifically, the model with preprocessing achieved an average cross-validation accuracy of 71.8% 

± 4.4% (95% CI: 65.9-77.7) and an AUC of 0.705 ± 0.055 (95% CI: 0.631-0.779). For the 

independent test dataset, the model achieved an accuracy of 73.0% and an AUC of 0.709. In contrast, 

the model without preprocessing achieved a lower average cross-validation accuracy of 68.1% ± 

3.7% (95% CI: 66.2-70.6) and an AUC of 0.679 ± 0.056 (95% CI: 0.603-0.755). For the independent 

test dataset, the model without preprocessing achieved an accuracy of 78.0% and an AUC of 0.663. 

Its sensitivity, however, was extremely low at only 16.7%, indicating that the model performed 

poorly in identifying positive cases effectively. 

 

Table 2. Baseline model evaluation: impact of preprocessing during radiomics feature extraction. 

The highest AUC for each evaluation method is highlighted in bold. 

Model 
Accuracy [%] 

(95% CI) 

Sensitivity [%] 

(95% CI) 

Specificity [%] 

(95% CI) 

AUC 

(95% CI) 

Without 

processing 

CV 
68.1±3.7 

(66.2-70.6) 

63.5±4.4 

(57.6-69.4) 

70.0±1.1 

(68.5-71.5) 

0.679±0.056 

(0.603-0.755) 

IND 78.0 16.7 91.5 0.663 

With 

processing 

CV 
71.8±2.3 

(68.6-74.9) 

71.8±4.4 

(65.9-77.7) 

71.7±2.0 

(69.1-74.3) 

0.705±0.055 

(0.631-0.779) 

IND 73.0 55.6 76.8 0.709 

Abbreviations: 95% CI, 95% confidence interval; AUC, area under the receiver operating 

characteristic curve; CV, cross-validation; IND, independent test 
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2.6.3. Impact of data sampling methods 

Table 3 demonstrates the impact of different data sampling methods, including original 

distribution, over-sampling, and balanced-sampling, on model performance in predicting the risk of 

LRR. When using original distribution, the model achieved an average cross-validation accuracy of 

74.8% ± 4.6% (95% CI: 68.6-81.0), with a sensitivity of only 25.3% ± 8.7% (95% CI: 13.6-37.0) 

and a specificity of 93.0% ± 3.7% (95% CI: 87.9-98.0). The AUC for original distribution across 

cross-validation was 0.642 ± 0.029 (95% CI: 0.603-0.682). The application of over-sampling 

improved sensitivity to 52.9% ± 3.2% (95% CI: 48.6-57.3), but resulted in a decrease in specificity 

to 70.5% ± 4.7% (95% CI: 64.2-76.8). The AUC in this case was 0.687 ± 0.003 (95% CI: 0.647-

0.727). Balanced-sampling provided the most balanced performance among the three methods, 

achieving an average cross-validation accuracy of 71.8% ± 2.3% (95% CI: 68.6-74.9), sensitivity of 

71.8% ± 4.4% (95% CI: 65.9-77.7), and specificity of 71.7% ± 2.0% (95% CI: 69.1-74.3). The AUC 

for under-sampling was 0.705 ± 0.055 (95% CI: 0.631-0.779). For the independent test dataset, 

balanced-sampling resulted in the highest AUC of 0.709. 

 

Table 3. Baseline model evaluation: impact of data sampling methods. The highest AUC for each 

evaluation method is highlighted in bold. 

Model 
Accuracy [%] 

(95% CI) 

Sensitivity [%] 

(95% CI) 

Specificity [%] 

(95% CI) 

AUC 

(95% CI) 

Original 

distribution 

CV 
74.8±4.6 

(68.6-81.0) 

25.3±8.7 

(13.6-37.0) 

93.0±3.7 

(87.9-98.0) 

0.642±0.029 

(0.603-0.682) 

IND 81.0 11.1 97.6 0.633 

Over-

sampling 

CV 
65.8±3.7 

(60.8-70.8) 

52.9±3.2 

(48.6-57.3) 

70.5±4.7 

(64.2-76.8) 

0.687±0.003 

(0.647-0.727) 

IND 74.0 44.4 80.5 0.679 

Balanced-

sampling 

CV 
71.8±2.3 

(68.6-74.9) 

71.8±4.4 

(65.9-77.7) 

71.7±2.0 

(69.1-74.3) 

0.705±0.055 

(0.631-0.779) 

IND 73.0 55.6 76.8 0.709 

Abbreviations: 95% CI, 95% confidence interval; AUC, area under the receiver operating 

characteristic curve; CV, cross-validation; IND, independent test 

Note: This model includes preprocessing during radiomics feature extraction. 
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2.7. Discussion and conclusion 

The purpose of this study was to develop and validate a predictive model for the risk of LRR in 

breast cancer patients using radiomics features. Building on our previous work42, which relied on a 

single-institution registry and required multiple MRI sequences to predict LRR, the current study 

constructed a predictive model that leverages radiomics features extracted from a single MRI 

sequence, specifically T2-weighted images with fat suppression, and incorporates multi-institutional 

patient registries. In this chapter, the aim is to develop a baseline predictive model that addresses 

challenges such as multi-institutional variability and class imbalance, providing a foundation for 

further advancements in predicting LRR risk. 

 

In developing the baseline predictive model for predicting the risk of LRR, several considerations 

were made to optimize the model's predictive performance. One key aspect was preprocessing 

during the extraction of radiomics features. This step was essential to mitigate variability resulting 

from differing imaging protocols, such as variations in image resolution and intensity across 

institutions, thereby ensuring that the radiomics features remained consistent and comparable across 

all datasets. Another key consideration was comparing different data sampling techniques to address 

the class imbalance between LRR and non-LRR cases. Sampling approaches, including balanced 

sampling, over-sampling using SMOTE, and retaining the original distribution, were employed to 

assess their impact on the model’s predictive performance. Ultimately, the balanced sampling 

approach was selected, as it achieved an average AUC of 0.705 for the five-fold cross-validation 

and an AUC of 0.709 for the independent test dataset. In contrast, the original distribution method 

yielded lower average AUCs of 0.642 and 0.633, while the over-sampling method achieved 0.687 

and 0.679 for the five-fold cross-validation and independent test dataset, respectively. The original 

distribution, which retained the inherent class imbalance, likely resulted in the model being biased 

towards the majority class, leading to lower sensitivity in predicting LRR cases. Meanwhile, the 

over-sampling method using SMOTE demonstrated inherent limitations that may have contributed 

to its suboptimal performance. First, SMOTE generates synthetic samples by interpolating between 

minority class samples, which can increase existing noise in the original data and reduce the model's 

reliability. Second, when the number of minority samples is limited, SMOTE can lead to overfitting. 

The generated synthetic data may struggle to capture the intricate underlying data distribution, 

thereby limiting the model’s ability to generalize effectively to unseen datasets. 
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Despite the development of a foundational baseline predictive model in this chapter, its predictive 

performance remains suboptimal, highlighting the need for further enhancement. To improve the 

suboptimal performance of the baseline predictive model, it is essential to concentrate not only on 

enhancing its performance but also on identifying the key features contributing to the model’s 

predictive outcomes. 

 

In conclusion, this chapter establishes a foundational baseline predictive model for LRR risk in 

breast cancer patients. By taking into account addressing key challenges such as multi-institutional 

variability and class imbalance, the model establishes a foundation for future improvements.  
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3. Enhancement strategies for predictive models 

 

3.1. Introduction 

Radiotherapy, which effectively reduces recurrence by damaging cancer cells and improving 

patient outcomes, is a fundamental component of BCT alongside surgery.27,29 However, some 

patients may experience LRR, involving the recurrence of cancer in treated regions, which 

undermines the effectiveness of BCT.24,25 

 

Accurate prediction of LRR in breast cancer patients is essential for enabling personalized 

treatment strategies that improve clinical outcomes. However, prediction models often encounter 

challenges such as multi-institutional variability, class imbalance, and the limited ability of features 

to capture comprehensive representations. The baseline predictive model developed in Chapter 2 

provides a fundamental framework for risk prediction and demonstrates an initial attempt to address 

these challenges. However, its suboptimal performance highlights the need for further enhancement. 

 

Enhancing predictive models requires both performance improvement and the identification of 

key features contributing to model decisions. Such enhancements are critical for increasing the 

interpretability and clinical relevance of the models, as it provides valuable insights into the clinical 

determinants of LRR risk and supports interpretability in clinical applications. Furthermore, 

predictive models must produce reliable probability estimates to be effectively integrated into 

clinical decision-making. 

 

This chapter introduces and evaluates several enhancement strategies aimed at improving the 

robustness, performance, and interpretability of LRR prediction models. Through these strategies, 

this chapter focuses on enhancing the baseline model, making it more accurate and generalizable 

across diverse datasets. These improvements are important for enabling predictive models to be 

effectively applied in clinical practice.  
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3.2. Multi-institutional patient registries 

The multi-institutional patient registries detailed in Section 2.2 were utilized not only for the 

baseline predictive model but also for the development and evaluation of enhanced predictive 

models. As previously described, the dataset comprised 84 LRR cases and 268 non-LRR cases from 

four institutions, providing a diverse and comprehensive representation of populations. 

 

During the development of the baseline model, various conditions were compared and evaluated 

to address data diversity and class imbalance. The most effective approach was implemented in the 

final baseline model. For this chapter, the training set adjusted through balanced sampling to mitigate 

class imbalance was utilized without further modification. 

 

3.3. Radiomics features and clinical factors for model development 

Radiomics features extracted from multi-institutional MRI scans, as described in Section 2.3, 

were utilized for the development of enhanced predictive models. To ensure consistency across 

datasets from different institutions, a standardized preprocessing pipeline, including intensity 

normalization and resampling to a uniform voxel spacing of 1x1x1 mm³, was implemented during 

the development of the final baseline model. This preprocessing approach was applied in this chapter 

without further modification. 

 

To provide a more comprehensive input for the ML model and enhance the understanding of LRR 

risk, clinical factors were integrated with radiomics features. These clinical factors, including age at 

diagnosis, tumor size, pathology, and molecular subtypes, were extracted from multi-institutional 

medical records. They were selected based on evidence from previous studies showing their 

significant role in LRR risk.31-35 
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3.4. Model enhancement strategies 

As illustrated in Figure 4, the evaluation focused on assessing the effectiveness of several 

enhancement strategies to improving the predictive performance of the model for LRR risk. This 

included comparisons between models with and without domain adaptation, analyzing different 

feature selection methods to identify the most effective approach, and evaluating the impact of 

integrating clinical factors. Additionally, the role of model calibration in improving the reliability 

of probability estimates and performance was assessed. 

 

 

Figure 4. Several enhancement strategies were implemented and assessed against the baseline 

model, including domain adaptation, feature selection techniques, the integration of clinical factors, 

and model calibration. 

 

3.4.1. Domain adaptation 

Domain adaptation was employed to leverage the predictive capabilities of a well-trained source 

model to improve performance on the target dataset, which consisted of radiomics features extracted 

from MRI scans of breast cancer patients. The adaptation process involved aligning the source model 

to the target domain using a domain adaptation technique called Correlation Alignment (CORAL).49 

CORAL aims to minimize the domain shift by aligning the covariance between the source and target 

datasets. By reducing differences in data distribution, CORAL contributes ensure that the trained 

features from the source domain are more effectively transferred to the target domain. 
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The source model was developed using the Breast Cancer Wisconsin dataset, which collected to 

classify tumors as either benign or malignant.50 This dataset comprises 569 instances, each with 30 

features computed from a digitized image of a fine needle aspirate of a breast mass, including various 

clinical features that are biologically relevant and similar to the radiomics features used in this study. 

Due to these similarities, it was expected that knowledge gained from the source model could 

effectively enhance the predictive performance for the target dataset. The impact of domain 

adaptation on model performance was evaluated by comparing the performance of models 

developed with and without domain adaptation. 

 

3.4.1. Feature selection 

Feature selection is a crucial step in ML that contributes to reduce model complexity, improve 

computational efficiency, and enhance predictive performance by selecting relevant features. There 

are three common types of feature selection approaches: filter, embedded, and wrapper methods.51 

Filter methods rank features based on statistical metrics independent of the model, providing a fast 

way to eliminate irrelevant features. Embedded methods, on the other hand, select features during 

the model training process, automatically identifying important features. Wrapper methods use a 

model to evaluate and iteratively remove subsets of features that contribute the least to performance. 

In this study, these three feature selection approaches were used to determine the optimal feature set 

for predicting the risk of LRR in breast cancer patients. 

 

The filter method, specifically employing the Select K Best algorithm, utilized to identify features 

most correlated with the risk of LRR.52 Select K Best ranks all features based on Analysis of 

Variance (ANOVA) F-statistics and selects the top K features that have the highest correlation with 

the outcome.  

 

The embedded method employed Least Absolute Shrinkage and Selection Operator (LASSO) to 

identify the most predictive features based on the inherent feature importance scores of the model.53 

LASSO incorporates L1 regularization into the logistic regression, which adds a penalty equivalent 

to the absolute value of the magnitude of the coefficients. This penalty causes less important feature 

coefficients to shrink to zero during training, effectively performing feature selection by removing 

irrelevant features and retaining only those that contribute the most to the prediction.  
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The wrapper method applied Recursive Feature Elimination (RFE) with logistic regression as the 

estimator.44 RFE works by recursively fitting the model and eliminating the least important features, 

based on the weights of the logistic regression, in each iteration. This process continues until the 

optimal subset of features is identified, ensuring that only the most predictive features are retained.  

 

The baseline model with incorporating domain adaptation was trained separately with features 

selected by each of these methods and subsequently compared to identify the most effective feature 

selection technique for predicting the risk of LRR. 

 

3.4.3. Integration of clinical factors 

To effectively integrate clinical factors with radiomics features for predictive modeling, proper 

normalization was required. Clinical factors and radiomics features were normalized independently 

due to their differing data characteristics. Radiomics features, derived from imaging data, are 

continuous, while clinical factors include both continuous and categorical data. Continuous factors, 

such as age at diagnosis and tumor size, were normalized using a Standard Scaler54, while categorical 

factors, such as pathology and molecular subtypes, were transformed using Label Encoding55 to 

convert them into a suitable format. 

 

The normalized clinical factors and radiomics features were concatenated to form a unified feature 

set, which was then subjected to a feature selection algorithm to predict the risk of LRR. After 

comparing three feature selection methods—filter, embedded, and wrapper approaches—the most 

effective technique was determined and subsequently applied to the unified feature set. The impact 

of integrating clinical factors with radiomics features on model performance was evaluated by 

comparing the performance of models developed with and without the integration, using the baseline 

model that incorporated domain adaptation and the effective feature selection technique. 
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3.4.4. Model calibration 

To improve the reliability of probability estimates from the model, the baseline model in Chapter 

2 included a calibration process using Platt scaling.46 This calibration process involved fitting a 

sigmoid function to the model's predicted probabilities, effectively transforming the uncalibrated 

outputs into calibrated probability estimates. Specifically, the Platt scaling process works by training 

an additional logistic regression model, where the inputs are the raw predicted scores from the 

original model, and the outputs are the true binary outcomes. This logistic regression fits a sigmoid 

curve to the predicted values, effectively adjusting the raw scores to fall within a probability range 

that more accurately reflects the actual likelihood of the risk of LRR. The sigmoid function maps 

the predicted values onto a [0, 1] scale, making the output more interpretable as a probability of the 

risk of LRR. 

 

In addition to Platt scaling, other calibration methods such as Isotonic Regression56 were 

considered. Isotonic Regression is a non-parametric calibration method that is more flexible 

compared to Platt scaling, which assumes a sigmoid relationship. However, due to the relatively 

small sample size and the potential risk of overfitting, Platt scaling was chosen for its simplicity and 

robustness. Isotonic Regression can be prone to overfitting, particularly when dealing with smaller 

datasets, as it tries to fit the calibration curve as closely as possible to the given data. This can lead 

to a model that captures noise rather than general patterns. In contrast, Platt scaling applies a 

parametric approach with fewer degrees of freedom, which prevents overfitting by avoiding overly 

complex calibration curves, making it more suitable for smaller sample sizes. 

 

3.5. Evaluation and identification of key features 

To evaluate the model’s performance, independent testing and five-fold cross-validation were 

applied as detailed in Chapter 2. Metrics such as accuracy, sensitivity, specificity, and the AUC were 

utilized to assess the performance of the predictive models. Additionally, Expected Calibration Error 

(ECE)57 was also calculated to assess the calibration performance of the predictive models. ECE 

quantifies the difference between the predicted probabilities and the observed outcomes, providing 

an indication of how well the predicted probabilities align with the actual likelihoods of positive 

outcomes. ECE is calculated by dividing the predicted probabilities into 10 bins, calculating the 

average predicted probability and the fraction of positives within each bin, and then taking a 
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weighted average of the absolute differences between these two values. A lower ECE indicates better 

calibration. 

 

To identify the key features contributing to the model’s predictive outcomes, a frequency analysis 

and coefficient analysis were performed. The frequency analysis was conducted to determine how 

often each feature is selected across cross-validation model. For the coefficient analysis, the ML 

model generates a coefficient map for both cross-validation and the independent test, which 

quantifies the contribution of each feature by analyzing the coefficient values. In the case of cross-

validation, the coefficient values from the five folds were averaged to obtain a representative value 

for each feature. 

 

The process of calculating coefficients for the original features involves transforming the 

coefficients obtained from the logistic regression model, which was trained on principal components 

derived through PCA, back into the original feature space. To map these coefficients back to the 

original feature space, we apply the following transformation: 

 

𝑤𝑜𝑟𝑖𝑔 = 𝑐𝑃𝑇 (1) 

 

Where P represents the matrix of eigenvectors corresponding to the principal components. The 

coefficients C  obtained from the logistic regression indicate the importance of these principal 

components. Through this transformation, the resulting 𝑤𝑜𝑟𝑖𝑔  are mapped back to the selected 

features. 
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3.6. Results 

3.6.1. Impact of domain adaptation 

Table 4 presents the performance of incorporating domain adaptation on the baseline model. 

Without domain adaptation, the model achieved an average cross-validation accuracy of 71.8% ± 

2.3% (95% CI: 68.6-74.9) and an AUC of 0.705 ± 0.055 (95% CI: 0.631-0.779). For the independent 

test dataset, the accuracy and AUC were 73.0% and 0.709, respectively. Incorporating domain 

adaptation led to improvements, with a cross-validation accuracy of 73.3% ± 3.5% (95% CI: 68.7-

78.0) and an AUC of 0.737 ± 0.035 (95% CI: 0.691-0.784). For the independent test dataset, the 

accuracy was 69.0%, and the AUC increased to 0.734. 

 

To further demonstrate the effect of domain adaptation using CORAL, covariance alignment was 

assessed between the source and target datasets before and after applying CORAL. Before applying 

CORAL, the average covariance values across five folds were calculated as 7.229 ± 1.199. 

Specifically, with significant inconsistencies in Fold 1 (8.715) and Fold 3 (8.227). After applying 

CORAL, the average covariance across all folds was reduced to 0.868 ± 0.093. The independent 

dataset also showed a significant reduction, with the covariance value decreasing from 7.937 to 

0.835. 

 

Table 4. Impact of domain adaptation on model performance in predicting the risk of LRR. The 

highest AUC for each evaluation method is highlighted in bold. 

Models 
Accuracy [%] 

(95% CI) 

Sensitivity [%] 

(95% CI) 

Specificity [%] 

(95% CI) 

AUC 

(95% CI) 

Without 

adaptation 

CV 
71.8±2.3 

(68.6-74.9) 

71.8±4.4 

(65.9-77.7) 

71.7±2.0 

(69.1-74.3) 

0.705±0.055 

(0.631-0.779) 

IND 73.0 55.6 76.8 0.709 

With 

adaptation 

CV 
73.3±3.5 

(68.7-78.0) 

72.6±2.6 

(69.2-76.1) 

73.5±4.5 

(67.5-79.6) 

0.737±0.035 

(0.691-0.784) 

IND 69.0 66.7 69.5 0.734 

Abbreviations: 95% CI, 95% confidence interval; AUC, area under the receiver operating 

characteristic curve; CV, cross-validation; IND, independent test 
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3.6.2. Comparison of different feature selection techniques 

Table 5 demonstrates the impact of different feature selection techniques, including filter, 

embedded, and wrapper methods, on the baseline model incorporating domain adaptation. The 

wrapper method, specifically RFE, demonstrated the best performance among the three feature 

selection methods. 

 

For the cross-validation results, the model with the wrapper method achieved an average accuracy 

of 73.3% ± 3.5% (95% CI: 68.7-78.0) and an AUC of 0.737 ± 0.035 (95% CI: 0.691-0.784). For the 

independent test dataset, the wrapper method achieved the highest AUC of 0.734, although its 

accuracy of 69.0% was not the highest among the three methods. 

 

The filter method, using the Select K Best approach, achieved an average cross-validation 

accuracy of 66.9% ± 4.1% (95% CI: 61.5-72.4) and an AUC of 0.684 ± 0.032 (95% CI: 0.642-0.727), 

while the embedded method, utilizing LASSO, achieved an average cross-validation accuracy of 

64.4% ± 2.6% (95% CI: 64.0-70.9) and an AUC of 0.666 ± 0.020 (95% CI: 0.639-0.693). For the 

independent test dataset, the filter method achieved an accuracy of 72.0% and an AUC of 0.673, 

while the embedded method produced an accuracy of 78.0% and an AUC of 0.692. However, both 

methods demonstrated significantly lower sensitivity compared to the wrapper method and resulted 

in lower AUC. 
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Table 5. Comparison of different feature selection techniques in predicting the risk of LRR. The 

highest AUC for each evaluation method is highlighted in bold. 

Models 
Accuracy [%] 

(95% CI) 

Sensitivity [%] 

(95% CI) 

Specificity [%] 

(95% CI) 

AUC 

(95% CI) 

Filter 
CV 

66.9±4.1 

(61.5-72.4) 

58.8±10.5 

(44.7-72.9) 

70.0±7.6 

(59.8-80.2) 

0.684±0.032 

(0.642-0.727) 

IND 72.0 38.9 79.3 0.673 

Embedded 
CV 

67.4±2.6 

(64.0-70.9) 

55.3±8.0 

(44.6-66.0) 

71.9±5.4 

(64.6-79.1) 

0.666±0.020 

(0.639-0.693) 

IND 78.0 50.4 84.1 0.692 

Wrapper 
CV 

73.3±3.5 

(68.7-78.0) 

72.6±2.6 

(69.2-76.1) 

73.5±4.5 

(67.5-79.6) 

0.737±0.035 

(0.691-0.784) 

IND 69.0 66.7 69.5 0.734 

Abbreviations: 95% CI, 95% confidence interval; AUC, area under the receiver operating 

characteristic curve; CV, cross-validation; IND, independent test 

Note: All experiments in this table were conducted on the baseline model incorporating domain 

adaptation. 

 

3.6.3. Impact of integration of clinical factors 

Table 6 compares the performance of models trained using radiomics features only with those 

incorporating both radiomics and clinical factors for predicting the risk of LRR. The baseline model 

incorporating domain adaptation with RFE process using only radiomics features achieved an 

average cross-validation accuracy of 73.3% ± 3.5% (95% CI: 68.7-78.0) and an AUC of 0.737 ± 

0.035 (95% CI: 0.691-0.784). For the independent test dataset, the radiomics-only model achieved 

an accuracy of 69.0% and an AUC of 0.734. 

 

When clinical factors were added to the radiomics features, the model showed a slight 

improvement in predictive performance. The integrated model achieved an average cross-validation 

accuracy of 75.6% ± 2.9% (95% CI: 71.7-79.4) and an AUC of 0.757 ± 0.031 (95% CI: 0.715-0.799). 

For the independent test dataset, the integrated model demonstrated an accuracy of 77.0%, with an 

AUC of 0.762, which was slightly higher than the radiomics-only model. 
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Table 6. The numerical performance of radiomics only model and those integrating both radiomics 

and clinical factors for predicting the risk of LRR. The highest AUC for each evaluation method is 

highlighted in bold. 

Models 
Accuracy [%] 

(95% CI) 

Sensitivity [%] 

(95% CI) 

Specificity [%] 

(95% CI) 

AUC 

(95% CI) 

Radiomics 

Only 

CV 
73.3±3.5 

(68.7-78.0) 

72.6±2.6 

(69.2-76.1) 

73.5±4.5 

(67.5-79.6) 

0.737±0.035 

(0.691-0.784) 

IND 69.0 66.7 69.5 0.734 

Radiomics 

+ Clinical 

factors 

CV 
75.6±2.9 

(71.7-79.4) 

73.8±2.7 

(70.2-77.4) 

76.1±3.1 

(72.0-80.3) 

0.757±0.031 

(0.715-0.799) 

IND 77.0 66.7 79.3 0.762 

Abbreviations: 95% CI, 95% confidence interval; AUC, area under the receiver operating 

characteristic curve; CV, cross-validation; IND, independent test 

Note: All experiments in this table were conducted on the baseline model incorporating domain 

adaptation with RFE process. 

 

Figure 5 and Figure 6 illustrate the calibration curves for the models trained with radiomics 

features only (Figure 5) and those integrating both radiomics and clinical factors (Figure 6), 

respectively. For the cross-validation results, the radiomics-only model showed substantial 

variability among different folds (ECE values ranging from 0.067 to 0.150), especially at higher 

predicted probability ranges. In contrast, the model integrating both radiomics and clinical factors 

exhibited better calibration consistency across all folds (ECE values ranging from 0.051 to 0.109), 

suggesting a more robust performance across different subsets of data. For the independent test 

dataset, the radiomics-only model demonstrated better overall calibration, as indicated by a lower 

ECE value compared to the model integrating both radiomics and clinical factors. However, the 

radiomics-only model exhibited slight miscalibration in the predicted probability range of 0.5 to 0.8, 

where it showed to overestimate the actual risk of LRR. In contrast, the model integrating both 

radiomics and clinical factors, despite having a slightly higher overall ECE, showed improved 

calibration in the higher predicted probability range (0.8–1.0). 
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Figure 5. Calibration curves for the predictive model using radiomics features only, evaluated with 

cross-validation and independent test datasets. The dashed 45-degree line represents perfect 

calibration, where predicted probabilities match observed outcomes. Calibration curves for the five 

cross-validation folds (Fold 1-5) are shown with different markers (circle, star, triangle, diamond, 

and cross), while the solid black line with square markers represents the calibration curve for the 

independent test dataset. 
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Figure 6. Calibration curves for the predictive model integrating both radiomics features and clinical 

factors, evaluated using cross-validation and independent test datasets. Calibration curves for the 

five cross-validation folds (Fold 1-5) are shown with different markers (circle, star, triangle, 

diamond, and cross), while the solid black line with square markers represents the calibration curve 

for the independent test dataset. 
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3.6.4. Impact of model calibration 

Table 7 presents the performance of the models trained with radiomics features only and those 

integrating radiomics with clinical factors, without calibration for predicting the risk of locoregional 

recurrence (LRR). These results were compared against the models with calibration, as presented in 

Table 6, to highlight the impact of model calibration on predictive performance. 

 

For the radiomics-only model without calibration, the average cross-validation accuracy was 71.0% 

± 1.5% (95% CI: 69.1-73.0), with an AUC of 0.725 ± 0.045 (95% CI: 0.664-0.786). In comparison, 

the calibrated radiomics-only model (Table 6) achieved a higher accuracy of 73.3% ± 3.5% (95% 

CI: 68.7-78.0) and an AUC of 0.737 ± 0.035 (95% CI: 0.691-0.784) during cross-validation. For the 

independent test dataset, the uncalibrated radiomics-only model achieved an accuracy of 77.0% and 

an AUC of 0.680, which were lower compared to the calibrated model’s performance of 69.0% 

accuracy and an AUC of 0.734.  

 

For the integrated model that integrated both radiomics and clinical factors, calibration positively 

impacted model performance. The uncalibrated model's average cross-validation accuracy was 74.7% 

± 3.2% (95% CI: 70.4-79.0), with an AUC of 0.734 ± 0.050 (95% CI: 0.667-0.801). In comparison, 

the calibrated integrated model (Table 6) achieved a cross-validation accuracy of 75.6% ± 2.9% (95% 

CI: 71.7-79.4) and an AUC of 0.757 ± 0.031 (95% CI: 0.715-0.799). For the independent test dataset, 

the uncalibrated integrated model had an accuracy of 78.0% and an AUC of 0.698, whereas the 

calibrated model improved to an accuracy of 77.0% and an AUC of 0.762. 

 

The p-values for the differences in AUC between the models with and without calibration indicate 

no statistically significant differences under cross-validation (p = 0.381 for the radiomics-only 

model and p = 0.361 for the integrated model). Although the p-values did not indicate statistical 

significance, calibration appeared to slightly improve the AUC and accuracy for both models. 
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Table 7. The numerical performance of radiomics only model those integrating both radiomics and 

clinical factors without calibration for predicting the risk of LRR. The highest AUC for each 

evaluation method is highlighted in bold. 

Models 

without calibration 

Accuracy [%] 

(95% CI) 

Sensitivity [%] 

(95% CI) 

Specificity [%] 

(95% CI) 

AUC 

(95% CI) 

Radiomics 

Only 

CV 
71.0±1.5 

(69.1-73.0) 

59.5±4.7 

(53.2-65.7) 

74.6±1.6 

(72.5-76.8) 

0.725±0.045 

(0.664-0.786)1 

IND 77.0 38.9 85.4 0.680 

Radiomics 

+ Clinical 

factors 

CV 
74.7±3.2 

(70.4-79.0) 

61.9±7.9 

(51.3-72.5) 

78.7±2.5 

(75.3-82.1) 

0.734±0.050 

(0.667-0.801)2 

IND 78.0 44.4 85.4 0.698 

Abbreviations: 95% CI, 95% confidence interval; AUC, area under the receiver operating 

characteristic curve; CV, cross-validation; IND, independent test 

Note: All experiments in this table were conducted on the baseline model incorporating domain 

adaptation with the RFE process, but without calibration. 

1, 2 p-values (0.381 and 0.361, respectively) represent the statistical significance of the differences 

in AUC between the models with calibration and those without calibration. 

 

Figure 7 and Figure 8 illustrate the calibration curves for the models trained with radiomics 

features only and those integrating both radiomics and clinical factors, respectively, for uncalibrated 

models. Compared to the calibrated models depicted in Figure 5 and Figure 6, the uncalibrated 

models show greater deviations from the perfectly calibrated line.  

 

For the uncalibrated radiomics-only model (Figure 7), ECE values ranged from 0.094 to 0.227 

across cross-validation folds, with 0.218 for the independent test dataset. For the uncalibrated model 

integrating both radiomics and clinical factors (Figure 8), ECE values ranged from 0.095 to 0.223 

across folds and 0.194 for the independent test dataset. These values indicate poorer calibration 

compared to the calibrated models shown in Figure 5 and Figure 6, reflecting greater deviations 

from the perfectly calibrated line. 
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Figure 7. Calibration curves for the predictive model using radiomics features only, evaluated using 

cross-validation and independent test datasets, without calibration applied. Calibration curves for 

the five cross-validation folds (Fold 1-5) are shown with different markers (circle, star, triangle, 

diamond, and cross), while the solid black line with square markers represents the calibration curve 

for the independent test dataset. 
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Figure 8. Calibration curves for the predictive model integrating both radiomics features and clinical 

factors, evaluated using cross-validation and independent test datasets, without calibration applied. 

Calibration curves for the five cross-validation folds (Fold 1-5) are shown with different markers 

(circle, star, triangle, diamond, and cross), while the solid black line with square markers represents 

the calibration curve for the independent test dataset. 
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3.6.5. Key features in model decision 

Table 8 lists the radiomics features selected through the RFE process for the baseline models 

incorporating domain adaptation. The table presents information for both the model using only 

radiomics features and the model integrating both clinical factors and radiomics features. Across 

each of the five folds, only features selected at least twice were considered key contributors, with 

14 and 18 features identified as key contributors in the decision-making process for both models. 

For the model using only radiomics features, the selected features were categorized into three 

primary groups: 2 shape-based features, 14 texture-based features, and 2 first-order statistical 

features. In the independent test dataset, 16 features were identified as key contributors, categorized 

into 4 shape-based features, 11 texture-based features, and 1 first-order statistical features. In the 

model integrating both clinical factors and radiomics features, the selected features were categorized 

into four primary groups: 4 shape-based features, 12 texture-based features, 1 first-order statistical 

features, and 2 clinical factors. In the independent test dataset, 16 features were identified as key 

contributors, categorized into 3 shape-based features, 9 texture-based features, 2 first-order 

statistical features, and 2 clinical factors. 

 

Table 8. List of radiomics features (A to Y) and clinical factors (Z and α) selected at least twice 

across the five-fold cross-validation and independent test datasets. The symbols correspond to the 

feature names used in the frequency and coefficient analysis. 

Symbols Feature names 

A Glrlm_RunLengthNonUniformity 

B Glrlm_RunEntropy 

C Shape_SurfaceVolumeRatio 

D Gldm_DependenceNonUniformityNormalized 

E Glszm_GrayLevelNonUniformity 

F Glszm_ZonePercentage 

G Glcm_ClusterTendency 

H Gldm_DependenceEntropy 

I Glszm_SizeZoneNonUniformityNormalized 

J Glcm_MaximumProbability 
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K Glrlm_RunPercentage 

L Gldm_SmallDependenceHighGrayLevelEmphasis 

M Gldm_LargeDependenceEmphasis 

N Firstorder_Range 

O Firstorder_Minimum 

P Gldm_SmallDependeceEmphasis 

Q Shape_LeastAxisLength 

R Glcm_ClusterShade 

S Shape_Flatness 

T Shape_MinorAxisLength 

U Gldm_DependenceVariance 

V Shape_Sphericity 

W Shape_Maximum2DDiameterColumn 

X Glszm_SmallAreaHighGrayLevelEmphasis 

Y Glrlm_ShortRumLowGrayLevelEmphasis 

Z Tumor size 

α Molecular subtypes 
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Figure 9 illustrates the importance of key features in the predictive model using only radiomics 

features by their selection frequency and contribution across the five-fold cross-validation and 

independent test datasets. The bar chart in the top row demonstrates that certain features (symbols 

A to C as described in Table 8) were consistently selected across all five folds. The coefficient 

heatmap in the second row represents that features A and B contributed positively to predicting the 

risk of LRR, whereas feature C contributed negatively. In the independent test dataset, features A, 

B, and C demonstrated similar contributions to those observed in the cross-validation, with features 

A and B having positive contributions and feature C having a negative contribution to predicting 

LRR risk. 

 

 

Figure 9. Feature selection frequency and coefficient analysis of key features in the predictive model 

using radiomics features only, evaluated using five-fold cross-validation and independent test 

datasets. The bar graph shows feature selection frequency, while the coefficient heatmap highlights 

feature importance, with red indicating positive and blue indicating negative contributions to 

predicting the risk of LRR. Feature symbols are detailed in Table 8. 
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Figure 10 illustrates the importance of key features in the predictive model that integrates both 

radiomics features and clinical factors, highlighting their selection frequency and contributions 

across the five-fold cross-validation and the independent test datasets. The bar chart in the top row 

highlights features A, B, and C (Table 8) consistently selected across all five folds. Features A and 

B contributed positively to predicting LRR, while feature C contributed negatively. In the bottom 

row, the coefficient heatmap for the independent test dataset indicates that features A, B, and C 

demonstrated similar contributions to those observed in the cross-validation, with features A and B 

contributing positively and feature C contributing negatively to predicting LRR risk. For the clinical 

factors, tumor size (Z) and molecular subtypes (α) were selected in both cross-validation and 

independent test datasets, with inconsistent selection across folds in cross-validation but consistent 

selection in the independent test dataset. 

 

 

Figure 10. Feature selection frequency and coefficient analysis of key features in the predictive 

model integrating radiomics and clinical factors, evaluated using five-fold cross-validation and 
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independent test datasets. The bar graph shows feature selection frequency, while the coefficient 

heatmap highlights feature importance, with red indicating positive and blue indicating negative 

contributions to predicting the risk of LRR. Feature symbols are detailed in Table 8. 

 

Table 9 presents the univariable analysis results for key features across the five-fold cross-

validation and the independent test dataset, focusing on whether the odds ratio (OR) values are 

greater than or less than 1. Symbol A and B consistently showed OR values greater than 1, indicating 

an increased risk of LRR. Symbol C, in contrast, showed OR values less than 1 across all datasets, 

suggesting a risk reduction. 
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Table 9. Univariable analysis results for key features across cross-validation folds and the 

independent test dataset. P-values less than 0.05 are highlighted in bold. 

Features OR (95% CI) P value 

Symbol A   

  Fold 1 1.002 (0.999-1.004) 0.146 

  Fold 2 1.001 (0.999-1.003) 0.242 

  Fold 3 1.002 (1.000-1.005) 0.039 

  Fold 4 1.002 (1.000-1.004) 0.107 

  Fold 5 1.003 (1.001-1.005) 0.016 

  Independent test dataset 1.004 (1.001-1.006) 0.002 

Symbol B   

  Fold 1 1.770 (0.865-3.623) 0.118 

  Fold 2 11.502 (3.234-40.909) 0.001 

  Fold 3 2.219 (1.068-4.609) 0.033 

  Fold 4 5.483 (1.771-16.980) 0.003 

  Fold 5 4.152 (1.552-11.108) 0.005 

  Independent test dataset 5.583 (1.571-19.838) 0.008 

Symbol C   

  Fold 1 0.323 (0.044-2.382) 0.268 

  Fold 2 0.001 (0.001-0.037) 0.001 

  Fold 3 0.060 (0.005-0.703) 0.025 

  Fold 4 0.003 (0.001-0.098) 0.001 

  Fold 5 0.027 (0.002-0.430) 0.011 

  Independent test dataset 0.023 (0.001-0.443) 0.013 

Abbreviations: OR, odd ratio; 95% CI, 95% confidence interval; Symbol A, 

Glrlm_RunLengthNonUniformity; Symbol B, Glrlm_RunEntropy; Symbol C, 

Shape_SurfaceVolumeRatio. 
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3.7. Discussion and conclusion 

This study aimed to develop and validate an accurate predictive model for the risk of LRR in 

breast cancer patients. The baseline model, a foundational model developed in Chapter 2, was 

constructed using radiomics features extracted from T2-weighted fat-suppressed MRI sequences. 

However, it encountered challenges such as suboptimal performance and the inability to provide 

insights into key contributing features. In this chapter, enhancements to the model were made to 

optimize predictive performance, identify key contributing features, and ensure its robustness and 

generalizability across diverse datasets. 

 

To comprehensively evaluate the factors contributing to the predictive performance of the model 

for LRR risk, several enhancement strategies were implemented and assessed against the baseline 

model. These enhancement strategies, including domain adaptation, feature selection techniques, 

clinical factor integration, and model calibration, were employed to optimize predictive performance 

and reliability. The best-performing model was developed by enhancing the baseline model through 

the incorporation of domain adaptation, the RFE process, and the integration of clinical factors, 

resulting in an average AUC of 0.757 for five-fold cross-validation and an AUC of 0.762 for the 

independent test dataset. Furthermore, the application of model calibration improved the reliability 

of predicted probabilities, as the AUC increased from 0.734 to 0.757 for cross-validation and from 

0.698 to 0.762 for the independent test dataset, showing a closer alignment between predicted and 

actual risk. These results indicate that these enhancements contributed to a more robust and reliable 

model, demonstrating potential for clinical application. 

 

In this study, several radiomics features were consistently identified as positive contributors to 

LRR risk prediction across both the five-fold cross-validation and independent test datasets, in 

models using only radiomics features as well as those integrating clinical factors. Specifically, 

Glrlm_RunLengthNonUniformity (Symbol A) and Glrlm_RunEntropy (Symbol B)58 were 

consistently recognized as significant positive contributors to LRR risk in both the five-fold cross-

validation and independent test datasets. These features, which capture the heterogeneity and 

complexity of tumor texture, may be crucial for understanding tumor aggressiveness and its 

likelihood of recurrence. Both features are derived from the Gray Level Run Length Matrix 

(GLRLM), a texture analysis technique that quantifies the occurrence of consecutive pixels with the 
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same intensity level in a specific direction.59 Essentially, GLRLM provides information about the 

distribution of homogeneous runs of gray levels, which can describe the structural complexity and 

uniformity of a tumor. Symbol A reflects the variability in the length of homogeneous runs within 

the tumor, with higher values indicating greater heterogeneity. Similarly, Symbol B measures the 

randomness in the texture, where higher values are associated with increased complexity and 

irregularity within the tumor structure. These features represent the heterogeneous texture of the 

tumor, and previous studies have shown that such heterogeneity is often associated with poor 

treatment outcomes.40,41,60  

 

In contrast, a feature representing the ratio between the surface area and volume of the tumor 

(Shape_SurfaceVolumeRatio, Symbol C)61 was consistently identified as a negative contributor to 

LRR risk across both the five-fold cross-validation and independent test datasets, in models using 

only radiomics features as well as those integrating clinical factors. Lower values of this feature 

generally indicate that the tumor is more compact, while higher values suggest that the tumor is 

more irregular or elongated. The finding that lower Symbol C values may be linked to a higher risk 

of recurrence, possibly reflecting a tumor morphology that is more likely to recur due to being less 

responsive to surgery or radiotherapy.  

 

In the integrated model incorporating clinical factors, tumor size (Symbol Z) emerged as a 

positive contributor to LRR risk across all folds, in addition to radiomics features, except for Fold 

1. This suggests that larger tumor size may be associated with a higher risk of recurrence, reflecting 

its recognized significance as a prognostic factor in the risk of LRR. Similarly, molecular subtypes 

(Symbol α) also did not contribute consistently across all folds but showed positive contributions in 

Folds 1 to 2, indicating that more aggressive pathological features like IDC may correlate with an 

increased likelihood of recurrence in certain subsets of the dataset. These highlight the potential 

added value of clinical factors in complementing radiomics features for a more comprehensive risk 

prediction model. 

 

To further support these findings, univariable analysis was conducted for key features across the 

cross-validation folds and the independent test dataset. For Symbol A, the OR consistently exceeded 

1 across the folds, indicating an increased risk of LRR. The independent test dataset showed a 
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particularly significant OR of 1.004 (95% CI: 1.001-1.006, p = 0.002). This suggests that Symbol A 

is positively associated with the risk of LRR. For Symbol B, the OR varied across the folds, with a 

particularly high OR of 11.502 (95% CI: 3.234-40.909, p = 0.001) in Fold 2. The independent test 

dataset also revealed a significant OR of 5.583 (95% CI: 1.571-19.838, p = 0.008), supporting a 

strong positive association between Symbol B and LRR risk. For Symbol C, the OR consistently 

remained below 1 across the folds, suggesting a potential inverse relationship with LRR risk. The 

independent test dataset further supported this inverse association, with an OR of 0.023 (95% CI: 

0.000–0.443, p = 0.013), indicating a significantly reduced likelihood of LRR. 

 

While this study provides meaningful findings, several limitations should be acknowledged. First, 

TNBC is known to have the highest LRR risk among molecular subtypes.38 In this study, no 

statistically significant difference in LRR risk was observed among subtypes, potentially due to the 

limited sample size and variability in treatment regimens. However, in real-world settings, the use 

of pembrolizumab based on KEYNOTE-522 has been shown to improve pathologic complete 

response rates in TNBC patients receiving neoadjuvant therapy, which may subsequently reduce 

LRR risk.39 Importantly, this study did not include patients treated with pembrolizumab, 

highlighting the need for further studies to incorporate such patients into the modeling process. 

Second, while this study integrated clinical factors alongside radiomics features to enhance the 

model's predictive capability, there is potential for further exploration of other potential data sources. 

For instance, directly using MRI scans through convolutional neural networks (CNNs) could provide 

a more comprehensive assessment of tumor characteristics. CNNs are capable of capturing intricate 

spatial features from imaging data that may not be captured by manually defined radiomics features, 

thereby providing an additional layer of valuable information. Lastly, while Institution 2 was 

designated as the independent test set, data from Institutions 1, 3, and 4 were not utilized for 

independent testing because they were included in the training dataset to ensure sufficient sample 

size for model development. While this approach was necessary to address the limited number of 

LRR cases, it restricted the evaluation of the model's generalizability across multiple unseen 

institutions, potentially reducing the robustness of the findings. Further studies should include a 

larger registry with more LRR cases to strengthen the model’s training foundation and address 

limitations in sample diversity.  
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4. CONCLUSION 

 

In this study, we have proposed a predictive model leveraging radiomics features extracted from 

T2-weighted MRI images with fat suppression to predict the risk of LRR in breast cancer patients. 

By incorporating multi-institutional patient registries, we improved the robustness of the model. The 

study introduced a foundational baseline model in Chapter 2 and subsequently enhanced its 

performance in Chapter 3 through strategies such as domain adaptation, different feature selection 

techniques, integration of clinical factors, and model calibration. These enhancements resulted in 

improved predictive performance, with the best-performing model achieving an average AUC of 

0.757 in cross-validation and 0.762 for the independent test dataset, demonstrating potential for 

clinical application. 

 

This study also highlighted specific texture features that reflect tumor heterogeneity and 

complexity as key contributors to the risk of LRR. Integrating clinical factors, such as tumor size 

and molecular subtypes, with radiomics features further enhanced the model's interpretability and 

predictive performance. These findings demonstrate the significance of texture features and clinical 

factors to achieve a more accurate and comprehensive understanding of risk factors, thereby 

contributing to improvements in the model's overall predictive capability. 

 

However, the sample size in this study, particularly for high-risk subgroups like TNBC, was 

insufficient to comprehensively evaluate subtype-specific LRR risks. The absence of patients treated 

with modern therapies, such as pembrolizumab for TNBC, may limit the model's applicability to up-

to-date treatment approaches.  

 

In conclusion, this study leverages multi-institutional registries to establish a foundational 

baseline predictive model for assessing LRR risk in breast cancer patients. Several enhancements 

were subsequently investigated to optimize the model's performance, and key features contributing 

to LRR risk were identified. To further validate the proposed model’s predictive performance, 

prospective datasets should be analyzed in future studies.  
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Abstract in Korean 

 

유방보존치료 후 유방암 국소 재발을 예측하기 위한 다기관 

레지스트리를 활용한 학습 기반 모델 개발 

 

 

목적: 방사선 치료는 수술과 함께 유방보존치료를 가능하게 하는 필수적인 

치료법이다. 그러나 일부 환자에서 국소 재발(LRR)이 발생하여 유방 보존이 실패할 

수 있다. 본 연구는 다기관 레지스트리에서 추출한 라디오믹스 특징을 통합하여 

유방암 환자의 LRR 위험을 예측하는 기계 학습 모델을 개발하고 검증하는 것을 

목표로 하였다. 단일 자기공명영상(MRI) 시퀀스(T2 가중 지방 억제)를 활용하고 

LRR 위험과 관련된 주요 특징들을 식별함으로써, 본 연구는 LRR 위험 예측 모델의 

견고성과 임상 적용 가능성을 높여 개인 맞춤형 치료 계획 수립에 기여하고자 한다. 

 

방법: 다기관 레지스트리를 기반으로 352명의 유방암 환자 데이터를 후향적으로 

수집하고 분석하였다. 데이터셋은 T2 가중 지방 억제 MRI 스캔, 수동으로 윤곽을 

그린 유방 종양, 및 진단 시 연령, 종양 크기, 병리학적 특성, 분자 아형 등의 임상적 

요인으로 구성되었다. 종양 윤곽은 각 기관의 방사선종양학 전문의에 의해 수행되고 

검증되었다. 클래스 불균형 문제를 해결하기 위해 오버샘플링 기법을 포함한 다양한 

데이터 샘플링 방법을 탐색하고 평가하였으며, 최종적으로 균형 잡힌 모델 개발을 

위해 LRR 환자와 LRR 발생하지 않은 환자를 각각 동일한 비율로 포함한 샘플을 

무작위로 선택하여 모델 개발에 사용했다. 라디오믹스 특징으로는 수동으로 윤곽을 

그린 관심 영역(ROIs)에서 추출된 형태 기반, 일차 통계, 텍스처 특징들이 포함되어 

있고, 특징 추출 과정에서 MRI 스캔 정규화가 모델 성능에 미치는 영향이 

평가되었다. 기계 학습 모델은 특징 선택 기법들과 주성분 분석(PCA)을 사용하고 

로지스틱 회귀를 분류기로서 사용하여 개발하였다. 또한, 모델 성능을 향상시키기 

위해 도메인 적응(domain adaptation) 기법을 적용하였으며, LRR 위험과 관련된 

임상적 요인과 라디오믹스 특징을 통합한 모델을 개발하여 서로 다른 데이터 유형을 

결합했을 때의 추가적인 예측 가치를 평가하였다. 모델의 성능은 5-fold 교차 검증 

및 독립적인 테스트 데이터셋을 사용하여 평가되었으며, 확률 추정의 정확성을 

향상시키기 위해 칼리브레이션을 적용하였다. 

 

결과: MRI 스캔 정규화를 적용하고, 래퍼(wrapper) 방식의 재귀적 특징 
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제거(Recursive Feature Elimination, RFE)를 활용한 특징 선택을 수행하며, 

라디오믹스 특징과 임상적 요인을 모두 입력으로 포함했을 때 최고의 성능이 

달성되었다. 이러한 조건에서 모델은 교차 검증에서 평균 AUC 0.757 (95% 신뢰 

구간, 0.715-0.799)을, 독립적인 테스트 데이터셋에서 AUC 0.762를 달성하였다. 

 

결론: 본 연구에서는 유방암 환자의 LRR 위험을 예측하기 위해 라디오믹스 특징과 

LRR 위험과 관련된 임상적 요인을 통합한 예측 모델을 개발하였다. 연구 결과, 

비침습적 바이오마커로서 라디오믹스는 임상적 요인과 결합될 때 개인 맞춤형 위험 

평가를 향상시킬 가능성을 보여주었다. 본 모델의 예측력을 추가로 검증하기 위해 

향후 전향적 데이터셋을 활용한 분석이 필요하다. 

 

 

_______________________________________________________________________________ 
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