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ABSTRACT

Predicting locoregional recurrence in breast cancer following breast-
conserving therapy using learning-based models with multi-
institutional registries

Purpose: Radiotherapy (RT), alongside surgery, is an essential component that consists of breast-
conserving therapy. However, in a small percentage of patients, locoregional recurrence (LRR) may
occur, leading to achieving the purpose of treatment. This study aims to develop and validate a
machine learning (ML) model that incorporates radiomics features from multi-institutional registries
to predict the risk of LRR in breast cancer patients. By utilizing a single magnetic resonance imaging
(MRI) sequence (T2-weighted with fat suppression) and identifying the key features associated with
risk of LRR, this study seeks to enhance the robustness and clinical applicability of LRR risk

predictive models for personalized treatment planning.

Methods: A multi-institutional registry of 352 breast cancer patients was retrospectively collected
and analyzed. The dataset comprised diagnostic T2-weighted MRI scans with fat suppression,
manually delineated primary breast tumors, and clinical factors such as age at diagnosis, tumor size,
pathology, and molecular subtypes. The delineation was performed and confirmed by board-
certified radiation oncologists at each institution. To address class imbalance, various data sampling
methods, including oversampling techniques, were explored and evaluated. Ultimately, a balanced
subset was randomly selected to address class imbalance and ensure equal representation of LRR
and non-LRR cases during model development. Radiomics features, including shape, first-order
statistics, and texture, were extracted from manually contoured regions of interest (ROIs). During
feature extraction, the impact of MRI scan normalization on model performance was also assessed.
A machine learning model was developed using feature selection techniques and principal
component analysis (PCA), with logistic regression as the classifier. A domain adaptation technique
was employed to improve model performance. Additionally, a model incorporating both radiomics

features and clinical factors known to be associated with the risk of LRR was developed to evaluate

Vi



the added predictive value of combining different data types. The model’s performance was
evaluated using five-fold cross-validation and an independent test dataset, with calibration applied
to improve the accuracy of probability estimates.

Results: The model achieved the best performance when MRI scan normalization was applied,
feature selection was performed using a wrapper method (Recursive Feature Elimination, RFE), and
both radiomics features and clinical factors were included as inputs. Under these conditions, the
model achieved an average AUC of 0.757 (95% confidence interval, 0.715-0.799) for cross-
validation and 0.762 for the independent test dataset.

Conclusion: In this study, a predictive model for the risk of LRR in breast cancer patients was
developed by integrating radiomics features with clinical factors known to be associated with LRR
risk. The findings suggest that radiomics, as a non-invasive biomarker, could contribute to enhancing
personalized risk assessment when integrated with clinical factors. To further validate the proposed

model’s predictive power, prospective datasets should be analyzed in future studies.

Key words : locoregional recurrence, breast cancer, breast-conserving therapy, machine learning,
radiomics
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1. INTRODUCTION

1.1. Radiotherapy

Radiotherapy (RT) is one of essential modalities in the treatment of a range of cancers, as well
as surgery and chemotherapy* The fundamental principle of RT is to induce DNA damage within
malignant tissues by ionizing radiation, thereby inhibiting the ability of these cells to proliferate and
ultimately leading to their elimination.>® To achieve this, RT relies on the precise delivery of

ionizing radiation directed to the tumor, minimizing exposure to surrounding normal tissues.

Advancements in RT techniques have significantly enhanced its precision and efficacy. These
advancements include techniques such as Intensity-Modulated Radiotherapy (IMRT), Image-
Guided Radiotherapy (IGRT), and Stereotactic Body Radiotherapy (SBRT), which enable highly
targeted radiation delivery, effectively sparing adjacent normal tissues and minimizing side
effects.*> These advancements have enabled RT to effectively manage localized tumors while also
addressing the challenges of advanced-stage cancers, improving treatment outcomes across diverse

cancer types.

RT is often combined with other treatments to improve overall efficacy. For instance, recent
advancements have highlighted the potential of combining RT with immunotherapy, leveraging the
immune-activating effects of radiation to enhance systemic tumor control.%” Furthermore,
Chemoradiotherapy (CRT), which refers to the combined use of RT and chemotherapy, has
demonstrated synergistic effects in controlling cervical, head and neck, and gastrointestinal
malignancies, significantly improving survival outcomes compared to either treatment alone.3° In
breast cancer, RT is a key component of Breast-Conserving Therapy (BCT), targeting residual
cancer cells after surgery to minimize recurrence.'® These combinations highlight the adaptability

of RT, enabling it to work effectively alongside other treatments in comprehensive cancer therapy.



1.2. Predictive modeling

Advancements in predictive modeling within radiation oncology have shifted the focus from
generalized, population-based methods to patient-centered approaches. Traditionally, models such
as the linear-quadratic model have provided foundational insights into radiation-induced biological
effects, including dose-response relationships, serving as a foundation for understanding and
optimizing treatment outcomes.!* However, these models were limited in their ability to account for

the intricacies of patient-specific characteristics.

Artificial Intelligence (Al) has emerged as a powerful tool for medical imaging, enabling the
automation of complex tasks such as segmentation, classification, and outcome prediction that have
traditionally been labor-intensive.'>* Among these applications, Al has demonstrated significant
potential in improving prediction models through its ability to efficiently analyze complex, high-
dimensional datasets. One of its key strengths comes from identifying noninvasive patterns within
radiological images, providing valuable insights. By leveraging these patterns, Al-based models
improve our understanding of patient-specific characteristics, ultimately enhancing more precise
and personalized treatment strategies.

1.3. Artificial intelligence and radiomics in predictive modeling

Al-based methods, particularly those using Deep Learning (DL), have demonstrated exceptional
capabilities in automating tasks such as tumor segmentation*? from Magnetic Resonance Imaging
(MRI) scans and predicting clinical outcomes (Figure 1 (A)).%® However, deep learning models often
require extensive labeled datasets and substantial computational resources, making their application
challenging in situations with limited data availability. In contrast, Machine Learning (ML), a subset
of Al, is particularly well-suited for handling smaller datasets, making it more feasible in medical
imaging applications where labeled data is often limited.'>¢ Unlike DL models, which often lack
transparency and provide limited interpretability regarding how they make predictions, ML
techniques are generally more interpretable, offering a clearer understanding of the relationships

between features and predicted outcomes, which is essential for decision-making.t’-°
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Figure 1. Workflow of predictive modeling in medical imaging, highlighting the automated feature

extraction in DL (A) compared to the manual feature extraction and selection process in ML (B).

Radiomics has demonstrated that image-based features can capture subtle variations in tumor
biology that are not easily discernible through traditional clinical assessments.?’ These radiomics
features, extracted from defined Regions of Interest (ROIs) in radiological images like MRI scans,
provide quantitative data that describe tumor characteristics such as intensity, shape, and texture
information that may not be visible to the human perspective. Radiomics offers a way to convert
standard imaging data into mineable information, potentially serving as a non-invasive prognostic
biomarker.?»?> When analyzed using learning-based algorithms, these features have shown
significant potential in predicting outcomes such as risk of recurrence. In the predictive modeling
process (Figure 1 (B)), radiomics features are first preprocessed to ensure consistent scales, followed
by feature selection to retain only the most informative features.?® The processed features are then
used in ML models, like logistic regression, to predict clinical outcomes. This workflow of feature
extraction, feature selection, and modeling allows radiomics to be effectively used for outcome
prediction in clinical settings, providing a non-invasive method for understanding tumor

characteristics.



1.4. Locoregional recurrence in breast cancer

Locoregional Recurrence (LRR), which refers to the recurrence of cancer in the originally treated
breast, chest wall, or nearby lymph nodes.?#2% In a prospective study with a median follow-up time
of 3.5 years, the risk of LRR was reported as 7.0% after mastectomy and 5.4% following Breast-

Conserving Surgery (BCS).%

RT is a fundamental treatment for managing breast cancer, which is one of the most commonly
diagnosed cancers among women worldwide and has shown a steady increase over the past two
decades, particularly in early-stage cases.?” In Korea, breast cancer is the most common cancer
among women, following thyroid cancer, and the incidence of early breast cancer has rapidly risen
as a result of advancements in screening programs and increased public awareness.? Consequently,
BCT, which includes partial mastectomy and RT, has become the standard treatment for early breast

cancer since the 1990s, after studies demonstrated comparable outcomes to total mastectomy.?®

Evidence from the Early Breast Cancer Trialists' Collaborative Group (EBCTCG) meta-analysis
further underscores the critical role of RT in reducing LRR.%® The analysis demonstrated that
reducing four LRR cases through RT could prevent one breast cancer-related death, highlighting the
importance of minimizing recurrence to improve long-term outcomes. Moreover, LRR often
necessitates total mastectomy, making recurrence prevention essential for preserving breast-

conserving strategies and improving patient quality of life.

While RT significantly reduces the risk of LRR, certain patient- and tumor-related factors may
still increase the likelihood of recurrence. Understanding these factors is crucial in optimizing
treatment strategies and developing personalized treatment plans for patients at higher risk of
recurrence. A number of factors have been shown to influence the risk of LRR, including patient
age, tumor characteristics, and molecular subtypes.3*> Age at diagnosis has been found to be a
significant factor, with younger patients more likely to experience recurrence, which may be
attributed to more aggressive tumor biology in this demographic.33 Tumor size is also crucial,
larger tumors are generally associated with higher recurrence rates, as they are correlated with more

advanced stages of the disease.®® Additionally, pathology and nodal involvement are significant



indicators of a tumor's aggressiveness.3* Molecular subtypes are defined based on hormone receptor
status and other biological markers, which influence the risk of LRR.% Traditionally, luminal-type
breast cancer has been associated with a low risk of LRR, while HER2-positive subtypes historically
presented a higher risk.®® However, with the advent of anti-HER2 therapies, such as trastuzumab,
the LRR rates in HER2-positive patients have significantly decreased.®” On the other hand, triple-
negative breast cancer (TNBC) has been identified as having the highest risk of LRR due to its
aggressive nature and limited treatment options.® Recently, the use of immuno-oncologic agents,
such as pembrolizumab, in TNBC has shown a trend toward reduced LRR, reflecting advancements

in targeted treatment approaches.

1.5. Previous studies and current research goals

Several recent studies have explored the potential of using image-derived features from primary
breast tumors to predict clinical outcomes.**#! Kim, JH. et al.*° conducted a study on breast cancer
heterogeneity using MRI texture analysis, which demonstrated that texture features, such as lesion
heterogeneity, could serve as independent prognostic markers. This study suggested that quantifying
tumor heterogeneity through texture analysis offers insights into variations in tumor biology that
may not be visible through conventional imaging, ultimately helping to predict survival outcomes.
Other studies conducted by Park, H. et al.** highlighted the utility of radiomics features for
predicting disease-free survival (DFS) in patients with invasive breast cancer. They developed a
radiomics nomogram that incorporated texture features and clinicopathological variables. The study

demonstrated that radiomics features were highly associated with DFS.

This current study aims to develop and validate a predictive model for the risk of LRR in breast
cancer patients. Specific ML techniques, such as domain adaptation, are employed to improve
feature alignment and ensure consistent model performance. Additionally, clinical factors were
integrated with radiomics features to provide a more comprehensive input for the ML model,
enhancing the understanding of LRR risk. These advanced ML algorithms are employed to identify

key features associated with the risk of LRR.



2. Baseline predictive model development

2.1. Introduction

Locoregional recurrence remains a critical challenge in the management of breast cancer. Despite
the effectiveness of BCT including radiotherapy, it still fails to prevent LRR in some patients, which
negatively impacts overall survival and quality of life. These challenges underline the need for

accurate predictive models for risk of LRR in breast cancer patients.

The development of a predictive model for risk of LRR in breast cancer patients represents a
significant step forward. Predictive models, particularly those utilizing radiomics features derived
from imaging data, appear to hold potential in capturing tumor heterogeneity and identifying factors

associated with recurrence.

In our previous study“?, a radiomics-based ML model was developed to predict LRR risk using
data from a single registry and multiple MRI sequences. While this model demonstrated potential in
predicting LRR in breast cancer patients, it was limited by its reliance on a single registry, reducing
generalizability, and by the need for multiple imaging sequences, which increased the complexity
of data acquisition in clinical practice. These limitations underscore the need for a model that is both

more generalizable and clinically practical.

Expanding on our previous work, this chapter aims to integrate multi-institutional patient
registries to develop the baseline predictive model. Radiomics features derived from a single MRI
sequence, specifically T2-weighted fat-suppressed images, were utilized to improve and optimize

the prediction process.



2.2. Multi-institutional patient registries
This study was conducted as part of the Korean Radiation Oncology Group (KROG 22-06)

clinical research project, approved by the Korean Society of Radiation Oncology. A total of 455
patients with breast cancer through diagnostic breast MRI scans were initially retrospectively
collected. Of these, 352 patients from registries of four different institutions were ultimately
included in the analysis after excluding cases for the following reasons: (1) the lack of access to raw
MRI scans, which were required for consistent extraction and preprocessing of radiomics features,
and (2) incompatible MRI sequences that did not meet the study requirements. Specifically,
Institution 1 contributed 114 patients (28 LRR / 86 non-LRR), Institution 2 contributed 100 patients
(18 LRR /82 non-LRR), Institution 3 contributed 88 patients (37 LRR /51 non-LRR), and Institution
4 contributed 50 patients (1 LRR / 49 non-LRR). The study was approved by the Institutional
Review Board of Severance Hospital (4-2024-1225), Yonsei University College of Medicine, Seoul,

Korea. The requirement for informed consent was waived due to the retrospective nature of the study.

The entire dataset consisted of 84 LRR and 268 non-LRR cases. As illustrated in Figure 2, two
different approaches were utilized to evaluate the model’s predictive performance. In the Figure 2
(A) approach, Institution 2 was designated as an independent test set, while the remaining data from
Institutions 1, 3, and 4 were used for model training. This setup allowed for the evaluation of the
model's ability to generalize to data from an unseen institution. In the Figure 2 (B) approach, a 5-
fold cross-validation was performed using the entire dataset, ensuring that each fold served as a test
set while the remaining folds were used for training. This method provided an average evaluation of
the model's performance across all data.
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Figure 2. Overview of dataset composition and evaluation approaches for predicting the risk of LRR

with multi-institutional patient registries.

As shown in Figure 2 (C), different sampling methods were applied to handle the class imbalance,
including original distribution, over-sampling, and balanced-sampling techniques. These sampling
methods were applied only to the training set in all evaluation approaches and were assessed to
determine their impact on the model’s predictive performance. For over-sampling, synthetic samples
were generated using the SMOTE (Synthetic Minority Oversampling Technique)* method to
increase the number of LRR cases. As another approach, non-LRR cases were randomly selected to

match the number of LRR cases, resulting in a balanced dataset.

The entire dataset included three key types of information, which were diagnostic breast MRI
scans utilizing the T2-weighted with fat-suppressed sequence, the manual delineation of ROlIs for
primary breast tumors, and several clinical factors, including age at diagnosis, tumor size, pathology,
and molecular subtypes. The manual delineation was performed by one board-certified radiation
oncologist at each institution, and the contours were confirmed by an experienced breast radiation

oncologist at the respective institutions.



2.3. Radiomics features from multi-institutional data

Radiomics features were extracted from MRI scans to quantify the characteristics of breast tissue
relevant to predicting LRR. To account for variations in imaging protocols across different
institutions, a standardized preprocessing pipeline was employed. This included normalizing the
image intensities to achieve a consistent distribution across all datasets and resampling the images
to a uniform voxel spacing of 1x1x1 mm3 thereby ensuring spatial consistency. The impact of
preprocessing on model performance was assessed to determine its effect on improving predictive

accuracy by comparing the model's performance with and without the preprocessing steps.

Manually contoured ROIs were used to define the areas of the breast from which features were
extracted. The ROIs were processed to create binary masks, which were then applied to the
normalized and resampled images. From the processed images, a comprehensive set of 107
radiomics features was extracted for each case, including shape, first-order statistics, and texture
features. Shape features described the structural characteristics of the ROIls, while first-order
statistics provided insights into the overall intensity distribution within the ROIs. Texture features
captured the spatial arrangement and intensity patterns of voxels within the ROIls, focusing on the

relationships and variations in gray levels, which represent the brightness of the pixels.

2.4. Development of baseline model

With the limited number of samples with known outcomes, ML was chosen over deep learning
for predicting the risk of LRR in breast cancer patients. DL models require large datasets due to their
complexity and risk of overfitting, and often exhibit higher variability in performance when data is
limited. In contrast, ML models like logistic regression are computationally efficient, less prone to
overfitting, and provide greater interpretability, especially in identifying key features associated

with LRR risk, making them more suitable for this study.!%16

The ML model for predicting the risk of LRR in breast cancer patients was constructed using
radiomics features extracted from MRI scans (Figure 3). The baseline model was developed through
a series of steps, including preprocessing, feature normalization, feature selection using the wrapper
method*, dimensionality reduction, and applying a calibration step for the classifier. For

dimensionality reduction, Principal Component Analysis (PCA) was applied to capture the most



informative components while transforming the overall set of features into a lower-dimensional
representation.”® PCA works by transforming the original features into a new set of orthogonal
components that maximize variance, effectively summarizing the data with fewer dimensions while
retaining the most critical information. The processed features were used to train a logistic regression
model, which was subsequently calibrated using Platt scaling to improve the reliability of the
predicted probabilities.*® In the process of developing the baseline model, the impact of
preprocessing and various data sampling methods, including original distribution, over-sampling,

and balanced-sampling, were evaluated to ensure optimal performance.

- Baseline Model

" TN
Entire Dataset Radiomi
Comparing the impact of (84 LRR / 268 non-LRR) " adiomics
. N Features
different sampling methods i 1
v
Original Over Balanced Feature
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without pre-processing steps : i Selection
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—
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Figure 3. The overview for the development of the baseline predictive model, comparing the

application of different sampling methods and preprocessing steps.

10



2.5. Evaluation

To evaluate the model's performance, independent testing and 5-fold cross-validation were
applied as evaluation strategies. For the independent testing, the training set consisted of 252 cases,
including 66 LRR and 186 non-LRR cases, while the independent test set from Institution 2 included
18 LRR and 82 non-LRR cases. For the cross-validation, the entire dataset was divided into five
folds using a stratified split to ensure balanced representation of LRR and non-LRR cases across the
folds. Under the original distribution, folds 1 and 2 consisted of 17 LRR and 54 non-LRR cases.
Fold 3 included 16 LRR and 54 non-LRR cases, while folds 4 and 5 each included 17 LRR and 53
non-LRR cases. For over-sampling, synthetic samples were generated using the SMOTE to increase
the number of LRR cases. In this scenario, folds 1 and 2 contained 64 LRR and 64 non-LRR cases,
and folds 3 and 4 consisted of 63 LRR and 63 non-LRR cases, ensuring an equal representation of
each class within the folds. For balanced sampling, folds 1 and 2 consisted of 17 LRR and 17 non-
LRR cases, while folds 3, 4, and 5 each included 16 LRR and 16 non-LRR cases.

The performance of the predictive model was assessed using multiple metrics, including accuracy,
sensitivity, specificity, and the Area Under the Receiver Operating Characteristic curve (AUC)%, as
defined in Equations (2) through (5).

4 _ TP+ TN 5
CCUracY = TP TN+ FP + FN @
S itivity = N 3
ensttivity = TN + FP ( )
Specificity = TN @
pecificity = N+ FP
1
AUC = f TPR(FPR)d(FPR) (5)
0

Where, TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and

false negatives, respectively. TPR (True Positive Rate) is the proportion of actual positives correctly
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identified by the model, and FPR (False Positive Rate) is the proportion of actual negatives that are

incorrectly identified as positives (calculated as 1 - specificity).

The radiomics features were extracted using Pyradiomics v.3.04” in Python. The ML models
utilized scikit-learn v.0.23.2*% in Python for domain adaptation, normalization, feature selection,
PCA, logistic regression, and calibration. The feature selection process employed an optimal number
of features to select, resulting in the selection of 14 to 18 features out of 107. The number of

components to be retained for PCA was set to ten.

2.6. Results

2.6.1. Patient characteristics

Table 1 presents the clinical characteristics of the multi-institutional patient registries included in
this study. The four institutions contributed diverse patient populations, with median ages ranging
from 48 to 52 years. Invasive ductal carcinoma (IDC) was the predominant pathology across all
institutions, accounting for 75.4% to 98% of cases. Ductal carcinoma in situ (DCIS) and other less
common pathology constituted a smaller proportion, with Institution 1 reporting the highest
percentage of non-IDC cases (14.9%). Regarding tumor size, T1 stage tumors were the most
prevalent across all institutions, with the highest proportion observed in Institution 2 (69%) and
Institution 4 (66%). In contrast, T3 stage tumors were relatively less frequent, with Institution 1
reporting the largest proportion (5.3%) of these larger, more advanced tumors. Nodal involvement
also varied between the institutions. Institution 2 had the highest proportion of patients with NO
status (78%), indicating no regional lymph node involvement, while Institution 1 had the largest
percentage of patients with more advanced nodal involvement (N2 and N3 stages combined, 21.1%).
The distribution of molecular subtypes also showed variation. Luminal A type, which are generally
associated with a more favorable prognosis, were most frequent at Institution 4 (74%), while
Institution 1 had the highest proportion of basal-like tumors (55.3%), a subtype associated with more
aggressive disease. Luminal B, HER2-enriched, and basal-like subtypes were less common across

all institutions, with significant variation between them.
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Table 1. Baseline characteristics of the multi-institutional patient registries

Characteristics Institution 1 Institution 2 Institution 3 Institution 4
(N=114) (N=100) (N=88) (N=50)
Age (years, median [range]) 49 (23-75) 52 (21-86) 48 (44-69) 50 (41-76)
Pathology, n (%)
IDC 86 (75.4) 84 (84) 82(93.2) 49 (98)
DCIS 11(9.7) 3(3) 1(1.1) 0 (0)
Others 17 (14.9) 13 (13) 5(5.7) 1(2)
T stage, n (%)
Tis 25 (21.9) 7(7) 6 (6.8) 0 (0)
T1 51 (44.7) 69 (69) 57 (64.8) 33 (66)
T2 32(28.1) 23 (23) 22 (25) 16 (32)
T3 6 (5.3) 1(2) 3(3.4) 1(2)
N stage, n (%)
NO 66 (57.9) 78 (78) 48 (54.5) 34 (68)
N1 24 (21.0) 18 (18) 22 (25) 13 (26)
N2 14 (12.3) 3(3) 10 (11.4) 3(6)
N3 10 (8.8) 1(1) 8(9.1) 0 (0)
Luminal type, n (%)
A 15 (13.2) 39 (39) 32(36.3) 37 (74)
B 16 (14.0) 31 (31) 22 (25) 7 (14)
HER2-enriched 20 (17.5) 11 (11) 13 (14.8) 2 (4)
Basal-like 63 (55.3) 19 (19) 21 (23.9) 4(8)

Abbreviations: LRR, locoregional recurrence; SMD, standardized mean difference; IDC, invasive

ductal carcinoma; DCIS, ductal carcinoma in situ; HER2, human epidermal growth factor receptor

2.
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2.6.2. Impact of preprocessing during radiomics feature extraction

Table 2 lists the comparison of the predictive model with and without preprocessing during
radiomics feature extraction. The model with preprocessing during radiomics feature extraction
showed a significant improvement in performance compared to the model without preprocessing.
Specifically, the model with preprocessing achieved an average cross-validation accuracy of 71.8%
+ 4.4% (95% CI: 65.9-77.7) and an AUC of 0.705 + 0.055 (95% CI: 0.631-0.779). For the
independent test dataset, the model achieved an accuracy of 73.0% and an AUC of 0.709. In contrast,
the model without preprocessing achieved a lower average cross-validation accuracy of 68.1% +
3.7% (95% Cl: 66.2-70.6) and an AUC of 0.679 £ 0.056 (95% CI: 0.603-0.755). For the independent
test dataset, the model without preprocessing achieved an accuracy of 78.0% and an AUC of 0.663.
Its sensitivity, however, was extremely low at only 16.7%, indicating that the model performed
poorly in identifying positive cases effectively.

Table 2. Baseline model evaluation: impact of preprocessing during radiomics feature extraction.
The highest AUC for each evaluation method is highlighted in bold.

Model Accuracy [%]  Sensitivity [%]  Specificity [%] AUC
ode
(95% CI) (95% CI) (95% CI) (95% CI)
68.1+3.7 63.5+4.4 70.0+1.1 0.679+0.056
Without Ccv
(66.2-70.6) (57.6-69.4) (68.5-71.5) (0.603-0.755)
processing
IND 78.0 16.7 91.5 0.663
71.842.3 71.8+4.4 71.74£2.0 0.705+0.055
With CVv
(68.6-74.9) (65.9-77.7) (69.1-74.3) (0.631-0.779)
processing
IND 73.0 55.6 76.8 0.709

Abbreviations: 95% CI, 95% confidence interval, AUC, area under the receiver operating
characteristic curve; CV, cross-validation; IND, independent test
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2.6.3. Impact of data sampling methods

Table 3 demonstrates the impact of different data sampling methods, including original
distribution, over-sampling, and balanced-sampling, on model performance in predicting the risk of
LRR. When using original distribution, the model achieved an average cross-validation accuracy of
74.8% + 4.6% (95% CI: 68.6-81.0), with a sensitivity of only 25.3% + 8.7% (95% ClI: 13.6-37.0)
and a specificity of 93.0% + 3.7% (95% CI: 87.9-98.0). The AUC for original distribution across
cross-validation was 0.642 + 0.029 (95% CI: 0.603-0.682). The application of over-sampling
improved sensitivity to 52.9% * 3.2% (95% CI: 48.6-57.3), but resulted in a decrease in specificity
to 70.5% + 4.7% (95% CI: 64.2-76.8). The AUC in this case was 0.687 + 0.003 (95% CI: 0.647-
0.727). Balanced-sampling provided the most balanced performance among the three methods,
achieving an average cross-validation accuracy of 71.8% + 2.3% (95% CI. 68.6-74.9), sensitivity of
71.8% + 4.4% (95% CI: 65.9-77.7), and specificity of 71.7% * 2.0% (95% CI: 69.1-74.3). The AUC
for under-sampling was 0.705 + 0.055 (95% CI: 0.631-0.779). For the independent test dataset,
balanced-sampling resulted in the highest AUC of 0.709.

Table 3. Baseline model evaluation: impact of data sampling methods. The highest AUC for each
evaluation method is highlighted in bold.

Model Accuracy [%]  Sensitivity [%]  Specificity [%] AUC
ode
(95% CI) (95% CI) (95% CI) (95% CI)
74.8+4.6 25.3+8.7 93.0+3.7 0.642+0.029
Original Ccv
(68.6-81.0) (13.6-37.0) (87.9-98.0) (0.603-0.682)
distribution
IND 81.0 11.1 97.6 0.633
65.8+3.7 52.9+3.2 70.5+4.7 0.687+0.003
Over- Ccv
(60.8-70.8) (48.6-57.3) (64.2-76.8) (0.647-0.727)
sampling
IND 74.0 44.4 80.5 0.679
71.842.3 71.8+4.4 71.7+£2.0 0.705+0.055
Balanced- Ccv
(68.6-74.9) (65.9-77.7) (69.1-74.3) (0.631-0.779)
sampling
IND 73.0 55.6 76.8 0.709

Abbreviations: 95% CI, 95% confidence interval; AUC, area under the receiver operating
characteristic curve; CV, cross-validation; IND, independent test

Note: This model includes preprocessing during radiomics feature extraction.
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2.7. Discussion and conclusion

The purpose of this study was to develop and validate a predictive model for the risk of LRR in
breast cancer patients using radiomics features. Building on our previous work*?, which relied on a
single-institution registry and required multiple MRI sequences to predict LRR, the current study
constructed a predictive model that leverages radiomics features extracted from a single MRI
sequence, specifically T2-weighted images with fat suppression, and incorporates multi-institutional
patient registries. In this chapter, the aim is to develop a baseline predictive model that addresses
challenges such as multi-institutional variability and class imbalance, providing a foundation for

further advancements in predicting LRR risk.

In developing the baseline predictive model for predicting the risk of LRR, several considerations
were made to optimize the model's predictive performance. One key aspect was preprocessing
during the extraction of radiomics features. This step was essential to mitigate variability resulting
from differing imaging protocols, such as variations in image resolution and intensity across
institutions, thereby ensuring that the radiomics features remained consistent and comparable across
all datasets. Another key consideration was comparing different data sampling techniques to address
the class imbalance between LRR and non-LRR cases. Sampling approaches, including balanced
sampling, over-sampling using SMOTE, and retaining the original distribution, were employed to
assess their impact on the model’s predictive performance. Ultimately, the balanced sampling
approach was selected, as it achieved an average AUC of 0.705 for the five-fold cross-validation
and an AUC of 0.709 for the independent test dataset. In contrast, the original distribution method
yielded lower average AUCs of 0.642 and 0.633, while the over-sampling method achieved 0.687
and 0.679 for the five-fold cross-validation and independent test dataset, respectively. The original
distribution, which retained the inherent class imbalance, likely resulted in the model being biased
towards the majority class, leading to lower sensitivity in predicting LRR cases. Meanwhile, the
over-sampling method using SMOTE demonstrated inherent limitations that may have contributed
to its suboptimal performance. First, SMOTE generates synthetic samples by interpolating between
minority class samples, which can increase existing noise in the original data and reduce the model's
reliability. Second, when the number of minority samples is limited, SMOTE can lead to overfitting.
The generated synthetic data may struggle to capture the intricate underlying data distribution,

thereby limiting the model’s ability to generalize effectively to unseen datasets.
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Despite the development of a foundational baseline predictive model in this chapter, its predictive
performance remains suboptimal, highlighting the need for further enhancement. To improve the
suboptimal performance of the baseline predictive model, it is essential to concentrate not only on
enhancing its performance but also on identifying the key features contributing to the model’s

predictive outcomes.
In conclusion, this chapter establishes a foundational baseline predictive model for LRR risk in

breast cancer patients. By taking into account addressing key challenges such as multi-institutional

variability and class imbalance, the model establishes a foundation for future improvements.
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3. Enhancement strategies for predictive models

3.1. Introduction

Radiotherapy, which effectively reduces recurrence by damaging cancer cells and improving
patient outcomes, is a fundamental component of BCT alongside surgery.?”?° However, some
patients may experience LRR, involving the recurrence of cancer in treated regions, which

undermines the effectiveness of BCT.2425

Accurate prediction of LRR in breast cancer patients is essential for enabling personalized
treatment strategies that improve clinical outcomes. However, prediction models often encounter
challenges such as multi-institutional variability, class imbalance, and the limited ability of features
to capture comprehensive representations. The baseline predictive model developed in Chapter 2
provides a fundamental framework for risk prediction and demonstrates an initial attempt to address

these challenges. However, its suboptimal performance highlights the need for further enhancement.

Enhancing predictive models requires both performance improvement and the identification of
key features contributing to model decisions. Such enhancements are critical for increasing the
interpretability and clinical relevance of the models, as it provides valuable insights into the clinical
determinants of LRR risk and supports interpretability in clinical applications. Furthermore,
predictive models must produce reliable probability estimates to be effectively integrated into

clinical decision-making.

This chapter introduces and evaluates several enhancement strategies aimed at improving the
robustness, performance, and interpretability of LRR prediction models. Through these strategies,
this chapter focuses on enhancing the baseline model, making it more accurate and generalizable
across diverse datasets. These improvements are important for enabling predictive models to be

effectively applied in clinical practice.
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3.2. Multi-institutional patient registries

The multi-institutional patient registries detailed in Section 2.2 were utilized not only for the
baseline predictive model but also for the development and evaluation of enhanced predictive
models. As previously described, the dataset comprised 84 LRR cases and 268 non-LRR cases from

four institutions, providing a diverse and comprehensive representation of populations.

During the development of the baseline model, various conditions were compared and evaluated
to address data diversity and class imbalance. The most effective approach was implemented in the
final baseline model. For this chapter, the training set adjusted through balanced sampling to mitigate

class imbalance was utilized without further modification.

3.3. Radiomics features and clinical factors for model development

Radiomics features extracted from multi-institutional MRI scans, as described in Section 2.3,
were utilized for the development of enhanced predictive models. To ensure consistency across
datasets from different institutions, a standardized preprocessing pipeline, including intensity
normalization and resampling to a uniform voxel spacing of 1x1x1 mm3 was implemented during
the development of the final baseline model. This preprocessing approach was applied in this chapter

without further modification.

To provide a more comprehensive input for the ML model and enhance the understanding of LRR
risk, clinical factors were integrated with radiomics features. These clinical factors, including age at
diagnosis, tumor size, pathology, and molecular subtypes, were extracted from multi-institutional
medical records. They were selected based on evidence from previous studies showing their

significant role in LRR risk.3-%
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3.4. Model enhancement strategies

As illustrated in Figure 4, the evaluation focused on assessing the effectiveness of several
enhancement strategies to improving the predictive performance of the model for LRR risk. This
included comparisons between models with and without domain adaptation, analyzing different
feature selection methods to identify the most effective approach, and evaluating the impact of
integrating clinical factors. Additionally, the role of model calibration in improving the reliability

of probability estimates and performance was assessed.

Baseline Model

Radiomics

(@ Comparing of models with and without
Features

domain adaptation to assess its impact

Clinical Factors

of integrating clinical factors
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: Feature Filter Embedded Wrapper
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Figure 4. Several enhancement strategies were implemented and assessed against the baseline
model, including domain adaptation, feature selection techniques, the integration of clinical factors,
and model calibration.

3.4.1. Domain adaptation

Domain adaptation was employed to leverage the predictive capabilities of a well-trained source
model to improve performance on the target dataset, which consisted of radiomics features extracted
from MRI scans of breast cancer patients. The adaptation process involved aligning the source model
to the target domain using a domain adaptation technique called Correlation Alignment (CORAL).*
CORAL aims to minimize the domain shift by aligning the covariance between the source and target
datasets. By reducing differences in data distribution, CORAL contributes ensure that the trained

features from the source domain are more effectively transferred to the target domain.
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The source model was developed using the Breast Cancer Wisconsin dataset, which collected to
classify tumors as either benign or malignant.> This dataset comprises 569 instances, each with 30
features computed from a digitized image of a fine needle aspirate of a breast mass, including various
clinical features that are biologically relevant and similar to the radiomics features used in this study.
Due to these similarities, it was expected that knowledge gained from the source model could
effectively enhance the predictive performance for the target dataset. The impact of domain
adaptation on model performance was evaluated by comparing the performance of models

developed with and without domain adaptation.

3.4.1. Feature selection

Feature selection is a crucial step in ML that contributes to reduce model complexity, improve
computational efficiency, and enhance predictive performance by selecting relevant features. There
are three common types of feature selection approaches: filter, embedded, and wrapper methods.5!
Filter methods rank features based on statistical metrics independent of the model, providing a fast
way to eliminate irrelevant features. Embedded methods, on the other hand, select features during
the model training process, automatically identifying important features. Wrapper methods use a
model to evaluate and iteratively remove subsets of features that contribute the least to performance.
In this study, these three feature selection approaches were used to determine the optimal feature set

for predicting the risk of LRR in breast cancer patients.

The filter method, specifically employing the Select K Best algorithm, utilized to identify features
most correlated with the risk of LRR.5 Select K Best ranks all features based on Analysis of
Variance (ANOVA) F-statistics and selects the top K features that have the highest correlation with
the outcome.

The embedded method employed Least Absolute Shrinkage and Selection Operator (LASSO) to
identify the most predictive features based on the inherent feature importance scores of the model.53
LASSO incorporates L1 regularization into the logistic regression, which adds a penalty equivalent
to the absolute value of the magnitude of the coefficients. This penalty causes less important feature
coefficients to shrink to zero during training, effectively performing feature selection by removing

irrelevant features and retaining only those that contribute the most to the prediction.
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The wrapper method applied Recursive Feature Elimination (RFE) with logistic regression as the
estimator.** RFE works by recursively fitting the model and eliminating the least important features,
based on the weights of the logistic regression, in each iteration. This process continues until the

optimal subset of features is identified, ensuring that only the most predictive features are retained.

The baseline model with incorporating domain adaptation was trained separately with features
selected by each of these methods and subsequently compared to identify the most effective feature

selection technique for predicting the risk of LRR.

3.4.3. Integration of clinical factors

To effectively integrate clinical factors with radiomics features for predictive modeling, proper
normalization was required. Clinical factors and radiomics features were normalized independently
due to their differing data characteristics. Radiomics features, derived from imaging data, are
continuous, while clinical factors include both continuous and categorical data. Continuous factors,
such as age at diagnosis and tumor size, were normalized using a Standard Scaler®*, while categorical
factors, such as pathology and molecular subtypes, were transformed using Label Encoding® to

convert them into a suitable format.

The normalized clinical factors and radiomics features were concatenated to form a unified feature
set, which was then subjected to a feature selection algorithm to predict the risk of LRR. After
comparing three feature selection methods—filter, embedded, and wrapper approaches—the most
effective technique was determined and subsequently applied to the unified feature set. The impact
of integrating clinical factors with radiomics features on model performance was evaluated by
comparing the performance of models developed with and without the integration, using the baseline

model that incorporated domain adaptation and the effective feature selection technique.
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3.4.4. Model calibration

To improve the reliability of probability estimates from the model, the baseline model in Chapter
2 included a calibration process using Platt scaling.*® This calibration process involved fitting a
sigmoid function to the model's predicted probabilities, effectively transforming the uncalibrated
outputs into calibrated probability estimates. Specifically, the Platt scaling process works by training
an additional logistic regression model, where the inputs are the raw predicted scores from the
original model, and the outputs are the true binary outcomes. This logistic regression fits a sigmoid
curve to the predicted values, effectively adjusting the raw scores to fall within a probability range
that more accurately reflects the actual likelihood of the risk of LRR. The sigmoid function maps
the predicted values onto a [0, 1] scale, making the output more interpretable as a probability of the
risk of LRR.

In addition to Platt scaling, other calibration methods such as Isotonic Regression®® were
considered. Isotonic Regression is a non-parametric calibration method that is more flexible
compared to Platt scaling, which assumes a sigmoid relationship. However, due to the relatively
small sample size and the potential risk of overfitting, Platt scaling was chosen for its simplicity and
robustness. Isotonic Regression can be prone to overfitting, particularly when dealing with smaller
datasets, as it tries to fit the calibration curve as closely as possible to the given data. This can lead
to a model that captures noise rather than general patterns. In contrast, Platt scaling applies a
parametric approach with fewer degrees of freedom, which prevents overfitting by avoiding overly

complex calibration curves, making it more suitable for smaller sample sizes.

3.5. Evaluation and identification of key features

To evaluate the model’s performance, independent testing and five-fold cross-validation were
applied as detailed in Chapter 2. Metrics such as accuracy, sensitivity, specificity, and the AUC were
utilized to assess the performance of the predictive models. Additionally, Expected Calibration Error
(ECE)% was also calculated to assess the calibration performance of the predictive models. ECE
quantifies the difference between the predicted probabilities and the observed outcomes, providing
an indication of how well the predicted probabilities align with the actual likelihoods of positive
outcomes. ECE is calculated by dividing the predicted probabilities into 10 bins, calculating the

average predicted probability and the fraction of positives within each bin, and then taking a
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weighted average of the absolute differences between these two values. A lower ECE indicates better

calibration.

To identify the key features contributing to the model’s predictive outcomes, a frequency analysis
and coefficient analysis were performed. The frequency analysis was conducted to determine how
often each feature is selected across cross-validation model. For the coefficient analysis, the ML
model generates a coefficient map for both cross-validation and the independent test, which
quantifies the contribution of each feature by analyzing the coefficient values. In the case of cross-
validation, the coefficient values from the five folds were averaged to obtain a representative value
for each feature.

The process of calculating coefficients for the original features involves transforming the
coefficients obtained from the logistic regression model, which was trained on principal components
derived through PCA, back into the original feature space. To map these coefficients back to the

original feature space, we apply the following transformation:

Worig = CPT (1)
Where P represents the matrix of eigenvectors corresponding to the principal components. The
coefficients C obtained from the logistic regression indicate the importance of these principal

components. Through this transformation, the resulting w,,;, are mapped back to the selected

features.
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3.6. Results

3.6.1. Impact of domain adaptation

Table 4 presents the performance of incorporating domain adaptation on the baseline model.
Without domain adaptation, the model achieved an average cross-validation accuracy of 71.8% +
2.3% (95% CI: 68.6-74.9) and an AUC of 0.705 £ 0.055 (95% CI: 0.631-0.779). For the independent
test dataset, the accuracy and AUC were 73.0% and 0.709, respectively. Incorporating domain
adaptation led to improvements, with a cross-validation accuracy of 73.3% + 3.5% (95% CI: 68.7-
78.0) and an AUC of 0.737 + 0.035 (95% CI: 0.691-0.784). For the independent test dataset, the
accuracy was 69.0%, and the AUC increased to 0.734.

To further demonstrate the effect of domain adaptation using CORAL, covariance alignment was
assessed between the source and target datasets before and after applying CORAL. Before applying
CORAL, the average covariance values across five folds were calculated as 7.229 + 1.199.
Specifically, with significant inconsistencies in Fold 1 (8.715) and Fold 3 (8.227). After applying
CORAL, the average covariance across all folds was reduced to 0.868 + 0.093. The independent
dataset also showed a significant reduction, with the covariance value decreasing from 7.937 to
0.835.

Table 4. Impact of domain adaptation on model performance in predicting the risk of LRR. The
highest AUC for each evaluation method is highlighted in bold.

Model Accuracy [%]  Sensitivity [%]  Specificity [%] AUC
odels
(95% CI) (95% CI) (95% CI) (95% CI)
71.842.3 71.8+4 .4 71.7£2.0 0.705+0.055
Without Ccv
(68.6-74.9) (65.9-77.7) (69.1-74.3) (0.631-0.779)
adaptation
IND 73.0 55.6 76.8 0.709
73.3+3.5 72.6£2.6 73.544.5 0.737+0.035
With Cv
] (68.7-78.0) (69.2-76.1) (67.5-79.6) (0.691-0.784)
adaptation
IND 69.0 66.7 69.5 0.734

Abbreviations: 95% CI, 95% confidence interval;, AUC, area under the receiver operating
characteristic curve; CV, cross-validation; IND, independent test
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3.6.2. Comparison of different feature selection techniques

Table 5 demonstrates the impact of different feature selection techniques, including filter,
embedded, and wrapper methods, on the baseline model incorporating domain adaptation. The
wrapper method, specifically RFE, demonstrated the best performance among the three feature

selection methods.

For the cross-validation results, the model with the wrapper method achieved an average accuracy
of 73.3% + 3.5% (95% CI: 68.7-78.0) and an AUC of 0.737 + 0.035 (95% CI: 0.691-0.784). For the
independent test dataset, the wrapper method achieved the highest AUC of 0.734, although its
accuracy of 69.0% was not the highest among the three methods.

The filter method, using the Select K Best approach, achieved an average cross-validation
accuracy of 66.9% + 4.1% (95% Cl: 61.5-72.4) and an AUC 0f 0.684 + 0.032 (95% ClI: 0.642-0.727),
while the embedded method, utilizing LASSO, achieved an average cross-validation accuracy of
64.4% £ 2.6% (95% CI: 64.0-70.9) and an AUC of 0.666 + 0.020 (95% CI: 0.639-0.693). For the
independent test dataset, the filter method achieved an accuracy of 72.0% and an AUC of 0.673,
while the embedded method produced an accuracy of 78.0% and an AUC of 0.692. However, both
methods demonstrated significantly lower sensitivity compared to the wrapper method and resulted
in lower AUC.
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Table 5. Comparison of different feature selection techniques in predicting the risk of LRR. The
highest AUC for each evaluation method is highlighted in bold.

Models Accuracy [%]  Sensitivity [%]  Specificity [%] AUC
(95% CI) (95% CI) (95% CI) (95% CI)

oV 66.9+4.1 58.8+10.5 70.0+7.6 0.684+0.032

Filter (61.5-72.4) (44.7-72.9) (59.8-80.2) (0.642-0.727)
IND 72.0 38.9 79.3 0.673

ov 67.4+2.6 55.3+8.0 71.9+54 0.666+0.020

Embedded (64.0-70.9) (44.6-66.0) (64.6-79.1) (0.639-0.693)
IND 78.0 50.4 84.1 0.692

ov 73.3+3.5 72.6£2.6 73.5+4.5 0.737+0.035

Wrapper (68.7-78.0) (69.2-76.1) (67.5-79.6) (0.691-0.784)
IND 69.0 66.7 69.5 0.734

Abbreviations: 95% CI, 95% confidence interval; AUC, area under the receiver operating
characteristic curve; CV, cross-validation; IND, independent test

Note: All experiments in this table were conducted on the baseline model incorporating domain
adaptation.

3.6.3. Impact of integration of clinical factors

Table 6 compares the performance of models trained using radiomics features only with those
incorporating both radiomics and clinical factors for predicting the risk of LRR. The baseline model
incorporating domain adaptation with RFE process using only radiomics features achieved an
average cross-validation accuracy of 73.3% + 3.5% (95% CI: 68.7-78.0) and an AUC of 0.737
0.035 (95% CI: 0.691-0.784). For the independent test dataset, the radiomics-only model achieved
an accuracy of 69.0% and an AUC of 0.734.

When clinical factors were added to the radiomics features, the model showed a slight
improvement in predictive performance. The integrated model achieved an average cross-validation
accuracy of 75.6% + 2.9% (95% ClI: 71.7-79.4) and an AUC of 0.757 £ 0.031 (95% CI: 0.715-0.799).
For the independent test dataset, the integrated model demonstrated an accuracy of 77.0%, with an

AUC of 0.762, which was slightly higher than the radiomics-only model.
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Table 6. The numerical performance of radiomics only model and those integrating both radiomics
and clinical factors for predicting the risk of LRR. The highest AUC for each evaluation method is
highlighted in bold.

Models Accuracy [%]  Sensitivity [%]  Specificity [%] AUC
(95% CI) (95% CI) (95% CI) (95% CI)

Radiomics ov 73.3£3.5 72.6£2.6 73.5+4.5 0.737+0.035
(68.7-78.0) (69.2-76.1) (67.5-79.6) (0.691-0.784)

Oonly IND 69.0 66.7 69.5 0.734
Radiomics 75.6+£2.9 73.8+£2.7 76.14£3.1 0.757+0.031
+ Clinical v (71.7-79.4) (70.2-77.4) (72.0-80.3) (0.715-0.799)

factors IND 77.0 66.7 79.3 0.762

Abbreviations: 95% CI, 95% confidence interval; AUC, area under the receiver operating
characteristic curve; CV, cross-validation; IND, independent test
Note: All experiments in this table were conducted on the baseline model incorporating domain

adaptation with RFE process.

Figure 5 and Figure 6 illustrate the calibration curves for the models trained with radiomics
features only (Figure 5) and those integrating both radiomics and clinical factors (Figure 6),
respectively. For the cross-validation results, the radiomics-only model showed substantial
variability among different folds (ECE values ranging from 0.067 to 0.150), especially at higher
predicted probability ranges. In contrast, the model integrating both radiomics and clinical factors
exhibited better calibration consistency across all folds (ECE values ranging from 0.051 to 0.109),
suggesting a more robust performance across different subsets of data. For the independent test
dataset, the radiomics-only model demonstrated better overall calibration, as indicated by a lower
ECE value compared to the model integrating both radiomics and clinical factors. However, the
radiomics-only model exhibited slight miscalibration in the predicted probability range of 0.5 to 0.8,
where it showed to overestimate the actual risk of LRR. In contrast, the model integrating both
radiomics and clinical factors, despite having a slightly higher overall ECE, showed improved

calibration in the higher predicted probability range (0.8-1.0).
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Figure 5. Calibration curves for the predictive model using radiomics features only, evaluated with
cross-validation and independent test datasets. The dashed 45-degree line represents perfect
calibration, where predicted probabilities match observed outcomes. Calibration curves for the five
cross-validation folds (Fold 1-5) are shown with different markers (circle, star, triangle, diamond,
and cross), while the solid black line with square markers represents the calibration curve for the

independent test dataset.
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Figure 6. Calibration curves for the predictive model integrating both radiomics features and clinical
factors, evaluated using cross-validation and independent test datasets. Calibration curves for the
five cross-validation folds (Fold 1-5) are shown with different markers (circle, star, triangle,
diamond, and cross), while the solid black line with square markers represents the calibration curve

for the independent test dataset.
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3.6.4. Impact of model calibration

Table 7 presents the performance of the models trained with radiomics features only and those
integrating radiomics with clinical factors, without calibration for predicting the risk of locoregional
recurrence (LRR). These results were compared against the models with calibration, as presented in

Table 6, to highlight the impact of model calibration on predictive performance.

For the radiomics-only model without calibration, the average cross-validation accuracy was 71.0%
+ 1.5% (95% CI: 69.1-73.0), with an AUC of 0.725 + 0.045 (95% CI: 0.664-0.786). In comparison,
the calibrated radiomics-only model (Table 6) achieved a higher accuracy of 73.3% + 3.5% (95%
Cl: 68.7-78.0) and an AUC of 0.737 + 0.035 (95% CI: 0.691-0.784) during cross-validation. For the
independent test dataset, the uncalibrated radiomics-only model achieved an accuracy of 77.0% and
an AUC of 0.680, which were lower compared to the calibrated model’s performance of 69.0%
accuracy and an AUC of 0.734.

For the integrated model that integrated both radiomics and clinical factors, calibration positively
impacted model performance. The uncalibrated model's average cross-validation accuracy was 74.7%
+ 3.2% (95% CI: 70.4-79.0), with an AUC of 0.734 + 0.050 (95% CI: 0.667-0.801). In comparison,
the calibrated integrated model (Table 6) achieved a cross-validation accuracy of 75.6% + 2.9% (95%
Cl: 71.7-79.4) and an AUC of 0.757 + 0.031 (95% CI: 0.715-0.799). For the independent test dataset,
the uncalibrated integrated model had an accuracy of 78.0% and an AUC of 0.698, whereas the

calibrated model improved to an accuracy of 77.0% and an AUC of 0.762.

The p-values for the differences in AUC between the models with and without calibration indicate
no statistically significant differences under cross-validation (p = 0.381 for the radiomics-only
model and p = 0.361 for the integrated model). Although the p-values did not indicate statistical

significance, calibration appeared to slightly improve the AUC and accuracy for both models.
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Table 7. The numerical performance of radiomics only model those integrating both radiomics and
clinical factors without calibration for predicting the risk of LRR. The highest AUC for each
evaluation method is highlighted in bold.

Models Accuracy [%]  Sensitivity [%]  Specificity [%] AUC
without calibration (95% CI) (95% CI) (95% CI) (95% CI)
Radiomics oV 71.0£1.5 59.5+4.7 74.6£1.6 0.725+0.045
(69.1-73.0) (53.2-65.7) (72.5-76.8) (0.664-0.786)!
Only IND 77.0 389 85.4 0.680
Radiomics 74.7+£3.2 61.9+7.9 78.7£2.5 0.734+0.050
+ Clinical v (70.4-79.0) (51.3-72.5) (75.3-82.1) (0.667-0.801)*
factors IND 78.0 44.4 85.4 0.698

Abbreviations: 95% CI, 95% confidence interval, AUC, area under the receiver operating
characteristic curve; CV, cross-validation; IND, independent test

Note: All experiments in this table were conducted on the baseline model incorporating domain
adaptation with the RFE process, but without calibration.

L2 p-values (0.381 and 0.361, respectively) represent the statistical significance of the differences

in AUC between the models with calibration and those without calibration.

Figure 7 and Figure 8 illustrate the calibration curves for the models trained with radiomics
features only and those integrating both radiomics and clinical factors, respectively, for uncalibrated
models. Compared to the calibrated models depicted in Figure 5 and Figure 6, the uncalibrated

models show greater deviations from the perfectly calibrated line.

For the uncalibrated radiomics-only model (Figure 7), ECE values ranged from 0.094 to 0.227
across cross-validation folds, with 0.218 for the independent test dataset. For the uncalibrated model
integrating both radiomics and clinical factors (Figure 8), ECE values ranged from 0.095 to 0.223
across folds and 0.194 for the independent test dataset. These values indicate poorer calibration
compared to the calibrated models shown in Figure 5 and Figure 6, reflecting greater deviations

from the perfectly calibrated line.
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Figure 7. Calibration curves for the predictive model using radiomics features only, evaluated using
cross-validation and independent test datasets, without calibration applied. Calibration curves for
the five cross-validation folds (Fold 1-5) are shown with different markers (circle, star, triangle,
diamond, and cross), while the solid black line with square markers represents the calibration curve

for the independent test dataset.
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Figure 8. Calibration curves for the predictive model integrating both radiomics features and clinical
factors, evaluated using cross-validation and independent test datasets, without calibration applied.
Calibration curves for the five cross-validation folds (Fold 1-5) are shown with different markers
(circle, star, triangle, diamond, and cross), while the solid black line with square markers represents

the calibration curve for the independent test dataset.
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3.6.5. Key features in model decision

Table 8 lists the radiomics features selected through the RFE process for the baseline models
incorporating domain adaptation. The table presents information for both the model using only
radiomics features and the model integrating both clinical factors and radiomics features. Across
each of the five folds, only features selected at least twice were considered key contributors, with
14 and 18 features identified as key contributors in the decision-making process for both models.
For the model using only radiomics features, the selected features were categorized into three
primary groups: 2 shape-based features, 14 texture-based features, and 2 first-order statistical
features. In the independent test dataset, 16 features were identified as key contributors, categorized
into 4 shape-based features, 11 texture-based features, and 1 first-order statistical features. In the
model integrating both clinical factors and radiomics features, the selected features were categorized
into four primary groups: 4 shape-based features, 12 texture-based features, 1 first-order statistical
features, and 2 clinical factors. In the independent test dataset, 16 features were identified as key
contributors, categorized into 3 shape-based features, 9 texture-based features, 2 first-order

statistical features, and 2 clinical factors.

Table 8. List of radiomics features (A to Y) and clinical factors (Z and «) selected at least twice
across the five-fold cross-validation and independent test datasets. The symbols correspond to the

feature names used in the frequency and coefficient analysis.

Symbols Feature names
A Glrlm_RunLengthNonUniformity
B Glrlm_RunEntropy
C Shape SurfaceVolumeRatio
D Gldm_DependenceNonUniformityNormalized
E Glszm_GrayLevelNonUniformity
F Glszm_ZonePercentage
G Glem_ClusterTendency
H Gldm_DependenceEntropy
I Glszm_SizeZoneNonUniformityNormalized
J Glem_ MaximumProbability
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Figure 9 illustrates the importance of key features in the predictive model using only radiomics
features by their selection frequency and contribution across the five-fold cross-validation and
independent test datasets. The bar chart in the top row demonstrates that certain features (symbols
A to C as described in Table 8) were consistently selected across all five folds. The coefficient
heatmap in the second row represents that features A and B contributed positively to predicting the
risk of LRR, whereas feature C contributed negatively. In the independent test dataset, features A,
B, and C demonstrated similar contributions to those observed in the cross-validation, with features
A and B having positive contributions and feature C having a negative contribution to predicting
LRR risk.

Average

fold 1

fold 2

fold 3

fold 4

fold 5

A B € D ¢ F & i ] K L ™M N o0 P O R

Feature symbol
Independent
test

B A Q P R M v w G X v o U
Feature symbol

Figure 9. Feature selection frequency and coefficient analysis of key features in the predictive model
using radiomics features only, evaluated using five-fold cross-validation and independent test
datasets. The bar graph shows feature selection frequency, while the coefficient heatmap highlights
feature importance, with red indicating positive and blue indicating negative contributions to
predicting the risk of LRR. Feature symbols are detailed in Table 8.
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Figure 10 illustrates the importance of key features in the predictive model that integrates both
radiomics features and clinical factors, highlighting their selection frequency and contributions
across the five-fold cross-validation and the independent test datasets. The bar chart in the top row
highlights features A, B, and C (Table 8) consistently selected across all five folds. Features A and
B contributed positively to predicting LRR, while feature C contributed negatively. In the bottom
row, the coefficient heatmap for the independent test dataset indicates that features A, B, and C
demonstrated similar contributions to those observed in the cross-validation, with features A and B
contributing positively and feature C contributing negatively to predicting LRR risk. For the clinical
factors, tumor size (Z) and molecular subtypes (o) were selected in both cross-validation and
independent test datasets, with inconsistent selection across folds in cross-validation but consistent

selection in the independent test dataset.
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Figure 10. Feature selection frequency and coefficient analysis of key features in the predictive

model integrating radiomics and clinical factors, evaluated using five-fold cross-validation and
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independent test datasets. The bar graph shows feature selection frequency, while the coefficient
heatmap highlights feature importance, with red indicating positive and blue indicating negative

contributions to predicting the risk of LRR. Feature symbols are detailed in Table 8.

Table 9 presents the univariable analysis results for key features across the five-fold cross-
validation and the independent test dataset, focusing on whether the odds ratio (OR) values are
greater than or less than 1. Symbol A and B consistently showed OR values greater than 1, indicating
an increased risk of LRR. Symbol C, in contrast, showed OR values less than 1 across all datasets,

suggesting a risk reduction.
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Table 9. Univariable analysis results for key features across cross-validation folds and the

independent test dataset. P-values less than 0.05 are highlighted in bold.

Features OR (95% CI) P value
Symbol A
Fold 1 1.002 (0.999-1.004) 0.146
Fold 2 1.001 (0.999-1.003) 0.242
Fold 3 1.002 (1.000-1.005) 0.039
Fold 4 1.002 (1.000-1.004) 0.107
Fold 5 1.003 (1.001-1.005) 0.016
Independent test dataset 1.004 (1.001-1.006) 0.002
Symbol B
Fold 1 1.770 (0.865-3.623) 0.118
Fold 2 11.502 (3.234-40.909) 0.001
Fold 3 2.219 (1.068-4.609) 0.033
Fold 4 5.483 (1.771-16.980) 0.003
Fold 5 4.152 (1.552-11.108) 0.005
Independent test dataset 5.583 (1.571-19.838) 0.008
Symbol C
Fold 1 0.323 (0.044-2.382) 0.268
Fold 2 0.001 (0.001-0.037) 0.001
Fold 3 0.060 (0.005-0.703) 0.025
Fold 4 0.003 (0.001-0.098) 0.001
Fold 5 0.027 (0.002-0.430) 0.011
Independent test dataset 0.023 (0.001-0.443) 0.013
Abbreviations: OR, odd ratio; 95% CI, 95% confidence interval; Symbol A,
Glrim_RunLengthNonUniformity; Symbol B, Glrlm_RunEntropy; Symbol C,

Shape_SurfaceVolumeRatio.
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3.7. Discussion and conclusion

This study aimed to develop and validate an accurate predictive model for the risk of LRR in
breast cancer patients. The baseline model, a foundational model developed in Chapter 2, was
constructed using radiomics features extracted from T2-weighted fat-suppressed MRI sequences.
However, it encountered challenges such as suboptimal performance and the inability to provide
insights into key contributing features. In this chapter, enhancements to the model were made to
optimize predictive performance, identify key contributing features, and ensure its robustness and
generalizability across diverse datasets.

To comprehensively evaluate the factors contributing to the predictive performance of the model
for LRR risk, several enhancement strategies were implemented and assessed against the baseline
model. These enhancement strategies, including domain adaptation, feature selection techniques,
clinical factor integration, and model calibration, were employed to optimize predictive performance
and reliability. The best-performing model was developed by enhancing the baseline model through
the incorporation of domain adaptation, the RFE process, and the integration of clinical factors,
resulting in an average AUC of 0.757 for five-fold cross-validation and an AUC of 0.762 for the
independent test dataset. Furthermore, the application of model calibration improved the reliability
of predicted probabilities, as the AUC increased from 0.734 to 0.757 for cross-validation and from
0.698 to 0.762 for the independent test dataset, showing a closer alignment between predicted and
actual risk. These results indicate that these enhancements contributed to a more robust and reliable

model, demonstrating potential for clinical application.

In this study, several radiomics features were consistently identified as positive contributors to
LRR risk prediction across both the five-fold cross-validation and independent test datasets, in
models using only radiomics features as well as those integrating clinical factors. Specifically,
GIrlm_RunLengthNonUniformity (Symbol A) and Glrlm_RunEntropy (Symbol B)% were
consistently recognized as significant positive contributors to LRR risk in both the five-fold cross-
validation and independent test datasets. These features, which capture the heterogeneity and
complexity of tumor texture, may be crucial for understanding tumor aggressiveness and its
likelihood of recurrence. Both features are derived from the Gray Level Run Length Matrix

(GLRLM), a texture analysis technique that quantifies the occurrence of consecutive pixels with the
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same intensity level in a specific direction.® Essentially, GLRLM provides information about the
distribution of homogeneous runs of gray levels, which can describe the structural complexity and
uniformity of a tumor. Symbol A reflects the variability in the length of homogeneous runs within
the tumor, with higher values indicating greater heterogeneity. Similarly, Symbol B measures the
randomness in the texture, where higher values are associated with increased complexity and
irregularity within the tumor structure. These features represent the heterogeneous texture of the
tumor, and previous studies have shown that such heterogeneity is often associated with poor

treatment outcomes, #4160

In contrast, a feature representing the ratio between the surface area and volume of the tumor
(Shape_SurfaceVolumeRatio, Symbol C)8 was consistently identified as a negative contributor to
LRR risk across both the five-fold cross-validation and independent test datasets, in models using
only radiomics features as well as those integrating clinical factors. Lower values of this feature
generally indicate that the tumor is more compact, while higher values suggest that the tumor is
more irregular or elongated. The finding that lower Symbol C values may be linked to a higher risk
of recurrence, possibly reflecting a tumor morphology that is more likely to recur due to being less

responsive to surgery or radiotherapy.

In the integrated model incorporating clinical factors, tumor size (Symbol Z) emerged as a
positive contributor to LRR risk across all folds, in addition to radiomics features, except for Fold
1. This suggests that larger tumor size may be associated with a higher risk of recurrence, reflecting
its recognized significance as a prognostic factor in the risk of LRR. Similarly, molecular subtypes
(Symbol o) also did not contribute consistently across all folds but showed positive contributions in
Folds 1 to 2, indicating that more aggressive pathological features like IDC may correlate with an
increased likelihood of recurrence in certain subsets of the dataset. These highlight the potential
added value of clinical factors in complementing radiomics features for a more comprehensive risk

prediction model.
To further support these findings, univariable analysis was conducted for key features across the

cross-validation folds and the independent test dataset. For Symbol A, the OR consistently exceeded

1 across the folds, indicating an increased risk of LRR. The independent test dataset showed a
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particularly significant OR of 1.004 (95% CI: 1.001-1.006, p = 0.002). This suggests that Symbol A
is positively associated with the risk of LRR. For Symbol B, the OR varied across the folds, with a
particularly high OR of 11.502 (95% ClI: 3.234-40.909, p = 0.001) in Fold 2. The independent test
dataset also revealed a significant OR of 5.583 (95% CI: 1.571-19.838, p = 0.008), supporting a
strong positive association between Symbol B and LRR risk. For Symbol C, the OR consistently
remained below 1 across the folds, suggesting a potential inverse relationship with LRR risk. The
independent test dataset further supported this inverse association, with an OR of 0.023 (95% ClI:
0.000-0.443, p = 0.013), indicating a significantly reduced likelihood of LRR.

While this study provides meaningful findings, several limitations should be acknowledged. First,
TNBC is known to have the highest LRR risk among molecular subtypes.®® In this study, no
statistically significant difference in LRR risk was observed among subtypes, potentially due to the
limited sample size and variability in treatment regimens. However, in real-world settings, the use
of pembrolizumab based on KEYNOTE-522 has been shown to improve pathologic complete
response rates in TNBC patients receiving neoadjuvant therapy, which may subsequently reduce
LRR risk.®* Importantly, this study did not include patients treated with pembrolizumab,
highlighting the need for further studies to incorporate such patients into the modeling process.
Second, while this study integrated clinical factors alongside radiomics features to enhance the
model's predictive capability, there is potential for further exploration of other potential data sources.
For instance, directly using MRI scans through convolutional neural networks (CNNs) could provide
a more comprehensive assessment of tumor characteristics. CNNs are capable of capturing intricate
spatial features from imaging data that may not be captured by manually defined radiomics features,
thereby providing an additional layer of valuable information. Lastly, while Institution 2 was
designated as the independent test set, data from Institutions 1, 3, and 4 were not utilized for
independent testing because they were included in the training dataset to ensure sufficient sample
size for model development. While this approach was necessary to address the limited number of
LRR cases, it restricted the evaluation of the model's generalizability across multiple unseen
institutions, potentially reducing the robustness of the findings. Further studies should include a
larger registry with more LRR cases to strengthen the model’s training foundation and address

limitations in sample diversity.
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4. CONCLUSION

In this study, we have proposed a predictive model leveraging radiomics features extracted from
T2-weighted MRI images with fat suppression to predict the risk of LRR in breast cancer patients.
By incorporating multi-institutional patient registries, we improved the robustness of the model. The
study introduced a foundational baseline model in Chapter 2 and subsequently enhanced its
performance in Chapter 3 through strategies such as domain adaptation, different feature selection
techniques, integration of clinical factors, and model calibration. These enhancements resulted in
improved predictive performance, with the best-performing model achieving an average AUC of
0.757 in cross-validation and 0.762 for the independent test dataset, demonstrating potential for

clinical application.

This study also highlighted specific texture features that reflect tumor heterogeneity and
complexity as key contributors to the risk of LRR. Integrating clinical factors, such as tumor size
and molecular subtypes, with radiomics features further enhanced the model's interpretability and
predictive performance. These findings demonstrate the significance of texture features and clinical
factors to achieve a more accurate and comprehensive understanding of risk factors, thereby

contributing to improvements in the model's overall predictive capability.

However, the sample size in this study, particularly for high-risk subgroups like TNBC, was
insufficient to comprehensively evaluate subtype-specific LRR risks. The absence of patients treated
with modern therapies, such as pembrolizumab for TNBC, may limit the model's applicability to up-

to-date treatment approaches.

In conclusion, this study leverages multi-institutional registries to establish a foundational
baseline predictive model for assessing LRR risk in breast cancer patients. Several enhancements
were subsequently investigated to optimize the model's performance, and key features contributing
to LRR risk were identified. To further validate the proposed model’s predictive performance,

prospective datasets should be analyzed in future studies.
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