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ABSTRACT

Development of a model for angiography-based fractional flow reserve
using machine learning in coronary artery disease

Obijectives: Guidelines recommend using pressure wire-based fractional flow reserve (FFR) when
deciding to perform coronary intervention in patients with angina and intermediate lesions. However,
several hurdles, including cost and safety concerns, have reduced the rate of FFR usage in clinical
practice. Meanwhile, noninvasive FFR methods have been widely investigated for their safety and
convenience. This study aimed to develop machine learning (ML) model, referred as ML-Angio-
FFR model, using quantitative coronary angiography and clinical data that can predict FFR more
safely as well as cost and time effectively.

Methods: The ML-Angio-FFR model was trained using the Random Forest algorithm with 42
features based on 1,459 patients with 2,439 intermediate lesions. All the features were ranked by
feature importance score. The training and testing sets were divided in a 4:1 ratio. FFR <0.80 was
considered ischemic driven lesion, while FFR >0.80 was considered lesion can be deferred
intervention and the performance test was conducted using this threshold.

Results: The mean age of the enrolled patients was 67.1 years, and 1,004 (68.8%) were male. Of
the included lesions, 1,481 (60.7%), 533 (21.9%), and 425 (17.4%) were located in left anterior
descending artery, left circumflex artery, and right coronary artery, respectively. Using the 8 key
features, the ML-Angio-FFR model was developed. There was a strong correlation between ML-
Angio-FFR and wire-based FFR (r=0.7828; p<0.001), along with high diagnostic accuracy in the
testing set (87%; area under the curve, 0.89). External validation revealed modest correlation
(r=0.4940; p<0.001) and accuracy (62%; area under the curve, 0.73).

Conclusions: The ML-Angio-FFR model demonstrates a high correlation with pressure wire-based

FFR and presents good diagnostic performance to predict FFR >0.80.

Key words : fractional flow reserve, machine learning, quantitative coronary angiography



1. INTRODUCTION

Fractional flow reserve (FFR) is one of the most widely investigated coronary physiology
assessment. Moreover, FFR-guided percutaneous coronary intervention (PCI) is currently
recommended by several guidelines for patients with angina who have intermediate coronary artery
stenosis.™? This approach can be applied not only to single coronary lesions but also in various
clinical scenarios, such as multi-vessel coronary artery disease or acute coronary syndrome.®?®
However, despite guidelines and numerous studies, FFR is still underutilized due to the time and
cost associated for additional using pressure wire, as well as the use of medications to induce
maximal hyperemia during the procedure.®** In these regards, there have been increasing efforts to
predict FFR without pressure wire, defined as noninvasive coronary physiology assessments, 14
Some noninvasive methods, such as coronary computed tomography angiography (CTA) based FFR
prediction or angiography-based FFR prediction (without using pressure wire), have already been
developed and validated for use in clinical practice.’>” These methods are considered safe and
showed not only good correlation with pressure wire-based FFR, but also higher accuracy compared
to traditional quantitative coronary angiography (QCA) based FFR prediction using diameter
stenosis.*®22 However, each method still requires dedicated software and formulas, along with
additional cost and time.?*2* Meanwhile, advances in computing power have led to the emergence
of machine learning (ML) technology, there are several studies for predicting FFR in ML model
with various features.?>% However, it is not yet feasible to use these methods for on-site analysis
due to difficulties in applying them simultaneously with coronary angiography. In this era, this study
aimed to develop a ML model, referred to as ML-Angio-FFR, to predict FFR using both lesion
characteristics obtained from traditional 2D QCA and patient’s baseline characteristics, which do

not require additional software or preprocessing steps.



2. METHODS

2.1. Study design and population

The ML-Angio-FFR study is a retrospective single-center study aimed at validating the
accuracy of ML model to predict FFR based on angiography, compared with pressure wire-based
FFR assessment. This study was permitted by the Institutional Review Board of Severance Hospital,
Seoul, Korea (4-2024-0245), and followed the ethical principles of the Declaration of Helsinki
(2013). The requirement of informed consent was dispensed with the current study was retrospective
and study subjects were de-identified according to confidentiality guidelines. A total of 1,955
patients who underwent invasive coronary angiography and wire-based FFR measurement for
assessment of chest pain were screened from April 2018 to February 2024 in the single-center. These
patients had a total of 3,885 lesions with intermediate coronary stenosis (40-70% stenosis) by visual
estimation. The ML-Angio-FFR model was planned to develop based on per-vessel analysis, data
preprocessing was conducted by lesion level. Of these lesions, 1,446 were excluded due to the
following criteria: (1) poor quality of FFR data or lack of clinical data (n=20); (2) overlapped or
severe tortuosity of coronary artery which was difficult to measure QCA (n=68); (3) tandem or
mixed lesions (n=1,121); (4) small side branch evaluation (n=20); (5) proximal left main coronary
artery evaluation (< 3 mm from the aorta) (n=33); (6) culprit lesion in acute myocardial infarction
(n=43); (7) diagnosed with variant angina (n=6); and (8) outliers, defined as FFR <0.70 (n=135).
Finally, 1,459 patients with 2,439 lesions were included in the study (Fig. 1).



Patients with angina and coronary intermediate
stenosis who underwent wire-based FFR assessment
in 2018-2024 (1,955 patients with 3,885 lesions)

Poor quality or lack of data (n*=20)
Difficulty of QCA analysis (n=68)
Tandem or mixed lesions (n=1,121)
— Small side branch evaluation (n=20)
Proximal LM evaluation (n=33)
Culprit lesion in AMT (n=43)
Variant angina (n=6)

Excluded outliers (n=135)

Enrolled (1,459 patients with 2 439 lesions)

l

4:1 traming and testing set

l

Training set
(n=1,951)

Testing set
(n=488)

Figure 1. Flow chart of the study enroliment. Patients were screened from April 2018 to February
2024 and were excluded based on the criteria described above. Lesions with FFR <0.70 were

considered outliers and were excluded. Finally, the dataset was randomly divided into training and

testing sets in a 4:1 ratio.

Note: *, n=number of lesions.

Abbreviations: FFR, fractional flow reserve; QCA, quantitative coronary angiography; LM, left

main coronary artery; AMI, acute myocardial infarction.




2.2. Image analysis

QCA analysis was conducted by trained specialists using an offline analytic system of
quantitative coronary angiography (CAAS, Pie Medical Imaging, Maastricht, the Netherlands). The
minimal lumen diameter was assessed with diastolic frames from a single-matched view that was
neither foreshortened nor distorted, using a guiding catheter for magnification calibration to ensure
accurate measurement of the smallest lumen diameter. Each lesion was classified into four categories,
defined as lesion profile.?” Lesion with a length of less than 20 mm was defined as “focal lesion”,
while those of 20 mm or longer was defined as “diffuse lesion”. If multiple focal lesions were present
in one major epicardial coronary artery, they were defined as "tandem lesions”, and QCA was
conducted for each included focal lesion. When both focal and diffuse lesions co-existed, or multiple
diffuse lesions were present in one major epicardial coronary artery, they were defined as “mixed
lesions". Target vessel was defined as left anterior descending artery (LAD), left circumflex artery
(LCX), right coronary artery (RCA), and left main coronary artery. The lesion location was
classified according to each vessel. The LAD included proximal, middle, distal, and diagonal branch.
The LCX included proximal, distal, obtuse marginal branch, and ramus intermedius branch. The
RCA included proximal, middle, distal, posterolateral branch, and posterior descending artery. If the
lesion extends from proximal to middle, from middle to distal, or from proximal to distal portions,

it was noted separately as LAD extended, LCX extended, or RCA extended.

2.3. Pressure wire-based FFR measurement

The pressure wire-based FFR measurements were conducted using a 0.014-inch pressure wire
(Abbott VVascular, Santa Clara, CA, USA). After equalization process at aorta, the pressure wire was
positioned most distal to the target lesions. Hyperemia was induced by intravenous infusion of 140
pg/kg/min of adenosine via an antecubital vein or intracoronary bolus injection of 2 mg nicorandil.
FFR was determined by calculating the ratio of the mean pressure of distal coronary lesion to the
mean pressure of aorta during maximal hyperemia. The lesion with FFR <0.80 was considered
significant ischemic driven lesion, while FFR >0.80 was considered that the lesion can be deferred
for PCI.



2.4. ML-FFR assessment based on angiography

In ML regression task, the model attempts to identify and quantify the relationships between
variables by estimating how changes in one variable impact another. The process involved selecting
relevant features, choosing an appropriate ML algorithm, training the model, assessing its
performance, and tuning the hyperparameters. For this study, a Random Forest (RF) algorithm was
applied to predict FFR values. As an ensemble technique, RF constructs multiple decision trees from
random subsets of the data, and the final prediction is the combined output of all the trees. This
technique helps prevent overfitting, reduces variance, and enhances accuracy even with imbalanced
datasets.

A total of 42 features were selected for model development, based on patients’ clinical
characteristics and QCA data, to support the ML-Angio-FFR model in assessing coronary
intermediate lesions. During data preprocessing, cases with FFR <0.70 were considered as outliers
and removed to prevent the model from being distorted. Initially, ML model was trained by using
comprehensive set of 42 features to establish baseline performance (Table 1), and compute feature
importance scores using Gini importance derived from the RF model. After evaluating the
importance ranking, top 8 features were selected for model development, ensuring that only the most
relevant predictors were retained. The dataset consisted of 2,439 samples, which were split into
training and testing sets using a stratified sampling technique to maintain the distribution across the
subgroups: LAD, LCX, and RCA. The training set comprised 1,951 samples, and the remaining 488
samples were used for independent testing, with a training-to-testing ratio of 4:1. To ensure model
stability and optimize performance, cross-validation (CV) alongside hyperparameter tuning was
performed using GridSearchCV. The training set was partitioned into K folds, with K =5 used in
this study. The RF model was trained through multiple iterations of the 5-fold CV process, each time
using different combinations of hyperparameters to fine-tune the model and ensure robust results.
The final optimized hyperparameters, as summarized in Table 2, include n_estimators = 20,
max_depth = 8, min_samples_leaf = 4, and min_samples_split = 3, while default values were
retained for the remaining parameters. Using these optimized settings, the RF model was established.
During the testing phase, the 488 lesions characterized by the top 8 features were evaluated using
the trained models to predict FFR values. The performance of the RF model was assessed by
applying Pearson correlation coefficient (r) analysis and calculating the mean absolute error (MAE)

to quantify the agreement between predicted and wire-based FFR values.



Table 1. List of 42 features and their weight

Rank Feature Weight
1 Minimal lumen diameter 0.520
2 Target vessel 0.491
3 Diameter stenosis 0.472
4 Distal reference vessel diameter 0.292
5 Mean reference vessel diameter 0.251
6 Lesion profile 0.242
7 Lesion length 0.236
8 Proximal reference vessel diameter 0.182
9 Age 0.090
10 Lesion location 0.081
11 Platelet count 0.076
12 Hemoglobin 0.073
13 Height 0.068
14 Previous percutaneous coronary intervention 0.063
15 Male sex 0.062
16 Vessel territory of regional wall motion abnormality 0.059
17 Regional wall motion abnormality 0.053
18 White blood cell count 0.052
19 Low-density lipoprotein-cholesterol level 0.051
20 Aspartate aminotransferase level 0.051
21 Body surface area 0.048
22 Weight 0.038
23 Chronic kidney disease 0.035
24 Diabetes mellitus 0.033
25 Previous myocardial infarction 0.031
26 Previous stroke 0.031
27 Clinical presentation 0.030
28 Left ventricular ejection fraction 0.028
29 Creatinine level 0.027



30 Heart failure

31 End stage renal disease

32 Triglyceride level

33 Acute coronary syndrome

34 Previous coronary artery bypass surgery
35 Blood urea nitrogen level

36 Current smoker

37 Dyslipidemia

38 Hypertension

39 Alanine aminotransferase level

40 High-density lipoprotein-cholesterol level
41 Persistent atrial fibrillation

42 Body mass index

0.027
0.025
0.022
0.021
0.020
0.018
0.018
0.016
0.015
0.012
0.008
0.008
0.007

Note: Target vessel included LAD, LCX, and RCA. All of laboratory and echocardiography features

were obtained peri-procedural periods. Total 42 features which were consist with 9 of angiography

features, 20 of clinical features, 10 of laboratory features, and 3 of echocardiography features were

included.

Abbreviations: LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right

coronary artery.

Table 2. Optimized hyperparameters for Random Forest model

Hyperparameter Description Value
n_estimators Number of trees in Random Forest 20
max_depth Maximum number of levels in tree 8
min_samples_split ~ Minimum number of samples required to split an internal node 3
min_samples_leaf Minimum number of samples required at each leaf node 4
max_features Maximum number of features to consider for splitting anode  log2
random_state Controls randomness for result reproducibility 8




2.5. External validation

To evaluate the consistent performance of ML-Angio-FFR model, external validation was
conducted using another single-center’s data which includes 131 patients with 149 intermediate
coronary lesions who underwent coronary angiography and invasive wire-based FFR. This data was
permitted for use by the Institutional Review Board of National Health Insurance Service llsan
Hospital, Goyang-si, Korea (2024-09-025).

2.6. Statistical analysis

Baseline clinical characteristics were analyzed on per-patient level. The other evaluations and
ML modeling were analyzed on per-vessel level. Continuous variables were presented as mean +
standard deviation or median (interquartile range). These were analyzed using the Shapiro—Wilk test
for normality, and based on the results, analyzed using Student’s t-test or the Mann-Whitney U test.
Categorical variables were presented as numbers (percentages) and analyzed using chi-square test
or Fisher’s exact test. Pearson correlation coefficient (r) analysis and the Bland-Altman analysis
were performed to evaluate correlation between ML-Angio-FFR and wire-based FFR measurement.
Receiver operating characteristic (ROC) curve analyses were conducted, and sensitivity, specificity,
positive predictive value, negative predictive value, and diagnostic accuracy of the ML model were
calculated to define diagnostic performance of ML-Angio-FFR model. R version 4.2.2 (R

Foundation for Statistical Computing, Vienna, Austria) was used for the statistical analyses.



3. RESULTS

3.1. Baseline characteristics of patients and lesions

The baseline characteristics of the study population and enrolled lesions to develop ML model
are presented Table 3 and Table 4, respectively. The mean age of enrolled patients was 67.1 £ 9.5
years, 1,004 patients (68.8%) were male, and the mean body mass index was 24.5 + 3.1 kg/m?. Nine
hundred sixty-six (66.2%), 576 (39.5%), and 102 (7.0%) patients had a medical history of
hypertension, diabetes mellitus, and previous myocardial infarction, respectively, and 116 (8.0%)
patients were current smokers. Three hundred twenty-two (22.1%) patients had heart failure, and
113 (7.7%) patients had chronic kidney disease (defined as estimated glomerular filtration ratio
below 60). One thousand one hundred eighty-six (81.3%) patients presented with stable coronary
artery disease, and 273 (18.7%) patients presented with acute coronary syndrome. Among the 2,439
target lesions, 1,481 (60.7%), 533 (21.9%), and 425 (17.4%) were placed in the LAD, LCX, and
RCA, respectively. In echocardiographic findings, mean left ventricular ejection fraction was 64.0
+ 9.9 %, and 277 (19%) patients had regional wall motion abnormalities.

The median FFR was 0.87 (interquartile range [IQR], 0.82—0.93), with the median FFR for
LAD at 0.84 (IQR, 0.80-0.88), LCX at 0.94 (IQR, 0.88-0.97), and RCA at 0.93 (IQR, 0.89-0.97).
Ischemia driven lesions (FFR <0.80) were observed in 468 (19.2%) lesions. The median values for
FFR in the ischemia driven and not significantly driven ischemia lesions were 0.76 (IQR, 0.74-0.78)
and 0.89 (IQR, 0.85-0.94), respectively. The mean minimal lumen diameter was 1.6 + 0.6 mm,
mean reference vessel diameter was 3.0 £ 0.6 mm, and mean diameter stenosis was 49.0 = 14.5 %.
The mean lesion length was 21.0 + 12.6 mm, including 1,436 (58.9%) of focal lesions, and 1,003
(41.1%) of diffuse lesions.



Table 3. Baseline characteristics of the study population

Total (N=1,459)

Age, years
Male
Height, cm
Weight, kg
Body mass index, kg/m?
Body surface area, m?
Hypertension
Diabetes mellitus
Dyslipidemia
Heart failure
Persistent atrial fibrillation
Chronic kidney disease
End stage renal disease
Current smoker
Previous myocardial infarction
Previous percutaneous coronary intervention
Previous stroke
Previous coronary bypass surgery
Clinical presentation
Stable coronary artery disease
Acute coronary syndrome
Unstable angina
Non-ST-elevation myocardial infarction
ST-elevation myocardial infarction
Echocardiography finding
Left ventricular ejection fraction, %
Regional wall motion abnormality
Left anterior descending artery territory

Left circumflex artery territory

67.1+95
1,004 (68.8)
164.5+ 8.4
66.6+11.2
24.5+3.1
17402
966 (66.2)
576 (39.5)
1096 (75.1)
322 (22.1)
21 (1.4)
113 (7.7)
45 (3.1)
116 (8.0)
102 (7.0)
391 (26.8)
106 (7.3)
17 (1.2)

1186 (81.3)

273 (18.7)

225 (15.4)
47 (3.2)
1(0.1)

64+ 10
277 (19.0)
81 (5.6)
35 (2.4)



Right coronary artery territory 89 (6.1)

Multi-vessel territory 72 (4.9)
Laboratory finding

Hemoglobin, g/dL 13.5+3.8
White blood cell count, 103/uL 6.7+1.9
Platelet count, 10%/uL 217 +61
Blood urea nitrogen, mg/dL 18.1£8.6
Creatinine, mg/dL 1.1+£1.2
AST, IU/L 28 +16
ALT, IU/L 27+£19
Triglyceride, mg/dL 128 £ 90
HDL-Cholesterol, mg/dL 46 £ 12
LDL-Cholesterol, mg/dL. 79 £34

Note: Data are presented as mean =+ standard deviation, or number (percentage).
Abbreviations: AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; HDL, High-

density lipoprotein; LDL, Low-density lipoprotein.

11



Table 4. Fractional flow reserve and angiographic findings of the enrolled lesions

Total (N=2,439)

Lesion location

LAD 1,481 (60.7)
Proximal LAD 424 (17.4)
Middle LAD 513 (21.0)
Distal LAD 46 (1.9)
LAD extended 382 (15.7)
Diagonal branch 116 (4.8)

LCX 533 (21.9)
Proximal LCX 257 (10.5)
Distal LCX 59 (2.4)
LCX extended 111 (4.6)
Obtuse marginal branch 106 (4.3)

RCA 425 (17.4)
Proximal RCA 129 (5.3)
Middle RCA 140 (5.7)
Distal RCA 75 (3.1)
RCA extended 79 (3.2)
Posterolateral branch 1(0.0)
Posterior descending artery 1(0.0)

Wire-based FFR data

Median FFR 0.87 (0.82-0.93)
FFR at LAD 0.84 (0.80-0.88)
FFR at LCX 0.94 (0.88-0.97)
FFR at RCA 0.93 (0.89-0.97)

FFR <0.80 468 (19.2)

Median FFR in FFR <0.80
Median FFR in FFR >0.80

0.76 (0.74-0.78)
0.89 (0.85-0.94)
Hyperemia agent

Intravenous adenosine 1,856 (76.1)

12



Intracoronary nicorandil 583 (23.9)

Quantitative coronary angiography data

Reference vessel diameter, mm 3.0£0.6
Proximal reference vessel diameter, mm 32+0.6
Distal reference vessel diameter, mm 2.8+£0.6

Minimal lumen diameter, mm 1.6 £0.6

Diameter stenosis, % 49.0 £ 14.5

Lesion length, mm 21.0+12.6

Lesion profile
Focal 1,436 (58.9)
Diffuse 1,003 (41.1)

Note: Data are presented as mean =+ standard deviation, median (interquartile range), or number

(percentage).

Abbreviations: LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right

coronary artery; FFR, fractional flow reserve.

13



3.2. Major features and diagnostic performance of the ML-Angio-FFR

model

The eight major features were selected from a total of 42 features based on RF feature
importance. These selected 8 features as follows: target vessel, minimal lumen diameter, diameter
stenosis, lesion location, lesion length, mean reference vessel diameter, distal reference vessel
diameter, and proximal reference vessel diameter (Fig. 2). There was a strong correlation between
ML-Angio-FFR and wire-based FFR (r=0.7828; p<0.001), and good agreement (MAE=0.0385) in
the testing sets (Fig. 3A). The Bland-Altman plot also demonstrated good agreement in the testing
sets, resulting in a mean difference of 0.002, and 95 % confidence limits ranging from -0.093 to
0.097 (Fig. 3B). In the external validation sets, a modest correlation between ML-Angio-FFR and
wire based FFR (r=0.4940; p<0.001) and good agreement (MAE=0.0563) were observed (Fig. 3C).
The Bland-Altman plot demonstrated modest agreement in the external validation sets, resulting in
a mean difference of 0.031, and 95 % confidence limits ranging from -0.094 to 0.155 (Fig. 3D).

Using a threshold of FFR >0.80, the performance tests were conducted. In the testing sets, the
area under the curve (AUC) of the ROC curve was 0.89 (95% confidence interval [CI], 0.85-0.92).
The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic
accuracy in the testing sets were 97 % (95% ClI, 96-99), 47 % (95% ClI, 37-57), 88 % (95% ClI, 85-
91), 80 % (95% CI, 70-91), and 87 % (95% CI, 84-90), respectively (Fig. 4A). In the external
validation sets, AUC of the ROC curve was 0.73 (95% ClI, 0.64-0.81). The sensitivity, specificity,
positive predictive value, negative predictive value, and diagnostic accuracy in the external
validation sets were 97 % (95% Cl, 92-100), 11 % (95% ClI, 3-19), 62 % (95% ClI, 53-70), 67 %
(95% ClI, 33-100), and 62 % (95% ClI, 54-70), respectively (Fig. 4B).

14



Target vessel
DS

MLD

Lesion location
Lesion length
Mean RVD

Distal RVD

Proximal RVD

Hemoglobin
Height
WBC
Platelet
Lesion profile
Male sex
RWMA territory
Previous PCI

RWMA

0.00 0.05 0.10 0.15 0.20 0.25
Random Forest Feature Importance

Figure 2. Random Forest feature importance for the selected 8 features. Feature importance
was computed using the Gini importance, the top 8 features were selected for model development.
Abbreviations: DS, diameter stenosis; MLD, minimal lumen diameter; RVD, reference vessel
diameter; WBC, white blood cell; RWMA, regional wall motion abnormality; PCI, percutaneous

coronary intervention.
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Figure 3. Correlation between ML-Angio-FFR and wire-based FFR. (A) The scatter plot
demonstrates a strong correlation between ML-Angio-FFR and wire-based FFR in the testing sets,
with a Pearson correlation coefficient of r=0.7828. (B) The Bland-Altman plot demonstrates a mean
difference of 0.002, and 95% confidence limits between -0.093 and 0.097 in the testing sets. (C) The
scatter plot demonstrates a modest correlation between ML-Angio-FFR and wire-based FFR in the
external validation sets, with a Pearson correlation coefficient of r=0.4940. (D) The Bland-Altman
plot demonstrates a mean difference of 0.031, and 95% confidence limits between -0.094 and 0.155.
The mean (x-axis) was calculated as follows: (ML-Angio-FFR + wire-based FFR)/2, and the
difference (y-axis) was calculated as follows: ML-Angio-FFR - wire-based FFR.

Abbreviation: FFR, fractional flow reserve.
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Figure 4. Receiver operating characteristic curves of ML-Angio-FFR model and its diagnostic
performance. (A) The ROC curve in the testing sets was constructed with FFR >0.80 as the

threshold. (B) The ROC curve in the external validation sets was also constructed with FFR >0.80

as the threshold.

Abbreviations: AUC, area under the curve; PPV, positive predictive value; NPV, negative

0.8

1.0

predictive value; ROC, receiver operating characteristic; FFR, fractional flow reserve.
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4. DISCUSSION

The ML-Angio-FFR study was a retrospective single-center study for the development of an
angiography-based FFR model using ML. This study demonstrated good diagnostic performance of
ML-Angio-FFR model, showing high correlation and agreement with pressure wire-based FFR.

The pressure wire-based invasive FFR is a crucial tool in treatment strategies of coronary artery
disease, supported by numerous previous research.®® Consequently, there has been growing interest
in developing noninvasive FFR methods that can more safely and cost-effectively predict wire-based
FFR. FFTcr (Heartflow, Inc., Redwood City, CA, USA) is one of the most widely used noninvasive
FFR methods, based on computed tomography (CT)-derived FFR.'* FFTcr creates 3D vessel model
from coronary CTA and applies computational fluid dynamics (CFD) to predict FFR.* It is
beneficial as it enables selective conduct of invasive coronary angiography in patients with angina
and intermediate stenosis.*!>22 Moreover, several studies have demonstrated that FFTcr can reduce
total healthcare costs,'® additionally, it has shown equivalent or better results in clinical efficacy and
safety compared to traditional diagnostic testing in stable patients suspected coronary artery
disease.?® However, the CFD algorithm relies on various assumptions about hemodynamics of
coronary flow and the quality of coronary CTA.?° One of the major limitations of CFD-based models
is that their predictive accuracy may be reduced if there is a significant difference between these
assumptions and actual blood flow conditions, or if the CT quality is poor.?>% Quantitative flow
ratio (QFR) (Medis Medical Imaging System, Leiden, the Netherlands, and Pulse Medical Imaging
Technology, Shanghai, China) is one of the effective angiography-based FFR methods which has
shown strong correlation with wire-based FFR.1216:17.2L |n addition, QFR took less time than wire-
based FFR.® Moreover, in recent randomized controlled trial, QFR-guided PCI was improved 1-
year clinical outcomes compared to standard angiography-guided PCI.1” However, QFR requires
specific angles during coronary angiography and coronary flow can influence the predicted FFR.2
Vessel fractional flow reserve (VFFR) (CAAS, Pie Medical Imaging, Maastricht, the Netherlands)
is another angiography-based FFR method which generates 3D QCA from two distinct views over
30° and can be conducted using the CAAS workstation.*>*® It is beneficial that angiography images
do not need to be transferred to other software for predicting FFR, and VFFR can also trace target

vessel effectively, resulting in lower interobserver variability.'®2* However, like other methods, it is
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limited to use in heavily calcified or tortuous vessels and requires additional effort to obtain the
appropriate angiographic views.?* FFRangio (CathWorks, Ltd, Kfar Saba, Israel) is also angiography-
based FFR, which is needed two or more angiographic views with different angle for 3D
reconstruction of entire coronary trees.* It is possible to conduct a comprehensive evaluation of all
coronary arteries, which makes it beneficial for patients with multi-vessel disease, though it may be
time-consuming in patients with single coronary artery disease.'®?* Likewise, FFRangio is based on
CFD principles, it can be influenced by quality of image or contrast flow.?*

Traditional 2D QCA is still widely used for stent sizing and is convenient for on-site
measurement. However, if the decision of PCI is based solely on diameter stenosis (>50%) in QCA
analysis, it leads to poor accuracy in predicting FFR <0.80 and a lower positive predictive value,
often resulting in unnecessary PCI.%162031 This study proposes a new ML model to predict FFR
based on angiography, combining several features including traditional 2D QCA data with some
additional information about lesions to identify ischemic driven lesions or lesions that can be
deferred for PCI. With high sensitivity to predict FFR >0.80, this ML-Angio-FFR model can help
identify patients who are not required to undergo invasive FFR, providing both cost and time
efficiency.

This study, however, is not without limitations. The ML-Angio-FFR model was developed
using single-center data, therefore, there were concerns about overfitting. The results of performance
tests in the external validation sets slightly decreased compared to the testing sets. These findings
suggest that the ML-Angio-FFR model may be overfitted. It is necessary to investigate additional
study using multi-center data, which will help to overcome the possibility of overfitting. The ML-
Angio-FFR model used QCA data with a single angiographic projection, which may lead to an over-
or underestimation of the lesion profile. However, this is a pragmatic method used in real-world
practice. Additionally, all angiographic views were selected by expert clinicians to define
appropriate lesion characteristics and avoid foreshortening. Not all lesion profiles, such as tandem
and mixed lesions, were included in ML-Angio-FFL model due to the lack of pull-back FFR data,
even though they are commonly shown in clinical practice. Therefore, it can be used only in limited
situations. Although the model demonstrated good diagnostic accuracy and sensitivity, the
specificity value is lower than the other values; therefore, it may not be advisable to determine PCI
solely based on the ML-Angio-FFR value at this time. Finally, since it has not been applied on-site

clinical practice, additional examination will be needed for evaluation of interobserver variability.
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5. CONCLUSION

The ML-Angio-FFR model demonstrates a high correlation with pressure wire-based FFR and
presents good diagnostic performance to predict FFR >0.80 in off-site analysis. Additional training

with data from other centers may be needed to enhance accuracy and avoid overfitting.
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