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ABSTRACT 

 

Development of a model for angiography-based fractional flow reserve 

using machine learning in coronary artery disease 
 

 

 
 

Objectives: Guidelines recommend using pressure wire-based fractional flow reserve (FFR) when 

deciding to perform coronary intervention in patients with angina and intermediate lesions. However, 

several hurdles, including cost and safety concerns, have reduced the rate of FFR usage in clinical 

practice. Meanwhile, noninvasive FFR methods have been widely investigated for their safety and 

convenience. This study aimed to develop machine learning (ML) model, referred as ML-Angio-

FFR model, using quantitative coronary angiography and clinical data that can predict FFR more 

safely as well as cost and time effectively. 

Methods: The ML-Angio-FFR model was trained using the Random Forest algorithm with 42 

features based on 1,459 patients with 2,439 intermediate lesions. All the features were ranked by 

feature importance score. The training and testing sets were divided in a 4:1 ratio. FFR ≤0.80 was 

considered ischemic driven lesion, while FFR >0.80 was considered lesion can be deferred 

intervention and the performance test was conducted using this threshold. 

Results: The mean age of the enrolled patients was 67.1 years, and 1,004 (68.8%) were male. Of 

the included lesions, 1,481 (60.7%), 533 (21.9%), and 425 (17.4%) were located in left anterior 

descending artery, left circumflex artery, and right coronary artery, respectively. Using the 8 key 

features, the ML-Angio-FFR model was developed. There was a strong correlation between ML-

Angio-FFR and wire-based FFR (r=0.7828; p<0.001), along with high diagnostic accuracy in the 

testing set (87%; area under the curve, 0.89). External validation revealed modest correlation 

(r=0.4940; p<0.001) and accuracy (62%; area under the curve, 0.73). 

Conclusions: The ML-Angio-FFR model demonstrates a high correlation with pressure wire-based 

FFR and presents good diagnostic performance to predict FFR >0.80. 

                                                                                

Key words : fractional flow reserve, machine learning, quantitative coronary angiography
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1. INTRODUCTION 

 

Fractional flow reserve (FFR) is one of the most widely investigated coronary physiology 

assessment. Moreover, FFR-guided percutaneous coronary intervention (PCI) is currently 

recommended by several guidelines for patients with angina who have intermediate coronary artery 

stenosis.1,2 This approach can be applied not only to single coronary lesions but also in various 

clinical scenarios, such as multi-vessel coronary artery disease or acute coronary syndrome.3-8 

However, despite guidelines and numerous studies, FFR is still underutilized due to the time and 

cost associated for additional using pressure wire, as well as the use of medications to induce 

maximal hyperemia during the procedure.9-11 In these regards, there have been increasing efforts to 

predict FFR without pressure wire, defined as noninvasive coronary physiology assessments.12-14 

Some noninvasive methods, such as coronary computed tomography angiography (CTA) based FFR 

prediction or angiography-based FFR prediction (without using pressure wire), have already been 

developed and validated for use in clinical practice.15-17 These methods are considered safe and 

showed not only good correlation with pressure wire-based FFR, but also higher accuracy compared 

to traditional quantitative coronary angiography (QCA) based FFR prediction using diameter 

stenosis.18-22 However, each method still requires dedicated software and formulas, along with 

additional cost and time.23,24 Meanwhile, advances in computing power have led to the emergence 

of machine learning (ML) technology, there are several studies for predicting FFR in ML model 

with various features.25,26 However, it is not yet feasible to use these methods for on-site analysis 

due to difficulties in applying them simultaneously with coronary angiography. In this era, this study 

aimed to develop a ML model, referred to as ML-Angio-FFR, to predict FFR using both lesion 

characteristics obtained from traditional 2D QCA and patient’s baseline characteristics, which do 

not require additional software or preprocessing steps. 
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2. METHODS 

 

2.1. Study design and population 

The ML-Angio-FFR study is a retrospective single-center study aimed at validating the 

accuracy of ML model to predict FFR based on angiography, compared with pressure wire-based 

FFR assessment. This study was permitted by the Institutional Review Board of Severance Hospital, 

Seoul, Korea (4-2024-0245), and followed the ethical principles of the Declaration of Helsinki 

(2013). The requirement of informed consent was dispensed with the current study was retrospective 

and study subjects were de-identified according to confidentiality guidelines. A total of 1,955 

patients who underwent invasive coronary angiography and wire-based FFR measurement for 

assessment of chest pain were screened from April 2018 to February 2024 in the single-center. These 

patients had a total of 3,885 lesions with intermediate coronary stenosis (40-70% stenosis) by visual 

estimation. The ML-Angio-FFR model was planned to develop based on per-vessel analysis, data 

preprocessing was conducted by lesion level. Of these lesions, 1,446 were excluded due to the 

following criteria: (1) poor quality of FFR data or lack of clinical data (n=20); (2) overlapped or 

severe tortuosity of coronary artery which was difficult to measure QCA (n=68); (3) tandem or 

mixed lesions (n=1,121); (4) small side branch evaluation (n=20); (5) proximal left main coronary 

artery evaluation (< 3 mm from the aorta) (n=33); (6) culprit lesion in acute myocardial infarction 

(n=43); (7) diagnosed with variant angina (n=6); and (8) outliers, defined as FFR <0.70 (n=135). 

Finally, 1,459 patients with 2,439 lesions were included in the study (Fig. 1). 
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Figure 1. Flow chart of the study enrollment. Patients were screened from April 2018 to February 

2024 and were excluded based on the criteria described above. Lesions with FFR <0.70 were 

considered outliers and were excluded. Finally, the dataset was randomly divided into training and 

testing sets in a 4:1 ratio. 

Note: *, n=number of lesions. 

Abbreviations: FFR, fractional flow reserve; QCA, quantitative coronary angiography; LM, left 

main coronary artery; AMI, acute myocardial infarction. 
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2.2. Image analysis 

QCA analysis was conducted by trained specialists using an offline analytic system of 

quantitative coronary angiography (CAAS, Pie Medical Imaging, Maastricht, the Netherlands). The 

minimal lumen diameter was assessed with diastolic frames from a single-matched view that was 

neither foreshortened nor distorted, using a guiding catheter for magnification calibration to ensure 

accurate measurement of the smallest lumen diameter. Each lesion was classified into four categories, 

defined as lesion profile.27 Lesion with a length of less than 20 mm was defined as “focal lesion”, 

while those of 20 mm or longer was defined as “diffuse lesion”. If multiple focal lesions were present 

in one major epicardial coronary artery, they were defined as "tandem lesions", and QCA was 

conducted for each included focal lesion. When both focal and diffuse lesions co-existed, or multiple 

diffuse lesions were present in one major epicardial coronary artery, they were defined as “mixed 

lesions". Target vessel was defined as left anterior descending artery (LAD), left circumflex artery 

(LCX), right coronary artery (RCA), and left main coronary artery. The lesion location was 

classified according to each vessel. The LAD included proximal, middle, distal, and diagonal branch. 

The LCX included proximal, distal, obtuse marginal branch, and ramus intermedius branch. The 

RCA included proximal, middle, distal, posterolateral branch, and posterior descending artery. If the 

lesion extends from proximal to middle, from middle to distal, or from proximal to distal portions, 

it was noted separately as LAD extended, LCX extended, or RCA extended. 

 

2.3. Pressure wire-based FFR measurement 

The pressure wire-based FFR measurements were conducted using a 0.014-inch pressure wire 

(Abbott Vascular, Santa Clara, CA, USA). After equalization process at aorta, the pressure wire was 

positioned most distal to the target lesions. Hyperemia was induced by intravenous infusion of 140 

μg/kg/min of adenosine via an antecubital vein or intracoronary bolus injection of 2 mg nicorandil. 

FFR was determined by calculating the ratio of the mean pressure of distal coronary lesion to the 

mean pressure of aorta during maximal hyperemia. The lesion with FFR ≤0.80 was considered 

significant ischemic driven lesion, while FFR >0.80 was considered that the lesion can be deferred 

for PCI. 
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2.4. ML-FFR assessment based on angiography 

In ML regression task, the model attempts to identify and quantify the relationships between 

variables by estimating how changes in one variable impact another. The process involved selecting 

relevant features, choosing an appropriate ML algorithm, training the model, assessing its 

performance, and tuning the hyperparameters. For this study, a Random Forest (RF) algorithm was 

applied to predict FFR values. As an ensemble technique, RF constructs multiple decision trees from 

random subsets of the data, and the final prediction is the combined output of all the trees. This 

technique helps prevent overfitting, reduces variance, and enhances accuracy even with imbalanced 

datasets. 

A total of 42 features were selected for model development, based on patients’ clinical 

characteristics and QCA data, to support the ML-Angio-FFR model in assessing coronary 

intermediate lesions. During data preprocessing, cases with FFR <0.70 were considered as outliers 

and removed to prevent the model from being distorted. Initially, ML model was trained by using 

comprehensive set of 42 features to establish baseline performance (Table 1), and compute feature 

importance scores using Gini importance derived from the RF model. After evaluating the 

importance ranking, top 8 features were selected for model development, ensuring that only the most 

relevant predictors were retained. The dataset consisted of 2,439 samples, which were split into 

training and testing sets using a stratified sampling technique to maintain the distribution across the 

subgroups: LAD, LCX, and RCA. The training set comprised 1,951 samples, and the remaining 488 

samples were used for independent testing, with a training-to-testing ratio of 4:1. To ensure model 

stability and optimize performance, cross-validation (CV) alongside hyperparameter tuning was 

performed using GridSearchCV. The training set was partitioned into K folds, with K = 5 used in 

this study. The RF model was trained through multiple iterations of the 5-fold CV process, each time 

using different combinations of hyperparameters to fine-tune the model and ensure robust results. 

The final optimized hyperparameters, as summarized in Table 2, include n_estimators = 20, 

max_depth = 8, min_samples_leaf = 4, and min_samples_split = 3, while default values were 

retained for the remaining parameters. Using these optimized settings, the RF model was established. 

During the testing phase, the 488 lesions characterized by the top 8 features were evaluated using 

the trained models to predict FFR values. The performance of the RF model was assessed by 

applying Pearson correlation coefficient (r) analysis and calculating the mean absolute error (MAE) 

to quantify the agreement between predicted and wire-based FFR values. 



６ 

 

Table 1. List of 42 features and their weight 

Rank Feature Weight 

1 Minimal lumen diameter 0.520 

2 Target vessel 0.491 

3 Diameter stenosis 0.472 

4 Distal reference vessel diameter 0.292 

5 Mean reference vessel diameter 0.251 

6 Lesion profile 0.242 

7 Lesion length 0.236 

8 Proximal reference vessel diameter 0.182 

9 Age 0.090 

10 Lesion location 0.081 

11 Platelet count 0.076 

12 Hemoglobin 0.073 

13 Height 0.068 

14 Previous percutaneous coronary intervention 0.063 

15 Male sex 0.062 

16 Vessel territory of regional wall motion abnormality  0.059 

17 Regional wall motion abnormality 0.053 

18 White blood cell count 0.052 

19 Low-density lipoprotein-cholesterol level 0.051 

20 Aspartate aminotransferase level 0.051 

21 Body surface area 0.048 

22 Weight 0.038 

23 Chronic kidney disease 0.035 

24 Diabetes mellitus 0.033 

25 Previous myocardial infarction 0.031 

26 Previous stroke 0.031 

27 Clinical presentation 0.030 

28 Left ventricular ejection fraction 0.028 

29 Creatinine level 0.027 
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30 Heart failure 0.027 

31 End stage renal disease 0.025 

32 Triglyceride level 0.022 

33 Acute coronary syndrome 0.021 

34 Previous coronary artery bypass surgery 0.020 

35 Blood urea nitrogen level 0.018 

36 Current smoker 0.018 

37 Dyslipidemia 0.016 

38 Hypertension 0.015 

39 Alanine aminotransferase level 0.012 

40 High-density lipoprotein-cholesterol level 0.008 

41 Persistent atrial fibrillation 0.008 

42 Body mass index 0.007 

Note: Target vessel included LAD, LCX, and RCA. All of laboratory and echocardiography features 

were obtained peri-procedural periods. Total 42 features which were consist with 9 of angiography 

features, 20 of clinical features, 10 of laboratory features, and 3 of echocardiography features were 

included. 

Abbreviations: LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right 

coronary artery. 

 

 

Table 2. Optimized hyperparameters for Random Forest model 

Hyperparameter Description Value 

n_estimators Number of trees in Random Forest 20 

max_depth Maximum number of levels in tree 8 

min_samples_split Minimum number of samples required to split an internal node 3 

min_samples_leaf Minimum number of samples required at each leaf node 4 

max_features Maximum number of features to consider for splitting a node log2 

random_state Controls randomness for result reproducibility 8 
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2.5. External validation 

To evaluate the consistent performance of ML-Angio-FFR model, external validation was 

conducted using another single-center’s data which includes 131 patients with 149 intermediate 

coronary lesions who underwent coronary angiography and invasive wire-based FFR. This data was 

permitted for use by the Institutional Review Board of National Health Insurance Service Ilsan 

Hospital, Goyang-si, Korea (2024-09-025). 

 

2.6. Statistical analysis 

Baseline clinical characteristics were analyzed on per-patient level. The other evaluations and 

ML modeling were analyzed on per-vessel level. Continuous variables were presented as mean ± 

standard deviation or median (interquartile range). These were analyzed using the Shapiro–Wilk test 

for normality, and based on the results, analyzed using Student’s t-test or the Mann-Whitney U test. 

Categorical variables were presented as numbers (percentages) and analyzed using chi-square test 

or Fisher’s exact test. Pearson correlation coefficient (r) analysis and the Bland-Altman analysis 

were performed to evaluate correlation between ML-Angio-FFR and wire-based FFR measurement. 

Receiver operating characteristic (ROC) curve analyses were conducted, and sensitivity, specificity, 

positive predictive value, negative predictive value, and diagnostic accuracy of the ML model were 

calculated to define diagnostic performance of ML-Angio-FFR model. R version 4.2.2 (R 

Foundation for Statistical Computing, Vienna, Austria) was used for the statistical analyses. 
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3. RESULTS 

 

3.1. Baseline characteristics of patients and lesions 

The baseline characteristics of the study population and enrolled lesions to develop ML model 

are presented Table 3 and Table 4, respectively. The mean age of enrolled patients was 67.1 ± 9.5 

years, 1,004 patients (68.8%) were male, and the mean body mass index was 24.5 ± 3.1 kg/m2. Nine 

hundred sixty-six (66.2%), 576 (39.5%), and 102 (7.0%) patients had a medical history of 

hypertension, diabetes mellitus, and previous myocardial infarction, respectively, and 116 (8.0%) 

patients were current smokers. Three hundred twenty-two (22.1%) patients had heart failure, and 

113 (7.7%) patients had chronic kidney disease (defined as estimated glomerular filtration ratio 

below 60). One thousand one hundred eighty-six (81.3%) patients presented with stable coronary 

artery disease, and 273 (18.7%) patients presented with acute coronary syndrome. Among the 2,439 

target lesions, 1,481 (60.7%), 533 (21.9%), and 425 (17.4%) were placed in the LAD, LCX, and 

RCA, respectively. In echocardiographic findings, mean left ventricular ejection fraction was 64.0 

± 9.9 %, and 277 (19%) patients had regional wall motion abnormalities. 

The median FFR was 0.87 (interquartile range [IQR], 0.82–0.93), with the median FFR for 

LAD at 0.84 (IQR, 0.80–0.88), LCX at 0.94 (IQR, 0.88–0.97), and RCA at 0.93 (IQR, 0.89–0.97). 

Ischemia driven lesions (FFR ≤0.80) were observed in 468 (19.2%) lesions. The median values for 

FFR in the ischemia driven and not significantly driven ischemia lesions were 0.76 (IQR, 0.74–0.78) 

and 0.89 (IQR, 0.85–0.94), respectively. The mean minimal lumen diameter was 1.6 ± 0.6 mm, 

mean reference vessel diameter was 3.0 ± 0.6 mm, and mean diameter stenosis was 49.0 ± 14.5 %. 

The mean lesion length was 21.0 ± 12.6 mm, including 1,436 (58.9%) of focal lesions, and 1,003 

(41.1%) of diffuse lesions. 
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Table 3. Baseline characteristics of the study population 

 Total (N=1,459) 

Age, years 67.1 ± 9.5 

Male 1,004 (68.8) 

Height, cm 164.5 ± 8.4 

Weight, kg 66.6 ± 11.2 

Body mass index, kg/m2 24.5 ± 3.1 

Body surface area, m2 1.7 ± 0.2 

Hypertension 966 (66.2) 

Diabetes mellitus 576 (39.5) 

Dyslipidemia 1096 (75.1) 

Heart failure 322 (22.1) 

Persistent atrial fibrillation 21 (1.4) 

Chronic kidney disease 113 (7.7) 

End stage renal disease 45 (3.1) 

Current smoker 116 (8.0) 

Previous myocardial infarction 102 (7.0) 

Previous percutaneous coronary intervention 391 (26.8) 

Previous stroke 106 (7.3) 

Previous coronary bypass surgery 17 (1.2) 

Clinical presentation  

Stable coronary artery disease 1186 (81.3) 

Acute coronary syndrome 273 (18.7) 

Unstable angina 225 (15.4) 

Non-ST-elevation myocardial infarction 47 (3.2) 

ST-elevation myocardial infarction 1 (0.1) 

Echocardiography finding  

Left ventricular ejection fraction, % 64 ± 10 

Regional wall motion abnormality 277 (19.0) 

Left anterior descending artery territory 81 (5.6) 

Left circumflex artery territory 35 (2.4) 
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Right coronary artery territory 89 (6.1) 

Multi-vessel territory 72 (4.9) 

Laboratory finding  

Hemoglobin, g/dL 13.5 ± 3.8 

White blood cell count, 103/µL 6.7 ± 1.9 

Platelet count, 103/µL 217 ± 61 

Blood urea nitrogen, mg/dL 18.1 ± 8.6 

Creatinine, mg/dL 1.1 ± 1.2 

AST, IU/L 28 ± 16 

ALT, IU/L 27 ± 19 

Triglyceride, mg/dL 128 ± 90 

HDL-Cholesterol, mg/dL 46 ± 12 

LDL-Cholesterol, mg/dL 79 ± 34 

Note: Data are presented as mean ± standard deviation, or number (percentage). 

Abbreviations: AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; HDL, High-

density lipoprotein; LDL, Low-density lipoprotein. 
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Table 4. Fractional flow reserve and angiographic findings of the enrolled lesions 

 Total (N=2,439) 

Lesion location 

LAD 1,481 (60.7) 

Proximal LAD 424 (17.4) 

Middle LAD 513 (21.0) 

Distal LAD 46 (1.9) 

LAD extended 382 (15.7) 

Diagonal branch 116 (4.8) 

LCX 533 (21.9) 

Proximal LCX 257 (10.5) 

Distal LCX 59 (2.4) 

LCX extended 111 (4.6) 

Obtuse marginal branch 106 (4.3) 

RCA 425 (17.4) 

Proximal RCA 129 (5.3) 

Middle RCA 140 (5.7) 

Distal RCA 75 (3.1) 

RCA extended 79 (3.2) 

Posterolateral branch 1 (0.0) 

Posterior descending artery 1 (0.0) 

Wire-based FFR data 

Median FFR 0.87 (0.82-0.93) 

FFR at LAD 0.84 (0.80-0.88) 

FFR at LCX 0.94 (0.88-0.97) 

FFR at RCA 0.93 (0.89-0.97) 

FFR ≤0.80 468 (19.2) 

Median FFR in FFR ≤0.80 0.76 (0.74-0.78) 

Median FFR in FFR >0.80 0.89 (0.85-0.94) 

Hyperemia agent  

Intravenous adenosine 1,856 (76.1) 
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Intracoronary nicorandil 583 (23.9) 

Quantitative coronary angiography data 

Reference vessel diameter, mm 3.0 ± 0.6 

Proximal reference vessel diameter, mm 3.2 ± 0.6 

Distal reference vessel diameter, mm 2.8 ± 0.6 

Minimal lumen diameter, mm 1.6 ± 0.6 

Diameter stenosis, % 49.0 ± 14.5 

Lesion length, mm 21.0 ± 12.6 

Lesion profile  

Focal 1,436 (58.9) 

Diffuse 1,003 (41.1) 

Note: Data are presented as mean ± standard deviation, median (interquartile range), or number 

(percentage). 

Abbreviations: LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right 

coronary artery; FFR, fractional flow reserve. 
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3.2. Major features and diagnostic performance of the ML-Angio-FFR 

model 

The eight major features were selected from a total of 42 features based on RF feature 

importance. These selected 8 features as follows: target vessel, minimal lumen diameter, diameter 

stenosis, lesion location, lesion length, mean reference vessel diameter, distal reference vessel 

diameter, and proximal reference vessel diameter (Fig. 2). There was a strong correlation between 

ML-Angio-FFR and wire-based FFR (r=0.7828; p<0.001), and good agreement (MAE=0.0385) in 

the testing sets (Fig. 3A). The Bland-Altman plot also demonstrated good agreement in the testing 

sets, resulting in a mean difference of 0.002, and 95 % confidence limits ranging from -0.093 to 

0.097 (Fig. 3B). In the external validation sets, a modest correlation between ML-Angio-FFR and 

wire based FFR (r=0.4940; p<0.001) and good agreement (MAE=0.0563) were observed (Fig. 3C). 

The Bland-Altman plot demonstrated modest agreement in the external validation sets, resulting in 

a mean difference of 0.031, and 95 % confidence limits ranging from -0.094 to 0.155 (Fig. 3D). 

Using a threshold of FFR >0.80, the performance tests were conducted. In the testing sets, the 

area under the curve (AUC) of the ROC curve was 0.89 (95% confidence interval [CI], 0.85-0.92). 

The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic 

accuracy in the testing sets were 97 % (95% CI, 96-99), 47 % (95% CI, 37-57), 88 % (95% CI, 85-

91), 80 % (95% CI, 70-91), and 87 % (95% CI, 84-90), respectively (Fig. 4A). In the external 

validation sets, AUC of the ROC curve was 0.73 (95% CI, 0.64-0.81). The sensitivity, specificity, 

positive predictive value, negative predictive value, and diagnostic accuracy in the external 

validation sets were 97 % (95% CI, 92-100), 11 % (95% CI, 3-19), 62 % (95% CI, 53-70), 67 % 

(95% CI, 33-100), and 62 % (95% CI, 54-70), respectively (Fig. 4B). 
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Figure 2. Random Forest feature importance for the selected 8 features. Feature importance 

was computed using the Gini importance, the top 8 features were selected for model development. 

Abbreviations: DS, diameter stenosis; MLD, minimal lumen diameter; RVD, reference vessel 

diameter; WBC, white blood cell; RWMA, regional wall motion abnormality; PCI, percutaneous 

coronary intervention. 
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Figure 3. Correlation between ML-Angio-FFR and wire-based FFR. (A) The scatter plot 

demonstrates a strong correlation between ML-Angio-FFR and wire-based FFR in the testing sets, 

with a Pearson correlation coefficient of r=0.7828. (B) The Bland-Altman plot demonstrates a mean 

difference of 0.002, and 95% confidence limits between -0.093 and 0.097 in the testing sets. (C) The 

scatter plot demonstrates a modest correlation between ML-Angio-FFR and wire-based FFR in the 

external validation sets, with a Pearson correlation coefficient of r=0.4940. (D) The Bland-Altman 

plot demonstrates a mean difference of 0.031, and 95% confidence limits between -0.094 and 0.155. 

The mean (x-axis) was calculated as follows: (ML-Angio-FFR + wire-based FFR)/2, and the 

difference (y-axis) was calculated as follows: ML-Angio-FFR - wire-based FFR. 

Abbreviation: FFR, fractional flow reserve.  
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Figure 4. Receiver operating characteristic curves of ML-Angio-FFR model and its diagnostic 

performance. (A) The ROC curve in the testing sets was constructed with FFR >0.80 as the 

threshold. (B) The ROC curve in the external validation sets was also constructed with FFR >0.80 

as the threshold. 

Abbreviations: AUC, area under the curve; PPV, positive predictive value; NPV, negative 

predictive value; ROC, receiver operating characteristic; FFR, fractional flow reserve. 
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4. DISCUSSION 

 

The ML-Angio-FFR study was a retrospective single-center study for the development of an 

angiography-based FFR model using ML. This study demonstrated good diagnostic performance of 

ML-Angio-FFR model, showing high correlation and agreement with pressure wire-based FFR. 

The pressure wire-based invasive FFR is a crucial tool in treatment strategies of coronary artery 

disease, supported by numerous previous research.3-8 Consequently, there has been growing interest 

in developing noninvasive FFR methods that can more safely and cost-effectively predict wire-based 

FFR. FFTCT (Heartflow, Inc., Redwood City, CA, USA) is one of the most widely used noninvasive 

FFR methods, based on computed tomography (CT)-derived FFR.14 FFTCT creates 3D vessel model 

from coronary CTA and applies computational fluid dynamics (CFD) to predict FFR.14 It is 

beneficial as it enables selective conduct of invasive coronary angiography in patients with angina 

and intermediate stenosis.14,15,22 Moreover, several studies have demonstrated that FFTCT can reduce 

total healthcare costs,15 additionally, it has shown equivalent or better results in clinical efficacy and 

safety compared to traditional diagnostic testing in stable patients suspected coronary artery 

disease.28 However, the CFD algorithm relies on various assumptions about hemodynamics of 

coronary flow and the quality of coronary CTA.29 One of the major limitations of CFD-based models 

is that their predictive accuracy may be reduced if there is a significant difference between these 

assumptions and actual blood flow conditions, or if the CT quality is poor.29,30 Quantitative flow 

ratio (QFR) (Medis Medical Imaging System, Leiden, the Netherlands, and Pulse Medical Imaging 

Technology, Shanghai, China) is one of the effective angiography-based FFR methods which has 

shown strong correlation with wire-based FFR.12,16,17,21 In addition, QFR took less time than wire-

based FFR.16 Moreover, in recent randomized controlled trial, QFR-guided PCI was improved 1-

year clinical outcomes compared to standard angiography-guided PCI.17 However, QFR requires 

specific angles during coronary angiography and coronary flow can influence the predicted FFR.24 

Vessel fractional flow reserve (vFFR) (CAAS, Pie Medical Imaging, Maastricht, the Netherlands) 

is another angiography-based FFR method which generates 3D QCA from two distinct views over 

30° and can be conducted using the CAAS workstation.13,18 It is beneficial that angiography images 

do not need to be transferred to other software for predicting FFR, and vFFR can also trace target 

vessel effectively, resulting in lower interobserver variability.18,24 However, like other methods, it is 
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limited to use in heavily calcified or tortuous vessels and requires additional effort to obtain the 

appropriate angiographic views.24 FFRangio (CathWorks, Ltd, Kfar Saba, Israel) is also angiography-

based FFR, which is needed two or more angiographic views with different angle for 3D 

reconstruction of entire coronary trees.19 It is possible to conduct a comprehensive evaluation of all 

coronary arteries, which makes it beneficial for patients with multi-vessel disease, though it may be 

time-consuming in patients with single coronary artery disease.19,24 Likewise, FFRangio is based on 

CFD principles, it can be influenced by quality of image or contrast flow.24  

Traditional 2D QCA is still widely used for stent sizing and is convenient for on-site 

measurement. However, if the decision of PCI is based solely on diameter stenosis (>50%) in QCA 

analysis, it leads to poor accuracy in predicting FFR ≤0.80 and a lower positive predictive value, 

often resulting in unnecessary PCI.9,16,20,31 This study proposes a new ML model to predict FFR 

based on angiography, combining several features including traditional 2D QCA data with some 

additional information about lesions to identify ischemic driven lesions or lesions that can be 

deferred for PCI. With high sensitivity to predict FFR >0.80, this ML-Angio-FFR model can help 

identify patients who are not required to undergo invasive FFR, providing both cost and time 

efficiency. 

This study, however, is not without limitations. The ML-Angio-FFR model was developed 

using single-center data, therefore, there were concerns about overfitting. The results of performance 

tests in the external validation sets slightly decreased compared to the testing sets. These findings 

suggest that the ML-Angio-FFR model may be overfitted. It is necessary to investigate additional 

study using multi-center data, which will help to overcome the possibility of overfitting. The ML-

Angio-FFR model used QCA data with a single angiographic projection, which may lead to an over- 

or underestimation of the lesion profile. However, this is a pragmatic method used in real-world 

practice. Additionally, all angiographic views were selected by expert clinicians to define 

appropriate lesion characteristics and avoid foreshortening. Not all lesion profiles, such as tandem 

and mixed lesions, were included in ML-Angio-FFL model due to the lack of pull-back FFR data, 

even though they are commonly shown in clinical practice. Therefore, it can be used only in limited 

situations. Although the model demonstrated good diagnostic accuracy and sensitivity, the 

specificity value is lower than the other values; therefore, it may not be advisable to determine PCI 

solely based on the ML-Angio-FFR value at this time. Finally, since it has not been applied on-site 

clinical practice, additional examination will be needed for evaluation of interobserver variability. 
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5. CONCLUSION 

 

The ML-Angio-FFR model demonstrates a high correlation with pressure wire-based FFR and 

presents good diagnostic performance to predict FFR >0.80 in off-site analysis. Additional training 

with data from other centers may be needed to enhance accuracy and avoid overfitting. 
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Abstract in Korean 

 

관상동맥질환 환자에서 머신 러닝을 통한 관상동맥 조영술 기반 

분획 혈류 예비력 측정 모델 수립 

 

배경: 협심증을 호소하는 환자에게서 관상동맥의 중등도 협착이 관찰된다면, 압력 

철선 기반의 분획 혈류 예비력을 평가하여 관상동맥 중재술 등의 치료 방침을 

결정하도록 최신의 가이드라인에서 권고하고 있다. 그러나 실제 임상에서는 시간, 

비용 및 안전상의 문제로 분획 혈류 예비력 검사 시행이 저조한 실정이다. 이러한 

배경에서, 비침습적으로 이런 분획 혈류 예비력을 예측하기 위한 연구들도 많이 

이루어지고 있다. 본 연구는 정량적 관상동맥 조영술과 환자의 임상 정보를 이용하여 

비침습적으로 분획 혈류 예비력을 예측할 수 있는 머신 러닝 모델 (ML-Angio-

FFR)을 수립하는 것을 목표로 하고 있다. 

방법: ML-Angio-FFR 모델은 1,459명의 협심증 환자의 2,439개의 중등도 

관상동맥 병변을 가지고 머신 러닝 기반의 랜덤 포레스트 알고리즘으로 훈련되었다. 

첫 분석시에는 42개의 특성들이 포함되었다. 훈련 세트와 테스트 세트는 4:1 비율로 

나누어졌다. 분획 혈류 예비력 0.80 이하의 병변은 허혈을 유발하는 병변으로, 0.80 

초과는 중재술을 연기하고 약물 치료를 먼저 시행하는 병변으로 간주하고, 0.80 

초과를 기준으로 모델 성능 테스트를 수행하였다. 

결과: 환자의 평균 나이는 67.1세였고, 1,004명은 (68.8%) 남성이었다. 

좌전하행지 1,481개 (60.7%), 좌회선지 533개 (21.9%), 우관상동맥 425개 

(17.4%)의 병변이 포함되었다. 8개의 주요 특징을 사용하여 최종 ML-Angio-FFR 

모델이 개발되었고, 테스트 세트에서 압력 철선 기반 분획 혈류 예비력과의 강한 

상관 관계를 보였다 (r=0.7828, p<0.001). 또한 모델 성능 평가에서 진단 정확도는 

87%로 확인되었고, 수신자 조작 특성 곡선의 곡선 아래 면적은 0.89로 나타났다. 

외부 자료 검증에서도 준수한 상관 관계 및 진단 정확도를 보였으며 (r=0.4940, 

p<0.001; 62%), 수신자 조작 특성 곡선의 곡선 아래 면적은 0.73으로 나타났다. 

결론: ML-Angio-FFR 모델은 기존의 압력 철선 기반 분획 혈류 예비력과 높은 

상관관계를 보이며 허혈을 유발하지 않는 병변을 예측하는 것에 준수한 진단 성능을 

나타낸다. 

_______________________________________________________________________________ 

핵심되는 말 : 분획 혈류 예비력, 머신 러닝, 정량적 관상동맥 조영술 
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