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ABSTRACT 

 
Neural correlates of model-based and model-free reinforcement 

learning in Internet gaming disorder 
 
 
Background: Internet gaming disorder (IGD) has become a serious public health problem, but its 

neurocognitive mechanisms are unclear yet. Therefore, it is a crucial issue to identify similarities 

and differences between IGD and other addictive disorders including alcohol use disorder (AUD). 

Recent studies have supported that a computational psychiatric approach and decision-making 

framework might be advantageous in conceptualizing IGD and delineating its similarities and 

differences between psychiatric disorders. This study compared the neurocognitive features 

associated with model-based and model-free systems in individuals IGD and AUD. 

 

Methods: Individuals diagnosed as IGD (n=24), AUD (n=22), and healthy controls (HC; n=30) in 

young males were scanned with fMRI while performing the two-step task, a well-validated task for 

appraising the contribution from two decision-making systems, goal-directed (model-based) and 

habitual (model-free) control systems. Goal of the present study is to investigate the balance between 

two decision-making systems (model-based/model-free learning) in IGD, AUD, and HC groups 

using computational modeling and hierarchical Bayesian analysis. Finally, we will describe neural 

correlates of goal-directed control of IGD and AUD via model-based fMRI analysis. 

 

Results: The computational modeling results indicated that both the IGD and AUD groups exhibited 

similar levels of model-based behavior. However, there were notable differences in the neural 

correlates of the model-based reward prediction error (RPE) between the two groups. Specifically, 

the IGD group showed insula-specific activation linked to model-based RPE, whereas the AUD 

group displayed activation in the prefrontal regions, particularly the orbitofrontal cortex and superior 

frontal gyrus. Additionally, individuals with IGD demonstrated hyper-connectivity between the 

insula and other regions within the salience network in the context of model-based RPE. 

 

Conclusions: The findings indicate that there may be distinct neurobiological mechanisms driving 
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model-based behavior in IGD and AUD, despite some shared cognitive features identified through 

computational modeling. As the inaugural neuroimaging study to compare IGD and AUD 

concerning the model-based system, this research offers new perspectives on the unique decision-

making processes associated with IGD. 

 

Clinical Relevance: This study highlights critical distinctions in the neurobiological mechanisms 

of decision-making processes between IGD and AUD. Understanding these differences is crucial 

for developing targeted therapeutic strategies. The identification of insula-specific activation in IGD 

and prefrontal activation in AUD suggests that interventions could be tailored to address these 

distinct neural pathways. For IGD, treatments focusing on modulating insula activity and enhancing 

salience network connectivity might prove effective. In contrast, AUD interventions might benefit 

from strategies aimed at improving prefrontal cortex function. These insights pave the way for 

personalized treatment approaches, potentially improving outcomes for individuals with IGD and 

AUD. Additionally, this research underscores the value of computational psychiatric approaches 

and neuroimaging in refining diagnostic criteria and therapeutic targets for addictive disorders. 

                                                                   
Key words : Internet gaming disorder, alcohol use disorder, goal-directed control, model-based 
fMRI
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1. Introduction 
 

Internet gaming disorder (IGD) is defined as a maladaptive pattern of gaming behavior marked by 
diminished control and a heightened focus on gaming, often at the expense of occupational, social, 
and academic functioning. Research has consistently shown that IGD shares several cognitive, 
neural, and clinical characteristics with substance use disorders (SUD) and gambling disorder 
1.  In 2018, the World Health Organization formally recognized gaming disorder as a medical 
condition in the International Classification of Diseases-11. Despite this recognition, ongoing 
debates persist regarding the classification of IGD as an addictive disorder alongside SUD2–4 . 
Clinical distinctions between IGD and SUD have been noted, such as the lack of pharmacological 
effects leading to prominent physiological withdrawal and tolerance in IGD5,6 . Consequently, 
further research is needed to elucidate the neurobiological underpinnings of IGD in comparison to 
substance-related addictive disorders. 
The reinforcement learning model of addiction conceptualizes addiction as a progression from 
goal-directed actions to habitual, stimulus-driven behaviors7,8 . Goal-directed actions rely on the 
“model-based” system, where potential actions are evaluated by anticipating their outcomes9,10 . 
Conversely, habitual behaviors are governed by the "model-free" system, which depends on 
previously formed associations between stimuli and rewards9,11 . While model-free decision-
making is typically faster and more efficient, it tends to lack flexibility. Optimal decision-making 
involves a dynamic interplay between the model-based and model-free systems12,13 , but numerous 
studies indicate a disruption in the model-based system and a predominance of the model-free 
system in individuals with addiction14–16 . For instance, individuals with alcohol use disorder 
(AUD) and binge drinkers show deficits in model-based control17–21 , with the severity of alcohol 
addiction inversely correlated with model-based behaviors in the general population22 . Similarly, 
those with gambling disorder—a behavioral addiction not confounded by substance 
neurotoxicity—also exhibit impairments in model-based control23 . 
To disentangle the contributions of model-based and model-free systems in decision-making, 
paradigms such as the two-stage task have been employed24 . Early studies using this task in AUD 
populations revealed impaired model-based control, particularly after non-rewarded trials. In the 
general population, higher AUDIT scores correlated with reduced model-based control. While 
some studies found no impairments in model-based control among AUD individuals19,25,26 , those 
at high familial risk for AUD27 , or young social drinkers28 , growing evidence suggests that 
deficits in goal-directed control in AUD are linked to impaired model-based control. Sebold et al. 
(2017) reported that although reduced model-based control did not predict relapse in detoxified 
AUD individuals, high alcohol expectancies were negatively associated with model-based control 
in individuals with relapse, as shown by model-based fMRI analysis21 . Furthermore, Chen et al. 
(2021) demonstrated a longitudinal link between impaired model-based control and higher binge 



２ 

 

 

 

drinking trajectories in a large sample17 . Interestingly, individuals with gambling disorder also 
exhibited impaired model-based control after unrewarded outcomes, a pattern similar to AUD, 
suggesting that this impairment may represent a shared feature of substance-related and behavioral 
addictions23 . Despite extensive research on IGD, model-based system approaches have yet to be 
examined. 
In this study, we aimed to investigate the balance between model-based and model-free systems 
in individuals with IGD and AUD using a two-stage task and model-based fMRI analysis. Model-
based fMRI leverages the spatial and temporal resolution of task-based fMRI to capture neural 
activity associated with specific computational processes, distinguishing between competing 
models of neural and cognitive functions29 . Key regions implicated in reward prediction, such as 
the ventromedial prefrontal cortex and ventral striatum, are thought to mediate model-based and 
model-free control.13,24  This study seeks to compare the neural correlates of prediction error 
processing in IGD and AUD. We hypothesize that (1) individuals with IGD and AUD will exhibit 
impaired model-based control compared to healthy controls, and (2) the neural correlates of 
impaired model-based control will differ between IGD and AUD, reflecting the absence of 
alcohol-related neurotoxic effects in IGD. 

 

2. MATERIALS AND METHODS 
 

2.1. Participants  
 

Seventy-seven male participants, aged 20 to 28, were recruited between September 2018 and 
August 2019 through community and university-based advertisements in Seoul, South Korea. 
During initial screening, participants were classified into the presumptive IGD group, AUD group, 
or healthy control (HC) group based on their scores from the Young Internet Addiction Test (IAT) 
and the Korean version of the Alcohol Use Disorder Identification Test (AUDIT). Subsequently, 
all participants underwent evaluation at Severance Hospital, where a board-certified psychiatrist 
conducted a semi-structured interview using the Structured Clinical Interview for the DSM-IV to 
assess for major psychiatric disorders. Based on DSM-5 diagnostic criteria, two psychiatrists 
reclassified participants into four groups: IGD, AUD, HC, or a comorbid group (IGD and AUD). 
Cognitive ability was assessed using the Korean version of the Wechsler Adult Intelligence Scale 
(K-WAIS-IV), and individuals with a verbal or performance IQ below 80 were excluded. 
Participants who were unable to undergo magnetic resonance imaging (MRI) were also excluded. 
To focus on the distinct pathologies of IGD and AUD, individuals with comorbid IGD and AUD 
were excluded. Additionally, participants with major psychiatric disorders, ongoing 
psychopharmacological treatment, or neurological conditions were excluded. After these criteria 
were applied, 74 participants remained for behavioral analysis and computational modeling. 
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For fMRI analysis, participants with an average framewise displacement exceeding 0.5 (N = 4) 
were excluded to ensure data quality. An additional participant was removed due to signal loss in 
frontal brain regions. This resulted in 69 participants being included in the fMRI analysis, divided 
into the following groups: HC (28), IGD (20), and AUD (21) (Figure 1). All participants provided 
detailed informed consent after receiving comprehensive information about the study protocol. The 
study was conducted in accordance with the ethical guidelines approved by the Institutional Review 
Board (IRB) of Severance Hospital, Seoul, South Korea (IRB approval number: 4-2014-0745). 
 

  
Figure 1. Participant recruitment and inclusion process30  
 

2.2. Psychometric measure 
 

Game and alcohol use were assessed using modified versions of the Internet Addiction Test 

(IAT)31  and the Alcohol Use Disorder Identification Test (AUDIT)32 , respectively. To measure 

the severity of depressive and anxiety symptoms, all participants completed the Beck Depression 

Inventory (BDI)33  and the Beck Anxiety Inventory (BAI)34 . Impulsivity was evaluated using the 

Barratt Impulsiveness Scale (BIS)35 , while childhood symptoms of attention-deficit hyperactivity 

disorder (ADHD) were assessed with the Wender Utah Rating Scale (WURS)36 . Group differences 

in survey measures were analyzed using a one-way analysis of variance (ANOVA) with group as 

the factor (IGD, AUD, HC). Post-hoc pairwise comparisons were conducted using Tukey's test. 

 

2.3. fMRI data acquisition and preprocessing 
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MRI scanning was performed using a 3.0T MRI scanner (MagnetomVerio, Siemens Medical 
Solutions, Erlangen, Germany). Functional images were acquired with three 8.5-minutes runs using 
a T2*-weighted gradient echo-planar imaging sequence (30 axial slices, 4 mm thickness with 1 mm 
interslice gap; repetition time = 2,000 ms, echo time = 30 ms; flip angle = 90°; in-plane matrix size 
= 64 × 64 pixels; and field of view = 240 mm) while participants performed the two-stage task. 
Additionally, a structural T1-weighted gradient echo image was acquired (matrix size = 256 × 256, 
number of slices = 176, slice thickness = 1 mm, echo time = 2.46 ms, repetition time = 1,900 ms, 
field of view = 250 mm, flip angle = 9°, bandwidth = 170Hz/Px). Preprocessing of the fMRI data 
was conducted using fMRIPrep version 20.2.1. This included spatial normalization, susceptibility 
distortion correction, co-registration, and slice timing correction using fMRIPrep37 . 

 
2.4. Experimental task and procedure 

 

Each participant completed 201 trials of the two-stage task, divided into three sessions (7.5 seconds 
per trial, approximately 8.38 minutes per session)19 . In this task, a purely model-based learning 
agent is expected to alter their Stage 1 choice in the following trial if rewarded through an uncommon 
pathway. In contrast, a purely model-free learning agent, which does not account for the sequential 
structure of the task, would repeat the previous Stage 1 choice regardless of whether the reward was 
obtained through a common or uncommon pathway (Figure 2)24  . Behavioral analysis measured 
the outcomes of Stage 1 and Stage 2 choices, state transitions, and whether participants received 
rewards on each trial. The task was implemented using E-Prime 3.0 software (Figure 3) (E-Prime 
Psychology Software Tools Inc., Pittsburgh, USA). 
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Figure 2. Schematic representation of the two-stage task30 . 
 

 
Figure 3. Process of single task trial with time points. Inside the fMRI scanner, participants 
completed 201 task trials, divided into three runs (7.5 seconds per trial, 8.38 minutes per run)30 . 
   
Before starting the task, participants were introduced to the storyline "treasure hunt in the color 
room" to help them grasp the sequential structure of the two-stage task as clearly as possible (Figure 
S1). A brief quiz was administered to confirm their understanding of the task. Following this, 
participants completed extensive practice sessions lasting up to 20 minutes. These practice tasks 
separated the Stage 1 choice task and the Stage 2 choice task, allowing participants to familiarize 
themselves with Stage 1 transitions and Stage 2 reward acquisition. The practice tasks used different 
fractal images than those in the actual two-stage task. 
In the first stage, participants chose between two stimuli, with thick arrows (Figure 2) representing 
common transitions (70%) and thin arrows representing rare transitions (30%). For example, 
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selecting the left option in Stage 1 had a 70% probability of leading to the blue room in Stage 2 and 
a 30% probability of leading to the yellow room, with the probabilities reversed for the right option. 
In Stage 2, participants chose between two options, and rewards were determined by slowly 
fluctuating probabilities ranging from 0.25 to 0.75. Four distinct reward probability distributions 
were counterbalanced across groups. During the feedback stage, the selected stimulus from Stage 2 
remained visible on the screen, and the outcome was displayed as either an image of coins labeled 
"+1000 W" (indicating a reward) or a red "X" (indicating no reward). The value of 1000 Korean 
won is approximately 0.76 USD. 
A hypothetical model-based participant bases their choices on the task structure and transition 
probabilities. For instance, if a choice in Stage 1 leads to a reward through a common transition 
(70%), the model-based agent repeats the same choice in the next trial. However, if the reward is 
obtained via a rare transition (30%), the agent changes their choice. In contrast, a model-free 
participant relies solely on the outcome of the previous trial, repeating the same choice if rewarded 
and switching to the other option if not, regardless of the transition probabilities. 
 

2.5. Statistical analyses 
 

To analyze choice behavior, we employed a computational model based on the hybrid algorithm 
developed by Gläscher, Daw, Dayan, and O’Doherty (2010)38 , as described by Daw et al. (2011)24 . 
This hybrid model combines model-based reinforcement learning and model-free temporal 
difference learning. The model includes several key parameters: the model-based weight parameter 
(ω), which indicates the degree to which model-based learning influences behavior; the learning rate 
parameter (α), which measures how quickly expected values are updated based on reward prediction 
errors (RPEs), with higher values of α indicating faster updates; and the perseverance parameter (π), 
which reflects the propensity to repeat a previous choice regardless of expected value, with higher 
π values signifying stronger perseverance. 
For each trial, we computed model-free and model-based RPEs, which represent the discrepancy 
between the reward received and the expected reward. Model parameters were estimated and 
compared across groups using hierarchical Bayesian analysis. To replicate a factorial analysis of 
choice behavior conducted by Daw, Gershman, Seymour, Dayan, and Dolan (2011)24 , we calculated 
the stay probabilities for first-stage choices at the population level for each group. This stay 
probability represents the likelihood of selecting the same option as in the prior trial. 
Additionally, we applied mixed-effects logistic regression to evaluate the impact of the preceding 
reward (whether the participant was rewarded in the previous trial), transition probability (whether 
the transition was common or rare), and their interaction on choice behavior. This analysis was 
conducted using the lme4 package in R39 . The model included by-participant random intercepts and 
random slopes for the effects of reward and transition probability. 
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To further investigate individual behavior, we fitted each participant's trial-by-trial responses using 
the hybrid reinforcement learning model described in prior studies. This model assumes that choices 
are determined by a weighted combination of model-free and model-based learning processes, with 
the model-based weight parameter (ω) estimated for each participant. A value of ω = 1 corresponds 
to a purely model-based decision-making strategy. 

 
The model-free algorithm, based on the temporal difference learning, updates the model-free value 
of each first-stage option, Vs1

MF by the reward prediction error (RPE) multiplied by a free first-stage 
learning rate parameter α1 both at the onset of the second stage and reward outcome. 

 

 
In contrast, the model-based algorithm computes the utility of each first-stage option by accounting 
for the transition structure. 

 
In this task, the probability of a common transition is p=0.7, while the probability of a rare transition 
is p=0.3. The value of the second-stage options is updated exclusively through the model-free 
algorithm, as no further transitions occur after this stage, and only the reward outcome is provided. 
Consequently, the model-based and model-free values for the second-stage options are identical. 

 
The model applies the model-based and model-free values to a softmax function, which uses the 
free inverse temperature parameters for each stage (i.e., β1, β2) to quantify the stochasticity of each 
participant's choices. These parameters help estimate the probability of selecting each option. For 
instance, the probability of choosing option 2 in the first stage is calculated as follows: 

 
Here, V2

Net and V1
Net represent the net value of each first-stage option, calculated using Equation 1 

mentioned earlier. The variable Ci equals 1 if the previous choice was option I; otherwise, Ci equals 
0. The parameter π is a free perseverance parameter that reflects the participant's tendency to repeat 
the choice made in the previous trial. Overall, the model includes 6 parameters (α1, α2, β1, β2, π, ω).  
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We applied hierarchical Bayesian modeling to fit the model separately for each group. This approach 
incorporates group-level information about parameter values to inform individual-level parameter 
estimation, enhancing accuracy by regularizing individual variability in parameter estimates through 
shrinkage40 . From this modeling, we extracted the group-level estimates for the six model 
parameters and compared them across groups (IGD vs. AUD, IGD vs. HC, and AUD vs. HC). To 
assess whether parameter estimates significantly differed between groups, we examined the 95% 
highest density interval (HDI) of the difference in parameter estimates (e.g., ω_IGD-ω_AUD). A 
significant difference was indicated if the 95% HDI did not include zero. 
 

2.6. Model-based fMRI analyses 
 

In the first-level analysis, we conducted a model-based fMRI analysis to identify voxels where blood 
oxygenation level-dependent (BOLD) activity correlated with model-free and model-based reward 
prediction errors (RPEs). Following the approach outlined by Daw et al. (2011)24 , we first extracted 
time series of standard RPE estimates as the model-free regressor, aligning these with the onset of 
the second-stage transition and outcome delivery. For the model-based regressor, we computed a 
difference regressor by subtracting model-free RPE values from hypothetical RPE values that would 
occur if participants relied solely on a model-based strategy during the task. This difference 
regressor captures residual prediction error not explained by the model-free strategy and reflects 
model-based contributions. The model-based regressor was similarly derived at the second stage 
and outcome onset. 
Additional regressors included the time points of choice responses in the first and second stages, as 
well as the onsets of fixation and the first stage, all with durations of 0.1 seconds. Six motion 
parameters estimated by fMRIPrep were incorporated as nuisance regressors to account for head 
movement. Using two parametric regressors of interest (model-free and model-based) and 10 
nuisance regressors, we created two contrasts for each participant: one identifying voxels 
corresponding to model-free activity and the other to model-based activity. 
In the second-level analysis, the first-level contrast images were subjected to a random effects 
analysis to produce group-level contrasts. Depression and anxiety scores were included as covariates 
to control the influence of psychiatric symptoms. Results were thresholded at p<0.001 (uncorrected 
for multiple comparisons) with an extent threshold of k≥10 voxels. This threshold was selected to 
identify potentially meaningful neural activations across groups, given the exploratory nature of the 
study. 
We also investigated correlations between neural activity showing significant group differences and 
the model-based weight parameter (ω). This analysis explored how the strength of neural correlates 
associated with model-based and model-free systems varied with the degree of model-based control. 
Mean beta values were extracted from peak voxels (within a 3 mm sphere) in each significant brain 
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region for each participant, and Pearson correlations were calculated with individual estimates of ω. 
This approach aimed to link model-based behavior with the corresponding neural correlates. 

 
2.7. Functional connectivity analysis – Psychophysiological interaction 

analysis 
 

In the model-based fMRI analysis, we identified the insula as a key region involved in model-based 
learning, particularly in the IGD group. To further explore how the insula interacts with other brain 
regions during model-based learning, we performed a psychophysiological interaction (PPI) 
analysis41 . Given the role of the insular cortices as cortical hubs within the salience network42,43 , 
we investigated the functional connectivity between the bilateral insula and other regions associated 
with this network. 
In the first-level analysis, the left and right insula, defined as 3 mm spheres centered on the peak 
voxels identified in the second-level model-based fMRI analysis, were designated as seed regions. 
Model-free and model-based RPEs were included as parametric modulators, along with the four 
nuisance regressors and six motion regressors from the model-based fMRI analysis. 
At the second level, we conducted one-sample t-tests within each group to examine connectivity 
patterns. Additionally, two-sample t-tests (HC vs. IGD, IGD vs. AUD, and HC vs. AUD) were 
performed to identify group differences. Depression and anxiety scores were included as covariates 
to control for the potential effects of psychiatric symptoms. The results were thresholded at p < 0.001 
(uncorrected) with an extent threshold of k ≥ 10 voxels. Small-volume correction was applied using 
a brain mask of the salience network to enhance specificity. 

 
3. Results  
 

3.1. Group difference in psychometric measures 
 

To assess group differences in survey measures, we conducted a one-way analysis of variance 
(ANOVA) with group as the factor (i.e., IGD, AUD, HC) (Table 1), followed by post-hoc pairwise 
comparisons using Tukey's test (Figure 4). The IGD group exhibited the highest levels of internet 
addiction symptoms, while the AUD group showed the highest levels of alcohol use symptoms. 
Significant group differences were also observed in depression, anxiety, impulsivity, and childhood 
ADHD symptoms. Specifically, the IGD group reported greater depression symptoms compared to 
both the HC and AUD groups and higher anxiety symptoms than the HC group. Impulsivity scores 
were highest in the IGD group, followed by the AUD group and the HC group. Furthermore, the 
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IGD group reported the most pronounced childhood ADHD symptoms, with significant differences 
compared to both the HC and AUD groups. No significant group differences were found in IQ 
(including all subscales) or age. 

 
Table 1 Demographics and clinical characteristics 

 IGD AUD HC F (p value) 

Sample 
size N = 22 N = 22 N = 30  

Age 23.73 (23.33, 24.13) 23.73 (23.18, 24.28) 22.6 (22.14, 23.06) 2.03 (p = 
0.139) 

Education 3.14 (2.95, 3.33) 3.32 (3, 3.64) 3.2 (2.98, 3.42) 0.13 (p = 
0.882) 

IAT 68 (66.34, 69.66) 32.05 (29.83, 34.26) 32.03 (29.67, 34.39) 84.72 (p < 
0.001) 

AUDIT 7.82 (5.96, 9.68) 24.36 (23.44, 25.29) 6.7 (5.86, 7.54) 62.58 (p < 
0.001) 

BDI 12.14 (10.52, 13.75) 7.45 (6.14, 8.77) 6.37 (5.3, 7.43) 5.36 (p < 0.05) 

BAI 9.41 (7.98, 10.84) 7.45 (5.81, 9.1) 4.57 (3.73, 5.4) 3.91 (p < 0.05) 

BIS 56.18 (54.06, 58.3) 50.05 (48.3, 51.79) 44.93 (43.57, 46.29) 11.21 (p < 
0.001) 

WURS 29.23 (26.62, 31.83) 19.55 (16.73, 22.36) 18.97 (16.71, 21.22) 4.91 (p < 0.05) 

IQ  

(K-WAIS) 
111.64 (109.07, 114.21) 112.45 (110.36, 114.55) 110.43 (108.24, 

112.63) 
0.21 (p = 

0.814) 

    VCI 103.86 (101.27, 106.45) 104.09 (101.52, 
106.66) 

107.47 (104.97, 
109.97) 

0.67 (p = 
0.516) 

    PRI 115.27 (112.38, 118.17) 109.05 (105.87, 112.22) 108.73 (106, 111.47) 1.50 (p = 0.23) 

Data under the first three columns are the means (95% confidence interval) for each group (IGD, 
AUD, and HC) or numbers for sample size. Results of a one-way analysis of variance (ANOVA) 
with group factors (i.e., IGD, AUD, HC) are shown in the rightmost column; F-statistics and p-value. 
IAT, Young Internet Addiction Test; AUDIT, Alcohol Use Disorder Identification Test; BDI, Beck 
Depression Inventory; BAI, Beck Anxiety Inventory; BIS, Barratt Impulsiveness Scale; WURS, 
Wender Utah Rating Scale; K-WAIS, the Korean version of the Wechsler Adult Intelligence Scale; 
VCI, Verbal Comprehension Index Scale; PRI, Perceptual Reasoning Index Scale30 .  
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Figure 4. Group differences in psychometric measures. Each bar indicates the means of each 

group. Error bars are 95% confidence interval, and dots correspond to each participant's data. 
Measures with significant group differences are flagged with asterisks (*, p < 0.05; **, p < 0.005; 
***, p < 0.001)30 .  

 

3.2. Behavioral results 
 

The observed stay probability (Figure 5) shows a combination of model-based and model-free 
learning in all three groups, which were also supported by the mixed effects logistic regression 
results. The main effect of reward (IGD, B=-1.117, 95% confidence interval (CI)=[-1.440, -0.794], 
p=1.19e-11; AUD, B=-1.119, 95% CI=[-1.536, -0.702], p=1.44e-07; HC, B=-0.778, 95% CI=[-
1.129, -0.427], p=1.40e-05) and transition probability (IGD, B=-1.055, 95% CI=[-1.374, -0.735], 
p=9.38e-11; AUD, B=-1.238, 95% CI=[-1.954, -0.523], p=0.001; HC, B=-1.077, 95% CI=[-1.406, 
-0.748], p=1.40e-10) were significant in all three groups, indicating that all groups accounted for 
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both rewards (i.e., model-free learning) and the transition structure (i.e., model-based learning) when 
making choices (Table S1). The combination of model-based and model-free strategy was also 
supported by significant main effect of interaction between reward and transition probability (IGD, 
B=3.311, 95% CI=[2.912, 3.709], p<2.00e-16; AUD, B=3.204, 95% CI=[-2.776, 3.631], p<2.00e-
16; HC, B=1.970, 95% CI=[1.661, 2.279], p<2.00e-16).  

 
Figure 5. Stay probability by group. The observed stay proportions for each group are shown as 
a function of reward and transition probability. Each dot represents individual participant data, 
connected by lines. Error bars indicate the standard error of the mean (SEM)30 . 
 

3.3. Model comparison 
 

We evaluated three models: a seven-parameter model from Daw, Gershman, Seymour, Dayan, and 
Dolan (2011), a six-parameter model, and a four-parameter model. Each model was fitted separately 
for each group (IGD, AUD, HC) using hierarchical Bayesian modeling. To assess model fit, we 
calculated the leave-one-out information criterion (LOOIC) using the "loo" package in R. Table 2 
presents the LOOIC values for each model across the groups. As a lower LOOIC indicates a better 
model fit, the six-parameter model provided the best fit for all three groups. Consequently, the six-
parameter model was selected for further analyses. 
 

Table 2. Model comparison results 
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The table shows the leave-one-out information criterion (LOOIC) for the seven-parameter, six-
parameter, and four-parameter models across the IGD, AUD, and HC groups. The model with the 
lowest LOOIC value (indicating the best fit) for each group is highlighted in bold30 . 

 

3.4. Modelling results  
 

We found significant group differences in the second-stage learning rate parameter α_2 and 
perseverance parameter π (Figure 6). AUD and IGD groups showed higher α_2 (α_(2,IGD)-
α_(2,HC) 95% HDI = [0.072, 0.359]; α_(2,IGD)-α_(2,HC) 95% HDI = [0.011, 0.313]) and higher 
π estimates (π_IGD-π_HC 95% HDI = [0.1, 0.1.059]; π_AUD-π_HC 95% HDI = [00.01, 1.021]) 
compared to the HC group. There were no group differences in the model-based weight parameter 
ω, first-stage learning rate α_1, and first- and second-stage inverse temperature β_1 and β_2. See 
Figure S2 for the distribution of group differences in the model parameter estimates. 

 
Figure 6. Group comparison of parameter estimates. Estimates of six model parameter value 

of each group (IGD, AUD, HC group). Error bars are 95% highest density interval (HDI). Model 
parameters with significant group differences are flagged with asterisks30 . 

 

3.5. Model-based fMRI results 
 

The model-based fMRI analysis revealed significant differences among the HC, IGD, and AUD 
groups when the model-based RPE was used as a parametric modulator (Figures 7A and 7B). 
Specifically, the right orbitofrontal cortex (OFC) in the AUD group showed a stronger correlation 
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with the model-based RPE compared to the IGD group (t=4.22, k=13, p<0.001). In the IGD group, 
bilateral insular activation demonstrated a stronger correlation with the model-based RPE compared 
to the HC group (left: t=4.20, k=17, p<0.001; right: t=4.71, k=33, p<0.001). Furthermore, the left 
superior frontal gyrus (SFG) in the AUD group exhibited a stronger correlation with the model-
based RPE compared to the HC group (t=4.18, k=26, p<0.001). No significant group differences 
were observed when the model-free RPE was used as a parametric modulator. Detailed second-level 
results for each group are presented in Table S2. 
Further analysis explored the relationship between the significant findings of the model-based fMRI 
analysis (i.e., the correlation of each region with model-based RPE) and the level of model-based 
control, as indicated by individual estimates of ω. In the IGD group, a negative correlation was found 
between the beta value of the right insula and ω (r=-0.45, p<0.05), suggesting that individuals with 
lower model-based weight parameter estimates had stronger coupling between the right insula and 
the model-based RPE. This correlation was not observed in the AUD group (r=-0.09, p=0.709) or 
the HC group (r=-0.19, p=0.334) (Figure 7C). No significant correlations were identified for the 
left insula. 
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Figure 7. Differences in model-based fMRI analysis across groups. (A) Brain regions 

showing significant group differences identified through second-level two-sample comparisons, 
using model-based reward prediction error (RPE) as parametric modulators (p < 0.001, uncorrected; 
cluster size, k ≥ 10). Significant differences indicate that one group's brain activation is more 
strongly correlated with the model-based RPE than another. The color bar represents t-statistics 
derived from the two-sample t-tests. (B) Group-wise average beta values extracted from 3mm 
spheres at peak MNI coordinates (R OFC: 35, 55, -8; L Insula: -40, 2, -8; R Insula, 46, 2, 2; L SFG: 
-6, 25, 62) for brain regions displaying significant group differences. Each dot corresponds to the 
group-wise mean beta value for each region, with error bars representing the standard error. 
Asterisks denote significance from two-sample t-test (p < 0.001). (C) Correlation between beta 
values in the left insula and the model-based weight parameter (𝜔𝜔) estimates. Each dot represents 
the beta value of the right insula (extracted from 3mm spheres at peak MNI coordinates: 46, 2, 2) 
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from the first-level analysis on the x-axis, and the individual estimates of the model-based weight 
parameter on the y-axis. The regression line illustrates the Pearson correlation between the beta 
value of the right insula and the 𝜔𝜔 estimates. A significant correlation (p < 0.05) is marked with an 
asterisk. OFC = orbitofrontal cortex; SFG = superior frontal gyrus30 .  

 

 
3.6. Psychophysiological interaction analysis results  

 

The PPI analysis identified significant correlations between the insula and other brain regions 
within the salience network, specifically in the IGD group (Figure 8 & Table S3). For model-
based RPE, the right insula was correlated with the right putamen (t=5.23, p<0.001), left insula 
(t=5.75, p<0.001), and occipital lobe (t=4.23~4.37, p<0.001). Similarly, the left insula was 
correlated with the anterior cingulate cortex (ACC; t=4.24, p<0.001), right superior temporal gyrus 
(STG; t=3.67, p<0.001), and occipital lobe (t=3.72~5.14, p≤0.001). Group comparisons revealed 
distinctive connectivity patterns unique to IGD group (Table S4). The connectivity between the 
right insula and the left insula was greater in the IGD group compared to HC (t=3.89, p<0.001). 
Furthermore, connectivity between the insula and occipital lobe was greater in the IGD group 
compared to the AUD (right insula as seed: t=3.52~4.41, p<0.001; left insula as seed: t=3.52~3.57, 
p<0.001) and HC (left insula as seed: t=3.41~3.79, p<0.001). These findings highlight that IGD is 
characterized by distinctive patterns of hyper-connectivity involving the insula and its interactions 
with the salience network. This suggests a potential link between these unique connectivity 
patterns and ongoing reward processes specific to the IGD group during model-based learning. 
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 Figure 8. Psychophysiological interaction (PPI) analysis results for the internet gaming 

disorder group. Using the right insula (MNI-coordinates: -40, 2, -8) and left insula (MNI-

coordinates: 46, 2, 2) as seed regions (3mm spheres), a PPI analysis employed model-based reward 

prediction error (RPE) as the psychological variable. The brain maps depict the effects of model-

based RPE on each insula to the whole brain of the IGD group (p < 0.001, uncorrected; cluster size, 

k ≥ 10)30 . 

 
4. Discussion 
 

In this study, we examined the neurocognitive features associated with model-based learning in 

individuals with Internet Gaming Disorder (IGD) and Alcohol Use Disorder (AUD). The primary 

findings are as follows: 

1. Contrary to our initial hypothesis, both the IGD and AUD groups demonstrated higher 

learning rate and perseverance parameter estimates compared to the healthy control (HC) group. 

2. The insula played a distinct role in processing model-based behavior specific to the IGD 

group. In IGD participants, model-based reward prediction error (RPE) was significantly correlated 

with bilateral insula activation, whereas in the AUD group, it correlated with activation in the 

frontal regions, specifically the right orbitofrontal cortex (OFC) and left superior frontal gyrus 

(SFG). 

3. The IGD group uniquely exhibited hyper-connectivity between the bilateral insula and 

other regions of the salience network, including the putamen, anterior cingulate cortex (ACC), 

superior temporal gyrus (STG), and occipital lobe, in the context of model-based RPE. 

4. Additionally, in the IGD group, the correlation between the right insula and model-based 

RPE was notably stronger in individuals exhibiting lower levels of model-based behavior (i.e., 

lower ω). 

These findings highlight distinct neurobiological pathways for model-based learning in IGD and 

AUD, emphasizing the critical role of the insula in IGD. 

The finding of similarly high levels of model-based behavior across all groups was consistently 

supported by behavioral and computational modeling analyses. While previous studies have 

reported mixed evidence of impaired model-based behavior in individuals with AUD17–20,27,44 , 
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recent research by Silva and Hare (2020)45  suggests that humans tend to rely on model-based 

inference when they have a clear understanding of the task. In this study, we adopted several 

procedures recommended by Silva and Hare (2020)45  to ensure participants comprehended the 

two-stage task. Additionally, participants exhibited above-average working memory and 

processing speed, surpassing values reported in prior research46 . These enhanced cognitive 

abilities may have contributed to the observed preservation of model-based behavior in both IGD 

and AUD participants compared to healthy controls. However, these interpretations remain 

speculative and require further confirmation. Future research should include participants with a 

broader range of cognitive abilities and experimentally manipulate task understanding to validate 

and generalize these findings. 

Although the degree of model-based control (i.e., ω) was comparable across groups, the IGD and 

AUD groups demonstrated elevated α_2 and π estimates, suggesting shared cognitive 

characteristics between alcohol and gaming addiction. Impulsivity, a well-established personality 

trait related to addiction47–49 , may underlie the higher learning rate (α_2) estimates, reflecting 

heightened reward sensitivity and reduced cognitive control. The tendency for addicted individuals 

to update immediate rewards more quickly could indicate either an increased salience of immediate 

rewards or a diminished capacity to suppress responses to them50 . While a higher learning rate can 

be advantageous in rapidly changing or uncertain environments, it may pose challenges in contexts 

like the two-stage task, where reward probabilities shift more gradually51 . This implies that 

individuals with IGD and AUD may find it difficult to adjust their learning strategies appropriately 

in situations requiring slower, more deliberate updates to reward expectations. 

The elevated perseverance parameter (π) estimates observed in the IGD and AUD groups suggest 

a stronger tendency to repeat prior choices independent of reward outcomes, potentially reflecting 

habitual behavior or compulsivity—core features of addictive disorders15,52,53 . This aligns with 

previous studies reporting increased perseverance in individuals with addiction, reinforcing the 

idea that heightened perseveration may represent a maladaptive trait associated with addiction54,55 . 

The combined pattern of higher learning rates and greater perseverance seen in both groups may 

highlight shared neurocognitive characteristics underlying addictive behaviors. Nonetheless, 

additional research is required to confirm and further explore these findings. 

Using fMRI, we identified distinct neural patterns associated with model-based behavior in the 

IGD group compared to the AUD group. Notably, our findings emphasize the unique involvement 
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of the insula in model-based behavior among individuals with IGD. The insula is a vital component 

of the brain's salience network56,57 , which plays a key role in encoding prediction errors related to 

reward variability58  and processing salient stimuli42,59 . Previous research has shown hyper-

connectivity of the salience network in individuals with behavioral addictions during resting 

states60 , and in individuals with IGD specifically during resting states, risky decision-making, and 

executive control tasks61–64 . Consistent with these findings, our results indicate that heightened 

sensitivity of the insula, a central hub of the salience network, may represent a distinct neural 

marker of IGD.  

To interpret the hyperactivation of the insula observed specifically in the IGD group, it is crucial 

to examine its established role in drug craving and addiction65 . Studies have shown that lesions in 

the insular cortex can disrupt addictive behaviors, emphasizing the insula’s central role in addiction 

mechanisms66 . However, neuroimaging studies on substance use disorders (SUDs) often report 

insula hypoactivation during decision-making tasks67–69 . This apparent contradiction may arise 

from differences in the processing of drug-related versus non-drug-related rewards in individuals 

with addiction70 . While drugs of addiction represent highly salient rewards and lead to 

hyperactivation of the salience network, non-drug rewards are typically associated with reduced 

activity in this network when compared to non-addicted individuals71 . Thus, the insula 

hypoactivation reported in decision-making tasks for SUDs may be attributable to the use of non-

salient rewards. Similarly, neuroimaging studies on IGD employing gaming-related cues have 

demonstrated increased activation of the salience network72–74 . Given the task dynamics and 

reward structure in our study, which likely mirrors gaming behavior more closely than substance 

use, the pronounced insula activation observed in the IGD group may indicate that participants 

approached the two-stage task in a manner akin to playing a game.  

Another noteworthy observation is the hyperactivation of prefrontal regions, specifically the OFC 

and SFG, in individuals with AUD during model-based behavior. The OFC plays a crucial role in 

regulating goal-directed, or model-based, action planning and execution75–78 , encoding the value 

of stimuli, and understanding the relationship between stimuli and their expected outcomes79,80 . 

Similarly, the SFG is involved in higher-order cognitive functions, including working memory and 

executive processing81 . While previous studies have generally reported decreased prefrontal 

activation in individuals with AUD during decision-making tasks and at rest82,83 , our study 

revealed increased activation in these regions. This discrepancy may be attributed to variations in 
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model-based performance, as we did not observe impairments in model-based control among 

individuals with AUD, unlike prior findings in AUD or other SUDs. These results corroborate 

previous research suggesting that compensatory hyperactivation in prefrontal regions may support 

task performance in AUD84 . Extending this interpretation, the hyperactivation observed in the 

AUD group might represent a compensatory mechanism to counteract deficits in model-based 

systems, thereby facilitating model-based behavior. Notably, such compensatory hyperactivation 

in the frontal regions appears specific to AUD and is absent in IGD. This distinction might stem 

from the absence of chemical intoxication in IGD, which is a characteristic feature of AUD and 

other SUDs85–88 . 

To our knowledge, this is the first neuroimaging study to compare IGD and AUD with a focus on 

model-based behavior. The findings suggest that while IGD and AUD share cognitive features 

related to reward sensitivity and compulsivity, the underlying neural mechanisms differ. These 

differences may reflect variations in reward salience and distinct brain adaptations associated with 

alcohol and gaming behaviors. The study provides valuable insights into the neurocognitive 

mechanisms underlying addictive disorders and emphasizes the need for further research to 

investigate the roles of the insula and salience network in IGD. 

 Despite its contributions, this study has limitations. First, we used a fixed 0.5-second inter-trial 

interval without jittering, which may have resulted in overlapping blood oxygen level-dependent 

(BOLD) responses across trials89 . Future studies should include jittered inter-trial intervals to 

address this issue. Second, as an initial study comparing neural correlates of model-based behavior 

in IGD and AUD, our statistical methods lacked specificity in distinguishing shared and unique 

neural correlates between groups. More precise approaches are required for future research. 

Finally, the generalizability of our findings is limited by the small sample size and the 

characteristics of the participants. Although participants were diagnosed with IGD or AUD by 

psychiatrists, they were recruited from community settings rather than clinical populations, 

potentially leading to differences in symptom severity. Additionally, the sample included only 

young men, and most participants in the IGD group primarily engaged in multiplayer online battle 

arena (MOBA) games, influenced by Korean cultural preferences. Future research should consider 

cultural contexts, use larger and more diverse samples, and apply stricter statistical thresholds. 
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5. Conclusion 
 
This study provides novel insights into the neurocognitive features and neural correlates of model-

based learning in individuals with IGD and AUD. While both groups exhibited similar levels of 

model-based behavior, their neural signatures differed were observed: the insula was uniquely 

involved in IGD, while prefrontal regions played a prominent role in AUD. These findings suggest 

potential differences in the neurobiological mechanisms underlying addictive behaviors in IGD and 

AUD, contributing to the growing body of evidence that highlights both shared and unique features 

of IGD and substance-related addictive disorders. Further research with larger samples and 

consideration of cultural influences is necessary to better understand the pathophysiology of IGD 

and refine its diagnostic and treatment approaches. 
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Appendix 
 
Table S1. Linear mixed-effects logistic regression results for stay probability 

 

 
The table reports the coefficients, 95% confidence intervals (CIs), and p-values for the main effects 

of reward, transition probability, and the interaction. The residual degree of freedom for each group 

are as follows: HC = 5,969, IGD = 4,370, AUD = 4,38530 . 

 
Table S2. Second-level results of model-based fMRI analysis 

 

 
The table presents the significant findings from second-level one-sample t-tests performed as part 

of the model-based fMRI analysis, incorporating the model-based reward prediction error (RPE) as 

a parametric modulator (p < 0.001, uncorrected; cluster size, k ≥ 10). Asterisks (*) denote results 

significant at p < 0.001, while cross symbols (†) indicate significance at p < 0.0530 . 
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Table S3. PPI second-level results for the internet gaming disorder (IGD) group 
 

 
The table summarizes the significant findings from psychophysiological interaction (PPI) analysis 

conducted at the second-level one-sample t-tests conducted for the IGD group, with the model-

based reward prediction error (RPE) serving as the psychological variable (p < 0.001, uncorrected; 

cluster size, k ≥ 10). After applying small volume correction using an extent brain mask derived 

from meta-analytic brain maps of "salience", "salience network", and "reward" extracted from the 

Neurosynth, the resulting clusters within the corrected volume were smaller than the initially 

applied threshold of k ≥ 10. Asterisks (*) denote results significant at p < 0.001, and cross 

symbols (†) indicate significance at p < 0.0530 .  
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Table S4. Second-level group comparison results of the PPI analysis 
 

 
The table presents the findings from second-level group comparisons conducted using two-sample 

t-tests in the psychophysiological interaction (PPI) analysis (p < 0.001, uncorrected; cluster size, k 

≥ 10). Following small volume correction with an extent brain mask derived from meta-analytic 

brain maps of "salience", "salience network", and "reward" extracted from the Neurosynth, the 

resulting clusters within the corrected volume were smaller than the initially applied threshold of k 

≥  10. Asterisks (*) denote results significant at p < 0.001, and cross symbols (†) indicate 

significance at p < 0.0530 . 
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Figure S1. Schematic representation of the two-stage task used in instructions. This figure 

illustrates an example of the two-stage task as presented in the task instructions. The schematic includes 

a depiction of exemplary choices, with a human icon representing the choices available at each stage30 . 
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Figure S2. Distribution of group differences in model parameter estimates. This figure shows the 



３４ 

 

 

 

distributions of group differences in model parameter estimates, calculated for each pairwise 

comparison (IGD vs. AUD; IGD vs. HC; AUD vs. HC). The distributions represent the subtracted 

values of one group's parameter estimates from another's (e.g., ω_IGD-ω_AUD). Black lines beneath 

the distributions indicate the 95% highest density interval (HDI). Group differences are considered 

significant if the 95% HDI does not include zero30 . 
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Abstract in Korean  

 

인터넷 게임장애의 모델기반 및 모델프리 강화학습에 관여하는 

신경상관체 

 

 

연구 배경 및 목적: 인터넷 게임 장애(Internet gaming disorder, IGD)는 심각한 

공중보건 문제가 되었으나, 그 신경인지 메커니즘은 아직 명확하지 않다. 따라서, 

IGD와 알코올 사용 장애(AUD)를 비롯한 다른 중독성 장애들과의 유사점과 

차이점을 파악하는 것은 중요한 문제이다. 최근의 연구들은, 계산 심리학적 접근과 

의사 결정 프레임워크가 IGD를 개념화하고 정신과 질환과의 유사성과 차이점을 

구분하는데 유리하다는 것을 지지하고 있다. 본 연구에서는 IGD와 AUD 환자에서 

목표지향적(모델기반) 및 습관성(모델프리) 조절 시스템과 관련된 신경인지적 특성을 

규명하고자 하였다. 

 

연구 재료 및 방법: 젊은 남성들 중 IGD (n=24), AUD (n=22), 그리고 건강한 

대조군 (HC; n=30)으로 진단된 피험자들은 two-stage task를 수행하면서 

fMRI검사를 시행 받았다. Two-stage task는 모델기반 및 모델프리 조절 

시스템으로부터의 기여도를 평가하기 위해 검증된 과제이다. 본 연구의 목적은, 계산 

모델링과 계층 베이지안 분석을 사용하여 IGD, AUD, 그리고 HC 그룹의 두 의사결정 

시스템(모델 기반/모델 프리 학습) 간의 균형을 조사하는 것이다. 마지막으로, 우리는 

모델 기반 fMRI 분석을 통해 IGD와 AUD의 목표지향적 조절과 관련한 신경상관체를 

도출해내고자 하였다. 

 

연구 결과: 계산 모델링 결과, IGD와 AUD 그룹 모두 유사한 수준의 모델 기반 

행동을 보였다. 그러나 두 그룹 간에 모델 기반 보상 예측 오류(RPE)에 대한 

신경상관체는 구별되는 차이가 있었다. IGD 그룹은 모델 기반 RPE와 관련하여 
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섬엽에서 활성화를 보인 반면, AUD 그룹은 전두엽 영역, 특히 안와전두 피질과 상부 

전두회에서 활성화를 보였다. 또한, IGD 그룹은 모델 기반 RPE의 기능적 연결성 

관점에서 섬엽과 현저성 네트워크(salience network)과 관련된 뇌영역들 간의 과다 

연결성을 나타냈다. 

 

결론: 본 연구는 IGD와 AUD가 계산 모델링에서 나타나는 공통된 인지적 특성에도 

불구하고, IGD와 AUD에서 모델 기반 행동을 매개하는 신경생물학적 메커니즘이 

다를 수 있음을 시사한다. 본 연구는 모델 기반 시스템과 관련하여 IGD와 AUD를 

비교한 첫 번째 신경영상 연구로서, IGD만의 특징적인 의사결정 과정을 이해하는 데 

새로운 관점을 제공한다. 

                                                                   

핵심되는 말 : 인터넷 게임장애, 알코올 사용장애, 목표지향적 조절, 모델 기반 fMRI 
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