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ABSTRACT

Neural correlates of model-based and model-free reinforcement
learning in Internet gaming disorder

Background: Internet gaming disorder (IGD) has become a serious public health problem, but its
neurocognitive mechanisms are unclear yet. Therefore, it is a crucial issue to identify similarities
and differences between IGD and other addictive disorders including alcohol use disorder (AUD).
Recent studies have supported that a computational psychiatric approach and decision-making
framework might be advantageous in conceptualizing IGD and delineating its similarities and
differences between psychiatric disorders. This study compared the neurocognitive features

associated with model-based and model-free systems in individuals IGD and AUD.

Methods: Individuals diagnosed as IGD (n=24), AUD (n=22), and healthy controls (HC; n=30) in
young males were scanned with fMRI while performing the two-step task, a well-validated task for
appraising the contribution from two decision-making systems, goal-directed (model-based) and
habitual (model-free) control systems. Goal of the present study is to investigate the balance between
two decision-making systems (model-based/model-free learning) in IGD, AUD, and HC groups
using computational modeling and hierarchical Bayesian analysis. Finally, we will describe neural

correlates of goal-directed control of IGD and AUD via model-based fMRI analysis.

Results: The computational modeling results indicated that both the IGD and AUD groups exhibited
similar levels of model-based behavior. However, there were notable differences in the neural
correlates of the model-based reward prediction error (RPE) between the two groups. Specifically,
the IGD group showed insula-specific activation linked to model-based RPE, whereas the AUD
group displayed activation in the prefrontal regions, particularly the orbitofrontal cortex and superior
frontal gyrus. Additionally, individuals with IGD demonstrated hyper-connectivity between the

insula and other regions within the salience network in the context of model-based RPE.

Conclusions: The findings indicate that there may be distinct neurobiological mechanisms driving



model-based behavior in IGD and AUD, despite some shared cognitive features identified through
computational modeling. As the inaugural neuroimaging study to compare IGD and AUD
concerning the model-based system, this research offers new perspectives on the unique decision-

making processes associated with IGD.

Clinical Relevance: This study highlights critical distinctions in the neurobiological mechanisms
of decision-making processes between IGD and AUD. Understanding these differences is crucial
for developing targeted therapeutic strategies. The identification of insula-specific activation in IGD
and prefrontal activation in AUD suggests that interventions could be tailored to address these
distinct neural pathways. For IGD, treatments focusing on modulating insula activity and enhancing
salience network connectivity might prove effective. In contrast, AUD interventions might benefit
from strategies aimed at improving prefrontal cortex function. These insights pave the way for
personalized treatment approaches, potentially improving outcomes for individuals with IGD and
AUD. Additionally, this research underscores the value of computational psychiatric approaches

and neuroimaging in refining diagnostic criteria and therapeutic targets for addictive disorders.

Key words : Internet gaming disorder, alcohol use disorder, goal-directed control, model-based
fMRI
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1. Introduction

Internet gaming disorder (IGD) is defined as a maladaptive pattern of gaming behavior marked by
diminished control and a heightened focus on gaming, often at the expense of occupational, social,
and academic functioning. Research has consistently shown that IGD shares several cognitive,
neural, and clinical characteristics with substance use disorders (SUD) and gambling disorder
I. In 2018, the World Health Organization formally recognized gaming disorder as a medical
condition in the International Classification of Diseases-11. Despite this recognition, ongoing
debates persist regarding the classification of IGD as an addictive disorder alongside SUD** .
Clinical distinctions between IGD and SUD have been noted, such as the lack of pharmacological
effects leading to prominent physiological withdrawal and tolerance in IGD*®. Consequently,
further research is needed to elucidate the neurobiological underpinnings of IGD in comparison to
substance-related addictive disorders.

The reinforcement learning model of addiction conceptualizes addiction as a progression from
goal-directed actions to habitual, stimulus-driven behaviors”® . Goal-directed actions rely on the
“model-based” system, where potential actions are evaluated by anticipating their outcomes®!° .
Conversely, habitual behaviors are governed by the "model-free" system, which depends on
previously formed associations between stimuli and rewards®'! . While model-free decision-
making is typically faster and more efficient, it tends to lack flexibility. Optimal decision-making
involves a dynamic interplay between the model-based and model-free systems'>! , but numerous
studies indicate a disruption in the model-based system and a predominance of the model-free

1416 " For instance, individuals with alcohol use disorder

system in individuals with addiction
(AUD) and binge drinkers show deficits in model-based control!”2! , with the severity of alcohol
addiction inversely correlated with model-based behaviors in the general population?? . Similarly,
those with gambling disorder—a behavioral addiction not confounded by substance
neurotoxicity—also exhibit impairments in model-based control? .

To disentangle the contributions of model-based and model-free systems in decision-making,
paradigms such as the two-stage task have been employed®* . Early studies using this task in AUD
populations revealed impaired model-based control, particularly after non-rewarded trials. In the
general population, higher AUDIT scores correlated with reduced model-based control. While
some studies found no impairments in model-based control among AUD individuals'®-*>* , those
at high familial risk for AUD?” , or young social drinkers?®, growing evidence suggests that
deficits in goal-directed control in AUD are linked to impaired model-based control. Sebold et al.
(2017) reported that although reduced model-based control did not predict relapse in detoxified
AUD individuals, high alcohol expectancies were negatively associated with model-based control
in individuals with relapse, as shown by model-based fMRI analysis?' . Furthermore, Chen et al.
(2021) demonstrated a longitudinal link between impaired model-based control and higher binge



drinking trajectories in a large sample!” . Interestingly, individuals with gambling disorder also
exhibited impaired model-based control after unrewarded outcomes, a pattern similar to AUD,
suggesting that this impairment may represent a shared feature of substance-related and behavioral
addictions® . Despite extensive research on IGD, model-based system approaches have yet to be
examined.

In this study, we aimed to investigate the balance between model-based and model-free systems
in individuals with IGD and AUD using a two-stage task and model-based fMRI analysis. Model-
based fMRI leverages the spatial and temporal resolution of task-based fMRI to capture neural
activity associated with specific computational processes, distinguishing between competing
models of neural and cognitive functions® . Key regions implicated in reward prediction, such as
the ventromedial prefrontal cortex and ventral striatum, are thought to mediate model-based and
model-free control.'>?* This study seeks to compare the neural correlates of prediction error
processing in IGD and AUD. We hypothesize that (1) individuals with IGD and AUD will exhibit
impaired model-based control compared to healthy controls, and (2) the neural correlates of
impaired model-based control will differ between IGD and AUD, reflecting the absence of
alcohol-related neurotoxic effects in IGD.

2. MATERIALS AND METHODS
2.1. Participants

Seventy-seven male participants, aged 20 to 28, were recruited between September 2018 and
August 2019 through community and university-based advertisements in Seoul, South Korea.
During initial screening, participants were classified into the presumptive IGD group, AUD group,
or healthy control (HC) group based on their scores from the Young Internet Addiction Test (IAT)
and the Korean version of the Alcohol Use Disorder Identification Test (AUDIT). Subsequently,
all participants underwent evaluation at Severance Hospital, where a board-certified psychiatrist
conducted a semi-structured interview using the Structured Clinical Interview for the DSM-IV to
assess for major psychiatric disorders. Based on DSM-5 diagnostic criteria, two psychiatrists
reclassified participants into four groups: IGD, AUD, HC, or a comorbid group (IGD and AUD).
Cognitive ability was assessed using the Korean version of the Wechsler Adult Intelligence Scale
(K-WAIS-1V), and individuals with a verbal or performance 1Q below 80 were excluded.
Participants who were unable to undergo magnetic resonance imaging (MRI) were also excluded.
To focus on the distinct pathologies of IGD and AUD, individuals with comorbid IGD and AUD
were excluded. Additionally, participants with major psychiatric disorders, ongoing
psychopharmacological treatment, or neurological conditions were excluded. After these criteria
were applied, 74 participants remained for behavioral analysis and computational modeling.
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For fMRI analysis, participants with an average framewise displacement exceeding 0.5 (N = 4)
were excluded to ensure data quality. An additional participant was removed due to signal loss in
frontal brain regions. This resulted in 69 participants being included in the fMRI analysis, divided
into the following groups: HC (28), IGD (20), and AUD (21) (Figure 1). All participants provided
detailed informed consent after receiving comprehensive information about the study protocol. The
study was conducted in accordance with the ethical guidelines approved by the Institutional Review
Board (IRB) of Severance Hospital, Seoul, South Korea (IRB approval number: 4-2014-0745).

Enrolled in the study
n=77

Incomplete data (n =1)
Y

With complete data

n=76 Moderate depression and anxiety
disorder diagnosed by
psychiatrists (n = 1)

Behavioralanalyses X Presence of comorbidity between

Without comorbidity AUD and IGD (n=1)
IGD n=74
n=22 " "
Average framewise displacement

value higher than 0.5 (n = &)

Signal loss in the frontal regions
(n=1)

fMRI analyses

After quality check of fMRI data
IGD =1 n=69
n=20

Figure 1. Participant recruitment and inclusion process*’

2.2. Psychometric measure

Game and alcohol use were assessed using modified versions of the Internet Addiction Test
(IAT)*! and the Alcohol Use Disorder Identification Test (AUDIT)*?, respectively. To measure
the severity of depressive and anxiety symptoms, all participants completed the Beck Depression
Inventory (BDI)** and the Beck Anxiety Inventory (BAI)* . Impulsivity was evaluated using the
Barratt Impulsiveness Scale (BIS)*® , while childhood symptoms of attention-deficit hyperactivity
disorder (ADHD) were assessed with the Wender Utah Rating Scale (WURS)* . Group differences
in survey measures were analyzed using a one-way analysis of variance (ANOVA) with group as

the factor (IGD, AUD, HC). Post-hoc pairwise comparisons were conducted using Tukey's test.

2.3. fMRI data acquisition and preprocessing
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MRI scanning was performed using a 3.0T MRI scanner (MagnetomVerio, Siemens Medical
Solutions, Erlangen, Germany). Functional images were acquired with three 8.5-minutes runs using
a T2*-weighted gradient echo-planar imaging sequence (30 axial slices, 4 mm thickness with 1 mm
interslice gap; repetition time = 2,000 ms, echo time = 30 ms; flip angle = 90°; in-plane matrix size
= 64 x 64 pixels; and field of view = 240 mm) while participants performed the two-stage task.
Additionally, a structural T1-weighted gradient echo image was acquired (matrix size =256 x 256,
number of slices = 176, slice thickness = 1 mm, echo time = 2.46 ms, repetition time = 1,900 ms,
field of view = 250 mm, flip angle = 9°, bandwidth = 170Hz/Px). Preprocessing of the fMRI data
was conducted using fMRIPrep version 20.2.1. This included spatial normalization, susceptibility
distortion correction, co-registration, and slice timing correction using fMRIPrep*’ .

2.4. Experimental task and procedure

Each participant completed 201 trials of the two-stage task, divided into three sessions (7.5 seconds
per trial, approximately 8.38 minutes per session)!'® . In this task, a purely model-based learning
agent is expected to alter their Stage 1 choice in the following trial if rewarded through an uncommon
pathway. In contrast, a purely model-free learning agent, which does not account for the sequential
structure of the task, would repeat the previous Stage 1 choice regardless of whether the reward was
obtained through a common or uncommon pathway (Figure 2)** . Behavioral analysis measured
the outcomes of Stage 1 and Stage 2 choices, state transitions, and whether participants received
rewards on each trial. The task was implemented using E-Prime 3.0 software (Figure 3) (E-Prime

Psychology Software Tools Inc., Pittsburgh, USA).



1st stage
choice

2nd stage
choice

VA NVAN
) X ©® X

Figure 2. Schematic representation of the two-stage task’ .

1st room 2nd room

+
choose wait for the choose check fee wait for ne

1st room transition 2nd room dback xt trial
(2.5sec) (1 sec) (2 sec) (1.5 sec) (0.5 sec)

Figure 3. Process of single task trial with time points. Inside the fMRI scanner, participants
completed 201 task trials, divided into three runs (7.5 seconds per trial, 8.38 minutes per run)*° .

Before starting the task, participants were introduced to the storyline "treasure hunt in the color
room" to help them grasp the sequential structure of the two-stage task as clearly as possible (Figure
S1). A brief quiz was administered to confirm their understanding of the task. Following this,
participants completed extensive practice sessions lasting up to 20 minutes. These practice tasks
separated the Stage 1 choice task and the Stage 2 choice task, allowing participants to familiarize
themselves with Stage 1 transitions and Stage 2 reward acquisition. The practice tasks used different
fractal images than those in the actual two-stage task.

In the first stage, participants chose between two stimuli, with thick arrows (Figure 2) representing
common transitions (70%) and thin arrows representing rare transitions (30%). For example,
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selecting the left option in Stage 1 had a 70% probability of leading to the blue room in Stage 2 and
a 30% probability of leading to the yellow room, with the probabilities reversed for the right option.
In Stage 2, participants chose between two options, and rewards were determined by slowly
fluctuating probabilities ranging from 0.25 to 0.75. Four distinct reward probability distributions
were counterbalanced across groups. During the feedback stage, the selected stimulus from Stage 2
remained visible on the screen, and the outcome was displayed as either an image of coins labeled
"+1000 W" (indicating a reward) or a red "X" (indicating no reward). The value of 1000 Korean
won is approximately 0.76 USD.

A hypothetical model-based participant bases their choices on the task structure and transition
probabilities. For instance, if a choice in Stage 1 leads to a reward through a common transition
(70%), the model-based agent repeats the same choice in the next trial. However, if the reward is
obtained via a rare transition (30%), the agent changes their choice. In contrast, a model-free
participant relies solely on the outcome of the previous trial, repeating the same choice if rewarded
and switching to the other option if not, regardless of the transition probabilities.

2.5. Statistical analyses

To analyze choice behavior, we employed a computational model based on the hybrid algorithm
developed by Gléscher, Daw, Dayan, and O’Doherty (2010)*® , as described by Daw et al. (2011)* .
This hybrid model combines model-based reinforcement learning and model-free temporal
difference learning. The model includes several key parameters: the model-based weight parameter
(o), which indicates the degree to which model-based learning influences behavior; the learning rate
parameter (o), which measures how quickly expected values are updated based on reward prediction
errors (RPEs), with higher values of o indicating faster updates; and the perseverance parameter (),
which reflects the propensity to repeat a previous choice regardless of expected value, with higher
© values signifying stronger perseverance.

For each trial, we computed model-free and model-based RPEs, which represent the discrepancy
between the reward received and the expected reward. Model parameters were estimated and
compared across groups using hierarchical Bayesian analysis. To replicate a factorial analysis of
choice behavior conducted by Daw, Gershman, Seymour, Dayan, and Dolan (2011)?* , we calculated
the stay probabilities for first-stage choices at the population level for each group. This stay
probability represents the likelihood of selecting the same option as in the prior trial.

Additionally, we applied mixed-effects logistic regression to evaluate the impact of the preceding
reward (whether the participant was rewarded in the previous trial), transition probability (whether
the transition was common or rare), and their interaction on choice behavior. This analysis was
conducted using the Ime4 package in R* . The model included by-participant random intercepts and

random slopes for the effects of reward and transition probability.



To further investigate individual behavior, we fitted each participant's trial-by-trial responses using
the hybrid reinforcement learning model described in prior studies. This model assumes that choices
are determined by a weighted combination of model-free and model-based learning processes, with
the model-based weight parameter (o) estimated for each participant. A value of ® = 1 corresponds
to a purely model-based decision-making strategy.

quﬂ =wr VSTB + (1 - m} 'Fsﬁ‘l{F

The model-free algorithm, based on the temporal difference learning, updates the model-free value
of each first-stage option, Vs by the reward prediction error (RPE) multiplied by a free first-stage
learning rate parameter o, both at the onset of the second stage and reward outcome.

I"'rsAfF(t +1)= V:{IF“} +a;- (Fsz.chusen{t] - VrﬁF{t}}

VAR e+ 1) = VIF(t) + ay - (reward — V(1))

In contrast, the model-based algorithm computes the utility of each first-stage option by accounting
for the transition structure.

VMB = p-max(Va,V,) + (1 —p) max(Vs,Ve),

In this task, the probability of a common transition is p=0.7, while the probability of a rare transition
is p=0.3. The value of the second-stage options is updated exclusively through the model-free
algorithm, as no further transitions occur after this stage, and only the reward outcome is provided.
Consequently, the model-based and model-free values for the second-stage options are identical.

Vea(t + 1) = V() + ay - (reward — Vg (t))

The model applies the model-based and model-free values to a softmax function, which uses the
free inverse temperature parameters for each stage (i.e., Bi, f2) to quantify the stochasticity of each
participant's choices. These parameters help estimate the probability of selecting each option. For
instance, the probability of choosing option 2 in the first stage is calculated as follows:

Pstagel — 1
2 1+ exp(—B1- (V3 =V — m- (€, — C3))

Here, V> and V" represent the net value of each first-stage option, calculated using Equation 1
mentioned earlier. The variable C; equals 1 if the previous choice was option I; otherwise, C; equals
0. The parameter = is a free perseverance parameter that reflects the participant's tendency to repeat
the choice made in the previous trial. Overall, the model includes 6 parameters (a1, o, i, B2, T, ®).



We applied hierarchical Bayesian modeling to fit the model separately for each group. This approach
incorporates group-level information about parameter values to inform individual-level parameter
estimation, enhancing accuracy by regularizing individual variability in parameter estimates through
shrinkage*®® . From this modeling, we extracted the group-level estimates for the six model
parameters and compared them across groups (IGD vs. AUD, IGD vs. HC, and AUD vs. HC). To
assess whether parameter estimates significantly differed between groups, we examined the 95%
highest density interval (HDI) of the difference in parameter estimates (e.g., ® IGD-@_AUD). A
significant difference was indicated if the 95% HDI did not include zero.

2.6. Model-based fMRI analyses

In the first-level analysis, we conducted a model-based fMRI analysis to identify voxels where blood
oxygenation level-dependent (BOLD) activity correlated with model-free and model-based reward
prediction errors (RPEs). Following the approach outlined by Daw et al. (2011)?* , we first extracted
time series of standard RPE estimates as the model-free regressor, aligning these with the onset of
the second-stage transition and outcome delivery. For the model-based regressor, we computed a
difference regressor by subtracting model-free RPE values from hypothetical RPE values that would
occur if participants relied solely on a model-based strategy during the task. This difference
regressor captures residual prediction error not explained by the model-free strategy and reflects
model-based contributions. The model-based regressor was similarly derived at the second stage
and outcome onset.

Additional regressors included the time points of choice responses in the first and second stages, as
well as the onsets of fixation and the first stage, all with durations of 0.1 seconds. Six motion
parameters estimated by fMRIPrep were incorporated as nuisance regressors to account for head
movement. Using two parametric regressors of interest (model-free and model-based) and 10
nuisance regressors, we created two contrasts for each participant: one identifying voxels
corresponding to model-free activity and the other to model-based activity.

In the second-level analysis, the first-level contrast images were subjected to a random effects
analysis to produce group-level contrasts. Depression and anxiety scores were included as covariates
to control the influence of psychiatric symptoms. Results were thresholded at p<0.001 (uncorrected
for multiple comparisons) with an extent threshold of k>10 voxels. This threshold was selected to
identify potentially meaningful neural activations across groups, given the exploratory nature of the
study.

We also investigated correlations between neural activity showing significant group differences and
the model-based weight parameter (®). This analysis explored how the strength of neural correlates
associated with model-based and model-free systems varied with the degree of model-based control.
Mean beta values were extracted from peak voxels (within a 3 mm sphere) in each significant brain



region for each participant, and Pearson correlations were calculated with individual estimates of .
This approach aimed to link model-based behavior with the corresponding neural correlates.

2.7. Functional connectivity analysis — Psychophysiological interaction
analysis

In the model-based fMRI analysis, we identified the insula as a key region involved in model-based
learning, particularly in the IGD group. To further explore how the insula interacts with other brain
regions during model-based learning, we performed a psychophysiological interaction (PPI)
analysis*! . Given the role of the insular cortices as cortical hubs within the salience network*>#? |
we investigated the functional connectivity between the bilateral insula and other regions associated
with this network.

In the first-level analysis, the left and right insula, defined as 3 mm spheres centered on the peak
voxels identified in the second-level model-based fMRI analysis, were designated as seed regions.
Model-free and model-based RPEs were included as parametric modulators, along with the four
nuisance regressors and six motion regressors from the model-based fMRI analysis.

At the second level, we conducted one-sample t-tests within each group to examine connectivity
patterns. Additionally, two-sample t-tests (HC vs. IGD, IGD vs. AUD, and HC vs. AUD) were
performed to identify group differences. Depression and anxiety scores were included as covariates
to control for the potential effects of psychiatric symptoms. The results were thresholded at p <0.001
(uncorrected) with an extent threshold of k > 10 voxels. Small-volume correction was applied using
a brain mask of the salience network to enhance specificity.

3. Results

3.1. Group difference in psychometric measures

To assess group differences in survey measures, we conducted a one-way analysis of variance
(ANOVA) with group as the factor (i.e., IGD, AUD, HC) (Table 1), followed by post-hoc pairwise
comparisons using Tukey's test (Figure 4). The IGD group exhibited the highest levels of internet
addiction symptoms, while the AUD group showed the highest levels of alcohol use symptoms.
Significant group differences were also observed in depression, anxiety, impulsivity, and childhood
ADHD symptoms. Specifically, the IGD group reported greater depression symptoms compared to
both the HC and AUD groups and higher anxiety symptoms than the HC group. Impulsivity scores
were highest in the IGD group, followed by the AUD group and the HC group. Furthermore, the



IGD group reported the most pronounced childhood ADHD symptoms, with significant differences
compared to both the HC and AUD groups. No significant group differences were found in 1Q
(including all subscales) or age.

Table 1 Demographics and clinical characteristics

IGD AUD HC F (p value)
Sample N=22 N=22 N=30
size
2.03 (p=
Age 2373(23.33,2413) 2373 (23.18.2428) 226(22.14.2300) 7.0
_ 0.13 (p =
Education  3.14 (2.95, 3.33) 332 (3, 3.64) 3.2 (2.98, 3.42) 0.88)
84.72 (p <
IAT 68 (66.34, 69.66) 32.05(29.83,3426) 32.03(29.67,3439) ° (0¥
62.58 (p <
AUDIT 7.82 (5.96, 9.68) 2436 (23.44,2529) 6.7 (5.86,7.54) 6.000)
BDI 12.14 (10.52, 13.75) 7.45(6.14,8.77)  6.37(5.3,743) 5.36 (p <0.05)
BAI 9.41 (7.98, 10.84) 7.45 (5.81,9.1) 457(3.73,5.4)  3.91 (p<0.05)
11.21 (p <
BIS 56.18 (54.06, 58.3) 50.05 (483,51.79) 4493 (4357.4629) " F
WURS 2923 (26.62,31.83)  19.55(16.73,22.36) 18.97 (16.71,21.22) 4.91 (p < 0.05)
1Q _
111.64 (109.07, 114.21) 112.45 (110.36, 114.55) 110'f132(é(3)8'24’ 0'02;1(5
(K-WAIS) :63) 814)
104.09 (101.52, 107.47 (10497,  0.67 (p=
VCI  103.86 (10127, 106.45) 106.66) 109.97) 0510

PRI  115.27(112.38,118.17) 109.05 (105.87, 112.22)108.73 (106, 111.47) 1.50 (p = 0.23)

Data under the first three columns are the means (95% confidence interval) for each group (IGD,
AUD, and HC) or numbers for sample size. Results of a one-way analysis of variance (ANOVA)
with group factors (i.e., IGD, AUD, HC) are shown in the rightmost column; F-statistics and p-value.
IAT, Young Internet Addiction Test; AUDIT, Alcohol Use Disorder Identification Test; BDI, Beck
Depression Inventory; BAI, Beck Anxiety Inventory; BIS, Barratt Impulsiveness Scale; WURS,
Wender Utah Rating Scale; K-WAIS, the Korean version of the Wechsler Adult Intelligence Scale;
VCI, Verbal Comprehension Index Scale; PRI, Perceptual Reasoning Index Scale® .
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Figure 4. Group differences in psychometric measures. Each bar indicates the means of each
group. Error bars are 95% confidence interval, and dots correspond to each participant's data.
Measures with significant group differences are flagged with asterisks (*, p < 0.05; **, p < 0.005;
% p <0.001)% .

3.2. Behavioral results

The observed stay probability (Figure 5) shows a combination of model-based and model-free
learning in all three groups, which were also supported by the mixed effects logistic regression
results. The main effect of reward (IGD, B=-1.117, 95% confidence interval (CI)=[-1.440, -0.794],
p=1.19¢-11; AUD, B=-1.119, 95% CI=[-1.536, -0.702], p=1.44e-07; HC, B=-0.778, 95% CI=[-
1.129, -0.427], p=1.40e-05) and transition probability (IGD, B=-1.055, 95% CI=[-1.374, -0.735],
p=9.38e-11; AUD, B=-1.238, 95% CI=[-1.954, -0.523], p=0.001; HC, B=-1.077, 95% CI=[-1.406,
-0.748], p=1.40e-10) were significant in all three groups, indicating that all groups accounted for
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both rewards (i.e., model-free learning) and the transition structure (i.e., model-based learning) when
making choices (Table S1). The combination of model-based and model-free strategy was also
supported by significant main effect of interaction between reward and transition probability (IGD,
B=3.311, 95% CI=[2.912, 3.709], p<2.00e-16; AUD, B=3.204, 95% CI=[-2.776, 3.631], p<2.00e-
16; HC, B=1.970, 95% CI=[1.661, 2.279], p<2.00e-16).

IGD AUD HC

1.00] 4 1.00 : d 1.00] 4
‘?0 75 . -‘?0 75 ‘:—:0 75 1 i
F i 5 T i -
g ' 5 g »
© 0.50 © 0.50 0 0.50
B B B
o o o
> > >
8025 So2s5 Boos
(0] (/] (%]

0.00 0.00 0.00

rewarded unrewarded rewarded unrewarded rewarded unrewarded

commaon [ rare common & rare common & rare
Figure 5. Stay probability by group. The observed stay proportions for each group are shown as
a function of reward and transition probability. Each dot represents individual participant data,

connected by lines. Error bars indicate the standard error of the mean (SEM)*° .

3.3. Model comparison

We evaluated three models: a seven-parameter model from Daw, Gershman, Seymour, Dayan, and
Dolan (2011), a six-parameter model, and a four-parameter model. Each model was fitted separately
for each group (IGD, AUD, HC) using hierarchical Bayesian modeling. To assess model fit, we
calculated the leave-one-out information criterion (LOOIC) using the "loo" package in R. Table 2
presents the LOOIC values for each model across the groups. As a lower LOOIC indicates a better
model fit, the six-parameter model provided the best fit for all three groups. Consequently, the six-
parameter model was selected for further analyses.

Table 2. Model comparison results

IGD AUD HC
Four-parameter model 7779.664 8104.869 11907.628
Six-parameter model 7711.565 8062.970 11838.170
Seven-parameter model 7715.729 8064.469 11840.879
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The table shows the leave-one-out information criterion (LOOIC) for the seven-parameter, six-
parameter, and four-parameter models across the IGD, AUD, and HC groups. The model with the
lowest LOOIC value (indicating the best fit) for each group is highlighted in bold° .

3.4. Modelling results

We found significant group differences in the second-stage learning rate parameter o 2 and
perseverance parameter © (Figure 6). AUD and IGD groups showed higher a 2 (o (2,IGD)-
a_(2,HC) 95% HDI = [0.072, 0.359]; a_(2,IGD)-a_(2,HC) 95% HDI = [0.011, 0.313]) and higher
© estimates (n_IGD-n_ HC 95% HDI = [0.1, 0.1.059]; = AUD-z_HC 95% HDI = [00.01, 1.021])
compared to the HC group. There were no group differences in the model-based weight parameter
o, first-stage learning rate o1, and first- and second-stage inverse temperature §_1 and B_2. See
Figure S2 for the distribution of group differences in the model parameter estimates.
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Figure 6. Group comparison of parameter estimates. Estimates of six model parameter value
of each group (IGD, AUD, HC group). Error bars are 95% highest density interval (HDI). Model
parameters with significant group differences are flagged with asterisks®° .

3.5. Model-based fMRI results

The model-based fMRI analysis revealed significant differences among the HC, IGD, and AUD
groups when the model-based RPE was used as a parametric modulator (Figures 7A and 7B).
Specifically, the right orbitofrontal cortex (OFC) in the AUD group showed a stronger correlation
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with the model-based RPE compared to the IGD group (t=4.22, k=13, p<0.001). In the IGD group,
bilateral insular activation demonstrated a stronger correlation with the model-based RPE compared
to the HC group (left: t=4.20, k=17, p<0.001; right: t=4.71, k=33, p<0.001). Furthermore, the left
superior frontal gyrus (SFG) in the AUD group exhibited a stronger correlation with the model-
based RPE compared to the HC group (t=4.18, k=26, p<0.001). No significant group differences
were observed when the model-free RPE was used as a parametric modulator. Detailed second-level
results for each group are presented in Table S2.

Further analysis explored the relationship between the significant findings of the model-based fMRI
analysis (i.e., the correlation of each region with model-based RPE) and the level of model-based
control, as indicated by individual estimates of . In the IGD group, a negative correlation was found
between the beta value of the right insula and o (r=-0.45, p<0.05), suggesting that individuals with
lower model-based weight parameter estimates had stronger coupling between the right insula and
the model-based RPE. This correlation was not observed in the AUD group (r=-0.09, p=0.709) or
the HC group (r=-0.19, p=0.334) (Figure 7C). No significant correlations were identified for the
left insula.
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Figure 7. Differences in model-based fMRI analysis across groups. (A) Brain regions
showing significant group differences identified through second-level two-sample comparisons,
using model-based reward prediction error (RPE) as parametric modulators (p < 0.001, uncorrected;
cluster size, k = 10). Significant differences indicate that one group's brain activation is more
strongly correlated with the model-based RPE than another. The color bar represents t-statistics
derived from the two-sample t-tests. (B) Group-wise average beta values extracted from 3mm
spheres at peak MNI coordinates (R OFC: 35, 55, -8; L Insula: -40, 2, -8; R Insula, 46, 2, 2; L SFG:
-6, 25, 62) for brain regions displaying significant group differences. Each dot corresponds to the
group-wise mean beta value for each region, with error bars representing the standard error.
Asterisks denote significance from two-sample t-test (p < 0.001). (C) Correlation between beta
values in the left insula and the model-based weight parameter (w) estimates. Each dot represents
the beta value of the right insula (extracted from 3mm spheres at peak MNI coordinates: 46, 2, 2)
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from the first-level analysis on the x-axis, and the individual estimates of the model-based weight
parameter on the y-axis. The regression line illustrates the Pearson correlation between the beta
value of the right insula and the w estimates. A significant correlation (p < 0.05) is marked with an
asterisk. OFC = orbitofrontal cortex; SFG = superior frontal gyrus® .

3.6. Psychophysiological interaction analysis results

The PPI analysis identified significant correlations between the insula and other brain regions
within the salience network, specifically in the IGD group (Figure 8 & Table S3). For model-
based RPE, the right insula was correlated with the right putamen (=5.23, p<0.001), left insula
(£=5.75, p<0.001), and occipital lobe (=4.23~4.37, p<0.001). Similarly, the left insula was
correlated with the anterior cingulate cortex (ACC; =4.24, p<0.001), right superior temporal gyrus
(STG; =3.67, p<0.001), and occipital lobe (+=3.72~5.14, p<0.001). Group comparisons revealed
distinctive connectivity patterns unique to IGD group (Table S4). The connectivity between the
right insula and the left insula was greater in the IGD group compared to HC (=3.89, p<0.001).
Furthermore, connectivity between the insula and occipital lobe was greater in the IGD group
compared to the AUD (right insula as seed: =3.52~4.41, p<0.001; left insula as seed: =3.52~3.57,
»<0.001) and HC (left insula as seed: =3.41~3.79, p<0.001). These findings highlight that IGD is
characterized by distinctive patterns of hyper-connectivity involving the insula and its interactions
with the salience network. This suggests a potential link between these unique connectivity
patterns and ongoing reward processes specific to the IGD group during model-based learning.

Seed: R Insula

Seed: L Insula
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Figure 8. Psychophysiological interaction (PPI) analysis results for the internet gaming
disorder group. Using the right insula (MNI-coordinates: -40, 2, -8) and left insula (MNI-
coordinates: 46, 2, 2) as seed regions (3mm spheres), a PPI analysis employed model-based reward
prediction error (RPE) as the psychological variable. The brain maps depict the effects of model-
based RPE on each insula to the whole brain of the IGD group (p < 0.001, uncorrected; cluster size,

k > 10)°.

4. Discussion

In this study, we examined the neurocognitive features associated with model-based learning in
individuals with Internet Gaming Disorder (IGD) and Alcohol Use Disorder (AUD). The primary
findings are as follows:

1. Contrary to our initial hypothesis, both the IGD and AUD groups demonstrated higher
learning rate and perseverance parameter estimates compared to the healthy control (HC) group.

2. The insula played a distinct role in processing model-based behavior specific to the IGD
group. In IGD participants, model-based reward prediction error (RPE) was significantly correlated
with bilateral insula activation, whereas in the AUD group, it correlated with activation in the
frontal regions, specifically the right orbitofrontal cortex (OFC) and left superior frontal gyrus
(SFG).

3. The IGD group uniquely exhibited hyper-connectivity between the bilateral insula and
other regions of the salience network, including the putamen, anterior cingulate cortex (ACC),
superior temporal gyrus (STG), and occipital lobe, in the context of model-based RPE.

4. Additionally, in the IGD group, the correlation between the right insula and model-based
RPE was notably stronger in individuals exhibiting lower levels of model-based behavior (i.e.,
lower o).

These findings highlight distinct neurobiological pathways for model-based learning in IGD and
AUD, emphasizing the critical role of the insula in IGD.

The finding of similarly high levels of model-based behavior across all groups was consistently
supported by behavioral and computational modeling analyses. While previous studies have

reported mixed evidence of impaired model-based behavior in individuals with AUD!7-20:27:44 |
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recent research by Silva and Hare (2020)* suggests that humans tend to rely on model-based
inference when they have a clear understanding of the task. In this study, we adopted several
procedures recommended by Silva and Hare (2020)* to ensure participants comprehended the
two-stage task. Additionally, participants exhibited above-average working memory and
processing speed, surpassing values reported in prior research?® . These enhanced cognitive
abilities may have contributed to the observed preservation of model-based behavior in both IGD
and AUD participants compared to healthy controls. However, these interpretations remain
speculative and require further confirmation. Future research should include participants with a
broader range of cognitive abilities and experimentally manipulate task understanding to validate
and generalize these findings.

Although the degree of model-based control (i.e., ®) was comparable across groups, the IGD and
AUD groups demonstrated elevated o 2 and m estimates, suggesting shared cognitive
characteristics between alcohol and gaming addiction. Impulsivity, a well-established personality

trait related to addiction*”*

, may underlie the higher learning rate (o 2) estimates, reflecting
heightened reward sensitivity and reduced cognitive control. The tendency for addicted individuals
to update immediate rewards more quickly could indicate either an increased salience of immediate
rewards or a diminished capacity to suppress responses to them> . While a higher learning rate can
be advantageous in rapidly changing or uncertain environments, it may pose challenges in contexts
like the two-stage task, where reward probabilities shift more gradually' . This implies that
individuals with IGD and AUD may find it difficult to adjust their learning strategies appropriately
in situations requiring slower, more deliberate updates to reward expectations.

The elevated perseverance parameter (m) estimates observed in the IGD and AUD groups suggest
a stronger tendency to repeat prior choices independent of reward outcomes, potentially reflecting

15,52,53

habitual behavior or compulsivity—core features of addictive disorders . This aligns with

previous studies reporting increased perseverance in individuals with addiction, reinforcing the
idea that heightened perseveration may represent a maladaptive trait associated with addiction®*>%
The combined pattern of higher learning rates and greater perseverance seen in both groups may
highlight shared neurocognitive characteristics underlying addictive behaviors. Nonetheless,
additional research is required to confirm and further explore these findings.

Using fMRI, we identified distinct neural patterns associated with model-based behavior in the

IGD group compared to the AUD group. Notably, our findings emphasize the unique involvement
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of the insula in model-based behavior among individuals with IGD. The insula is a vital component
of the brain's salience network®>>” , which plays a key role in encoding prediction errors related to
reward variability® and processing salient stimuli*»* . Previous research has shown hyper-
connectivity of the salience network in individuals with behavioral addictions during resting
states® , and in individuals with IGD specifically during resting states, risky decision-making, and
executive control tasks®'%* . Consistent with these findings, our results indicate that heightened
sensitivity of the insula, a central hub of the salience network, may represent a distinct neural
marker of IGD.

To interpret the hyperactivation of the insula observed specifically in the IGD group, it is crucial
to examine its established role in drug craving and addiction® . Studies have shown that lesions in
the insular cortex can disrupt addictive behaviors, emphasizing the insula’s central role in addiction
mechanisms® . However, neuroimaging studies on substance use disorders (SUDs) often report
insula hypoactivation during decision-making tasks®’~%° . This apparent contradiction may arise
from differences in the processing of drug-related versus non-drug-related rewards in individuals
with addiction” . While drugs of addiction represent highly salient rewards and lead to
hyperactivation of the salience network, non-drug rewards are typically associated with reduced
activity in this network when compared to non-addicted individuals”'. Thus, the insula
hypoactivation reported in decision-making tasks for SUDs may be attributable to the use of non-
salient rewards. Similarly, neuroimaging studies on IGD employing gaming-related cues have

demonstrated increased activation of the salience network’>7*

. Given the task dynamics and
reward structure in our study, which likely mirrors gaming behavior more closely than substance
use, the pronounced insula activation observed in the IGD group may indicate that participants
approached the two-stage task in a manner akin to playing a game.

Another noteworthy observation is the hyperactivation of prefrontal regions, specifically the OFC
and SFG, in individuals with AUD during model-based behavior. The OFC plays a crucial role in

75-78

regulating goal-directed, or model-based, action planning and execution , encoding the value

of stimuli, and understanding the relationship between stimuli and their expected outcomes”-8 .
Similarly, the SFG is involved in higher-order cognitive functions, including working memory and
executive processing®! . While previous studies have generally reported decreased prefrontal
activation in individuals with AUD during decision-making tasks and at rest®>® | our study

revealed increased activation in these regions. This discrepancy may be attributed to variations in
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model-based performance, as we did not observe impairments in model-based control among
individuals with AUD, unlike prior findings in AUD or other SUDs. These results corroborate
previous research suggesting that compensatory hyperactivation in prefrontal regions may support
task performance in AUD?® . Extending this interpretation, the hyperactivation observed in the
AUD group might represent a compensatory mechanism to counteract deficits in model-based
systems, thereby facilitating model-based behavior. Notably, such compensatory hyperactivation
in the frontal regions appears specific to AUD and is absent in IGD. This distinction might stem
from the absence of chemical intoxication in IGD, which is a characteristic feature of AUD and
other SUDs#38

To our knowledge, this is the first neuroimaging study to compare IGD and AUD with a focus on
model-based behavior. The findings suggest that while IGD and AUD share cognitive features
related to reward sensitivity and compulsivity, the underlying neural mechanisms differ. These
differences may reflect variations in reward salience and distinct brain adaptations associated with
alcohol and gaming behaviors. The study provides valuable insights into the neurocognitive
mechanisms underlying addictive disorders and emphasizes the need for further research to
investigate the roles of the insula and salience network in IGD.

Despite its contributions, this study has limitations. First, we used a fixed 0.5-second inter-trial
interval without jittering, which may have resulted in overlapping blood oxygen level-dependent
(BOLD) responses across trials® . Future studies should include jittered inter-trial intervals to
address this issue. Second, as an initial study comparing neural correlates of model-based behavior
in IGD and AUD, our statistical methods lacked specificity in distinguishing shared and unique
neural correlates between groups. More precise approaches are required for future research.
Finally, the generalizability of our findings is limited by the small sample size and the
characteristics of the participants. Although participants were diagnosed with IGD or AUD by
psychiatrists, they were recruited from community settings rather than clinical populations,
potentially leading to differences in symptom severity. Additionally, the sample included only
young men, and most participants in the IGD group primarily engaged in multiplayer online battle
arena (MOBA) games, influenced by Korean cultural preferences. Future research should consider

cultural contexts, use larger and more diverse samples, and apply stricter statistical thresholds.
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5. Conclusion

This study provides novel insights into the neurocognitive features and neural correlates of model-
based learning in individuals with IGD and AUD. While both groups exhibited similar levels of
model-based behavior, their neural signatures differed were observed: the insula was uniquely
involved in IGD, while prefrontal regions played a prominent role in AUD. These findings suggest
potential differences in the neurobiological mechanisms underlying addictive behaviors in IGD and
AUD, contributing to the growing body of evidence that highlights both shared and unique features
of IGD and substance-related addictive disorders. Further research with larger samples and
consideration of cultural influences is necessary to better understand the pathophysiology of IGD

and refine its diagnostic and treatment approaches.
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Appendix

Table S1. Linear mixed-effects logistic regression results for stay probability

HC IGD AUD
pe pvawe pex cu prae pos ca pane
Faswand [, oy A0S g gy ptment D e
Transition probability [ra0 oram P10 D P9t Hsss 05y PO
1970 3311 3.204 p<200e-16

Fewand x transifion probabiity  [1661, 2279] P 200818 ogpp 5799  Pe200e18 [-2776, 3.631]
The table reports the coefficients, 95% confidence intervals (CIs), and p-values for the main effects
of reward, transition probability, and the interaction. The residual degree of freedom for each group

are as follows: HC = 5,969, IGD = 4,370, AUD = 4,385% .

Table S2. Second-level results of model-based fMRI analysis

Group Corresa:r;:ii‘i):g =T ng:%r:::s T value Z value (p:a‘l:avl::el) (clul';::rhll:vel) cluster size
HC Fusiform gymus {L) -36, 84, 8 482 401 p<0001" p=0102 10
16D Insula {R) 42,14, 14 456 364 p<0.001 p=0085 15

Orbiofrontal cortex {R) 35,55, -8 639 456 p<0.001 p=0016" 29

Occipial lobe {R) 3,91, 4 515 398 p<0001" p=0088 13

AUD | Posterior cngulate cortex 1,-35, 36 505 3.93 p<0001 p=0013" k3
Occipital lobe {L) -22,99,-4 498 3.90 p<0o0t’ p=0088 13

Anterior cingulate cortex 3,44, 6 491 386 p<0001" p=0019" 27

The table presents the significant findings from second-level one-sample t-tests performed as part
of the model-based fMRI analysis, incorporating the model-based reward prediction error (RPE) as
a parametric modulator (p < 0.001, uncorrected; cluster size, & = 10). Asterisks (*) denote results

significant at p < 0.001, while cross symbols () indicate significance at p < 0.05%° .
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Table S3. PPI second-level results for the internet gaming disorder (IGD) group

Peak MNI
Seed region | Corresponding Brain Region Cn;:xrd‘i,n:ltes T value Zvalue (uni::le'::ed] (clui::rhll:vell cluster size
Putamen [R) 31,2,-14 523 398 p<0001 p=0014" 24
Insula {1} 48, 10,8 575 423 p<oom” p=036 3
Insula [R) -48,-76,-4 437 353 p<0001 p=0601 1
Occipital lobe 46,72, 4 431 350 p<0001 p=0.110 9
48, -69,6 13 345 p<0001 p=0.445 2
Antevior Gngulate Cortex 5,10,32 424 345 p<0001 p=0012" 2
Supevior temporal gyrus (R} 31,94 367 3.11 p=0001" p=0587 1
38.-50,-18 514 394 p< 0.(1)1. p=0119 8
-40, 69, -14 4.8 378 p< 0.(!)1. p=0330 3
Inzula (L)
-36, -88, 4 39 327 p=0001" p=01429 2
Occipital lobe
-40,-58,-14 | 3.89 324 p=0001" p=0429 2
8 84,4 ES:v) 32 p=0001" p=01429 2
-0, -80, -8 n 314 p=0001" p=0587 1

The table summarizes the significant findings from psychophysiological interaction (PPI) analysis
conducted at the second-level one-sample t-tests conducted for the IGD group, with the model-
based reward prediction error (RPE) serving as the psychological variable (p < 0.001, uncorrected;
cluster size, k = 10). After applying small volume correction using an extent brain mask derived
from meta-analytic brain maps of "salience", "salience network", and "reward" extracted from the
Neurosynth, the resulting clusters within the corrected volume were smaller than the initially
applied threshold of £ > 10. Asterisks (*) denote results significant at p < 0.001, and cross

symbols () indicate significance at p < 0.05%°
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Table S4. Second-level group comparison results of the PPI analysis

Corresponding Brain e pvalue p value
G Seed regi i Tval Zval luster si
roup eed region Region Coordinates |T value value {uncorrected) (cluster level] cluster size|
(% v 2)
Insuta {1} 48,108 | 3.8 359 p<0001 p=0513 2
Parietal frontal lobe [R) 35,6, 56 361 336 p<0001 p=0292 5
Premotor cortex (R} 27,-5 52 331 an p< (:l.(x:ll't p=08657 1
46,54,-18 | 375 3.47 p<ooo1” p=0657 1
Fusiform gyrus [R) <
31,-61,-18 334 3.14 p<0.001 p=08657 1
Parietal lobe (R} 46,-31, 42 3.66 34 p< Oml' p=08657 1
HC < 1GD
31,848 3.6 3.41 p<0001 p=0347 4
-
5,-69 46 3.55 331 p<0001 p=0513 2
nzula {R} <
40, -58, -18 3.54 331 p<0.001 p=0417 3
Oceipital lobe
-
-14,-72,52 3.54 331 p<0.001 p=08657 1
12, 81,6 | 351 328 p<0001 p=0513 2
6844 | 3m 3n p<0001 p=0513 2
-10, 95,4 44 392 p< (ZI.(lIll't p=0083 13
12,-84,2 4.00 3.60 p< 0.001' p=0392 3
AUD < Oceipital lobe
-25,95.6 3.57 3.2 p<0001 p=0627 1
31,954 |35 325 p<0001 p=0321 4
12,95, 12 3.9 3.96 p< (Il.(l:ll't p=0492 2
AUD < Oceipital lobe
-
Insula (L} 25956 | 341 316 p<0.001 p=0639 1
AUD > IGD | Postesior cingualate cortex | -3, 46,32 | 3.81 347 p<0001 p=0271 5

The table presents the findings from second-level group comparisons conducted using two-sample
t-tests in the psychophysiological interaction (PPI) analysis (p < 0.001, uncorrected; cluster size, k
> 10). Following small volume correction with an extent brain mask derived from meta-analytic
brain maps of "salience", "salience network", and "reward" extracted from the Neurosynth, the
resulting clusters within the corrected volume were smaller than the initially applied threshold of &

> 10. Asterisks (*) denote results significant at p < 0.001, and cross symbols (T) indicate

significance at p < 0.05% .
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1st room

2nd room

v
?

Figure S1. Schematic representation of the two-stage task used in instructions. This figure

illustrates an example of the two-stage task as presented in the task instructions. The schematic includes

a depiction of exemplary choices, with a human icon representing the choices available at each stage® .
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Figure S2. Distribution of group differences in model parameter estimates. This figure shows the
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distributions of group differences in model parameter estimates, calculated for each pairwise
comparison (IGD vs. AUD; IGD vs. HC; AUD vs. HC). The distributions represent the subtracted
values of one group's parameter estimates from another's (e.g., ® IGD-o0 AUD). Black lines beneath
the distributions indicate the 95% highest density interval (HDI). Group differences are considered

significant if the 95% HDI does not include zero® .
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Abstract in Korean

AEY AGZele] ZEAV|N gl B2 7F35}shgo] #oste
A7 EA

Z: A4l AY FHoll (Internet gaming disorder, IGD)& AZHst
FTeRA EAZE HAoy, I AAERJA wWAYSE ofx WEstA gtk uwhebA,
IGDSF g3 ARE Hol(AUD)E HIxXE & T54 Zosae AR
2ol Fotels A FAE TAoln HEY dAyeEs, AR AeEd "
oA Ad =Zed YAt IGDE Jidstety A Ao FAMd Y Aol =
ATh & AeA= IGDSE AUD #hxje A

ERAGH (RN 9 S (EEZY) 24 ALY BEE AFAXE 54

AT Alx @ B 31> A=
gz (HC n=30)°z2 ¥ IAFAEL two—stage tasks FHsAA
fMRIAAFS  Al3) Wikt Two-—stage task® EE7|gr 9 mdsg x4

B7rek] Slell AeE Aol 2 Ao B2, A

=
AzaE (e Jay/ed g 8hy) 7Ho] #E S RAFstE Aolth mixwo®  $-g=
2d 7gk fMRI 4S5 53] IGD AUDS H¥A A 24y #dd A3404 =

A7 A A 29y An, IGDeF AUD I3 EF fARE $59 2d 7
g HAY. a8y F O aF e 2d 7 BA 9= @ F(RPE)O gk
NZAAAAE FEEE 2oz ek IGD 1w 249 7]Hlk RPESF #H &Y
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AelA EA43tE Hel whd, AUD 152 A5 99, 53] ¢tebdFT 4@y A4
AF3) oA FA3E HJvk w3, IGD I3 &4 7|¥F RPEQ 7|57 d4d4
BANA AFy AAA U EYA(salience network) I #FHAH HIAE ko yr}

A4S YERAHL
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