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ABSTRACT

Development and validation of deep learning-based risk prediction
model for major adverse cardiovascular events in female long-term
breast cancer survivors

Background:

Clinical practice guidelines recommend reassessing the risk of cardiovascular toxicity five years
after cancer treatment in asymptomatic adult cancer survivors, including new or pre-existing
cardiovascular risk factors and cancer therapy-related cardiovascular toxicity. However, studies
providing individualized risk prediction for these populations remain limited. This study aimed to
develop and validate deep learning-based prediction models for the risk of major adverse car
diovascular events (MACEs) in long-term breast cancer survivors.

Methods:

We used data from the Korean National Health Insurance Service databases from 2005 to 2
021, identifying 5,131 5-year female breast cancer survivors diagnosed in 2006. The study
population was split into derivation and validation cohorts in a 4:1 ratio. The primary outc
ome was the occurrence of MACEs within a 10-year follow-up period. A deep learning sur
vival model (DeepSurv) was developed and compared to a traditional Cox proportional haz
ards regression (CPH) model. Model performance was evaluated based on discrimination and
calibration. Shapley additive explanations were used to rank predictors by importance.

Results:

The cumulative incidence of MACE at the 10-year follow-up was 14.4% in the derivation
cohort and 12.1% in the validation cohort. Both models included 23 conventional and breast
cancer treatment-related cardiovascular risk factors. In the validation cohort, the DeepSurv mo
del achieved a time-dependent concordance index (C'¢) of 0.739 (95% CI, 0.701-0.774) an
d an integrated Brier score (IBS) of 0.049, comparable to the CPH model (C*: 0.737, 9
5% CI, 0.671-0.804; IBS: 0.045, 95% CI, 0.037-0.053). Key predictors identified using
Shapley additive explanations included age, dyslipidemia, prior stroke, anthracycline
chemotherapy, hypertension, diabetes mellitus, hemoglobin levels, prior aromatase inhibitor use,
and prior radiotherapy.

Conclusions:
We developed and validated a deep learning survival model to predict the 10-year risk of MACEs



in individual 5-year breast cancer survivors. By incorporating both conventional and breast cancer
treatment-related cardiovascular risk factors, the model demonstrated good calibration and
discrimination.

Key words : breast cancer, cancer survivor, major adverse cardiovascular event, prediction model,
machine learning.
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1. INTRODUCTION

In recent decades, there has been a consistent decline in cancer-related mortality, accompanied by
a significant increase in the number of cancer survivors.! Cancer survivors often face a significant
burden of chronic health conditions resulting from the long-term effects of cancer and its treatments.
As they live longer, the risk of noncancer deaths has begun to exceed that of cancer-related
mortality.? Besides reducing life expectancy, these might affect their physical and psychosocial
health status, and quality of life.? In this context, managing treatment-related side effects has taken
on greater importance.

Among these side effects, cancer therapy-related cardiovascular toxicity significantly affects
long-term morbidity and mortality outcomes in cancer patients, as well as the selection of
anticancer therapies they can receive.* Before initiating treatments with known cardiovascular
toxicity, it is essential to identify and address cardiovascular risk factors and pre-existing
cardiovascular diseases (CVDs). Additionally, a comprehensive prevention and surveillance plan
should be established to enable the early detection and effective management of potential
cardiovascular complications.>® During cancer therapy, the emergence of side effects necessitates
careful consideration of the benefits and risks of continuing or modifying treatment.> In this regard,
efforts to predict cardiotoxicity have primarily concentrated on stratifying risk to guide further
cancer therapy decisions before and during cancer therapy.’

Meanwhile, cardiovascular toxicity risk restratification including evaluation of new or pre-
existing cardiovascular risk factors and cardiovascular disease is recommended 5 years after cancer
therapy in asymptomatic adult cancer survivors.® Based on cardiovascular toxicity risks, long-term
follow-up surveillance should be organized and integrated into the overall long-term cancer
survivorship care.>® This includes patient education and cardiovascular risk factor optimization for
all adult cancer survivors, which can be done in collaboration with primary care or specialist with
expertise in cardiovascular risk factor management.® For cancer survivors at high risk, regular
complementary tests including electrocardiography, natriuretic peptides measurement, and
echocardiography is recommended.>¢

Clinical practice guidelines have provided risk stratification criteria for long-term follow-up in
adult cancer survivors and adult survivors of childhood cancer based on both conventional and
cancer treatment related cardiovascular risk factors.>® However, unlike in adult survivors of
childhood cancer, the diagnostic value of these criteria has not yet been studied in adult cancer
survivors.>!” CVD is highly prevalent and poses a greater mortality threat than cancer itself in
survivors of several cancer types, such as cancers of the breast, prostate, colorectum, and lung.'!!?
Whereas attention was primarily given to the cardiotoxicity during and early after the cancer
treatments in this population, less attention has been directed toward the prediction and prevention
of late cardiovascular complications.'3

Five-year breast cancer survival rates now exceed 80% in most high-income countries,
contributing to a global population of over 7.7 million breast cancer survivors."'* Breast cancer
survivors have a significantly increased risk of CVD and cardiovascular mortality, resulting from
shared risk factors underlying cancer and CVD.'> Moreover, treatment strategies commonly used



in breast cancer, such as chemotherapy, radiation therapy, and biologic agents, can cause late
effects, including cardiovascular toxicity, throughout patients’ lives.!> There is an urgent need of
prediction models to estimate individual long-term cardiovascular risk in breast cancer survivors,
thereby enabling individualized prevention and surveillance.”

The objective of this study was to develop and validate a deep-learning based prediction model
for major adverse cardiovascular events (MACESs) in individual long-term breast cancer survivors
based on conventional and breast cancer treatment-related cardiovascular risk factors using the
Korean National Health Insurance Service (NHIS) databases.

2.Methods

All authors have reviewed and approved this manuscript, and each author believes that the
manuscript represents honest work. This study was approved by the Institutional Review Board of
National Health Insurance Service IIsan Hospital (IRB number NHIMC 2021-11-001). As the NHIS
database is anonymized, the requirement for informed consent was waived.

2.1.Data sources

We used the NHIS databases between 2005 and 2021. The NHIS operates as a single, non-profit
health insurance provider in South Korea, ensuring coverage to the entire population. It maintains a
comprehensive computerized database containing healthcare-related information, including
inpatient and outpatient claims, medication prescriptions, diagnoses, procedures, and treatments.
Upon request, the NHIS provides researchers with a customized dataset containing de-identified
information specific to the study population. Additionally, we incorporated data from the National
Health Screening Program. This program offers biannual mandatory health screening examinations
to all NHIS beneficiaries aged 40 years or older. The screenings include a self-reported questionnaire
on lifestyle behviors, anthropometric measurements, blood pressure, and laboratory tests.'* The
validity of NHIS database has been described in previous studies.'?

2.2.Study design and population

This nationwide population-based retrospective cohort study identified 14,170 patients newly
diagnosed with breast cancer between January 1, 2006, and December 31, 2006. New diagnosis was
defined by applying a 1-year washout period for 2005. Long-term breast cancer survivors were
defined as those who newly diagnosed with breast cancer and survived at least 5 years. We excluded
64 male patients, 1,984 patients who had missing value for age, 6,774 patients without health
screening records or not subject to health screening, and 217 patients died before index date (January
1, 2012). Finally, 5,131 participants were enrolled in this study. The cohort selection process is
illustrated in Figure 1.
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Figure 1. Flow chart of cohort selection and model training and evaluation. Abbreviation: CPH, the Cox proportional hazards model.



2.3.Data collection

To construct the models, we collected socio-demographic characteristics, prior cancer treatment.
prior cardiovascular disease, comorbidities, lifestyle behavior, physical examination and laboratory
test results. Socio-demographic characteristics included age (years) and household income (upper
half or lower half) at the index date. Household income was derived from insurance premiums. Prior
cancer treatments included the use of anthracycline (yes or no), trastuzumab (yes or no), tamoxifen
(yes or no), aromatase inhibitors (yes or no), and radiotherapy (yes or no). Prior cardiovascular
diseases, including myocardial infarction, stroke, congestive heart failure, peripheral artery
occlusive disease, and atrial fibrillation, were assessed from the inception of data collection up to
the index date. Comorbidities included hypertension (yes or no), diabetes mellitus (yes or no), and
dyslipidemia (yes or no), and chronic kidney disease (yes or no) within 2 years of the index date.
Lifestyle behavior included cigarette smoking (non-smoker or smoker), alcohol consumption (non-
drinker or drinker), and moderate to vigorous physical activity (3 days or more days per week, or
fewer than 3days per week) within 2 years of the index date. Physical examination and laboratory
tests included body mass index (kg/m2), systolic blood pressure (mmHg), diastolic blood pressure
(mmHg), fasting serum glucose (mg/dL), total cholesterol (mg/dL), creatinine (mg/dL), and
hemoglobin (g/dL) within 2 years of index date. The body mass index was calculated by dividing
the participant's weight in kilograms by their height in meters squared.

The primary outcome was the occurrence of MACE (a composite of acute myocardial infarction,
stroke, congestive heart failure, and all-cause death) at any time before the final follow-up at 10
years (31st December 2022).'® Acute myocardial infarction was defined as hospitalization for
primary or secondary diagnosis of the International Classification of Diseases, Tenth Revision (ICD-
10) codes 121 and 122. A stroke was defined as hospitalization for primary or secondary diagnosis
of ICD-10 codes 160 to 169. Patients were considered to have congestive heart failure if they were
hospitalized for primary or secondary diagnosis of ICD-10 codes 150. The ICD-10 codes were
derived from the American Heart Association guidelines.!’

2.4.Model training and performance evaluation

We developed a model based on deep learning survival analysis (DeepSurv) as shown in figure 2.
To compare its performance against traditional methods, we also trained a Cox proportional hazard
regression (CPH) model using the same data set. DeepSurv model was implemented using the
Python module Pycox (version 0.2.3), while the CPH model was implemented with scikit-survival
(version 0.21.0). DeepSurv hyperparameters were tuned with Optuna (version 3.5.0) using five-fold
cross-validation.
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Figure 2. Deep learning model architecture. Clinical information was input into the DeepSurv model,
a multi-layer perceptron designed to predict a patient’s risk of MACEs. The model's output is a
single node representing the patient’s log risk, which is subsequently used to parameterize the
Weibull survival distribution and calculate the weight w, reflecting the individualized survival
probability. To enhance model performance and prevent overfitting, weight decay regularization,
ReLU activation with batch normalization, dropout, and Adaptive Moment estimation (Adam)

optimization were applied.

For feature selection, the permutation feature importance method was employed on the training
dataset to prevent data leakage and result bias. This method ranked clinical factors based on their
contribution to model predictions, determined by evaluating changes in prediction errors when each



feature was randomly shuffled.'®

We computed the time-dependent concordance index (Ctd index), an extension of Harrell’s
concordance index (C index), which is widely recognized as the standard metric for assessing
discrimination in survival analysis. A C' index of 0.5 reflects random prediction (equivalent to a
coin toss), while a value of 1 indicates perfect predictive accuracy. Additionally, we assessed overall
model performance using the integrated Brier score (IBS), which accounts for both discrimination
and calibration. An IBS of 0 represents perfect prediction, while a score of 0.25 indicates the
threshold for random prediction. Models with IBS values below 0.25 are generally deemed valid.
To estimate 95% confidence intervals for these metrics, bootstrap resampling with 1,000 iterations
was employed. The model training and evaluation workflow is depicted in Figure 1.

2.5.Model explanation

Shapley Additive exPlanations (SHAP) were employed to quantify the influence of individual
features on model predictions using the SHAP Python module (version 0.43.0).2! Data processing
was conducted using SAS (version 9.4), while all analysis codes were implemented and performed
in Python (version 3.8).

3.Result

3.1.Baseline characteristics of the cohort

The study involved a total of 5,131 patients who were randomly assigned in a 4:1 ratio to either the
derivation or validation cohorts. During the training process, 20% of the derivation cohort was
reserved for model evaluation, with the final model assessment performed using the validation
cohort. Baseline characteristics of the cohort are presented in Table 1. The mean (SD) population
age was 56.2 (9.5) years. 40.1% of the patients received chemotherapy with anthracycline-
containing regimens, and 0.7% were treated with antihuman epidermal growth factor receptor
antibodies. 39.9% of the patients were treated with tamoxifen and 26.0% received aromatase
inhibitors. 47.1% of the patients underwent radiotherapy. The cumulative incidences of MACE at
10-year follow-up were 14.4% and 12.1% in the derivation and validation cohort, respectively.

Table 1.Baseline characteristics

Total Derivation Validation
(I:)I = 5,131) cohort (N = cohort (N = P-value
’ 4,105) 1,026)
Age, y, mean (SD) 56.2(9.5) 56.2 (9.5) 56.0 (9.6) 0.471
Insurance premium
Lower half 1,879 (36.6) 1,489 (36.3) 390 (38.0) 0.301
Upper half 3,252 (63.4) 2,616 (63.7) 636 (62.0)




Total Derivation Validation
(N=5,131) cohort (N = cohort (N = P-value
4,105) 1,026)
Prior cancer treatment
Anthracycline 2,056 (40.1) 1,678 (40.9) 378 (36.8) 0.018
Trastuzumab 38(0.7) 30(0.7) 8(0.8) 0.870
Endocrine therapy
Tamoxifen 2,045 (39.9) 1,635(39.8) 410 (40.0) 0.939
Aromatase inhibitors 1,333 (26.0) 1,083 (26.4) 250 (24.4) 0.188
Radiotherapy 2,419 (47.1) 1,933 (47.1) 486 (47.4) 0.873
Prior cardiovascular disease
Myocardial infarction 115 (2.2) 87 (2.1) 28 (2.7) 0.238
Stroke 636 (2.4) 505 (12.3) 131 (12.8) 0.685
Congestive heart failure 173 (3.4) 134 (3.3) 39 (3.8) 0.394
disl; erg’heral artery occlusive 805 (15.7) 641 (15.6) 164 (16.0) 0.771
Atrial fibrillation 135 (2.6) 105 (2.6) 30 (2.9) 0.512
Comorbidities
Hypertension 1,962 (38.2) 1,560 (38.0) 402 (39.2) 0.487
Diabetes mellitus 729 (14.2) 576 (14.0) 153 (14.9) 0.470
Dyslipidemia 2,143 (41.8) 1,730 (42.1) 413 (40.1) 0.272
Chronic kidney disease 356 (6.9) 286 (7.0) 70 (6.8) 0.871
Lifestyle factors
Cigarette smoking
Non-smoker 5,060 (98.6) 4,044 (98.5) 1,016 (99.0) 0.210
Smoker 71 (1.4) 61 (1.5) 10 (1.0)
Alcohol consumption
Non-drinker 4,587 (89.4) 3,678 (89.6) 909 (88.6) 0.460
1 days/week 374 (7.3) 290 (7.1) 84 (8.2)
2 days/week 96 (1.9) 80 (2.0) 16 (1.6)
>3 days/week 74 (1.4) 57 (1.4) 17 (1.7)

Moderate-to-vigorous physical
activity




Total Derivation Validation
(N=5,131) cohort (N = cohort (N = P-value
4,105) 1,026)
None 2,259 (44.0) 1,817 (44.3) 442 (43.1) 0.271
1 day/week 273 (5.3) 220 (5.4) 53 (5.2)
2 days/week 528 (10.3) 435 (10.1) 93 (9.1)
>3 days/week 2,071 (40.4)  1,633(39.8) 438 (42.7)
Physical examination and
laboratory tests
BMI, kg/m?, mean (SD) 23.6 3.1) 23.6 3.1) 23.6 3.1) 0.996
mseyai“zg]c)‘)’b"d pressure, mmHg, 5, 157 1213 (15.7)  121.3(159)  0.903
mz;ft(oslg)blo"d pressure, mmHg, 55 14 1) 75.1(102)  75.0 (9.8) 0.8
Hizsrfi?sgl)s;’mm glucose, mg/dl, 7991 3) 977205  98.5(242) 0284
(STBt)al cholesterol, mg/dL, mean 19, 9 37 49 1978(37.5)  198.1(372)  0.830
Creatinine, mg/dL, mean (SD) 0.8 (0.7) 0.8 (0.7) 0.8 (0.7) 0.948
Hemoglobin, g/dL, mean (SD) 12.8 (1.1) 12.8 (1.1) 12.9 (1.1) 0.212
MACE during follow-up period 714 (13.9) 590 (14.4) 124 (12.1) 0.058
All-cause death 453 (8.8) 372 (9.1) 81 (7.9) 0.239
Myocardial infarction 26 (0.5) 19 (0.5) 7 (0.7) 0.376
Stroke 254 (5.0) 200 (4.9) 54 (5.3) 0.606
Congestive heart failure 60 (1.2) 52 (1.3) 8(0.8) 0.194

All values are expressed as frequency (%) unless otherwise specified. Abbreviation: SD, standard
deviation; BMI, body mass index; and MACE, major adverse cardiovascular event.

3.2.Feature selection
The permutation feature importance analysis identified 23 relevant clinical factors with non-

negative feature importance values out of the 26 clinical factors assessed in both the DeepSurv and
CPH models (Figure 3 and Table S1).
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Figure 3. Permutation Feature Importance for all 26 features. Feaure importance provided for the
Deepsurv (A) and the Cox proportional hazard model (B). Since the loss functions used by each
model vary, the importance levels are relative values. A negative value indicates that when the
feature is permuted, the model's performance improves. Abbreviations: AF, atrial fibrillation; CHF,
congestive heart failure; CKD, chronic kidney disease; PAOD, peripheral arterial obstructive disease;
and MI, myocardial infarction.



3.3.Model performance

To assess the discrimination and overall performance of the DeepSurv and CPH models, we
computed the C' index and IBS. Using 23 relevant clinical factors, DeepSurv achieved a C*¢ value
0f0.739 (95% CI, 0.701-0.774), which was not significantly higher than the CPH model (C¢ 0.737
[95% CI, 0.671-0.804]). Both models demonstrated excellent IBS values of 0.049 or less,
significantly below the random prediction threshold of 0.25, indicating their reliability (Table 2).

Table 2. Performance comparison of deep learning and traditional model for major adverse
cardiovascular event risk prediction among breast cancer survivors at 10 years.

Model C(95% CI) IBS (95% CI)
Derivation cohort
DeepSurv 0.744 (0.699-0.770) 0.057 (0.047-0.063)
CPH 0.738 (0.710-0.767) 0.054 (0.038-0.056)
Validation cohort
DeepSurv 0.739 (0.701-0.774) 0.049 (0.043-0.055)
CPH 0.737 (0.671-0.804) 0.045 (0.037-0.053)

Abbreviation: CI, confidence inerval; C%, the time-dependent concordance index; IBS, integrated
Brier score; and CPH, the Cox proportional hazards model.

3.4.Model explanation

Figure 4 and Figure S1 show the ranking of the clinical factors used by the DeepSurv and CPH
models obtained using the SHAP method. Age, dyslipidemia, prior stroke, anthracycline
chemotherapy, hypertension, hemoglobin level, aromatase inhibitor use, and radiotherapy were
ranked highly in both DeepSurv and CPH models.

10
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Figure 4. Shapley values in DeepSurv model. The summary plot displays the impact of individual
features on the model's predictions, demonstrating the relationship between feature values and their
contributions to risk estimation. A negative SHAP value indicates that the feature increases the
likelihood of major adverse cardiovascular event (MACE), whereas a positive SHAP value indicates
a decreased likelihood of MACE. Abbreviations: AF, atrial fibrillation; BMI, body mass index; CKD,
chronic kidney disease; CHF, congestive heart failure; PAOD, peripheral arterial obstructive disease;
and SHAP, Shapley Additive exPlanations.
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4.Discussion

We developed and validated deep leaning-based prediction models for 10-year MACEs risk in 5-
year breast cancer survivors with a good performance, incorporating both conventional and breast
cancer therapy-related cardiovascular risk factors in a large population-based cohort. The clinical
practice guidelines recommend reassessment of cardiovascular toxicity risk 5 years after therapy to
guide long-term follow-up.>® However, the existing risk stratification approach, which includes
evaluating new or pre-existing cardiovascular risk factors and cancer therapy-related cardiovascular
toxicity, is based on limited evidence and lacks the ability to provide individualized risk predictions.
This is the first study to develop prediction models in a large cohort of adult long-term cancer
survivors with extended follow-up to estimate individual cardiovascular risk.

4.1.Conventional cardiovascular risk factors in breast cancer survivors

For long-term cardiovascular surveillance in adult cancer survivors, clinical practice guidelines
have suggested risk stratification criteria based on both conventional and cancer treatment related
cardiovascular risk factors.>® For predicting early cardiotoxicity risk in patients with breast cancer,
recent models based on factors such as age, preexisting CVD, conventional cardiovascular risk
factors, and/or current cancer treatment have shown good ability to predict MACE.?>?3 These
conventional cardiovascular risk factors include medical conditions such as hypertension, diabetes
mellitus, dyslipidemia, and chronic kidney disease, as well as lifestyle factors such as smoking,
alcohol consumption, physical inactivity, and obesity. Our findings regarding these traditional
cardiovascular risk factors are consistent with the existing literature.

Our analysis of Shapley Additive Explanations revealed that the presence of dyslipidemia was
associated with a lower risk of MACE (Figure 4). Dyslipidemia cases were defined as individuals
prescribed antidyslipidemic medications under ICD-10 code for dyslipidemia. Statins, an essential
approach for current lipid-lowering therapies, are well known to improve cardiovascular outcomes.
A recent observational study reported that statin therapy was associated with a reduced risk of
MACE in patients with breast cancer undergoing breast-conserving surgery and adjuvant whole
breast radiotherapy.?* Further research is warranted to explore the potential role of lipid-lowering
therapy in mitigating cardiovascular complications in this population.?

Our results also showed that lower diastolic blood pressure was associated with an increased risk
of MACE (Figure 4). While high diastolic blood pressure is associated with vascular and organ
damage in individuals with preserved vascular compliance, the relationship between diastolic blood
pressure and cardiovascular risk becomes more complex in cases of noncompliant vasculature,
displaying a U-shaped association.?® Multiple studies in patients with heart failure with preserved
ejection fraction have reported that low diastolic blood pressure, particularly when combined with
high systolic blood pressure, is linked to myocardial damage, coronary heart disease, heart failure
hospitalization, stroke, and cardiovascular mortality.?’-282

Household income did not contribute to the model predictions in our study. Social deprivation is a
well-established cardiovascular risk factor in the general population.’® In cancer survivors, current
evidence indicates that individuals exposed to adverse social determinants of health over their

12



lifetime are disproportionately affected by cardiovascular side effects of cancer and its therapies.’!
We included household income—available as a social determinant of health in the NHIS dataset—
as a predictor. Previous studies have suggested that lower household income contributes to health
inequities in cardio-oncology care, likely through associations with resource availability and
accessibility. In South Korea, universal insurance coverage ensures healthcare access for the entire
population, which may mitigate these health inequities.

Additionally, prior myocardial infarction was not found to contribute to model predictions, and
alcohol intake and cigarette smoking were not included as predictors in our models. This discrepancy
may be attributed to the significantly lower prevalence of prior myocardial infarction (0.5%),
smoking (1.4%), and heavy alcohol consumption (1.4%) in our study participants compared to
Western populations.

4.2.Breast cancer therapy-related cardiovascular risk factors

Current cardiovascular toxicity risk stratification schemes for long-term cancer survivors are based
on conventional cardiovascular risk factors and a history of anthracycline treatment and
radiotherapy.>® However, our approach incorporates endocrine therapy and HER2-targeted therapy
into the patient’s cancer treatment history, recognizing their critical role in predicting MACEs in
breast cancer survivors on an individual basis.

It is well established that anthracycline chemotherapy and HER2-targeted therapies trigger cardiac
dysfunction.® However, long-term effects of cardiac dysfunction caused by these treatments beyond
10 years among breast cancer survivors are unknown. In our study, both anthracycline and
trastuzumab treatments were significant risk factors in the DeepSurv model.

Additionally, we found that radiation therapy was associated with an increased risk for MACEs.
Previous studies reported that there was an excess of non—breast cancer deaths after 5 years among
patients receiving radiation therapy, mainly due to CVD and lung cancer.’> Radiation therapy
involving the heart within the treatment field carries a risk of long-term coronary artery disease and
heart failure, which may emerge as early as five years post-exposure and persist for up to 30
years. 3334

Endocrine therapy is widely used in breast cancer treatment, as 65—70% of early and metastatic
breast cancer cases are hormone receptor-positive.’®> Tamoxifen is the preferred endocrine therapy
for premenopausal women, while treatment options for postmenopausal women include tamoxifen,
aromatase inhibitors, or a sequential combination.’® Adjuvant endocrine therapy is commonly
administered for a prolonged period of 5 years or longer, highlighting the importance of
comprehensive evaluation of its overall toxicity.?” A meta-analysis reported that long-term aromatase
inhibitors use is associated with an increased risk for hypercholesterolemia and CVD compared with
tamoxifen use.>' Although tamoxifen positively impacts lipid profiles, it has not demonstrated a
protective effect on cardiovascular outcomes and has been shown to minimally increase the risk of
venous thromboembolism compared to the use of aromatase inhibitors.*® In our study, treatment with
both aromatase inhibitors and tamoxifen were significant risk factors in the DeepSurv model.
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4.3.Deep learning in risk prediction modeling

By using CPH and Deepsurv to develop a risk prediction model, we compared traditional
statistical approaches with a novel deep learning-based method in survival analysis. DeepSurv
extends the CPH model by learning nonlinear relationships among variables, offering the potential
to capture complex interactions between covariates without the need for prior specification.®
However, in our study, the performance of the DeepSurv model was not significantly higher than
that of the conventional CPH model in predicting future cardiovascular outcomes for breast cancer
survivors. These findings suggest that the impact of nonlinear interactions among predictors in our
dataset may be limited. Future research incorporating imaging data, such as electrocardiography and
echocardiographic parameters, might further enhance the DeepSurv model's ability to predict
cardiovascular outcomes by leveraging its strength in capturing complex relationships.

4.4.Limitations

This study has several potential limitations. First, due to our reliance on administrative data, we
were unable to account for certain risk factors like electrocardiography, echocardiographic
parameters, blood biomarkers including natriuretic peptides, family history of CVD and genetic
variants. Incorporating these parameters could potentially enhance the model's performance. Second,
we could not obtain information regarding the dose of anthracycline chemotherapy and radiotherapy.
Finally, our prediction model needs external validation before recommending its use as a clinical
decision support tool to individualize cardiovascular surveillance and preventive strategies.

S5.CONCLUSION

We developed and validated a deep learning-based risk prediction model to estimate the 10-year
MACEs risk in 5-year breast cancer survivors using nationwide population-based cohort. The
model based on both patient-related and cancer treatment-related risk factors, demonstrated a good
performance. However, in our study, the performance of the DeepSurv model was not significantly
higher than conventional CPH model. Further research is needed to refine this prediction model,
aiming to enhance its performance and customization for tailoring long-term cancer survivorship
programs according to individual cardiovascular risk.
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APPENDICES

Figure S1. Shapley values in the Cox proportional hazards model.

Table S1. Performance comparison of deep learning model for cardiovascular disease risk
prediction among breast cancer survivors at 10 years (derivation cohort).
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Figure S1. Shapley values in the Cox proportional hazards model. The summary plot illustrates the
impact of each feature on the model's predictions, highlighting the relationship between feature
values and their contributions to risk estimation. A positive SHAP value indicates that the feature
increases the likelihood of MACE, while a negative SHAP value indicates a decreased likelihood.
Abbreviations: AF, atrial fibrillation; BMI, body mass index; CKD, chronic kidney disease; CHF,
congestive heart failure; PAOD, peripheral arterial obstructive disease; and SHAP, Shapley Additive
exPlanations.
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Table S1. Performance comparison of deep learning model for major adverse cardiovascular event
risk prediction among breast cancer survivors at 10 years (inclusion of all 26 factors).

Model Ct (95% CI) IBS (95% CI)
DeepSurv 0.736 (0.690-0.771) 0.049 (0.049-0.065)
CPH 0.730 (0.679-0.789) 0.045 (0.038-0.053)

Abbreviation: CI, confidence inerval; C', the time-dependent concordance index; IBS, integrated
Brier score; CPH, the Cox proportional hazards model.
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