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ABSTRACT

Identification of key biomarkers associated with immune modulation in
triple-negative breast cancer

Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive subtype of breast
cancer, with the features of tumor microenvironment and the underlying molecular mechanisms of
immune-regulation remaining largely elusive. This study aimed to explore the immune landscape of
TNBC by assessing tumor-infiltrating lymphocytes (TILs) level, programmed cell death ligand 1
(PD-L1) expression, and the degree of TIL infiltration within the tumor. Utilizing the GeoMX
Digital Spatial Profiler platform, we also performed spatially resolved transcriptomic profiling of
tumor, immune, and stromal cells, focusing on the distinctions between immune-activated and
immune-suppressed phenotypes. Immune-activated phenotypes, characterized by high TILs, PD-L1
positivity, and close proximity between tumor cells and TILs, were found to correlate with the basal-
like immune-activated subtype based on transcriptomic alterations derived solely from tumor cells.
These phenotypes were also associated with the upregulation of known immune-related pathways.
In contrast, immune-suppressed phenotypes were linked to pathways involved in tumor progression,
such as epithelial-mesenchymal transition, TGF-beta signaling, and angiogenesis. Notably, our
transcriptomic analysis suggests that tumor cells play a more dominant role than immune cells in
shaping the immune phenotype, as indicated by the greater number of differentially expressed genes
in tumor cells rather than immune cells. Stratifying patients based on TILs and PD-L]1 status revealed
that the TIL+PD-L1+ subtype exhibited the most favorable prognosis, a finding further supported
by TIL+PD-L1+ signature with excellent survival outcomes in public gene datasets. Conversely, the
TIL-PD-L1- subtype displayed characteristics of an "cold" tumor, potentially driven by desmoplastic
changes within the tumor microenvironment. Interestingly, the TIL+PD-L1- subtype, despite a high
TILs level, was associated with poorer prognosis, likely due to a higher proportion of myeloid cells,
decreased activity of immune cells, and increased activation of the adipogenesis pathway across cell
types. This finding underscores that in the TIL+PD-L1- subtype, immune cell activity remains low

even when TILs infiltrate the intra-tumoral region, highlighting PD-L1 as a critical marker reflecting



the immune system status in patients with high TILs. In summary, this study emphasizes the clinical
significance of integrating TILs and PD-L1 expression as prognostic biomarkers in TNBC and
underscores the central role of tumor cells in dictating immune phenotypes. Furthermore, our
findings suggest potential underlying mechanisms and target genes regarding the immune system
regulation in TNBC. Based on these insights, future research is warranted to develop targeted
therapies, especially for immune-suppressed subtypes, aiming to improve clinical outcomes for

patients with TNBC.

Key words : triple-negative breast cancer, tumor-infiltrating lymphocytes, programmed cell death
ligand 1, tumor-immune microenvironment, digital spatial transcriptomics.



[. INTRODUCTION

Triple-negative breast cancer (TNBC), defined by the absence of hormone receptors (estrogen
receptor [ER]-negative and progesterone receptor [PR]-negative) and human epidermal growth
factor receptor 2 (HER2), accounts for approximately 10-20% of all breast cancers'2. TNBC is the
most aggressive subtype among breast cancer subtypes, with a poor prognosis due to the lack of
well-defined therapeutic targets’. Recently, TNBC has been identified as a more immunogenic
tumor compared to other breast cancer subtypes. Moreover, immune-related biomarkers, most
notably tumor-infiltrating lymphocytes (TILs), have been shown to be strongly associated with
treatment response and prognosis in TNBC**®,

Recent advancements in immunobiology have facilitated the incorporation of immunotherapies,
such as Programmed Cell Death Protein-1 (PD-1) and Programmed Cell Death Ligand-1 (PD-L1)
inhibitors, into the treatment of TNBC’%. Notably, the addition of pembrolizumab, a PD-1 inhibitor,
to palliative chemotherapy as first-line treatment for metastatic TNBC significantly improved
clinical outcomes, particularly in patients expressing PD-L1%!°, Furthermore, the combination of
pembrolizumab with neoadjuvant chemotherapy markedly increased the pathologic complete
response (pCR) as well as survival rates in patients with Stage Il or IIl TNBC!!"!3, Based on these
findings, pembrolizumab has become an FDA-approved treatment regimen for both early-stage and
metastatic TNBC.

Nevertheless, the molecular biology behind the variability in the immune-related tumor
microenvironment within TNBC remain unclear. While chemotherapy combined with
pembrolizumab has improved clinical outcomes for patients with TNBC, considering the associated
adverse events and financial toxicity'4, there is a need for biomarkers to guide personalized
treatment'®, Although numerous analyses with RNA-sequencing data have been conducted to
address this, most previous studies have employed bulk-sequencing without distinguishing between
different cell types within the tumor microenvironment, which is a notable limitation!!7,

In this study, we analyzed the clinical characteristics associated with immune system status in
triple-negative breast cancer (TNBC), focusing on TILs level, PD-L1 expression, and the tumor-
immune microenvironment (TIME) subtypes. Furthermore, we utilized the Nanostring GeoMX
Digital Spatial Profiler (DSP) to enable spatially resolved characterization of tumor, immune, and
stromal cells, aiming to decipher the features of the tumor microenvironment based on immune
system status. Through this approach, we tried to identify potential underlying mechanisms and key
biomarkers that regulate the immune system in TNBC.

II. MATERIALS AND METHODS
2.1. Study population

Between January 1999 and December 2014, we retrospectively identified 603 women diagnosed
with triple-negative breast cancer who underwent upfront surgery followed by adjuvant therapy at
Gangnam Severance Hospital, Yonsei University. From this cohort, tissue microarray (TMA) blocks
were constructed from 198 patients with appropriate surgical specimens for further analysis, with
TILs level being assessable in 159 cores. Among these, PD-L1 status evaluated using SP142 and
22C3 antibodies, and tumor-immune microenvironment (TIME) subtypes were successfully
assessed in 104 patients. Additionally, GeoMX digital spatial transcriptomics was conducted on 96
samples (Figure. 1).



We collected comprehensive clinicopathological data, including age at diagnosis, tumor grade,
estrogen receptor (ER) status, progesterone receptor (PR) status, human epidermal growth factor
receptor 2 (HER2) status, Ki-67 index, TILs level, PD-L1 status, TIME subtypes, pathological T
and N stages, adjuvant treatments such as chemotherapy and radiotherapy, and survival outcomes.
Pathological T and N stages were determined according to the anatomical staging system outlined
in the 8th edition of the American Joint Committee on Cancer (AJCC) guidelines. All pathological
data were derived from surgical specimens.

The study protocol was reviewed and approved by the Institutional Review Board of Gangnam
Severance Hospital, Yonsei University, Seoul, Korea. This study was conducted in accordance with
the principles of the Declaration of Helsinki. Given the retrospective nature of the study, the
requirement for written informed consent was waived by the Institutional Review Board.

2.2. TMA construction, TILs level, PD-L1, and TIME assessment

A representative tumor area was selected from hematoxylin and eosin (H&E)-stained slides, and
the corresponding spot was marked on the surface of the paraffin-embedded block. The selected area
was then extracted using a hollow needle to produce a 3-mm tissue core, which was subsequently
embedded into a 10x5 recipient block. Each tissue core was assigned a unique TMA location number,
which was linked to a comprehensive clinicopathological information.

Stromal TILs were evaluated in all cores containing invasive tumor cells, following the
guidelines proposed by the International TIL Working Group'®. Mononuclear cells, including
lymphocytes and plasma cells, were quantified, excluding polymorphonuclear leukocytes, and the
average TILs level was reported as a percentage'®. For statistical purposes, a 30% cutoff value was
used to categorize patients into low TIL (<30%) and high TIL (>30%) groups2%2!.

Tissue microarray (TMA) sections, 3 um in thickness, were obtained from formalin-fixed,
paraffin-embedded blocks as previously described??. Following deparaffinization with xylene and
rehydration in graded alcohol solutions, immunohistochemistry (IHC) was conducted using the
Ventana Discovery XT Automated Slide Stainer (Ventana Medical System, Tucson, AZ, USA).
Antigen retrieval was performed using Cell Conditioning 1 buffer (citrate buffer, pH 6.0; Ventana
Medical Systems). Tissue sections were then incubated with primary antibodies specific to PD-L1
(prediluted, clone SP142, Ventana Medical Systems; 1:50, clone 22C3, DAKO). Appropriate
positive and negative controls were included in each assay.

We classified each patient into four tumor immune microenvironment (TIME) subtypes based
on the density and location of TILs in the tumor margin and tumor core (including both stromal and
epithelial regions) on whole slide images®*: i) Immune-Desert (ID): characterized by low TILs
abundance in both the tumor margin and core; ii) Margin-Restricted (MR): TILs are predominantly
confined to the tumor margin, with no presence in the tumor core; iii) Stroma-Restricted (SR): TILs
are present in both the tumor margin and core but are restricted to the stromal region within the
tumor core; iv) Fully-Inflamed (FI): TILs are abundant in both the tumor margin and core, with
infiltration into both the stromal and intratumoral regions of the tumor core.
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Figure 1. Study population.

2.3. GeoMX Digital Spatial Profiling Protocol

The protocol for the GeoMX DSP is outlined in Figure. 2A. This platform was employed to
quantify antibody binding within user-defined regions of interest (ROIs) on 5-micron sections from
a previously constructed tissue microarray TMA of a TNBC cohort. Following the manufacturer’s
protocol, four TMA slides, each consisting of 3 x 3 mm formalin-fixed, paraffin-embedded TNBC
tumor cores derived from representative tumor blocks, were hybridized with the NanoString
Technologies Whole Transcriptome Atlas barcoded probe set, targeting approximately 18,000 genes.
Subsequently, the slides were stained with an antibody cocktail containing three fluorophore-labeled
"morphological" antibodies and the nuclear dye SYTO-13 to guide ROI selection and masking. The
antibodies used included anti-pan-cytokeratin (panCK, AlexaFluor 532) and anti-CD45 (AlexaFluor
594), alongside the nuclear stain SYTO-13, all of which were sourced from NanoString and applied
to the slides at a 1:40 dilution. Each TMA slide was then scanned using the GeoMX digital analyzer,



resulting in a composite three-color/channel digital image based on the two fluorophore-tagged
antibodies (panCK and CD45) and the SYTO-13 nuclear dye (Figure 2A).

All immunofluorescent images from the representative TMA cores were reviewed by an
experienced breast pathologist (Dr. Cha). Per tissue core, one to three 600-micron circular ROIs
were selected to capture a region enriched in viable tumor with adjacent stroma. ROI segmentation
involved assignment of “masks” to encompass the “tumor cells” segment composed of the panCK-
positive cells, the ‘immune cells” segment composed of the CD45-positive cells, and the “stromal
cells” segment composed of panCK-ngeative/CD45-negative/SYTO13-positive cells. Each ROI was
inspected visually to ascertain that the computer-generated masks precisely encompassed the
appropriate segments (Figure 2B). ROI selection/segmentation was blinded to TILs level, PD-L1
SP142 or 22C3 immunohistochemical assay status, and TIME subtypes; however, for assignment of
immune-related status for this study, TILs level, PD-L1 immunohistochemical assay status, and
TIME subtypes were visually confirmed by the same pathologist after the GeoMX DSP experiment
was complete.

A total of 374 ROI segments were designated, comprising 136 “tumor cell” segments, 109
“immune cell” segments, and 129 “stromal cell” segments, including a total of 239,385 cells
(107,766 tumor cells, 61,632 immune cells, and 69,987 stromal cells). The median number of cells
per ROI segment was 490 (range: 66—2,348), and RNA sequencing was subsequently performed for
each ROI segment (Figure 2C).

2.4. Transcriptomics analysis

Data processing was performed using the official piplelines provided by NanoString
Technologies, which are available on the Bioconductor wevsite. We utilized the
NanoStringNCTools, GeomxTools, and GeoMXWorkflows pachages in R to conduct data loading,
quality control (QC) and pre-processing, normalization, unsupervised analysis, differential
expression analysis, and visualization, Following this, we confrimed that RNA expression
differences were more distinctly divided by cell segments rahter than by TILs, recurrence status, or
TMA slides (Figure 2D).

Siginificant differentially expressed genes (DEGs) for each variable were defined as those with
a flod change greater than 0.5 and a P-value below 0.05. In addition, gene setes with an adjusted P-
value of 0.05 or lower were visualized. For pathway analysis, we used Gene Set Enrichment
Analysis (GSEA) with the MsigDB Hallmark gene set. A gene signature for the TIL-PD-L1 based
subtype was constructed using the 163 most significant DEGs in tumor segments. To estimate
inferred cell fractions in our immune segments, we used the CIBERSORTx web tool. The signature
matrix was generated using public single-cell RNA sequencing data, and based on this matrix, we
imputed immune cell fractions within the immune segments.
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Figure 2. GeoMX digital spatial transcriptomes. (A) Workflow of GeoMX digital spatial profiler.
(B) Representative image of tissue microarray stained with morphological antibody and region-of-
interest (ROI) with cell segmentation. (C) Number of ROI segments and cells across the cell types.

(D) Gene expression between the cell segments.

2.5. Statistical analysis

We compared clinicopathologic characteristics and survival outcomes between the groups
divided by immune phenotype. According to the Standardized Definitions for Efficacy End Points
criteria®*, recurrence-free interval (RFI) was defined as the time from diagnosis to the first event of
invasive local, regional, distant recurrence and death from breast cancer. Overall survival (OS) was
defined as the time from diagnosis to the first death event for any reason.

Categorical variables were compared using the chi-squared test or Fisher’s exact test. The
Kaplan-Meier method was used to estimate the survival rate, and the results between the groups
were compared using the log-rank test. The hazard ratio (HR) with its associated 95% confidence
interval (CI) was estimated using the Cox regression model adjusted for key baseline prognostic
factors (age: < 50 vs. > 50, tumor grade: 1 or 2 vs 3, Ki-67 index: < 20% vs. > 20%, pT stage: 1 vs.
> 2, pN status: negative vs. positive). All tests were two-sided, and P-values less than 0.05 were
considered statistically significant. All statistical analyses were performed using SPSS version 27
software (SPSS, Armonk, NY, USA).

III. RESULTS

3.1. Clinical and transcriptomic features by TILs level

TILs level was successfully evaluated in 159 patients with early TNBC who received upfront
surgery. The baseline characteristics of the patients are described in Table 1. Overall, age < 50 years
was observed in 81 (50.9%) patients, and 114 (75.5 %) patients were tumor grade 3. The majority
of patients had a high Ki-67 index (84.9%), pathological T1 or T2 stage (95.6%), and were node-
negative (71.7%]). In addition, most patients (92.5%) received adjuvant chemotherapy after curative
surgery. Of 159 patients, 72 (45.2%) belonged to the high TILs group, and 87 (54.8%) belonged to
the low TILs group. The two groups had no difference in baseline characteristics (Table 1).

During a median follow-up of 121 months, the patients with high TILs exhibited a better
prognosis than those with low TILs (Figure 3A-B). The 10-year RFI was 95.2% in the high TILs
group, compared to 74.6% in the low TILs group (log-rank P = 0.011). Similarly, the 10-year and
OS was 95.2% in the high TILs group versus 74.6% in the low TILs group (log-rank P = 0.005).
Furthermore, high TILs level was an independent predictor of favorable clinical outcomes in terms
of RFI (HR, 0.38; 95% CI, 0.15 to 0.98, P = 0.045) and OS (HR, 0.36; 95% CI, 0.15 to 0.91, P =
0.031) in multivariable analysis.

We identified DEGs by TILs level across various cell types, including tumor, stromal, and
immune cells. Intriguingly, 92 genes were nominally differentially expressed in tumor cells between
the high and low TILs groups, while 30 genes and 10 genes were differentially expressed in stromal
and immune cells, respectively (Figure 3C). Pathway analyses of these DEGs showed that immune



system activation-related pathways, such as interferon (IFN)-alpha and -gamma responses, were
upregulated in the high TILs group. In contrast, pathways associated with epithelial-mesenchymal
transition (EMT) and TGF-beta signaling were downregulated across all cell types (Figure 3D). We
also estimated the proportion of Burstein subtypes based on transcriptomic data derived exclusively
from tumor cells?>. Compared with the low TILs group, the high TILs group had a higher prevalence
of basal-like immune-activated (BLIA) subtype (Figure 3E). Meanwhile, when deconvolution
analysis was performed using CIBERSORTxX on transcriptomic data derived exclusively from
immune cells, the two groups had no difference in the proportions of T cells and B cells (Figure 3F).

Table 1. Baseline characteristics according to TILs level.

Variables Low TIL (N =87) High TIL (N=72) Total (N=159) P-value
Age 0.674
<50 43 (49.4) 38 (52.8) 81 (50.9)
>50 44 (50.6) 34 (47.2) 78 (49.1)
Tumor grade” 0.527
lor2 22 (26.5) 15 (22.1) 37 (24.5)
3 61 (73.5) 77.9) 114 (75.5)
Ki-67 0.085
<20% 17 (19.5) 70.7) 24 (15.1)
>20% 70 (80.5) 65 (90.3) 135 (84.9)
pT stage 0.515
1 39 (44.8) 36 (50.0) 75 (47.2)
>2 48 (55.2) 36 (50.0) 84 (52.8)
pN status 0.626
Negative 61 (70.1) 53 (73.6) 114 (71.7)
Positive 26 (29.9) 19 (26.4) 45 (28.3)
Chemotherapy 0.387
Yes 79 (90.8) 68 (94.4) 147 (92.5)
No 8(9.2) 4 (5.6) 12 (7.5)
Radiotherapy 0.905
Yes 56 (64.4) 47 (65.3) 103 (64.8)
No 31(35.6) 25 (34.7) 56 (35.2)

*Missing values.
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Figure 3. Clinical and transcriptomic features by TILs level. (A) Recurrence-free interval and (B)
overall-survival according to TILs level. (C) Differentially expressed genes according to TILs level.
(D) Pathway analyses according to TILs level. (E) Proportion of Burstein subtype according to TILs
level based on transcriptomic data derived from tumor cells. (F) Proportion of immune cells by
deconvolutional analysis based on transcriptomic data derived from immune cells.

3.2. Incorporation of PD-L1 to TILs level

PD-L1 is a representative marker associated with T-cell exhaustion and has recently been
reported as a prognostic factor in TNBC?%?’, Thus, we analyzed the clinical significance of PD-L1
in 104 patients with available PD-L1 expression. PD-L1 positivity was defined as the following
three criteria: SP142 > 1%, 22C3 CPS > 1, and 22C3 CPS > 10, with positivity rates of 24%, 69%,
and 37%, respectively (Figure 4A). When evaluating prognosis based on PD-L1, regardless of the
definition used, the PD-L1+ group consistently demonstrated better outcomes than the PD-L1- group
(Figure 4B).

The rate of PD-L1 positivity assessed by the SP142 assay was relatively low compared to that
assessed by the 22C3 assay, indicating that PD-L1 positivity is defined more broadly by 22C3
(Figure 4C). We also evaluated the relationship between TILs and PD-L1 expression, noting that
this relationship varied depending on the antibody used and the cut-off value applied. Approximately
half of the patients with high TILs were classified as PD-L1+ when assessed using SP142. In contrast,
when defining PD-L1 positivity as 22C3 CPS > 1, most patients with high TILs were PD-L1+.
Furthermore, when using 22C3 CPS > 10 as the cutoff for PD-L1 positivity, about 70% of patients
with high TILs were classified as PD-L1+ (Figure 4D). Given that TILs and PD-L1 statuses did not
always coincide, we analyzed whether combining TIL and PD-L1 could provide a better prognostic
assessment.

When we classified the patient cohort into four groups based TILs level and PD-L1 status
(TIL+PD-L1+, TIL+PD-L1-, TIL-PD-L1+, and TIL-PD-L1-), PD-L1 positivity was defined as
22C3 CPS > 10 (Figure 5A). This is because of the following reasons: i) 22C3 is used in clinical
practice for applying the pembrolizumab in TNBC, and ii) defining PD-L1 positivity as 22C3 CPS
> 1 would result in a tiny number of TIL+PD-L1- subtypes, which would affect the distribution of
the four subtypes. Among the 104 patients, 26% were TIL+PD-L1+, 11% were TIL+PD-L1-, 11%
were TIL-PD-L1+, and 52% were TIL-PD-L1- (Figure SA). Baseline characteristics were similar
across four subtypes (Table 2). Meanwhile, TILs level was highest in the TIL+PD-L1+ group,
followed by TIL+PD-L1-, TIL-PD-L1+, and TIL-PD-L1- groups (Figure 5B). Furthermore, the
TIL+PD-L1+ group had the most favorable prognosis compared to other subtypes (Figure 5C-D).

Table 2. Baseline characteristics according to TIL-PD-L1 based subtypes.

Variables TIL+PD-L1+  TIL+PD-L1-  TIL-PD-L1+  TIL-PD-L1-  P-value

Age 0.285
<50 14 (51.9) 6 (54.5) 8 (66.7) 21 (38.9)
> 50 13 (48.1) 5 (45.5) 4(33.3) 33 (61.1)

Tumor grade” 0.132f
1 or2 4(15.4) 3(27.3) 0 15 (27.8)



3 22 (84.6) 8 (72.7) 12 (100) 39 (72.2)

Ki-67 0.261F
<20% 13.7) 1(9.1) 1(83) 10 (18.6)
> 20% 26 (96.3) 10 (90.9) 11 (91.7) 44 (81.5)
pT stage 0.780
1 14(51.9) 6 (54.5) 7 (58.3) 24 (44.4)
> 2 13 (48.1) 5 (45.5) 5 (41.7) 30 (55.6)
pN status 0.918f
Negative 20 (74.1) 7 (63.6) 9 (75.0) 40 (74.1)
Positive 7(25.9) 4(36.4) 3 (25.0) 14 (25.9)
Chemotherapy 0.953f
Yes 2(7.4) 1(9.1) 1(8.3) 6 (11.1)
No 25 (92.6) 10 (90.0) 11 91.7) 48 (88.9)
Radiotherapy 0.4717
Yes 9(33.3) 2 (18.2) 6 (50.0) 18 (33.3)
No 18 (66.7) 9 (81.8) 6 (50.0) 36 (66.7)

“Missing values.
fP-value was obtained from the Fisher’s exact test.
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Figure 5. Clinical features by TIL-PD-L1 based subtype. (A) Proportion of TIL-PD-L1 based
subtypes. (B) TILs level according to the TIL-PD-L1 based subtypes. (C) Recurrence-free interval
(RFI) according to the TIL-PD-L1 based subtypes. (D) Comparison of RFI between TIL+PD-L1+

subtype and others.

3.3. Differences in transcriptomes by TIL-PD-L1 based subtypes

Since the TIL+PD-L1+ subtype demonstrated the most favorable prognosis, we analyzed its
distinguishing features compared to other groups. As anticipated, this subtype showed high
expression of immune activation-related genes and pathways (e.g., IFN-alpha response, IFN-gamma
response, allograft rejection), while immune suppression-related pathways (e.g., EMT signaling,
TGF-beta signaling) were expressed at lower levels across the three cell types (Figure 6A-B).
Interestingly, similar to the DEG results based on TILs, the number of significant DEGs was low in
immune cells (11 genes) compared to tumor cells (122 genes) and stromal cells (90 genes) (Figure
6A). Moreover, the TIL+PD-L1+ subtype had the highest frequency of the BLIA subtype (Figure
6C). We developed a signatures of TIL-PD-L1 based subtypes using the top 163 most differentially
expressed genes in tumor cells, and TIL+PD-L1+ signature was associated with a better prognosis

in the METABRIC-TNBC dataset (Figure 6D-E).
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Figure 6. Transcriptomic features of TIL+PD-L1+ subtype. (A) Differentially expressed genes
between the TIL+PD-L1+ and other groups. (B) Pathway analyses between the TIL+PD-L1+ and
other groups. (C) Proportion of Burstein subtype by TIL-PD-L1 based subtypes derived from the
transcriptomic data in tumor cells. (D) Survival outcomes according to the TIL-PD-L1 based
subtypes. (D) Comparison of prognosis between TIL+PD-L1+ subtype and others.

By contrast, the TIL-PD-L- subtype was closest to an “immune-cold” tumor in comparison with
other subtypes. There were also fewer significant DEGs in immune cells (6 genes) compared to
tumor cells (101 genes) and stromal cells (61 genes) (Figure 7A). Pathway analysis revealed a
generally higher expression of immune suppression-related pathways in the TIL-PD-L1- subtype,
with EMT signaling particularly elevated across all cell types (Figure 7B). Notably, genes with
significantly higher expression in the TIL-PD-L1- subtype were predominantly related to stromal
fibrosis, particularly in tumor and stromal cells (Figure 7C).

Given the stark differences in prognosis based on PD-L1 expression even among TIL+ cases,
we analyzed the differences between TIL+PD-L1+ and TIL+PD-L1- subtypes. DEG results showed
that the number of significantly differentially expressed genes was highest in immune cells (96 genes)
compared to tumor (65 genes) or stromal cells (79 genes), which is likely due to the presence of
immune cells at a certain level in the high TIL group regardless of PD-L1 status (Figure 7D). DEG
and pathway analyses generally indicated an immune-activation phenotype in the TIL+PD-L1+
subtype. However, the adipogenesis pathway was uniquely found to have higher expression in the
TIL+PD-L1- subtype (Figure 7E). Deconvolution analysis of transcriptomic data derived from
immune cells using CIBERSORTXx revealed that, compared to TIL+PD-L1+, TIL+PD-L1- had a
lower proportion of T-cells and a higher proportion of myeloid cells. Surprisingly, the TIL+PD-L1-
subtype also exhibited a higher proportion of B-cells (Figure 7F).
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Figure 7. Transcriptomic features of TIL-PD-L1- and TIL+PD-L1- subtypes. (A) Differentially
expressed genes between the TIL-PD-L1- and other groups. (B) Pathway analyses between the TIL-
PD-L1- and other groups. (C) Expression of genes related to desmoplastic change across the TIL-
PD-L1 based subtypes. (D) Differentially expressed genes between the TIL+PD-L1- and TIL+PD-
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Proportion of immune cells by deconvolutional analysis based on transcriptomic data derived from
immune cells across the TIL-PD-L1 based subtypes.

3.4. Characteristics of TIME subtype

Next, we assessed the clinical implications of the TIME subtypes. Of 104 patients, 27% were
FI, 20% were SR, 42% were MR, and 11% were ID subtypes (Figure 8 A). There were no significant
differences in baseline characteristics among the TIME subtypes except tumor grade (Table 3): the
proportion of high tumor grade was lowest in the ID subtype (P =0.011). In contrast, TILs level was
highest in the FI, followed by SR, MR, and ID subtypes (Figure 8B-C). Similarly, regardless of the
definition method used, the proportion of PD-L1+ was highest in the FI subtype and decreased in
the order of SR, MR, and ID (Figure 8D).
When examining the relationship between TIME subtypes and TIL-PD-L1-based subtypes, the
TIL+PD-L1+ proportion was highest in the FI subtype, while the TIL-PD-L1- proportion increased
progressively from SR to MR to ID (Figure 8E).

Table 3. Baseline characteristics according to TIME subtypes.

Variables . Fully- Stromal— Marginal- Immune- P-
inflamed restricted restricted dessert value
Age 0.067
<50 14 (51.9) 15 (68.2) 17 (38.6) 3(27.3)
> 50 13 (48.1) 7 (31.8) 27 (61.4) 9(72.7)
Tumor grade” 0.017f
lor2 3(11.5) 2(9.1) 11 (25.0) 6 (54.5)
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3 23 (88.5) 20 (90.9) 33 (75.0) 5(45.5)

Ki-67 0.067°
<20% 0 4 (18.2) 7(15.9) 2 (18.2)
> 20% 27 (100) 18 (81.8) 37 (84.1) 9 (81.8)
pT stage 0.993
1 13 (48.1) 11 (50.0) 22 (50.0) 5(45.5)
> 2 14 (51.9) 11 (50.0) 22 (50.0) 6 (54.5)
pN status 0.221
Negative 20 (74.1) 13 (59.1) 36 (81.8) 7 (63.6)
Positive 7(25.9) 9 (40.9) 8(18.2) 4(36.4)
Chemotherapy 0.574f
Yes 311D 1(4.5) 4.1 2 (18.2)
No 24 (88.9) 21 (95.5) 40 (90.9) 9 (81.8)
Radiotherapy 0.683
Yes 10 (37.0) 5(22.7) 16 (36.4) 4(36.4)
No 17 (63.0) 17 (77.3) 28 (63.6) 7 (63.6)

“Missing values.
fP-value was obtained from the Fisher’s exact test.
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Figure 8. Clinical features by TIME subtype. (A) Proportion of TIME subtype. (B) TILs level
according to the TIME subtypes. (C) Proportion of case with TIL+ according to the TIME subtype.
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(D) Proportion of case with PD-L1+ according to the TIME subtype. (E) Proportion of TIL-PD-L1
based subtype within the TIME subtype.

3.5. Differences in transcriptomes by TIME subtypes

Considering the TIME subtypes are classified based on the extent of immune cell infiltration,
we anticipated that analyzing the mechanisms related to immune cell infiltration would be insightful.
Typically, TIME subtypes such as FI and SR are categorized as high TILs, while MR and ID are
categorized as low TILs (Figure 8C). Given that the characteristics of MR and ID would be similar
to those of the low TIL group, we focused on the comparison between FI and SR to compare FI and
SR to understand the mechanisms of immune cell infiltration into the intra-tumoral region.

When comparing FI and SR, a notable observation was that, despite being high TIL groups, the
number of DEGs in immune cells (6 genes) was lower compared to tumor (97 genes) or stromal
cells (39 genes) (Figure 9A). In DEG analyses, antigen-presenting related genes (e.g. ICAM1, TAP1,
CD4, and HLA-DRA, etc.) and neoantigen-related oncogenic genes (e.g. S10049, S10048, LYZ,
CD74 and STATI, etc.) were expressed at higher levels in tumor cells in the FI subtype than SR?%-3°,
Overall, immune activation-related pathways were more highly expressed in FI, and uniquely, apical
surface and apical function pathways exhibited higher expression in tumor cells of the FI subtype
compared to SR (Figure 9B). In addition, the BLIA subtype was the most prevalent in the FI subtype,
closely resembling an ‘immune-hot” tumor (Figure 9C).

3.6. Comparison between TIL+PD-L1+ and TIL+PD-L1- in FI subtype

Finally, we evaluated the differences between TIL+PD-L1+ and TIL+PD-L1- within the FI
subtype, where immune cells have infiltrated the intra-tumoral region. In the FI subtype, 70.4% of
patients were classified as TIL+PD-L1+ and 22.2% as TIL+PD-L1- (Figure 8E). A striking
difference in prognosis was observed between these groups: no recurrences were noted in the
TIL+PD-L1+ group, while the 10-year RFI for the TIL+PD-L1- subtype was 60% (Figure 9D).

We compared the expression of immune cell activation-related genes within immune cells across
tumor, immune, and stromal cell types (Figure 9E). Immune cell activation-related genes exhibited
higher expression levels in the TIL+PD-L1+ subtype compared to the TIL+PD-L1- subtype. Notably,
genes related to resident CD4 T cell activation (SELL, TCF7), CD4 T cell activation (IL4R), and
CD8 T cell cytotoxicity (GZMK, PRF1) were significantly expressed in the TIL+PD-L1+ subtype
compared to the TIL+PD-L1- subtype (Figure 9E).
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Figure 9. Transcriptomic features by TIME subtype. (A) Differentially expressed genes between the
FI and SR subtypes. (B) Pathway analyses between the FI and SR subtypes. Clinical features by
tumor-immune microenvironment (TIME) subtype. (C) Proportion of Burstein subtype TIME
subtypes derived from the transcriptomic data in tumor cells. (D) Comparison of recurrence-free-
interval between TIL+PD-L1+ and TIL+PD-L1- subtypes within the FI subtype. (E) Expression of
immune system activation-related genes in the immune cells between TIL+PD-L1+ and TIL+PD-
L1- subtypes within the FI subtype.

IV. DISCUSSION

Herein, we analyzed the landscape of TNBC not only in terms of TILs level but also based on
PD-L1 expression and TIME subtypes. This approach was taken because we believe that, in addition
to the quantity of immune cells within or near the tumor tissue (as represented by TILs level), the
activity of these immune cells (as represented by PD-L1 expression) and the degree of immune cell
infiltration (the distance between immune cells and tumor cells, as represented by TIME subtype)
are also crucial. We identified that TILs level, as well as PD-L1 expression, serves as an independent
prognostic factor. Interestingly, when TIL levels and PD-L1 expression were combined, a more
distinct stratification was observed, highlighting the potential clinical application of TILs and PD-
L1 as combined biomarkers in triple-negative breast cancer. Furthermore, consistent with the
findings of previous studies, we also found that the majority of high TILs are classified into the FI
and SR among the TIME subtypes, while most low TILs fall into the MR and ID subtypes?>.

Immune-activated phenotypes (characterized by high TIL, TIL+PD-L1+, or FI groups) exhibited
upregulation of immune system activation pathways, including IFN-alpha and -gamma responses,
allograft rejection, and inflammatory responses. Conversely, immune-suppressed phenotypes
showed activation of pathways commonly associated with tumor progression, such as EMT,
angiogenesis, TGF-beta signaling, and estrogen response. The latter is notably linked to the luminal
androgen receptor (LAR) subtype of TNBC, which usually displays an immune-suppressed
phenotype!®25,

The strength of this study lies in its ability to compare differences between immune-activated
and immune-suppressed phenotypes across tumor, immune, and stromal cell types using spatial
transcriptomic profiler. Interestingly, our transcriptomic analysis based solely on tumor cells
revealed a higher proportion of the BLIA subtype in immune-activated groups?. Furthermore, the
number of DEGs between immune phenotypes was significantly greater in tumor cells than in
immune cells, suggesting that tumor factors may play a more pivotal role in determining the immune
phenotype than host factors’!. However, this observation could partly be due to the relatively lower
abundance of immune cells in the immune-suppressive groups (such as the low TILs group and the
MR & ID TIME subtypes). Additionally, since RNA-sequencing was performed on pooled CD45+
immune cells, it might have obscured specific characteristics of individual immune cell types.
Single-cell RNA-sequencing based analysis, which captures the diversity of immune cell
populations, may provide deeper insights into the phenotypic variations within immune cells
regarding immune system regulation in TNBC*233,

Among the TIL-PD-L1-based subtypes, TIL+PD-L1+ demonstrated the most favorable
prognosis, characterizing it as a "hot" tumor. Furthermore, the TIL+PD-L1+ signature, developed
based on DEGs in tumor cells, was validated as a prognostic tool using public gene datasets. Recent
research suggests that having a favorable immune phenotype in TNBC may allow for treatment de-
escalation. The NeoPACT trial, which omitted the anthracycline chemotherapy from the
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KEYNOTE-522 regimen, showed that an activated immune phenotype—characterized by high TILs,
PD-L1 positivity (CPS > 10 via 22C3 assay), a DNA damage immune response signature, and a
TIME signature—was associated with a high pCR rate exceeding 70%>**. Additionally, for stage 1
TNBC with high TILs, the omission of adjuvant chemotherapy has been suggested due to low
recurrence rates, indicating the potential for chemotherapy de-escalation3*3¢. Thus, it is plausible
that treatment de-escalation could be a reliable option for the TIL+PD-L1+ subtype in the future.

In contrast, the TIL-PD-L1- subtype exhibited characteristics of an “immune-cold” tumor: it had
the lowest TILs level and predominantly fell into the MR or ID subtypes. In the TIL-PD-L1- subtype,
the expression of genes related to tumor fibrosis was elevated, especially in tumor and stromal cells.
Notably, the expression of the SFRP2 gene was particularly high in tumor cells of the TIL-PD-L1-
subtype. SFRP2 has been reported to promote angiogenesis through Wnt-signaling activation,
leading to tumor progression and poor prognosis in breast cancer’’** Additionally, in other cancer
types, SFRP2 has been associated with fibroblast activation and stromal fibrosis, facilitating EMT
and immune evasion*'**. These findings support the notion that the TIL-PD-L1- subtype induces
desmoplastic changes, thereby suppressing immune cell infiltration*#°, This subtype is anticipated
to have the poorest response with immunotherapy, representing approximately 50% of the TNBC
population, underscoring the need for novel therapeutic strategies. Further research focusing on
genes with markedly increased expression in the TIL-PD-L1- subtype, such as SFRP2, as potential
therapeutic targets is warranted.

Because the TIL+PD-L1- subtype had a high TILs level and the absence of PD-L1 associated
with T-cell exhaustion, we expected that this subtype had a highly activated immune environment
and better clinical outcomes. However, it is intriguingly not characterized as a typical “immune-hot”
tumor and exhibits a poorer prognosis compared to TIL+PD-L1+ subtype. Similar findings were
observed in the Fudan University multiomics and the Future-C cohorts, where TIL+PD-L1- was
associated with an exhausted tumor microenvironment characterized by high infiltration of
immunosuppressive immune cells!”. Our study also showed that this subtype has a low proportion
and activity of T cells but a high proportion of myeloid cells. The adipogenesis pathway was
uniquely elevated in the TIL+PD-L1- subtype across tumor, stromal, and immune cell types,
suggesting the importance of genes associated with this pathway. Notably, the ZG/6B gene was
highly expressed in tumor cells of the TIL+PD-L1- subtype; ZG16B has been reported to promote
tumor progression by inhibiting T cells through the activation of myeloid-derived suppressor cells
in pancreatic cancer*’*3, Therefore, this gene may represent potential target in future treatment
strategies.

When focusing on the TIME subtypes, the majority of ID and MR subtypes corresponded to low
TILs, displaying similar transcriptomic features. Consequently, we focused on comparative analysis
between the SR and FI subtypes, which fall under the high TIL category, to uncover factors
facilitating immune cell infiltration into the intra-tumoral region rather than remaining confined to
the stromal region. Consistent with our previous results, the number of DEGs was highest in tumor
cells (97 genes), compared to stromal cells (39 genes) and immune cells (6 genes). In the FI subtype,
oncogenic processes- or antigen presentation-related genes were upregulated. Furthermore,
pathways associated with epithelial cell polarity, such as apical surface and apical junction pathways,
were activated in the FI subtype. Accordingly, these factors may induce the immune cell infiltration
into the intra-tumoral region.

While most FI subtypes were TIL+PD-L1+, approximately 20% were TIL+PD-L1-. Notably.
these two groups showed markedly different prognoses. The TIL+PD-L1- group showed lower
expression of genes linked to immune system activation. These results indicate that even with

20



intratumoral immune cell infiltration, poor prognosis is associated with low immune cell activation,
further underscoring the potential role of PD-L1 as a critical biomarker.

Collectively, cases with low TILs, TIL-PD-L1-, and ID/MR TIME subtypes largely overlap,
representing “immune-cold” tumors characterized by desmoplastic changes in the surrounding
stroma, with genes like SFRP2 potentially serving as key biomarkers. In comparing SR and FI
subtypes, tumor epithelial polarity and antigen presentation appear instrumental in enabling immune
cell infiltration into the tumor region. Even in the case of high TILs, there was a significant
difference in prognosis as well as immune system activation depending on PD-L1 expression. When
limited to the FI subtype, immune activation differed based on PD-L1 expression status, with tumor
adipogenesis potentially playing a role in immune cell inactivation, highlighting ZG16B as a key
gene of interest (Figure 10).

Immune Activation —

Low TILs
TIL-PD-L1- TIL-PD-L1+  TIL+PD-L1-
SFRP2
Immune dessert Margin restricted

SFRP2 gene, Desmoplastic change Epithelial polarity
— inhibit the Inmune cell infiltration Antigen presentation

Figure 10. Schematic Overview.

Our study has several limitations. First of all, although we proposed considerable mechanisms
and target genes related to the regulation of the immune system in TNBC using a spatial
transcriptomic platform, a clear limitation of our research is the lack of further validation of these
findings through experimental strategies. Second, this was a retrospective study conducted at a
single institution. In particular, the number of patients in each group was relatively small when
classified based on the TIL-PD-L1 subtype or TIME subtype into four groups. Third, this study
included patients with TNBC who underwent upfront surgery, leading to a substantially high
proportion of early-stage patients, such as those in Stage I-II. Recently, patients with stage II-I111
TNBC have been receiving neoadjuvant chemotherapy plus pembrolizumab. Therefore, it is
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necessary to validate the clinical significance of the TIL-PD-L1-based / TIME subtypes or the
several target genes in the neoadjuvant setting.

V. CONCLUSION

The primary strength of this study lies in its comprehensive analysis of the immune-related tumor
microenvironment, achieved by differentiating between tumor, stromal, and immune cells through
digital spatial transcriptomics in a relatively large cohort of patients with TNBC. Our findings
underscore the potential clinical utility of TILs and PD-L1 as integrated biomarkers for predicting
clinical outcomes and guiding systemic treatment strategies in early-stage TNBC. Moreover, we
identified potential key mechanisms and biomarkers associated with variations in immune-related
microenvironments. Further experimental validation of these mechanisms and target factors will be
crucial in advancing precision medicine for TNBC patients.
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Abstract in Korean
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