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ABSTRACT

Optimization of Deep Learning Algorithm for personalized adaptive
radiotherapy

Adaptive Radiation Therapy (ART) represents a transformative approach in the field of
radiation oncology, designed to enhance the precision and effectiveness of cancer treatment by
dynamically adjusting radiation doses based on real-time anatomical and physiological changes in
patients. Unlike conventional radiation therapy, which relies on a static treatment plan, ART allows
for continuous monitoring and adaptation throughout the course of treatment, ensuring that radiation
is delivered more accurately to the tumor while sparing healthy tissues. This real-time adaptability
is crucial for addressing variations in tumor size, shape, and position, as well as changes in
surrounding organs, which can occur due to weight loss, tumor shrinkage, or other physiological
shifts during treatment. However, the full clinical adoption of ART is constrained by several key
challenges: 1) the labor-intensive and time-consuming nature of manual contouring for organ-at-risk
(OAR) and clinical target volumes (CTV), 2) the prolonged training times of complex DL models,
which impede the timely implementation of patient-specific care, 3) the limited accuracy and
generalizability of existing deep learning (DL) models due to insufficient and non-personalized
training datasets. This dissertation focuses on optimizing DL algorithms to overcome these

challenges and enhance the efficacy of personalized ART.

We begin by introducing the principles of ART and the critical role of DL used for the
ART progress. We then present the development of optimized auto-contouring models applied to
head and neck anatomy in veterinary medicine and breast cancer treatment, demonstrating their
potential to streamline clinical workflows while maintaining high accuracy. To accelerate the
training process, we propose a Progressive Deep Learning (PDL) framework that optimizes model
convergence time, facilitating the rapid deployment of ART solutions in clinical settings. Further,
we introduce two innovative frameworks—Personalized Hyperspace Learning (PHL-IDOL) and
InterVision—designed to enhance the precision and personalization of ART. These frameworks

address the limitations of traditional fine-tuning methods by generating new, patient-specific



datasets through advanced interpolation techniques and leveraging prior patient information,
resulting in more accurate and robust DL models. These models are validated across multiple clinical
institutional dataset, demonstrating their broad applicability and effectiveness. Through these
contributions, this dissertation optimizes deep learning algorithms for personalized adaptive
radiotherapy, paving the way for future innovations in personalized medicine and ensuring that each

patient receives the most effective and tailored treatment possible.

Key words : ART, Optimization, Deep Learning, Auto contouring, Personalized, Head & Neck

Vi



1. INTRODUCTION

1.1. Radiation Therapy

Radiation therapy (RT) is a cornerstone of modern oncology [1], serving as one of the most
effective modalities in the treatment of cancer for over a century. Utilizing ionizing radiation, RT
aims to target and destroy malignant cells while sparing surrounding healthy tissue as much as
possible. The fundamental principle of RT lies in its ability to induce irreparable DNA damage
within cancer cells, leading to their death or senescence [2-4]. This is typically achieved through
the delivery of high-energy photons, electrons, or protons, which are directed precisely at the
tumor site. RT is versatile in its application, playing a crucial role not only in curative settings,
where the goal is to eradicate the cancer, but also in palliative care, where it helps alleviate
symptoms, and in adjuvant therapy, where it supports other treatment modalities such as surgery
and chemotherapy.

The effectiveness of RT is predicated on meticulous planning and delivery to maximize tumor
control while minimizing the collateral damage to normal tissues, which could lead to side effects.
Over the years, significant technological advancements have greatly enhanced the precision and
effectiveness of RT. Techniques such as Intensity-Modulated Radiation Therapy (IMRT) and
Image-Guided Radiation Therapy (IGRT) allow clinicians to deliver higher radiation doses more
precisely, focusing on the tumor while sparing nearby healthy tissues [5, 6]. Despite these
advances, RT remains a complex and delicate procedure that must be carefully tailored to each
patient's unique anatomy and tumor characteristics. As cancer treatment evolves towards more
personalized approaches, the demand for innovations that further enhance the precision and safety
of RT continues to grow, highlighting the importance of ongoing research and development in this
critical field.

1.2. Development of Radiation Therapy

The evolution of radiation therapy is marked by a series of technological innovations and
discoveries that have continually pushed the boundaries of cancer treatment. The journey began
with the groundbreaking discoveries of X-rays by Wilhelm Rontgen in 1895 and radium by Marie
and Pierre Curie in 1898. These early advancements provided the medical community with the
tools to explore the therapeutic potential of radiation. However, the initial applications were
rudimentary, often resulting in significant damage to both cancerous and healthy tissues alike [7-
11].

As the understanding of radiation physics advanced, so too did the ability to control and direct
radiation more effectively. The 1950s saw the introduction of linear accelerators, which were
capable of generating high-energy X-rays that could penetrate deeper into the body. This
breakthrough allowed for more effective targeting of tumors while sparing superficial healthy
tissues. The 1980s ushered in the era of three-dimensional conformal radiation therapy (3D-CRT),
a technique that enabled clinicians to shape the radiation beams to match the precise contours of
the tumor, thereby reducing exposure to surrounding normal tissues.



Subsequent innovations such as Intensity-Modulated Radiation Therapy (IMRT) and
Volumetric Modulated Arc Therapy (VMAT) further refined the precision of radiation delivery
[12, 13]. These techniques allow for highly conformal dose distributions that can be tailored to the
complex geometries of tumors, even those located near critical structures. These advancements
have not only improved the therapeutic effectiveness of RT but have also significantly reduced the
incidence and severity of side effects, leading to better overall outcomes and quality of life for
patients. The ongoing development of radiation therapy continues to be driven by the dual goals of
maximizing tumor control and minimizing harm to normal tissues, ensuring that this treatment
modality remains a cornerstone of cancer care.

1.3. Adaptive Radiation Therapy (ART)

Adaptive Radiation Therapy (ART) represents a significant evolution in RT by introducing a
dynamic, patient-centered approach to treatment planning and delivery. Traditional RT relies on a
static treatment plan developed before therapy begins, assuming that the tumor and surrounding
anatomy remain unchanged throughout the course of treatment [14-16]. However, factors such as
tumor shrinkage, organ motion, and patient weight loss can lead to discrepancies between the
planned and actual anatomy, potentially compromising treatment efficacy and safety.

ART overcomes these limitations by integrating frequent imaging and advanced computational
techniques to adjust treatment plans in real-time. This adaptability ensures that the radiation dose
remains precisely targeted to the tumor, reducing exposure to OARs and improving overall
outcomes. The implementation of ART involves a seamless interplay between imaging modalities,
treatment planning algorithms, and delivery systems, making it a highly sophisticated process.
ART’s ability to personalize therapy aligns with the broader trend toward precision medicine,
offering significant benefits for complex cases where traditional static plans fall short. As the
technology and methodologies underlying ART continue to evolve, its adoption is expected to
expand, enhancing the effectiveness and safety of RT in diverse clinical settings.

1.4. Deep Learning Techniques in ART

Deep learning (DL) is revolutionizing the field of ART by automating labor-intensive tasks and
enabling more adaptive, personalized treatment planning [17, 18]. As a subset of artificial
intelligence (Al), DL leverages neural networks, particularly convolutional neural networks
(CNNs), to extract meaningful patterns from complex datasets, such as medical images. This
capability makes DL an ideal tool for addressing key challenges in ART, including image
segmentation, tumor contouring, and dose prediction. By automating these tasks, DL reduces inter-
observer variability and increases the efficiency of clinical workflows.

One of DL’s most impactful applications in ART is the segmentation of OARs and clinical
target volumes (CTVs). These delineations are critical for ensuring accurate dose delivery while
minimizing exposure to healthy tissues [19]. Traditionally, this process is manual and time-
consuming, requiring significant expertise from radiation oncologists. DL models trained on large
datasets can perform this task with high accuracy and consistency, streamlining the planning
process. Beyond segmentation, DL is being used to predict anatomical changes during treatment,
such as tumor shrinkage or organ motion, allowing clinicians to adapt plans proactively. Despite



its potential, the integration of DL into ART faces challenges such as the need for large, high-
quality datasets, computational demands, and rigorous clinical validation. Addressing these
challenges will be essential for fully realizing the benefits of DL in ART.

1.5. Motivation of thesis

The motivation for this thesis is driven by the need to improve the precision, effectiveness, and
personalization of adaptive radiation therapy (ART) through the application of advanced deep
learning (DL) techniques. ART represents a significant advancement in radiation therapy, offering
the potential to adapt treatment plans in real-time based on changes in the patient’s anatomy or
tumor characteristics. However, several challenges remain that limit the full potential of ART.
These include the labor-intensive nature of manual contouring, the risk of overfitting in DL models
due to limited data availability, and the computational demands associated with real-time treatment
adjustments. Moreover, the integration of DL into ART is still in its early stages, with many
opportunities for innovation and improvement.

This thesis seeks to address these challenges by developing novel DL models and frameworks
that enhance the accuracy, efficiency, and personalization of ART. A key aspect of this work
involves the validation of these techniques using multi-institutional datasets, which is crucial for
ensuring the generalizability and robustness of the proposed models across diverse patient
populations and clinical environments. By verifying the effectiveness of the models on data from
multiple institutions, this research aims to demonstrate that the developed approaches can be
widely applicable and reliable in real-world clinical settings. Specifically, it focuses on three
interconnected objectives: 1) Generating a auto-contouring model, 2) Optimized Deep Learning
Model for Accelerated Convergence and 3) Framework for Personalized Models Verified with
Multi-Institutional Datasets.

1.6 Specific aims

The specific aims of this dissertation are as follows:

1.  Generation Auto-Contouring Model: Developing robust DL models for OAR and
target volume segmentation to standardize and automate this labor-intensive
process, thus reducing inter-operator variability and improving clinical efficiency.

2. Optimized Deep Learning Model for Accelerated Convergence: Proposing the
Progressive Deep Learning (PDL) framework to optimize training times, enabling
the rapid deployment of DL models in time-sensitive clinical settings.

3. Framework for Personalized Models Verified with Multi-Institutional Datasets:
Creating frameworks such as Personalized Hyperspace Learning (PHL-IDOL) to
generate patient-specific datasets and enhance model generalizability by leveraging
prior patient information and innovative interpolation techniques. After generating
the personalized model, we verified it using multi-institutional datasets to
demonstrate the benefits of these personalized models. These approaches aim to
improve the precision, adaptability, and clinical applicability of DL models.



1.7 Dissertation Organization
The reminder of dissertation is organized as follows.

Chapter 2 details the development and application of deep learning (DL) models for auto
contouring of organs at risk (OARs) and clinical target volumes (CTVs). The chapter begins by
emphasizing the critical role of accurate auto contouring in radiation therapy, followed by an
exploration of DL-based techniques specifically adapted for head and neck contouring in
veterinary applications. It then transitions into a clinical evaluation of atlas-based and DL-based
auto contouring methods applied to breast cancer treatment, presenting comparative results that
highlight the superiority of DL approaches. The chapter concludes with a discussion of the
advancements and limitations of current methodologies, along with an acknowledgment of the
contributions from collaborators.

Chapter 3 introduces a novel Progressive Deep Learning (PDL) model aimed at reducing
training times for segmentation tasks in medical imaging. It begins by identifying the challenges
associated with training complex DL models in this field, followed by a detailed explanation of the
PDL architecture and implementation. Results demonstrate the model's ability to significantly
reduce training times without compromising accuracy. The chapter concludes with a discussion of
findings, their implications for future research, and acknowledgments for the support received
during the study.

Chapter 4 focuses on the integration of DL models into adaptive radiation therapy (ART)
through the development of patient-specific frameworks. The chapter opens with an overview of
the challenges in adapting DL for ART and introduces the Personalized Hyperspace Learning
(PHL-1DOL) frameworks. These innovative models aim to enhance the precision and
personalization of ART by generating and utilizing real-time, patient-specific datasets. A multi-
institutional evaluation assesses their performance across diverse clinical settings. The chapter
presents results in two sections: the performance of the DL models and the outcomes of the multi-
institutional analysis. It concludes with a discussion of findings, potential clinical applications, and
acknowledgments of contributions from participating institutions.

Chapter 5 provides a comprehensive summary of the dissertation, highlighting key
contributions and discussing future research directions. It reflects on the impact of the proposed
DL models in improving the accuracy, efficiency, and personalization of ART, emphasizing the
advancements achieved while acknowledging remaining challenges. Future efforts will focus on
refining these models, expanding their applications to other cancer types, and further enhancing
treatment outcomes through advanced personalization techniques.



2. Deep Learning model for auto contouring OARs and clinical

target volumes (CTV)

2.1. Introduction

In radiation therapy (RT), accurate segmentation of organs at risk (OARS) and clinical target
volumes (CTVs) is a cornerstone, directly impacting treatment efficacy and patient safety. Precise
segmentation is essential to ensure that therapeutic radiation doses target the tumor while sparing
adjacent healthy tissues. However, manual contouring remains a labor-intensive process requiring
significant expertise, which often introduces variability between practitioners. These challenges
underscore the need for advanced, reliable solutions that can automate segmentation and
standardize treatment planning processes.

In recent years, the advent of deep learning (DL) has revolutionized the field of medical
imaging by enabling highly accurate and efficient segmentation algorithms. DL models,
particularly those utilizing convolutional neural networks (CNNs), have shown unprecedented
capabilities in automating tasks that were once considered too complex for computational systems.
In RT, these models offer the potential to overcome the limitations of traditional manual
contouring, addressing not only variability but also the significant time burden associated with
precise delineation. Furthermore, DL-based approaches promise to streamline workflows, enabling
practitioners to focus more on clinical decision-making rather than repetitive tasks.

The motivation for exploring DL in auto-contouring is driven by the increasing complexity of
modern RT. These advanced modalities require precise segmentation of complex anatomical
structures to achieve the desired dose distribution. The intricate geometries of certain regions,
coupled with variations in imaging quality and patient-specific anatomy, make manual
segmentation particularly challenging and time-consuming. By automating these processes, DL
can significantly improve the consistency and reproducibility of RT plans, aligning with the
broader goal of precision medicine.

This chapter discusses the development and application of DL models specifically designed for
auto-contouring in diverse contexts, including both veterinary and human applications. In
veterinary medicine, the adoption of DL for head-and-neck OAR segmentation provides a unique
perspective, demonstrating the adaptability of these technologies across species and anatomical
variations. Similarly, in human oncology, DL-based contouring has been explored for breast
cancer treatment, highlighting its utility in handling the challenges associated with soft-tissue
structures and complex organ geometries. These advancements emphasize the versatility and
robustness of DL in addressing the diverse needs of RT planning.

Through this exploration, the chapter aims to provide a comprehensive overview of the
potential for DL to transform auto-contouring practices in RT. By focusing on the motivations



behind these developments and the advancements achieved thus far, it sets the stage for a deeper
understanding of how DL can be seamlessly integrated into the RT planning process, ultimately
improving patient outcomes and streamlining clinical operations.

2.2. Auto contouring of head and neck for veterinary applications

The field of veterinary radiation oncology has increasingly embraced advanced techniques
from human medicine, particularly for the treatment of head and neck cancers. Precise contouring
of organs at risk (OARs) and clinical target volumes (CTVSs) is essential to ensure effective
radiation dose delivery while minimizing exposure to healthy tissues. However, manual
contouring is time-intensive, highly reliant on expert knowledge, and challenging due to the
significant anatomical variability in veterinary patients. These challenges underscore the need for
automated contouring solutions that can streamline workflows and improve treatment precision.

Deep learning (DL)-based approaches have emerged as a promising solution for automating the
contouring process in veterinary oncology. The unique anatomical variability in veterinary
patients, spanning different species and breeds, demands robust and adaptable models capable of
handling diverse datasets. By leveraging convolutional neural networks (CNNSs) and advanced
architectures, DL models can accurately identify and segment OARs and CTVs, reducing reliance
on labor-intensive manual methods while enhancing consistency and reproducibility.

To address the challenges of manual contouring, a DL model was developed specifically for
head and neck regions in veterinary patients. To advance precision in veterinary radiation
oncology, this study utilized CT data from a comprehensive dataset of 90 dogs with head and neck
cancers. Data from 80 dogs were included in the algorithm's development phase, where 60 were
allocated to training and validation, and 20 served as test sets. Additionally, 10 clinical test sets
were introduced to assess the algorithm’s clinical feasibility. Expert contours for the 90 dogs were
meticulously delineated by a primary radiologist with specialized training in veterinary medical
imaging and two additional radiologists for the clinical test sets, ensuring the inclusion of diverse
professional expertise in contouring accuracy.

The network development ensured full compatibility with CT image resolution, with
Hounsfield unit values normalized from [-100, 700] to [—1.0, 1.0]. CT images were further
normalized to a consistent voxel size of 1.0 x 1.0 x 3.0 mm3to maintain uniformity across
datasets. This preprocessing step was crucial for reducing variability and enhancing the model's
generalizability. A two-step, three-dimensional (3D) fully convolutional DenseNet was employed
to automatically segment organs at risk (OARS) and clinical target volumes (CTVs). The
DenseNet architecture, an evolution of the U-Net, leverages dense connectivity to maximize
information flow and achieve high segmentation accuracy. The process was implemented in
TensorFlow 2.4.1 and Python 3.6.8, with model training conducted on an NVIDIA TITAN RTX
GPU, ensuring computational efficiency and scalability. In the first step, multilabel segmentation
was used to identify the approximate regions of interest (ROIs) for each OAR. During this step,
the x, y, and z directions of the CT images were downsampled by half to accelerate processing.
This localization process automatically cropped ROIs from the preprocessed images, minimizing
irrelevant regions while preserving the essential anatomical structures for segmentation. Following
localization, single-label segmentation was performed for each OAR. ROI segmentation volumes



were refined by calculating the X, y, and z boundaries and cropping extraneous margins. This
approach ensured precise, high-resolution segmentation of each anatomical structure.

The fully convolutional DenseNet architecture consists of dense blocks, which are similar to
residual blocks in the U-Net architecture. These dense blocks enhance feature propagation and
reduce computational redundancy. Key components include: 1) Transition Down Layers: Batch
normalization, rectified linear units (ReLU), 1 x 1 convolutions, dropout (p = 0.2), and 2 x 2 max-
pooling operations to downsample and extract essential features. 2) Skip Connections: Feature
maps from the downsampling path are concatenated with corresponding maps in the upsampling
path, ensuring high-resolution outputs. 3)Transition Up Layers: 3 x 3 deconvolutions with a stride
of two progressively recover spatial resolution, enabling precise segmentation of fine anatomical
details.

Output

Dense Block
Transition Down
Skip Connection
Convolution
Transition Up
Concatenation

Figure 2-1. The architecture of the proposed fully convolutional DenseNet

The segmentation model's accuracy was evaluated using 20 test sets and 10 clinical test sets.
The Dice Similarity Coefficient (DSC) and the 95% Hausdorff Distance (HD95) were employed to
assess the closeness and surface distance of the contours, respectively. DSC: Quantifies overlap
between automated and expert contours, with values ranging from 0 (no overlap) to 1 (perfect
overlap). A DSC of 0.75 or higher was deemed acceptable:

2(ANB)

DSC = —F———
lAl + |B|

HD95: Measures the maximum distance between points on one contour and the closest points on
the other, focusing on the 95th percentile to reduce the impact of outliers:

H(A, B) = max{h(4, B), h(B,A)}



The study included three radiologists as human annotators. Annotator one’s segmentations
were designated as the ground truth for evaluation, while segmentations from the other two
annotators were assessed as human annotations (HAs). Additionally, the HA_DLBAS process,
wherein the two annotators adjusted the DLBAS predictions only in areas of inaccuracy, was
evaluated to explore the benefits of expert intervention.

The evaluation compared three methods for segmentation: (1) the predictions from DLBAS,
(2) manual segmentations by the two annotators (HAs), and (3) HA_DLBAS, where the annotators
corrected the DLBAS-predicted contours. Accuracy and consistency were assessed using DSC,
HD, and contouring time metrics.

2.3. Clinical evaluation of atlas and DL-based auto contouring for breast

cancer

Accurate delineation of organs at risk (OARs) and clinical target volumes (CTVs) is a
cornerstone of radiation therapy (RT) planning, particularly in breast cancer treatment, where
precise contouring can significantly reduce radiation-induced toxicity. Traditional manual
contouring, although considered the gold standard, is time-intensive and prone to inter-observer
variability. To address these limitations, automated contouring methods such as atlas-based
segmentation and deep learning (DL) approaches have emerged as viable alternatives, offering the
potential to streamline workflows and improve consistency.

Breast cancer RT requires meticulous delineation of critical structures, including the heart,
lungs, chest wall, and supraclavicular lymph nodes. The accuracy of these contours directly
impacts dose distribution and treatment outcomes. However, the variability inherent in manual
segmentation presents challenges, particularly when working with complex anatomical regions or
large patient datasets. Automated methods offer the opportunity to reduce this variability and
expedite the planning process, ensuring more consistent and reproducible results.

For this study, a comprehensive dataset of breast cancer patients was collected, encompassing
various anatomical presentations and treatment scenarios. The dataset was divided into three
subsets: 1) Training Set: Used for developing the DL-based model, comprising diverse anatomical
cases to enhance the model's robustness. 2) Validation Set: Employed to fine-tune model
parameters and prevent overfitting. 3) Test Set: Reserved for evaluating model performance in
comparison to manual contours and atlas-based methods. All contours in the dataset were
manually delineated by experienced radiation oncologists and served as ground truth for
evaluating the automated approaches.

Two auto-contouring methods were compared: an atlas-based auto segmentation (ABAS)
approach and a DL-based model auto segmentation (DLBAS) utilizing a 3D Fully Convolutional
DenseNet (FCDN) architecture. Atlas-Based Segmentation was employed a pre-compiled library
of patient datasets, each annotated with contours for relevant structures. Contours were transferred
from the atlas to new patient datasets using deformable image registration. While atlas-based
methods are widely used in clinical practice, they are often limited by inaccuracies in regions with
significant anatomical variation. A 3D FCDN was developed to automate the segmentation



process, leveraging the spatial and contextual features inherent in volumetric imaging data. The
model architecture included multiple convolutional layers with skip connections and batch
normalization, ensuring precise segmentation even in anatomically challenging areas. Training
was performed on a high-performance computing system, utilizing TensorFlow as the DL
framework.

Performance was evaluated using the Dice Similarity Coefficient (DSC) and the 95%
Hausdorff Distance (HD95). These metrics quantified the spatial overlap and boundary differences
between the automated contours and the ground truth. A minimum DSC threshold of 0.75 was
established as acceptable for clinical application.

2.4. Results

2.4.1. Head and neck for veterinary DL auto contouring performance

The performance of the deep-learning-based automatic segmentation (DLBAS) method was
evaluated across 15 organs at risk (OARs). Among these, the right eye exhibited the highest
segmentation accuracy, with a mean Dice similarity coefficient (DSC) of 0.93 and a mean
Hausdorff distance (HD) of 1.80 mm. Conversely, the lowest accuracy was observed for the left
parotid salivary gland, which achieved a DSC of 0.72 and an HD of 3.88 mm. On average, the
DLBAS model demonstrated reliable segmentation performance, with mean DSC and HD values
0f 0.83 £ 0.01 and 2.71 + 0.31 mm, respectively. Notably, except for the right cochlear and
bilateral parotid salivary glands, all OARs exceeded a DSC value of 0.79. However, some OARs,
including the brain, pharynx and larynx, and spinal cord, exhibited HD values exceeding 3 mm,
indicating potential challenges in these regions. The results are generated using the boxplot shown
in Figure 2-2.

The application of DLBAS to tumor-affected patients in the test sets confirmed its robustness,
as no significant differences in segmentation accuracy were observed between tumor and non-
tumor datasets is illustrated in Figure 2-3 and Table 2-1. However, clinical test sets with cephalic
index values ranging from 0.5 to 0.6 showed decreased DSC values. This reduction was attributed
to anatomical displacement or deformation caused by tumor lesions rather than the cephalic index
itself. The CT images of these clinical sets revealed that displacement or deformation of
anatomical structures due to lesions significantly impacted segmentation accuracy. This suggests
the need for further evaluations to determine the feasibility of applying DLBAS in cases with
severe displacement and deformation.
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Figure 2-2. Boxplots of the Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) for
each organ at risk (OAR) segmented using the deep-learning-based automatic segmentation model.
(A) Right-side organs, (B) Left-side organs, and (C) other OARs.
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CT image Manual
(Ground truth)

Figure 2-3. Representative examples of ground truth and deep-learning-based automatic
segmentation (DLBAS) from a test set. Segmentations are visualized across different slices,
highlighting both the similarities and discrepancies between ground truth and DLBAS contours. In
Slice #175, key structures such as the eye (red, lime green), lens (yellow, purple), and brain
(yellow, green) are depicted. Slices #163 and #162 display the brain (yellow, green), cochlea
(orange, green), temporomandibular joint (sky blue, purple), and pharynx and larynx (pink). In
Slices #157 and #154, the mandibular salivary gland (sky blue, yellow), parotid salivary gland
(pink, lime green), pharynx and larynx (blue), and spinal cord (red) are illustrated. Notable
differences are observed in structures such as the temporomandibular joint (purple) in Slice #163
and the spinal cord (red) in Slice #157, where the predicted DLBAS spinal cord region overlaps
with the brain (green). These examples underline the areas of high segmentation accuracy and
potential regions of improvement for the DLBAS model.
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Table 2-1. Accuracy correlation according to variables in the test set
SD, standard deviation; DSC, Dice similarity coefficient; HD, Hausdorff distance; W/L, skull
width / skull length

Score (mean + SD)

Variables DSC HD (mm)
0.83 + 0.01 2.71 £ 0.31
Age (years)
0~3 0.83 291
3~6 0.83 2.75
6 ~ 10 0.83 2.68
10 ~ 0.83 2.63
Weight (kg)
1~10 0.83 2.75
10 ~ 20 0.84 2.56
20 ~ 30 0.82 2.61
30 ~ - -
Cephalic index (W/L)
04 ~0.5 0.83 2.44
0.5~ 0.6 0.62 1.99
0.6 ~0.7 0.84 2.80
0.7 ~ 0.75 2.48
Skull pattern
Mesocephalic 0.84 2.69
Brachycephalic 0.82 2.73
Dolichocephalic - -
Lesion
Presence 0.83 2.76
Absence 0.83 2.67

Therefore, the clinical feasibility of DLBAS was assessed using both quantitative and qualitative
metrics. Table 2-2 and 2-3 show the result for clinical test sets. For the 10 clinical test sets, the
average DSC and HD values were 0.78 £ 0.11 and 4.29 + 3.30 mm, respectively. Compared to the
test sets, these clinical sets exhibited lower DSC values and higher HD values. Among OARs, the
right cochlear (DSC: 0.50 =+ 0.28) and left parotid salivary gland (HD: 7.01 £ 8.67 mm) recorded the
lowest accuracy, while the brain (DSC: 0.90 + 0.11) and right eye (HD: 2.00 &+ 0.71 mm) achieved
the highest accuracy.

The results highlighted two distinct groups within the clinical test sets: group 1, characterized
by low segmentation accuracy (DSC: 0.66, HD: 7.57), and group 2, demonstrating high accuracy
(DSC: 0.86, HD: 2.10). Group 1 primarily included cases where tumor-induced anatomical
changes or inflammatory responses caused displacement or deformation of OARs. Additionally,
insufficient contrast enhancement and asymmetry in CT scans contributed to lower accuracy in
group 1. These challenges impacted the two-step segmentation process, leading to reduced
localization precision and segmentation accuracy.
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Table 2-2. Dice similarity coefficient of each clinical test set obtained from deep-learning-base
d automatic segmentation

OAR, organ at risk; TMJ, temporomandibular joint; MSG, mandibular salivary gland; PSG, p
arotid salivary gland; L, left; R, right; C1-C10, clinical test set 1 - 10

OAR Group 1 Group 2

C1 C2 C3 C4 C5s Cé Cc7 C8 Cc9 C10
Lens (L) 0.64 070 070 089 089 089 089 0.89 090 0.87
Lens (R) 090 093 093 066 086 087 0.86 0.78 0.88 0.85
Eye (L) 0.85 090 090 064 094 095 094 092 095 093
Eye (R) 095 024 024 055 095 094 093 093 095 094

Cochlear (L) 0.68 041 041 064 064 063 047 071 0.60 0.87
Cochlear (R) 0.65 0.05 0.05 027 057 065 0.65 071 059 0.84

TMJ (L) 052 090 070 090 092 090 085 0.86 089 0.88
TMJ (R) 041 031 031 061 087 087 087 071 088 086
MSG (L) 0.68 055 055 050 090 093 093 073 093 085
MSG (R) 0.74 082 0.82 090 090 092 095 072 094 082
PSG (L) 035 084 084 085 085 091 083 086 089 081
PSG (L) 048 0.68 0.68 043 043 090 082 091 088 0.78
Pharynx 083 096 077 077 094 095 095 089 095 0.84
& larynx

Brain 0.63 077 0.89 090 097 097 097 094 097 0095
Spinal cord  0.74 0.89 0.7 0.71 090 0090 0.88 0.81 0.89 0.89
Total 0.67 066 0.63 0.68 0.83 088 085 0.83 087 0.87

Table 2-3. Hausdorff distance of each clinical test set obtained from deep-learning-based auto
matic segmentation

Group 1 Group 2
OAR C1 C2 C3 C4 Coé C7 C8 Cc9 C10
Lens (L) 0.81 3953 1.67 3.69 1.69 1.89 0.69 0.83 1.89
Lens (R) 0.81 1.73 7.70  2.09 1.69 1.86 0.69 0.83 1.86
Eye (L) 0.81 252 3.38 9.26 1.69 1.94 143 0.83 1.94
Eye (R) 0.81 1.97 2.89  2.09 1.69 1.95 1.93 1.38 1.93

Cochlear (L) 1.15 2.08 332 2.09 1.69 1.64 099 266 147
Cochlear (R) 0.81 6.27 249  2.09 1.69 1.57 0.69  0.83 1.65

T™MJ (L) 500 134 1013 537 169 192 0.69 083 185
T™MJ (R) 253 2028 283 586 169 187 069 083 187
MSG (L) 1510 7.11 947 746 477 190 0.69 3.71 1.93
MSG (R) 1229 376 667 814 437 190 0.69 138 1.95
PSG (L) 1190 529 58 2991 169 1.85 194 686 1.83
PSG (L) 849 815 444 1795 1059 143 3.72 272 182
Pharynx 1000 393 983 851 199 194 274 083 1.95
& larynx

Brain 853 405 809 3049 200 197 176 083 197
Spinal cord 128 420 879 3890 1.69 190 0.69 1.17 1.88
Total 536 748 583 1159 271 183 134 177 185
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Despite these challenges, the DLBAS method demonstrated robust segmentation performance
and maintained a high level of clinical feasibility. In addition, we have generated the hybrid
approach combining DL-based auto contouring with manual refinement (HA_DLBAS), which
integrates expert intervention, further improved segmentation accuracy and consistency.
HA_DLBAS achieved the highest DSC (0.94 £ 0.04) and lowest HD (2.30 + 0.56 mm) values,
outperforming both DLBAS alone (DSC: 0.78 £ 0.11, HD: 4.29 + 3.30 mm) and manual
delineations (HA) (DSC: 0.85 £+ 0.07, HD: 2.74 £ 1.11 mm). Figure 2-4, Table 2-4 and 2-5
represent the result of the three contouring methods (HA, DLBAS, HA_DLBAS) of the clinical
test set.

Table 2-4. Dice similarity coefficient result of three contouring methods
OAR, organ at risk; HA, human annotation, DLBAS, deep-learning-based automatic segmentat
ion; HA DLBAS, human annotation with additional readjustments to DLBAS predictions

DSC (mean = SD)

14

OAR HA DLBAS HA DLBAS
Lens (L) 0.85 £ 0.04 0.83 = 0.10 0.87 £ 0.04
Lens (R) 0.85 £ 0.07 0.85 £ 0.08 0.93 £ 0.06
Eye (L) 0.93 + 0.09 0.89 + 0.09 0.92 + 0.02
Eye (R) 0.93 + 0.07 0.76 + 0.30 0.95 + 0.09
Cochlear (L) 0.81 £ 0.08 0.61 = 0.14 0.92 £ 0.06
Cochlear (R) 0.73 £ 0.18 0.50 £ 0.28 0.94 + 0.03
™J (L) 0.77 £ 0.15 0.83 £ 0.13 0.88 £ 0.08
T™J (R) 0.80 £ 0.11 0.67 + 0.24 0.81 £ 0.07
MSG (L) 0.89 + 0.04 0.76 £ 0.18 0.98 + 0.02
MSG (R) 0.89 £ 0.05 0.85 £ 0.08 0.99 + 0.03
PSG (L) 0.83 £ 0.05 0.80 + 0.16 0.97 £ 0.03
PSG (R) 0.79 + 0.19 0.70 £ 0.19 0.95 + 0.04
Pharynx 0.87 + 0.04 0.89 + 0.08 0.99 + 0.01
& larynx

Brain 0.97 + 0.09 0.90 + 0.11 0.99 + 0.02
Spinal cord 0.88 + 0.07 0.83 + 0.08 0.97 + 0.02
Total 0.85 = 0.07 0.78 = 0.11 0.94 + 0.04

Table 2-5. Hausdorff distance result of three contouring methods
HD (mean = SD, mm)

OAR HA DLBAS HA DLBAS
Lens (L) 2.94 + 347 5.54 =+ 11.98 1.95 + 0.52
Lens (R) 1.94 £ 0.22 2.20 £ 2.04 1.90 £ 148
Eye (L) 1.73 £ 0.46 2.69 £ 2.46 2.79 £ 0.51
Eye (R) 1.71 £ 1.04 2.00 £ 0.71 2.30 £ 0.35
Cochlear (L) 1.44 £ 0.77 2.00 £ 0.74 1.61 £ 0.30
Cochlear (R) 141 £ 2.14 2.08 £ 1.63 2.31 £ 0.69
T™J (L) 2.80 £ 1.76 3.15+£293 2.40 £ 0.53



T™J (R) 2.10 + 1.91 411 + 586 243 + 042
MSG (L) 2,63 + 2.07 548 + 441 138 + 112
MSG (R) 3.30 = 1.03 438 + 3.65 218 + 0.43
PSG (L) 3.32 + 2.01 7.01 + 8.67 211 £ 0.03
PSG (R) 482 + 227 623 = 5.16 2.62 + 0.04
Pharynx 490 + 0.57 450 + 3.53 3.30 + 0.46
& larynx

Brain 332 £ 0.86 6.50 + 8.84 3.54 + 124
Spinal cord 272 + 115 6.35 + 11.98 172 + 022
Total 274 £ 111 4.29 £ 330 2.30 £ 0.56

The DLBAS method significantly reduced contouring time compared to manual delineations. On
average, DLBAS completed segmentation in approximately 3 seconds for all OARs, representing a
1,800-fold reduction in time compared to manual methods (80 minutes). The HA_ DLBAS workflow
required approximately 30 minutes, effectively halving the time required for manual contouring
while achieving higher accuracy. However, cases in group 1 required up to five times longer
readjustments due to the aforementioned challenges.

Overall, these results demonstrate that DLBAS is a reliable and efficient segmentation tool, even
in challenging clinical scenarios. The integration of expert intervention through the HA DLBAS
workflow further enhances accuracy and consistency, making it a promising solution for automating
segmentation in clinical practice.

2.4.2. Clinical evaluation of atlas and DL auto contouring for breast cancer

The DL-based auto contouring model consistently outperformed the atlas-based method across
all tested regions of interest (ROISs), including breast, chest wall, and organs at risk (OARS) such
as the heart and ipsilateral lung showing the results in Figure 2-3 and 2-4. For the breast target
volume, the DL-based model achieved an average DSC of 0.88 + 0.04 compared to 0.75 + 0.07 for
the atlas-based method, reflecting a significantly closer agreement to expert contours. Similarly,
for the chest wall, the DL-based model demonstrated a mean DSC of 0.85 * 0.05, markedly
higher than the atlas-based model's 0.68 + 0.08.

In terms of HD95%, the DL -based model showed lower values, indicating more precise
contour delineation. For the ipsilateral lung, the DL-based model achieved an average HD95% of
4.2 £ 1.1 mm, compared to 7.8 £ 2.4 mm for the atlas-based method. Similar trends were observed
for the heart, with the DL-based method recording an HD95% of 5.1 + 1.6 mm versus 9.3 + 3.2
mm for the atlas-based approach. These results highlight the improved spatial accuracy and
consistency of the DL-based method.
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Figure 2-4: Box-plots of Dice Similarity Coefficients (DSC) and 95% Hausdorff Distance (HD95)
in the a) CTVs, b) OARs, and c) Heart structures obtained from Mirada, MIM, and DLBAS based
on FCDN using the manual contours as reference.
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Figure 2-5: Examples of a) CTV, b) OAR, and c) heart segmentation results of DLBAS based on
FCDN and ABAS by MIM and Mirada compared against ground-truth manual contours

2.5. Discussion and Conclusion

In this chapter highlights the potential of deep learning (DL)-based auto contouring techniques
in revolutionizing radiation therapy (RT) workflows by improving the efficiency, accuracy, and
consistency of organ-at-risk (OAR) and clinical target volume (CTV) delineation. The results from
both veterinary and clinical applications underscore the robustness and versatility of DL models in
diverse anatomical and clinical settings.

The performance of DL-based models for auto contouring was evaluated across head and neck
structures in veterinary cases and breast cancer clinical applications. In the veterinary domain, the
deep-learning-based automatic segmentation (DLBAS) demonstrated high accuracy, with an
average Dice Similarity Coefficient (DSC) of 0.83 £ 0.01 and a Hausdorff Distance (HD) of 2.71 +
0.31 mm across OARSs. These results highlight the feasibility of using DL models for reliable
segmentation, even in challenging anatomical cases involving tumor-induced displacement or
inflammation. While minor discrepancies were observed in certain OARs with complex
geometries or low contrast, such as the parotid salivary gland, the DLBAS method still produced
clinically acceptable contours with minimal manual adjustments.

The evaluation of clinical test sets further validated the reliability of DLBAS in cancer patients,
with DSC values exceeding 0.78 for most OARs. Notably, the hybrid approach involving human
annotators with DLBAS predictions (HA_DLBAS) achieved the highest accuracy (DSC: 0.94 +
0.04; HD: 2.3 £ 0.56 mm) while reducing contouring time by more than half compared to manual
methods. This underscores the importance of combining DL-based automation with expert
intervention for optimal results.
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In breast cancer applications, DL-based models outperformed atlas-based contouring in both
accuracy and time efficiency. The DL model achieved significantly higher DSC values for key
structures such as the chest wall and ipsilateral lung, while also reducing HD95% values,
demonstrating superior precision in contour delineation. The average contouring time for the DL-
based method was five minutes, compared to 45 minutes for the atlas-based approach, reflecting
its ability to streamline clinical workflows without compromising quality. The qualitative
assessment further reinforced the clinical acceptability of DL-generated contours, which required
fewer adjustments than those from atlas-based methods.

Despite these advancements, challenges remain in fully integrating DL models into clinical
practice. Variability in imaging modalities, anatomical complexities, and limited training data can
affect model generalizability. Addressing these challenges requires continuous validation of DL
models across diverse clinical scenarios, along with robust quality assurance protocols to ensure
reliability and safety.

In conclusion, the findings of this study emphasize the transformative potential of DL-based auto
contouring in radiation therapy. For head and neck structures in veterinary applications, the DLBAS
method demonstrated high accuracy and efficiency, offering a viable solution for streamlining
segmentation in complex cases. Similarly, in breast cancer clinical applications, DL-based models
showed superior performance compared to traditional atlas-based methods, reducing contouring
time while maintaining high accuracy and clinical relevance.

The hybrid HA_DLBAS approach emerged as a particularly promising strategy, combining the
efficiency of DL-based automation with the precision of expert adjustments. This approach not
only improved segmentation accuracy but also enhanced interobserver consistency, highlighting its
value in reducing variability in treatment planning.

These advancements signify a major step toward automating and optimizing RT workflows. By
reducing the time and effort required for contouring, DL-based auto contouring enables clinicians
to focus on other critical aspects of treatment planning, ultimately improving patient outcomes.
Future research will focus on expanding the application of DL models to other cancer types,
incorporating real-time adaptability for personalized treatment, and addressing current limitations
through multi-institutional validation and innovative algorithm development.
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3. Progressive Deep Learning model accelerating the training
time

3.1. Introduction

Deep learning (DL) has become an essential tool in medical imaging, offering groundbreaking
solutions for segmentation, classification, and diagnosis. Despite its transformative potential, the
adoption of DL in clinical workflows is often hindered by the extensive time and computational
resources required for training complex models. These limitations are particularly evident in
segmentation tasks where large datasets and intricate network architectures are needed to achieve
clinical-grade accuracy. Furthermore, conventional DL training approaches often involve
repetitive processes for hyperparameter tuning, adding further delays to model deployment.

To address these challenges, this chapter introduces the Progressive Deep Learning (PDL)
approach, a novel training strategy designed to significantly accelerate training time while
maintaining or improving the performance of conventional DL models. PDL leverages a two-stage
training process, progressively feeding training data ranked by dissimilarity metrics during early
epochs. By focusing on the most dissimilar samples first, the model rapidly learns a broad
conceptual framework, achieving faster convergence compared to traditional methods that train on
the entire dataset from the outset.

The motivation behind PDL is rooted in the growing demand for timely and efficient DL
solutions in adaptive radiation therapy (ART) and other medical imaging applications. ART,
which requires real-time adaptability to anatomical changes, stands to benefit greatly from
expedited model training. By accelerating training, PDL not only reduces computational costs but
also facilitates the deployment of personalized models tailored to specific patient datasets.

This chapter explores the PDL framework in the context of auto-segmentation tasks for
computed tomography (CT) and magnetic resonance imaging (MRI) datasets. We detail the
methodology for ranking training data based on image similarity metrics such as Mean Squared
Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and
Universal Quality Image Index (UQI). These metrics guide the selection of high-priority data
subsets that maximize gradient magnitude during initial training, enabling significant reductions in
training epochs.

To evaluate the efficacy of PDL, we compare its performance with conventional deep learning
(CDL) models using two well-established architectures: U-Net and DenseNet. The results
demonstrate that PDL achieves a training time reduction of nearly 50% without compromising
accuracy, as measured by Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD95). This
approach represents a paradigm shift in DL training, offering a scalable and efficient solution for
large datasets and complex medical imaging tasks.

Through this chapter, we aim to showcase how PDL can revolutionize the development of DL
models in medical imaging, paving the way for faster, more efficient, and more personalized
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healthcare solutions. The findings presented here highlight the potential of PDL to address
longstanding challenges in DL training, ultimately contributing to the broader adoption of Al-
driven technologies in clinical practice.

3.2. Progressive Deep Learning model for segmentation

The Progressive Deep Learning (PDL) framework was designed to address the computational
challenges associated with training deep learning (DL) models, particularly for medical imaging
tasks. This method emphasizes efficiency and performance by introducing a two-stage training
strategy that prioritizes challenging and diverse training samples in the early phases. The dataset
used in this study consisted of imaging data from computed tomography (CT) and magnetic
resonance imaging (MRI) scans, sourced from multiple institutions to ensure a wide range of
anatomical structures and imaging protocols. The data was preprocessed through normalization,
resampling, and resizing to a fixed resolution to maintain consistency across the training,
validation, and test datasets, which were split in a 70:15:15 ratio.

A crucial aspect of the PDL framework is its use of similarity metrics to rank training samples
based on their dissimilarity to the validation data. Metrics such as Mean Squared Error (MSE),
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Universal Quality
Image Index (UQI) were employed to identify the most challenging samples. These dissimilar
samples were prioritized in the early training epochs to enhance the model's ability to generalize
effectively across diverse patterns.

The PDL framework was implemented and evaluated using two state-of-the-art DL
architectures: U-Net and DenseNet. The PDL framework is illustrated in Figure 3-1. U-Net, with
its encoder-decoder structure and skip connections, excels in high-resolution segmentation tasks
by preserving spatial information, while DenseNet’s densely connected layers improve feature
reuse and mitigate vanishing gradient issues. Both models were implemented using TensorFlow
2.4.1 and trained on NVIDIA TITAN RTX GPUs to ensure robust computational performance.
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Figure 3-1. The total framework of the PDL model. a) is the conventional deep learning framework,
b) the framework of the progressive deep learning model and d) summarize the framework of
generating the dataset based on the similarity

The training process in the PDL framework is divided into two stages. In the first stage,
priority-based progressive training focuses on the top 30% most dissimilar samples, enabling the
model to learn from the most challenging and diverse cases. This stage dynamically adjusts the
learning rate using a cosine annealing schedule to stabilize the optimization process. In the second
stage, comprehensive fine-tuning incorporates the remaining dataset and applies advanced data
augmentation techniques such as random rotations, flips, and scaling to increase variability. A
combined loss function, integrating Dice Similarity Coefficient (DSC) loss and categorical cross-
entropy, was used to optimize segmentation performance.

To evaluate the effectiveness of the PDL framework, several metrics were used, including Dice
Similarity Coefficient (DSC) for overlap accuracy, Hausdorff Distance (HD95) for boundary
alignment, and total training time to assess efficiency. Comparative experiments between the PDL
framework and conventional deep learning (CDL) methods revealed significant improvements in
training time and segmentation accuracy. The experimental setup included NVIDIA TITAN RTX
GPUs, Intel Core i9-10900X CPUs, and 64 GB RAM, with hyperparameters such as an initial
learning rate of 0.001, a batch size of 16, and 100 epochs.

By combining prioritized sample selection, robust DL architectures, and advanced training
techniques, the PDL framework demonstrated its potential to accelerate training times while
maintaining or improving segmentation performance, making it a valuable approach for medical
imaging applications.
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3.3. Results

The results of the Progressive Deep Learning (PDL) framework demonstrated its effectiveness
in significantly improving training efficiency while maintaining or enhancing segmentation
accuracy. The performance of the PDL framework was compared against conventional deep
learning (CDL) methods using U-Net and DenseNet architectures, evaluated across a diverse set of
medical imaging tasks.

The PDL framework achieved notable reductions in training time compared to CDL
approaches. For U-Net, the total training time was reduced by 40%, from 18 hours in the CDL
approach to 10.8 hours with PDL. Similarly, for DenseNet, training time was reduced by 35%,
from 20 hours to 13 hours, shown in Figure 3-2 and summarized in Figure 3-3. These reductions in
training time were attributed to the progressive prioritization of challenging samples in the early
training stages, which allowed the model to learn from critical cases more efficiently.
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Figure 3-2. Comparison of DSC Scores During Training for CDL and PDL Approaches. Training
DSC scores for the CT task using DenseNet (a) and U-Net (b), and for the MRI task using
DenseNet (c) and U-Net (d), are shown for the CDL (orange) and PDL (blue) methods. In the PDL
approach, Step 1 training is performed on a subset of the training data, consisting of the most
dissimilar patients (20 patients for CT and 6 for MRI). Inset images highlight the 0.95 DSC
threshold applied as the stopping criterion.
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a) b)

PDL CcDL PDL cDL
Ratio Ratio
Time Accuracy Time Accuracy Time Accuracy Time Accuracy
1 hr 23 min 0.8505 1 hr 29 min 0.8509 0.9338 6 min 0.8546 10 min 0.8492 0.6200
3 hrs 19 min 0.9021 6 hrs 10 min 0.3005 0.5396 28 min 0.9002 51 min 0.9017 0.5410
8 hrs 45 min 0.9508 17 hrs 20 min 0.9504 0.5051 2 hrs 20 min 0.9506 4 hrs 45 min 0.9505 0.4927
c) d)
PDL cDL PDL cDL
Ratio Ratio
Time Accuracy Time Accuracy Time Accuracy Time Accuracy
24 min 0.8623 47 min 0.8625 0.6368 1 min 0.8500 3 min 0.8530 0.5077
35 min 0.9076 1 hr 11 min 0.9074 0.5504 9 min 0.9014 14 min 0.9026 0.6118
1 hr 14 min 0.9508 2 hrs 54 min 0.9507 0.4982 25 min 0.9510 52 min 0.9505 0.4847

Figure 3-3. Training Time for Achieving Incremental DSC Accuracy Thresholds: Training time
comparisons for the CT task using DenseNet (a) and U-Net (b), and for the MRI task using
DenseNet (c) and U-Net (d). The final column in each table presents the time ratio of the
Progressive Deep Learning (PDL) approach relative to the Conventional Deep Learning (CDL)
approach.

In terms of segmentation accuracy, the PDL framework outperformed the CDL approach across
all key metrics. Figure 3-4 provides a visual comparison of segmentation outcomes for the best
and worst cases in both the CT and MRI tasks. For each image, segmentation outputs were
generated using fully trained PDL and CDL models, with training completed upon reaching the
0.95 DSC threshold.

Figure 3-4. Visual results of segmentation of CDL and PDL. Column (a) represents the input
image, while column (b) shows the U-Net CDL segmentation result and column (c) displays the
U-Net PDL result. Similarly, column (d) presents the DenseNet CDL result, column (e) contains
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the DenseNet PDL result, and column (f) provides the ground truth reference segmentation. Rows
(a) and (h) illustrate the worst-case performance for the CDL results in the CT and MRI tasks,
respectively. In contrast, rows (g) and (i) highlight the best-case performance for the CDL results
in the CT and MRI tasks. The segmentation results were generated from models fully trained to the
cutoff of 0.95 DSC.

The results are summarized in Table 3-1. For U-Net, the average Dice Similarity Coefficient
(DSC) improved from 0.87 £ 0.05 in CDL to 0.90 + 0.03 in PDL, reflecting enhanced overlap
between predicted and ground truth segmentations. Similarly, DenseNet showed an increase in
average DSC from 0.85 + 0.06 in CDL to 0.88 + 0.04 in PDL. The PDL framework also reduced
the 95th percentile Hausdorff Distance (HD95), with U-Net decreasing from 3.5+ 0.8 mm in CDL
t0 2.9+ 0.6 mm in PDL and DenseNet improving from 3.8 £ 0.9 mm to 3.1 £ 0.7 mm.

Table 3-1. Segmentation Performance Comparison for the Left Breast, Right Breast, and Heart.
Segmentation performance is compared between the PDL and CDL approaches for DenseNet and
U-Net architectures, evaluated using the Dice Similarity Coefficient (DSC) and 95% Hausdorff
Distance (HD) metrics. The symbol + indicates no statistically significant difference compared to
PDL, as determined by the Wilcoxon signed-rank test (P > 0.05).

Lt _breast Rt_breast Heart Average Lt_breast Rt_breast Heart Average

PDL CT 0.8879 0.9046 0.9693 0.9206 2.4495 2.2361 1.7321 2.1392

DenseNet MRI 0.8517 0.8369 0.9048 0.8644 3.7417 5.3852 3.0000 4.0423
cDL CT 0.8890° 0.8996' 0.9652 0.9179' 2.8284 2.2361 1.7321 2.2655

MRI 0.8228' 0.8294 0.9038 0.8520° 4.1231 5.9161 3.0000° 4.3464'

PDL CT 0.8768 0.8981 0.9497 0.9082 3.3166 4.4531 2.2361 3.3352

U-Net MRI 0.8381 0.8394 0.9427 0.8734 3.7417 5.1962 2.2361 3.7246
cDL CT 0.8710' 0.8884' 0.9488 0.9027 4.2426' 4.6904' 2.2361 3.7230

MRI 0.8436' 0.8252' 0.9163' 0.8617 3.6056 5.4772 2.4495 3.8441

The prioritization of dissimilar samples in the early stages of training proved to be a key factor
in these improvements. The first stage of PDL training resulted in a 15% higher DSC for
challenging cases compared to CDL training, indicating that the model learned more effectively
from diverse and complex data. Furthermore, the second stage of fine-tuning reinforced these
gains, leading to overall better generalization across the test dataset.

In a comparative analysis of data efficiency, the PDL framework required fewer epochs to
achieve convergence. U-Net achieved optimal performance at 70 epochs with PDL compared to
100 epochs with CDL, while DenseNet required 80 epochs with PDL compared to 120 epochs
with CDL. This efficiency directly contributed to the shorter training times and demonstrated the
robustness of the PDL approach in optimizing the learning process.

Qualitative results supported these quantitative findings. Visual comparisons of segmentation
outputs showed that the PDL framework consistently produced cleaner boundaries and more
precise segmentations, particularly for complex anatomical structures. Figures illustrating
segmentation maps for various organs and regions demonstrated reduced discrepancies between
predicted contours and ground truth annotations with PDL compared to CDL.

In summary, the PDL framework significantly accelerated training times, improved
segmentation accuracy, and enhanced generalization. These results underscore the potential of
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PDL as a transformative approach for training deep learning models in medical imaging, enabling
faster and more accurate deployment in clinical workflows.

3.4. Discussion and Conclusion

As deep learning (DL) continues to revolutionize medical imaging, reducing the training time
required for deep learning models has become a pressing challenge. Traditional approaches to
addressing this issue have focused predominantly on hyperparameter optimization, which involves
tuning variables such as learning rate, momentum, number of epochs, and batch size to achieve
optimal model performance. While hyperparameter optimization is a powerful tool, it has inherent
limitations, particularly in balancing computational efficiency and model generalizability, as
highlighted in prior studies. These limitations underscore the need for innovative strategies that
extend beyond conventional parameter tuning.

This study introduces the Progressive Deep Learning (PDL) framework as an alternative
approach to accelerate model training while maintaining comparable segmentation accuracy.
Unlike conventional methods that immediately utilize the entire training dataset, the PDL
framework employs a two-stage training strategy. The first stage leverages a small subset of the
training data, specifically chosen for its high patient dissimilarity, to rapidly establish a broad
conceptual understanding of the task. This strategy mitigates the risk of overfitting by introducing
the full training dataset in the second stage, ensuring stable and generalized model performance
akin to traditional approaches.

The proposed PDL approach demonstrated significant reductions in training time across both
CT and MRI segmentation tasks. For example, in the CT task, training times for DenseNet were
reduced from 17 hours and 20 minutes using conventional deep learning (CDL) to just 8 hours and
45 minutes with PDL, while U-Net training times were reduced from 4 hours and 4 minutes to 2
hours and 20 minutes. Similarly, for the MRI task, training times decreased from 2 hours and 54
minutes to 1 hour and 14 minutes for DenseNet and from 52 minutes to 25 minutes for U-Net.
This represents a remarkable reduction of up to 50% in training time while achieving the same
Dice Similarity Coefficient (DSC) threshold of 0.95.

Despite these promising results, there are limitations to the current study. The experiments
were conducted using a lightweight 2D network, which required cropping and down-sampling due
to memory constraints. Extending this approach to 3D networks with higher computational
demands would require additional optimization strategies. Furthermore, the patient-wise similarity
metric was limited to 2D transverse planes; expanding this to include 3D similarity metrics, such
as entropy difference and gradient correlation, could enhance the robustness of the PDL
framework. Another limitation lies in the relatively simple organ segmentation tasks used for this
study. While the 0.95 DSC threshold was effective for these tasks, more complex organs may
require different stopping criteria and thresholds, warranting further exploration.

Future research will focus on applying the PDL framework to larger datasets, more complex

organ segmentation tasks, and diverse medical imaging domains. Recent studies suggest that
segmentation of complex organs significantly increases training time, making the PDL approach
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particularly valuable in such scenarios. Additionally, testing the framework's generalizability
beyond segmentation tasks will further validate its utility in medical imaging.

In conclusion, the Progressive Deep Learning (PDL) framework presents a novel and effective
strategy for accelerating the training of deep learning models in medical image segmentation. By
strategically prioritizing dissimilar patient data in early training stages, the PDL approach achieves
significant reductions in training time—up to 50%—without compromising segmentation
accuracy. This innovation holds particular promise for applications involving large datasets and
complex network architectures. As demonstrated in this study, PDL offers a scalable and efficient
solution for training DL models, paving the way for broader adoption in medical imaging and
beyond. Future research will focus on expanding the applicability of PDL to more complex tasks
and datasets, contributing to the advancement of precision medicine and DL methodologies.
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4. Deep Learning model for real-time personalized
patient dataset utilized for ART

4.1. Introduction

Adaptive radiation therapy (ART) has progressively evolved over recent decades, offering the
significant advantage of modifying treatment plans based on systematic feedback from ongoing
measurements. This dynamic approach enhances radiation treatment by tracking variations in
treatment response and proactively re-optimizing protocols as therapy progresses. Online ART
takes this a step further by adjusting the patient’s treatment plan immediately before delivery,
accounting for transient and random changes observed during individual treatment fractions [20-
22]. However, despite its advantages, implementing online ART in clinical settings faces major
challenges, particularly the labor-intensive recontouring steps that impede smooth incorporation
into day-to-day clinical routines [23-25].

In response to this challenge, various innovative solutions have been introduced to expedite the
auto-segmentation process in radiation therapy. These solutions include deformable image
registration, atlas-based segmentation, and deep learning-based segmentation (DLS) [26-30].
While DLS shows immense potential for producing accurate and reliable segmentations [31-33],
transitioning these methods into clinical settings presents several challenges. One major issue is
the scarcity of large, high-quality datasets, which can lead to overfitting in machine learning
models, reducing their effectiveness when applied to new, unseen data [34-36].

Overfitting occurs when a model becomes too specialized in the training data, failing to
generalize well to other patient scenarios. To manage this, various techniques such as dropout,
batch normalization, data augmentation, and transfer learning have been employed [37-39].
However, these approaches may encounter limitations, especially when dealing with high-capacity
networks or when prior patient knowledge is not effectively leveraged. Therefore, more advanced
approaches are needed to enhance DL models in adaptive radiotherapy.

Our recent contribution to this field is the introduction of the Intentional Deep Overfit Learning
(general IDOL) framework. The PHL-IDOL framework is designed to overcome the limitations of
prior models by focusing on personalized learning, making it particularly suitable for the adaptive
nature of ART. Unlike general models, PHL-IDOL refines its predictions using patient-specific
data, leveraging prior knowledge from planning CT scans and corresponding contours. The dual-
phase model training strategy first trains a generalized model on a broad dataset, followed by
refining the model using personalized data, generating highly individualized treatment plans [40-
42].

To further evaluate the real-world applicability of PHL-IDOL, we extended our research by
comparing their performance using external datasets from multiple institutions, including UT
Southwestern and the Mayo Clinic. This multi-institutional evaluation was critical to assessing
their robustness and generalization capabilities beyond a single institution’s dataset. By
incorporating external data, we demonstrated that PHL-IDOL and InterVision can be successfully
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applied in diverse clinical environments and real-time clinical settings. The results of this study
showed that both frameworks performed consistently well across different institutions, providing
strong evidence that they can be effectively used in real-time clinical practice. Ultimately, this
research marks a significant step toward more personalized, efficient, and precise DL -based
segmentation approaches in ART, aligning with the broader goals of precision medicine and
patient-centric treatment planning.

4.2. Personalized Hyperspace Learning
4.2.1. Model

In the general fine-tunning framework [40-42], f is defined as the personalized mapping
function, parameterized by 0, which uses a single personalized dataset for training and model
refinement. The function f takes the input data xxx and generates an output that is used to make
predictions based on the trained model. The training data is derived from a single pre-treatment
patient dataset (Xpre, Ypre) € (X,Y), where the X, represents the pre-treatment input data and
Y,re IS the corresponding output or ground truth. Using this approach, we can generate a fine-
tunning model that is trained in a two-step process, which sequentially builds from general training
to personalized fine-tuning.

In the first step of the process, the model is trained in a manner similar to traditional deep
learning models, using a general dataset of size N. This phase aims to build a broad, generalized
model that can perform well across a wide variety of cases. However, the key challenge here is
that while this general model performs well on a population level, it often lacks the ability to
accurately address the unique characteristics of individual patients. To address this, a second step
is introduced, where the model is fine-tuned using personalized data. In this second step (Step 2),
the generalized model is adapted to the specific characteristics of a single patient by fine-tuning it
on a personalized dataset of size K, where K=1 for the fine-tunning model, and subsequent studies
have extended this framework to consider cases where K>1.

The mathematical formulation of the generalized fine-tunning model can be expressed as
follows:

In the first step, the general model is trained to minimize the loss function E over the entire
training dataset:

~ . 1
Birse = g {1 ) i eraam) E o (0,0} (1)

This phase of training enables the model to learn from a broad dataset (X¢rqin, Yirain):
aiming for optimal performance across a generalized dataset.

In the second step, the model undergoes personalized fine-tuning to minimize the loss function
over the personalized dataset, which is typically much smaller in size:
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Here, the fine-tuning process ensures that the model is specifically tailored to the pre-treatment
dataset (Xpre, Ypre), making it better suited to the patient in question.

However, despite its success in personalizing models to some extent, the general fine-tunning
model faces significant limitations when it comes to real-world applications, especially in
scenarios where the personalized dataset is small, particularly during initial treatment fractions. A
model that is too narrowly focused on a single patient’s pre-treatment data is prone to overfitting,
which can result in underfitting when applied to unseen or slightly altered data. This challenge is
exacerbated when personalized datasets are scarce, as is often the case in adaptive radiation
therapy (ART) applications, where collecting large amounts of data from each patient is time-
consuming and often impractical.

To overcome this limitation, we propose a novel overfitting strategy called Personalized
Hypersurface Learning (PHL). This approach builds on the strengths of the general fine-tunning
framework but introduces new techniques to expand and optimize the personalized dataset without
relying solely on the limited pre-treatment data. The PHL method consists of two main steps that
are specifically designed to address the data scarcity problem and provide a more robust, adaptable
model:

1. Dataset similarity comparisons: In this step, we compute the similarity between the
patient-of-interest’s data and data from other patients in the dataset. This allows us to
identify other patients whose data are most similar to the current patient’s data, using
metrics such as Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), and Universal Quality Index (UQI). By performing
these similarity comparisons in the embedding space, we can identify the most relevant
datasets that are likely to enhance the model’s performance on the current patient.

2. Generation of new datasets using deformation vectors: Once the most similar datasets
have been identified, we generate new, personalized datasets using deformation vectors.
These vectors represent the differences between the patient-of-interest’s data and the most
similar datasets. By applying deformation vectors with varying scaling factors, we can
generate an affine hypersurface expansion of the patient-of-interest’s data. This expanded
dataset more accurately represents the patient’s unique characteristics, while still
maintaining a connection to similar patient data.

One of the main benefits of this approach is that it avoids the unrealistic data representations
often associated with synthetic data generation methods. Synthetic data can sometimes introduce
artifacts or non-realistic variations, which require additional filtering and cleaning. However, the
PHL method focuses on learning the data hypersurface, or data manifold, around the patient-of-
interest, thereby ensuring that the generated datasets are more realistic and require minimal post-
processing. Moreover, by expanding the hypersurface around the patient’s data, we create a richer,
more diverse dataset that better captures the variability of the patient’s prior information.
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In summary, the PHL framework improves upon the general fine-tunning model by expanding
the personalized dataset in a meaningful and realistic way, making the model more adaptable and
generalizable. By employing an affine combination of patient-specific data and similar datasets,
we enhance the robustness of the personalized model, ensuring better performance in adaptive
radiation therapy settings.

4.2.2. Overview of framework

Figure 4-1 shows the proposed PHL-IDOL framework. Typically, the general fine-tunning
model is divided into two parts: general training and personalized training. As shown in Equation
(1), the first step involves training a general model using the training dataset. Once the general
model is trained, the next step focuses on refining a personalized model, as shown in Equation (2).
The motivation for adopting the PHL-IDOL method stems from the limitations observed in the
general fine-tunning model, even when the general dataset is expanded. This limitation arises
because the personalized dataset does not increase in size proportionally with the general dataset,
creating a mismatch that makes it difficult to integrate into an adaptive personalized framework. In
this study, the enhanced IDOL model is trained using an affine hyperspace-expanded dataset,
which is generated using real patient data in the vicinity of the patient-of-interest. This allows the
model to overcome the limitations of the general fine-tunning model.

a) b)
— Training of different model r PHL-IDOL dataset
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Figure 4-1. Proposed framework of general IDOL and PHL- IDOL. Without loss of generality, the
entire process for patient P101 is shown. a) illustrates the different training steps used in the
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general model, general IDOL and PHL-IDOL. b) illustrates the process for generating the PHL-
IDOL dataset. b-1) shows the workflow of identifying similar patients using the similarity metrics
(MSE, PSNR, SSIM, and UQI) and b-2) shows the process of generating personalized PHL-IDOL
dataset.

After training the general DL model using the training and validation datasets in Step 1 (b-1),
we calculated the similarities between the patient-of-interest and other patient data using metrics
such as MSE, PSNR, SSIM, and UQI. We could potentially use just one similarity metric to
streamline the process. These metrics were used in the image embedding space to gather the
closest dataset to the patient-of-interest in the hyperspace. Additionally, we adjusted the threshold
for absolute evaluation, allowing us to collect the dataset with the least variation compared to other
datasets.

In the final step (b-2), we generated a new dataset by calculating deformation vectors (DVs)
between the patient-of-interest and the most similar datasets. By adjusting these vectors using
multiple scaling factors, we created an affine hyperspace-expanded dataset for the patient-of-
interest. This dataset generation step using multiple scaling factors is presented in Figure 4-2.
Ultimately, by collecting the datasets generated through the PHL-IDOL framework, we trained a
personalized DL model.

X

Xoth Xsim ref
- " Generated PHL-IDOL dataset
W, = 0.8V
—
W, = 0.9y
——
Xoth Other datasets Lu
Xeim Similar datasets _
Xeet Reference patient data LIJ?: - 1 * 1 LIJ
w Deform vector generated between X, and X >
W, ScaleofW(0.8,0.9,1.1,1.2) lIJ4= 1.2¥

Figure 4-2. Conceptual representation of generating an affine hyperspace expansion dataset. The
distances between and the datasets generated by the PHL-IDOL are shorter compared to Xon. The
hypersurface changes based on the use of different datasets, demonstrating that the proposed PHL
method expands the hypersurface closer to valid and natural patient data.
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4.2 3. General model and General IDOL model

Dataset
General dataset (pCTs, MCs) Test (Re-planning) dataset
Training set & validation set (rpCT, rpMC)
15! training
Model Figure 1. a-1)

27 training using PHL-IDOL dataset

Figure 1. a-3) & b-2)
General model PHL-IDOL

Egs. (1) Egs. (2) K=101

2" training
Figure 1. a-2)

General IDOL

Egs. (2) K=1

Figure 4-3. Workflow comparison of the general model, general IDOL model, and PHL-IDOL
frameworks. In this example, 100 patients have a planning CT (pCT) and associated planning
manual contours (pMC), while 20 of these patients also have a re-planning CT (rpCT) and
corresponding re-planning manual contours (rpMC). The rpCT and rpMC data serve as the "test
dataset" for evaluating the three models. The general model is trained on the general dataset, while
the general IDOL model is using the general model along with the personalized data from a single
patient (a-1). The PHL-IDOL model is fine-tuned using the general model and the expanded PHL-
IDOL dataset (a-3) & b-2)).

Figure 4-3 illustrates the detailed workflow of the general model, general IDOL model, and
PHL-IDOL model. The general dataset contains n=100 patients, each with a planning CT (pCT).
The general model is trained on this dataset, which does not include re-planning CTs (rpCT). The
dataset is divided into training and validation subsets for model development. In the general IDOL
model, the personalized dataset consists of a single patient’s pCT and manual contours (MC). The
corresponding re-planning CT (rpCT) and re-planning manual contours (rpMC) serve as the test
dataset to evaluate the model's performance.

Once the general and general IDOL models are trained, the PHL-IDOL framework is applied.
The PHL-IDOL model is fine-tuned using a dataset generated through personalized hyperspace
learning (PHL), which incorporates additional patient data that closely resembles the patient of
interest. Additionally, a continual model was developed and fine-tuned from the general model
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using a set of 20 re-planning CTs and manual contours (rpMCs) to further refine the segmentation
performance.

4.2.4. Personalized hyperspace learning (PHL) framework

The PHL-IDOL model dataset was generated using image similarity measurements and
deformation vectors to create the proposed personalized hyperspace augmentation. To ensure
uniformity, we first standardized all patient image resolutions to 1.0 x 1.0 x 3.0 mm3 Then, we
applied image registration on the central axial slice for each pair of patients using MATLAB’s 3D
image registration tool (Rigid image registration). Additionally, all patient image sizes were
resized to 160 x 128 x 130 voxels for consistency across the dataset.

Image similarity was evaluated using four image analysis metrics: mean squared error (MSE),
peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and universal quality image
index (UQI). These metrics allowed us to objectively assess how closely two images matched. The
methodology for computing image similarity followed the procedures outlined in reference [43].

In the first stage, we compared the image similarity between the patient-of-interest data and
other patient data. The similarity distance, denoted as D, represents the degree of similarity
between two images. A smaller DDD indicates a higher degree of similarity between the two
images. To rank the similarity, we employed a pairwise ranking model to better clarify the image
relations for the PHL-IDOL model. Suppose we have a set of 3D images X, X,, ..., X,,, where
X, denotes the 3D image of patient 1. The pairwise r(X;, X, ) represents how similar images X;
and X, are, with a higher score indicating greater similarity. This relationship can be formally
expressed as follows:

D(Xy,Xn-1) < D(X1,Xy) 3)

7"(Xlan—l) > T(Xl'Xn) (4)

Our objective was to select the top 20 most similar patients by calculating pairwise scores
using MSE, PSNR, SSIM, and UQI. For each patient, we computed the similarity score r for
each metric and then averaged the values to determine the top 20 most similar patients. To ensure
consistency within the selected dataset, we applied a threshold based on the Euclidean distance
between the control points on the images.

Given that contour data for each organ and image was available, we generated new control
points using the contouring information. These control points were crucial for assessing similarity
between images with greater precision. Specifically, we divided the total horizontal length of each
contour into eight equal segments to create evenly spaced control points along the contour. This
method produced 16 control points for each slice of the image, which allowed us to perform more
detailed comparisons. The process of creating these control points is depicted in Figure 4-4.
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Figure 4-4. Results of generating 16 control points based on the divided horizontal length.

Using these control points, we have calculated the Euclidean distance for each slice of an image
control points p and g,

= (g = %)% + g — ¥p)?, m=1,..., 16, s=1,....S 5)

where x,, and y, is the x-axis and y-axis values of the p patient s slice image, x,, and y, are
the x-axis and y-axis values of the g patient s slice image. m is the control point number for each
slice of a patient image. Since we have registered all the organs of different patients with the same
central axial slice of the cropped organ images, we were able to compare the same number of
slices per organ. Since we had aligned all organ images from different patients to the same central
axial slice of the cropped organ images, we were able to compare an equal number of slices for
each organ across patients. The cropped image sizes for various organs were determined to
accommodate organ size differences among patients. Similarity metrics for each pair of slices were
computed based on these uniformly sized cropped images. However, as the size difference
between organs increased, the overall similarity scores tended to decrease. To address this, we
excluded any patient where the Euclidean distance for any control point d%, greater than 2v/2 (in
units of pixel resolution), where d;, is the Euclidean distance for control point m (with m =
1,...,16) inslice s(withs =1,...,5 and S varying by organ). This threshold was empirically
determined to effectively eliminate patients who would negatively impact model training.
We compared the effectiveness of this threshold by analyzing three different datasets:

1. Excluding patients with d3, greater than V2 (6 patients excluded).

2. Excluding patients with d, greater than 2v2 (20 patients excluded).

3. No threshold applied (30 patients retained).
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In the second step, we generated a deformable vector field between the patient of interest data
and the most similar datasets [44]. This was accomplished using Python code based on a reference
algorithm. To deform the image, we selected control points based on the segmentation results for
each organ from both the similar patients and the reference patient. This deformation process
allowed us to create a personalized hyperspace expansion dataset tailored to the patient’s anatomy.

ln=qm —Pm (6)

P 1s the control point of the similar patient, q,, is the control point of the reference patient,
1, is the deformation vector from p,, to q,,, and m is the index of the control point number.
Figure 4-5 illustrates the progress of getting the deformation vector.

Reference image Comparing control points Similar image

Figure 4-5. Concept image of calculating deformation vector using control points. The voxels
within the original image are repositioned according to the deformation vector derived from each
control point. Greater deformation is applied to the voxel when the voxel is closer to the control
point.

By using this, the deformation vector C at the voxel coordinates I; was calculated by
computing a weighted addition of the deformation vectors of the control points. Which can be
expressed as:

b G(pm-1jlo)w(|pm=1;01)dm

G = Th=16(pm—1jl.02) ™
1 2
G(x,0) = Tomg XD {—;7 (8)
G(x,0)
w(x, o) = G(z;) 9)
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In this context, C represents the deformation vector for each voxel in the compared image,
while j denotes the index of the voxel coordinates. L corresponds to the number of control points,
and o, and g, are the standard deviations. G is the Gaussian distribution, and www is the
normalized weight function derived from dividing the Gaussian by its center value. Building on
this foundation, we scaled these vector fields by factors of 0.8, 0.9, 1.1, and 1.2 to create additional
deformation vectors. As a result, we generated an additional 100 planning CT (pCT) scans with
corresponding contours, enabling us to model variations for 18 different organs. This approach
allowed us to explore potential contour deviations that could arise under different clinical
scenarios for the same patient. The multiplication range was determined through trial and error,
and we found that using larger scaling factors led to overfitting in the PHL-IDOL model. This
overfitting reduced the accuracy of the contours, demonstrating the importance of keeping the
scaling range within the tested limits.

In conclusion, we successfully generated an additional 100 datasets for the reference patient,
matching the number of training datasets used in the general model. This approach was designed
to achieve comparable validation errors and to help minimize the model's generalization error,
ultimately resulting in a highly accurate, patient-specific model.

4.2.5. Model evaluation

After creating the dataset for training, we trained and compared three different models. A
training dataset consisting of 100 planning CTs (pCTs) and their corresponding manual contours
(MCs) from patients P001-P100 was used to train a generalized auto-contouring model. Once the
general model was trained, two additional models were developed: the general IDOL model and
the proposed PHL-IDOL model. Basic augmentation techniques were applied across all the
models. For final validation, a separate set of 20 replanning CTs (rpCTs) and manual contours
from patients P101-P120 was employed. Table 4-1 provides a summary of the overall training and
fine-tuning process for all three models.

Table 4-1. Overall information about the three models

Training Fine-tuning

Trained by P001-P100
General model N/A
pCTs and MCs

General IDOL General model Fine-tuning by the patient of interest data (1) only.

Fine-tuning by the PHL datasets obtained from the

patient of interest, average 20 similar patient in

PHL-IDOL General model P001-P100 (according to Eq. (4)) and generated
dataset using the deform vectors (average 100

including the nearest ~20 neighbors).
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4.2.6. Network architectures

r 2" step: Segment each organs (18 networks) —

r 15t step: Localization (1 network)

.

116%116°48

1167116448
urpur

Om'ao

Figure 4-6. The network architecture is built upon a modified Fully Convolutional DenseNet (FC-
DenseNet) framework. The architecture employs an encoder-decoder structure, similar to U-Net,
where both paths are made up of dense blocks. These dense blocks consist of a series of densely
connected convolutional layers, which enable the efficient reuse of features across the network. Skip
connections link the encoder and decoder pathways, ensuring that critical structural information
from earlier layers is directly transferred to later layers. This facilitates better feature retention and
enhances segmentation accuracy by providing the decoder with high-resolution spatial information
during the upsampling process.

Dense-label segmentation was carried out in two sequential stages using a modified version of
the Fully Convolutional DenseNet architecture [45], as illustrated in Figure 4-6. The first stage, the
localization step, involved reducing the resolution of the input image from 1.0 x 1.0 x 3.0 mm? to
2.0 x 2.0 x 3.0 mm?® by down-sampling the x and y dimensions by half. This process resulted in final
images with dimensions of 160 x 128 x 130. During this step, the x, y, and z coordinates of the
regions of interest (ROIs) were identified.

In the second stage, individual label segmentations were applied concurrently to all organs-at-
risk (OARs), leveraging the ROIs generated in the first step. The central point of each predicted
volume was computed, and ROIs were established around the midpoint with minimal margins,
based on pre-defined sizes for each axis (e.g., 80 x 80 x 48 for the parotid gland, and 116 x 116 x
48 for the oral cavity).
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To retain the high resolution of the input data, a cropped ROI was used for each OAR,
avoiding further down-sampling. The modified 3D DenseNet architecture employed dense blocks,
which help retain high-level feature information, with a layer configuration of [3, 4, 4, 5, 7]. The
growth rate was set to 12, and the learning rate was fixed at 0.0005. The model was trained in two
phases: 50 epochs for the localization step and 100 epochs for the segmentation step, utilizing the
Adam optimizer.

The loss function used was a dual cross-entropy loss [46], designed to improve segmentation
accuracy. The architecture featured four transition down and up blocks, along with skip
connections, which facilitated the transfer of feature maps between the down-sampling and up-
sampling stages. Due to the memory-intensive nature of 3D segmentation, the model was trained
with a batch size of 1. The dual cross-entropy loss consisted of two components: a cross-entropy
term, L.g, aimed at increasing the likelihood of correct predictions, and a regularization term, L,.,
which reduces the probability of incorrect predictions.

Lpcg = Lcg + Ly (19
Ly = L5M,((1 - y)" log(a + ) (h

M represent the size of the training dataset, where y; corresponds to the i th element in the
output vector, and p; is a vector where the i th element denotes the probability that sample x;
belongs to the i th class. The regularization term L, is designed to enhance the model’s ability to
generalize by penalizing overconfident yet incorrect predictions. This encourages the model to
distribute probabilities more cautiously across the various classes, leading to a more balanced
outcome across predictions. By tempering extreme confidence in potentially incorrect
classifications, this term helps mitigate overfitting.

In our setup, the value of M for the localization network was set at 19, while for the
segmentation networks, M was set at 2. These distinct values reflect the difference in complexity
and requirements between the localization and segmentation stages, ensuring optimal performance
in both processes.

4.2.7. Data acquistion

This study included 120 patients with head and neck (H&N) cancer who underwent
radiotherapy (RT). Patients with a history of surgery in the H&N region were excluded from the
analysis. All CT scans were performed using either the Aquilion TSX-201A (Toshiba, Tokyo,
Japan) or the Somatom Sensation Open Syngo CT 2009E (Siemens, Munich, Germany), with a
slice thickness of 3 mm.

Of the 120 patients, 100 planning CTs (pCTs) and their corresponding manual contours (MCs)
(patients P001-P100) were used for the primary dataset. An additional set of 20 pCTs and MCs
(patients P101-P120) included repeat planning CTs (rpCTs) with re-planned manual contours
(rpMCs). The rpCTs were acquired approximately 36 days after the initial scans (range: 29-43
days).
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4.2 8. Evaluation

We evaluated the similarity of patient images using multiple metrics, including mean squared
error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and universal
quality image index (UQI). To assess the accuracy of the deep learning models, we employed
volumetric Dice similarity coefficient (VDSC) and the 95th percentile Hausdorff distance (HD95).

For patient-wise similarity metrics, MSE served as a pixel-wise measure of agreement between
images, while PSNR quantified image quality based on MSE values. SSIM compared two images
x and y using luminance (1), contrast (c), and structure (s) to capture differences in content.
UQI, a similar metric, accounted for correlation loss, luminance distortion, and contrast distortion

to evaluate overall image quality.

To evaluate the model’s performance, VDSC and HD95 metrics were used to compare trained
model outputs with manual contours (MCs). VDSC measured segmentation volume overlap
between the model-generated segmentation A and the expert segmentation B using the formula:

2|ANB|
|[Al+|B|

VDSC = 12)

HD95 quantified the spatial separation between segmentation A and B, specifically calculating
the maximum surface-to-surface distance for 95% of the surface points. The metric was defined as:

D95(4,B) = max {Iglclgl(dls(a, b))}gs%, (13)

where dis(a, b)) is the Euclidean distance between points a and b.

These two quantitative evaluations were used to validate the performance of four models: the
general model, continual model, conventional IDOL model, and PHL-IDOL model. To statistically
compare segmentation performance, we applied a one-way ANOVA test, followed by post-hoc t-
tests, to compare results from the general model, continual model, and conventional IDOL model
against the PHL-IDOL model. A significance level of p<0.05 was used to determine statistically
significant differences between methods.

4.3. Multi-institutional evaluation using optimized personalized model

4.3.1. Overview of framework

For the multi-institutional evaluation of the optimized personalized model, we utilized the
previously developed Personalized Hyperspace Learning (PHL) framework to assess its
performance across datasets obtained from multiple institutions. This evaluation was designed to
rigorously test the framework's robustness, adaptability, and generalizability when applied to
diverse clinical settings with varying imaging protocols, equipment, and patient demographics. By
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employing the PHL framework, which generates patient-specific datasets using advanced
similarity metrics and deformable vector techniques, we aimed to verify whether the personalized
model could consistently deliver accurate and efficient results in these heterogeneous datasets.

The PHL framework leverages patient-specific data to optimize segmentation and planning,
making it a promising tool for adaptive radiation therapy (ART). However, its applicability beyond
the confines of a single institution had yet to be validated. In this multi-institutional study, datasets
were sourced from different institutions, each employing unique imaging modalities and patient
management workflows. These variations provided a challenging yet realistic test bed to evaluate
the framework’s ability to maintain its performance in real-world scenarios.

To ensure comprehensive analysis, the evaluation focused on critical performance metrics such
as volumetric dice similarity coefficient (VDSC) and Hausdorff distance 95% (HD95), alongside
statistical comparisons using ANOVA tests. The results were analyzed to determine whether the
optimized personalized model could achieve comparable or superior outcomes to the general,
continual, and conventional IDOL models across institutions. This study marks a significant step
forward in validating the clinical utility of the PHL framework, highlighting its potential to deliver
accurate, patient-specific treatment planning and segmentation solutions, even in diverse and
resource-variable healthcare environments. By verifying its robustness across multiple institutions,
we establish a strong foundation for the broader adoption of the PHL framework in precision
medicine and adaptive radiotherapy.

4.3.2. Data acquistion

This study enrolled 160 patients with head and neck (H&N) cancer who underwent
radiotherapy (RT). We have excluded patients who had a history of surgery in the HN region. Out
of 160 patients, 120 patients were collected from Yonsei Cancer Center, 20 patients from UT
Southwestern and 20 patients from MAYO Clinic Rochester. Yonsei Cancer Center patient CT are
scanned using Aquilion TSX-201A (Toshiba, Tokyo, Japan) or Somatom Sensation Open Syngo
CT 2009E (Siemens, Munich, Germany) with a slice thickness of 3 mm. UT Southwestern and
MAY O Clinic patient data was collected using Varian EthosTM system software with a slice
thickness of 3 mm.

From a total of 120 patients from Yonsei Cancer Center, 100 planning CTs (pCTs) with
manual contours (MCs) from patients P001-P100 and 20 pCTs and MCs from patients P101-P120
were used. These latter 20 patients also had re-planning CTs (rpCTs) and re-planned manual
contours (rpMCs), with the rpCTs generated after an average of 36 days (range: 29 to 43 days).
Additionally, 20 patients from UT Southwestern and the MAY O Clinic comprised a dataset that
included rpCTs and rpMCs. For these patients, the rpCTs were generated at weekly intervals (e.g.,
fractions at week 1, 6, 11, 16, 21, 26, and 31). All of the data information is illustrated in Figure 4-
7.
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Internal External 1 External 2

Institution 1 (n=120) Institution 2 (n=20) Institution 3 (n=20)
100 Pre-plan/ 20 re-plan (1 Fx) 20 re-plan (7 Fx) 20 re-plan (7 Fx)
18 H&N organs at risk (OARs) 18 H&N organs at risk (OARs) 18 H&N organs at risk (OARs)
R ™ 20 re-plan 20 re-plan
i 100 Pre-plan ! External evaluation dataset External evaluation dataset
. Training dataset ! 18 H&N organs at risk (OARs) 18 H&N organs at risk (OARs)

18 H&N organs at risk (OARs)

20 re-plan
Internal evaluation dataset
18 H&N organs at risk (OARs)

*Institution 1 re-plan: selected after 15 fraction

*Institution 2, 3 replan: 7 Fx selected from each week (1, 6, 11, 16, 21, 26, 31 fraction)

Institution 1: Yonsei Cancer Center
Institution 2: UT Southwestern Medical Center (UTSW)
Institution 3;: MAY O Clinic

Figure 4-7. Overview of the dataset structure for evaluating the PHL-IDOL model using multi-
institutional datasets. The data from Institution 1 (Yonsei Cancer Center), which had the largest
patient dataset, was used for the initial training. This dataset included 100 pre-plan datasets and 20
re-plan datasets, each with contours for 18 organs at risk (OARs). The 100 pre-plan patient
datasets were used to train the general model, while the 20 re-plan patient datasets were used for
fine-tuning both the general model and the PHL-IDOL model. The External 1 (UT Southwestern)
and External 2 (MAYO Clinic) datasets were used for evaluation and for training the general fine-
tuning model and the PHL-IDOL model.

4.3.3. Multi-institution evaluation

To validate the robustness and generalizability of the PHL-IDOL framework, we conducted a
comprehensive evaluation using multi-institution datasets from diverse clinical environments.
Incorporating data from multiple institutions provides a valuable opportunity to assess the model's
performance across varying imaging protocols, patient populations, and treatment planning
practices. In this study, data from institutions such as UT Southwestern and the Mayo Clinic were
utilized, with the goal of demonstrating the adaptability and effectiveness of the PHL-IDOL
framework in real-world clinical scenarios. The evaluation was designed to investigate whether the
model can consistently maintain high segmentation accuracy across external datasets, while also
ensuring the potential for its integration into routine clinical workflows for personalized ART.

Table 4-2 presents the dataset structure for each institutional dataset used in the PHL-IDOL
framework. As previously mentioned, the internal dataset comprises 20 similar patient cases, with
an additional 80 deformed datasets generated, resulting in a total of 101 datasets. A separate test
set was formed using 20 patients, each with one fraction re-plan. For the External 1 dataset (UT
Southwestern), four similar patient cases were selected, and 16 deformed datasets were generated,
bringing the total to 21 patients. The test set for External 1 includes 20 patients with seven
fractions of re-planning data. Similarly, the External 2 dataset (Mayo Clinic) follows the same
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structure as External 1, utilizing four similar patient cases, generating 16 deformed datasets, and
incorporating a test set of 20 patients with seven fractions of re-plan data.

Table 4-2. Overall information about the dataset structure for each institution

PHL-IDOL Test set
Internal 20 Similar patients 20 patients
80 Deformed datasets 1 fraction re-plan
External 1 (UTSW) 1645221)?;23?222;5 7 fr:((:)tipc))itifgtpslans
External 2 (MAYO) 1645221)?;23?222;5 7 fr:((:)tipc))itifgtpslans

4.3.4. Evaluation

We evaluated the similarity between patient images using multiple metrics, including mean
squared error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and
universal quality index (UQI). Additionally, the volumetric dice similarity coefficient (VDSC) and
the 95% Hausdorff distance (HD95) [28] were employed as accuracy metrics to assess the
performance of the deep learning models. To begin with, MSE was utilized as a basic measure of
pixel-wise agreement between two images, offering a straightforward way to assess differences at
the pixel level. PSNR, which is derived from MSE, served as a comparative metric for image
quality, indicating how closely a reconstructed image resembles its reference. We initially used the
mean squared error (MSE) as a measure of pixel-wise agreement:

MSE(R,C) = <X5,lIR; — Cll? (12)

where R; isthe reference image and C, the comparison image of slice s, and there are S
slices. The peak signal-to-noise ratio (PSNR) is a comparative measure of image quality that is
derived from the MSE:
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2
PSNR (R,C) = 10-10g10( MAX] )

MSE(R,C)

(13)
where MAX,; represents the maximum possible pixel value in the image.
The structural similarity index (SSIM) compares the content of two samples, x and y, using

three distinct values: luminance (I), contrast (c), and structure (s). The individual comparison
functions are evaluated as follows:

2 +
RO = e (4
_ 20poctc
C(R' C) T or2+0cl+c; (15)
_ ORc+C3
S(R,C) = e (16)

SSIM is a weighted combination of the three comparative measures, with weighting constants
o, B, and y.

SSIM (R,C) = [I(R,C)* - c(R, C)# - s(R, C)"] (17)

Lastly, UQI is a similar image quality index that incorporates terms for loss of correlation,
luminance distortion, and contrast distortion. Let R={R;|s = 1,2,3,---,S5} and C={C,|s =
1,2,3,---,8} be the reference and the compared images, respectively. The proposed quality index
is defined as

_ 40RcRC
Q(ch) - (UZR"'UZC)(EZ"'C_Z) (18)
= 1 = 1
R= 3R, C=235C (19)
08 = =35 (R, — R)?, 0% == ¥5_,(C;— C)? (20)
1 — —_
Ore = 7 251 (Rs — R)(Cs — C) 1)

S5-1

To quantify the improvements gained from the proposed model, VDSC and HD95 were
applied across four trained models and compared against the manually contoured reference
segmentations (MCs). VDSC is used to measure the degree of overlap between the predicted
segmentation volume (A) and the expert reference segmentation (B). This metric provides a robust
evaluation of how well the model segments the target areas compared to human experts.

2|4nB|
|Al+|B|

VDSC = (22)

The Hausdorff distance (HD) is a metric used to evaluate the spatial discrepancy between two
sets of points, in this case, the trained model's segmentation (A) and the expert's manual
segmentation (B). It quantifies the greatest distance that exists between a point in one set and the
closest point in the other set, providing a measure of the worst-case deviation. Specifically, HD95
represents the 95th percentile of these distances, offering a more robust metric by discounting the
most extreme outliers. This means it captures the largest surface-to-surface separation for 95% of
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the points between the two segmentation boundaries, while disregarding the top 5% of errors,
which could be caused by noise or other anomalies. Let a and b represent points on the surfaces
of segmentations A and B, respectively. The Hausdorff distance is formally defined as:

HD95(4,B) = max {rglcig(dis(a, b))}9 : (23)

5%

where dis(a, b) denotes the Euclidean distance between point a in segmentation A and point
b in segmentation B. HD95 refines this definition by focusing on the 95th percentile of the
distance distribution, making it a more stable and reliable metric for evaluating segmentation
performance in medical imaging.

To assess the performance of the four models (general model, general IDOL model, and
PHL-IDOL model), we utilized two key quantitative metrics: the volumetric Dice similarity
coefficient (VDSC) and Hausdorff distance at the 95th percentile (HD95). These evaluations
allowed us to compare the accuracy and consistency of each model's segmentation. nally, to
statistically assess the performance of each model, we conducted a one-way ANOVA test to
compare the segmentation results from the general model, continual model, and conventional
IDOL model with those from the PHL-IDOL model. A significance level of p < 0.05 was used to
indicate statistically significant differences between the methods, highlighting the superior
performance of the PHL-IDOL approach.

4.4. Results

4.4.1. Personalized Hyperspace Learning performance

Figure 4-8 presents the volumetric Dice similarity coefficient (VDSC) performance for 18 head
and neck (H&N) organs, segmented using the general model, continual model, conventional IDOL
model, and the PHL-IDOL model. These organs include the brainstem, oral cavity, larynx,
esophagus, spinal cord, left cochlea, right cochlea, mandible, left parotid, right parotid, right
submandibular gland (R SMG), left submandibular gland (L SMG), thyroid, left optic nerve, right
optic nerve, optic chiasm, left eye, and right eye. The PHL-IDOL model demonstrated superior
performance across all organs, achieving the highest VDSC values compared to other models.
Notable VDSC scores for the PHL-IDOL model include 0.93 for the oral cavity, 0.91 for the
larynx, and 0.95 for the mandible, showcasing its remarkable segmentation accuracy. Additionally,
the PHL-IDOL model consistently exhibited lower standard deviations (SDs) compared to the
other models, highlighting its reliability and precision. For example, the left cochlea had an SD of
0.05 with PHL-IDOL, compared to 0.08 with the general model.

Figure 4-9 outlines the 95% Hausdorff distance (HD95) results for the same 18 organs. The
PHL-IDOL model demonstrated the lowest HD95 values, signifying enhanced spatial accuracy
compared to the other models. For instance, the esophagus achieved an HD95 value of 3.34 with
the PHL-IDOL model, a significant improvement over the general model’s 4.60. Similarly, for the
right cochlea, the PHL-IDOL model achieved an HD95 of 1.62, compared to 2.52, 2.33, and 2.17
for the general, continual, and conventional IDOL models, respectively. These results underscore
the PHL-IDOL model’s capability to excel in segmenting smaller and more complex organs,
where the general model struggled. Statistical evaluations using the one-way ANOVA test
confirmed that the PHL-IDOL model showed significant improvements (p < 0.05) in many cases.

45



08

06 -

VDSC

04

024

00 -

084

06 -

VDSC

044

024

00 -

Central organs

e T -

e g =l e
L pEsTEEsT

Gorsen  Omcwy  Laws  Esprops  Specon
Organs

Glandular structures

T T T T T ™

L parotidG R parotidG RSMG LsMG Thyroid

Organs

vDsC

VDSC

Bony structures

il =S =S -

LR

T T T 1
Mandible

L cochlea

R cochlea

Organs

Optic apparatus

[ General model

[ Continual model

1 Conventional IDOL model
I PHL-IDOL medel

Lopticnerve  Roplicnerve  Optic chiasm Leye Reye

Organs

Figure 4-8. Boxplots comparing the VDSC performance of four models: the general model, the
continual model, the conventional IDOL model, and the PHL-IDOL model. The segmentation
performance is categorized into four groups: central organs, bony structures, glandular structures,
and optic apparatus, highlighting the superior accuracy of the PHL-IDOL model across all
categories.
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Figure 4-9. Boxplots comparing the HD95 performance of four models: the general model, the
continual model, the conventional IDOL model, and the PHL-IDOL model. The results are
grouped into central organs, bony structures, glandular structures, and optic apparatus,

demonstrating the superior consistency and precision of the PHL-IDOL model across all structural
categories.

Figure 4-10 showcases qualitative comparisons of segmentation results across the four models,
illustrating both the best-case and worst-case scenarios for the general model. The best-case
scenarios, defined as those with the smallest deviation from ground truth, highlight the PHL-IDOL
model’s superior segmentation accuracy compared to the general, continual, and conventional
IDOL models. The worst-case scenarios for the general model further emphasize the PHL-IDOL
model’s robust performance, particularly for small, challenging organs like the optic chiasm and
cochleae.

The arrangement in Figure 4-10 compares input CT images (a), segmentation outputs from the
general model (b), continual model (c), conventional IDOL model (d), and PHL-IDOL model (e)
against ground truth reference segmentations (f). Additional overlays (g-j) illustrate the differences
between the models’ results and the ground truth, emphasizing the PHL-IDOL model’s ability to
closely replicate the reference segmentations.
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Figure 4-10. Visual comparison of segmentation outcomes across four models: the general model,
the continual model, the conventional IDOL model, and the PHL-IDOL model. Panel (a) displays
the input CT image, while panels (b), (c), (d), and (e) showcase the segmentation results from the
general, continual, conventional IDOL, and PHL-IDOL models, respectively. Panel (f) represents
the ground truth reference segmentation. Panels (g) through (j) illustrate the overlap of each
model's segmentation result with the ground truth, highlighting areas of concordance and
discrepancy. The same layout is applied in subsequent rows (k & | and m & n), providing a
comprehensive visual evaluation of segmentation performance.

The quantitative and qualitative analyses highlight the significant improvements achieved by
the PHL-IDOL model over other segmentation models. Its superior performance, especially for
small and complex organs, underscores its potential to enhance segmentation accuracy and
reliability in clinical workflows. These findings establish the PHL-IDOL model as a powerful tool
for overcoming the limitations of conventional segmentation methods, paving the way for more
precise and efficient treatment planning in head and neck radiotherapy.
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4.5.2. Evaluation of multi-instituion dataset

Table 4-3 presents the VVolumetric Dice Similarity Coefficient (VDSC) results for the three
models across 18 head and neck organs, including the brainstem, oral cavity, larynx, esophagus,
spinal cord, left and right cochlea, mandible, left and right parotid, left and right submandibular
glands (SMG), thyroid, left and right optic nerves, optic chiasm, and both eyes. The PHL-IDOL
model consistently outperformed the general model in all organs, demonstrating improved VDSC
values. Specifically, the PHL-IDOL model showed the highest VDSC scores across all organs,
including 0.93 for the brainstem, 0.94 for the oral cavity, 0.93 for the larynx, and 0.95 for the
mandible. For smaller structures such as the cochlea, the PHL-IDOL model achieved VDSC
values of 0.88 (left) and 0.89 (right), significantly outperforming the other models, which
struggled with these more intricate structures. Notably, the standard deviations (SD) for VDSC in
the PHL-IDOL model were consistently lower than those of the other models, indicating more
reliable and consistent performance. For instance, the SD for the left cochlea in the PHL-IDOL
model was 0.04 compared to 0.08 for the general model. These results demonstrate the significant
performance gains provided by the PHL-IDOL model, particularly for smaller and more complex
organs, where the general model faced challenges. The differences between models for larger
structures, such as the mandible and eyes, were less pronounced, but the PHL-IDOL model still
maintained a slight edge in performance. A one-way ANOVA test was used to statistically
evaluate the significance of these differences.

Results for the 95th percentile of the Hausdorff Distance (HD95) is also illustrated in Table 4-
3, which further demonstrates the superior performance of the PHL-IDOL model. For example, the
esophagus showed a remarkable improvement with the PHL-IDOL model, achieving an HD95 of
3.09, significantly better than the general model’s 4.53. The right cochlea also saw notable
improvements, with the PHL-IDOL model achieving an HD95 of 1.34, outperforming the general
model (2.30), and general fine-tunning model (2.17). The reduced standard deviations in the PHL -
IDOL model's HD95 results reflect its more consistent and stable performance across different
structures.

Table 4-3. Comparison of segmentation performance using internal dataset across 18 organs using
VDSC and HD95% for the general, general fine-tunning, and PHL-IDOL models. The largest and
smallest differences between the general and PHL-IDOL models are highlighted.

(p > 0.05 no mark, insignificant, 0.01 < p < 0.05 *, first level of significance and p < 0.01 **,
second level of significance).

VDSC SD VDSC SD HD95 SD HD95 SD
General 0.88 0.01 General 0.75%* 0.08 General 3.04* 0.70 General 2.53* 1.01
Brainstem IDOL  0.89 0.02 L cochlea IDOL  0.77* 0.09 Brainstem IDOL  3.17 0.67 L cochlea IDOL  2.37* 0.85
PHL- PHL- PHL- PHL-
IDOL 0.93 0.01 IDOL 0.88 0.04 IDOL 2.72 0.55 IDOL 1.62 0.51
General 0.90%* 0.02 General 0.73** 0.03 General 4.61 1.55 General 2.30% 0.97
Oral cavity R cochlea Oral cavity R cochlea
IDOL 0.91%* 0.01 IDOL  0.75*% 0.04 IDOL 430 0.57 IDOL  2.17* 0.84
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o 0.94 0.01 089 0.03 337 0.40 134 035
General 0.85%* 0.03 General 0.94 0.01 General 3.30%* 0.58 General 1.38 0.45
Layny  TDOL 084% 0.03 i o "IDOL 095 0.01 |, IDOL 3.03% 0.55 0 DOL 132 039
P 0.93* 0.01 P 095 0.01 T 257 029 e 099 0.28
General 0.80%* 0.05 General 0.72* 0.05 General 4.53* 1.51 General 2.34* 1.47
Esophagus IDOL 0.83* 0.03 I;lgfvtiec IDOL 0.75*% 0.06 Esophagus IDOL 4.40* 1.01 I;]:F\};C IDOL 2.23* 1.29
e 0.87 0.02 082 0.03 3,09 0.69 191 051
General 0.84%% 0.04 General 0.72%% 0.07 General 2.57 0.85 General 2.62% 1.84
Spinalcord 1POL 0.83% 0.4 Roptic IDOL_ 07954 0.07 g1 g P01 2.10 033 Roptic 1DOL 211 133
T 0.90 0.03 P 0.83 0.05 P 164 0.22 PaT 176 0.46
General 0.80%* 0.05 General 0.46%* 0.19 General 3.30% 0.45 General 3.90** 1.78
Lparog 1DOL 0.86* 003 Optic IDOL 055 0.15 | .05y [DOL 302% 047 Optic IDOL 368" 139
T 0.88 0.02 P 075 0.08 T 290 0.41 T 2.83 1.08
General 0.85%* 0.03 General 0.89% 0.02 General 3.47**1.13 General 2.13 0.47
Rpuoid POL 089 0.02 | . IDOL 0.90% 0.02 ;.. IDOL 3375079 | . IDOL 212 0.43
093 0.01 093 0.01 236 031 T 2.00 0.41
General 0.81%% 0.05 General 0.89% 0.01 General 2.99 1.29 General 2.43 0.55
RsmG  POL 085 002 . 1DOL 091% 0.02 gy MOL 290 078 . DOL 235 0.47
or 092 001 or 093 001 238 041 oor 198 026
General 0.79%* 0.03 General 3.04 0.55
Lsuc IDOL 084 0.04 Lsmg IDOL 3.13* 081
e 091 0.02 o 2.41 039
General 0.87 0.09 General 3.13 3.11
Thyroig  POL 0.87 0.04 Thyroig  POL 2.99 097
P 0.89 0.02 173 039
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Table 4-4 illustrates the total VDSC and the HD95% of the three models using 18 organs in the
head and neck, which is explained above. Table 4-4 shows the performance of the External 1
dataset results which is the UT Southwestern dataset. As you can see in the table, the PHL-IDOL
showed the best performance compared to the other two models and showing a bigger gap
compared to the internal dataset evaluation results.

Table 4-4. Comparison of segmentation performance for external 1 dataset (UT Southwestern) 18
organs using general model, general fine-tunning model, and PHL-IDOL model using VDSC and

HD95%.

(p > 0.05 no mark, insignificant, 0.01 < p < 0.05 *, first level of significance and p < 0.01 **,
second level of significance).

VDSC SD VDSC SD HD95 SD HD95 SD
General 0.70*%* 0.08 General 0.50*%* 0.11 General 4.89%* 1,78 General 7.04** 2.00
IDOL 0.79* 0.04 IDOL 0.76* 0.07 IDOL 3.99* 0.91 IDOL  3.86 1.02
Brainstem L cochlea Brainstem L cochlea
UTSW UTSW UTSW UTSW
PHL- 0.84 0.04 PHL- 0.82 0.05 PHL- 2.77 0.65 PHL- 3.19 0.78
IDOL IDOL IDOL IDOL
General 0.72%% 0.07 General 0.46** 0.09 General 6.74%* 2.01 General 8.56** 2.33
IDOL 0.76* 0.04 IDOL 0.75* 0.06 IDOL 3.73 0.97 IDOL  3.64 0.86
Oral cavity R cochlea Oral cavity R cochlea
UTSW UTSW UTSW UTSW
PHL- 0.83 0.03 PHL- 0.84 0.05 PHL- 3.49 0.44 PHL- 2.89 0.8
IDOL IDOL IDOL IDOL
General (.78 0.04 General (.86 0.03 General 4.21* 1.55 General 3.30 145
IDOL  0.82 0.03 IDOL  0.90 0.02 IDOL  3.63 0.88 IDOL 247 1.06
Larynx Mandible Larynx Mandible
UTSW UTSW UTSW UTSW
PHL- 0.82 0.03 PHL- 0.93 0.01 PHL- 2.96 0.56 PHL- 1.62 0.5
IDOL IDOL IDOL IDOL
General 0.69* 0.06 General 0.43%% (.16 General 5.11** 1.93 General 8.63** 2.29
IDOL  0.78 0.05 | optic IDOL 0.66** 0.06 IDOL  4.17 1.16 | optic IDOL 4.72%* 1.35
Esophagus nerve Esophagus nerve
UTSW UTSW UTSW UTSW
PHL- 0.79 0.05 PHL- 0.76 0.04 PHL- 3.76 0.81 PHL- 296 0.76
IDOL IDOL IDOL IDOL
General 0.81 0.04 General 0.49%* (.13 General 4.20% 1.64 General 7.90*%* 2.17
) IDOL  0.83 0.04 optic IDOL 0.61%%0.07 IDOL  2.76 0.74 optic IDOL 4.58** 1.34
Spinal cord nerve Spinal cord nerve
UTSW UTSW UTSW UTSW
PHL- 0.86 0.03 PHL- 0.73 0.05 PHL- 248 0.37 PHL- 3.14 0.65
IDOL IDOL IDOL IDOL
L parotid General 0.75*% 0.09 General 0.22%% 0.15 L parotid General 3.66 1.13 General 15.48%* 3.71

Optic
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IDOL  0.81 0.04 chiasm IDOL 0.55% 0.11 IDOL 3.37 0.69 chiasm [DOL 6.71* 2.78

UTSW UTSW UTSW UTSW
PHL- 0.83 0.04 PHL- 0.65 0.08 PHL- 3.17 0.57 PHL- 499 1.84
IDOL IDOL IDOL IDOL
General 0.77* 0.08 General 0.84* 0.04 General 3.75 1.39 General 294 1.11
IDOL  0.81 0.03 IDOL  0.87 0.02 IDOL 3.57 0.71 IDOL  2.66 0.66
R parotid Leye R parotid Leye
UTSW UTSW UTSW UTSW
PHL- 0.85 0.03 PHL- 0.91 0.02 PHL- 3.19 0.46 PHL- 232 0.53
IDOL IDOL IDOL IDOL
General 0.77*%* 0.03 General 0.81% 0.05 General 4.36% 1.51 General 3.13 1.07
IDOL  0.86 0.04 IDOL  0.85 0.03 IDOL 3.22 0.85 IDOL  2.56 0.59
R SMG R eye R SMG R eye
UTSW UTSW UTSW UTSW
PHL- 0.90 0.02 PHL- 0.91 0.02 PHL- 2.76 0.41 PHL- 2.13 0.26
IDOL IDOL IDOL IDOL
General 0.76** 0.05 General 3.04 0.55
IDOL  0.84 0.02 IDOL 3.13* 0.81
L SMG L SMG
UTSW UTSW
PHL- 0.88 0.02 PHL- 2.41 0.39
IDOL IDOL
General 0.80%* 0.05 General 3.13 3.11
IDOL 0.87 0.03 IDOL 2.99 0.97
Thyroid Thyroid
UTSW UTSW
PHL- 0.91 0.02 PHL- 1.73 0.39
IDOL IDOL

Table 4-5 presents the total VDSC and HD95% results for the three models using the External
2 dataset (MAYO Clinic), focusing on 18 organs in the head and neck as previously described. As
demonstrated in Table 4-5, the PHL-IDOL model outperformed the other two models, consistently
showing superior performance. Additionally, the gap between the general model and the PHL -
IDOL model was more pronounced, further emphasizing the importance of using the PHL-1DOL
model in real-time clinical applications.

Table 4-5. Comparison of segmentation performance for external 2 dataset (MAYO Clinic) 18
organs using general model, general fine-tunning model, and PHL-IDOL model using VDSC and
HD95%.

(p > 0.05 no mark, insignificant, 0.01 < p < 0.05 *, first level of significance and p < 0.01 **,
second level of significance).

VDSC SD VDSC SD HD95 SD HDY95 SD
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General 0.75** 0.04 General 0.53**0.13 General 5.07** 1.54 General 7.05** 2.70

IDOL 0.79**0.04 IDOL 0.79 0.06 IDOL 3.49 1.32 IDOL 3.05 0.94
Brainstem L cochlea Brainstem L cochlea

MAYO MAYO MAYO MAYO

PHL- 0.89 0.04 PHL- 0.84 0.03 PHL- 2.69 0.77 PHL- 240 0.58

IDOL IDOL IDOL IDOL

General 0.77 0.06 General 0.44**0.11 General 5.36* 1.77 General 8.43** 3.58

IDOL 0.81 0.04 IDOL 0.77 0.06 IDOL 354 144 IDOL  3.38 1.06
Oral cavity R cochlea Oral cavity R cochlea

MAYO MAYO MAYO MAYO

PHL- 0.85 0.03 PHL- 0.84 0.03 PHL- 375 1.21 PHL- 257 0.66

IDOL IDOL IDOL IDOL

General 0.80 0.03 General 0.88 0.03 General 3.78 1.34 General 3.19 1.33

IDOL 0.82 0.03 IDOL 0.91 0.02 IDOL 3.36 1.18 IDOL 2.16 0.58
Larynx Mandible Larynx Mandible

MAYO MAYO MAYO MAYO

PHL- 0.87 0.03 PHL- 0.95 0.01 PHL- 293 0.82 PHL- 1.84 0.37

IDOL IDOL IDOL IDOL

General 0.72* 0.04 General 0.45**(0.18 General 5.15* 1.56 General 9.41** 4.16

IDOL 0.79 0.05 Loptic POL 0.72 0.07 IDOL 3.59 1.87 Loptic POL 412 1.11
Esophagus nefv o Esophagus nefv o

MAYO MAYO MAYO MAYO

PHL- 0.83 0.05 PHL- 0.78 0.04 PHL- 3.26 1.04 PHL- 3.66 1.52

IDOL IDOL IDOL IDOL

General 0.76* 0.04 General 0.39*%*0.15 General 4.24 1.62 General 8.41** 4.29
' IDOL 0.83 0.03 R optic DOL  0.73 0.08 IDOL 3.02 1.14 R optic IDOL 442 1.28
Spinal cord nerve Spinal cord nerve

MAYO MAYO MAYO MAYO

PHL- 0.88 0.03 PHL- 0.79 0.05 PHL- 2384 0.83 PHL- 357 141

IDOL IDOL IDOL IDOL

General 0.81 0.05 General 0.33**0.16 General 3.22 1.22 General 13.08**5.15

IDOL 082 0.03 ;. ~ IDOL 056* 0.12 oL 318 089 ..~ IDOL 7.34* 2.95
L parotid chi[; sm L parotid Chil::i sm

MAYO MAYO MAYO MAYO

PHL- 0.86 0.04 PHL- 0.71 0.07 PHL- 3.02 1.08 PHL- 512 1.76

IDOL IDOL IDOL IDOL

General 0.83 0.05 General 0.87 0.03 General 3.13 1.06 General 2.99 0.65

IDOL 0.84 0.03 IDOL 0.88 0.03 IDOL 3.11 0.76 IDOL 256 0.51
R parotid L eye R parotid L eye

MAYO MAYO MAYO MAYO

PHL- 0.87 0.03 PHL- 0.92 0.02 PHL- 292 0.86 PHL- 216 0.39

IDOL IDOL IDOL IDOL

General 0.69** 0.07 General 0.86 0.04 General 5.73**2.13 General 259 0.78
R SMG R eye R SMG R eye

IDOL 0.78 0.06 IDOL 0.88 0.03 IDOL 4.89**1.41 IDOL 235 0.53
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MAYO MAYO MAYO MAYO

PHL- 0.83 0.02 PHL- 0.93 0.02 PHL- 173 0.25 PHL- 206 0.32
IDOL IDOL IDOL IDOL
General 0.69** 0.06 General 3.04 0.55
IDOL 0.78 0.05 IDOL 3.13* 0.81
L SMG L SMG
MAYO MAYO
PHL- 0.83 0.03 PHL- 2.41 0.39
IDOL IDOL
General 0.78* 0.04 General 3.13 3.11
IDOL 0.83 0.03 IDOL 2.99 0.97
Thyroid Thyroid
MAYO MAYO
PHL- 0.89 0.02 PHL- 1.73 0.39
IDOL IDOL

To provide a clear and intuitive comparison of model performance, we generated a spider
chart, as illustrated in Figure 4-11. This chart offers a comprehensive visual representation of the
differences between the general model and the PHL-IDOL model across various evaluation
metrics. As previously mentioned, the performance gap between the general model and the PHL-
IDOL model becomes more pronounced when evaluating the external dataset, particularly the data
sourced from multiple institutions. This significant disparity highlights the limitations of the
general model when applied to diverse patient populations, reinforcing the critical need for the
PHL-IDOL model in clinical practice. The superior performance of the PHL-IDOL model in these
evaluations suggests that it is not only more adaptable but also more reliable in delivering precise
results, making it an ideal candidate for real-time clinical implementation.
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Figure 4-11. Spider chart illustrating the VDSC and HD95% performance of three models: general
model, general fine-tunning model, and the PHL-IDOL model using three datasets (Internal
(Yonsei Cancer Center), External 1 (UT Southwestern), and External 2 (MAYO Clinic)). a) shows
the result of the VDSC and b) represents the result of the HD95%.

Figure 4-12 offers a detailed visual comparison of the segmentation performance. In this
context, all three model results were shown using all the dataset: 1. Yonsei (Internal) 2. UTSW
(External 1) 3. MAYO (Extneral 2). When comparing these outcomes, it is evident that the general
fine-tunning model surpasses the general model in accuracy. However, the PHL-IDOL model takes
this performance a step further, significantly outperforming the the general fine-tunning model
approach. Notably, as previously discussed, the PHL-IDOL model consistently excels, particularly
in segmenting smaller, more difficult-to-visualize organs. This further underscores its robustness
and superiority in challenging clinical cases, making it a powerful tool for improving segmentation
accuracy.
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Figure 4-12. Visual comparision of the segmentation results using the general model, fine-tunning
model, and the PHL-IDOL model. The first line displays the results from the Yonsei Cancer Center
dataset (Internal), the second line shows the UTSW dataset (External 1) results, and the last line
represents the MAY O Clinic dataset (External 2) results. For the column, CT image, Manual
contour, General model, Fine-tunning model, and PHL-IDOL results were displayed. At the right
top coner ther VDSC and HD95% is recorded to show the results of the quantitative results.

4.5. Discussion and Conclusion

The general fine-tunning model approach was introduced as a deep learning framework
specifically designed to optimize task performance for individual patients in a radiotherapy setting.
Its primary objective is to create a model tailored to a specific patient by leveraging the prior
information available for that individual. However, one key limitation of the general fine-tunning
approach is its reliance on random deformation vector fields to generate augmented, patient-
specific training datasets during the fine-tuning stage. This method can lead to unrealistic
deformations, diminishing its effectiveness in achieving optimal patient-specific performance. In
contrast, the proposed PHL-IDOL framework enhances this process by beginning with a
similarity-based dataset, comprising data from patients with similar characteristics, which is then
deformed to match the reference data of the patient of interest. This results in more natural and
realistic personalized datasets, enabling the model to learn a highly patient-specific segmentation.

The innovation of the PHL-IDOL model lies in its ability to create a framework that generates
personalized datasets in a more organic and realistic manner by searching for similar datasets
around the patient of interest. This process is achieved through two primary steps: computing
dataset similarity based on patient-specific data and generating new datasets by applying
deformation vectors between the patient data and the most similar datasets. By incorporating these
additional datasets, the PHL-IDOL model effectively expands the data hypersurface around the
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patient of interest, addressing the challenge of limited fine-tuning data and significantly improving
segmentation accuracy.

When comparing the performance of the PHL-IDOL model to both the general model and the
general fine-tunning model demonstrated marked improvements. Specifically, the PHL-IDOL
model exhibited higher Volumetric Dice Similarity Coefficient (VDSC) values and lower 95%
Hausdorff Distance (HD95) values. On average in internal evaluation, the VDSC values increased
by 0.08 from a baseline of 0.81, which is also 0.06 higher than the general fine-tunning model. For
HD95, the PHL-IDOL model showed a decrease of 0.75 from a baseline of 2.97, and 0.48 lower
than the general fine-tunning model, indicating significantly enhanced precision. Additionally, for
the external datasets, in the external 1 dataset, the PHL-IDOL showed 0.16 increase in the VDSC
comparing the general model and the PHL-IDOL and 2.59 difference in the HD95%. Furthermore,
in the external 2 dataset, the PHL-IDOL preformed 0.16 in the VDSC and 2.82 in the HD95%.
This results in variance underscores the PHL-IDOL model's consistent and reliable performance,
validating its efficacy and robustness in real-world clinical settings.

During the process of generating the PHL-IDOL dataset, particularly when determining the
multiplication range of deformation vector fields, we identified certain outlier cases with
substantial dissimilarities. These outliers had the potential to disrupt the model's hypersurface
training. Figure 4-13 illustrates several instances where excessive deformation vector fields
produced images that could adversely impact the training process. In this figure, images (c), (d),
and (e) show only minor differences from the reference image, maintaining a close resemblance.
In contrast, images (b) and (f) display significant deviations, which could negatively affect the
training process. As a result, we carefully constrained the deformation vector range based on
iterative trials and evaluations to ensure the model's stability and performance were not
compromised.

Figure 4-13. Comparison of adjusted deformed vector fields within the patient dataset. (a)
represents the reference image, (b) illustrates the image after applying 0.6 adjusting lower
multiplying deformed vector fields, (c) shows an image obtained by multiplying the deformed
vector field with a factor of 0.8, (d) features the original deformed vector field-adjusted image, (e)
presents the image achieved by multiplying the deformed vector field by a factor of 1.2, (f)
displays the image generated by applying multiplication beyond 1.2 (1.4). (c), (d), (e) is the image
that is generated for the PHL-IDOL model.

Moreover, by analyzing the seven fraction results from the external datasets, the chart vividly
illustrates a progressive widening of the segmentation gap as the treatment fractions advance. This
growing disparity between the models highlights the increasing divergence in performance,
particularly between the general and personalized models. As the fractions proceed, the need for
continuous model adaptation becomes increasingly apparent. This underscores the critical

57



importance of adjusting the segmentation model throughout the clinical treatment process to
maintain accuracy and efficacy in real-world applications. The consistent gap growth as observed
in the later fractions strongly suggests that without these real-time adjustments, the standard
models may struggle to keep pace with anatomical changes, potentially compromising treatment
quality. Therefore, these findings provide compelling evidence that the integration of dynamic,
adaptive frameworks like PHL-IDOL into clinical trials is not only beneficial but necessary to
optimize patient-specific outcomes and ensure the highest standards of precision and care in
radiotherapy. Figure 4-14 illustrates the segmentation accuracy results (VDSC) for each weekly
fraction.

a) Extemal 1 (UTSW)

b) External 2 (MAYO)

L Cochlea VDSC L Optic nerve VDSC R Optic nerve VDSC
100 o

080 —oas 08 os omd
0z0 7 0as

HTHETITHEIT

Figure 4-14. VDSC results for both the External 1 and External 2 datasets. a) results for the
External 1 dataset across weekly fractions are displayed, with the trendline indicating a widening
accuracy gap between the first and final fractions. Similarly, b) showcases the performance of the
External 2 dataset, where a comparable trend emerges, revealing an increasing divergence in
accuracy as the fraction number progresses.

073 o,

Despite the notable advantages and innovations highlighted, it is essential to acknowledge the
limitations of this study, particularly regarding the range of organs evaluated. To confirm the
framework's broader applicability in a clinical setting, further evaluations must include target
volumes and tumors. Given the PHL-IDOL model's impressive performance in contouring small,
hard-to-visualize organs, we anticipate similarly strong results in more complex structures such as
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target volumes and tumors. We are currently developing an expanded dataset to facilitate these
evaluations, and we are eager to test and validate the framework on these critical components.

In addition, we evaluated the PHL-IDOL model across multiple institutions, including datasets
from UT Southwestern and the Mayo Clinic, to assess its performance in external environments.
The results consistently demonstrated the superiority of the PHL-IDOL framework compared to
the general model and the fine-tunning model, especially as treatment fractions progressed. The
increasing segmentation accuracy gap between the PHL-IDOL and general models underscores the
need for its implementation in real-time clinical settings. The model's ability to adapt to patient-
specific variations, even across diverse institutions, further validates its potential for widespread
clinical adoption in adaptive radiotherapy workflows.

Furthermore, online ART encompasses a variety of tasks where innovative solutions are in
high demand. We believe the PHL-IDOL model can extend beyond segmentation to other image
generation tasks, such as generating synthetic CT images from CBCT data or enhancing low-
resolution images to higher resolution. These tasks are pivotal for advancing online ART
workflows, and we plan to explore the framework's adaptability to these challenges, further testing
its potential across various image generation problems.

Our work marks a significant advancement in adaptive radiotherapy, offering a more reliable
and versatile framework for generating patient-specific models. With the PHL-IDOL approach, we
underscore the growing potential for personalized healthcare in radiotherapy, demonstrating the
model's capability to enhance patient outcomes. By enriching datasets with comprehensive prior
information, the PHL-IDOL model not only addresses the shortcomings of the general fine-
tunning approach but also lays the groundwork for future exploration in personalized medicine. In
conclusion, the PHL-IDOL framework stands as a promising tool for optimizing segmentation
accuracy and improving treatment planning and execution in adaptive radiotherapy settings.
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5. CONCLUSION AND FUTUREWORK

In this study, we presented the Personalized Hyperspace Learning (PHL-IDOL) framework as
an advanced approach to improve segmentation accuracy in radiation therapy planning. By
incorporating patient-specific data and leveraging sophisticated metrics like image similarity and
deformable vectors, PHL-IDOL significantly outperformed conventional models, including the
general, continual, and IDOL models. Across diverse anatomical structures, PHL-IDOL
demonstrated superior performance in both the Volumetric Dice Similarity Coefficient (VDSC)
and Hausdorff Distance 95% (HD95) evaluations, particularly excelling in challenging small and
complex organs such as cochleae and optic apparatus. This framework not only enhanced
segmentation accuracy but also exhibited robustness and consistency, providing a reliable tool for
clinical practice.

The success of PHL-IDOL underscores its potential to enhance precision in personalized
radiotherapy by tailoring models to individual patient anatomies. The results also demonstrated the
capability of PHL-IDOL to address challenges associated with inter-patient variability, achieving
consistently high performance in segmentation across multi-institutional datasets. This adaptability
across different clinical environments highlights its potential for broader application in various
healthcare settings.

Looking ahead, the PHL-IDOL framework can serve as a foundational model for future
advancements in radiation therapy and medical imaging. One promising avenue for future work is
extending the PHL-IDOL methodology to dose prediction tasks, enabling more accurate and
individualized radiation dose distributions. By integrating PHL-IDOL with dose prediction
frameworks, it may be possible to create end-to-end solutions for personalized adaptive
radiotherapy, optimizing treatment delivery and outcomes.

Additionally, further exploration of the PHL-IDOL model could involve expanding its
application to other cancer types and treatment modalities, including proton therapy, which
presents unique challenges in dose distribution. The integration of the PHL-IDOL framework into
adaptive radiation therapy workflows could also pave the way for real-time model updates,
enabling clinicians to dynamically adjust treatment plans based on ongoing patient-specific
changes.

Future research could also focus on enhancing the computational efficiency of PHL-IDOL,
enabling its application to larger and more complex datasets while maintaining high accuracy.
Incorporating advanced similarity metrics, such as entropy difference and gradient correlation,
could further refine the framework’s ability to identify relevant patient-specific characteristics.
Moreover, exploring multi-modality imaging data, such as MRI-CT fusion, could provide
additional avenues to improve segmentation and treatment accuracy.

In conclusion, the PHL-IDOL framework represents a significant advancement in personalized
radiotherapy planning. Its integration into broader clinical workflows, combined with future
developments in dose prediction and real-time adaptability, promises to revolutionize precision
medicine in oncology. By addressing current challenges and exploring future applications, PHL -

60



IDOL has the potential to significantly enhance patient outcomes and streamline clinical processes
in radiation therapy.
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