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ABSTRACT

Automated analysis of knee joint alignment using detailed angular
values in long leg radiographs based on deep learning

Malalignment in the lower limb structure can occur due to various causes, and accurately evaluating
limb alignment is essential, especially when correction is necessary. To address this need, we
developed an automated system to assess lower limb alignment by quantifying key parameters:
mechanical tibiofemoral angle (mTFA), mechanical lateral distal femoral angle (mLDFA), medial
proximal tibial angle (MPTA), and joint line convergence angle (JLCA) from full-length weight-
bearing radiographs. In this retrospective study, we analyzed 404 radiographs for algorithm
development and testing, with external validation using 30 radiographs from another hospital. The
segmentation algorithm’s performance was compared to manual segmentation using the Dice
Similarity Coefficient (DSC), and agreement of alignment parameters was assessed using the
Intraclass Correlation Coefficient (ICC). The time taken to measure the four alignment parameters
was recorded. The algorithm demonstrated excellent agreement with human-annotated segmentation
(89-97% similarity), with good to very good alignment parameter agreement (ICC: 0.7213-0.9865).
The automated method was 3.44 times faster than manual measurement. In a larger clinical
application, we conducted a retrospective cohort study with 17,080 long-leg radiographs from
34,160 legs taken between 2010 and 2023 at a tertiary hospital in South Korea. The deep learning
model automatically analyzed mTFA, mLDFA, MPTA, and JLCA. Patients were stratified by age
(<55 and >55 years) and sex, and linear regression analysis was performed to evaluate knee
alignment trends over time. While mTFA remained stable across the population (p > 0.05), in those
under 55 years of age, there was a significant decrease (right: =-0.05, 95% CI: -0.08 to -0.02, p =
0.01; left: B=-0.05, 95% CI: -0.07 to -0.03, p = 0.01), with younger females showing a steeper decline
(right: B=-0.08, 95% CI: -0.14 to -0.03, p = 0.01; left: p=-0.06, 95% ClI: -0.10 to -0.01, p = 0.01).
CPAK classification trends showed an increase in classification 3 in females under 55 (right: $=0.01,
95% CI: 0.00 to 0.01, p = 0.01; left: p=0.01, 95% CI: 0.00 to 0.01, p = 0.01). As a result,
classification 3 increased from 17.9% to 26.4% on the right side and from 21.4% to 28.0% on the
left side between 2010 and 2023. This study reveals distinct shifts in knee alignment, particularly
among younger females, with trends indicating a shift toward valgus alignment. Further research is
needed to understand the long-term clinical impact of these trends and develop targeted strategies
for preserving knee health across the lifespan.

Key words : Knee joint alignment, Radiograph, Deep learning, Osteoarthritis



1. INTRODUCTION

1.1. Algorithm development and validation

Malalignment of lower limb structure occurs due to congenital, developmental, or post-traumatic
causes, leading to knee joint malalignment, causing joint degeneration, abnormal gait, pain, and
asymmetric overloading of articular compartments®. Tibiofemoral malalignment is considered a risk
factor for osteoarthritis (OA), with genu varum and genu valgum increasing the risk of medial and
lateral OA progression, respectively. The severity of malalignment is directly related to knee joint
function deterioration?2,

Accurate evaluation of limb alignment is necessary for situations where malalignment needs
correction, such as limb realignment surgery or joint replacement surgery*. Full-length weight-
bearing radiographs of the lower extremities in an upright posture are commonly used in clinical
settings to evaluate lower limb alignment, joint orientation, and leg length discrepancy®. During
imaging, the patient stands upright with bare feet together, fully extended knees, and forward-facing
patellae to prevent rotation of the lower limbs.

Whole limb alignment is evaluated based on the mechanical tibiofemoral angle (MTFA),
mechanical lateral distal femoral angle (mLDFA), medial proximal tibial angle (MPTA), and joint
line convergence angle (JLCA). Accurately measuring these parameters is crucial to identify the
main source of deformity. Micicoi et al. Reported a physiologic value of 85.8° for mLDFA and 85.6°
for MPTA, indicating a 4° valgus and 4° varus of femoral and tibial bone morphology, respectively®.
In patients with OA, varus deformity (hip-knee-ankle angle < 177°) is caused by distal femoral wear
(mLDFA = 89°), tibial varus obliquity (MPTA = 87°), and lateral joint line opening (JLCA = 3°).
However, compensating for any measurement abnormalities can achieve a balanced limb position.
Therefore, measuring each parameter is vital for comprehending alignment abnormalities and
identifying their primary cause’. However, this may be a laborious and time-consuming task for
radiologists.

Therefore, there is a clinical need for a standardised and reproducible automatic analysis tool
that measures lower limb alignment using full-length weight-bearing radiographs®°. Moreover,
developing a technical framework based on artificial intelligence applicable in clinical settings is
potentially feasible®. Our objective was to create, train, and validate an automated support system to
evaluate lower limb alignment by quantifying mTFA, mLDFA, MPTA, and JLCA on full-length
weight-bearing radiographs of both lower extremities (Fig. 1).
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Fig. 1 Overview of patient enrollment, algorithm development, and analysis

1.2. Clinical application for large scale data

Knee joint alignment plays a pivotal role in the development and progression of degenerative
OA>1%12 Valgus alignment is associated with lateral compartment OA, while varus alignment is
linked to medial compartment OA'3-1, Various factors, including age, gender, body mass index
(BMI), previous trauma, and conditions such as rheumatoid arthritis, significantly influence knee
alignment and, consequently, the patterns of OA!6"°, Additionally, knee joint biomechanics and
muscle strength contribute to alignment and stress distribution, further impacting the onset and
progression of OA!2%-22, Understanding these factors is crucial for early diagnosis, management,
and prevention, as it can help mitigate OA’s detrimental effects on joint function and quality of life>
25

In South Korea, the past decades have seen profound lifestyle changes, marked by increases in
overnutrition and physical inactivity?®?’. This has led to a rise in both adult and childhood obesity,
which likely affects knee joint alignment not only after growth but also during critical developmental
phases?®?’. Research indicates that obesity is linked to greater valgus knee alignment in pubertal
children, and higher BMI is correlated with increased variability in knee alignment, particularly
among girls?®. These alterations in knee alignment during key growth stages may influence future
OA patterns. Moreover, the management of lateral and medial OA differs significantly in terms of
treatment protocols, surgical complexity, and outcomes, highlighting the importance of early
identification and management of knee alignment variations?*3°.

Recently, the Coronal Plane Alignment of the Knee (CPAK) classification system was developed
to apply constitutional knee alignment patterns clinically. By evaluating constitutional knee
alignment in non-arthritic or minimally arthritic conditions, CPAK classifies knee alignment based
on the sum and difference of the mLDFA and MPTA3'-**, This system is particularly useful for
understanding individual variations in knee alignment, especially in the context of OA and knee
replacement surgery.

Advances in deep learning have made it possible to automate knee alignment measurements, greatly
enhancing the feasibility of large-scale studies®*¢. These technologies provide precise, consistent,
and efficient analysis of detailed knee alignment angles including mTFA, mLDFA, MPTA, and



JLCA from radiographic data, overcoming the limitations of traditional manual methods, which are
often time-consuming and prone to variability. In our previous research, we developed an advanced
algorithm for the automated measurement of detailed knee alignment angles, enabling more accurate
assessments®’.

Given the lifestyle changes and the increasing prevalence of obesity, we hypothesize that there
is a significant trend in knee alignment patterns over time. Furthermore, we propose that there will
be notable differences in knee alignment between younger and older age groups, as well as between
males and females, with younger individuals experiencing lifestyle changes during critical growth
phases.

Therefore, the objective of this study is to analyze trends in knee alignment using deep learning-
based automated measurements of detailed angular values. The focus will be on identifying age- and
gender-specific differences in knee alignment patterns, particularly across time. By examining these
longitudinal trends, we aim to provide insights into how changes in alignment patterns may influence
future OA development and help guide early interventions in at-risk populations.

2. METHOD AND MATERIALS

2.1. Algorithm development and validation

2.1.1. Study participants and radiograph data

This retrospective study received approval from the institutional review boards of a tertiary
hospital (A) (Yonsei University Gangnam Severance Hospital, Institutional Review Board, No 3-
2020-0127) and a military hospital (B) (Armed Forces Capital Hospital, Institutional Review Board,
2023-02-002), and informed consent was waived because the data used in this retrospective study
were fully de-identified to protect patient confidentiality. All methods were performed in accordance
with the ethical standards of Helsinki Declaration. A total of 404 full-length weight-bearing
radiographs of both lower extremities from 404 patients (mean age: 44.3 years, 188 men, 186 women)
from hospital A were used to develop and test the algorithm. An external test set of 30 consecutive
radiographs from 30 men (mean age: 30.2 years) from hospital B was included. The patients
underwent long-leg radiography at the two institutions between March 2015 to January 2019 and
between August 2022 and September 2022, respectively. Patients from hospital A with K-L grade 4,
intra-articular fracture, deformity due to previous trauma, and knee arthroplasty, and those < 19
years were excluded (n = 426) (Fig. 2). The long-leg radiographs were obtained using two imaging
acquisition systems and covered the whole lower limbs from the hips to the ankles under single
anteroposterior exposure. Philips DigitalDiagnost (Philips, Best, The Netherlands) and Carestream
DRX-Evolution (Carestream Health, Rochester, NY, USA) were used in hospitals A and B,
respectively.

Next, 30 radiographs out of the 404 were used for clinical verification of the algorithm's
anatomical feature points, chosen through stratified random splitting based on the K-L grade. The
remaining 374 radiographs were used to develop and validate the automatic segmentation



algorithm. Cases with overlapping bones (n = 12), bones containing metal (n = 33), and unclear bone
outline (n = 32) were excluded to ensure methodological consistency®®. For the algorithm’s
development, 342 radiographs for the femoral head, 352 for the distal femur, 341 for the proximal
tibia, 362 for the distal tibia, and 367 for the talus were used. The collected radiographs were divided
into the training set (80%), validation set (10%), and test set (10%) (Fig. 2).

Total patients with long-leg radiographs
(03/2015 ~01/2019)
n=23830

!

Exclusion of patients :

Exclusion of patients : KL grade 4, Intra-articular fracture,
overlapping bones(n=12), bones containing deformity due to previous trauma, under 19
metal(n=33) and unclear outline of the age, Arthroplasty

bones(n=32) T
Stratified random split
Femoral head : 342 |

Distal femur : 352 [«

Proximal tibia : 341 y
| Distal tibia: 362 Automatic segmentation algorithm Automatic determination of
training(80%). validation(10%), test(10%) anatomical feature points
Talus : 367
- Grade0: 125 - Grade0:6
- Grade1:123 |, _374 - Gradel:5 n=30
- Grade2:113 - Grade2:5
- Grade3:13 - Grade3: 14

Fig. 2 Patient flowchart for algorithm development and clinical verification.

2.1.2. Manual segmentation

The femoral heads, knee joints, and ankle joints were manually segmented using Adobe
Photoshop CC 2018 (Adobe Systems Inc., San Jose, CA, USA) to create masks, which served as the
reference for comparison. A radiology technician, supervised by an experienced radiologist, labeled
the masks.

2.1.3. Manual reference measurements

Lower limb alignment was evaluated based on the following anatomic feature points (Fig. 3):
(1) the centre of the femoral head, (2) the centre of the femoral intercondylar notch, (3) centres of
the medial and lateral tibial spines, (4) two most distal points of the medial and lateral femoral
condyles, (5) two most proximal points of the medial and lateral tibial plateaus, and (6) mid-
malleolar point (centre of the ankle).

The mechanical axis of the femur was defined as a line drawn from the centre of the femoral
head to the centre of the femoral intercondylar notch. The mechanical and anatomical axes of the
tibia were defined as the line connecting the centre of the tibial spines and the centre of the ankle.
The distal femoral articular axis was defined by the line connecting the most distal points of the
medial and lateral femoral condyles. The proximal tibial articular axis was defined as the line
connecting the two most proximal points of the tibial plateaus. Four alignment parameters (mTFA,



mLDFA, MPTA, and JLCA) were measured using the aforementioned eight feature points and four
lines.
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Fig. 3 Alignment parameter measurement tool by manually selecting 8 feature points and 4 lines (a)
Femoral head centre, (b) centre of femoral intercondylar notch, centre of the tibial spines, two most
distal points of medial and lateral femoral condyles, and two most proximal points of medial and
lateral tibial plateaus and (¢) mid-malleolar point.

We developed a tool for measuring alignment parameters using MATLAB’s Graphical User
Interface Development Environment (GUIDE) to create a Graphical User Interface (GUI) in
MATLAB. This tool allows the designation of landmarks for angle measurement and calculates the
angles using these points (Fig. 3). To assess the intraobserver and interobserver agreement of the
measured values between the readers and algorithm, an orthopedic fellow measured the angles of
the clinical verification data set (n = 30) twice, with a 2-week interval between the measurement
sessions. Another radiology fellow measured the angles once. Regarding the test from the external
institution, a fellowship-trained radiologist measured the angles twice. The time taken to load the
data and measure the four alignment parameters using the tool was recorded.



2.1.4. Automated segmentation algorithm

Representative models of Semantic Segmentation include FCN (Fully Convolutional networks),
U-Net, and SegNet. FCN needs to learn deconvolution when upsampling, so it needs weight
parameters for learning, but in SegNet, this process is omitted, so the learning parameters are
reduced. U-Net skip combines during the decoding process, but U-Net transfers the entire feature
map information of the same layer from the encoder to the decoder and concats it. Therefore, it is
heavier than SegNet, which only selects and uses some features of Max pooling indices.

For this reason, in this study, the outline of each bone was automatically segmented using SegNet.
The SegNet architecture consists of a down sampling (encoding) path and a corresponding
upsampling (decoding) path, followed by a final pixel-wise classification layer. In the encoder path,
there are 13 convolutional layers that match the first 13 convolutional layers in the VGG16 network.
Each encoder layer has a corresponding decoder layer; therefore, the decoder network also has 13
convolutional layers. The output of the final decoder layer is fed into a multi-class softmax classifier
to produce class probabilities for each pixel independently*°.

To automatically segment the contours of each bone, we implemented a two-step segmentation
algorithm (Fig. 4). In the initial step, we identified the region of interest containing the target bone,
and subsequently, in the second step, we delineated the boundaries of the target bones within the
identified image region. During the first step, the images were resized to 311 x 932 pixels, and the
intensities were scaled to the range [0,1]. In the subsequent step, the images were resized to different
pixel dimensions based on the size of each bone (Femoral head: 470 x 470, Distal femur: 740 x 540,
Proximal tibia: 720 x 470, Distal tibia: 470 x 430, Talus: 370 x 220), and intensities were scaled to
the range [0,1]. We used SGD (Stochastic Gradient Descent) Momentum as the solver to train the
deep learning network. The maximum number of Epochs to train the SegNet model was set to 120,
and a mini-batch with 4 observations was used for each iteration. And the momentum value was set
to 0.9 and the learning rate to 1 x e"-2. The SegNet model was trained using the training and
validation data and implemented with MATLAB R2018b on a GeForce GTX 1080Ti graphics
processing unit.
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Fig. 4 Flowchart of the automatic segmentation algorithm.
The first step was performed on raw images. The second step was performed based on the region of
interest (ROI) image created by cropping the raw image.

2.1.5. Automatic determination of anatomic feature points

The mechanical axes for lower limb alignment were automatically determined based on the
segmentation masks (Fig. 5). The computer-aided automatic measurement times from image data
loading to determining the four alignment parameters were recorded.

[The femoral head anatomic feature point]
A circle was fit to the segmentation outline of the femoral head to determine its centre.

[The distal femur anatomic feature point and the distal femur surface line]

The region comprising the distal femur surface line and the centroid of the segmentation outline was
identified as the distal femur anatomic feature point. The distal femur surface line was determined
by minimisig the distance between the bottom line of the bounding box and the segmentation outline,
resulting in two points. The highest point within the defined area, encompassing the outline, was
designated as the distal femur anatomic feature point.

[The proximal tibia anatomic feature points]

Two peaks were detected from the segmentation outline, and the midpoint between these two points
was extracted to determine the proximal tibia anatomic feature points. Next, an orthogonal line was
created by connecting the two points and the midpoint, and the position along the segmented outline



where the distance between the orthogonal line and the outline was minimised was defined as the
proximal tibia anatomic feature point.

[The proximal tibia surface line]

The convex hull*®*! and bounding box of the segmentation outline were calculated. To determine
the feature points, candidate points were identified by selecting points above the centroid of the
segmentation outline within the region defined by the convex hull. Next, the proximal tibia surface
line was defined by identifying the two points closest to the upper corner points of the bounding box
from the candidate points.

[Distal tibia anatomic feature points]

Two talus feature points were defined by applying the same method of defining the proximal tibia
surface line. Next, an orthogonal line was constructed by connecting the midpoint of the two talus
feature points, and the position where the distance between the orthogonal line and the segmented
outline of the distal tibia was minimum was defined as the distal tibia anatomic feature point.

V.

Femoral head feature point

Proximal tibia feature points

Feature points
Py

(c)

Fig. 5 Flowchart of automatic determination algorithm of anatomic feature points
(a) Segmented images. (b) Anatomic feature points automatically determined based on segmented
images. (c) The mechanical axes for the lower limb alignment.

2.1.6. Statistical Analysis

We implemented global accuracy, mean accuracy, mean intersection over union (IoU), weighted
IoU, and the dice similarity coefficient (DSC) to evaluate the segmentation algorithm’s performance,
which compares the similarity of the automated segmentation mask with the human-annotated
segmentation mask. As a representative measurement, we considered a DSC > 0.7 as indicative of
excellent agreement between two segmented regions, following previous studies*>*.

We confirmed normality in each group for mTFA, mLDFA, MPTA, and JLCA using the Shapiro—
Wilk test and performed group-wise comparisons of their means and standard deviations (SDs) using
repeated measures analysis of variance (ANOVA) between three groups or paired t-tests between
two groups.



We evaluated the intraobserver and interobserver agreement of mTFA, mLDFA, MPTA, and
JLCA between the readers and algorithm using the intraclass correlation coefficient (ICC) to assess
measurement reproducibility. Altman considered an ICC of 0.81-1 as very good, 0.61-0.8 as good,
and 0.41-0.6 as moderate. In the interobserver agreement test, we used the result of the second
session for comparison when a reader performed two measurements.

Statistical significance was set at p <0.05. We performed all statistical analyses using Medcalc
software (version 20.114; MedCalc Software Ltd., Ostend, Belgium).

2.2. Clinical application for large scale data

2.2.1. Study Design and Population

This retrospective study received approval from the institutional review board of a tertiary
hospital (Yonsei University Gangnam Severance Hospital, Institutional Review Board, No 3-2024-
0133). Patient consent was waived due to the retrospective nature of the study. The study utilized
long-leg radiographs obtained from a large cohort of patients who underwent long-leg radiography
at a single tertiary hospital in South Korea between 2010 and 2023. The inclusion criteria required
participants to have available long-leg radiographs (Fig. 6). Exclusion criteria included individuals
under 18 years of age (n=3901), follow-up studies (n=14450), previous surgery or severe deformity
(n=3972), no BMI record (n=170), and algorithm errors (n=1890). Surgeries included total knee
arthroplasty (TKA), ACL reconstruction, correctional osteotomy, and internal fixation for previous
fractures. Severe deformities included limb amputation, hereditary multiple exostoses, polio
sequelae, and deformities from previous fractures. Algorithm errors occurred due to issues with the
DICOM file or malfunctioning algorithms, with data unavailable for both legs in 491 cases, the right
leg in 375 cases, and the left leg in 1024 cases. Due to unexplained DICOM file corruption that
occurred frequently in 2019, we were only able to analyze fewer than 200 images from that year. As
a result, data from 2019 were excluded from the analysis. Ultimately, 17,080 radiographs of 34,160
legs taken between 2010 and 2023 were included in the study.
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Fig. 6 Patient flowchart

2.2.2. Radiographic Data Acquisition

Long-leg radiographs were obtained using standardized protocols to ensure consistent and
accurate measurement of knee alignment. The radiographs included weight-bearing anteroposterior
(AP) views, capturing the entire lower limb from the hip to the ankle. The radiographs were obtained
using an imaging acquisition system that covered the entire lower limbs from the hips to the ankles
under single anteroposterior exposure (Philips DigitalDiagnost, Philips, Best, The Netherlands).
This imaging technique allows for accurate assessment of the detailed angular values related to knee
joint alignment.

2.2.3. Deep Learning Model
A deep learning model was developed and trained to automatically detect and measure angular
values associated with knee joint alignment from the radiographs. The measurements extracted by

the model included the MTFA, LDFA, MPTA, and JLCA. The model was trained using a subset of
radiographs that had been manually annotated by radiology technicians under the supervision of

10



radiologists. Data augmentation techniques were applied to enhance the robustness of the model and
prevent overfitting.

2.2.4. Data Analysis

The study examined changes in MTFA, LDFA, MPTA, and JLCA for both the right and left legs

across age groups (18-29, 30-39, 40-49, 50-59, 60-69, and 70+ years). Additionally, BMI was
categorized into underweight, normal weight, overweight, and obese based on the world health
organization (WHO) BMI classification for Asian populations: underweight (BMI <18.5), normal
weight (BMI 18.5 to <23), overweight (BMI 23 to <25), and obese (BMI >25).
To analyze temporal trends, the study evaluated changes in MTFA, LDFA, MPTA, and JLCA for the
entire cohort, as well as stratified by sex and age groups (<55 years and >55 years). The 55-year age
threshold was chosen because the median age of the entire cohort was 56 years. Furthermore, to
precisely analyze alignment patterns, the study used the CPAK classification to assess the proportion
of each classification within the entire cohort, females under 55, males under 55, females over 55,
and males over 55. Linear regression analysis was conducted to evaluate trends over time and across
BMI categories.

2.2.5. Statistical Analysis

All statistical analyses were performed using Python (version 3.12.3) developed by the Python
Software Foundation (Wilmington, DE). Jupyter Notebook (version 6.5.4), a product of Project
Jupyter (San Diego, CA), was employed for interactive coding and documentation. A p-value of
<0.05 was considered statistically significant. Since age, sex, and angular values, excluding BMI,
did not follow a normal distribution, non-parametric statistical methods were applied. Descriptive
statistics included the median, interquartile range, and proportions for categorical variables. To
analyze trends in measurements across different years or groups, linear regression was performed.

3. RESULTS

3.1. Algorithm development and validation

3.1.1. Segmentation performance

As indicated in Table 1, we assessed the segmentation performance using metrics including
global accuracy, mean accuracy, mean loU, weighted IoU, and DSC to thoroughly analyze the results
obtained in segmentation problems. The segmentation algorithm demonstrated excellent agreement
with the human-annotated segmentation for all the anatomical regions, with an average DSC of 93%
for the femoral head, 95% for the distal femur, 95% for the proximal tibia, 89% for the distal tibia,
and 97% for the talus. Other values ranged from 96% to 98% for the femoral head, 95% to 96% for

11



the distal femur, 96% to 98% for the proximal tibia, 93% to 96% for the distal tibia, and 94% to 98%
for the talus.

Table 1 Segmentation accuracy measured using various evaluation metrics

Global accuracy Mean accuracy Mean IoU Weighted IoU Mean DSC

Femoral head 0.98 0.98 0.96 0.96 0.93
Distal femur 0.98 0.98 0.95 0.96 0.95
Proximal tibia 0.98 0.98 0.96 0.96 0.95
Distal tibia ~ 0.98 0.98 0.93 0.96 0.89
Talus 0.98 0.98 0.94 0.96 0.97

IoU, Intersection over union; DSC, Dice similarity coefficients.

3.1.2. Assessment of measurement comparisons to algorithms

Measurements of the lower limb alignment did not significantly differ between the readers and
algorithm in the internal institution test set, as shown in Table 2 (mTFA: Reader 1, 181.82°£3.39;
Reader 2, 181.78°+3.33; Algorithm, 181.79°+3.48; mLDFA: Reader 1, 87.51°+1.96; Reader 2,
87.71°£1.8; Algorithm, 87.73°+1.86; MPTA: Reader 1, 86.76°t3.19; Reader 2, 86.41°+3.08;
Algorithm, 86.99°+3.29; JLCA: Reader 1, 1.79°£1.43; Reader 2, 1.73°+1.07; Algorithm, 1.67°+1.41)
(all p > 0.05). The average angle differences between the readers and algorithm in the internal and
external institutions are shown in Fig. 7. The mean differences in mTFA, mLDFA, MPTA, and JLCA
between the two readers were 0.04°+0.30, 0.20°+0.88, 0.35°£1.10, and 0.36°+1.08, respectively.
The mean differences between Reader 1 and the algorithm and Reader 2 and the algorithm were
0.03°+£0.79 and 0.01°+£0.83 for mTFA, 0.23°+0.60 and 0.03°+0.84 for mLFDA, 0.23°£1.27 and
0.59°+1.66 for MPTA, and 0.12°+0.68 and 0.24°+1.17 for JLCA, respectively. based on a
mechanical tibiofemoral angle. The intraobserver correlations (ICC range, 0.9836—0.9991) between
sessions 1 and 2 for Reader 1 and the interobserver correlations (ICC range, 0.7751-0.9981) between
Readers 1 and 2 were good to very good, as shown in Table 3. The ICC scores of angles measured
by Reader 1, Reader 2, and the algorithm indicated good to very good agreement, as shown in Table
4 (ICC ranges: 0.9848-0.9865 for mTFA, 0.9443—0.9746 for mLDFA, 0.9273-0.9604 for MPTA,
and 0.7213-0.9393 for JLCA).
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Table 2 Details of manual and automatic measurements of lower limb alignment

Group Mean SD P-value
Readerl 181.82 3.39

mTFA Reader 2 181.78 3.33 0.998
Algorithm 181.79 3.48
Readerl 87.51 1.96

mLDFA Reader 2 87.71 1.8 0.765
Algorithm 87.73 1.86
Readerl 86.76 3.19

MPTA Reader 2 86.41 3.08 0.598
Algorithm 86.99 3.29
Readerl 1.79 1.43

JLCA Reader 2 1.43 1.07 0.315
Algorithm 1.67 1.41

SD, standard deviation; mTFA, mechanical tibiofemoral angle; mLDFA, mechanical lateral distal
femoral articular angle; MPTA, medial proximal tibial angle; JLCA, joint line convergence angle

Table 3 Details of intraobserver and interobserver agreement of lower limb alignment between
readers

ICC 95% CI P-value
R1 vs R1 R1vs R2 R1 vs R1 R1vs R2 R1 vs R1 R1vs R2
(intraobser  (interobser  (intraobserv  (interobserv  (intraobser  (interobser
ver) ver) er) er) ver) ver)
0.9984 ~ 0.9968 ~
mTFA 0.9991 0.9981 0.9995 0.9988 <0.0001 <0.0001
mLD 0.9831 ~ 0.9030 ~
FA 0.9900 0.9420 0.9940 0.9654 <0.0001 <0.0001
MPT 0.9914 ~ 0.9470 ~
A 0.9949 0.9683 0.9970 0.9811 <0.0001 <0.0001
0.9725 ~ 0.6234 ~
JLCA 0.9836 0.7751 0.9902 0.8656 <0.0001 <0.0001

ICC, in-class correlation coefficient; CI, confidence interval; R1, reader 1; R2, reader 2; mTFA,
mechanical tibiofemoral angle; mLDFA, mechanical lateral distal femoral articular angle; MPTA,
medial proximal tibial angle; JLCA, joint line convergence angle
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Table 4 Details of intraobserver and interobserver agreement of lower limb alignment between the
readers and algorithm

ICC 95% CI P-value

R1vsAl R2vsAl R1vsAl R2 vs Al R1 vs Al R2 vs Al
mTFA 0.9865 0.9848 0.9773 ~0.9919 0.9745 ~0.9909 <0.0001 <0.0001
mLDFA 0.9746 0.9443 0.9574 ~ 0.9848 0.9068 ~ 0.9668 <0.0001 <0.0001
MPTA  0.9604 0.9273 0.9336 ~0.9763 0.8782 ~0.9566 <0.0001 <0.0001
JLCA 0.9393 0.7213 0.8984 ~ 0.9638 0.5333 ~0.8335 <0.0001 <0.0001

ICC, in-class correlation coefficient; CI, confidence interval; R1, reader 1; R2, reader 2; mTFA,
mechanical tibiofemoral angle; mLDFA, mechanical lateral distal femoral articular angle; MPTA,
medial proximal tibial angle; JLCA, joint line convergence angle; R1, reader 1; R2, reader 2; Al,
artificial intelligence

3.1.3. Measurement Times

The time taken for the manual measurements of lower limb alignment from the internal
institution test set (n = 30) by the two readers averaged 86 min (average of 172 s/patient). In contrast,
the time taken for computer-aided automatic measurements was 25 min, including the loading time
for training data (average of 50 s/patient), which was 3.44 times faster than that for manual
measurement. The processing time taken after data loading averaged 20 s/patient.

3.1.4. External validation of the algorithm

External validation included 30 long-leg radiographs from consecutive patients at an external
hospital. Intraobserver correlations (ICC ranges: 0.9393-0.9979) between sessions 1 and 2 for
Reader 3 and the interobserver correlations (ICC ranges, 0.7126-0.9695) between the manual and
automatic measurements were good to very good, as shown in Table 5. There was no statistically
significant difference between the measurements of the lower limb alignment by the reader and
algorithm in the external validation, as shown in Table 6 (mTFA: Reader 3, 181.37°+2.26; Algorithm,
181.26°+2.56; mLDFA: Reader 3, 86.92°+2.03; Algorithm, 86.80°+2.01; MPTA: Reader,
86.20°£1.65; Algorithm, 86.55°£1.66; JLCA: Reader 3, 0.40°+1.74; Algorithm 0.49°+1.58) (all p >
0.05). The average angle differences between the reader and algorithm are shown in Fig. 7.

14



Table 5 Details of intraobserver and interobserver agreement of lower limb alignment between the
manual and automatic measurement on external validation

ICC 95% CI P-value
R3 vs R3 OVSAL p3 g Ry RIVSAL ps (g gy R3vsAL
. (interobs . (interobse . (interobs
(intraobserver) (intraobserver) (intraobserver)
erver) rver) erver)

mTF 0.9965 ~ 0.9489 ~
A 0.9979 0.9695 0.9988 0.9818 <0.0001 <0.0001
mL 0.9716 ~ 0.8692 ~
DFA 0.9830 0.9218 0.9899 0.9533 <0.0001 <0.0001
MP 0.9579 ~ 0.8658 ~
TA 0.9748 0.9199 0.9850 0.9521 <0.0001 <0.0001
JLC 0.8916 ~ 0.5189 ~
A 0.9353 0.7126 0.9613 0.8283 <0.0001 <0.0001

* ICC, in-class correlation coefficient; CI, confidence interval; R3, reader 3; mTFA, mechanical
tibiofemoral angle; mLDFA, mechanical lateral distal femoral articular angle; MPTA, medial
proximal tibial angle; JLCA, joint line convergence angle; Al, artificial intelligence

mTFA

mLDFA

MPTA

JLCA

Radiologist 1 vs Radiologist 2 Radiologist 1 vs Algorithm Radiologist 2 vs Algorithm Radiologist 3 vs Algorithm
texternalvalidation)
0.0397 Mean | 0.0294 Mean |[-0.0102 0.0829
0.2951 0.7948 0.8336 0.7769
-0.1997 -0.2311 -0.0314 01372
0.8792 0.6013 0.8401 0.8101
............ - L I
1 03516 | -0.2353 -0.5869 [ mean [-0.3392
r 1.0979 1.2655 1.6596 0.8332
03591 0.1198 -0.2393 0.0287
1.0795 0.6794 sD 11703 1.0532
| |

Fig. 7 Comparative evaluation of reader and algorithm
mTFA, mechanical tibiofemoral angle; mLDFA, mechanical lateral distal femoral angle; MPTFA,
medial proximal tibial angle; JLCA, joint line convergence angle
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3.2. Clinical application for large scale data

3.2.1. Patient Demographic Characteristics

The patient demographic characteristics are summarized in Table 6. A total of 17,080 images
were analyzed across different years, with the percentage of female participants ranging from 57.2%
t0 69.3% per year. The overall percentage of female images was 62.0% (10,590/17,080). The median
age of the entire population was 56.0 years (Q1-Q3: 42.0-66.0 years), with a female median age of
59.0 years (Q1-Q3: 50.0-68.0 years) and a male median age of 48.0 years (Q1-Q3: 29.0-61.0 years).
The median age showed a general increase over the years, with the female population consistently
older than the male population. The median BMI across all participants was 24.0 (Q1-Q3: 21.8-
26.3), with a female median BMI of 23.6 (Q1-Q3: 21.4-26.0) and a male median BMI of 24.5 (Q1-
Q3: 22.6-26.6). The median BMI remained relatively stable across the years, with males generally
having a higher median BMI compared to females.

Table 6. Patient Demographic Characteristics

Year 2010 2011 2012 2013 2014 2015 2016

No. of 545 469 883 1115 1142 1786 1897

images

% of 652 616 65.6 693 657 587 572

female* (225/345) (289/469) (579/883) (I73/1115) (750/1142)  (1048/1786)  (1086/1897)
520 (280- 520 (360- 560 (@3.0- 580 (500- 570 (500- 520 (33.0- -

Age(total) o3 63.0) 65.0) 67.0) 64.0) 60.0) 52.0(35.0-62.0)

Age 560 (470- 570 (460- 580 (@90- 600 (520- 590 (530- 550 (43.0- -

(female)  65.0) 66.0) 66.0) 68.0) 66.0) 62.0) 36.0 (47.0-64.0)
280 (200- 410 (248 500 (270- 540 (373- 530 (360- 400 (25.0- -

Age (male) 49 o) 53.3) 62.3) 63.0) 60.0) 57.0) 420 (25.0-56.0)

BMI P37 (222~ 238 (222 239 (219- 241 (220- 241 (21- 234 Q14 -

(total) 25.4) 25.7) 25.9) 26.3) 262) 26.0) 236 (21.6-26.4)

BMI 29 (20 26 (L& 27 (L& 240 (L8 288 (200 29 @07 i oo

(female)  25.4) 25.8) 26.1) 26.3) 25.9) 25.6)

BMI 236 (222~ 242 (229- 243 (222- 242 (225 246 (223- 242 (225

(male) 253) 25.5) 25.7) 26.2) 26.3) 26.4) 242 (22.1-26.5)

Year 2017 2018 2020 2021 2022 2023 Overall

No. of 1459 1330 1391 1605 1791 1874 17080

images

% of 598 595 597 637 626 644 620

female* (869/1452)  (191/1330)  (830/1391)  (1023/1605)  (1121/1791)  (1206/1874)  (10590/17080)
530 (37.0- 550 (39.0- 580 (d3.0- 610 (47.0- 600 (46.0- 61.0 (48.0-

Age (total) 75, 63.0) 67.0) 69.0) 69.0) 69.0) 36.0 (42.0-66.0)

Age 570 (470- 580 (480- 610 (50- 630 (520- 640 (520- 630 (53.0- -

(female)  66.0) 65.0) 69.0) 71.0) 71.0) 71.0) 39-0(50.0-68.0)
30 (250- 470 (290- 500 (330- 560 (380- 530 (350- 530 (380- -

Age (male) 50 59.0) 64.0) 66.0) 65.8) 66.0) 48.0(29.0-61.0)

BMI 236 (216 243 (218 240 (220- 243 (220- 240 (216 240 (219- )

(total) 26.2) 26.5) 26.6) 26.4) 26.4) 26.1) 240 (21.8-26.3)

BMI B4 (213 237 (@15 238 Q14 239 (I3 234 (Ql2- 236 Q15

(female)  26.0) 26.3) 26.4) 26.0) 26.1) 25.6) 236 (21.4-26.0)

BMI 243 (224 246 (226 245 (228- 250 (23.0- 247 (229 249 (229-

(male) 26.5) 26.7) 26.8) 27.0) 26.8) 26.8) 245 (22.6-26.6)

The data represents percentages (%), with the numbers in parentheses indicating the count of female
images versus the total number of images.

Other data points represent median values, with the numbers in parentheses indicating the
interquartile range (Q1-Q3). BMI, body mass index.
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3.2.2. Correlation of detailed angular values with age groups and BMI classification

The correlation of detailed angular values with age groups and BMI classification is depicted in
Fig. 8 and 9. The data (Fig. 8) show that as age increases, there is a general trend of increasing MTFA
on both sides (right, =0.73, 95% CI: 0.44 to 1.01; left, f=0.73, 95% CI: 0.63 to 0.84), LDFA (right,
=0.37, 95% CI: 0.33 to 0.39; left, p=0.39, 95% CI: 0.28 to 0.50), and JLCA (right, p=0.30, 95%
CI: 0.05 to 0.54; left, $=0.23, 95% CI: 0.02 to 0.44) across all patients (all p <0.05). As age increased,
there was a trend toward a decrease in MPTA (right, =-0.09, 95% CI: -0.14 to -0.04; left, p=-0.08,
95% CI: -0.17 to 0.01), but this was only statistically significant on the right side (p < 0.05), with no
significance on the left side (p = 0.067). MTFA and LDFA exhibited similar trends in both males
and females. However, in females, the decrease in MPTA (right, B=-0.19, 95% CI: -0.26 to -0.11;
left, p=-0.19, 95% CI: -0.28 to -0.11) was statistically significant on both sides (p < 0.05), whereas
in males, the increase in JLCA (right, $=0.09, 95% CI: -0.03 to 0.22; left, $=0.07, 95% CI: -0.05 to
0.19) was not statistically significant on either side (right, p = 0.107; left, p = 0.159).

As BMI increased, there was a general trend of increasing MTFA (right, $=0.47, 95% CI: -0.32
to 1.25; left, f=0.32, 95% CI: -0.32 to 0.96), LDFA (right, p=0.31, 95% CI: -0.21 to 0.83; left, p=0.22,
95% CI: -0.34 to 0.78), and JLCA (right, =0.10, 95% CI: -0.09 to 0.29; left, p=0.11, 95% CI: -0.06
to 0.28), while MPTA (right, f=-0.06, 95% CI: -0.25 to 0.13; left, =0.03, 95% CI: -0.14 to 0.20)
remained relatively stable (Fig. 9). However, there was a slight decrease in Lt MTFA ($=-0.09, 95%
CI: -0.19 to 0.00) in males. Except for this decrease in Lt MTFA in males (p < 0.05), none of the
other trend lines were statistically significant (all p > 0.05). Thus, in this analysis, there were no
consistent or statistically significant changes in detailed angular values on either side based on BMI.
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Fig. 8 Correlation of detailed angular values with age groups
The plot shows the median values of detailed angular values for each age group. The blue line
represents the total population, the green line represents males, and the red line represents females.
The dotted lines indicate the trend of the median values for each group.
MTFA, medial tibiofemoral angle; LDFA, lateral distal femoral angle; MPTA, medial proximal tibial
angle; JLCA, joint line congruence angle; RT, right; LT, left
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Fig. 9 Correlation of detailed angular values with BMI classification

The plot shows the median values of detailed angular values for each BMI group. The blue line
represents the total population, the green line represents males, and the red line represents females.
The dotted lines indicate the trend of the median values for each group.

BMI, body mass index; MTFA, medial tibiofemoral angle; LDFA, lateral distal femoral angle;
MPTA, medial proximal tibial angle; JLCA, joint line congruence angle; RT, right; LT, left

3.2.3. Annual trends of detailed angular values of knee alignment

The annual trends of detailed angular values of knee alignment are depicted in Fig. 10. In the

overall population, all females, all males, and the population over 55 years of age, MTFA, MPTA,
and JLCA remained consistent each year without significant changes (all p > 0.05). However, there
was an exception with the bilateral LDFA in the overall population (right, $=0.02, 95% CI: 0.00 to
0.04; left, p=0.03, 95% CI: 0.01 to 0.06) and in all males (right, f=0.04, 95% CI: 0.01 to 0.06; left,
B=0.04, 95% CI: 0.01 to 0.08), both of which showed an annual increase (all p < 0.05). However,
this increase did not lead to a significant rise in MTFA (right, B=-0.01, 95% CI: -0.05 to 0.04; left,
$=-0.01, 95% CI: -0.04 to 0.02) (both p > 0.05).
In contrast, for individuals under 55 years of age, MTFA (right, f=-0.05, 95% CI: -0.08 to -0.02; left,
B=-0.05, 95% CI: -0.07 to -0.03) showed a decreasing trend on both sides, and this trend was more
pronounced in females under 55 (right, f=-0.08, 95% CI: -0.14 to -0.03; left, f=-0.06, 95% CI: -
0.10 to -0.01), where the decline was steeper compared to the overall population under 55 (all p <
0.05).
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Fig. 10 Annual trends of detailed angular values of knee alignment

Each point represents the median values of detailed angular values for each year. The top 8 graphs
show the values for the total population, the middle 8 graphs represent males, and the bottom 8
graphs represent females. The blue line indicates the total population, the green line represents
individuals under 55 years old, and the red line represents individuals over 55 years old.

MTFA: medial tibiofemoral angle; LDFA: lateral distal femoral angle; MPTA: medial proximal
tibial angle; JLCA: joint line congruence angle; RT: right; LT: left.

3.2.4. Annual trends of CPAK classification
The annual trends of CPAK classification are depicted in Fig. 11. Except for females under 55

years of age, there were no statistically significant trends in the proportions of each classification
(all p > 0.05). However, in females under 55, there was a significant decrease in classification 1 on
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both sides (right, p=-0.01, 95% CI: -0.01 to 0.00; left, p=0.00, 95% CI: -0.01 to 0.00) and a
significant increase in classification 3 (right, =0.01, 95% CI: 0.00 to 0.01; left, p=0.01, 95% CI:

0.00 to 0.01).

As a result, for females under 55, the proportion of classification 1 decreased from 24.4% in
2010 to 16.5% in 2023 on the right side, and from 22.6% to 14.1% on the left side. In contrast, the
proportion of classification 3 increased from 17.9% in 2010 to 26.4% in 2023 on the right side, and

from 21.4% to 28.0% on the left side.
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Fig. 11 Annual trends of CPAK classification

The top two graphs represent the total population, and the bottom two graphs represent females
under 55 years old, showing the yearly proportion of CPAK classification. The colors correspond to
CPAK groups 1 through 9, as indicated in the legend, with trend lines drawn for each group.

CPAK, coronal plane alignment of the knee.

4. DISCUSSION

4.1. Algorithm development and validation
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The variability of conventional alignment measurement causes controversy. Surgeons have
reported inconsistencies and discordance between conventional radiographic measurements and
intraoperative navigation measurements***>. Wright et al. reported three sources of measurement
inconsistency: physiological variations, procedure variability (inconsistent positioning), and intra-
and interobserver variability*®. The mean interobserver difference was 1.4° (SD =1.1), and the mean
intra-observer difference was 0.7° (SD = 0.9). Laskin et al. reported up to 7° variability in
tibiofemoral angle measurements among 50 surgeons*’. Automated measurement reduces these
errors by minimising subjectivity.

We proposed a time-efficient system that automatically measures mTFA, mLDFA, MPTA, and
JLCA from full-length leg weight-bearing radiographs. The system strongly correlated with the
manual measurements in the internal and external institution tests.

Accurate segmentation is required for the automatic measurement of lower limb alignment.
Previous studies performed femoral and tibial segmentation using a traditional spectral clustering
and active shape model*® or unsupervised or atlas-guided approaches**!. Deep-learning methods
have been applied in image segmentation, with UNet being popular in the medical field. However,
UNet may not be the most efficient option for relatively simple data (images with fewer large objects)
as it may require more resources. In this study, a SegNet model was used for image segmentation.

There have been studies utilizing long leg radiographs to investigate detailed angular values
related to coronal alignment®>¢. However, these papers commonly employ a method where
landmarks are directly annotated by humans, and algorithms are subsequently trained based on this
annotated data. This approach inherently introduces a potential bias to the reference values, as the
ground truth is produced by humans marking points manually. In contrast, our approach involves
segmentation followed by the identification of landmarks using a predetermined rule-based system.
This method has the potential to reduce interobserver agreement on ground truth, as it eliminates the
reliance on manual point annotation by humans. Moreover, the segmentation mask generated by the
algorithm can be used to identify new geometric landmarks.

Zheng et al. proposed a method for automatically measuring leg length discrepancy in a pediatric
population using deep learning®’. The method demonstrated a high concordance rate between
manual and automatic segmentation of the pediatric leg, with a Dice value of 0.94. However, their
study employed a wide exclusion criteria. In contrast, Schock et al. achieved a high level of
concordance rate across a wide range of clinical and pathologic indications, with an average
Serensen-Dice coefficient of 0.97 for the femur and 0.96 for the tibia’®,

In our internal validation, the readers and algorithm demonstrated a high concordance rate. The
algorithm required 1 min/patient, in contrast to the manual measurement time of up to 3 min. In the
external validation, the algorithm results significantly correlated with the manual measurements.
However, the validation population consisted of young soldiers aged 20-30 years from a military
hospital and may not represent the general population. JLCA values tended to be lower in military
hospital patients than in those from the other included hospital. Nevertheless, these findings suggest
that our algorithm may be useful in other populations.

Our study had several limitations. First, the training data did not include images from patients
with skeletal dysplasia or hardware, limiting the clinical variability of the images. Second, several
cases showed a large absolute error (> 5 degrees) between manual and automated measurement
results. Future studies should include a wider variety and number of training data to reduce these
errors. Third, our study included a total of 374 images from 374 patients for algorithm development,
which may be considered too few compared to those in larger studies. However, studies by Zheng
et al. and Schock et al. enrolled 179 and 255 patients, respectively, and showed convincing results
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in their analyses, indicating that the number of cases analysed in our study (n = 374) was sufficient
to demonstrate excellent performance®®*’.

4.2. Clinical application for large scale data

A key finding is that younger individuals, particularly females under 55, exhibited notable
changes in knee alignment over time. MTFA showed a decreasing trend on both sides in individuals
under 55, with the trend being more pronounced in younger females (Figure 3). This steeper decline
in MTFA may reflect the influence of rising pediatric and adolescent obesity, known to affect valgus
knee alignment. Previous studies?® have linked higher BMI during growth phases to greater
variability in knee alignment, especially in females, and the reduction in MTFA could increase the
risk of lateral compartment OA later in life, given its association with valgus alignment.

The CPAK classification trends further highlighted gender-specific differences (Figure 4), with
younger females showing a significant decrease in classification 1 and an increase in classification
3. This shift suggests that knee alignment in younger females is moving from traditional varus
patterns toward more neutral or valgus alignments, potentially increasing the risk of lateral
compartment OA. These findings underscore the need for early identification and intervention in
populations at risk for alignment-related pathologies.

Age-related angular values generally showed a trend toward varization (Figure 1). This is likely
due to degenerative changes that occur with aging, including remodeling of the medial femoral
condyle and medial tibial plateau, as well as increased medial joint space narrowing. These findings
are consistent with previous studies®®*°. However, BMI had a more modest impact on knee
alignment, with trends showing an increase in MTFA, LDFA, and JLCA as BMI increased (Figure
2). Nonetheless, these changes were not statistically significant, except for a slight decrease in left
MTFA among males. The differences in obesity thresholds between Asian and Caucasian
populations, with Caucasians typically having higher BMI values, may also contribute to variations
in knee alignment patterns®’-®2, This underscores the importance of targeted research to better
understand how body weight affects knee alignment over time.

One strength of the study is the use of a large cohort spanning over a decade, which allowed us
to analyze long-term trends in knee alignment across various age groups and genders. This large
sample size enhances the statistical power and generalizability of the findings, especially within the
South Korean population. Additionally, advanced deep learning algorithms were applied for the
automated measurement of angular values, reducing the potential for human error. The study also
incorporated CPAK classification alongside detailed angular measurements, providing a
comprehensive understanding of knee alignment patterns that are crucial for identifying populations
at risk for OA.

Despite its strengths, this study has several limitations. First, as a retrospective analysis, it relies
on previously collected data, limiting control over confounding variables and the ability to establish
causal relationships. Second, the data were collected from a single tertiary hospital in South Korea,
which may limit the generalizability of the findings to other populations. Third, the study lacks
longitudinal follow-up for individual patients, making it difficult to track how knee alignment
evolves over time. The exclusion of 2019 data due to DICOM file corruption may also introduce
gaps in trend analysis. Additionally, the study focuses solely on radiographic knee alignment without
correlating these findings to functional outcomes like pain, mobility, or quality of life. The reliance
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on deep learning algorithms, while advantageous, introduces potential errors in measurement, which
could affect the results. Lastly, important factors such as physical activity, occupation, and genetic
predisposition, known to influence knee alignment and OA progression, were not accounted for.

5. CONCLUSION

Our deep-learning-based automated measurement algorithm accurately quantified lower limb
alignment from long-leg radiographs and was significantly faster than manual measurements,
making it well-suited for clinical application across various patient groups and conditions.
Furthermore, this study emphasizes the importance of understanding knee alignment trends,
particularly in younger females, who showed significant valgization in CPAK classification and
mTFA. These trends suggest a potential rise in lateral osteoarthritis in females, highlighting the need
for early, gender- and age-specific interventions to prevent OA. As treatment strategies for lateral
OA are less standardized compared to medial OA, prevention and management approaches must be
adapted accordingly. Further research is necessary to explore the long-term effects of these
alignment changes and to develop targeted strategies for maintaining knee health throughout the
lifespan.
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Abstract in Korean
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