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ABSTRACT 

 

Automated analysis of knee joint alignment using detailed angular 

values in long leg radiographs based on deep learning 

 

 

Malalignment in the lower limb structure can occur due to various causes, and accurately evaluating 

limb alignment is essential, especially when correction is necessary. To address this need, we 

developed an automated system to assess lower limb alignment by quantifying key parameters: 

mechanical tibiofemoral angle (mTFA), mechanical lateral distal femoral angle (mLDFA), medial 

proximal tibial angle (MPTA), and joint line convergence angle (JLCA) from full-length weight-

bearing radiographs. In this retrospective study, we analyzed 404 radiographs for algorithm 

development and testing, with external validation using 30 radiographs from another hospital. The 

segmentation algorithm’s performance was compared to manual segmentation using the Dice 

Similarity Coefficient (DSC), and agreement of alignment parameters was assessed using the 

Intraclass Correlation Coefficient (ICC). The time taken to measure the four alignment parameters 

was recorded. The algorithm demonstrated excellent agreement with human-annotated segmentation 

(89–97% similarity), with good to very good alignment parameter agreement (ICC: 0.7213–0.9865). 

The automated method was 3.44 times faster than manual measurement. In a larger clinical 

application, we conducted a retrospective cohort study with 17,080 long-leg radiographs from 

34,160 legs taken between 2010 and 2023 at a tertiary hospital in South Korea. The deep learning 

model automatically analyzed mTFA, mLDFA, MPTA, and JLCA. Patients were stratified by age 

(≤55 and >55 years) and sex, and linear regression analysis was performed to evaluate knee 

alignment trends over time. While mTFA remained stable across the population (p > 0.05), in those 

under 55 years of age, there was a significant decrease (right: β=-0.05, 95% CI: -0.08 to -0.02, p = 

0.01; left: β=-0.05, 95% CI: -0.07 to -0.03, p = 0.01), with younger females showing a steeper decline 

(right: β=-0.08, 95% CI: -0.14 to -0.03, p = 0.01; left: β=-0.06, 95% CI: -0.10 to -0.01, p = 0.01). 

CPAK classification trends showed an increase in classification 3 in females under 55 (right: β=0.01, 

95% CI: 0.00 to 0.01, p = 0.01; left: β=0.01, 95% CI: 0.00 to 0.01, p = 0.01). As a result, 

classification 3 increased from 17.9% to 26.4% on the right side and from 21.4% to 28.0% on the 

left side between 2010 and 2023. This study reveals distinct shifts in knee alignment, particularly 

among younger females, with trends indicating a shift toward valgus alignment. Further research is 

needed to understand the long-term clinical impact of these trends and develop targeted strategies 

for preserving knee health across the lifespan. 

 

                                                                                

Key words : Knee joint alignment, Radiograph, Deep learning, Osteoarthritis
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1. INTRODUCTION 

 

1.1. Algorithm development and validation 

   Malalignment of lower limb structure occurs due to congenital, developmental, or post-traumatic 

causes, leading to knee joint malalignment, causing joint degeneration, abnormal gait, pain, and 

asymmetric overloading of articular compartments1. Tibiofemoral malalignment is considered a risk 

factor for osteoarthritis (OA), with genu varum and genu valgum increasing the risk of medial and 

lateral OA progression, respectively. The severity of malalignment is directly related to knee joint 

function deterioration2,3. 

   Accurate evaluation of limb alignment is necessary for situations where malalignment needs 

correction, such as limb realignment surgery or joint replacement surgery4. Full-length weight-

bearing radiographs of the lower extremities in an upright posture are commonly used in clinical 

settings to evaluate lower limb alignment, joint orientation, and leg length discrepancy5. During 

imaging, the patient stands upright with bare feet together, fully extended knees, and forward-facing 

patellae to prevent rotation of the lower limbs. 

   Whole limb alignment is evaluated based on the mechanical tibiofemoral angle (mTFA), 

mechanical lateral distal femoral angle (mLDFA), medial proximal tibial angle (MPTA), and joint 

line convergence angle (JLCA). Accurately measuring these parameters is crucial to identify the 

main source of deformity. Micicoi et al. Reported a physiologic value of 85.8° for mLDFA and 85.6° 

for MPTA, indicating a 4° valgus and 4° varus of femoral and tibial bone morphology, respectively6. 

In patients with OA, varus deformity (hip-knee-ankle angle < 177°) is caused by distal femoral wear 

(mLDFA = 89°), tibial varus obliquity (MPTA = 87°), and lateral joint line opening (JLCA = 3°)7. 

However, compensating for any measurement abnormalities can achieve a balanced limb position. 

Therefore, measuring each parameter is vital for comprehending alignment abnormalities and 

identifying their primary cause7. However, this may be a laborious and time-consuming task for 

radiologists.  

   Therefore, there is a clinical need for a standardised and reproducible automatic analysis tool 

that measures lower limb alignment using full-length weight-bearing radiographs8,9. Moreover, 

developing a technical framework based on artificial intelligence applicable in clinical settings is 

potentially feasible9. Our objective was to create, train, and validate an automated support system to 

evaluate lower limb alignment by quantifying mTFA, mLDFA, MPTA, and JLCA on full-length 

weight-bearing radiographs of both lower extremities (Fig. 1). 
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Fig. 1 Overview of patient enrollment, algorithm development, and analysis 

 

1.2. Clinical application for large scale data 

   Knee joint alignment plays a pivotal role in the development and progression of degenerative 

OA3,10-12. Valgus alignment is associated with lateral compartment OA, while varus alignment is 

linked to medial compartment OA13-15. Various factors, including age, gender, body mass index 

(BMI), previous trauma, and conditions such as rheumatoid arthritis, significantly influence knee 

alignment and, consequently, the patterns of OA16-19. Additionally, knee joint biomechanics and 

muscle strength contribute to alignment and stress distribution, further impacting the onset and 

progression of OA11,20-22. Understanding these factors is crucial for early diagnosis, management, 

and prevention, as it can help mitigate OA’s detrimental effects on joint function and quality of life23-

25. 

   In South Korea, the past decades have seen profound lifestyle changes, marked by increases in 

overnutrition and physical inactivity26,27. This has led to a rise in both adult and childhood obesity, 

which likely affects knee joint alignment not only after growth but also during critical developmental 

phases26,27. Research indicates that obesity is linked to greater valgus knee alignment in pubertal 

children, and higher BMI is correlated with increased variability in knee alignment, particularly 

among girls28. These alterations in knee alignment during key growth stages may influence future 

OA patterns. Moreover, the management of lateral and medial OA differs significantly in terms of 

treatment protocols, surgical complexity, and outcomes, highlighting the importance of early 

identification and management of knee alignment variations29,30. 

   Recently, the Coronal Plane Alignment of the Knee (CPAK) classification system was developed 

to apply constitutional knee alignment patterns clinically. By evaluating constitutional knee 

alignment in non-arthritic or minimally arthritic conditions, CPAK classifies knee alignment based 

on the sum and difference of the mLDFA and MPTA31-33. This system is particularly useful for 

understanding individual variations in knee alignment, especially in the context of OA and knee 

replacement surgery.  

Advances in deep learning have made it possible to automate knee alignment measurements, greatly 

enhancing the feasibility of large-scale studies34-36. These technologies provide precise, consistent, 

and efficient analysis of detailed knee alignment angles including mTFA, mLDFA, MPTA, and 
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JLCA from radiographic data, overcoming the limitations of traditional manual methods, which are 

often time-consuming and prone to variability. In our previous research, we developed an advanced 

algorithm for the automated measurement of detailed knee alignment angles, enabling more accurate 

assessments37. 

   Given the lifestyle changes and the increasing prevalence of obesity, we hypothesize that there 

is a significant trend in knee alignment patterns over time. Furthermore, we propose that there will 

be notable differences in knee alignment between younger and older age groups, as well as between 

males and females, with younger individuals experiencing lifestyle changes during critical growth 

phases. 

   Therefore, the objective of this study is to analyze trends in knee alignment using deep learning-

based automated measurements of detailed angular values. The focus will be on identifying age- and 

gender-specific differences in knee alignment patterns, particularly across time. By examining these 

longitudinal trends, we aim to provide insights into how changes in alignment patterns may influence 

future OA development and help guide early interventions in at-risk populations. 

 

 

2. METHOD AND MATERIALS 

 

2.1. Algorithm development and validation 

    

   2.1.1. Study participants and radiograph data 

 

   This retrospective study received approval from the institutional review boards of a tertiary 

hospital (A) (Yonsei University Gangnam Severance Hospital, Institutional Review Board, No 3-

2020-0127) and a military hospital (B) (Armed Forces Capital Hospital, Institutional Review Board, 

2023-02-002), and informed consent was waived because the data used in this retrospective study 

were fully de-identified to protect patient confidentiality. All methods were performed in accordance 

with the ethical standards of Helsinki Declaration. A total of 404 full-length weight-bearing 

radiographs of both lower extremities from 404 patients (mean age: 44.3 years, 188 men, 186 women) 

from hospital A were used to develop and test the algorithm. An external test set of 30 consecutive 

radiographs from 30 men (mean age: 30.2 years) from hospital B was included. The patients 

underwent long-leg radiography at the two institutions between March 2015 to January 2019 and 

between August 2022 and September 2022, respectively. Patients from hospital A with K-L grade 4, 

intra-articular fracture, deformity due to previous trauma, and knee arthroplasty, and those < 19 

years were excluded (n = 426) (Fig. 2). The long-leg radiographs were obtained using two imaging 

acquisition systems and covered the whole lower limbs from the hips to the ankles under single 

anteroposterior exposure. Philips DigitalDiagnost (Philips, Best, The Netherlands) and Carestream 

DRX-Evolution (Carestream Health, Rochester, NY, USA) were used in hospitals A and B, 

respectively. 

   Next, 30 radiographs out of the 404 were used for clinical verification of the algorithm's 

anatomical feature points, chosen through stratified random splitting based on the K-L grade. The 

remaining 374 radiographs were used to develop and validate the automatic segmentation  
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algorithm. Cases with overlapping bones (n = 12), bones containing metal (n = 33), and unclear bone 

outline (n = 32) were excluded to ensure methodological consistency38. For the algorithm’s 

development, 342 radiographs for the femoral head, 352 for the distal femur, 341 for the proximal 

tibia, 362 for the distal tibia, and 367 for the talus were used. The collected radiographs were divided 

into the training set (80%), validation set (10%), and test set (10%) (Fig. 2).  

  

 
Fig. 2 Patient flowchart for algorithm development and clinical verification.  

    

   2.1.2. Manual segmentation 

 

   The femoral heads, knee joints, and ankle joints were manually segmented using Adobe 

Photoshop CC 2018 (Adobe Systems Inc., San Jose, CA, USA) to create masks, which served as the 

reference for comparison. A radiology technician, supervised by an experienced radiologist, labeled 

the masks. 

 

   2.1.3. Manual reference measurements 

 

   Lower limb alignment was evaluated based on the following anatomic feature points (Fig. 3): 

(1) the centre of the femoral head, (2) the centre of the femoral intercondylar notch, (3) centres of 

the medial and lateral tibial spines, (4) two most distal points of the medial and lateral femoral 

condyles, (5) two most proximal points of the medial and lateral tibial plateaus, and (6) mid-

malleolar point (centre of the ankle). 

   The mechanical axis of the femur was defined as a line drawn from the centre of the femoral 

head to the centre of the femoral intercondylar notch. The mechanical and anatomical axes of the 

tibia were defined as the line connecting the centre of the tibial spines and the centre of the ankle. 

The distal femoral articular axis was defined by the line connecting the most distal points of the 

medial and lateral femoral condyles. The proximal tibial articular axis was defined as the line 

connecting the two most proximal points of the tibial plateaus. Four alignment parameters (mTFA, 
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mLDFA, MPTA, and JLCA) were measured using the aforementioned eight feature points and four 

lines. 

 

 
Fig. 3 Alignment parameter measurement tool by manually selecting 8 feature points and 4 lines (a) 

Femoral head centre, (b) centre of femoral intercondylar notch, centre of the tibial spines, two most 

distal points of medial and lateral femoral condyles, and two most proximal points of medial and 

lateral tibial plateaus and (c) mid-malleolar point. 

 

   We developed a tool for measuring alignment parameters using MATLAB’s Graphical User 

Interface Development Environment (GUIDE) to create a Graphical User Interface (GUI) in 

MATLAB. This tool allows the designation of landmarks for angle measurement and calculates the 

angles using these points (Fig. 3). To assess the intraobserver and interobserver agreement of the 

measured values between the readers and algorithm, an orthopedic fellow measured the angles of 

the clinical verification data set (n = 30) twice, with a 2-week interval between the measurement 

sessions. Another radiology fellow measured the angles once. Regarding the test from the external 

institution, a fellowship-trained radiologist measured the angles twice. The time taken to load the 

data and measure the four alignment parameters using the tool was recorded. 
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   2.1.4. Automated segmentation algorithm 

 

   Representative models of Semantic Segmentation include FCN (Fully Convolutional networks), 

U-Net, and SegNet. FCN needs to learn deconvolution when upsampling, so it needs weight 

parameters for learning, but in SegNet, this process is omitted, so the learning parameters are 

reduced. U-Net skip combines during the decoding process, but U-Net transfers the entire feature 

map information of the same layer from the encoder to the decoder and concats it. Therefore, it is 

heavier than SegNet, which only selects and uses some features of Max pooling indices. 

   For this reason, in this study, the outline of each bone was automatically segmented using SegNet. 

The SegNet architecture consists of a down sampling (encoding) path and a corresponding 

upsampling (decoding) path, followed by a final pixel-wise classification layer. In the encoder path, 

there are 13 convolutional layers that match the first 13 convolutional layers in the VGG16 network. 

Each encoder layer has a corresponding decoder layer; therefore, the decoder network also has 13 

convolutional layers. The output of the final decoder layer is fed into a multi-class softmax classifier 

to produce class probabilities for each pixel independently39.  

   To automatically segment the contours of each bone, we implemented a two-step segmentation 

algorithm (Fig. 4). In the initial step, we identified the region of interest containing the target bone, 

and subsequently, in the second step, we delineated the boundaries of the target bones within the 

identified image region. During the first step, the images were resized to 311 x 932 pixels, and the 

intensities were scaled to the range [0,1]. In the subsequent step, the images were resized to different 

pixel dimensions based on the size of each bone (Femoral head: 470 x 470, Distal femur: 740 x 540, 

Proximal tibia: 720 x 470, Distal tibia: 470 x 430, Talus: 370 x 220), and intensities were scaled to 

the range [0,1]. We used SGD (Stochastic Gradient Descent) Momentum as the solver to train the 

deep learning network. The maximum number of Epochs to train the SegNet model was set to 120, 

and a mini-batch with 4 observations was used for each iteration. And the momentum value was set 

to 0.9 and the learning rate to 1 x e^-2. The SegNet model was trained using the training and 

validation data and implemented with MATLAB R2018b on a GeForce GTX 1080Ti graphics 

processing unit. 
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Fig. 4 Flowchart of the automatic segmentation algorithm.  

The first step was performed on raw images. The second step was performed based on the region of 

interest (ROI) image created by cropping the raw image. 

 

 

   2.1.5. Automatic determination of anatomic feature points 

 

   The mechanical axes for lower limb alignment were automatically determined based on the 

segmentation masks (Fig. 5). The computer-aided automatic measurement times from image data 

loading to determining the four alignment parameters were recorded. 

    

[The femoral head anatomic feature point] 

A circle was fit to the segmentation outline of the femoral head to determine its centre. 

    

[The distal femur anatomic feature point and the distal femur surface line] 

The region comprising the distal femur surface line and the centroid of the segmentation outline was 

identified as the distal femur anatomic feature point. The distal femur surface line was determined 

by minimisig the distance between the bottom line of the bounding box and the segmentation outline, 

resulting in two points. The highest point within the defined area, encompassing the outline, was 

designated as the distal femur anatomic feature point.  

 

[The proximal tibia anatomic feature points] 

Two peaks were detected from the segmentation outline, and the midpoint between these two points 

was extracted to determine the proximal tibia anatomic feature points. Next, an orthogonal line was 

created by connecting the two points and the midpoint, and the position along the segmented outline 
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where the distance between the orthogonal line and the outline was minimised was defined as the 

proximal tibia anatomic feature point. 

 

[The proximal tibia surface line] 

The convex hull40,41 and bounding box of the segmentation outline were calculated. To determine 

the feature points, candidate points were identified by selecting points above the centroid of the 

segmentation outline within the region defined by the convex hull. Next, the proximal tibia surface 

line was defined by identifying the two points closest to the upper corner points of the bounding box 

from the candidate points. 

 

[Distal tibia anatomic feature points] 

Two talus feature points were defined by applying the same method of defining the proximal tibia 

surface line. Next, an orthogonal line was constructed by connecting the midpoint of the two talus 

feature points, and the position where the distance between the orthogonal line and the segmented 

outline of the distal tibia was minimum was defined as the distal tibia anatomic feature point. 

 

 
Fig. 5 Flowchart of automatic determination algorithm of anatomic feature points 

(a) Segmented images. (b) Anatomic feature points automatically determined based on segmented 

images. (c) The mechanical axes for the lower limb alignment. 

 

   2.1.6. Statistical Analysis 

  

   We implemented global accuracy, mean accuracy, mean intersection over union (IoU), weighted 

IoU, and the dice similarity coefficient (DSC) to evaluate the segmentation algorithm’s performance, 

which compares the similarity of the automated segmentation mask with the human-annotated 

segmentation mask. As a representative measurement, we considered a DSC ≥ 0.7 as indicative of 

excellent agreement between two segmented regions, following previous studies42,43. 

   We confirmed normality in each group for mTFA, mLDFA, MPTA, and JLCA using the Shapiro–

Wilk test and performed group-wise comparisons of their means and standard deviations (SDs) using 

repeated measures analysis of variance (ANOVA) between three groups or paired t-tests between 

two groups.  
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   We evaluated the intraobserver and interobserver agreement of mTFA, mLDFA, MPTA, and 

JLCA between the readers and algorithm using the intraclass correlation coefficient (ICC) to assess 

measurement reproducibility. Altman considered an ICC of 0.81–1 as very good, 0.61–0.8 as good, 

and 0.41–0.6 as moderate. In the interobserver agreement test, we used the result of the second 

session for comparison when a reader performed two measurements. 

    Statistical significance was set at p < 0.05. We performed all statistical analyses using Medcalc 

software (version 20.114; MedCalc Software Ltd., Ostend, Belgium).  

 

2.2. Clinical application for large scale data 

 

   2.2.1. Study Design and Population 

 

   This retrospective study received approval from the institutional review board of a tertiary 

hospital (Yonsei University Gangnam Severance Hospital, Institutional Review Board, No 3-2024-

0133). Patient consent was waived due to the retrospective nature of the study. The study utilized 

long-leg radiographs obtained from a large cohort of patients who underwent long-leg radiography 

at a single tertiary hospital in South Korea between 2010 and 2023. The inclusion criteria required 

participants to have available long-leg radiographs (Fig. 6). Exclusion criteria included individuals 

under 18 years of age (n=3901), follow-up studies (n=14450), previous surgery or severe deformity 

(n=3972), no BMI record (n=170), and algorithm errors (n=1890). Surgeries included total knee 

arthroplasty (TKA), ACL reconstruction, correctional osteotomy, and internal fixation for previous 

fractures. Severe deformities included limb amputation, hereditary multiple exostoses, polio 

sequelae, and deformities from previous fractures. Algorithm errors occurred due to issues with the 

DICOM file or malfunctioning algorithms, with data unavailable for both legs in 491 cases, the right 

leg in 375 cases, and the left leg in 1024 cases. Due to unexplained DICOM file corruption that 

occurred frequently in 2019, we were only able to analyze fewer than 200 images from that year. As 

a result, data from 2019 were excluded from the analysis. Ultimately, 17,080 radiographs of 34,160 

legs taken between 2010 and 2023 were included in the study. 
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Fig. 6 Patient flowchart 

 

   2.2.2. Radiographic Data Acquisition 

 

   Long-leg radiographs were obtained using standardized protocols to ensure consistent and 

accurate measurement of knee alignment. The radiographs included weight-bearing anteroposterior 

(AP) views, capturing the entire lower limb from the hip to the ankle. The radiographs were obtained 

using an imaging acquisition system that covered the entire lower limbs from the hips to the ankles 

under single anteroposterior exposure (Philips DigitalDiagnost, Philips, Best, The Netherlands). 

This imaging technique allows for accurate assessment of the detailed angular values related to knee 

joint alignment. 

 

   2.2.3. Deep Learning Model 

 

   A deep learning model was developed and trained to automatically detect and measure angular 

values associated with knee joint alignment from the radiographs. The measurements extracted by 

the model included the MTFA, LDFA, MPTA, and JLCA. The model was trained using a subset of 

radiographs that had been manually annotated by radiology technicians under the supervision of 
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radiologists. Data augmentation techniques were applied to enhance the robustness of the model and 

prevent overfitting. 

 

   2.2.4. Data Analysis 

 

   The study examined changes in MTFA, LDFA, MPTA, and JLCA for both the right and left legs 

across age groups (18-29, 30-39, 40-49, 50-59, 60-69, and 70+ years). Additionally, BMI was 

categorized into underweight, normal weight, overweight, and obese based on the world health 

organization (WHO) BMI classification for Asian populations: underweight (BMI <18.5), normal 

weight (BMI 18.5 to <23), overweight (BMI 23 to <25), and obese (BMI ≥25).  

To analyze temporal trends, the study evaluated changes in MTFA, LDFA, MPTA, and JLCA for the 

entire cohort, as well as stratified by sex and age groups (≤55 years and >55 years). The 55-year age 

threshold was chosen because the median age of the entire cohort was 56 years. Furthermore, to 

precisely analyze alignment patterns, the study used the CPAK classification to assess the proportion 

of each classification within the entire cohort, females under 55, males under 55, females over 55, 

and males over 55. Linear regression analysis was conducted to evaluate trends over time and across 

BMI categories. 

 

   2.2.5. Statistical Analysis 

 

   All statistical analyses were performed using Python (version 3.12.3) developed by the Python 

Software Foundation (Wilmington, DE). Jupyter Notebook (version 6.5.4), a product of Project 

Jupyter (San Diego, CA), was employed for interactive coding and documentation. A p-value of 

<0.05 was considered statistically significant. Since age, sex, and angular values, excluding BMI, 

did not follow a normal distribution, non-parametric statistical methods were applied. Descriptive 

statistics included the median, interquartile range, and proportions for categorical variables. To 

analyze trends in measurements across different years or groups, linear regression was performed.  

 

3. RESULTS 

 

3.1. Algorithm development and validation 

    

   3.1.1. Segmentation performance 

 

   As indicated in Table 1, we assessed the segmentation performance using metrics including 

global accuracy, mean accuracy, mean IoU, weighted IoU, and DSC to thoroughly analyze the results 

obtained in segmentation problems. The segmentation algorithm demonstrated excellent agreement 

with the human-annotated segmentation for all the anatomical regions, with an average DSC of 93% 

for the femoral head, 95% for the distal femur, 95% for the proximal tibia, 89% for the distal tibia, 

and 97% for the talus. Other values ranged from 96% to 98% for the femoral head, 95% to 96% for 
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the distal femur, 96% to 98% for the proximal tibia, 93% to 96% for the distal tibia, and 94% to 98% 

for the talus. 

 

 

Table 1 Segmentation accuracy measured using various evaluation metrics 

 Global accuracy Mean accuracy Mean IoU Weighted IoU Mean DSC 

Femoral head 0.98 0.98 0.96 0.96 0.93 

Distal femur 0.98 0.98 0.95 0.96 0.95 

Proximal tibia 0.98 0.98 0.96 0.96 0.95 

Distal tibia 0.98 0.98 0.93 0.96 0.89 

Talus 0.98 0.98 0.94 0.96 0.97 

IoU, Intersection over union; DSC, Dice similarity coefficients. 
 

 

   3.1.2. Assessment of measurement comparisons to algorithms 

  

   Measurements of the lower limb alignment did not significantly differ between the readers and 

algorithm in the internal institution test set, as shown in Table 2 (mTFA: Reader 1, 181.82°±3.39; 

Reader 2, 181.78°±3.33; Algorithm, 181.79°±3.48; mLDFA: Reader 1, 87.51°±1.96; Reader 2, 

87.71°±1.8; Algorithm, 87.73°±1.86; MPTA: Reader 1, 86.76°±3.19; Reader 2, 86.41°±3.08; 

Algorithm, 86.99°±3.29; JLCA: Reader 1, 1.79°±1.43; Reader 2, 1.73°±1.07; Algorithm, 1.67°±1.41) 

(all p > 0.05). The average angle differences between the readers and algorithm in the internal and 

external institutions are shown in Fig. 7. The mean differences in mTFA, mLDFA, MPTA, and JLCA 

between the two readers were 0.04°±0.30, 0.20°±0.88, 0.35°±1.10, and 0.36°±1.08, respectively. 

The mean differences between Reader 1 and the algorithm and Reader 2 and the algorithm were 

0.03°±0.79 and 0.01°±0.83 for mTFA, 0.23°±0.60 and 0.03°±0.84 for mLFDA, 0.23°±1.27 and 

0.59°±1.66 for MPTA, and 0.12°±0.68 and 0.24°±1.17 for JLCA, respectively. based on a 

mechanical tibiofemoral angle. The intraobserver correlations (ICC range, 0.9836–0.9991) between 

sessions 1 and 2 for Reader 1 and the interobserver correlations (ICC range, 0.7751–0.9981) between 

Readers 1 and 2 were good to very good, as shown in Table 3. The ICC scores of angles measured 

by Reader 1, Reader 2, and the algorithm indicated good to very good agreement, as shown in Table 

4 (ICC ranges: 0.9848–0.9865 for mTFA, 0.9443–0.9746 for mLDFA, 0.9273–0.9604 for MPTA, 

and 0.7213–0.9393 for JLCA). 
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Table 2 Details of manual and automatic measurements of lower limb alignment 

  Group Mean SD P-value 

mTFA 

Reader1 181.82 3.39 

0.998 Reader 2 181.78 3.33 

Algorithm 181.79 3.48 

mLDFA 

Reader1 87.51 1.96 

0.765 Reader 2 87.71 1.8 

Algorithm 87.73 1.86 

MPTA 

Reader1 86.76 3.19 

0.598 Reader 2 86.41 3.08 

Algorithm 86.99 3.29 

JLCA 

Reader1 1.79 1.43 

0.315 Reader 2 1.43 1.07 

Algorithm 1.67 1.41 

SD, standard deviation; mTFA, mechanical tibiofemoral angle; mLDFA, mechanical lateral distal 

femoral articular angle; MPTA, medial proximal tibial angle; JLCA, joint line convergence angle 

 

 

Table 3 Details of intraobserver and interobserver agreement of lower limb alignment between 

readers 

 

ICC 95% CI P-value 

R1 vs R1 

(intraobser

ver) 

R1 vs R2 

(interobser

ver) 

R1 vs R1 

(intraobserv

er) 

R1 vs R2 

(interobserv

er) 

R1 vs R1 

(intraobser

ver) 

R1 vs R2 

(interobser

ver) 

mTFA 0.9991 0.9981 
0.9984 ~ 

0.9995 

0.9968 ~ 

0.9988 
<0.0001 <0.0001 

mLD

FA 
0.9900 0.9420 

0.9831 ~ 

0.9940 

0.9030 ~ 

0.9654 
<0.0001 <0.0001 

MPT

A 
0.9949 0.9683 

0.9914 ~ 

0.9970 

0.9470 ~ 

0.9811 
<0.0001 <0.0001 

JLCA 0.9836 0.7751 
0.9725 ~ 

0.9902 

0.6234 ~ 

0.8656 
<0.0001 <0.0001 

ICC, in-class correlation coefficient; CI, confidence interval; R1, reader 1; R2, reader 2; mTFA, 

mechanical tibiofemoral angle; mLDFA, mechanical lateral distal femoral articular angle; MPTA, 

medial proximal tibial angle; JLCA, joint line convergence angle 
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Table 4 Details of intraobserver and interobserver agreement of lower limb alignment between the 

readers and algorithm 

 ICC 95% CI P-value 

R1 vs Al R2 vs Al R1 vs Al R2 vs Al R1 vs Al R2 vs Al 

mTFA 0.9865 0.9848 0.9773 ~ 0.9919 0.9745 ~ 0.9909 <0.0001 <0.0001 

mLDFA 0.9746 0.9443 0.9574 ~ 0.9848 0.9068 ~ 0.9668 <0.0001 <0.0001 

MPTA 0.9604 0.9273 0.9336 ~ 0.9763 0.8782 ~ 0.9566 <0.0001 <0.0001 

JLCA 0.9393 0.7213 0.8984 ~ 0.9638 0.5333 ~ 0.8335 <0.0001 <0.0001 

ICC, in-class correlation coefficient; CI, confidence interval; R1, reader 1; R2, reader 2; mTFA, 

mechanical tibiofemoral angle; mLDFA, mechanical lateral distal femoral articular angle; MPTA, 

medial proximal tibial angle; JLCA, joint line convergence angle; R1, reader 1; R2, reader 2; AI, 

artificial intelligence 

 

 

   3.1.3. Measurement Times 

  

   The time taken for the manual measurements of lower limb alignment from the internal 

institution test set (n = 30) by the two readers averaged 86 min (average of 172 s/patient). In contrast, 

the time taken for computer-aided automatic measurements was 25 min, including the loading time 

for training data (average of 50 s/patient), which was 3.44 times faster than that for manual 

measurement. The processing time taken after data loading averaged 20 s/patient. 

 

   3.1.4. External validation of the algorithm 

  

   External validation included 30 long-leg radiographs from consecutive patients at an external 

hospital. Intraobserver correlations (ICC ranges: 0.9393-0.9979) between sessions 1 and 2 for 

Reader 3 and the interobserver correlations (ICC ranges, 0.7126–0.9695) between the manual and 

automatic measurements were good to very good, as shown in Table 5. There was no statistically 

significant difference between the measurements of the lower limb alignment by the reader and 

algorithm in the external validation, as shown in Table 6 (mTFA: Reader 3, 181.37°±2.26; Algorithm, 

181.26°±2.56; mLDFA: Reader 3, 86.92°±2.03; Algorithm, 86.80°±2.01; MPTA: Reader, 

86.20°±1.65; Algorithm, 86.55°±1.66; JLCA: Reader 3, 0.40°±1.74; Algorithm 0.49°±1.58) (all p > 

0.05). The average angle differences between the reader and algorithm are shown in Fig. 7.  
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Table 5 Details of intraobserver and interobserver agreement of lower limb alignment between the 

manual and automatic measurement on external validation 

 

ICC 95% CI P-value 

R3 vs R3 

(intraobserver) 

R3 vs AI 

(interobs

erver) 

R3 vs R3 

(intraobserver) 

R3 vs AI 

(interobse

rver) 

R3 vs R3 

(intraobserver) 

R3 vs AI 

(interobs

erver) 

mTF

A 
0.9979 0.9695 

0.9965 ~ 

0.9988 

0.9489 ~ 

0.9818 
<0.0001 <0.0001 

mL

DFA 
0.9830 0.9218 

0.9716 ~ 

0.9899 

0.8692 ~ 

0.9533 
<0.0001 <0.0001 

MP

TA 
0.9748 0.9199 

0.9579 ~ 

0.9850 

0.8658 ~ 

0.9521 
<0.0001 <0.0001 

JLC

A 
0.9353 0.7126 

0.8916 ~ 

0.9613 

0.5189 ~ 

0.8283 
<0.0001 <0.0001 

* ICC, in-class correlation coefficient; CI, confidence interval; R3, reader 3; mTFA, mechanical 

tibiofemoral angle; mLDFA, mechanical lateral distal femoral articular angle; MPTA, medial 

proximal tibial angle; JLCA, joint line convergence angle; AI, artificial intelligence 

 

 

Fig. 7 Comparative evaluation of reader and algorithm 

mTFA, mechanical tibiofemoral angle; mLDFA, mechanical lateral distal femoral angle; MPTFA, 

medial proximal tibial angle; JLCA, joint line convergence angle 
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3.2. Clinical application for large scale data 

 

3.2.1. Patient Demographic Characteristics 

   The patient demographic characteristics are summarized in Table 6. A total of 17,080 images 

were analyzed across different years, with the percentage of female participants ranging from 57.2% 

to 69.3% per year. The overall percentage of female images was 62.0% (10,590/17,080). The median 

age of the entire population was 56.0 years (Q1-Q3: 42.0-66.0 years), with a female median age of 

59.0 years (Q1-Q3: 50.0-68.0 years) and a male median age of 48.0 years (Q1-Q3: 29.0-61.0 years). 

The median age showed a general increase over the years, with the female population consistently 

older than the male population. The median BMI across all participants was 24.0 (Q1-Q3: 21.8-

26.3), with a female median BMI of 23.6 (Q1-Q3: 21.4-26.0) and a male median BMI of 24.5 (Q1-

Q3: 22.6-26.6). The median BMI remained relatively stable across the years, with males generally 

having a higher median BMI compared to females. 

 

Table 6. Patient Demographic Characteristics 

The data represents percentages (%), with the numbers in parentheses indicating the count of female 

images versus the total number of images. 

Other data points represent median values, with the numbers in parentheses indicating the 

interquartile range (Q1-Q3). BMI, body mass index. 

Year 2010 2011 2012 2013 2014 2015 2016 

No. of 

images 
345 469 883 1115 1142 1786 1897 

% of 

female* 

65.2 

(225/345) 

61.6 

(289/469) 

65.6 

(579/883) 

69.3 

(773/1115) 

65.7 

(750/1142) 

58.7 

(1048/1786) 

57.2 

(1086/1897) 

Age (total) 
52.0 (28.0-

63.0) 

52.0 (36.0-

63.0) 

56.0 (43.0-

65.0) 

58.0 (50.0-

67.0) 

57.0 (50.0-

64.0) 

52.0 (33.0-

60.0) 
52.0 (35.0-62.0) 

Age 

(female) 

56.0 (47.0-

65.0) 

57.0 (46.0-

66.0) 

58.0 (49.0-

66.0) 

60.0 (52.0-

68.0) 

59.0 (53.0-

66.0) 

55.0 (43.0-

62.0) 
56.0 (47.0-64.0) 

Age (male) 
28.0 (20.0-

49.0) 

41.0 (24.8-

53.3) 

50.0 (27.0-

62.3) 

54.0 (37.3-

63.0) 

53.0 (36.0-

60.0) 

40.0 (25.0-

57.0) 
42.0 (25.0-56.0) 

BMI 

(total) 

23.7 (22.2-

25.4) 

23.8 (22.2-

25.7) 

23.9 (21.9-

25.9) 

24.1 (22.0-

26.3) 

24.1 (22.1-

26.2) 

23.4 (21.4-

26.0) 
23.6 (21.6-26.4) 

BMI 

(female) 

23.9 (22.0-

25.4) 

23.6 (21.8-

25.8) 

23.7 (21.8-

26.1) 

24.0 (21.8-

26.3) 

23.8 (22.0-

25.9) 

22.9 (20.7-

25.6) 
23.4 (21.1-26.2) 

BMI 

(male) 

23.6 (22.2-

25.3) 

24.2 (22.9-

25.5) 

24.3 (22.2-

25.7) 

24.2 (22.5-

26.2) 

24.6 (22.3-

26.3) 

24.2 (22.3-

26.4) 
24.2 (22.1-26.5) 

Year 2017 2018 2020 2021 2022 2023 Overall 

No. of 

images 
1452 1330 1391 1605 1791 1874 17080 

% of 

female* 

59.8 

(869/1452) 

59.5 

(791/1330) 

59.7 

(830/1391) 

63.7 

(1023/1605) 

62.6 

(1121/1791) 

64.4 

(1206/1874) 

62.0 

(10590/17080) 

Age (total) 
53.0 (37.0-

63.0) 

55.0 (39.0-

63.0) 

58.0 (43.0-

67.0) 

61.0 (47.0-

69.0) 

60.0 (46.0-

69.0) 

61.0 (48.0-

69.0) 
56.0 (42.0-66.0) 

Age 

(female) 

57.0 (47.0-

66.0) 

58.0 (48.0-

65.0) 

61.0 (51.0-

69.0) 

63.0 (52.0-

71.0) 

64.0 (52.0-

71.0) 

63.0 (53.0-

71.0) 
59.0 (50.0-68.0) 

Age (male) 
43.0 (25.0-

56.0) 

47.0 (29.0-

59.0) 

50.0 (33.0-

64.0) 

56.0 (38.0-

66.0) 

53.0 (35.0-

65.8) 

53.0 (38.0-

66.0) 
48.0 (29.0-61.0) 

BMI 

(total) 

23.6 (21.6-

26.2) 

24.3 (21.8-

26.5) 

24.0 (22.0-

26.6) 

24.3 (22.0-

26.4) 

24.0 (21.6-

26.4) 

24.0 (21.9-

26.1) 
24.0 (21.8-26.3) 

BMI 

(female) 

23.4 (21.3-

26.0) 

23.7 (21.5-

26.3) 

23.8 (21.4-

26.4) 

23.9 (21.3-

26.0) 

23.4 (21.2-

26.1) 

23.6 (21.3-

25.6) 
23.6 (21.4-26.0) 

BMI 

(male) 

24.3 (22.4-

26.5) 

24.6 (22.6-

26.7) 

24.5 (22.8-

26.8) 

25.0 (23.0-

27.0) 

24.7 (22.9-

26.8) 

24.9 (22.9-

26.8) 
24.5 (22.6-26.6) 
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   3.2.2. Correlation of detailed angular values with age groups and BMI classification 

 

   The correlation of detailed angular values with age groups and BMI classification is depicted in 

Fig. 8 and 9. The data (Fig. 8) show that as age increases, there is a general trend of increasing MTFA 

on both sides (right, β=0.73, 95% CI: 0.44 to 1.01; left, β=0.73, 95% CI: 0.63 to 0.84), LDFA (right, 

β=0.37, 95% CI: 0.33 to 0.39; left, β=0.39, 95% CI: 0.28 to 0.50), and JLCA (right, β=0.30, 95% 

CI: 0.05 to 0.54; left, β=0.23, 95% CI: 0.02 to 0.44) across all patients (all p < 0.05). As age increased, 

there was a trend toward a decrease in MPTA (right, β=-0.09, 95% CI: -0.14 to -0.04; left, β=-0.08, 

95% CI: -0.17 to 0.01), but this was only statistically significant on the right side (p < 0.05), with no 

significance on the left side (p = 0.067). MTFA and LDFA exhibited similar trends in both males 

and females. However, in females, the decrease in MPTA (right, β=-0.19, 95% CI: -0.26 to -0.11; 

left, β=-0.19, 95% CI: -0.28 to -0.11) was statistically significant on both sides (p < 0.05), whereas 

in males, the increase in JLCA (right, β=0.09, 95% CI: -0.03 to 0.22; left, β=0.07, 95% CI: -0.05 to 

0.19) was not statistically significant on either side (right, p = 0.107; left, p = 0.159). 

   As BMI increased, there was a general trend of increasing MTFA (right, β=0.47, 95% CI: -0.32 

to 1.25; left, β=0.32, 95% CI: -0.32 to 0.96), LDFA (right, β=0.31, 95% CI: -0.21 to 0.83; left, β=0.22, 

95% CI: -0.34 to 0.78), and JLCA (right, β=0.10, 95% CI: -0.09 to 0.29; left, β=0.11, 95% CI: -0.06 

to 0.28), while MPTA (right, β=-0.06, 95% CI: -0.25 to 0.13; left, β=0.03, 95% CI: -0.14 to 0.20) 

remained relatively stable (Fig. 9). However, there was a slight decrease in Lt MTFA (β=-0.09, 95% 

CI: -0.19 to 0.00) in males. Except for this decrease in Lt MTFA in males (p < 0.05), none of the 

other trend lines were statistically significant (all p > 0.05). Thus, in this analysis, there were no 

consistent or statistically significant changes in detailed angular values on either side based on BMI.  

 

 

 
Fig. 8 Correlation of detailed angular values with age groups 

The plot shows the median values of detailed angular values for each age group. The blue line 

represents the total population, the green line represents males, and the red line represents females. 

The dotted lines indicate the trend of the median values for each group. 

MTFA, medial tibiofemoral angle; LDFA, lateral distal femoral angle; MPTA, medial proximal tibial 

angle; JLCA, joint line congruence angle; RT, right; LT, left 
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Fig. 9 Correlation of detailed angular values with BMI classification 

The plot shows the median values of detailed angular values for each BMI group. The blue line 

represents the total population, the green line represents males, and the red line represents females. 

The dotted lines indicate the trend of the median values for each group. 

BMI, body mass index; MTFA, medial tibiofemoral angle; LDFA, lateral distal femoral angle; 

MPTA, medial proximal tibial angle; JLCA, joint line congruence angle; RT, right; LT, left 

 

 

   3.2.3. Annual trends of detailed angular values of knee alignment 

 

   The annual trends of detailed angular values of knee alignment are depicted in Fig. 10. In the 

overall population, all females, all males, and the population over 55 years of age, MTFA, MPTA, 

and JLCA remained consistent each year without significant changes (all p > 0.05). However, there 

was an exception with the bilateral LDFA in the overall population (right, β=0.02, 95% CI: 0.00 to 

0.04; left, β=0.03, 95% CI: 0.01 to 0.06) and in all males (right, β=0.04, 95% CI: 0.01 to 0.06; left, 

β=0.04, 95% CI: 0.01 to 0.08), both of which showed an annual increase (all p < 0.05). However, 

this increase did not lead to a significant rise in MTFA (right, β=-0.01, 95% CI: -0.05 to 0.04; left, 

β=-0.01, 95% CI: -0.04 to 0.02) (both p > 0.05). 

In contrast, for individuals under 55 years of age, MTFA (right, β=-0.05, 95% CI: -0.08 to -0.02; left, 

β=-0.05, 95% CI: -0.07 to -0.03) showed a decreasing trend on both sides, and this trend was more 

pronounced in females under 55 (right, β=-0.08, 95% CI: -0.14 to -0.03; left, β=-0.06, 95% CI: -

0.10 to -0.01), where the decline was steeper compared to the overall population under 55 (all p < 

0.05). 
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Fig. 10 Annual trends of detailed angular values of knee alignment 

Each point represents the median values of detailed angular values for each year. The top 8 graphs 

show the values for the total population, the middle 8 graphs represent males, and the bottom 8 

graphs represent females. The blue line indicates the total population, the green line represents 

individuals under 55 years old, and the red line represents individuals over 55 years old.  

MTFA: medial tibiofemoral angle; LDFA: lateral distal femoral angle; MPTA: medial proximal 

tibial angle; JLCA: joint line congruence angle; RT: right; LT: left. 

 

 

3.2.4. Annual trends of CPAK classification 

    

   The annual trends of CPAK classification are depicted in Fig. 11. Except for females under 55 

years of age, there were no statistically significant trends in the proportions of each classification 

(all p > 0.05). However, in females under 55, there was a significant decrease in classification 1 on 
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both sides (right, β=-0.01, 95% CI: -0.01 to 0.00; left, β=0.00, 95% CI: -0.01 to 0.00) and a 

significant increase in classification 3 (right, β=0.01, 95% CI: 0.00 to 0.01; left, β=0.01, 95% CI: 

0.00 to 0.01).  

   As a result, for females under 55, the proportion of classification 1 decreased from 24.4% in 

2010 to 16.5% in 2023 on the right side, and from 22.6% to 14.1% on the left side. In contrast, the 

proportion of classification 3 increased from 17.9% in 2010 to 26.4% in 2023 on the right side, and 

from 21.4% to 28.0% on the left side. 

 

  
Fig. 11 Annual trends of CPAK classification 

The top two graphs represent the total population, and the bottom two graphs represent females 

under 55 years old, showing the yearly proportion of CPAK classification. The colors correspond to 

CPAK groups 1 through 9, as indicated in the legend, with trend lines drawn for each group. 

CPAK, coronal plane alignment of the knee. 
 

4. DISCUSSION 

 

4.1. Algorithm development and validation 
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   The variability of conventional alignment measurement causes controversy. Surgeons have 

reported inconsistencies and discordance between conventional radiographic measurements and 

intraoperative navigation measurements44,45. Wright et al. reported three sources of measurement 

inconsistency: physiological variations, procedure variability (inconsistent positioning), and intra- 

and interobserver variability46. The mean interobserver difference was 1.4° (SD =1.1), and the mean 

intra-observer difference was 0.7° (SD = 0.9). Laskin et al. reported up to 7° variability in 

tibiofemoral angle measurements among 50 surgeons47. Automated measurement reduces these 

errors by minimising subjectivity. 

   We proposed a time-efficient system that automatically measures mTFA, mLDFA, MPTA, and 

JLCA from full-length leg weight-bearing radiographs. The system strongly correlated with the 

manual measurements in the internal and external institution tests.  

 Accurate segmentation is required for the automatic measurement of lower limb alignment. 

Previous studies performed femoral and tibial segmentation using a traditional spectral clustering 

and active shape model48 or unsupervised or atlas-guided approaches49-51. Deep-learning methods 

have been applied in image segmentation, with UNet being popular in the medical field. However, 

UNet may not be the most efficient option for relatively simple data (images with fewer large objects) 

as it may require more resources. In this study, a SegNet model was used for image segmentation.  

   There have been studies utilizing long leg radiographs to investigate detailed angular values 

related to coronal alignment52-56. However, these papers commonly employ a method where 

landmarks are directly annotated by humans, and algorithms are subsequently trained based on this 

annotated data. This approach inherently introduces a potential bias to the reference values, as the 

ground truth is produced by humans marking points manually. In contrast, our approach involves 

segmentation followed by the identification of landmarks using a predetermined rule-based system. 

This method has the potential to reduce interobserver agreement on ground truth, as it eliminates the 

reliance on manual point annotation by humans. Moreover, the segmentation mask generated by the 

algorithm can be used to identify new geometric landmarks. 

   Zheng et al. proposed a method for automatically measuring leg length discrepancy in a pediatric 

population using deep learning57. The method demonstrated a high concordance rate between 

manual and automatic segmentation of the pediatric leg, with a Dice value of 0.94. However, their 

study employed a wide exclusion criteria. In contrast, Schock et al. achieved a high level of 

concordance rate across a wide range of clinical and pathologic indications, with an average 

Sørensen-Dice coefficient of 0.97 for the femur and 0.96 for the tibia38. 

   In our internal validation, the readers and algorithm demonstrated a high concordance rate. The 

algorithm required 1 min/patient, in contrast to the manual measurement time of up to 3 min. In the 

external validation, the algorithm results significantly correlated with the manual measurements. 

However, the validation population consisted of young soldiers aged 20–30 years from a military 

hospital and may not represent the general population. JLCA values tended to be lower in military 

hospital patients than in those from the other included hospital. Nevertheless, these findings suggest 

that our algorithm may be useful in other populations. 

   Our study had several limitations. First, the training data did not include images from patients 

with skeletal dysplasia or hardware, limiting the clinical variability of the images. Second, several 

cases showed a large absolute error (> 5 degrees) between manual and automated measurement 

results. Future studies should include a wider variety and number of training data to reduce these 

errors. Third, our study included a total of 374 images from 374 patients for algorithm development, 

which may be considered too few compared to those in larger studies. However, studies by Zheng 

et al. and Schock et al. enrolled 179 and 255 patients, respectively, and showed convincing results 



２２ 

 

in their analyses, indicating that the number of cases analysed in our study (n = 374) was sufficient 

to demonstrate excellent performance38,57.  

  

 

4.2. Clinical application for large scale data 

 

   A key finding is that younger individuals, particularly females under 55, exhibited notable 

changes in knee alignment over time. MTFA showed a decreasing trend on both sides in individuals 

under 55, with the trend being more pronounced in younger females (Figure 3). This steeper decline 

in MTFA may reflect the influence of rising pediatric and adolescent obesity, known to affect valgus 

knee alignment. Previous studies28 have linked higher BMI during growth phases to greater 

variability in knee alignment, especially in females, and the reduction in MTFA could increase the 

risk of lateral compartment OA later in life, given its association with valgus alignment. 

   The CPAK classification trends further highlighted gender-specific differences (Figure 4), with 

younger females showing a significant decrease in classification 1 and an increase in classification 

3. This shift suggests that knee alignment in younger females is moving from traditional varus 

patterns toward more neutral or valgus alignments, potentially increasing the risk of lateral 

compartment OA. These findings underscore the need for early identification and intervention in 

populations at risk for alignment-related pathologies. 

   Age-related angular values generally showed a trend toward varization (Figure 1). This is likely 

due to degenerative changes that occur with aging, including remodeling of the medial femoral 

condyle and medial tibial plateau, as well as increased medial joint space narrowing. These findings 

are consistent with previous studies58-60. However, BMI had a more modest impact on knee 

alignment, with trends showing an increase in MTFA, LDFA, and JLCA as BMI increased (Figure 

2). Nonetheless, these changes were not statistically significant, except for a slight decrease in left 

MTFA among males. The differences in obesity thresholds between Asian and Caucasian 

populations, with Caucasians typically having higher BMI values, may also contribute to variations 

in knee alignment patterns61,62. This underscores the importance of targeted research to better 

understand how body weight affects knee alignment over time. 

   One strength of the study is the use of a large cohort spanning over a decade, which allowed us 

to analyze long-term trends in knee alignment across various age groups and genders. This large 

sample size enhances the statistical power and generalizability of the findings, especially within the 

South Korean population. Additionally, advanced deep learning algorithms were applied for the 

automated measurement of angular values, reducing the potential for human error. The study also 

incorporated CPAK classification alongside detailed angular measurements, providing a 

comprehensive understanding of knee alignment patterns that are crucial for identifying populations 

at risk for OA. 

   Despite its strengths, this study has several limitations. First, as a retrospective analysis, it relies 

on previously collected data, limiting control over confounding variables and the ability to establish 

causal relationships. Second, the data were collected from a single tertiary hospital in South Korea, 

which may limit the generalizability of the findings to other populations. Third, the study lacks 

longitudinal follow-up for individual patients, making it difficult to track how knee alignment 

evolves over time. The exclusion of 2019 data due to DICOM file corruption may also introduce 

gaps in trend analysis. Additionally, the study focuses solely on radiographic knee alignment without 

correlating these findings to functional outcomes like pain, mobility, or quality of life. The reliance 
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on deep learning algorithms, while advantageous, introduces potential errors in measurement, which 

could affect the results. Lastly, important factors such as physical activity, occupation, and genetic 

predisposition, known to influence knee alignment and OA progression, were not accounted for. 

 

5. CONCLUSION 

 

Our deep-learning-based automated measurement algorithm accurately quantified lower limb 

alignment from long-leg radiographs and was significantly faster than manual measurements, 

making it well-suited for clinical application across various patient groups and conditions. 

Furthermore, this study emphasizes the importance of understanding knee alignment trends, 

particularly in younger females, who showed significant valgization in CPAK classification and 

mTFA. These trends suggest a potential rise in lateral osteoarthritis in females, highlighting the need 

for early, gender- and age-specific interventions to prevent OA. As treatment strategies for lateral 

OA are less standardized compared to medial OA, prevention and management approaches must be 

adapted accordingly. Further research is necessary to explore the long-term effects of these 

alignment changes and to develop targeted strategies for maintaining knee health throughout the 

lifespan. 
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Abstract in Korean 

 

하지 방사선 사진에서 세부 각도 값을 사용한 무릎 관절 정렬의 

딥러닝 기반 자동 분석 

 

하지 구조에서의 변형은 여러 가지 원인에 의해 발생할 수 있으며, 특히 교정이 

필요한 경우 하지 정렬을 정확하게 평가하는 것이 필수적이다. 이를 해결하기 위해, 

우리는 하지 정렬을 평가하는 자동화 시스템을 개발하였으며, 전신 체중 부하 방사선 

사진에서 기계적 경골대퇴각(mTFA), 기계적 외측 원위 대퇴각(mLDFA), 내측 근위 

경골각(MPTA), 관절선 일치각(JLCA)과 같은 주요 매개변수를 정량화하였다. 본 

후향적 연구에서는 알고리즘 개발 및 테스트를 위해 404개의 방사선 사진을 

분석하였으며, 다른 병원의 30개 방사선 사진을 사용하여 외부 검증을 진행하였다. 

분절화 알고리즘의 성능은 Dice 유사 계수(DSC)를 이용해 수동 분절화와 

비교하였으며, 정렬 매개변수의 일치는 클래스 간 상관 계수(ICC)를 통해 평가하였다. 

또한, 네 가지 정렬 매개변수를 측정하는 데 소요된 시간을 기록하였다. 알고리즘은 

사람에 의해 그려진 분절화와 89~97%의 유사도를 보여 우수한 일치율을 보였으며, 

정렬 매개변수에 대한 일치는 양호에서 매우 양호(ICC: 0.7213–0.9865)한 수준으로 

평가되었다. 자동화된 측정 방식은 수동 측정 대비 약 3.44배 더 신속하였다. 

더 큰 임상적 적용을 위해, 우리는 2010년부터 2023년까지 한국의 3차 병원에서 

촬영된 34,160개의 다리를 대상으로 총 17,080장의 하지 전장 방사선 사진을 사용한 

후향적 코호트 연구를 진행하였다. 딥러닝 모델을 사용하여 mTFA, mLDFA, MPTA, 

JLCA 를 자동 분석하였고, 환자는 연령(≤55세 및 >55세)과 성별에 따라 분류하였다. 

무릎 정렬의 연도별 경향을 평가하기 위해 선형 회귀 분석을 시행하였습니다. mTFA는 

전체 인구에서 일관된 양상을 보였으나(p > 0.05), 55세 이하 군에서는 유의미한 감소가 

나타났다(우측: β=-0.05, 95% CI: -0.08 to -0.02, p = 0.01; 좌측: β=-0.05, 95% CI: -0.07 to -

0.03, p = 0.01). 특히 젊은 여성 집단에서 더욱 뚜렷한 감소 경향이 관찰되었다(우측: 

β=-0.08, 95% CI: -0.14 to -0.03, p = 0.01; 좌측: β=-0.06, 95% CI: -0.10 to -0.01, p = 0.01). 

CPAK 분류의 경향 분석에서는 55세 이하 여성에서 3번 분류의 비율이 증가하는 

것으로 나타났다(우측: β=0.01, 95% CI: 0.00 to 0.01, p = 0.01; 좌측: β=0.01, 95% CI: 0.00 

to 0.01, p = 0.01). 이에 따라, 3번 분류는 2010년에서 2023년 사이에 우측에서는 

17.9%에서 26.4%로, 좌측에서는 21.4%에서 28.0%로 증가하였다. 본 연구는 특히 젊은 

여성 집단에서 무릎 정렬의 변화가 뚜렷하며, 외반 변형(Valgus alignment)으로의 전환 

경향을 보여주고 있다. 이러한 경향의 장기적인 임상적 영향을 규명하고, 전 생애에 

걸쳐 무릎 건강을 유지하기 위한 맞춤형 전략을 개발하기 위한 추가 연구가 필요할 

것으로 생각된다. 
_______________________________________________________________________________ 

핵심되는 말 : 무릎 관절 정렬, 방사선 촬영, 딥러닝, 골관절염 
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