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ABSTRACT 

 

Development and validation of artificial intelligence models for 
prognosis prediction of juvenile myoclonic epilepsy with clinical and 

radiological features 
 

 

 

Introduction: Juvenile myoclonic epilepsy (JME) is a prevalent form of epilepsy with varying 

prognoses based on clinical and radiological factors. While many studies have explored JME's 

clinical aspects, the integration of these factors into a predictive model for prognosis has been limited. 

This study aims to develop and validate machine learning models that combine clinical and 

radiological features to predict prognosis in JME patients. 

 

Methods: We conducted a retrospective study including 125 patients diagnosed with JME. Clinical 

data were collected, including demographic information, seizure history, and treatment details. MRI 

data were analyzed using volumetric and cortical thickness measurements, as well as radiomics 

features. Machine learning models - including logistic regression, random forest, extreme gradient 

boosting (XGBoost), light gradient boosting machine (LightGBM), support vector machine (SVM), 

and artificial neural network (ANN) - were developed and evaluated using accuracy, precision, recall, 

F1-score, and the area under the receiver operating characteristic curve (AUROC) metrics. The 

models were trained on an internal dataset and validated on an independent external dataset. 

 

Results: The analysis identified that male gender, volumes of the left amygdala and right 

hippocampus, and cortical thickness of the bilateral temporal poles, left entorhinal cortex, fusiform 

gyrus, and right inferior and middle temporal cortex were significantly associated with favorable 

prognosis. Models combining clinical, volumetric, cortical thickness, and Radiomics data 

outperformed those relying on a single data type. The best-performing machine learning model was 

random forest, which achieved an AUROC of 0.923. The integrated model demonstrated superior 

predictive performance, underscoring the importance of a multimodal approach. Brain structures 

such as the thalamus and hippocampus, known to be involved in JME’s pathophysiology, were 

identified as critical features in the prognostic prediction. 
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Conclusion: This study highlights the potential of using machine learning models that integrate 

clinical and radiological data to predict prognosis in JME. The findings suggest that multimodal data 

models are more effective than those based on single data types, offering a promising approach for 

improving prognostic accuracy in JME. The integration of advanced imaging features with clinical 

variables could enhance decision-making in epilepsy management, providing valuable tools for 

clinicians in the prediction of treatment outcomes. Further research is needed to validate these 

findings in larger, more diverse populations and to explore the inclusion of additional radiological 

modalities such as diffusion tensor image and functional MRI. 

                                                                                

Key words: Juvenile myoclonic epilepsy, Prognosis, Machine learning, Radiomics, Multimodal 

integration
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I. INTRODUCTION 

 

Epilepsy is a common chronic brain disorder that affects people of all ages and can be found 

in any country and in any race.1 Conceptually, epilepsy can be defined as a long-lasting brain 

condition characterized by a tendency to have recurrent epileptic seizures. Globally, the prevalence 

of active epilepsy is 6.4 per 1000 (95% Confidence Interval (CI) 5.6-7.3), and the incidence is 61.4 

per 100,000 person-years, and according to epidemiological studies of epilepsy in Korea, the 

incidence and prevalence of epilepsy in Korea are increasing, and as of 2017, the prevalence of 

epilepsy in Korea was 4.8 per 1000 and the incidence was 35.4 per 100,000 person-years, making it 

one of the important brain diseases.2 

Juvenile myoclonic epilepsy (JME) is a prevalent adolescent epilepsy, accounting for 

approximately 10% of all cases.3,4 Characterized by recurrent myoclonic seizures, primarily in the 

shoulders and limbs, JME typically begins around puberty and is often accompanied by generalized 

tonic-clonic seizures and, in some cases, absence seizures.3-5 Classified under idiopathic generalized 

epilepsy (IGE), the prognosis for JME with pharmacological treatment is relatively favorable, with 

nearly 60% of patients achieving five years or more of seizure freedom on medication and about 25% 

maintaining remission without medication.6,7 However, many patients experience relapse upon 

discontinuation of medication, necessitating lifelong treatment. Meta-analyses suggest that around 

35% of patients exhibit drug-refractory epilepsy.8 

Clinical factors influencing the prognosis with antiseizure medication include female gender, 

younger age of onset, history of absence seizures, praxis-induced seizures, childhood absence 

epilepsy, comorbid psychiatric disorders, family history, epileptiform asymmetries on EEG, and 

absence of photoparoxysmal response.9,10 While brain MRI in JME patients appears visually normal, 

recent advancements in quantitative and functional MRI analysis reveal differences in structural and 

functional connectivity compared to healthy controls, along with widespread neocortical thinning as 

the disease progresses.11,12 

Despite the progress in imaging techniques, there is a lack of studies analyzing quantitative 

imaging features for prognosis in JME. Recent efforts have utilized machine learning and deep 

learning to develop diagnostic and prognostic models for various neurological diseases, including 

epilepsy.13,14 Some studies have combined clinical information and brain MRI images to predict drug 
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response, but these models often underperform due to the insufficient integration of comprehensive 

variables.15,16 

To address this gap, our study aims to develop and validate artificial intelligence models that 

combine clinical and imaging variables to predict the prognosis of drug treatment response in JME. 
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II. METHODS 

 

2.1. Subjects 

 

2.1.1. Inclusion and exclusion criteria 

 

This retrospective study included consecutive patients who presented with seizures and 

visited the epilepsy clinic. Patients diagnosed with JME by epilepsy specialists were included in the 

study. The initial diagnosis of JME was confirmed by reviewing the medical records of neurologists 

at the institution, based on clinical and EEG features established by the International League Against 

Epilepsy. Patients included in the study experienced both generalized onset motor myoclonic 

seizures and generalized onset motor tonic-clonic seizures. EEG findings consistently demonstrated 

generalized polyspikes or spike-and-wave complexes in all patients diagnosed with JME. MRI 

readings were confirmed to be normal by board-certified neuroradiologists. Exclusion criteria for 

the study were as follows: 1) patients with less than a 3-year follow-up, and 2) participants who 

underwent a 2D protocol MRI. 

 

2.1.2. Internal data set 

 

The internal data set was used to train this study's prognostic prediction model. The clinical 

data utilized were retrospectively collected from the medical records of epilepsy patients who visited 

the epilepsy clinic of a single physician (K. Heo) at Severance Hospital between January 2000 and 

August 2022. Clinical and imaging data were obtained for research by comprehensively reviewing 

patients' medical records who met the inclusion criteria. 

 

2.1.3. External data set 

 

The external data set was used to test the prognostic prediction model in this study. Clinical 

data were collected from patients diagnosed with JME by neurologists at five university hospitals in 
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South Korea (Severance Hospital [K.M. Kim], Wonju Severance Christian Hospital, Chung-Ang 

University Gwangmyeong Hospital, Gangneung Asan Hospital, and Incheon St. Mary's Hospital) 

between January 2000 and July 2024. The same clinical variables as those obtained from the internal 

data set were used, and brain MRI data were acquired and analyzed.  

 

2.2. Clinical data 

 

Clinical variables collected from patients included age, sex, age at onset, disease duration, 

treatment history, number of antiseizure medications, family history of epilepsy, history of febrile 

seizures, history of absence seizures, and the presence of seizures during the follow-up period. 

Patients who were seizure-free for 2 years or longer at any time after diagnosis were considered to 

have a favorable outcome. 

 

2.3. MRI 

 

2.3.1. MRI data acquisition 

 

Brain MRI at Severance Hospital used a 3T MRI system (Achieva or Ingenia, PhiPhilips 

Healthcare; TrioTim, Siemens) with an encoding head coil of 8-channel sensitivity. MRI data was 

included if they were deemed visually normal by at least one neuroradiologist. We collected data 

with T1 3D images. Raw data from other hospitals' MRIs was analyzed by collecting MRIs with T1 

3D images. 

 

2.3.2. MRI preprocessing 

 

During the preprocessing stage of the MRI data, the researcher performed the preprocessing 

steps while blinded to the images of the favorable and poor prognosis groups. Brain region-specific 

masks were obtained using FreeSurfer 6.0.0 software (https://surfer.nmr.mgh.harvard.edu). The 

preprocessing process included motion correction, Talairach transformation, segmentation of 

subcortical white matter and deep gray matter structures, and intensity normalization. FreeSurfer 
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was used to resample and obtain masks for each region in a consistent size and position, thereby 

minimizing variability between processing steps and across the data. 

 

2.3.3. Analysis of MRI data 

 

2.3.3.1. Subcortical structure volume 

 

To quantify the volumes of subcortical structures, we utilized the automated segmentation 

tool FreeSurfer (version 6.0.0). The T1-weighted MRI scans of all subjects were processed using 

the standard FreeSurfer pipeline as part of the preprocessing stage. Specifically, the subcortical 

regions of interest (ROIs) volumes were extracted from the aseg.stats output file, generated by the 

"recon-all" command. This file provides volumetric data for 29 predefined anatomical labels, 

including bilateral structures such as the thalamus, caudate, putamen, pallidum, hippocampus, 

amygdala, nucleus accumbens, ventral diencephalon, choroid plexus, cerebellar cortex, and 

cerebellar white matter. Additionally, it includes midline structures such as the brainstem, optic 

chiasm, and segments of the corpus callosum (anterior, mid-anterior, central, mid-posterior, and 

posterior). The resulting volumes were subsequently used for statistical analyses. All segmentations 

were visually inspected for accuracy, and any errors were corrected in accordance with FreeSurfer’s 

guidelines to ensure the reliability of the volumetric measurements. 

 

2.3.3.2. Cortical thickness 

 

We utilized FreeSurfer (version 6.0.0) to measure cortical thickness, following the standard 

processing pipeline applied to T1-weighted MRI scans. Cortical reconstruction and volumetric 

segmentation were conducted using the "recon-all" command, which includes steps such as intensity 

normalization, skull stripping, and the generation of cortical surface models. Cortical thickness 

measurements for each hemisphere were extracted from the lh.aparc.stats and rh.aparc.stats files, 

corresponding to the left and right hemispheres, respectively. These files provide cortical thickness 

data for the 34 predefined anatomical ROIs per hemisphere based on the Desikan-Killiany atlas. The 

regions include bankssts, caudal anterior cingulate, caudal middle frontal, cuneus, entorhinal, 
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fusiform, inferior parietal, inferior temporal, isthmus cingulate, lateral occipital, lateral orbital 

frontal, lingual, medial orbital frontal, middle temporal, parahippocampal, paracentral, pars 

opercularis, pars orbitalis, pars triangularis, pericalcarine, postcentral, posterior cingulate, precentral, 

precuneus, rostral anterior cingulate, rostral middle frontal, superior frontal, superior parietal, 

superior temporal, supramarginal, frontal pole, temporal pole, transverse temporal, and insula. The 

extracted thickness values were subsequently used in statistical analyses. All segmentations and 

surface reconstructions were visually inspected for accuracy, and any errors were corrected in 

accordance with FreeSurfer's guidelines to ensure the validity and reliability of the cortical thickness 

measurements. 

 

2.3.3.3. Radiomics 

 

We focused on 22 ROIs, including bilateral cerebral white matter, bilateral thalamus, 

bilateral caudate, bilateral putamen, bilateral globus pallidus, bilateral hippocampus, bilateral 

amygdala, bilateral ventral diencephalon, the brainstem, and the corpus callosum (segmented into 

anterior, mid-anterior, central, mid-posterior, and posterior regions) in this study. These ROIs were 

selected based on prior studies identifying quantitative and functional differences between 

individuals with juvenile myoclonic epilepsy and healthy controls. To analyze these regions, we 

employed radiomics, which involves extracting many quantitative features from medical images that 

capture the texture, shape, and intensity patterns within the ROIs. Specifically, we used 

PyRadiomics (http://www.radiomics.io/pyradiomics.html), an open-source software platform, to 

extract a comprehensive set of radiomics features from each ROI. These features were then used in 

subsequent statistical and machine-learning analyses to investigate potential biomarkers and 

differences between the study groups. 

 

2.4. Artificial intelligence method 

 

2.4.1. Machine learning models 

 

We implemented and evaluated six different machine learning models to classify and predict 
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outcomes based on the extracted features in this study: Logistic regression, Random Forest, Extreme 

gradient boosting (XGBoost), Light gradient boosting machine (LightGBM), Support vector 

machine (SVM), and Artificial neural network (ANN).  

The model employs weighted scaling and the synthetic minority oversampling technique 

(SMOTE) for further performance improvement. Additionally, the LASSO feature reduction was 

applied first. The models were trained using the training sets, and hyperparameter tuning was 

performed. Hyperparameter tuning was done by a 5-fold cross-validation in the training set. 

 

 

2.4.1.1. Logistic regression 

 

Logistic regression was employed as a baseline model in our study due to its simplicity and 

interpretability. This model is a linear classifier that estimates the probability of a binary outcome 

based on the logistic function. The logistic regression model was trained using the maximum 

likelihood estimation method to minimize the difference between the predicted and actual outcomes. 

Despite being a linear model, it can effectively capture the relationship between the features and the 

outcome when the data is linearly separable. Regularization techniques, such as L2 regularization, 

were applied to prevent overfitting by penalizing large coefficients. 

 

2.4.1.2. Random Forest 

 

Random Forest, an ensemble learning method, enhanced predictive performance by 

combining multiple decision trees. Each tree in the Random Forest was trained on a bootstrapped 

subset of the data, and a random subset of features was considered for splitting at each node, which 

increases diversity among the trees and improves generalization. The final prediction was obtained 

by aggregating the predictions from all individual trees, typically through majority voting for 

classification tasks. This model is particularly advantageous because it is robust to overfitting and 

can capture non-linear relationships in the data. Hyperparameters such as the number of trees, 

maximum depth, and minimum samples per leaf were tuned to optimize model performance. 
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2.4.1.3. Extreme gradient boosting (XGBoost) 

 

XGBoost was implemented as a more sophisticated gradient boosting framework, known for 

its speed and performance in machine learning competitions. This model builds trees sequentially, 

where each new tree attempts to correct the errors made by the previous ones. The model minimizes 

a differentiable loss function using gradient descent and incorporates a regularization term to prevent 

overfitting. XGBoost also supports parallel processing, which accelerates training, and includes 

built-in handling of missing values. Hyperparameters such as the learning rate, maximum depth of 

trees, and number of boosting rounds were carefully tuned using cross-validation to achieve the best 

performance. 

 

2.4.1.4. Light gradient boosting machine (LightGBM) 

 

LightGBM, another gradient-boosting framework, was chosen for its efficiency and 

scalability, especially with large datasets. It uses a histogram-based algorithm to discretize 

continuous features into bins, which significantly speeds up the training process and reduces 

memory usage. LightGBM grows trees leaf-wise rather than level-wise, allowing it to capture 

complex patterns in the data more effectively. The model was tuned by adjusting hyperparameters 

such as the number of leaves, learning rate, and the number of boosting iterations. LightGBM’s 

ability to handle large-scale data with faster training times made it a valuable model in our analysis. 

 

2.4.1.5. Support vector machine (SVM) 

 

SVM with a radial basis function (RBF) kernel was employed to handle the non-linear 

relationships in our dataset. SVM works by finding the optimal hyperplane that maximizes the 

margin between the classes in a high-dimensional space. The RBF kernel maps the input features 

into a higher-dimensional space, where a linear separation between classes may be possible. The 

key hyperparameters, such as the regularization parameter (C) and the kernel coefficient (gamma), 

were optimized to balance model complexity and accuracy. SVM is particularly effective in 

scenarios where the feature space is high-dimensional and the margin between classes is distinct. 
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2.4.1.6. Artificial neural network (ANN) 

 

An ANN was constructed to model complex, non-linear relationships in the data. The ANN 

architecture consisted of an input layer, multiple hidden layers with neurons, and an output layer. 

Each neuron applied a non-linear activation function to a weighted sum of inputs, enabling the 

network to learn hierarchical representations of the data. The network was trained using 

backpropagation, where the weights were adjusted to minimize the loss function via gradient descent. 

Hyperparameters such as the number of hidden layers, the number of neurons per layer, the learning 

rate, and the type of activation function were tuned to optimize the network’s performance. Dropout 

regularization was also applied to prevent overfitting by randomly dropping neurons during training. 

 

2.4.2. Performance evaluation 

 

The performance of the artificial intelligence models was evaluated using a comprehensive 

set of metrics, including the area under the receiver operating characteristic curve (AUROC), recall, 

precision, accuracy, and F1 score. AUROC measures the model’s ability to discriminate between 

classes, representing the trade-off between sensitivity (true positive rate) and specificity (false 

positive rate) across different threshold settings. An AUROC value of 1 indicates perfect 

discrimination, while a value of 0.5 suggests no better performance than random chance. Recall, 

also known as sensitivity or true positive rate, is the proportion of actual positives correctly identified 

by the model. It is calculated as the number of true positives divided by the sum of true positives 

and false negatives. High recall is important in contexts where minimizing false negatives is critical. 

Precision is the proportion of correct positive predictions, calculated as the number of true positives 

divided by the sum of true and false positives. Precision is particularly relevant in scenarios with the 

high cost of false positives. Accuracy is the overall proportion of correct predictions (both true 

positives and true negatives) out of all predictions made by the model. It provides a general measure 

of the model’s correctness but can be misleading in imbalanced datasets where one class is much 

more frequent than the other. The F1 score is the harmonic mean of precision and recall, providing 

a metric that balances both concerns. The F1 score is instrumental when the dataset is imbalanced, 

giving a more nuanced view of the model’s performance than accuracy alone. By presenting these 
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metrics, we aimed to provide a thorough assessment of the model’s performance, ensuring that it is 

evaluated in terms of its overall correctness and ability to balance the trade-offs between different 

types of errors. 

 

2.4.3. Feature importance and model interpretability 

 

We employed Shapley Additive Explanations (SHAP) to interpret the artificial intelligence 

models to identify and present important features that contributed to the model's predictions. SHAP 

values are derived from cooperative game theory and provide a consistent way to assign importance 

scores to each feature for individual predictions. Specifically, SHAP calculates the contribution of 

each feature by considering all possible combinations of features and their impact on the model’s 

output. This method allows for a clear understanding of how each feature influences the prediction, 

offering both global and local interpretability. Globally, SHAP values indicate the overall 

importance of each feature across the entire dataset, while locally, they explain the contribution of 

each feature to a specific prediction. By using SHAP, we could identify and visualize the most 

critical features that the model relied upon, enhancing the transparency and interpretability of the 

machine learning model's decision-making process. 

 

2.5. Statistical analysis 

 

The statistical analysis method used in the variable description and selection stage utilizes 

Pearson correlation coefficient and variance inflation factor to prevent over-selection of variables 

including multicollinearity, and Student t-test and Pearson chi-square test to compare variables. All 

statistical analyses were performed using R version 4.11, and machine learning and deep learning 

were performed using Python version 3.6.8. Statistical significance was determined based on a two-

sided p-value <0.05. 
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III. RESULTS 

 

3.1. Clinical characteristics 

 

The process of selecting the study participants is illustrated in Figure 1. For the internal 

dataset, we enrolled JME patients treated by a single physician (K. Heo) at Severance hospital 

between January 2000 and August 2022. Among the 210 patients with available clinical data and 

brain MRI, we excluded 37 patients who had less than 3 years of follow-up. Additionally, 48 

patients without 3D MRI were excluded, followed by the exclusion of 26 patients who had 

received prior treatment before visiting the hospital, resulting in the absence of pre-treatment MRI. 

Consequently, the final internal dataset included clinical variables and 3D T1 MRI images from 

99 patients. For the external dataset, we enrolled 76 patients from five hospitals who had at least 

3 years of follow-up after disease onset between January 2000 and July 2004. We excluded 22 

patients who had only 2D MRI scans and 28 patients who received treatment before their first MRI 

scan, resulting in a final external dataset consisting of clinical variables and 3D T1 MRI images 

from 26 patients from 5 university hospitals (Severance Hospital [K.M. Kim] – n=12, Wonju 

Severance Christian Hospital, n=3, Chung-Ang University Gwangmyeong Hospital – n=3, 

Gangneung Asan Hospital – n=5, and Incheon St. Mary's Hospital – n=3)  

The clinical characteristics of all included patients are summarized in Table 1. Among the 

125 patients from the combined internal and external datasets, 85 were seizure-free for more than 

2 years, indicating a favorable prognosis, while 40 patients did not achieve this outcome, 

representing a poor prognosis. A significantly higher proportion of males was observed in the 

favorable prognosis group compared to the poor prognosis group (60.0% vs. 40.0%, p = 0.036). 

No significant differences were found between the two groups in terms of age, age at onset, or 

duration of epilepsy. Additionally, there were no significant differences in family history, history 

of febrile seizures, or the presence of absence seizures. Regarding treatment, the groups did not 

differ in the number of antiseizure medications used, or the use of specific medications, including 

valproic acid, lamotrigine, levetiracetam, and topiramate. The follow-up duration was also similar 

between the two groups.  
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Figure 1. Flow chart depicting the study subjects. JME, juvenile myoclonic epilepsy 
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Table 1. Demographic and clinical characteristics of juvenile myoclonic epilepsy patients 

in the study 

 
Favorable prognosis 
(n = 85) 

Poor prognosis 
(n = 40) 

p-value 

Age (years) 23.5 ± 8.7 23.2 ± 7.7 0.843 

Male sex, n (%) 51 (60.0) 16 (40.0) 0.036 

Onset age (years) 15.2 ± 4.5 15.2 ± 4.8 0.991 

Epilepsy duration (years) 8.3 ± 9.4 8.0 ± 8.2 0.888 

Family history, n (%) 16 (18.8) 4 (10.0) 0.209 

Febrile seizure history*, n (%) 9 (10.6) 5 (12.5) 0.767 

Absence seizure, n (%) 31 (36.5) 14 (35.0) 0.873 

Number of ASMs 2 (1-3) 2 (1-3) 0.577 

VPA, n (%) 65 (76.5) 30 (75.0) 0.857 

LTG, n (%) 39 (45.9) 21 (52.5) 0.490 

LEV, n (%) 40 (47.1) 24 (60.0) 0.177 

TPM, n (%) 17 (20.0) 6 (15.0) 0.501 

Follow-up duration (years) 13.9 ± 6.7 11.1 ± 7.2 0.178 

Data are presented as the number of patients (percentage) or as the mean ± standard deviation. ASM, 

antiseizure medication; VPA = valproic acid; LTG, lamotrigine; LEV, levetiracetam; TPM = 

topiramate. 

* Fisher’s exact test was used.  
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3.2. Volumetric analysis of subcortical structures  

 

The volumetric analysis is summarized in Table 2. A comparison of the volume data between 

the two groups revealed that the volumes of the left amygdala (1739.9 ± 263.4 mm³ vs. 1601.7 ± 

358.2 mm³, p = 0.017) and the right hippocampus (4396.6 ± 417.7 mm³ vs. 4128.8 ± 825.7 mm³, p 

= 0.017) were significantly smaller in the poor prognosis group compared to the favorable prognosis 

group.  

However, no significant differences were observed between the groups in the volumes of 

other bilateral subcortical structures, including the thalamus, caudate, putamen, pallidum, nucleus 

accumbens, ventral diencephalon, choroid plexus, cerebellar cortex, and cerebellar white matter. 

Additionally, the brainstem, corpus callosum, and total intracranial volume did not show significant 

volumetric differences between the two groups. 
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Table 2. Volumetric analysis of brain subcortical structures based on prognostic outcomes 

 
Favorable prognosis 
(n = 85) 

Poor prognosis 
(n = 40) 

p-value 

Left    

 Thalamus 8054.0 ± 844.4 7748.2 ± 1393.7 0.131 

 Caudate 3569.1 ± 433.8 3458.2 ± 643.6 0.259 

 Putamen 5075.5 ± 619.2 4902.2 ± 895.1 0.211 

 Pallidum 2073.8 ± 244.5 2017.6 ± 353.9 0.303 

 Hippocampus 4180.6 ± 415.2 4027.1 ± 630.2 0.107 

 Amygdala 1739.9 ± 263.4 1601.7 ± 358.2 0.017 

 Nucleus accumbens 511.4 ± 98.5 286.6 ± 133.8 0.246 

 Ventral diencephalon 4175.7 ± 457.7 4003.7 ± 621.1 0.084 

 Choroid Plexus 437.0 ± 163.7 427.5 ± 159.2 0.765 

 Cerebellum – cortex 56595.1 ± 5734.4 54113.8 ± 8452.0 0.057 

 Cerebellum – white matter 14800.9 ± 1846.9 14133.2 ± 2293.1 0.084 

Right    

 Thalamus 7574.4 ± 775.1 7219.0 ± 1275.0 0.056 

 Caudate 3637.9 ± 444.1 3544.3 ± 567.1 0.318 

 Putamen 5130.4 ± 617.7 4985.8 ± 809.3 0.273 

 Pallidum 1977.6 ± 238.8 1942.0 ± 284.8 0.467 

 Hippocampus 4396.6 ± 417.7 4128.8 ± 825.7 0.017 

 Amygdala 1848.7 ± 279.3 1744.6 ± 361.0 0.080 

 Nucleus accumbens 577.2 ± 105.1 554.5 ± 117.2 0.280 

 Ventral diencephalon 4173.3 ± 444.1 4017.0 ± 562.6 0.095 

 Choroid Plexus 430.6 ± 154.9 422.9 ± 188.5 0.809 

 Cerebellum – cortex 56266.6 ± 5838.5 53800.4 ± 8392.4 0.059 

Cerebellum–white matter 14242.4 ± 2001.1 13540.7 ± 2200.4 0.079 

Midline    
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The presented values represent the volume of each brain region, with units in mm³. Data are 

presented as the mean ± standard deviation. 

 

  

  Brainstem 21182.7 ± 2266.9 20565.8 ± 3631.8 0.248 

  Optic-chiasm 154.3 ± 58.7 140.1 ± 60.8 0.213 

Corpus callosum     

Anterior 862.7 ± 141.4 836.8 ± 158.5 0.360 

Mid-anterior 669.4 ± 181.2 666.1 ± 171.8 0.922 

Central 688.8 ± 172.1 660.2 ± 171.5 0.388 

Mid-posterior 552.8 ± 103.9 560.6 ± 128.1 0.720 

Posterior 990.4 ± 178.0 982.0 ± 205.2 0.815 

Total intracranial volume 1581418.5 ± 175060.8 1502151.6 ± 250957.1 0.077 
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3.3. Cortical thickness analysis 

 

The cortical thickness analysis between the favorable prognosis and poor prognosis groups 

revealed significant differences in several brain regions (Table 3). The left entorhinal cortex 

exhibited a statistically significant difference, with the favorable prognosis group having a mean 

cortical thickness of 3.370 mm, compared to 3.235 mm in the poor prognosis group (p = 0.046). 

Additionally, the left fusiform gyrus was thinner in the poor prognosis group (2.761 mm) than in the 

favorable prognosis group (2.832 mm), with a p-value of 0.018. Similarly, the left temporal pole 

was thinner in the poor prognosis group (3.513 mm) compared to the favorable prognosis group 

(3.656 mm), with a p-value of 0.044. 

In the right hemisphere, significant differences were also observed. The inferior temporal 

cortex was thinner in the poor prognosis group (2.738 mm) compared to the favorable prognosis 

group (2.813 mm), with a p-value of 0.020. Additionally, the right middle temporal cortex (poor 

prognosis: 2.922 mm vs. favorable prognosis: 2.996 mm, p = 0.007) and the right temporal pole 

(poor prognosis: 3.361 mm vs. favorable prognosis: 3.682 mm, p = 0.004) were also significantly 

thinner in the poor prognosis group. 

In contrast, no statistically significant differences in cortical thickness were observed 

between the favorable and poor prognosis groups in other examined brain regions, including the 

bankssts, caudal anterior cingulate, caudal middle frontal, cuneus, inferior parietal, isthmus 

cingulate, lateral occipital, lateral orbital frontal, lingual, medial orbital frontal, parahippocampal, 

paracentral, pars opercularis, pars orbitalis, pars triangularis, pericalcarine, postcentral, posterior 

cingulate, precentral, precuneus, rostral anterior cingulate, rostral middle frontal, superior frontal, 

superior parietal, superior temporal, supramarginal, frontal pole, transverse temporal, and insula 

cortex. 
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Table 3. Cortical thickness analysis based on prognostic outcomes  

 
Favorable prognosis 
(n = 85) 

Poor prognosis 
(n = 40) 

p-value 

Left    

Bankssts 2.636 ± 0.199 2.615 ± 0.221 0.587  

Caudalanteriorcingulate 2.816 ± 0.203 2.792 ± 0.218 0.547  

Caudalmiddlefrontal 2.671 ± 0.182 2.651 ± 0.189 0.583  

Cuneus 1.901 ± 0.176 1.883 ± 0.238 0.625  

Entorhinal 3.370 ± 0.322 3.235 ± 0.399 0.046  

Fusiform 2.832 ± 0.145 2.761 ± 0.173 0.018  

Inferiorparietal 2.546 ± 0.170 2.575 ± 0.206 0.409  

Inferiortemporal 2.803 ± 0.146 2.745 ± 0.192 0.061  

Isthmuscingulate 2.471 ± 0.209 2.492 ± 0.255 0.634  

Lateraloccipital 2.180 ± 0.164 2.198 ± 0.238 0.625  

Lateralorbitofrontal 2.758 ± 0.164 2.735 ± 0.198 0.487  

Lingual 2.051 ± 0.159 2.029 ± 0.170 0.487  

Medialorbitofrontal 2.562 ± 0.137 2.551 ± 0.237 0.739  

Middletemporal 2.961 ± 0.157 2.919 ± 0.264 0.267  

Parahippocampal 2.720 ± 0.258 2.735 ± 0.367 0.800  

Paracentral 2.539 ± 0.165 2.550 ± 0.222 0.768  

Parsopercularis 2.703 ± 0.186 2.675 ± 0.197 0.456  

Parsorbitalis 2.882 ± 0.246 2.833 ± 0.229 0.286  

Parstriangularis 2.644 ± 0.183 2.631 ± 0.198 0.716  

Pericalcarine 1.584 ± 0.161 1.567 ± 0.294 0.683  

Postcentral 2.109 ± 0.179 2.079 ± 0.359 0.534  

Posteriorcingulate 2.668 ± 0.177 2.660 ± 0.189 0.810  

Precentral 2.623 ± 0.189 2.614 ± 0.257 0.824  

Precuneus 2.469 ± 0.157 2.476 ± 0.162 0.812  
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Rostralanteriorcingulate 2.966 ± 0.174 2.953 ± 0.266 0.744  

Rostralmiddlefrontal 2.513 ± 0.152 2.485 ± 0.155 0.346  

Superiorfrontal 2.955 ± 0.155 2.937 ± 0.152 0.550  

Superiorparietal 2.272 ± 0.167 2.317 ± 0.232 0.219  

Superiortemporal 2.942 ± 0.171 2.922 ± 0.182 0.549  

Supramarginal 2.620 ± 0.180 2.623 ± 0.212 0.937  

Frontalpole 2.876 ± 0.247 2.883 ± 0.262 0.882  

Temporalpole 3.656 ± 0.336 3.513 ± 0.427 0.044  

Transversetemporal 2.393 ± 0.258 2.417 ± 0.290 0.641  

Insula 3.099 ± 0.190 2.965 ± 0.523 0.037  

Right    

Bankssts 2.683 ± 0.180 2.657 ± 0.251 0.517  

Caudalanteriorcingulate 2.672 ± 0.221 2.642 ± 0.213 0.474  

Caudalmiddlefrontal 2.685 ± 0.176 2.633 ± 0.227 0.161  

Cuneus 1.932 ± 0.171 1.903 ± 0.189 0.397  

Entorhinal 3.459 ± 0.363 3.347 ± 0.586 0.193  

Fusiform 2.803 ± 0.123 2.757 ± 0.224 0.134  

Inferiorparietal 2.534 ± 0.162 2.535 ± 0.176 0.970  

Inferiortemporal 2.813 ± 0.169 2.738 ± 0.158 0.020  

Isthmuscingulate 2.439 ± 0.196 2.441 ± 0.284 0.964  

Lateraloccipital 2.255 ± 0.158 2.244 ± 0.169 0.732  

Lateralorbitofrontal 2.690 ± 0.199 2.633 ± 0.293 0.197  

Lingual 2.072 ± 0.149 2.059 ± 0.192 0.687  

Medialorbitofrontal 2.619 ± 0.156 2.577 ± 0.246 0.248  

Middletemporal 2.996 ± 0.141 2.922 ± 0.146 0.007  

Parahippocampal 2.703 ± 0.245 2.705 ± 0.256 0.967  

Paracentral 2.572 ± 0.176 2.557 ± 0.249 0.695  

Parsopercularis 2.708 ± 0.172 2.692 ± 0.198 0.642  
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The presented values represent the cortical thickness of each brain region, with units in mm. Data 

are presented as the mean ± standard deviation. 

 

  

Parsorbitalis 2.823 ± 0.204 2.783 ± 0.308 0.389  

Parstriangularis 2.628 ± 0.199 2.570 ± 0.268 0.178  

Pericalcarine 1.626 ± 0.173 1.583 ± 0.170 0.194  

Postcentral 2.098 ± 0.183 2.130 ± 0.200 0.378  

Posteriorcingulate 2.604 ± 0.158 2.561 ± 0.145 0.147  

Precentral 2.569 ± 0.189 2.552 ± 0.234 0.658  

Precuneus 2.444 ± 0.168 2.446 ± 0.198 0.946  

Rostralanteriorcingulate 3.036 ± 0.242 2.987 ± 0.252 0.298  

Rostralmiddlefrontal 2.491 ± 0.156 2.460 ± 0.178 0.314  

Superiorfrontal 2.950 ± 0.161 2.900 ± 0.222 0.158  

Superiorparietal 2.244 ± 0.173 2.262 ± 0.208 0.607  

Superiortemporal 2.996 ± 0.169 2.905 ± 0.388 0.067  

Supramarginal 2.603 ± 0.176 2.601 ± 0.254 0.975  

Frontalpole 2.807 ± 0.267 2.757 ± 0.523 0.480  

Temporalpole 3.682 ± 0.34 3.361 ± 0.880 0.004  

Transversetemporal 2.415 ± 0.255 2.306 ± 0.448 0.086  

Insula 3.130 ± 0.187 3.011 ± 0.528 0.066  
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3.4. Performances of machine learning models 

 

3.4.1. Volumetry model 

 

Table 4 presents the performance of six machine learning models—logistic regression, 

random forest, XGBoost, LightGBM, SVM, and ANN—trained on the training set and validated 

on an independent test set. Among these models, XGBoost demonstrated the highest performance 

with an AUROC of 0.700, LightGBM with an AUROC of 0.618, and random forest with an 

AUROC of 0.517. The SVM model achieved an AUROC of 0.500, logistic regression an AUROC 

of 0.431, and ANN an AUROC of 0.425. 

Further analysis with the best-performing XGBoost model revealed that when using only 

clinical data, the AUROC was 0.600. When using only MRI data, the AUROC improved to 0.680. 

Combining both clinical and MRI data further enhanced the model's performance, achieving an 

AUROC of 0.700 (Figure 2). 

Figure 3 displays the importance of the feature as determined by SHAP values. Among the 

top ten features, the five most significant MRI variables were the left cerebellum white matter, 

right thalamus, left globus pallidus, right amygdala, and left caudate. The left nucleus accumbens, 

right choroid plexus, corpus callosum mid-posterior, onset age, and brainstem followed these. 
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Table 4. Performances of the combined clinical and volumetric machine learning models on the test 

set 

Models Accuracy Precision Recall F1-score AUROC 

Logistic Regression 0.600 0.560 0.600 0.565 0.431 

Random Forest 0.680 0.664 0.680 0.652 0.580 

XGBoost 0.680 0.816 0.680 0.712 0.700 

Light GBM 0.560 0.486 0.560 0.505 0.618 

SVM 0.640 0.410 0.640 0.500 0.500 

ANN 0.600 0.400 0.600 0.480 0.425 

AUROC, Area Under the Receiver Operating Characteristic curve; XGBoost, extreme gradient 

boosting; LightGBM, light gradient boosting machine; SVM, support vector machine; ANN, 

artificial neural network. 
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Figure 2. Receiver operating characteristic (ROC) curves for models using clinical, volumetric, and 

combined variables to predict poor prognosis of juvenile myoclonic epilepsy. 
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Figure 3. SHAP value summary plot for the combined clinical and volumetric XGBoost model. 

SHAP, Shapley additive explanations; XGBoost, extreme gradient boosting. 
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3.4.2. Cortical thickness model  

 

Table 5 presents the performance of six machine learning models—logistic regression, 

random forest, XGBoost, LightGBM, SVM, and ANN—trained on the training set and validated 

on an independent test set. Among these models, XGBoost demonstrated the highest performance 

with an AUROC of 0.676, SVM with an AUROC of 0.603, and ANN with an AUROC of 0.522. 

The logistic regression model achieved an AUROC of 0.463, LightGBM an AUROC of 0.456, 

and random forest an AUROC of 0.430. For the best-performing XGBoost model, the accuracy 

was 0.760, precision was 0.758, recall was 0.760, and the F1-score was 0.733. 

Figure 4 displays the importance of the feature as determined by SHAP values. Among the 

cortical thickness features identified by SHAP values as playing a crucial role in prognosis, the 

five most important were, in order: right superior parietal, right frontal pole, left caudal middle 

frontal, right temporal pole, and left parahippocampal cortex. 
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Table 5. Performances of the combined clinical and cortical thickness machine learning models on 

the test set 

Models Accuracy Precision Recall F1-score AUROC 

Logistic Regression 0.600 0.533 0.600 0.554 0.463 

Random Forest 0.520 0.549 0.520 0.532 0.430 

XGBoost 0.760 0.758 0.760 0.733 0.676 

LightGBM 0.600 0.533 0.600 0.554 0.456 

SVM 0.680 0.462 0.680 0.551 0.603 

ANN 0.560 0.574 0.560 0.566 0.522 

AUROC, Area Under the Receiver Operating Characteristic curve; XGBoost, extreme gradient 

boosting; LightGBM, light gradient boosting machine; SVM, support vector machine; ANN, 

artificial neural network. 
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Figure 4. SHAP value summary plot for the combined clinical and cortical thickness XGBoost 

model. SHAP, Shapley additive explanations; XGBoost, extreme gradient boosting. 
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3.4.3. Radiomics model  

 

Table 6 presents the performance of six machine learning models—logistic regression, 

random forest, XGBoost, LightGBM, SVM, and ANN—trained on the training set and validated 

on an independent test set. Among these models, XGBoost demonstrated the highest performance 

with an AUROC of 0.824, LightGBM with an AUROC of 0.772, and random forest with an 

AUROC of 0.772. The logistic regression model achieved an AUROC of 0.691, SVM an AUROC 

of 0.500, and ANN an AUROC of 0.485.  
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Table 6. Performances of Radiomics machine learning models on the test set 

Models Accuracy Precision Recall F1-score AUROC 

Logistic Regression 0.720  0.712  0.720  0.715  0.691  

Random Forest 0.720  0.802  0.720  0.635  0.768  

XGBoost 0.720  0.702  0.720  0.699  0.824  

LightGBM 0.760  0.758  0.760  0.733  0.772  

SVM 0.680  0.462  0.680  0.551  0.500  

ANN 0.680  0.661  0.680  0.666  0.485  

AUROC, Area Under the Receiver Operating Characteristic curve; XGBoost, extreme gradient 

boosting; LightGBM, light gradient boosting machine; SVM, support vector machine; ANN, 

artificial neural network. 
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Figure 5. SHAP value summary plot for the XGBoost model. SHAP, Shapley additive explanations; 

XGBoost, extreme gradient boosting. 
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3.4.4. Combined model  

 

Table 7 presents the performance of six machine learning models—logistic regression, 

random forest, XGBoost, LightGBM, SVM, and ANN—trained on the training set and validated 

on an independent test set, using clinical, volumetric, cortical thickness, and Radiomics data. 

Random forest demonstrated the highest performance with an AUROC of 0.923, LightGBM with 

an AUROC of 0.750, and logistic regression with an AUROC of 0.750. The XGBoost model 

achieved an AUROC of 0.735, ANN an AUROC of 0.559, and SVM an AUROC of 0.500. For 

the best-performing random forest model, the accuracy was 0.840, precision was 0.859, recall was 

0.840, and the F1-score was 0.844. 
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Table 7. Performance of machine learning models combining clinical, volumetric, cortical thickness, 

and Radiomics data on the test set 

Models Accuracy Precision Recall F1-score AUROC 

Logistic Regression 0.720  0.712  0.720  0.715  0.750  

Random Forest 0.840  0.859  0.840  0.844  0.923  

XGBoost 0.760  0.750  0.760  0.750  0.735  

LightGBM 0.720  0.708  0.720  0.674  0.750  

SVM 0.680  0.462  0.680  0.551  0.500  

ANN 0.680  0.704  0.680  0.688  0.559  

AUROC, Area Under the Receiver Operating Characteristic curve; XGBoost, extreme gradient 

boosting; LightGBM, light gradient boosting machine; SVM, support vector machine; ANN, 

artificial neural network. 
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IV. DISCUSSION 
 

This study highlights several key findings that contribute to our understanding of prognostic 

factors in JME. First, we identified that male gender, the volumes of the left amygdala and right 

hippocampus, and the cortical thickness of the bilateral temporal poles, left entorhinal cortex, 

fusiform gyrus, and right inferior and middle temporal cortex were significantly associated with a 

favorable prognosis. Second, our prognostic prediction models that combined clinical and 

radiological variables outperformed those based on clinical variables alone. The model that 

integrated clinical data with volumetric, cortical thickness, and Radiomics data demonstrated the 

highest predictive performance. Third, we found that brain structures such as the thalamus and 

hippocampus, which are already known to be involved in the pathophysiology of JME, also emerged 

as significant features in the prognostic prediction models. 

The association of the male gender with better outcomes is consistent with previous studies 

on JME prognosis.9,17 This may be attributed to the broader range of antiseizure medications 

available to males, particularly compared to females of childbearing age, who have more limited 

treatment options due to teratogenic risks.  

In our analysis of brain subcortical volumes, the amygdala and hippocampus—regions 

known to be involved in emotion and cognition—were identified as important structures associated 

with prognosis. These findings align with earlier studies that observed differences in these brain 

regions between JME patients and healthy controls, suggesting that these structures may play a 

critical role in influencing disease outcomes.18 

Regarding cortical thickness, our study found that thinning in several regions, including the 

bilateral temporal poles, fusiform gyrus, entorhinal cortex, and middle and inferior temporal cortex, 

was associated with prognosis. Previous studies comparing JME patients to healthy controls have 

reported thinning in the temporal cortex and fusiform gyrus.12,19 Our findings extend this knowledge 

by demonstrating a link between these pathological changes and treatment outcomes, suggesting 

that cortical thinning may serve as a marker for prognosis in JME. 

In developing a novel prognostic prediction model for JME, we combined clinical and 

radiological variables, showing that this multimodal approach provides superior predictive 

performance compared to models relying solely on either data type. This is consistent with recent 

advances in artificial intelligence in clinical settings, where the integration of multimodal data is 
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increasingly recognized as essential for enhancing diagnostic and prognostic capabilities. Our 

previous research has highlighted the value of radiological variables in diagnosing and classifying 

JME and other generalized epilepsies, demonstrating that microstructural brain changes observed 

on MRI can improve diagnostic accuracy.20,21 Building on these insights, the current study further 

validates the importance of combining clinical and radiological data to improve prognostic 

predictions, emphasizing the potential of AI models to assist clinicians—especially non-

epileptologists—in making more informed decisions regarding epilepsy management. 

In our study, we employed various machine learning models for prognostic prediction, with 

tree-based models such as XGBoost, Random Forest, and LightGBM generally performing the best. 

These models likely excelled because they are well-suited for tasks that require classification based 

on multiple variables. Models combining radiological features—including volumetry, cortical 

thickness, and radiomics data—outperformed those based solely on clinical variables. The model 

that combined clinical, volumetric, cortical thickness, and radiomics data achieved the highest 

predictive performance, suggesting that multimodal data models hold significant promise for clinical 

applications. 

Moreover, the thalamus, a region well-documented to undergo microstructural changes in 

JME, was confirmed in our study as critically important for prognosis.22,23 Specific volume 

alterations in the thalamus, along with disrupted thalamo-frontal connectivity, have been implicated 

in seizure regulation, further underscoring the thalamus's role in the underlying mechanisms and 

clinical outcomes of the disease.24,25 

Despite these significant findings, our study has limitations that warrant consideration. The 

relatively small sample size, coupled with the large number of variables used to develop the 

prediction models, may have limited the models' performance on external validation sets. 

Additionally, our multimodal approach was somewhat restricted, as it relied solely on structural T1-

weighted 3D MRI scans and excluded other radiological variables such as diffusion tensor image 

(DTI) and functional MRI (fMRI) data, which could potentially enhance model accuracy. Future 

research should aim to address these limitations by utilizing larger, more homogeneous samples and 

incorporating a broader range of multimodal data. 

Despite these challenges, our study presents several notable strengths. It is the first to 

combine clinical and radiological variables to develop a prognostic model for JME, demonstrating 

that radiological data significantly enhance the predictive power of clinical variables. We 



３５ 

 

successfully identified models with appropriate performance levels using advanced machine 

learning techniques. Additionally, our study confirmed that both clinical and radiological variables 

previously associated with JME prognosis are indeed significant, thus providing clinical 

explainability and reinforcing the relevance of these factors in understanding the disease's 

mechanisms.  
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V. CONCLUSION 
 

This study demonstrates the utility of machine learning models that integrate clinical and 

radiological data to predict prognosis in JME. We identified key prognostic factors, including male 

gender, volumetric differences in the left amygdala and right hippocampus, and cortical thickness 

in specific brain regions such as the bilateral temporal poles and entorhinal cortex. The combined 

model, incorporating clinical, volumetric, cortical thickness, and Radiomics data, outperformed 

models relying on single data types, highlighting the importance of a multimodal approach in 

predicting treatment outcomes in JME. Additionally, our findings reaffirm the critical role of brain 

structures such as the thalamus and hippocampus, which are already associated with JME's 

pathophysiology, in influencing disease prognosis. Despite the limitations related to sample size and 

data modalities, this study provides a foundation for further research into AI-driven prognostic tools 

in epilepsy management, with the potential to improve clinical decision-making and patient 

outcomes. 
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Abstract in Korean 

 

청소년근간대뇌전증의 예후 예측을 위한 임상양상과 영상변수를 

결합한 인공지능 모델의 개발과 검증 

 

서론: 청소년근간대뇌전증은 비교적 약물치료에 대한 예후가 좋으나, 35%의 

환자는 약물난치성 뇌전증으로 고통받고 있고, 현재까지 다양한 임상적 특성이 

예후에 영향을 미치는 것으로 알려져 있다. 청소년근간대뇌전증의 예후 예측에 

영향을 미치는 임상적 요인에 대해 많은 연구가 이루어졌지만, 임상적 특성과 

영상의학적인 특성을 통합하여 예후를 예측하는 모델에 대한 연구는 제한적이다. 

본 연구는 임상양상과 영상변수를 결합하여 청소년근간대뇌전증 환자의 예후를 

예측하는 인공지능 모델을 개발하고 검증하는 것을 목표로 한다. 

 

방법: 국내 5개 대학병원에서 청소년근간대뇌전증으로 진단된 전체 125명 

(내부훈련용데이터 - 1개병원 99명, 외부검증용데이터 - 5개병원 26명)의 

환자를 대상으로 후향적 연구를 수행하였다. 인구통계학적 정보, 임상특성, 

약물투약, 발작이력의 임상 데이터를 수집하였고, MRI 데이터를 이용하여 피질하 

구조물의 부피측정, 대뇌피질두께측정, 라디오믹스 특성 추출등으로 뇌 구조의 

정량적인 특성을 추출하였다. 추출된 변수들을 6가지 인공지능 방법 – logistic 

regression, random forest, XGBoost, LightGBM, SVM, ANN – 을 이용하여, 

2년간의 무발작기간을 예측하는 기계 학습 모델을 개발하고, 정확도, 정밀도, 

재현율, F1 점수, AUROC 지표를 사용하여 성능을 평가하였다. 모델은 내부 

데이터셋에서 학습되었으며 독립적인 외부 데이터셋을 통해 검증되었으며, 

모델이 이용하는 특성 중요도도 확인하였다. 

 

결과: 좋은 예후와 관련된 임상변수로는 남성, 영상변수로는 좌측 편도체와 

우측 해마의 부피, 피질두께에서는 양측 측두엽극(temporal pole), 좌측 

내후각피질(entorhinal cortex), 방추상 회(fusiform gyrus), 그리고 우측 하측 

(inferior) 및 중간 (middle) 측두엽피질(temporal gyrus)의 두께가 좋은 예후와 

유의하게 연관된 것으로 나타났다. 가장 우수한 성능을 보인 기계 학습 모델은 

임상 데이터, 부피 측정, 피질 두께, 방사선학적 데이터를 결합한 모델 (AUROC 

0.923)로 단일 데이터 유형에 의존한 모델(AUROC 0.600)보다 우수한 성능을 

보였다. 또한 시상(thalamus)과 해마(hippocampus)와 같이 
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청소년근간대뇌전증의 병리생리학적 기전에 관여하는 뇌 구조가 예후 예측에 

중요한 특징으로 확인되었다. 

 

결론: 본 연구는 임상양상 및 영상변수를 통합한 기계 학습 모델이 

청소년근간대뇌전증의 예후를 예측하는 데 유용할 수 있음을 보여주었다. 다양한 

데이터를 결합하는 기반으로 한 모델이 단일 데이터 유형에 기반한 모델보다 더 

효과적이라는 점을 시사하며, 이는 뇌전증의 관리에서 치료 결과를 예측하는 데 

있어 임상의에게 보조적인 도구로 사용될 수 있다. 이 연구의 결과는 더 큰 

규모의 다양한 인구를 대상으로 추가적인 검증이 필요하며, 확산텐서영상 및 

기능적 자기공명영상과 같은 추가 방사선학적 기법을 포함하여, 연구가 기대된다. 

_______________________________________________________________________________ 

핵심되는 말 : 청소년근간대뇌전증, 예후, 라디오믹스, 머신러닝 


	LIST OF FIGURES
	LIST OF TABLES 
	ABSTRACT IN ENGLISH 
	1. INTRODUCTION
	2. METHODS
	2.1. Subjects
	2.1.1. Inclusion and exclusion criteria
	2.1.2. Internal data set
	2.1.3. External data set

	2.2. Clinical data
	2.3. MRI
	2.3.1. MRI data acquisition
	2.3.2. MRI preprocessing
	2.3.3. Analysis of MRI data
	2.3.3.1. Subcortical structure volume 
	2.3.3.2. Cortical thickness 
	2.3.3.3. Radiomics 


	2.4. Artificial intelligence method
	2.4.1. Machine learning models
	2.4.1.1. Logistic regression 
	2.4.1.2. Random forest 
	2.4.1.3. Extreme gradient boosting (XGBoost) 
	2.4.1.4. Light gradient boosting machine (LightGBM) 
	2.4.1.5. Support vector machine (SVM) 
	2.4.1.6. Artificial neural network (ANN) 

	2.4.2. Performance evaluation 
	2.4.3. Feature importance and model interpretability 

	2.5. Statistical analysis

	3. RESULTS
	3.1. Clinical characteristics
	3.2. Volumetric analysis of subcortical structures
	3.3. Cortical thickness analysis
	3.4. Performances of machine learning models
	3.4.1. Volumetry model
	3.4.2. Cortical thickness model
	3.4.3. Radiomics model
	3.4.4. Combined model


	4. DISCUSSION
	5. CONCLUSION
	REFERENCES 
	ABSTRACT IN KOREAN 


<startpage>12
LIST OF FIGURES iii
LIST OF TABLES  iv
ABSTRACT IN ENGLISH  v
1. INTRODUCTION 1
2. METHODS 3
 2.1. Subjects 3
  2.1.1. Inclusion and exclusion criteria 3
  2.1.2. Internal data set 3
  2.1.3. External data set 3
 2.2. Clinical data 4
 2.3. MRI 4
  2.3.1. MRI data acquisition 4
  2.3.2. MRI preprocessing 4
  2.3.3. Analysis of MRI data 5
   2.3.3.1. Subcortical structure volume  5
   2.3.3.2. Cortical thickness  5
   2.3.3.3. Radiomics  6
 2.4. Artificial intelligence method 6
  2.4.1. Machine learning models 6
   2.4.1.1. Logistic regression  7
   2.4.1.2. Random forest  7
   2.4.1.3. Extreme gradient boosting (XGBoost)  7
   2.4.1.4. Light gradient boosting machine (LightGBM)  8
   2.4.1.5. Support vector machine (SVM)  8
   2.4.1.6. Artificial neural network (ANN)  9
  2.4.2. Performance evaluation  9
  2.4.3. Feature importance and model interpretability  9
 2.5. Statistical analysis 10
3. RESULTS 11
 3.1. Clinical characteristics 11
 3.2. Volumetric analysis of subcortical structures 14
 3.3. Cortical thickness analysis 17
 3.4. Performances of machine learning models 21
  3.4.1. Volumetry model 21
  3.4.2. Cortical thickness model 25
  3.4.3. Radiomics model 28
  3.4.4. Combined model 31
4. DISCUSSION 33
5. CONCLUSION 36
REFERENCES  37
ABSTRACT IN KOREAN  40
</body>

