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ABSTRACT

Development and validation of artificial intelligence models for
prognosis prediction of juvenile myoclonic epilepsy with clinical and
radiological features

Introduction: Juvenile myoclonic epilepsy (JME) is a prevalent form of epilepsy with varying
prognoses based on clinical and radiological factors. While many studies have explored JME's
clinical aspects, the integration of these factors into a predictive model for prognosis has been limited.
This study aims to develop and validate machine learning models that combine clinical and

radiological features to predict prognosis in JME patients.

Methods: We conducted a retrospective study including 125 patients diagnosed with JME. Clinical
data were collected, including demographic information, seizure history, and treatment details. MRI
data were analyzed using volumetric and cortical thickness measurements, as well as radiomics
features. Machine learning models - including logistic regression, random forest, extreme gradient
boosting (XGBoost), light gradient boosting machine (LightGBM), support vector machine (SVM),
and artificial neural network (ANN) - were developed and evaluated using accuracy, precision, recall,
Fl-score, and the area under the receiver operating characteristic curve (AUROC) metrics. The

models were trained on an internal dataset and validated on an independent external dataset.

Results: The analysis identified that male gender, volumes of the left amygdala and right
hippocampus, and cortical thickness of the bilateral temporal poles, left entorhinal cortex, fusiform
gyrus, and right inferior and middle temporal cortex were significantly associated with favorable
prognosis. Models combining clinical, volumetric, cortical thickness, and Radiomics data
outperformed those relying on a single data type. The best-performing machine learning model was
random forest, which achieved an AUROC of 0.923. The integrated model demonstrated superior
predictive performance, underscoring the importance of a multimodal approach. Brain structures
such as the thalamus and hippocampus, known to be involved in JME’s pathophysiology, were

identified as critical features in the prognostic prediction.



Conclusion: This study highlights the potential of using machine learning models that integrate
clinical and radiological data to predict prognosis in JME. The findings suggest that multimodal data
models are more effective than those based on single data types, offering a promising approach for
improving prognostic accuracy in JME. The integration of advanced imaging features with clinical
variables could enhance decision-making in epilepsy management, providing valuable tools for
clinicians in the prediction of treatment outcomes. Further research is needed to validate these
findings in larger, more diverse populations and to explore the inclusion of additional radiological

modalities such as diffusion tensor image and functional MRI.

Key words: Juvenile myoclonic epilepsy, Prognosis, Machine learning, Radiomics, Multimodal
integration
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[. INTRODUCTION

Epilepsy is a common chronic brain disorder that affects people of all ages and can be found
in any country and in any race.! Conceptually, epilepsy can be defined as a long-lasting brain
condition characterized by a tendency to have recurrent epileptic seizures. Globally, the prevalence
of active epilepsy is 6.4 per 1000 (95% Confidence Interval (CI) 5.6-7.3), and the incidence is 61.4
per 100,000 person-years, and according to epidemiological studies of epilepsy in Korea, the
incidence and prevalence of epilepsy in Korea are increasing, and as of 2017, the prevalence of
epilepsy in Korea was 4.8 per 1000 and the incidence was 35.4 per 100,000 person-years, making it
one of the important brain diseases.>

Juvenile myoclonic epilepsy (JME) is a prevalent adolescent epilepsy, accounting for
approximately 10% of all cases.>* Characterized by recurrent myoclonic seizures, primarily in the
shoulders and limbs, JME typically begins around puberty and is often accompanied by generalized
tonic-clonic seizures and, in some cases, absence seizures.’- Classified under idiopathic generalized
epilepsy (IGE), the prognosis for JIME with pharmacological treatment is relatively favorable, with
nearly 60% of patients achieving five years or more of seizure freedom on medication and about 25%
maintaining remission without medication.%’ However, many patients experience relapse upon
discontinuation of medication, necessitating lifelong treatment. Meta-analyses suggest that around
35% of patients exhibit drug-refractory epilepsy.®

Clinical factors influencing the prognosis with antiseizure medication include female gender,
younger age of onset, history of absence seizures, praxis-induced seizures, childhood absence
epilepsy, comorbid psychiatric disorders, family history, epileptiform asymmetries on EEG, and
absence of photoparoxysmal response.”!? While brain MRI in JME patients appears visually normal,
recent advancements in quantitative and functional MRI analysis reveal differences in structural and
functional connectivity compared to healthy controls, along with widespread neocortical thinning as
the disease progresses.'!!?

Despite the progress in imaging techniques, there is a lack of studies analyzing quantitative
imaging features for prognosis in JME. Recent efforts have utilized machine learning and deep
learning to develop diagnostic and prognostic models for various neurological diseases, including

epilepsy.!*!* Some studies have combined clinical information and brain MRI images to predict drug



response, but these models often underperform due to the insufficient integration of comprehensive
variables.!>!6
To address this gap, our study aims to develop and validate artificial intelligence models that

combine clinical and imaging variables to predict the prognosis of drug treatment response in JME.



II. METHODS

2.1. Subjects

2.1.1. Inclusion and exclusion criteria

This retrospective study included consecutive patients who presented with seizures and
visited the epilepsy clinic. Patients diagnosed with JME by epilepsy specialists were included in the
study. The initial diagnosis of JME was confirmed by reviewing the medical records of neurologists
at the institution, based on clinical and EEG features established by the International League Against
Epilepsy. Patients included in the study experienced both generalized onset motor myoclonic
seizures and generalized onset motor tonic-clonic seizures. EEG findings consistently demonstrated
generalized polyspikes or spike-and-wave complexes in all patients diagnosed with JME. MRI
readings were confirmed to be normal by board-certified neuroradiologists. Exclusion criteria for
the study were as follows: 1) patients with less than a 3-year follow-up, and 2) participants who

underwent a 2D protocol MRI.

2.1.2. Internal data set

The internal data set was used to train this study's prognostic prediction model. The clinical
data utilized were retrospectively collected from the medical records of epilepsy patients who visited
the epilepsy clinic of a single physician (K. Heo) at Severance Hospital between January 2000 and
August 2022. Clinical and imaging data were obtained for research by comprehensively reviewing

patients' medical records who met the inclusion criteria.

2.1.3. External data set

The external data set was used to test the prognostic prediction model in this study. Clinical

data were collected from patients diagnosed with JME by neurologists at five university hospitals in



South Korea (Severance Hospital [K.M. Kim], Wonju Severance Christian Hospital, Chung-Ang
University Gwangmyeong Hospital, Gangneung Asan Hospital, and Incheon St. Mary's Hospital)
between January 2000 and July 2024. The same clinical variables as those obtained from the internal

data set were used, and brain MRI data were acquired and analyzed.

2.2. Clinical data

Clinical variables collected from patients included age, sex, age at onset, disease duration,
treatment history, number of antiseizure medications, family history of epilepsy, history of febrile
seizures, history of absence seizures, and the presence of seizures during the follow-up period.
Patients who were seizure-free for 2 years or longer at any time after diagnosis were considered to

have a favorable outcome.

2.3. MRI

2.3.1. MRI data acquisition

Brain MRI at Severance Hospital used a 3T MRI system (Achieva or Ingenia, PhiPhilips
Healthcare; TrioTim, Siemens) with an encoding head coil of 8-channel sensitivity. MRI data was
included if they were deemed visually normal by at least one neuroradiologist. We collected data
with T1 3D images. Raw data from other hospitals' MRIs was analyzed by collecting MRIs with T1
3D images.

2.3.2. MRI preprocessing

During the preprocessing stage of the MRI data, the researcher performed the preprocessing
steps while blinded to the images of the favorable and poor prognosis groups. Brain region-specific
masks were obtained using FreeSurfer 6.0.0 software (https:/surfer.nmr.mgh.harvard.edu). The
preprocessing process included motion correction, Talairach transformation, segmentation of

subcortical white matter and deep gray matter structures, and intensity normalization. FreeSurfer



was used to resample and obtain masks for each region in a consistent size and position, thereby

minimizing variability between processing steps and across the data.

2.3.3. Analysis of MRI data

2.3.3.1. Subcortical structure volume

To quantify the volumes of subcortical structures, we utilized the automated segmentation
tool FreeSurfer (version 6.0.0). The T1-weighted MRI scans of all subjects were processed using
the standard FreeSurfer pipeline as part of the preprocessing stage. Specifically, the subcortical
regions of interest (ROIs) volumes were extracted from the aseg.stats output file, generated by the
"recon-all" command. This file provides volumetric data for 29 predefined anatomical labels,
including bilateral structures such as the thalamus, caudate, putamen, pallidum, hippocampus,
amygdala, nucleus accumbens, ventral diencephalon, choroid plexus, cerebellar cortex, and
cerebellar white matter. Additionally, it includes midline structures such as the brainstem, optic
chiasm, and segments of the corpus callosum (anterior, mid-anterior, central, mid-posterior, and
posterior). The resulting volumes were subsequently used for statistical analyses. All segmentations
were visually inspected for accuracy, and any errors were corrected in accordance with FreeSurfer’s

guidelines to ensure the reliability of the volumetric measurements.

2.3.3.2. Cortical thickness

We utilized FreeSurfer (version 6.0.0) to measure cortical thickness, following the standard
processing pipeline applied to T1-weighted MRI scans. Cortical reconstruction and volumetric
segmentation were conducted using the "recon-all" command, which includes steps such as intensity
normalization, skull stripping, and the generation of cortical surface models. Cortical thickness
measurements for each hemisphere were extracted from the lh.aparc.stats and rh.aparc.stats files,
corresponding to the left and right hemispheres, respectively. These files provide cortical thickness
data for the 34 predefined anatomical ROIs per hemisphere based on the Desikan-Killiany atlas. The

regions include bankssts, caudal anterior cingulate, caudal middle frontal, cuneus, entorhinal,



fusiform, inferior parietal, inferior temporal, isthmus cingulate, lateral occipital, lateral orbital
frontal, lingual, medial orbital frontal, middle temporal, parahippocampal, paracentral, pars
opercularis, pars orbitalis, pars triangularis, pericalcarine, postcentral, posterior cingulate, precentral,
precuneus, rostral anterior cingulate, rostral middle frontal, superior frontal, superior parietal,
superior temporal, supramarginal, frontal pole, temporal pole, transverse temporal, and insula. The
extracted thickness values were subsequently used in statistical analyses. All segmentations and
surface reconstructions were visually inspected for accuracy, and any errors were corrected in
accordance with FreeSurfer's guidelines to ensure the validity and reliability of the cortical thickness

measurements.

2.3.3.3. Radiomics

We focused on 22 ROIs, including bilateral cerebral white matter, bilateral thalamus,
bilateral caudate, bilateral putamen, bilateral globus pallidus, bilateral hippocampus, bilateral
amygdala, bilateral ventral diencephalon, the brainstem, and the corpus callosum (segmented into
anterior, mid-anterior, central, mid-posterior, and posterior regions) in this study. These ROIs were
selected based on prior studies identifying quantitative and functional differences between
individuals with juvenile myoclonic epilepsy and healthy controls. To analyze these regions, we
employed radiomics, which involves extracting many quantitative features from medical images that
capture the texture, shape, and intensity patterns within the ROIs. Specifically, we used
PyRadiomics (http://www.radiomics.io/pyradiomics.html), an open-source software platform, to
extract a comprehensive set of radiomics features from each ROI. These features were then used in
subsequent statistical and machine-learning analyses to investigate potential biomarkers and

differences between the study groups.

2.4. Artificial intelligence method

2.4.1. Machine learning models

We implemented and evaluated six different machine learning models to classify and predict



outcomes based on the extracted features in this study: Logistic regression, Random Forest, Extreme
gradient boosting (XGBoost), Light gradient boosting machine (LightGBM), Support vector
machine (SVM), and Artificial neural network (ANN).

The model employs weighted scaling and the synthetic minority oversampling technique
(SMOTE) for further performance improvement. Additionally, the LASSO feature reduction was
applied first. The models were trained using the training sets, and hyperparameter tuning was

performed. Hyperparameter tuning was done by a 5-fold cross-validation in the training set.

2.4.1.1. Logistic regression

Logistic regression was employed as a baseline model in our study due to its simplicity and
interpretability. This model is a linear classifier that estimates the probability of a binary outcome
based on the logistic function. The logistic regression model was trained using the maximum
likelihood estimation method to minimize the difference between the predicted and actual outcomes.
Despite being a linear model, it can effectively capture the relationship between the features and the
outcome when the data is linearly separable. Regularization techniques, such as L2 regularization,

were applied to prevent overfitting by penalizing large coefficients.

2.4.1.2. Random Forest

Random Forest, an ensemble learning method, enhanced predictive performance by
combining multiple decision trees. Each tree in the Random Forest was trained on a bootstrapped
subset of the data, and a random subset of features was considered for splitting at each node, which
increases diversity among the trees and improves generalization. The final prediction was obtained
by aggregating the predictions from all individual trees, typically through majority voting for
classification tasks. This model is particularly advantageous because it is robust to overfitting and
can capture non-linear relationships in the data. Hyperparameters such as the number of trees,

maximum depth, and minimum samples per leaf were tuned to optimize model performance.



2.4.1.3. Extreme gradient boosting (XGBoost)

XGBoost was implemented as a more sophisticated gradient boosting framework, known for
its speed and performance in machine learning competitions. This model builds trees sequentially,
where each new tree attempts to correct the errors made by the previous ones. The model minimizes
a differentiable loss function using gradient descent and incorporates a regularization term to prevent
overfitting. XGBoost also supports parallel processing, which accelerates training, and includes
built-in handling of missing values. Hyperparameters such as the learning rate, maximum depth of
trees, and number of boosting rounds were carefully tuned using cross-validation to achieve the best

performance.

2.4.1.4. Light gradient boosting machine (LightGBM)

LightGBM, another gradient-boosting framework, was chosen for its efficiency and
scalability, especially with large datasets. It uses a histogram-based algorithm to discretize
continuous features into bins, which significantly speeds up the training process and reduces
memory usage. LightGBM grows trees leaf-wise rather than level-wise, allowing it to capture
complex patterns in the data more effectively. The model was tuned by adjusting hyperparameters
such as the number of leaves, learning rate, and the number of boosting iterations. LightGBM’s

ability to handle large-scale data with faster training times made it a valuable model in our analysis.

2.4.1.5. Support vector machine (SVM)

SVM with a radial basis function (RBF) kernel was employed to handle the non-linear
relationships in our dataset. SVM works by finding the optimal hyperplane that maximizes the
margin between the classes in a high-dimensional space. The RBF kernel maps the input features
into a higher-dimensional space, where a linear separation between classes may be possible. The
key hyperparameters, such as the regularization parameter (C) and the kernel coefficient (gamma),
were optimized to balance model complexity and accuracy. SVM is particularly effective in

scenarios where the feature space is high-dimensional and the margin between classes is distinct.



2.4.1.6. Artificial neural network (ANN)

An ANN was constructed to model complex, non-linear relationships in the data. The ANN
architecture consisted of an input layer, multiple hidden layers with neurons, and an output layer.
Each neuron applied a non-linear activation function to a weighted sum of inputs, enabling the
network to learn hierarchical representations of the data. The network was trained using
backpropagation, where the weights were adjusted to minimize the loss function via gradient descent.
Hyperparameters such as the number of hidden layers, the number of neurons per layer, the learning
rate, and the type of activation function were tuned to optimize the network’s performance. Dropout

regularization was also applied to prevent overfitting by randomly dropping neurons during training.

2.4.2. Performance evaluation

The performance of the artificial intelligence models was evaluated using a comprehensive
set of metrics, including the area under the receiver operating characteristic curve (AUROC), recall,
precision, accuracy, and F1 score. AUROC measures the model’s ability to discriminate between
classes, representing the trade-off between sensitivity (true positive rate) and specificity (false
positive rate) across different threshold settings. An AUROC value of 1 indicates perfect
discrimination, while a value of 0.5 suggests no better performance than random chance. Recall,
also known as sensitivity or true positive rate, is the proportion of actual positives correctly identified
by the model. It is calculated as the number of true positives divided by the sum of true positives
and false negatives. High recall is important in contexts where minimizing false negatives is critical.
Precision is the proportion of correct positive predictions, calculated as the number of true positives
divided by the sum of true and false positives. Precision is particularly relevant in scenarios with the
high cost of false positives. Accuracy is the overall proportion of correct predictions (both true
positives and true negatives) out of all predictions made by the model. It provides a general measure
of the model’s correctness but can be misleading in imbalanced datasets where one class is much
more frequent than the other. The F1 score is the harmonic mean of precision and recall, providing
a metric that balances both concerns. The F1 score is instrumental when the dataset is imbalanced,

giving a more nuanced view of the model’s performance than accuracy alone. By presenting these



metrics, we aimed to provide a thorough assessment of the model’s performance, ensuring that it is
evaluated in terms of its overall correctness and ability to balance the trade-offs between different

types of errors.

2.4.3. Feature importance and model interpretability

We employed Shapley Additive Explanations (SHAP) to interpret the artificial intelligence
models to identify and present important features that contributed to the model's predictions. SHAP
values are derived from cooperative game theory and provide a consistent way to assign importance
scores to each feature for individual predictions. Specifically, SHAP calculates the contribution of
each feature by considering all possible combinations of features and their impact on the model’s
output. This method allows for a clear understanding of how each feature influences the prediction,
offering both global and local interpretability. Globally, SHAP values indicate the overall
importance of each feature across the entire dataset, while locally, they explain the contribution of
each feature to a specific prediction. By using SHAP, we could identify and visualize the most
critical features that the model relied upon, enhancing the transparency and interpretability of the

machine learning model's decision-making process.

2.5. Statistical analysis

The statistical analysis method used in the variable description and selection stage utilizes
Pearson correlation coefficient and variance inflation factor to prevent over-selection of variables
including multicollinearity, and Student t-test and Pearson chi-square test to compare variables. All
statistical analyses were performed using R version 4.11, and machine learning and deep learning
were performed using Python version 3.6.8. Statistical significance was determined based on a two-

sided p-value <0.05.
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III. RESULTS

3.1. Clinical characteristics

The process of selecting the study participants is illustrated in Figure 1. For the internal
dataset, we enrolled JME patients treated by a single physician (K. Heo) at Severance hospital
between January 2000 and August 2022. Among the 210 patients with available clinical data and
brain MRI, we excluded 37 patients who had less than 3 years of follow-up. Additionally, 48
patients without 3D MRI were excluded, followed by the exclusion of 26 patients who had
received prior treatment before visiting the hospital, resulting in the absence of pre-treatment MRI.
Consequently, the final internal dataset included clinical variables and 3D T1 MRI images from
99 patients. For the external dataset, we enrolled 76 patients from five hospitals who had at least
3 years of follow-up after disease onset between January 2000 and July 2004. We excluded 22
patients who had only 2D MRI scans and 28 patients who received treatment before their first MRI
scan, resulting in a final external dataset consisting of clinical variables and 3D T1 MRI images
from 26 patients from 5 university hospitals (Severance Hospital [K.M. Kim] — n=12, Wonju
Severance Christian Hospital, n=3, Chung-Ang University Gwangmyeong Hospital — n=3,
Gangneung Asan Hospital — n=5, and Incheon St. Mary's Hospital — n=3)

The clinical characteristics of all included patients are summarized in Table 1. Among the
125 patients from the combined internal and external datasets, 85 were seizure-free for more than
2 years, indicating a favorable prognosis, while 40 patients did not achieve this outcome,
representing a poor prognosis. A significantly higher proportion of males was observed in the
favorable prognosis group compared to the poor prognosis group (60.0% vs. 40.0%, p = 0.036).
No significant differences were found between the two groups in terms of age, age at onset, or
duration of epilepsy. Additionally, there were no significant differences in family history, history
of febrile seizures, or the presence of absence seizures. Regarding treatment, the groups did not
differ in the number of antiseizure medications used, or the use of specific medications, including
valproic acid, lamotrigine, levetiracetam, and topiramate. The follow-up duration was also similar

between the two groups.

11



JME, Internal data set
Severance Hospital

N=210

JME, External data set
5 University Hospitals
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External test set
N=26

Figure 1. Flow chart depicting the study subjects. JIME, juvenile myoclonic epilepsy
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Table 1. Demographic and clinical characteristics of juvenile myoclonic epilepsy patients

in the study

Favorable prognosis  Poor prognosis

(n = 85) (n = 40) p-value
Age (years) 235 £ 8.7 232 £ 7.7 0.843
Male sex, n (%) 51 (60.0) 16 (40.0) 0.036
Onset age (years) 152 £ 45 152 £ 48 0.991
Epilepsy duration (years) 83 +94 8.0 £ 8.2 0.888
Family history, n (%) 16 (18.8) 4 (10.0) 0.209
Febrile seizure history*, n (%) 9 (10.6) 5 (12.5) 0.767
Absence seizure, n (%) 31 (36.5) 14 (35.0) 0.873
Number of ASMs 2 (1-3) 2 (1-3) 0.577
VPA, n (%) 65 (76.5) 30 (75.0) 0.857
LTG, n (%) 39 (45.9) 21 (52.5) 0.490
LEV, n (%) 40 (47.1) 24 (60.0) 0.177
TPM, n (%) 17 (20.0) 6 (15.0) 0.501
Follow-up duration (years) 13.9 £ 6.7 1.1 £ 7.2 0.178

Data are presented as the number of patients (percentage) or as the mean =+ standard deviation. ASM,
antiseizure medication; VPA = valproic acid; LTG, lamotrigine; LEV, levetiracetam; TPM =
topiramate.

* Fisher’s exact test was used.
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3.2. Volumetric analysis of subcortical structures

The volumetric analysis is summarized in Table 2. A comparison of the volume data between
the two groups revealed that the volumes of the left amygdala (1739.9 + 263.4 mm? vs. 1601.7 +
358.2 mm?, p = 0.017) and the right hippocampus (4396.6 £ 417.7 mm? vs. 4128.8 = 825.7 mm?, p
=0.017) were significantly smaller in the poor prognosis group compared to the favorable prognosis
group.

However, no significant differences were observed between the groups in the volumes of
other bilateral subcortical structures, including the thalamus, caudate, putamen, pallidum, nucleus
accumbens, ventral diencephalon, choroid plexus, cerebellar cortex, and cerebellar white matter.
Additionally, the brainstem, corpus callosum, and total intracranial volume did not show significant

volumetric differences between the two groups.
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Table 2. Volumetric analysis of brain subcortical structures based on prognostic outcomes

Favorable prognosis

Poor prognosis

(n = 85) (n = 40) p-value

Left
Thalamus 8054.0 + 844.4 7748.2 £ 1393.7 0.131
Caudate 3569.1 + 433.8 3458.2 £ 643.6 0.259
Putamen 5075.5 + 619.2 4902.2 = 895.1 0.211
Pallidum 2073.8 + 244.5 2017.6 + 353.9 0.303
Hippocampus 4180.6 + 415.2 4027.1 £ 630.2 0.107
Amygdala 1739.9 + 2634 1601.7 £ 358.2 0.017
Nucleus accumbens 511.4 + 98.5 286.6 £ 133.8 0.246
Ventral diencephalon 4175.7 + 457.7 4003.7 + 621.1 0.084
Choroid Plexus 437.0 £ 163.7 4275 £ 159.2 0.765
Cerebellum — cortex 56595.1 £ 57344 54113.8 + 8452.0 0.057
Cerebellum — white matter  14800.9 + 1846.9 14133.2 + 2293.1 0.084
Right
Thalamus 7574.4 £ 775.1 7219.0 £ 1275.0 0.056
Caudate 3637.9 + 444.1 3544.3 £ 567.1 0.318
Putamen 51304 + 617.7 4985.8 £ 809.3 0.273
Pallidum 1977.6 +£ 238.8 1942.0 £ 284.8 0.467
Hippocampus 4396.6 + 417.7 4128.8 = 825.7 0.017
Amygdala 1848.7 £ 279.3 1744.6 £ 361.0 0.080
Nucleus accumbens 577.2 £ 105.1 5545 £ 117.2 0.280
Ventral diencephalon 4173.3 + 444.1 4017.0 + 562.6 0.095
Choroid Plexus 430.6 = 154.9 4229 + 188.5 0.809
Cerebellum — cortex 56266.6 £ 5838.5 53800.4 + 8392.4 0.059

Cerebellum—white matter  14242.4 + 2001.1 13540.7 =+ 2200.4 0.079

Midline
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Brainstem
Optic-chiasm
Corpus callosum
Anterior
Mid-anterior
Central
Mid-posterior
Posterior

Total intracranial volume

21182.7 + 2266.9

154.3 £ 58.7

862.7 + 141.4
669.4 + 181.2
688.8 + 172.1
552.8 + 103.9
990.4 + 178.0

1581418.5 £ 175060.8

20565.8 + 3631.8

140.1 = 60.8

836.8 + 158.5
666.1 = 171.8
660.2 = 171.5
560.6 = 128.1
982.0 + 205.2

1502151.6 = 250957.1

0.248
0.213

0.360
0.922
0.388
0.720
0.815
0.077

The presented values represent the volume of each brain region, with units in mm?. Data are

presented as the mean = standard deviation.
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3.3. Cortical thickness analysis

The cortical thickness analysis between the favorable prognosis and poor prognosis groups
revealed significant differences in several brain regions (Table 3). The left entorhinal cortex
exhibited a statistically significant difference, with the favorable prognosis group having a mean
cortical thickness of 3.370 mm, compared to 3.235 mm in the poor prognosis group (p = 0.046).
Additionally, the left fusiform gyrus was thinner in the poor prognosis group (2.761 mm) than in the
favorable prognosis group (2.832 mm), with a p-value of 0.018. Similarly, the left temporal pole
was thinner in the poor prognosis group (3.513 mm) compared to the favorable prognosis group
(3.656 mm), with a p-value of 0.044.

In the right hemisphere, significant differences were also observed. The inferior temporal
cortex was thinner in the poor prognosis group (2.738 mm) compared to the favorable prognosis
group (2.813 mm), with a p-value of 0.020. Additionally, the right middle temporal cortex (poor
prognosis: 2.922 mm vs. favorable prognosis: 2.996 mm, p = 0.007) and the right temporal pole
(poor prognosis: 3.361 mm vs. favorable prognosis: 3.682 mm, p = 0.004) were also significantly
thinner in the poor prognosis group.

In contrast, no statistically significant differences in cortical thickness were observed
between the favorable and poor prognosis groups in other examined brain regions, including the
bankssts, caudal anterior cingulate, caudal middle frontal, cuneus, inferior parietal, isthmus
cingulate, lateral occipital, lateral orbital frontal, lingual, medial orbital frontal, parahippocampal,
paracentral, pars opercularis, pars orbitalis, pars triangularis, pericalcarine, postcentral, posterior
cingulate, precentral, precuneus, rostral anterior cingulate, rostral middle frontal, superior frontal,
superior parietal, superior temporal, supramarginal, frontal pole, transverse temporal, and insula

cortex.
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Table 3. Cortical thickness analysis based on prognostic outcomes

Favorable prognosis Poor prognosis

(n = 85) (n = 40) p-value

Left

Bankssts 2.636 + 0.199 2.615 £ 0.221 0.587
Caudalanteriorcingulate 2.816 + 0.203 2.792 +£ 0.218 0.547
Caudalmiddlefrontal 2.671 £ 0.182 2.651 + 0.189 0.583
Cuneus 1.901 + 0.176 1.883 + 0.238 0.625
Entorhinal 3.370 + 0.322 3.235 + 0.399 0.046
Fusiform 2.832 + 0.145 2.761 + 0.173 0.018
Inferiorparietal 2.546 £ 0.170 2.575 £ 0.206 0.409
Inferiortemporal 2.803 + 0.146 2.745 + 0.192 0.061
Isthmuscingulate 2.471 +£ 0.209 2.492 + 0.255 0.634
Lateraloccipital 2.180 + 0.164 2.198 + 0.238 0.625
Lateralorbitofrontal 2.758 + 0.164 2.735 £ 0.198 0.487
Lingual 2.051 + 0.159 2.029 + 0.170 0.487
Medialorbitofrontal 2.562 + 0.137 2.551 + 0.237 0.739
Middletemporal 2.961 + 0.157 2.919 + 0.264 0.267
Parahippocampal 2.720 + 0.258 2.735 + 0.367 0.800
Paracentral 2.539 £ 0.165 2.550 + 0.222 0.768
Parsopercularis 2.703 + 0.186 2.675 + 0.197 0.456
Parsorbitalis 2.882 £ 0.246 2.833 + 0.229 0.286
Parstriangularis 2.644 + 0.183 2.631 + 0.198 0.716
Pericalcarine 1.584 + 0.161 1.567 + 0.294 0.683
Postcentral 2.109 + 0.179 2.079 + 0.359 0.534
Posteriorcingulate 2.668 + 0.177 2.660 + 0.189 0.810
Precentral 2.623 + 0.189 2.614 + 0.257 0.824
Precuneus 2.469 £ 0.157 2476 + 0.162 0.812
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Rostralanteriorcingulate 2.966 + 0.174 2.953 + 0.266 0.744

Rostralmiddlefrontal 2.513 + 0.152 2.485 + 0.155 0.346
Superiorfrontal 2.955 £ 0.155 2.937 £ 0.152 0.550
Superiorparietal 2272 £ 0.167 2.317 £ 0.232 0.219
Superiortemporal 2.942 + 0.171 2.922 + 0.182 0.549
Supramarginal 2.620 + 0.180 2.623 £ 0.212 0.937
Frontalpole 2.876 £ 0.247 2.883 + 0.262 0.882
Temporalpole 3.656 + 0.336 3.513 + 0.427 0.044
Transversetemporal 2.393 + 0.258 2.417 + 0.290 0.641
Insula 3.099 + 0.190 2.965 + 0.523 0.037
Right

Bankssts 2.683 + 0.180 2.657 + 0.251 0.517
Caudalanteriorcingulate 2.672 £ 0.221 2.642 + 0.213 0.474
Caudalmiddlefrontal 2.685 £ 0.176 2.633 + 0.227 0.161
Cuneus 1.932 + 0.171 1.903 + 0.189 0.397
Entorhinal 3.459 + 0.363 3.347 + 0.586 0.193
Fusiform 2.803 + 0.123 2.757 + 0.224 0.134
Inferiorparietal 2.534 £ 0.162 2.535 £ 0.176 0.970
Inferiortemporal 2.813 £ 0.169 2.738 + 0.158 0.020
Isthmuscingulate 2.439 + 0.196 2.441 + 0.284 0.964
Lateraloccipital 2.255 + 0.158 2.244 £+ 0.169 0.732
Lateralorbitofrontal 2.690 + 0.199 2.633 + 0.293 0.197
Lingual 2.072 £ 0.149 2.059 + 0.192 0.687
Medialorbitofrontal 2.619 £ 0.156 2.577 £ 0.246 0.248
Middletemporal 2.996 + 0.141 2.922 + 0.146 0.007
Parahippocampal 2.703 + 0.245 2.705 + 0.256 0.967
Paracentral 2.572 £ 0.176 2.557 + 0.249 0.695
Parsopercularis 2.708 £ 0.172 2.692 £+ 0.198 0.642
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Parsorbitalis 2.823 +£ 0.204 2.783 + 0.308 0.389

Parstriangularis 2.628 + 0.199 2.570 + 0.268 0.178
Pericalcarine 1.626 + 0.173 1.583 + 0.170 0.194
Postcentral 2.098 + 0.183 2.130 + 0.200 0.378
Posteriorcingulate 2.604 + 0.158 2.561 + 0.145 0.147
Precentral 2.569 + 0.189 2.552 + 0.234 0.658
Precuneus 2.444 £ 0.168 2.446 + 0.198 0.946
Rostralanteriorcingulate 3.036 + 0.242 2.987 + 0.252 0.298
Rostralmiddlefrontal 2.491 + 0.156 2.460 + 0.178 0.314
Superiorfrontal 2.950 + 0.161 2.900 + 0.222 0.158
Superiorparietal 2.244 £+ 0.173 2.262 + 0.208 0.607
Superiortemporal 2.996 + 0.169 2.905 + 0.388 0.067
Supramarginal 2.603 £+ 0.176 2.601 £ 0.254 0.975
Frontalpole 2.807 £ 0.267 2.757 £ 0.523 0.480
Temporalpole 3.682 + 0.34 3.361 + 0.880 0.004
Transversetemporal 2.415 £ 0.255 2.306 + 0.448 0.086
Insula 3.130 + 0.187 3.011 £ 0.528 0.066

The presented values represent the cortical thickness of each brain region, with units in mm. Data

are presented as the mean + standard deviation.
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3.4. Performances of machine learning models

3.4.1. Volumetry model

Table 4 presents the performance of six machine learning models—Ilogistic regression,
random forest, XGBoost, LightGBM, SVM, and ANN—trained on the training set and validated
on an independent test set. Among these models, XGBoost demonstrated the highest performance
with an AUROC of 0.700, LightGBM with an AUROC of 0.618, and random forest with an
AUROC 0of 0.517. The SVM model achieved an AUROC of 0.500, logistic regression an AUROC
0f 0.431, and ANN an AUROC of 0.425.

Further analysis with the best-performing XGBoost model revealed that when using only
clinical data, the AUROC was 0.600. When using only MRI data, the AUROC improved to 0.680.
Combining both clinical and MRI data further enhanced the model's performance, achieving an
AUROC 0of 0.700 (Figure 2).

Figure 3 displays the importance of the feature as determined by SHAP values. Among the
top ten features, the five most significant MRI variables were the left cerebellum white matter,
right thalamus, left globus pallidus, right amygdala, and left caudate. The left nucleus accumbens,

right choroid plexus, corpus callosum mid-posterior, onset age, and brainstem followed these.
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Table 4. Performances of the combined clinical and volumetric machine learning models on the test

set

Models Accuracy Precision Recall Fl-score AUROC

Logistic Regression 0.600 0.560 0.600 0.565 0.431

Random Forest 0.680 0.664 0.680 0.652 0.580

XGBoost 0.680 0.816 0.680 0.712 0.700

Light GBM 0.560 0.486 0.560 0.505 0.618

SVM 0.640 0.410 0.640 0.500 0.500

ANN 0.600 0.400 0.600 0.480 0.425

AUROC, Area Under the Receiver Operating Characteristic curve; XGBoost, extreme gradient
boosting; LightGBM, light gradient boosting machine; SVM, support vector machine; ANN,

artificial neural network.
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Figure 2. Receiver operating characteristic (ROC) curves for models using clinical, volumetric, and

combined variables to predict poor prognosis of juvenile myoclonic epilepsy.
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Figure 3. SHAP value summary plot for the combined clinical and volumetric XGBoost model.

SHAP, Shapley additive explanations; XGBoost, extreme gradient boosting.
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3.4.2. Cortical thickness model

Table 5 presents the performance of six machine learning models—Ilogistic regression,
random forest, XGBoost, LightGBM, SVM, and ANN—trained on the training set and validated
on an independent test set. Among these models, XGBoost demonstrated the highest performance
with an AUROC of 0.676, SVM with an AUROC of 0.603, and ANN with an AUROC of 0.522.
The logistic regression model achieved an AUROC of 0.463, LightGBM an AUROC of 0.456,
and random forest an AUROC of 0.430. For the best-performing XGBoost model, the accuracy
was 0.760, precision was 0.758, recall was 0.760, and the F1-score was 0.733.

Figure 4 displays the importance of the feature as determined by SHAP values. Among the
cortical thickness features identified by SHAP values as playing a crucial role in prognosis, the
five most important were, in order: right superior parietal, right frontal pole, left caudal middle

frontal, right temporal pole, and left parahippocampal cortex.
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Table 5. Performances of the combined clinical and cortical thickness machine learning models on

the test set

Models Accuracy Precision Recall Fl-score AUROC
Logistic Regression 0.600 0.533 0.600 0.554 0.463
Random Forest 0.520 0.549 0.520 0.532 0.430
XGBoost 0.760 0.758 0.760 0.733 0.676
LightGBM 0.600 0.533 0.600 0.554 0.456
SVM 0.680 0.462 0.680 0.551 0.603
ANN 0.560 0.574 0.560 0.566 0.522

AUROC, Area Under the Receiver Operating Characteristic curve; XGBoost, extreme gradient
boosting; LightGBM, light gradient boosting machine; SVM, support vector machine; ANN,

artificial neural network.
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Figure 4. SHAP value summary plot for the combined clinical and cortical thickness XGBoost
model. SHAP, Shapley additive explanations; XGBoost, extreme gradient boosting.
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3.4.3. Radiomics model

Table 6 presents the performance of six machine learning models—Ilogistic regression,
random forest, XGBoost, LightGBM, SVM, and ANN—trained on the training set and validated
on an independent test set. Among these models, XGBoost demonstrated the highest performance
with an AUROC of 0.824, LightGBM with an AUROC of 0.772, and random forest with an
AUROC of 0.772. The logistic regression model achieved an AUROC of 0.691, SVM an AUROC
0of 0.500, and ANN an AUROC of 0.485.
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Table 6. Performances of Radiomics machine learning models on the test set

Models Accuracy Precision Recall F1-score AUROC
Logistic Regression 0.720 0.712 0.720 0.715 0.691
Random Forest 0.720 0.802 0.720 0.635 0.768
XGBoost 0.720 0.702 0.720 0.699 0.824
LightGBM 0.760 0.758 0.760 0.733 0.772
SVM 0.680 0.462 0.680 0.551 0.500
ANN 0.680 0.661 0.680 0.666 0.485

AUROC, Area Under the Receiver Operating Characteristic curve; XGBoost, extreme gradient
boosting; LightGBM, light gradient boosting machine; SVM, support vector machine; ANN,

artificial neural network.
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3.4.4. Combined model

Table 7 presents the performance of six machine learning models—Ilogistic regression,
random forest, XGBoost, LightGBM, SVM, and ANN—trained on the training set and validated
on an independent test set, using clinical, volumetric, cortical thickness, and Radiomics data.
Random forest demonstrated the highest performance with an AUROC of 0.923, LightGBM with
an AUROC of 0.750, and logistic regression with an AUROC of 0.750. The XGBoost model
achieved an AUROC of 0.735, ANN an AUROC of 0.559, and SVM an AUROC of 0.500. For
the best-performing random forest model, the accuracy was 0.840, precision was 0.859, recall was

0.840, and the F1-score was 0.844.
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Table 7. Performance of machine learning models combining clinical, volumetric, cortical thickness,

and Radiomics data on the test set

Models Accuracy Precision Recall Fl-score AUROC
Logistic Regression 0.720 0.712 0.720 0.715 0.750
Random Forest 0.840 0.859 0.840 0.844 0.923
XGBoost 0.760 0.750 0.760 0.750 0.735
LightGBM 0.720 0.708 0.720 0.674 0.750
SVM 0.680 0.462 0.680 0.551 0.500
ANN 0.680 0.704 0.680 0.688 0.559

AUROC, Area Under the Receiver Operating Characteristic curve; XGBoost, extreme gradient
boosting; LightGBM, light gradient boosting machine; SVM, support vector machine; ANN,

artificial neural network.
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IV. DISCUSSION

This study highlights several key findings that contribute to our understanding of prognostic
factors in JME. First, we identified that male gender, the volumes of the left amygdala and right
hippocampus, and the cortical thickness of the bilateral temporal poles, left entorhinal cortex,
fusiform gyrus, and right inferior and middle temporal cortex were significantly associated with a
favorable prognosis. Second, our prognostic prediction models that combined clinical and
radiological variables outperformed those based on clinical variables alone. The model that
integrated clinical data with volumetric, cortical thickness, and Radiomics data demonstrated the
highest predictive performance. Third, we found that brain structures such as the thalamus and
hippocampus, which are already known to be involved in the pathophysiology of IME, also emerged
as significant features in the prognostic prediction models.

The association of the male gender with better outcomes is consistent with previous studies
on JME prognosis.”!7 This may be attributed to the broader range of antiseizure medications
available to males, particularly compared to females of childbearing age, who have more limited
treatment options due to teratogenic risks.

In our analysis of brain subcortical volumes, the amygdala and hippocampus—regions
known to be involved in emotion and cognition—were identified as important structures associated
with prognosis. These findings align with earlier studies that observed differences in these brain
regions between JME patients and healthy controls, suggesting that these structures may play a
critical role in influencing disease outcomes. '

Regarding cortical thickness, our study found that thinning in several regions, including the
bilateral temporal poles, fusiform gyrus, entorhinal cortex, and middle and inferior temporal cortex,
was associated with prognosis. Previous studies comparing JME patients to healthy controls have
reported thinning in the temporal cortex and fusiform gyrus.!?>!® Our findings extend this knowledge
by demonstrating a link between these pathological changes and treatment outcomes, suggesting
that cortical thinning may serve as a marker for prognosis in JME.

In developing a novel prognostic prediction model for JME, we combined clinical and
radiological variables, showing that this multimodal approach provides superior predictive
performance compared to models relying solely on either data type. This is consistent with recent

advances in artificial intelligence in clinical settings, where the integration of multimodal data is
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increasingly recognized as essential for enhancing diagnostic and prognostic capabilities. Our
previous research has highlighted the value of radiological variables in diagnosing and classifying
JME and other generalized epilepsies, demonstrating that microstructural brain changes observed
on MRI can improve diagnostic accuracy.?**! Building on these insights, the current study further
validates the importance of combining clinical and radiological data to improve prognostic
predictions, emphasizing the potential of Al models to assist clinicians—especially non-
epileptologists—in making more informed decisions regarding epilepsy management.

In our study, we employed various machine learning models for prognostic prediction, with
tree-based models such as XGBoost, Random Forest, and LightGBM generally performing the best.
These models likely excelled because they are well-suited for tasks that require classification based
on multiple variables. Models combining radiological features—including volumetry, cortical
thickness, and radiomics data—outperformed those based solely on clinical variables. The model
that combined clinical, volumetric, cortical thickness, and radiomics data achieved the highest
predictive performance, suggesting that multimodal data models hold significant promise for clinical
applications.

Moreover, the thalamus, a region well-documented to undergo microstructural changes in
JME, was confirmed in our study as critically important for prognosis.?>** Specific volume
alterations in the thalamus, along with disrupted thalamo-frontal connectivity, have been implicated
in seizure regulation, further underscoring the thalamus's role in the underlying mechanisms and
clinical outcomes of the disease.?*?*

Despite these significant findings, our study has limitations that warrant consideration. The
relatively small sample size, coupled with the large number of variables used to develop the
prediction models, may have limited the models' performance on external validation sets.
Additionally, our multimodal approach was somewhat restricted, as it relied solely on structural T1-
weighted 3D MRI scans and excluded other radiological variables such as diffusion tensor image
(DTI) and functional MRI (fMRI) data, which could potentially enhance model accuracy. Future
research should aim to address these limitations by utilizing larger, more homogeneous samples and
incorporating a broader range of multimodal data.

Despite these challenges, our study presents several notable strengths. It is the first to
combine clinical and radiological variables to develop a prognostic model for JME, demonstrating

that radiological data significantly enhance the predictive power of clinical variables. We
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successfully identified models with appropriate performance levels using advanced machine
learning techniques. Additionally, our study confirmed that both clinical and radiological variables
previously associated with JME prognosis are indeed significant, thus providing clinical
explainability and reinforcing the relevance of these factors in understanding the disease's

mechanisms.
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V. CONCLUSION

This study demonstrates the utility of machine learning models that integrate clinical and
radiological data to predict prognosis in JME. We identified key prognostic factors, including male
gender, volumetric differences in the left amygdala and right hippocampus, and cortical thickness
in specific brain regions such as the bilateral temporal poles and entorhinal cortex. The combined
model, incorporating clinical, volumetric, cortical thickness, and Radiomics data, outperformed
models relying on single data types, highlighting the importance of a multimodal approach in
predicting treatment outcomes in JME. Additionally, our findings reaffirm the critical role of brain
structures such as the thalamus and hippocampus, which are already associated with JME's
pathophysiology, in influencing disease prognosis. Despite the limitations related to sample size and
data modalities, this study provides a foundation for further research into Al-driven prognostic tools
in epilepsy management, with the potential to improve clinical decision-making and patient

outcomes.
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Abstract in Korean

A2EZNRHRAZY AF A5 N PIPYT JPASE

MED Aad2Ad AT vaA ofEA g i A7t Fou, 35%°
A= bedAd HdTer nEwa g, AR gekd gty 540
dFel dFE A= Zor dHA ok AadIngEHAT ] CdF o5
VFE AL A el disl W AFIE olFeFAN, 9dH 5%
QoA 54 Rl AFE clSste REe gd A AdHen
+ ATe YA e s A FadaidHds fae e
dSshs leAs Zls st AT e FRE

(WF-Edg&doly — 1748<d 9974, dF-ATE&dolE — 57489 26%) 9

dats didem 3¢ AFE FYsiGlt. JAFEATE AR, dAEA,
k= FoF, Whztolg o] Ak dHlolHE skl aL, MRI dlo|H & o] &3te] 9ds
Tx2EY F95%, dEAgdFTASFY, greys 54 FE5o0E ¥ Fxo
AFHQ EAS FE9UY. 59 HIFES 6714 AdFA 5 W - logistic

regression, random forest, XGBoost, LightGBM, SVM, ANN - & o] &3},

2@z FATIbE dSske VAl st RES Jidsta, s, AEE,

AL, F1 A5, AUROC AXE AHEst] des Fr7ieklv. R Ui

tolg AleA  FgEFEHAeH =HAQ gF HolEHAS i HFTEHIJS
5 R

2] o] g3

Ay £ F e BAEY JANFREE A dAHErE H= dJEA )
+5  dlwte] FI, FAAFAAAME FSF FSFYT (temporal pole), FHFH
57} 9] 4 (entorhinal cortex), W54 =
(inferior) ¥ =7t (middle) 5393 (temporal gyrus) ¥ FA7F £ o5 9
FostA dAdE Aew yetuth g st des ®Hel VA g REe
A7 doly, F3 54, 9 FA, HAAEA dolgE Adst 2d (AUROC
0.923)2 &Y dlojg Fel o3 T (AUROC 0.600) Kt} $53 Aes
Rk Tk A4+ (thalamus) 2} & v} (hippocampus) £} o]
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