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ABSTRACT 
 

The Cumulative Impact of Air Pollution on  
Dry Eye Disease: Evidence from the Korea National Health and 

Nutrition Examination Survey (2017-2020) 
 

 
 
 

Air pollutants can disrupt the tear film and damage the corneal epithelium, leading to 

significant discomfort and irritation. Despite this apparent vulnerability, establishing a direct 

association between pollution and dry eye disease at a population level has been challenging due 

to the complex interactions among various pollutants. 

 

Cross-sectional data from the 7th and 8th Korea National Health and Nutrition Examination 

Survey (2017-2020) were analyzed alongside air pollution data from the National Ambient Air 

Quality Management Information System to investigate the relationship between environmental 

pollution and dry eye disease. 

 

The Aggregated Air Quality Index and Cumulative Index of air quality were calculated for each 

region of residence based on key pollutants. Multiple logistic regression analysis assessed the impact 

of air pollutants on dry eye disease while adjusting for clinical, demographic, and meteorological 

factors. The number of high pollutant days within a year significantly increased the odds of artificial 

tear drop users(adjusted Odds Ratio = 1.04, P <0.001). The Cumulative Index effectively 

demonstrated the aggregated effect of multiple air pollutants on dry eye disease. 

 

 

                                                                                

Keywords: dry eye disease, eye discomfort, air pollution.
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1. Introduction 
 

1.1. Research background 
 
Detrimental effects of air pollution on human health have been extensively documented, with 

numerous studies linking exposure to air pollutants to a variety of health issues.1,2 However, the 
impact of air pollution on ocular health has received relatively little attention3. Dry Eye Disease 
(DED) is a one such condition that significantly impairs quality of life through chronic discomfort, 
visual disturbances, which can worsen if left untreated.4-6 Beyond its clinical implications, DED 
imposes a substantial economic burden due to healthcare costs, reduced work productivity, and the 
need for continuous treatment.4,6 These considerations underscore the need to quantitatively assess 
the impact of environmental contributors to DED in order to effectively inform public and improve 
management strategies. 

Although previous studies have suggested link between air pollution exposure and DED,5,7-11 
the key question that remains is whether this relationship can be reliably observed at a population 
level. Laboratory and localized studies have shed light on the effects of air pollution and provided 
valuable insights into pollutant impacts8,10-11. However, the fluctuating levels of air pollutants, the 
episodic nature of DED symptoms, and variations in individual exposure and susceptibility 
complicate efforts to fully understand the specific impact of air quality on DED.12-14 In particular, 
the aggregated effects of multiple air pollutants and their cumulative impact on DED remain poorly 
understood, necessitating further investigation to better clarify these relationships.8 Given the 
emerging evidence of the impact of air pollution on DED, it is essential to identify reliable measures 
of air quality exposure to understand their relationship with ocular health outcomes. 

 
1.2. Aggregate indices of air pollutants 

 
Air pollution significantly impacts human health, and quantifying this effect has led to the 

development of various indices. One widely recognized tool is the Air Quality Index (AQI), which 
provides a standardized measure of air quality based on the concentration of key pollutants like 
particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide 
(CO), and ozone (O3).15 The AQI is widely used to communicate the severity of pollution to the 
public, offering a clear and understandable assessment of air quality on a single scale. It was intended 
to be part of an alert system to the public. However, it primarily focuses on individual pollutants, 
which limits its ability to reflect the combined effect of multiple pollutants.16 

To overcome this challenge, aggregate indices such as the Aggregate Air Quality Index (AAQI) 
and the Cumulative Index (CI) have been developed.17,18 The AAQI integrates data from multiple 
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pollutants into a single numerical value, offering a composite representation of overall air quality. 
Designed for ease of interpretation, the AAQI aligns with the National Ambient Air Quality 
Standards (NAAQS). 

The CI aims to provide a more sensitive and comprehensive measure of pollution exposure.18 
This index effectively captures both the intensity and frequency of pollutant exposure, making it 
more suitable for assessing health impacts. Moreover, the CI is computationally efficient, allowing 
it to serve as a real-time alert system for public health risks. Its streamlined calculation process 
makes it an excellent candidate for rapidly assessing air quality, offering timely and comprehensive 
information on pollution exposure and its potential health risks. 

 
1.3. Objectives 

 
The objective of this study is to assess the impact of key air pollutants on the prevalence of 

DED in South Korea by integrating data from large-scale population surveys and environmental 
monitoring systems. By utilizing both the AAQI and CI, this analysis aims to evaluate how outdoor 
air pollutant exposure contribute to DED. 

 

2. Materials and Methods 
 

2.1. Study design and population 
 

Figure 1 provides an overview of the study's design and methodology. This cross-sectional 
study utilized data from the Korea National Health and Nutrition Examination Survey (KNHANES), 
conducted by the Korea Centers for Disease Control and Prevention. KNHANES employs a 
stratified, multistage clustered sampling method to represent the entire South Korean population, 
covering a range of demographic and socioeconomic groups19. For this study, data collected from 
2017 to 2020 were analyzed, focusing on adults aged 40 to 80 who completed ophthalmologic 
examinations and provided relevant information for the study's covariates. 

Air quality data were obtained from the National Ambient Air Quality Management 
Information System (NAMIS), which provides hourly measurements of six key pollutants (e.g., 
PM10, PM2.5, SO2, NO2, O3, and CO).20 A total of 421 monitoring stations located near residential 
areas were selected for analysis to accurately capture pollution exposure in densely populated 
regions. These stations were chosen after excluding those that showed inconsistencies or failed to 
meet quality standards (e.g., equipment malfunctions or operational issues). Meteorological data 
were also sourced from the Automated Synoptic Observing System (ASOS), managed by the Korea 
Meteorological Administration, ensuring comprehensive environmental data21. Quality control 
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measures for air quality data included regular calibration of equipment and the automated exclusion 
of anomalous readings. 

The study adhered to ethical standards outlined in the Declaration of Helsinki. The study 
procedures met the criteria for IRB exemption for human subject research and were approved by the 
Severance Hospital Institutional Review Board of Yonsei University Health System (IRB number: 
4-2024-0910). 

 

 
Figure 1. Overview of study participant selection and data analysis process 
Abbreviations: ASOS = Automated Synoptic Observing System; NAMIS = National Ambient Air Quality 
Management Information System; AAQI = Aggregate Air Quality Index; CI = Cumulative Index 
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2.2. Calculation of aggregated indices and cluster analysis 
 
The AAQI was calculated using the following formula: 
 

𝐼 = #$%AQI!&
"

#

!$%

'

%
"

	

where AQI! represents the AQI value for the ith pollutant, and ρ was set to 2.5, as suggested by 
previous study.17 The pollutants included in this calculation were PM10, PM2.5, SO2, NO2, O3, and 
CO. The AAQI was averaged over each year and region to produce a composite metric that 
represents the overall annual air quality for each specific region. This annual regional AAQI was 
subsequently used as a quantitative regressor in further statistical analyses. 

The CI was calculated as follows: 

𝐶𝐼 =
∑ 𝐴𝑄𝐼!&
!$% × .

𝑅!lower + 𝑅!
upper

2 2

∑ 𝐴𝑄𝐼!&
!$%
4

	

where AQI! represents the AQI value for the ith pollutant,	 𝑅!lower and 𝑅!
upper are the respective 

lower and upper bounds of exposure for that pollutant. The pollutants included in this calculation 
were PM10, PM2.5, SO2, and NO2. Due to the absence of reference values for the CI that could be 
used for clinical applications, Gaussian Mixture Models (GMMs) were employed to cluster the CI 
data. GMMs allowed for the identification of natural groupings within the CI distribution by fitting 
multimodal Gaussian distributions, facilitating the establishment of data-driven thresholds. 

 
2.3. Multivariable regression analysis 

 

2.3.1. Clinical definition of dry eye disease 
 
Figure 2 provides a visual summary of the classification process used to define clinical DED 

based on survey responses. Classification was based on self-reported eye drop use and ocular 
condition diagnoses, assessed through two key survey questions: “Are you currently using any eye 
drops? If so, please select all that apply”, “Have you ever been diagnosed with an ophthalmic 
condition? If so, please select all that apply.” 

Participants were classified into four groups based on their use of artificial tears (AT) and 
diagnosis of DED, and then categorized as ‘Clinical DED’ or ‘Non-DED’. The ‘Diagnosed and 
Treated DED’ group included those reporting both AT use and a DED diagnosis. The ‘Probable 
DED profile’ group included participants using AT without a DED diagnosis, often with other ocular 
conditions or no diagnosis. The ‘Neither Diagnosed nor Treated as DED’ group included participants 
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with neither AT use nor a DED diagnosis. Lastly, participants using AT for non-DED conditions 
(e.g., glaucoma, diabetic retinopathy) were classified as ‘Unlikely DED profile’. These subgroups 
were further analyzed to assess any potential biases that might affect the classification accuracy or 
study results. 

 

 
Figure 2. Clinical definition of dry eye disease 
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2.3.2. Predictors of dry eye disease 
 

Several covariates were included in the multivariable regression model to account for potential 
confounders. These variables were selected based on prior studies22,23, which identified them as key 
predictors of DED, as well as other factors that, while not part of earlier studies, could influence 
survey responses. The variables included were sex, age, subjective health status, unmet medical care 
needs, residential setting (urban or rural), diabetes, dyslipidemia, thyroid disease, ocular surgery, 
relative humidity, and wind speed. These factors have been shown to impact DED risk, and their 
inclusion in the model allows for a more accurate evaluation of the relationship between air pollution 
and DED. 

 

2.4 Statistical Analysis 
 

Descriptive statistics were used to summarize participant characteristics and pollutant levels. 
Univariate analysis using the chi-square test and Cochran–Armitage trend test assessed the 
relationship between participant characteristics and DED. Multivariate logistic regression models 
were applied to evaluate the association between air pollution exposure and the prevalence of DED, 
adjusting for potential confounders. Adjusted odds ratios (aORs) with 95% confidence intervals (CIs) 
were calculated to quantify the strength of associations between pollutant exposure and DED.  

Data management and statistical analyses were performed using R (version 4.4.0, R Foundation 
for Statistical Computing ,Vienna, Austria). Cluster analysis, including threshold determination with 
the Gaussian Mixture Model (GMM), was performed in Python (Python Software Foundation, 
version 3.9.5) using the scikit-learn library. 

 

3. Results 
 

3.1. Characteristics of the study population 
 
The study population comprised 14,283 participants, with 6,172(43.21%) men and 

8,111(56.79%) women. The prevalence of DED was higher among women than men (Table 1). 
There were few patients who missed medical care when needed (8.15%), compared to history of 
ocular surgery (17.80%), diabetes (12.41%), or dyslipidemia (26.98%).  

Significant differences in DED prevalence were observed based on gender, age groups, 
subjective health awareness, and certain health conditions. Higher DED prevalence was significantly 
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associated with being women, older age, poor subjective health awareness, and having a history of 
diabetes, dyslipidemia, thyroid disease, or ocular surgery (P < 0.05).  

In contrast, there were no significant differences in DED prevalence related to missed medical 
care or region of residence. Overall, the prevalence of DED as previous definition was 15.75% (95% 
CI: 15.16% to 16.36%). 

 
Table 1. Characteristics of the study population 

Characteristics 
Participants 
(N = 14,283) 

Participants With DED 
(N = 2,250, 15.75%) 

P value 

Sex, n (%) 

 Men 6172 (43.21%) 599 (9.71%) 
< 0.001a Women 8111 (56.79%) 1651 (20.36%) 

Age Group, n (%) 
 40-49 3742 (26.20%) 402 (10.74%) 

< 0.001b 

50-59 4024 (28.17%) 534 (13.27%) 
60-69 4185 (29.30%) 767 (18.33%) 
70-79 2332 (16.33%) 547 (23.46%) 

Region of residence (Rural), n (%) 2960 (20.72%) 457 (15.44%) 0.6a 
Health satisfaction (Poor), n (%) 11386 (79.72%) 1616 (14.19%) < 0.001a 
Missed medical care, n (%) 1140 (8.15%) 197 (17.28%) 0.2a 
Diabetes, n (%) 1773 (12.41%) 369 (20.81%) < 0.001a 
Dyslipidemia, n (%) 3853 (26.98%) 811 (21.05%) < 0.001a 
Thyroid disease, n (%) 693 (4.85%) 172 (24.82%) < 0.001a 
Ocular surgery, n (%) 2542 (17.80%) 708 (27.85%) < 0.001a 
Abbreviations: DED = dry eye disease 
a: χ² test    b: Cochran–Armitage trend test 

 
3.2. Classification based on clinical definition 
 

Figure 3 provides summary of the classification into four clinical groups. Of the population, 
4.4% used AT and were identified as DED patients, while 80.4% neither used tears nor reported 
DED symptoms (Figure 3A). The remaining two heterogeneous groups with discrepancies between 
self-reported AT use and diagnosis, included the ‘Probable DED profile’ (11.4%) and the 'Unlikely 
DED profile' (3.9%). The ‘Unlikely DED profile’ group showed a low proportion of AT use (15.9%), 
with other eye drops being used even less frequently (Figure 3B). A higher proportion of individuals 
in the 'Probable DED group' reported having undergone cataract surgery (26.3%) compared to those 
in the group who both reported DED and used AT (11.7%) (Figure 3C). 
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A 

 
 

B 

 
C 

 
■ Diagnosed and Treated as DED 
■ Probable DED profile 
■ Unlikely DED profile  
■ Neither Diagnosed nor Treated as DED 

Figure 3. Clinical characteristics of subgroups 
A, Classification based on self-reported artificial tear use and diagnosis. Significant number of people do not 
report themselves as DED, despite usnig AT (light blue). *AT users in the ‘Unlikely DED profile’ are less 
prominent (dark grey).  
B, Relative proportion of eyedrop usage by subgroups. The low proportion of eye drop use in the ‘Unlikely 
DED profile’ suggests that the current clinical definition is less likely to underestimate clinical DED.  
C, Relative proportion of ocular surgeries by subgroups. Considerable numbers of individuals who underwent 
cataract surgery and use AT did not report themselves as DED patients. 
Abbreviations: DED = dry eye disease; AT = artificial tear 
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3.3. Characteristics of air pollutants and indices 
 
Supplemental Figure 1 presents the distribution of hourly measured six air pollutants— PM10, 

PM2.5, SO₂, NO₂, O₃, and CO. Each pollutant displays a right-skewed distribution, with lower levels 
occurring more frequently and higher concentrations less frequently, a pattern also observed in the 
AAQI (Figure 4A) and the CI distribution (Figure 4B). While 86.80% of the CI values cluster near 
the baseline of 200, 13.20% exceed this threshold. Two distinct clusters of higher values are modeled 
with a Gaussian distribution, with a decision boundary at a CI value of 447, marking the shift from 
moderate to severe pollution levels. 

 
A 

 

B 

 
Figure 4. Distribution of AAQI and CI values. 
A, Right-skewed distribution of AAQI. B, CI values clustered into three distinct groups, with a decision 
boundary at 447 marking the transition from moderate to severe pollution levels. 
Abbreviations: AAQI = Aggregate Air Quality Index; CI = Cumulative Index 

 
  



10 
 

3.4. Multivariable logistic regression analysis 
 
The multivariate logistic regression analysis demonstrated that each additional day with a CI 

exceeding 447 within a year was significantly associated with a 4% increase in the risk of developing 
DED (adjusted Odds Ratio [aOR] = 1.04; 95% CI: 1.02–1.06) (Table 2). In contrast, a unit increase 
in the AAQI did not show a statistically significant association with DED (P = 0.83).  

 
Table 2. Impact of air pollutants on dry eye quantified by aggregated indices 

 Model with AAQI Model with CI 
Variable adjusted Odds Ratioa P value adjusted Odds Ratioa P value 
Sex (women) 2.24 (2.02, 2.49) <0.001 2.24 (2.02, 2.49) < 0.001 
Age (10-y increase) 1.26 (1.20, 1.32) <0.001 1.26 (1.20, 1.32) < 0.001 
Ocular surgery 2.10 (1.88, 2.34) <0.001 2.10 (1.88, 2.34) < 0.001 
AAQIb 1.00 (0.99, 1.01) 0.83   
Days CI > 447c(in 1 year)   1.04 (1.02, 1.06) < 0.001 
Only key predictors are shown. Models adjusted for sex, age, subjective health status, unmet medical care 
needs, residential setting, diabetes, dyslipidemia, thyroid disease, ocular surgery, and yearly averages of 
relative humidity and wind speed. 
 

a values are adjusted for all the variables included in the model. 
b a unit increase in the annual average value of the AAQI 
c number of days in a year when the CI exceeded 447 
Abbreviations: AAQI = Aggregate Air Quality Index; CI = Cumulative Index 
 
 

4. Discussion 
 
The primary finding of this study is that air pollution, as measured by the CI, is significantly 

associated with an increased risk of DED. This result adds a novel perspective to the existing body 
of research, which primarily focuses on individual pollutants.1-2,7-8. Previous studies in 
environmental health often rely on multivariate regression models to evaluate the effects of 
individual pollutants, despite the high correlation between different pollutant.7,8 Such correlation 
can lead to unstable model coefficients, making the results less reliable and difficult to interpret.24 
Our approach mitigates this issue by employing a mixture model within a multivariate logistic 
regression framework, effectively avoiding the problem of multicollinearity and providing a more 
accurate representation of pollution's cumulative effects. 

Notably, just 10 additional high-pollution days per year raised the odds of developing DED by 
48% (aOR = 1.48; 95% CI: 1.22–1.79)—a risk comparable to a decade of aging (Table 2). By 
moving beyond traditional single-pollutant models, our findings illuminate the cumulative burden 
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of environmental factors on ocular health, marking a significant step forward in understanding 
pollution’s impact. 

Most epidemiological studies average pollutant concentrations over long periods, which may 
dilute the effect of transient but severe pollution episodes, because there are more hours when 
pollutant levels are at baseline (Supplemental Figure 1). The integration of CI into population-level 
studies sets a new benchmark for evaluating environmental risks. Our approach is particularly 
valuable in ocular health, where brief but intense pollution spikes may have nonlinear impacts on 
the tear film and ocular surface.10,11 Since the ocular surface has natural defenses—like tear 
production and blinking—that mitigate brief, low-level exposures 25-27, relying solely on long-term 
averages risks underestimating the impact of short-term events. By using the CI, we capture both 
cumulative exposure and periods of elevated pollutants, allowing for a more accurate reflection of 
pollution's effects on the eye. This approach enables detection of subtle but clinically significant 
impacts that simpler averaging methods might miss. 

In recent years, significant debate has arisen regarding the extent to which PM2.5 transported 
from China affects the air quality of neighboring countries, including South Korea.28 Prevailing 
southwesterly and westerly winds drive the transboundary movement of pollutants, as evidenced by 
satellite imagery (MODIS-AOD), atmospheric modeling systems (CAMS), and back-trajectory 
analyses29, with visualizations such as the PM2.5 forecast model from the Japanese Weather 
Association (Supplemental Figure 2) clearly illustrating this phenomenon30. Individual efforts alone 
cannot mitigate such large-scale environmental risks, making international collaboration 
indispensable. Multi-governmental funding and coordinated policy initiatives are essential for 
reducing emissions and addressing the economic and health-related costs of transboundary air 
pollution. This study contributes to these efforts by demonstrating a quantifiable link between air 
quality and DED prevalence, providing actionable data to guide policy and resource allocation. 

An unexpected challenge during this study was the inability to include qualitative clinical 
measures, such as the ocular surface disease index (OSDI) or the standard patient evaluation of eye 
dryness (SPEED) questionnaire, which could have provided a more detailed assessment of symptom 
severity. While this represents a limitation, it is largely a matter of resource allocation; employing 
such measures would have required significantly more funding, which is often constrained in 
population-level studies. However, upon reviewing the clinical classifications, we found that the 
potential bias was minimal, as shown in Figure 3. The number of patients classified as 'Unlikely 
DED profile' (Figure 3A) and those reporting the use of other drugs (Figure 3B) represent possible 
margins of error, but these numbers are relatively small. Considering these factors and the reasonable 
patterns observed in Figure 3, the prevalence estimates derived in this study can be regarded as 
robust and appropriate within the scope of available resources. 

Another intriguing finding was that a higher number of participants fell into the 'Probable DED 
profile' category compared to those who had been formally diagnosed and treated for DED (Figure 
3A). This suggests that many individuals may experience symptoms severe enough to require AT 
use but do not seek formal medical diagnosis for treatment. This discrepancy raises concerns about 
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public awareness of DED and underscores the need for educational efforts to help individuals 
recognize their symptoms and seek appropriate care. A similar trend was observed in population's 
report on ocular surgery. (Figure 3C). This suggests that patients may prioritize cataract-related 
concerns in multiple-choice settings, even when experiencing symptoms more indicative of DED. It 
is possible that some patients are unaware of newer treatment options, such as Intense Pulsed Light 
(IPL) therapy or thermal pulsation, which may alleviate their symptoms more effectively than AT 
alone.31,32 

Despite the novel insights provided by this study, several limitations should be acknowledged. 
First, the reliance on self-reported data introduces the potential for recall bias and misclassification. 
The absence of clinical measures further limits the precision of symptom assessment. While efforts 
were made to minimize these biases, future research should incorporate objective diagnostic tools 
to improve precision. Second, the study design, which relies on data collected by year and province, 
works well at a population level but may not be applicable to individual cases. Lastly, as this study 
is cross-sectional, longitudinal research tracking pollution exposure and DED incidence over time 
would provide a more accurate understanding of the causal relationship between air pollution and 
DED. 

 

5. Conclusion 
This study concludes that the CI effectively demonstrates the combined impact of multiple air 

pollutants on DED and shows a strong association with DED prevalence. By integrating air quality 
indicators with survey data, the study quantifies the contribution of air pollutants to DED, detecting 
subtle but clinically significant impacts that conventional methods may overlook. 
 

 

  



13 
 

References 

 

1  Lave LB, Seskin EP. Air pollution and human health. Science. 1970;169(3947):723-

733. doi:10.1126/science.169.3947.723 

2  Zeidberg, L.D., Prindle, R.A., & Landau, E. The Nashville Air Pollution Study. 

American Journal of Public Health. 1964;54(1):85-97. doi:10.2105/ajph.54.1.85 

3  Versura P, Profazio V, Cellini M, Torreggiani A, Caramazza R. Eye discomfort and air 

pollution. Ophthalmologica. 1999;213(2):103-109. doi:10.1159/000027401 

4  Uchino M, Schaumberg DA. Dry Eye Disease: Impact on Quality of Life and Vision. 

Curr Ophthalmol Rep. 2013;1(2):51-57. doi:10.1007/s40135-013-0009-1 

5  Goto E, Ishida R, Kaido M, et al. Optical aberrations and visual disturbances associated 

with dry eye. Ocul Surf. 2006;4(4):207-213. doi:10.1016/s1542-0124(12)70167-2 

6  Rasendran C, Imran Y, Talcott KE. Incremental Economic Burden of Depression in 

Ophthalmic Patients. Am J Ophthalmol. 2021;229:184-193. 

doi:10.1016/j.ajo.2021.03.062 

7  Hwang SH, Choi YH, Paik HJ, Wee WR, Kim MK, Kim DH. Potential Importance of 

Ozone in the Association Between Outdoor Air Pollution and Dry Eye Disease in South 

Korea. JAMA Ophthalmol. 2016;134(5):503-510. doi:10.1001/jamaophthalmol.2016.0139 

8  Kim Y, Choi YH, Kim MK, Paik HJ, Kim DH. Different adverse effects of air pollutants 

on dry eye disease: Ozone, PM2.5, and PM10. Environ Pollut. 2020;265(Pt B):115039. 

doi:10.1016/j.envpol.2020.115039 

9  Saxena R, Srivastava S, Trivedi D, Anand E, Joshi S, Gupta SK. Impact of 

environmental pollution on the eye. Acta Ophthalmol Scand. 2003;81(5):491-494. 

doi:10.1034/j.1600-0420.2003.00119.x 

10  Tan G, Li J, Yang Q, et al. Air pollutant particulate matter 2.5 induces dry eye 



14 
 

syndrome in mice. Sci Rep. 2018;8(1):17828. Published 2018 Dec 13. doi:10.1038/s41598-

018-36181-x 

11  Li J, Tan G, Ding X, et al. A mouse dry eye model induced by topical 

administration of the air pollutant particulate matter 10. Biomed Pharmacother. 

2017;96:524-534. doi:10.1016/j.biopha.2017.10.032 

12  Kaleta D, Kozielska B. Spatial and Temporal Volatility of PM2.5, PM10 and PM10-

Bound B[a]P Concentrations and Assessment of the Exposure of the Population of Silesia 

in 2018-2021. Int J Environ Res Public Health. 2022;20(1):138. Published 2022 Dec 22. 

doi:10.3390/ijerph20010138 

13  Begou P, Evagelopoulos V, Charisiou ND. Variability of Air Pollutant Concentrations 

and Their Relationships with Meteorological Parameters during COVID-19 Lockdown in 

Western Macedonia. Atmosphere. 2023; 14(9):1398. doi:10.3390/atmos14091398 

14  Kodavanti UP. Susceptibility Variations in Air Pollution Health Effects: Incorporating 

Neuroendocrine Activation. Toxicol Pathol. 2019;47(8):962-975. 

doi:10.1177/0192623319878402 

15  Murena F. Measuring Air Quality over Large Urban Areas: Development and 

Application of an Air Pollution Index at the Urban Area of Naples. Atmospheric 

Environment. 2004;38(34):6195-6202. doi:10.1016/j.atmosenv.2004.07.023. 

16  Xiaorui T. A review of current air quality indexes and improvements under the multi-

contaminant air pollution exposure. Journal of Environmental Management. 

2021;279:111681. doi:10.1016/j.jenvman.2020.111681. 

17  Kyrkilis, S. Development of an aggregate Air Quality Index for an urban 

Mediterranean agglomeration: Relation to potential health effects. Environ Int. 

2007;33:670-676. 

18  Saxena, A. and S. Shekhawat (2017). Ambient Air Quality Classification by Grey Wolf 



15 
 

Optimizer Based Support Vector Machine. J Environ Public Health 2017: 3131083. 

19  Song SJ. Methodology and Rationale for Ophthalmic Examinations in the Seventh 

and Eighth Korea National Health and Nutrition Examination Surveys (2017–2021). 

Korean J Ophthalmol. 2021;35(4):295-303.  

20  Korean Environment Corporation. Air Korea OpenAPI Usage Guide (Air Pollution 

Information Retrieval Service). Air Policy Support Department, Climate Air 

Headquarters, Korean Environment Corporation. Published December 6, 2020; 

Updated November 16, 2023. Accessed October 3, 2024. 

21  Korea Meteorological Administration. KMA Observation Site Information. National 

Climate Data Center, Korea Meteorological Administration. Published January 10, 2020; 

Updated September 24, 2020. Accessed October 3, 2024. 

22  Ahn JM. Prevalence of and risk factors associated with dry eye: The Korea National 

Health and Nutrition Examination Survey 2010–2011. Am J Ophthalmol. 

2014;158:1205-1214. 

23  Mandell JT, Idarraga M, Kumar N, Galor A. Impact of Air Pollution and Weather on 

Dry Eye. J Clin Med. 2020;9(11):3740. Published 2020 Nov 20. doi:10.3390/jcm9113740 

24  McDonald GC, Schwing RC. Instabilities of regression estimates relating air pollution 

to mortality. Technometrics. 1973;15(3):463-481. doi:10.1080/00401706.1973.10489073. 

25  Cardona G, Argilés M, Pérez-Cabré E. Loss of Blink Regularity and Its Impact on 

Ocular Surface Exposure. Diagnostics (Basel). 2023;13(14):2362. Published 2023 Jul 13. 

doi:10.3390/diagnostics13142362 

26  McMonnies CW. The clinical and experimental significance of blinking behavior. J 

Optom. 2020;13(2):74-80. doi:10.1016/j.optom.2019.09.002 

27  Pflugfelder SC, Stern ME. Biological functions of tear film. Exp Eye Res. 

2020;197:108115. doi:10.1016/j.exer.2020.108115 



16 
 

28  Han X, Zhang MG. Interannual variation feature of the transboundary contribution 

from Chinese emissions to PM2.5 in South Korea. Adv Atmos Sci. 2021;38(5):701–706. 

doi:10.1007/s00376-021-1003-4. 

29  Jun MJ, Gu Y. Effects of transboundary PM2.5 transported from China on the 

regional PM2.5 concentrations in South Korea: A spatial panel-data analysis. PLoS 

One. 2023;18(4). doi:10.1371/journal.pone.0281988. 

30  Japanese Weather Association. Hourly PM2.5 forecast map for East Asia, updated 

every three hours. Tokyo: Japanese Weather Association; 2023. Available from: 

https://tenki.jp/pm25. Accessed 2024 Nov 19. 

31  Lei Y, Peng J, Liu J, Zhong J. Intense pulsed light (IPL) therapy for meibomian 

gland dysfunction (MGD)-related dry eye disease (DED): a systematic review and 

meta-analysis. Lasers Med Sci. 2022;38(1):1. Published 2022 Dec 19. 

doi:10.1007/s10103-022-03690-1 

32  Gupta AS, Massaro M, Bunya VY. Intense pulsed light treatment for the 

management of meibomian gland dysfunction. Curr Opin Ophthalmol. 2024;35(4):322-

328. doi:10.1097/ICU.0000000000001055 

  



17 
 

Appendices 

A 

 

B 

 

C 

 
D 

 

E 

 

F 

 
  

Supplemental Figure 1. Distribution of six key air pollutants.  
A, PM10 (µg/m³) B, PM2.5 (µg/m³) C, SO₂ (ppb), D, NO₂ (ppb) E, O₃ (ppm) F, CO (ppm).  
Each pollutant displays a pronounced right-skewed distribution, with lower concentrations occurring more 
frequently and higher levels less common.  
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Supplemental Figure 2. Hourly PM2.5 forecast map for East Asia, updated every three hours. 
The transboundary movement of PM2.5 pollutants from China to South Korea, driven by prevailing 

southwesterly and westerly winds. 
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Abstract in Korean 

 

대기오염이 건성안에 미치는 누적 효과: 

국민건강영양조사 (2017-2020) 

 

 
대기 오염물질은 눈물막을 손상시키고 각막 상피에 손상을 줄 수 있어 심각한 

불편함과 자극을 유발할 수 있다. 이러한 분명한 관계에도 불구하고, 다양한 오염물질 

간의 복잡한 상호작용으로 인해 인구집단 수준에서 대기 오염의 건성안에 대한 

영향을 직접적으로 평가하는 것은 어려운 과제로 남아있다.  

이 연구는 대기오염물질의 건성안에 대한 영향을 조사하기 위해 2017 년부터 

2020 년까지의 제 7 차 및 제 8 차 국민건강영양조사 자료와 국가 대기환경 정보관리 

시스템의 대기오염물질 자료를 사용하여 대기오염과 건성안의 관계를 조사했다. 주요 

대기오염물질들의 영향을 통합하여 보여주는 대기 지표를 계산하여, 다중 로지스틱 

회귀 분석을 통해 연중 기준점 이상의 지표값을 나타내는 날의 수가 증가할수록 

건성안의 발생 위험이 증가하는 것을 확인하였다. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

__________________________________________________________________ 

핵심되는 말 : 건성안, 안구 건조증, 대기오염 
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