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ABSTRACT

Development and Validation of a Novel Neuro-Behavioral
Subclassification System for Autism Spectrum Disorder

Heterogeneity in clinical presentations and underlying neurobiological mechanisms pose significant
challenges in delivering personalized interventions for autism spectrum disorder (ASD). With the
increasing prevalence of ASD and its growing societal impact, research into subclassifying ASD
phenotypes and deciphering unique neurobiological etiologies has gained urgency. In our study, we
leverage both retrospective and prospective ASD datasets to construct and validate a multimodal
subclassification system. Our multi-modal modeling through integration of features derived from

fMRI and behavioral video data aims to identify clusters with distinct clinical and biological profiles.

Utilizing precision-engineered deep learning architectures tailored to each data type — video and
fMRI, we successfully extracted key features. Integration of these features followed by the
application of advanced clustering techniques for high-dimensional data led to the formation of
distinct, data-driven neuro-behavioral clusters. We delineated three clusters: ‘Cluster 3’ with partial
impairment in social capacity with the highest overall neural segregation and receiving the strongest
genetic influence of the high-deleterious rare coding and non-coding variants; ‘Cluster 2’ with
significant autism-related behavioral patterns, abnormal hub node compensation for overall low
neural integration and under the effect of less deleterious autism-associated non-coding variants;
‘Cluster 1” with less evident autism-related behaviors and receiving more genetic contribution of the
common variants. The multimodal approach not only enabled the extraction of a broader spectrum
of data-driven features to identify clinically distinct subgroups and predict autistic symptom severity,
but also enhanced the understanding of individual participants’ neuro-, behavioral-, and genetic
profiles, contributing to their unique clinical manifestations. The feature extraction model's

explainability was validated by Shapley values.

Our single-source, multi-data approach to creating a multimodal model for ASD subclassification



has produced promising results. The reliable clustering obtained from integrated features and
thorough validation supports our methodology. Although replication studies are necessary to
confirm our findings, this research points to neuro-behavioral clustering as a means to discern
biologically distinct groups with unique pathways, significantly impacting personalized treatment

strategies aimed at specific genetic, neural, or behavioral challenges.

Key words: autism spectrum disorder, biomarkers, subclassification, multimodal data integration,

deep learning
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1. INTRODUCTION

1.1. Heterogeneity of autism spectrum disorder

Heterogeneity in clinical manifestation and underlying etiologies are major obstacles for identifying
key biomarkers in the field of psychiatry and thereby making it difficult for targeted intervention. '
Psychiatrists and scientists have recognized the limitations of the traditional nosology;>3 the past
few years, there has been a trend towards partitioning psychiatric heterogeneity into more
homogeneous groups—subclassification via various data modalities and data modality specific

feature extraction methods.*?

The current research focuses on autism spectrum disorder (ASD), which with its early-childhood

457 and increasing prevalence (0.05% in

onset®, notable clinical and neuro-biological variability,
1966 to ~2% in 2019)%? calls for the scientific and medical community’s attention to the need for
and challenges related to subclassification of ASD. The complexity of ASD has also been noted by
advances in genomics”!%!! and neurobiological studies.!>!3 which have collectively pointed toward
multiple etiological pathways. The resulting wide range of clinical and neuro-biological ASD
manifestations represents both a challenge and motivation of subclassification, which is necessary

for providing personalized interventions for ASD.

1.2. Subclassification methods

Subclassification approaches can be characterized in terms of both the unit(s) of analysis on which
variation among individuals is indexed and the nature of the algorithm(s) used to sort individuals
into groups.! Target units of analyses can be categorized under behavior and biology.!* The behavior-
based units are thought to indirectly index variation of underlying biology and vice versa.!
Furthermore, quantitative subclassification algorithm can be broadly categorized as supervised (i.e.,
label driven), unsupervised (i.e., data driven), or their hybrids.'® These approaches leverage

univariate or multivariate statistics, each having advantages and disadvantages.'¢

1.3. Previous ASD subclassification research efforts



1.3.1. Behavioral video-based subclassification of ASD

Previously, our group conducted a study that used video-based deep-learning technique to assess
joint attention behaviors with the goal of objectively identifying children aged 18-72 months with
ASD. The study cohort included 95 children, 45 of whom were clinically diagnosed with ASD.!’
Joint attention describes one’s attending to other people and sharing an attentional focus on objects
or events with other individuals; early joint attention situations are thought to facilitate learning to
socialize.'®!” We developed a digitalized method for joint attention assessment, which requires a
new protocol for specific task administration guidelines to elicit three types of joint attention —
initiation of joint attention (IJA), low level response to joint attention (RJAw), and high-level
response to joint attention (RJAgign) — mentioned in the Early Social Communication Scales
(ESCS)? for video recording of task-related behaviors. The collected video data were then used as
input for training a deep learning (DL) model to identify ASD and assess ASD symptom severity.'”
We found that IJA model performed the best at distinguishing children with ASD from those with
ASD. The RJAow and RJAnin models also performed well as classifying children with vs. without
ASD, but these models did not perform quite as well as the IJA model. Based on these results, we
concluded that digital measurement of joint attention may facilitate scalable ASD screening and

symptom severity assessment. !’

Additional analysis on the ASD group from previous study revealed that there may be a correlation
between joint attention success rate and either Autism Diagnostic Observation Schedule (ADOS)
symptom domain scores for social affect (SA) and restricted repetitive behavior (RRB).?' Roughly,
we could observe four distinct clusters of ASD by their social-communication ability, severity of
restricted repetitive behavior, initiation of joint attention, and lastly response to joint attention. In
fact, principal component analysis using the four variables revealed that the two types of joint
attention contributed to within group variance far greater than either domain score. This is an
interesting trend that is worthy of further exploration. Previously various ASD subclassification
research utilized difference between the two sub-scores to develop clinically distinct ASD subtypes
(i.e. SC>RRB, SC=RRB, RRB>SC) in pursuit of finding new neural and genetic mechanisms that
explain such phenotypic heterogeneity.?>** Based on sub-analysis using our very own ASD data,
perhaps, objective behavior biomarker such as joint attention may be more important in explaining

the variance in ASD than human rated clinical scores such as ADOS.



1.3.2. Gaze-based subclassification of ASD

Eye-tracker is a popular and frequently used tool for studying ASD characteristics in the context of
abnormal sensory systems. To this day, there are several studies that investigated gaze pattern
differences between individuals with ASD and those with typical development, which showed
intriguing results where individuals with ASD tended to show preference for non-human objects,

while those with typical development showed preference for human faces.>*?’

One study explored
gaze response to dyadic bids at 2 years, which related to outcomes at 3 years in ASD.? In this
particular study, the authors were able to perform a cluster analysis in which three clusters or groups
of ASD showed varying patterns of eye gaze in terms of which human body parts they tended to
view during a social context. One group of ASD that showed least amount of gaze on the face
showed the poorest prognosis. Another recent gaze study on ASD revealed that not only are there

gaze pattern differences between ASD and TD but also within ASD.?*

1.3.3. Genomic subclassification of ASD

Although genetic subclassification approaches have provided many new insights about the
possible biological mechanisms that are linked with phenotypic heterogeneity, results from
these research studies need to be interpreted with much caution. For example, different
penetrance between common and rare variants, the low prevalence of any single
variant/mutation, although cumulatively all identified ASD-related gene mutations contribute
to ~20-40% of clinical non-syndromic ASD, the high genotype-to-phenotype variability, and
variable degrees of spatiotemporal convergence across independent risk genes may limit the
use of these data to better understand heterogeneity associated with ASD.?83% Thus, efforts
focusing on discovering clinically relevant subtypes based on genetic approaches alone may
not be feasible. Still, recent genetic studies on ASD have shown how a phenotypic spectrum of
autism is attributable to the combined effects of de novo mutations, rare variants, polygenic risk
and sex.!! Moreover, there has been a report that different classes of genetic variants have
differential impact on phenotypic severity in ASD; while de novo or inherited truncating
variants and gene-disruptive copy number variants are associated with more severe forms of

ASD, with intellectual disability, variants such as copy number polymorphisms, common



variants are associated with ASD individuals with better prognosis and higher intelligence
quotient (IQ).3%*! Such findings may be suggestive of that even though genetic vulnerability
does not solely determine and explain for varying clinical manifestations of ASD, its
contribution is significant and need to be accounted for. With a growing number of newly
discovered gene variants in various ASD whole genome sequence cohorts, there may be a better
chance of utilizing such pathway-driven data, perhaps with other complementary data of

different modalities to identify new ways to characterize or subclassify ASD.

1.3.4. Neuro-subclassification of ASD

There have been several studies investigating differences in neuroanatomy between individuals with
ASD and those without."> Most of these studies used Autism Brain Imaging Data Exchange
(ABIDE) dataset, which is a publicly available dataset of brain imaging data from individuals with
ASD and typically developing controls.** Hong et al. using this dataset showed that three classes of
ASD of three distinct patterns of clinical outcome could be clustered based on cortical thickness,
intensity contrast, surface area, and geodesic distance.’? Choi et al. attempted at subclassification of
ASD via an unsupervised clustering method using ABIDE’s resting state functional magnetic
resonance imaging (rs-fMRI) data.!* Using ‘connectome-based gradient’ and ‘functional random
forest’, the authors were able to find subgroups of ASD based on rs-fMRI. Unfortunately, their
results were not readily replicable as subgroups resulting from cluster analysis using a replication
dataset showed different clinical scores compared to the subgroups that were derived from the
discovery dataset. Moreover, the different clusters of ASD individuals did not show significant
differences in neural connectivity. Such findings suggest that perhaps purely unsupervised clustering

using a complex data such as fMRI may not give way to clinically meaningful subtyping.

1.3.5. Multimodal subclassification of ASD

Recently, many research teams have aimed to use more than one data modality to develop ASD
subclassification methods.?>?*3* EU-AIMS Longitudinal European Autism Project (LEAP) has been
accumulating multi-modality data — multimodal MRI, whole genome sequence, eye-tracker, clinical
assessment data — from ASD and typical control individuals of European descents and several

research teams are tapping on to this multi-modal dataset to better understand ASD more holistically



and to develop new methods of subclassification. In one of these studies, Bertelsen et al. took a top-
down approach where in which cluster analysis was performed using a scoring system derived from
clinical scores, which represent social-communicative—restricted repetitive behavior (SC-RRB)
balance as the very first step.?? By modeling the balance or imbalance thereof between SC and RRB
(the two core symptoms of ASD), distinct subgroups of ASD could be identified. Unfortunately, the
ASD subgroups resulting from such method did not yield distinct patterns of neural circuitry and

genetic components.

1.4. Previous studies’ limitations

Cluster analysis via unsupervised learning on complex data such as fMRI did not result in replicable
and consistent subclassification; clustering with the replication dataset failed to produce the same
ASD subgroups as when clustering with the discovery dataset even while keeping an identical
experimental set-up.3>3® This may be due to relatively small study’s sample size, hindering
generalizability and replicability; however, another probable explanation would be that without any
kind of label to perform the cluster analysis with these individuals were clustered into distinct
subclusters solely based on non-linear data patterns—signal patterns devoid of clinical meanings.
Concurrently, studies that performed cluster analysis using supervised learning methods failed to
produce subgroups of both distinct clinical phenotypes and distinct neuro-biological mechanisms.?
One should note that these studies employed human rated autism-related scale sub-scores as label
for supervised learning. While these human scoring systems are clinically valid and widely used in
practice, these human rated scores may not necessarily reflect objective and qualitative differences
in phenotype among individuals with ASD. Approaches lacking objective behavioral biomarkers
may have limited capacity to segregate heterogeneous ASD populations into distinct subgroups with
unique biological underpinnings. A more effective strategy for ASD subclassification involves
employing self-supervised learning to derive data-driven features.?”-*® Subsequently, the efficacy and
robustness of the feature extraction process can be validated through downstream tasks that utilize

clinical scores as labels.

In summary, identifying the most affected ASD neuroscience system level—biology, neural, or
behavior—in an individual with ASD to determine the suitable targeted intervention is a significant

challenge. Although prior research employing brain imaging, genomics, and clinical assessments



has distinguished ASD from typical development, these single modalities fall short in stratifying
ASD into distinct neurological, genetic, and behavioral subgroups. Integrating diverse data types,
collected from the same individuals, is a rational next step for identifying unique ASD pathways and
developing specific treatments. To date, no subclassification models in ASD research have employed
such a single-source, multi-modal data approach. An integrated multi-modal subclassification
system could enable clinicians to differentiate and treat various ASD types based on a composite

profile of system-level abnormalities.

To that end, we conducted a prospective study to develop and validate a neuro-behaviorally driven
subclassification system, collecting functional neuroimaging, behavioral video, and genomic data
from the same individuals. We aim to synergize resting-state fMRI data, which offers neural-level
insights, with joint attention metrics from video data, reflecting behavioral dynamics. The validity
of these neuro-behavioral subgroups is verified through clinical presentation, gaze patterns, neural
connectivity, and genetic profiles. Additionally, we analyzed the effectiveness of feature extraction
from each data modality and assessed whether integrating these modalities enhances our
understanding of ASD. Specifically, we evaluated the classification of autism symptom severity
based on combined neural and behavioral features using supervised learning, with clinical scores as
benchmarks for symptom severity, to determine if the extracted features correspond to clinically

significant information.



2. MATERIALS AND METHODS

2.1. Retrospective data
2.1.1. Video data

17.39 where we had collected video

We accessed the ‘JointAttention’ dataset from our previous study,
data from 95 individuals for joint attention-based Al model training. Detailed description of
‘JointAttention’ dataset’s participants is presented in the Ko et al. 2022 JAMA Network Open paper.
The video data were acquired in a single 10-minute session per participant. Tasks were filmed from
a front-facing viewpoint using a Sony DSC-RX100 IV digital camera (resolution: 1920 x 1080, 30
frames/second). Video data for each trial per participant are gathered, pre-processed to remove
background, center-cropped, and resized to 224 x 224 pixels. For 1JA task, input size of one video
is 224x224x300 (30 frames/second x 10 seconds). For RJA task, input size of one video is

224x224x150 (30 frames/second x 5 seconds).

2.1.2. fMRI data

ABIDE is an initiative that compiles rs-fMRI data and related phenotypic information collected
across various sites.*’ This data is made available through the Preprocessed Connectomes Project.*!
Data acquisition was performed using a 3.0 Tesla Allegra scanner, adhering to the imaging
parameters described in a previous study.** The Configurable Pipeline for the Analysis of
Connectomes (C-PAC) was utilized to preprocess the data, with the specific steps and settings
detailed in the corresponding literature,* facilitating appropriate preparation for subsequent
analyses. Each brain is partitioned into 39 regions of interest (ROI) based on multi-subject dictionary
learning (MSDL) atlas.** From the initial dataset comprised of 1,112 scans from 539 individuals
with ASD and 573 individuals with TD, removing functional data not meeting the Quality
Assessment Protocol standards set by the Preprocessed Connectomes Project community,*! resulted
in a revised dataset of 866 participants, including 402 with ASD and 470 with TD. Further exclusion
of individuals lacking valid Autism Diagnostic Observation Schedule (ADOS)** and full-scale IQ
(FSIQ)*! scores, resulted in a final sample of 750 participants, comprising 282 individuals with ASD
and 468 individuals with TD.



2.2. Building DL-assisted feature extractors using retrospective data

2.2.1. Video feature extraction DL model

Video Input  Feature Extraction  Sequential Learning Prediction

Attention Pooling

CNN ——+ LSTM —»

CNN —~—» LsT™M

Attention:

vector |

' Attention : Output
v | (Linear, i

; ; RelLU,

CNN _. LSTM : Softmax)

CNN s LSTM

Fig 1. Model architecture for extracting video features

Self-supervised learning method was employed to learn features based on the inherent behavioral
features contained in each video rather than clinical variables associated with each participant in the
video. Using the methods from Chen et al. SimCLR paper, Normalized Temperature-Scaled Cross-
Entropy (InfoNCE/NT-Xent) loss was used which allows for contrastive learning of visual
representations.* Two separate data augmentation operators are sampled from the same family of
augmentations (¢ ~ T and #’ ~ T) and applied to each data example to obtain two correlated views. A
base encoder network — in our case Convolutional Neural Network (CNN)-Long Short-Term
Memory (LSTM)-Attention (Fig. 1) — f(¢) and a projection head g(*) are trained to maximize
agreement using a contrastive loss. After training is completed, we throw away the projection head
g(*) and use encoder f(*) and representation / for downstream tasks—training with our newly
acquired prospective dataset. The video dataset was split 8:2 for training and validation of deep

learning model over 100 epochs.



2.2.2. fMRI feature extraction DL model
2.2.2.1. Graph node feature engineering

Functional connectivity matrices are widely utilized in rs-fMRI research to extract statistical
correlations from fMRI blood-oxygen-level-dependent (BOLD) signal time-series data, providing
framework for understanding brain interactions in downstream tasks.**® However, their
dimensionality reduction can oversimplify data, potentially losing insights about individual brain
region’s activity and nonlinear connectivity between brain regions*’ and masking the functional
network’s intricate variability across time.*® An alternative, employing advanced feature engineering

9

to extract multifaceted features from BOLD time-series* — such as time-frequency features via

continuous wavelet transform (CWT)02

— can inform graph-based analyses for a more detailed
representation of connectivity. CWT is an established method in bio-signal analysis®®>!> that
decomposes signals into localized wavelets for time-frequency analysis.® Unlike the Fourier
transform, the CWT excels in analyzing non-stationary frequencies over time.*> The CWT generates
a two-dimensional time-frequency representation by convolving the signal with scaled and
translated version of a mother wavelet, providing local frequency information over time. Each
participant’s CWT data, initially derived from time-series signal data across 39 ROls, are

transformed into scalogram images,> which are then fed into a CNN (Resnet18) framework to

extract the corresponding CWT features.”!

2.2.2.2. CWT-based graph neural network architecture for feature extraction

Graph Neural Networks (GNNs), well-suited for spatially structured, relational data, ** can be
enhanced by feature engineering preprocessing that enable the capture of complexities related to
time, frequency, and spatial-structure.’*>¢ Our custom GNN architecture includes a feature-
engineering step that extracts CWT from the BOLD signal time-series for each ROI and training
step, where these preprocessed features are then integrated into the GNN using the spatial
coordinates of each ROI as baseline edge information. Thereafter, with each iteration the weights of
the 741 edges (total number of edges of complete graph consisting of 39 nodes) are updated based
on different features. The 39 nodes’ updated weights based on training are concatenated to perform
graph-level binary classification. The same SimCLR loss function was used to conduct contrastive
learning similar to the method employed for training and extracting features from video data. The

GNN with pre- feature engineering step is presented in Fig 2.
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Fig 2. Model architecture for extracting fMRI features

2.3. Prospective data

2.3.1. Participant enrollment

Enrollment for a prospective cohort study was conducted from the Child and Adolescent Psychiatry
Division of Seoul National University Hospital. The research protocol was approved by the Seoul
National University Hospital IRB Review Board !
RB No. H-2210-137-1374). Enrollment criteria are: 1) age of 48~71 months, 2) male, 3) children
diagnosed with ASD by a psychiatrist and confirmed by ADOS2. Exclusion criteria are: 1) receiving
pharmacological treatment, 2) having comorbid neuropsychiatric conditions such as developmental

coordination disorder, attention deficit hyperactivity disorder, etc.

2.3.2. Clinical assessments

The diagnosis of ASD is confirmed using Autism Diagnostic Observation Schedule I (ADOS-2),!
the gold standard diagnostic tool for ASD diagnosis. Autistic tendencies are measured using the
Korean versions of the Social Responsiveness Scale (K-SRS) as well as Social Communication
Questionnaire (K-SCQ).>” The SRS is a 65-item questionnaire that asks parents and/or teachers
about the characteristics of the social interactions shown by children over the past 6 months.>” Each
question is scored from zero to three points, depending on the frequency of the action described in
each item. Higher scores mean a lower social function. The SCQ is a 40-item screening instrument
that is based on Autism Diagnostic Interview-Revised (ADI-R), a tool for more in-depth assessment

of ASD symptoms, and selects key items that deviate from normal development.’” Child behavioral
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problems were checked with Child Behavior Checklist (CBCL) as well as Vineland Adaptive
Behavior Scale (VABS).’® The child’s motor functions were assessed through Developmental
Coordination Disorder Questionnaire (DCDQ).>® To assess the cognitive levels of participants, the
Korean Wechsler Preschool and Primary Scale of Intelligence—Fourth Edition (K-WPPSI-IV) was

be used.>’

2.3.3. Joint attention tasks and video data acquisition

2.3.3.1. Initiation of joint attention

The initiation of joint attention (IJA) task was designed as follows. A rotation of age- and
culture-appropriate tests toys, which were selected following the guidelines of the ADOS-2 and
Mundy’s ESCS manual (10 different types or shapes of similar size: width x length % height =3 cm
x 5 cm X 3 cm), was placed along the midline, 70 cm away from the edge of the table at which the
child was seated. If the toy was placed too close to the child, they would simply pick it up and play
with it without making any effort to interact with the examiner. A trained examiner was seated
adjacent to where the toy was placed, such that the child could see the examiner’s face by making
an approximately 45-degree head turn or by shifting their gaze considerably to their right. The
experimental process was as follows: the examiner placed a toy at the designated spot, waited for
30 seconds, and simply faced the child without providing verbal instructions. Once the child initiated
joint attention by shifting their gaze from the toy to the examiner and back to the toy (sometimes
also pointing at the toy), the examiner was asked to shift their gaze or turn their head to the toy to
match the child’s response. This task was repeated once more with the same toy after a 30 second
pause, and then a different toy was introduced. The order of the toy presentation was pseudo-
randomized across participants. If the children failed to show any interest in the toy after 30 seconds,

the examiner could use an alternate toy.

2.3.3.2. Response to joint attention

Response to joint attention (RJA) tasks were designed to observe whether a child would direct and
maintain their attention on an object to which the examiner pointed with their index finger.
Depending on the distance between the examiner’s index finger and the object, the RJA tasks were
further divided into RJAjoy (near) and RJApig(far) tasks, where RJAjow involved the examiner

pointing to toy objects on the table and RJAuien involved the examiner pointing to poster pictures on
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the walls. The RJA|o task utilized stimuli similar to that of the initiation of joint attention task,
except that two toy objects (one as a stimulus and the other as a distractor) were used. Four posters
depicting a child-friendly image (a car, butterfly, bananas, and puppy) covering half of an A4 sheet
were pasted onto three walls—Ileft, right, and behind—with respect to where the child participant

was seated. Each poster was approximately 100 cm from the child’s position. The three types of

joint attention are illustrated in Fig 3.

Initiation of Joint Attention (IJA)

Response to Joint Attention (RJAlow)

Fig 3. The different types of joint attention tasks
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2.3.4. Setup for joint attention experiments based on our protocol
Initiation of joint attention (IJA) tasks required use of only toy 1, while response to joint attention
tasks, low (RJAjow), required the use of toy 1 and toy 2 (distraction), and response to joint attention

tasks, high (RJAnin), required use of pictures 1-4 as shown in Fig 4.
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Fig 4. Joint attention task-video data acquisition set-up

2.3.5. Video data pre-processing for model training and feature extraction

Same method was used to pre-process the video data as that used in Ko et al. 2022 paper.*

2.3.6. fMRI data acquisition

Brain imaging data was collected on 3T Siemens Tim Trio Systems scanner at Seoul National
University Hospital. Resting state fMRI scans were acquired using a standard gradient-echo echo
planar imaging paradigm: FOV of 220 x 220mm (64 x 64 matrix), TR=2s, TE=30ms, FA=77°, 162
vol, 32 sequential ascending axial slices of 4mm thickness and 1mm skip. Participants were sedated

and had their eyes closed during the scan. Data were processed using C-PAC preprocessing
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pipeline,*? which include slice timing correction, motion correction, intensity normalization,
nuisance signal removals, such as respiration, heartbeat, low-frequency scanner drifts, global mean
signal regression, head motion, etc. The preprocessed data were band-pass filtered (0.01-0.1 Hz) and
spatially registered to MN152 template space. ROI time series data will then be extracted from the
resulting fMRI images using the MSDL brain atlas.*3

2.3.7. Genomic data acquisition

2.3.7.1. Whole genome sequencing

Whole genome sequencing (WGS) was performed on peripheral blood samples from 31 participants
with autism spectrum disorder (ASD) using the NextSeq 550Dx System (Illumina, San Diego, CA,
USA). Excluding participant ASD010, 29 samples were analyzed. The WGS was conducted by
TheragenBio with a custom quality control sequence analysis pipeline. Variants were identified

using HaplotypeCaller and MuTect2 from the GATK package (3.8-0) and VarScan2 (2.4.0).

2.3.7.2. Filtering and annotation

The VCF (Variant Call Format) files representing 29 participants were initially filtered using GATK
Variant Filtration, applying a filter to PASS, with a Mapping Quality (MQ) greater than 30 and Read
Depth (DP) exceeding 10 to ensure high-quality variant selection. Further filtering and annotation
processes were conducted using Python and Java scripts to distinguish between common and rare
variants, defined by allele frequency (AF). Common variants, identified as those with AF greater
than 1%, were used for subsequent polygenic risk score (PRS) calculations. The VCF files were

normalized, and PLINK binary files were prepared using Bcftools.

2.3.7.3. Polygenic risk score calculation

To calculate the PRS for various conditions, including ASD, ADHD, schizophrenia (SCZ),
educational attainment (EA), and intelligence, the filtered variants were processed using PLINK 1.9
and Bcftools. Initially, indels and multiallelic variants were excluded, and the variants were
normalized to generate PLINK binary files. The input files were then merged. Reference data for
PRS calculation included refined Genome-Wide Association Study (GWAS) data for the

aforementioned conditions. Clumping was performed to sort single nucleotide polymorphisms
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(SNPs) based on linkage disequilibrium and p-values, followed by the extraction of index SNP IDs.
A range-list file containing different p-value thresholds for SNP inclusion in the PRS was created.
PRS scores were then calculated using the prepared binary files, refined GWAS data, range-list files,
SNP p-values, and extracted SNP IDs, resulting in comprehensive PRS profiles for each participant

across multiple conditions.

2.3.7.4. Annotation of rare variants

For rare variants (AF less than 1%), annotation included both coding and non-coding regions.
Coding region variants were annotated using tools and databases such as pLI (probability of being
Loss-of-function Intolerant), CADD (Combined Annotation Dependent Depletion), SIFT (Sorting
Intolerant From Tolerant), PolyPhen (Polymorphism Phenotyping), and the SFARI gene list. Non-
coding region variants were annotated using databases including the Enhancer Atlas, HACER, and
the Promoter Atlas provided by the FANTOMS project, with CADD scores used to assess their
significance. This comprehensive annotation ensured a detailed understanding of both common and

rare variants, contributing to the robust analysis of genetic factors in ASD.

2.3.8. Feature extraction using pretrained model weights

Using the pretrained deep learning model architectures and pretrained weights using retrospective
dataset, we fine-tuned or further trained using preprocessed prospective data per data modality
(video and rs-fMRI). The same loss function (InfoNCE/NT-Xent) was utilized as the pretraining
phase, for at least 50 epochs and upon completion of training, feature vectors were stored for

downstream tasks.

2.4. Prospective data cluster extraction via retrospective clustering algorithm

Prior to performing multi-modal clustering analysis using prospective cohort dataset, we conducted
clustering analysis using the retrospective cohort datasets to build a clustering algorithm for the
“behavioral clusters” and “brain clusters”. For the video data, indirect measures of gaze patterns
using computer vision-derived variables computed from face landmark variability such as ‘yaw’,
‘pitch’, ‘roll’, ‘kurtosis’, and ‘skewness’ were utilized. Face landmark localization on collected

videos was feasible using face detection algorithms provided by Dlib library.®! Rotation matrix to
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Euler angles conversion algorithms were used to impute ‘yaw’, ‘pitch’, and ‘roll.” Due to the curse
of dimensionality principal component analysis and k-means clustering method was employed to
develop a clustering algorithm based on these behavioral patterns observed in large retrospective
dataset. This process was repeated using the ABIDE dataset: using the edge connectivity features
derived from the trained GNN model results for each participant, clustering algorithm was
developed after principal component analysis and k-means clustering was applied. Then, on the
prospective dataset, these “gaze-based clusters” and “brain connectivity clusters” algorithms were
applied onto the prospective video and rs-fMRI datasets to assign clusters based on patterns learned
from retrospective datasets. This clustering information was then integrated into the multi-modal

model.

2.5. Multi-modal data integration for downstream tasks

Various multimodal integration techniques have been introduced to utilize data from different
modalities such as fMRI, SNP, clinical data for the purpose of developing a machine-learning model
for disease detection.®? Depending on the stage at which the data integration occurs, there may be
early, intermediate, and late phase multimodal integration approaches. Late phase approach is where
separate machine-learning model is trained for each type of data then predictions of different models

are combined to make a final decision.

Early data fusion works best for integrating data types sharing the same number of dimensions such
as different MRI modalities. In this study, we utilized late-stage integration treating the different
data types separately, processing each using appropriate preprocessing and feature extraction
pipeline, then latent vectors derived from each modality are concatenated then an ensemble (voting)
classifier predicts outcome.%®> One machine learning classifier (XGBoost)®* and a fully connected
multi-layer perceptron (MLP)® were utilized to learn from the integrated features from video and
rs-fMRI data sources for the purpose of clustering and autism symptom severity classification.
Similarity network fusion (SNF)® was employed for data integration—method that allows for
integration of different data modalities by using networks of samples. Initially, similarity matrices
are created for each data type for each participant, then these matrices are fused through iterative
processes over a wide range of SNF hyperparameters (k-nearest neighbors weighted similarity

kernel; K and ) until convergence (z-Rand similarity index), ensuring stable integration.®® The
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final output is a co-assignment matrix, which represents the combined similarity across all nodal
measures; this integrated network is subsequently used for spectral clustering based on optimal
parameters.®® The overall process of data integration and downstream tasks are visually represented

in Fig 5.
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Fig 5. Overall study design and modeling of multi-modal system

2.6. Cluster analysis
2.6.1. Clustering methods

Two clustering methods were utilized: K-means clustering and SNF-based spectral clustering
followed by hierarchical clustering. K-means was applied to dimension-reduced feature vectors of
the 3456 combined features (consisting of both video and fMRI) via PCA. The SNF-based clustering
used the final co-assignment matrix, leveraging cosine similarity across all nodal measures. Spectral
clustering was employed to identify a pre-specified number of subgroups (i.e., 3). Hierarchical
clustering was then performed on the final co-assignment matrix to identify subgroups across a range
of clusters (2-10). A dendrogram was constructed, and the optimal number of clusters was
determined using the Calinski-Harabasz index.% This comparative approach aims to determine the

more effective clustering method for the same set of individuals.
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2.6.2. Genetic validation of multi-modal clustering
After neuro-behavioral clustering was conducted, SNP information gathered from each sample were
used to compare the genetic profiles among the different neuro-behavioral clusters. Furthermore,

the Human Protein Atlas (https:/www.proteinatlas.org/) was utilized to understand how having

certain genetic variant contributed to abnormal neural connectivity evidenced by the rs-fMRI GNN

model outcomes.

2.7. Autism symptom severity prediction

Lastly, we addressed the task of classifying autism symptom severity using the ADOS-2 calibrated
total scores, ranging from 0-4 for non-to-mild severity and >5 for moderate-to-severe autism. This
classification was performed using both an XGBoost classifier and a custom MLP model. The
objective was to evaluate whether integrating multi-modal information from distinct data
modalities—behavioral and neurobiological—enhances the model's predictive performance in
identifying levels of autism symptom severity. This investigation also aimed to substantiate the
utility of multi-modal clustering or subclassification. The premise is that richer, more diverse
information sources facilitate the grouping into more finely delineated, targeted subcategories.
Additionally, we explored the potential for predicting clinical scores—which assess the severity of
autism—through a composite of objective behavioral assessments and neurobiological data. This
approach could also reveal the relative contributions of behavioral and neurological factors to the
overall clinical symptom severity. Such insights are invaluable for designing tailored intervention

plans that are specific to the patient’s characteristics, potentially enhancing therapeutic outcomes.

2.8. Statistical analysis

2.8.1. Power calculation — sample size estimation

For this exploratory study, the lack of preceding data precludes the establishment of a definitive
sample size. Nevertheless, referencing guidelines for comparable studies, we advocate a minimum
sample size of 12%, considering the study's feasibility, precision of means and variances, and
compliance with regulatory requirements. Reflecting on a previous investigation that effectively
classified three distinct severity subclasses of ASD with a cohort of 45 individuals'’, our study plans

to recruit 60 participants. This number takes into consideration potential participant dropouts or
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missing data essential for statistical analysis.

2.8.2. Evaluation of effective clustering using metric scores

To validate or determine the effectiveness of clustering mythology employed, metrics such as
Silhouette Score,®® Davies-Bouldin Index,®® and Cluster Stability’® were used. Silhouette score
measures how similar an object is to its own cluster compared to other clusters; Davies-Bouldin
index evaluates the clustering algorithm by taking the average similarity measure of each cluster
with its most similar cluster, where similarity is the ratio of within-cluster distances to between-
cluster distances. Cluster stability allows for evaluating stability of clusters over multiple runs with

different subsets of the data to check the robustness of clustering.

2.8.3. Evaluation of multi-modal autism symptom severity prediction

Multi-modal model’s classification performance was evaluated using area under the receiver

operating characteristics (AUROC), accuracy, precision, and recall.

2.8.4. Cluster characteristics

Group comparison among the different clusters were statistically analyzed. Clinical characteristics,
eye-gaze patterns (head movement response to joint attention induction — ‘yaw’, ‘pitch’, ‘roll’,
‘kurtosis’, and ‘skewness’), rs-fMRI profiles (top 5 nodes of importance and 1 or 2-step eigenvector
centrality), number of ASD-associated (with high CADD score) coding and non-coding genes, the
ratio between coding to non-coding gene variants, the ratio between common and rare variants, and
polygenic risk scores for ASD. Means, standard deviations, medians, and ranges is used to express
continuous variables. The chi-squared test is used to compare categorical variables. Statistical
analyses and calculations of the validation measures are performed using Python 3.9.12 with SciPy

version 1.13.1 and Statsmodels 0.14.1. The threshold for statistical significance was set at p<0.05.
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3. RESULTS

3.1. Participant characteristics

3.1.1. Retrospective datasets

Using dataset from our previous project ‘JointAttention,” which was geared towards building a
video-based deep learning model for predicting ASD vs typical development (TD) as well as
symptom severity by ADOS total calibrated scores (CSS) include total of 95 individuals — where 58
showed non-mild ASD symptom severity (ADOS total css<4) and 37 showed moderate to severer
(ADOS total css>4). ABIDE dataset was used for developing deep learning model for extracting rs-
fMRI features. From the preprocessed ABIDE database, only participants with available ADOS
scores were included for analysis and model training, which were 817 in total, 470 meeting criteria

for non-mild and 347 individuals meeting criteria for moderate to severe ASD.

3.1.2. Prospective dataset
SNU dataset included total of 31 participants, 9 of whom met criteria for non-mild ASD and 22

meeting criteria for moderate to severe ASD.

3.1.3. Clinical characteristics of participants across retrospective and prospective

datasets

The clinical characteristics of participants across retrospective and prospective datasets are shown
in Table 1. While the JointAttention and SNU datasets showed a similar severity range, of overall
mean (SD) ADOS total css scores of 6.1 (1.6) and 6.4 (2.4), respectively; ABIDE dataset’s overall
average ADOS total css score was that of 2.79 (2.48). Such class (severity) imbalance could
contribute to imbalanced class representation, rendering difficult to perform transfer learning using
symptom severity score as label. Furthermore, FSIQ was overall higher for ABIDE dataset

compared to the other datasets.
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Table 1. Participant characteristics across datasets

Retrospective datasets

Prospective dataset

Database JointAttention [21] ABIDE [22] SNU
Non- Moderate- Non- Moderate- Non- Moderate-
Group by . Overall . Overall . Overall
. Mild Severe ild Severe Mild Severe
Severity (N=95) (N=750) (N=31)
(N=58) (N=37) (N=523)  (N=227) (N=9) (N=22)

Age 4.04 3.93 (4.0, 16.8 16.8 16.8 . 43(08) 4.2
Mean (SD)  (1.02) (1.17) 1.08) (7.20) (7.69) (7.35) (0.7) o (0.7)
Sex, (%) 31 51 426 630

20 (54.1) 204 (89.9) 18 (100.0)
Male (53.4) (53.7) (81.5) (84.0)  (100.0) (100.0)
FSIQ 98.3 57.5 82.4 111 109 84.3 63.4 69.7
105 (16.3)
Mean (SD)  (23.3) (19.0) (29.4) (12.2) (13.9) (24.2) (26.0) (26.9)
ADOS
38 6.1 1.23 6.40 2.79 . .

Css” 6.6 (1.3) 8.0 (1.2)

(0.5) (1.6) (0.70) (0.699) (2.48) (0.3) (2.9)
Mean (SD)

* Non-Mild (ADOS Total CSS<4), Moderate-Severe (ADOS Total CSS >4)

3.2. Multi-modal clustering results

As a result of clustering using integrated features from MLP model, using K-means clustering,

optimal k = 3 based on elbow method. Across 5 folds, fold 3 showed the highest silhouette score of

0.132 (0.0612-0.132), which is considered poor clustering. Based on Calinski-Harabasz index, the

optimal number of clusters based on SNF followed by hierarchical clustering was also 3. The SNF

plus hierarchical clustering fared much better. For k=12, 5 iterations, the best fold (fold 3)’s

silhouette score was 0.639 (0.396-0.639) and the adjusted Rand Index was 1, which is considered

very good. Hence, the cluster analysis to explore the differences in clinical characteristics, neural

connectivity and genetic profile were done using the clusters discovered using SNF plus hierarchical

clustering. The list of participants belonging to each cluster are shown in Table 2. The similarity

network fusion for aggregating feature vectors of video and rs-fMRI is presented graphically in Fig.

6 and the visualization of the result of hierarchical clustering is shown in Fig. 7.
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Table 2. SNF plus hierarchical clustering-based neuro-behavioral clusters

Clusters

Participant ID
(total N=31)

asd001, asd002, asd013, asd014, asd036,

Cluster 1 (N=6) d038
as

Cluster 2 (N=5) asd017, asd024, asd025, asd027, asd031

asd003, asd005, asd006, asd007, asd008,
asd009, asd011, asd012, asd015, asd016,
asd018, asd019, asd021, asd022, asd023,
asd026, asd028, asd029, asd030, asd035

Cluster 3(N=20)

3.2.1. Clinical manifestations of neuro-behavioral clusters

The clinical differences of the three neuro-behavioral clusters are shown in Table 3. The
characteristics of each cluster are indicated by arrows, which depict the severity and quantity of
specific symptoms, with upward arrows indicating an increase in severity. These results reflect the
clinical characteristics of each cluster and facilitate a clearer understanding of the various aspects of
ASD. The data is presented as median values with the first and third quartiles. While there were no
significant differences in the ADOS scores (severity scores) among the three groups, differences in

other clinical manifestations were noted.

Cluster 1 displayed mild autism symptoms with lower scores in social interaction. This group
showed high intelligence and no significant impairments in language delay or visual information
processing abilities, maintaining capabilities necessary for daily living. Video data revealed well-
preserved social skills in initiating social interactions during joint attention tasks, and their

responsiveness to social cues was nearly at the level of typically developing children.
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Cluster 2 was the most deficient group in terms of social interaction, especially in social
communication skills, and showed the most pronounced intellectual disabilities. This cluster had
significant deficits in language development and visual information processing abilities, and motor
skill development was impaired, reducing their ability to coordinate movements. Their overall
performance in video tasks was poor, marking this group as having the most distinct overall social

deficits and developmental delays related to autism.

Cluster 3 consisted of children with social communication abilities that were inferior to those in
Cluster 1 but milder compared to Cluster 2. However, this group displayed various functional
impairments in daily living activities, especially in fine motor skills. In video tasks, their ability to
respond to social signals was somewhat better preserved compared to their ability to initiate social
interactions voluntarily. This group might require further investigation into underlying pathways

that could be causing adaptive behavior issues and other autism-related symptoms.

Table 3. Clinical manifestations of neuro-behavioral clusters

Clinical scores Cluster 1 (N=6)  Cluster 2 (N=5) Cluster 3 (N=20) p-value

ADOS total” T

) 7.0 [4.0,7.8] 7.0 [6.0,8.0] 7.0 [3.8,9.0] 0.889
Median [Q1, Q3]
SRS comm™ T
] 12.0[12.0,37.0] 35.0[29.0,47.0] 27.5[20.0,37.0] 0.272
Median [Q1, Q3]
SRS motivation™ T
) 7.0 [6.0,17.0] 15.0 [12.0,20.0] 14.0 [8.8,22.2] 0.523
Median [Q1, Q3]
FSIQS |
76.0 [74.0,86.0] 56.0 [42.0,63.0] 65.0 [43.2,99.0] 0.379

Median [Q1, Q3]
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VCIS |
Median [Q1, Q3]

VSIS L
Median [Q1, Q3]

VABS daily* |
Median [Q1, Q3]

VABS social* |
Median [Q1, Q3]

DCDQ fine motor* |
Median [Q1, Q3]

DCDQ coord* |
Median [Q1, Q3]

1JA success(%0) |
Median [Q1, Q3]

RJA 0w success(%o)t |
Median [Q1, Q3]

RJAnigh success(%0)" |
Median [Q1, Q3]

83.0 [59.0,83.0]]

87.0 [85.0,96.0]

80.0 [80.0,85.0]

83.0[73.0,92.0]

10.0 [8.0,10.0]

16.0 [15.0,16.0]

77.5 [52.5,95.0]

50.0 [37.5,62.5]

93.8 [91.7,99.0]

53.0 [53.0,62.0]

67.0 [64.0,70.0]

80.0 [63.0,80.0]

58.0 [48.0,60.0]

12.0 [5.0,14.0]

6.0 [5.0,8.0]

35.0 [30.0,35.0]

25.0 [20.0,35.0]

66.7 [62.5,95.8]

62.0 [45.0,107.0

79.0 [67.0,94.5]

74.0 [69.5,88.5]

56.0 [51.5,83.0]

7.0[5.0,13.5]

10.5 [8.8,14.0]

40.0 [13.8,55.0]

57.5[20.0,76.2]

81.2 [64.4,96.2]

0.571

0.205

0.275

0.045

0.857

0.11

0.072

0.372

0.226

7,4 Symptom is more severe in the direction of arrow

* Currently available tool used for classifying ASD, 1 Our proposed method of behavioral classification

** Autism-associated traits

8 FSIQ: full scale intelligence; VCI: verbal comprehension, VSI: visuospatial index

1 VABS: Vineland Adaptive Behavior Scales (adaptive function); DCDQ: developmental coordination disorder

quesetionnaire (motor function)

3.2.2. Joint attention performance in neuro-behavioral clusters
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Higher initiation of joint attention success rates was observed in cluster 1, which is suggestive of
that individuals belonging to cluster 1 tend to show less impaired initiation of joint attention, which
could translate to greater motivation or need for social interaction. There was statistically significant
difference in IJA performance between cluster 1 and cluster 3; thought not statistically significant,
cluster 1 performed better at IJA compared to cluster 2 as well. Overall, response to joint attention
were low across all clusters and no statistically significant difference was observed. However, cluster

3 showed trends of improvement from IJA during RJA.w task. These results are shown graphically

in Fig 6.
Average Success Rate of Multimodal Clusters
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Fig 6. Joint attention performance in neuro-behavioral clusters

3.2.3. Gaze pattern analysis in neuro-behavioral clusters

In the context of head pose estimation, variables such as pitch, yaw, roll, skewness, and kurtosis
were utilized in cluster analysis, illustrated via parallel coordinates to distinguish patterns by cluster.

The mean roll (head tilt left/right) differed significantly across the three clusters. Cluster 1 showed
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consistent left tilt, indicating a preference to face the examiner during the initiation of joint attention
tasks. In contrast, cluster 2’s right tilt might be interpreted as facing away from examiner,
highlighting decreased need for initiating social interaction. Cluster 3 showed a balanced head tilt,
which may mean indecisiveness or flexibility in engagement. Cluster 2 showed significantly lower
skewness suggests a more consistent or repetitive head tilting pattern, indicating less variability in
their head movements. Cluster 1 and 3 showed higher skewness suggesting more varied head
movements. Cluster 2 with lower variability in head movements could be indicative of more rigid
or restricted social interaction patterns. Cluster 1 showing higher kurtosis could indicate more
pronounced peaks in yaw movements, suggesting occasional but significant head turns. Cluster 2
and 3 with lower kurtosis could mean more evenly distributed yaw movements, suggesting less
pronounced head turns and less reactivity during RJA tasks. Cluster 2 showed negative yaw
skewness, which is suggestive of a tendency towards more consistent head movement in one
direction. Cluster 1 and 3 that show positive skewness may mean a broader range of head movements.
These gaze (head pose) patterns in neuro-behavioral clusters are represented in the following

figures— Fig 7.
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Fig 7. Mean roll, roll skewness, yaw kurtosis, and yaw skewness in neuro-behavioral clusters

3.2.4. Neural connectivity analysis in neuro-behavioral clusters

3.2.4.1. PageRank-based node importance by clusters

Self-supervised learning of GNN using feature engineering steps initially on the ABIDE dataset and
then transfer learning on our prospective dataset for over 5 folds yielded updated edge weights for
741 edges connecting the 39 fully connected nodes. Applying PageRank, informed by edge weights
from model training, revealed key nodes that the Graph Neural Network (GNN) model identified as
critical features. For the 5 folds for fold 0, 2, 3 all showed right temporoparietal junction (R TPJ) to
be the most important node for clustering the rs-fMRI data as shown in Table 4. The other two nodes

were left insula and left anterior intraparietal sulcus.

3.2.4.1.2. Segregation and integration as measures of neural connectivity

In the graph-theoretic and GNN architecture evaluation of brain networks, which encompass 39
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regions of interest from a multi-subject dictionary learning atlas, nodes were engineered using
retrospective data and then applied prospectively in a self-supervised manner. The overall clustering
coefficient and eigenvector centrality were calculated, particularly focusing on key nodes like right
TPJ, left insula, and left anterior intraparietal sulcus, identified via 5-fold cross-validation as critical
in distinguishing the clusters. The neural connectivity analysis results using hub nodes are shown in
Table 5. Clusters 2 and 3 showed higher segregation compared to Cluster 1, indicating more
specialized and tightly knit networks. Cluster 2 displayed high segregation but also showed signs of
increased integration, possibly due to compensatory mechanisms at R TPJ, which could be
contributing to behavioral and developmental delays. Cluster 3, showing the highest segregation and
a lack of compensatory integration, indicated reduced cooperative interactions among brain regions,

potentially leading to impairments in adaptive behaviors necessary for daily living.

Table 4. Hub nodes of ASD participants from retro-, prospective datasets

Fold number for GNN-SSL Top node with most influence in
(retro- & pro-spective dataset) neural connectivity
Fold 0 Vis, R TPJ*
Fold 1 LIns
Fold 2 R TPJ
Fold 3 RTPJ
Fold 4 L Ant IPS

*Top two nodes with highest model weights, thereby contributing most to predicting different
clusters of ASD. Abbreviations: R TPJ, right temporoparietal junction; L Ins, left insula; L Ant IPS,

left anterior intraparietal sulcus.
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Table 5. Neural connectivity analysis in neuro-behavioral clusters using hub nodes

Multi-modal ) Hub node
Segregation )
clusters compensation

R TPJ (EC: 0.156)

Cluster 1
Overall CC: 0.491 L Ins (EC: 0.160)
(good JA)
L Ant IPS (EC: 0.153)
R TPJ (EC: 0.176)
Cluster 2

Overall CC: 0.506 L Ins (EC: 0.156)

(poor JA & RJA)
L Ant IPS (EC: 0.154)

R TPJ (EC: 0.159)
Overall CC: 0.512 L Ins (EC: 0.155)
L Ant IPS (EC: 0.162)

Cluster 3
(RIA>1JA)

Abbreviations: R TPJ, right temporoparietal junction; L Ins, left insula; L Ant IPS, left anterior

intraparietal sulcus.

3.2.5. Genetic profile analysis in neuro-behavioral clusters

Firstly, cluster 3 showed greatest number of total gene variants (common and rare) with 1.04x107
(8.90x106, 1.53x106). The common to rare variant ratio was highest for cluster 1 = 5.69 (0.15),
indicating that the influence of common variants might be stronger than that of rare variants in this
cluster. This is reflected in the higher polygenic risk scores for autism, schizophrenia in this group.
The polygenic risk score of intelligence was lowest for cluster 2. These common vs. rare variant

effect on the three neuro-behavioral clusters are detailed in Table 6.

Cluster 3 also displayed the highest number of rare coding variants, categorized by either CADD
(0-20) or CADD (>20). This suggests that Cluster 3 is significantly impacted by deleterious coding
variants, which are likely associated with autism. Additionally, this cluster was strongly influenced

by deleterious non-coding variants. In contrast, Cluster 1 showed the least influence from non-
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coding variants, as it is predominantly affected by the effects of common variants. These findings

are detailed in Table 7.

Table 6. Common vs. rare variants in neuro-behavioral clusters

Genetic measures Overall (N=31) Cluster 1 (N=6) Cluster 2 (N=5) Cluster 3 (N=20)

. . 1.02x107 1.03x107 8.65x10°8 1.04x107
Total variants
(1.38x10%) (8.73x10%) (3.57x10°) (1.51x105)
. 8.67x108 8.85x106 7.38x108 8.90x106
Common variants
(1.17x109) (4.94x10%) (3.04x10°) (1.02x109)
. 1.49x10° 1.49x108 1.27x10° 1.53%108
Rare variants™
(2.11x109) (4.27x10% (5.37x10°) (5.59%10%)
Common:rare” 5.84 (0.16) 5.96 (0.15) 5.85 (0.15) 5.81 (0.16)
. . 5.0x107* 5.0x107* 4.0x107* 5.0x107*
Autism PRS
(2.0x107%) (1.0x107% (2.0x107%) (2.0x107%)
. . 4.2x107* 4.5x107* 4.1x107* 4.1x107*
Schizo. PRS
(8.0x1075) (6.0x1075) (6.0x1075) (9.0x1075)
. -6.0x107° -6.0x107° -3.0x107% -7.0x1075
Intelligence PRS”
(4.0x107%) (4.0x1075) (2.0x1075) (4.0x1079)

* Mean (SD)
Abbreviations: PRS, polygenic risk score; Schizo, schizophrenia.
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Table 7. Rare variants of neuro-behavioral clusters—quantitative analysis

CADD/

] Overall (N=31) Cluster 1 (N=6) Cluster 2 (N=5) Cluster 3 (N=20)
rare variant type

CADD (0-20)
pLI> 0.9 14.08 (11.01) 12.50 (13.00) 9.67 (7.57) 15.11 (11.36)
Coding”

CADD (>20)
pLI>0.9 25.46 (12.52) 25.00 (6.38) 19.00 (9.85) 26.58 (13.85)
Coding”

CADD (0-20)

. 12.22 (15.99) 9.25 (3.86) 16.33 (17.04) 12.19 (18.09)
Non-coding

CADD (=20)
. 6.48 (7.56) 2.00 (2.16) 4.00 (0.00) 8.06 (8.57)
Non-coding

* Mean (SD)

Abbreviations: CADD, combined annotation-dependent depletion; pLI, probability of being loss-of-function
intolerant. pLI > 0.9: This indicates that the variants listed are in genes highly intolerant to loss-of-function
mutations, with a probability greater than 90%. Such mutations in these genes are likely deleterious and
contribute significantly to disease phenotypes. CADD (0-20): Variants with CADD scores in this range are
considered less likely to be deleterious. These scores suggest that the genetic variants might have milder impacts
on gene function and are less likely to cause harmful effects. CADD (>20): Variants with CADD scores of 20
or above are predicted to be more deleterious. High CADD scores indicate that these variants could have
significant negative impacts on gene function and are potentially associated with substantial health

consequences.

3.2.5.1. Interpretation of coding genes in relation to cluster traits
To interpret the coding genes exclusive to each neuro-behavioral cluster and their associations with
neurodevelopment, autism spectrum disorder (ASD), and related pathways, the specific functions

and implications of these genes are examined. The qualitative analysis are shown in Table 8.

Cluster 1: good joint attention, visuospatial processing, and integration
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The genes that were found exclusively in this cluster were AHDC1, HERC1, KANSL1, RALGAPB,
SHANK3, ARID2, SETDB1, PLPPR4, PTPRB, PSMD11, DYNCI1H1, NRXN3, CCT4, YEATS2,
GRIKS5, GRB10, SRCAP, and PRKD2. These genes contribute to the strong integration and efficient
synaptic connectivity observed in Cluster 1, facilitating better joint attention and visuospatial
processing. SHANKS3 is a scaffolding protein involved in synapse formation and maintenance,
crucial for the development and function of neural circuits. Mutations in SHANKS are strongly
associated with ASD and Phelan-McDermid syndrome, often leading to intellectual disability and
impaired communication skills. The pathways involving SHANKS are critical for synaptic signaling,
neural connectivity, and plasticity. Mutations in AHDC1 cause Xia-Gibbs syndrome, characterized
by global developmental delay and intellectual disability. This gene has been implicated in ASD due
to its role in DNA repair and epigenetic regulation during neurodevelopment. GRIK5 encodes a
subunit of the kainate type of glutamate receptors, important for excitatory neurotransmission in the
brain. Alterations in glutamate receptors have been linked to neurodevelopmental disorders,
including ASD, affecting learning and memory processes. NRXN3 is part of the neurexin family
involved in synapse formation and neurotransmission. Neurexins are crucial for synaptic stability

and plasticity, and mutations in these genes are associated with ASD.

Cluster 2: poor joint attention, poor integration, and overcompensated neural connectivity

The genes exclusively discovered in this cluster were: BRSK2, DLGAP3, CARDI11, SETBPI,
KAT2B, SMARCA4, CDKL5, SMG6, ADCYS, HDAC4, GABRB3, TSC1, MAP1B, TAOK2,
TNRC6B, GRMS5, CTR9, and RIMSI1. The presence of these genes in Cluster 2 suggests a disruption
in neural inhibition and growth pathways, contributing to poor integration and overcompensated
neural connectivity observed in this cluster. GABRB3 encodes a subunit of the GABA -A receptor,
which is critical for inhibitory neurotransmission in the brain. Mutations in GABRB3 have been
linked to ASD, epilepsy, and Angelman syndrome, often leading to disrupted neural inhibition and
balance. TSC1 is involved in the TSC1/TSC2 complex, which regulates cell growth and proliferation.
Mutations in TSC1 are associated with tuberous sclerosis complex, a condition that often includes
ASD and intellectual disability. CDKLS is a serine/threonine kinase that is critical for postnatal brain
development. Mutations in CDKLS5 cause severe neurodevelopmental disorders, including early-

onset epileptic encephalopathy with features of ASD.
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Cluster 3: Mixed joint attention patterns, impaired daily living skills and motor coordination

The genes exclusively found in this cluster were: NTRK3, NFIB, ZMIZ1, CACNA1B, PTGS2,
CHDS, GIGYF2, DNM1, KIAA0232, MYH9, VPS54, PRR14L, PRICKLE1, ANK3, PAK2, among
others. These genes suggest that Cluster 3 may have issues related to inflammation, chromatin
remodeling, and neuronal connectivity, contributing to their unique social interaction and motor
coordination challenges. CHD8 is a chromodomain helicase DNA-binding protein involved in
chromatin remodeling and transcriptional regulation. Mutations in CHDS are strongly linked to ASD,
often leading to macrocephaly, intellectual disability, and social interaction difficulties. The
pathways involving CHDS8 affect chromatin modification and gene expression critical for
neurodevelopment. ANK3 encodes ankyrin-G, a protein crucial for the stability and function of
neuronal axon initial segments. Variants in ANK3 have been implicated in bipolar disorder,
schizophrenia, and ASD, affecting neural connectivity and signaling. PTGS2 (COX-2) encodes an
enzyme involved in the inflammatory response. Inflammation has been linked to ASD, and

alterations in PTGS2 expression can impact neurodevelopment and behavior.

3.2.5.2. Interpretation of non-coding genes in relation to cluster traits
To understand how the non-coding genes exclusive to certain neuro-behavioral clusters relate to
neurodevelopment, autism spectrum disorder (ASD), and associated pathways, an in-depth analysis

of the specific genes was conducted. The qualitative analysis are shown in Table 9.

Cluster 1: good joint attention, visuospatial processing, and integration

The genes in this cluster include SETDB1, SKI, HDLBP, CC2D1A, and DOCKS. These genes were
analyzed for their functional roles and associations with ASD. These findings suggest that the genes
exclusive to Cluster 1 may benefit from robust epigenetic regulation and transcriptional control,
contributing to better integration and joint attention capabilities observed in individuals associated
with this cluster. SETDBI is a gene involved in the epigenetic regulation of chromatin structure,
which significantly impacts gene expression. Dysregulation of SETDBI1 has been linked to ASD
through its critical role in neural cell differentiation and brain inflammation. Overexpression of
SETDBI is associated with neurodevelopmental abnormalities. The primary pathways influenced
by SETDBI include epigenetic regulation, chromatin modification, and neural development. SKI

functions as a proto-oncogene that regulates transcription and suppresses TGF-B signaling.
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Mutations or dysregulation in SKI can lead to developmental delays and congenital abnormalities
that overlap with ASD features. Therefore, SKI's role in transcriptional regulation is crucial for
normal neurodevelopment. High-Density Lipoprotein Binding Protein (HDLBP) is involved in RNA
binding and the regulation of lipid metabolism. Although direct links to ASD are limited, disruptions
in RNA binding proteins like HDLBP can affect neural development and function. The influence of

HDLBP on neurodevelopment underscores its potential role in ASD-related pathways.

Cluster 2: poor joint attention, poor integration, and overcompensated neural connectivity

Cluster 2 encompasses genes that are associated with poor joint attention, poor integration, and
overcompensated connectivity. The exclusive non-coding genes in this cluster include KDM4C,
TAOK2, MCPH1, CSNK1G1, DMWD, SEZ6L2, NINL, KDMS5A, SNX5, TAF6, DEAF1, among
others. The genes in Cluster 2 highlight significant disruptions in neural development and synaptic
regulation, contributing to the observed poor integration and overcompensated connectivity in
affected individuals. KDM4C is a histone demethylase involved in chromatin remodeling and gene
expression regulation. Dysregulation of KDM4C can disrupt normal neural development processes
and has been implicated in various neurodevelopmental disorders, including ASD. The primary
pathways influenced by KDM4C involve chromatin remodeling and epigenetic regulation. TAOK2
is involved in the regulation of the cytoskeleton and synaptic development. Mutations in TAOK2
have been associated with ASD and intellectual disability, influencing neural connectivity and
synaptic function. This gene's role in synaptic development is critical for understanding its impact
on ASD. Microcephalin 1 (MCPH1) is involved in DNA repair and cell cycle regulation. Mutations
in MCPHI can lead to primary microcephaly, characterized by a significantly smaller brain size,
which can be associated with neurodevelopmental disorders including ASD. MCPH1's involvement

in DNA repair pathways highlights its importance in maintaining neural integrity.

Cluster 3: Mixed joint attention patterns, impaired daily living skills and motor coordination

The genes exclusive to Cluster 3 are associated with challenges in social interaction, daily living,
and motor coordination. The significant non-coding genes in this cluster include KDM6B, NRXNI,
MBDI1, NSD1, SRPRA, PCDHAL11, SLC7A7, SAMDI11, PTGS2, CHDS, among others. The genes
in Cluster 3 are associated with crucial pathways in neural development, synaptic function, and

epigenetic regulation. These associations help explain the unique social interaction challenges and
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motor coordination issues observed in individuals related to this cluster. KDM6B is involved in
histone demethylation, impacting gene expression and neural development. Mutations in KDM6B
are linked to neurodevelopmental disorders, including ASD, due to their role in epigenetic regulation.
The primary pathways influenced by KDM6B involve epigenetic regulation and neural development.
NRXNT is crucial for synaptic function and neural communication. Mutations in NRXN1 are
strongly linked to ASD, affecting synaptic stability and plasticity. This gene's role in synaptic
function is essential for understanding its contribution to ASD. CHDS is a chromatin remodeler
involved in gene transcription regulation. Mutations in CHDS are one of the most significant genetic
risk factors for ASD, impacting neurodevelopment and resulting in features such as macrocephaly

and intellectual disability. CHDS's involvement in transcriptional regulation underscores its critical

role in neurodevelopment.

Table 8. Rare coding variants of neuro-behavioral clusters — qualitative analysis

Variant
type Overlapping Cluster 1 (N=6) Cluster 2 (N=5) Cluster 3 (N=20)
Coding NRXN1, PLXNA4, AHDC1, BRSK2, NTRK3, NFIB, ZMIZ1,
ZNF462, MAP1A, HERC1, DLGAP3, CACNAI1B, PTGS2,
CUX2, MYO1S, KANSL1, CARD11, CHDS8, GIGYF2, DNML1,
KDMé6B, GGNBP2, RALGAPB, SETBP1, KIAA0232, MYH9,
CIC, HIVEP2, SHANKS, KAT2B, VPS54, PRR14L,
WDFY4, TNRC6C, ARID2, SMARCAA4, PRICKLE1, ANKS3,
SLC12A5, SETD1B, SETDB1, CDKLS5, SMG8, ZNF292, ANKRD11,
KDMS5A, SRRM2, PLPPR4, ADCYS5, ADGRL1, ARHGAPS,
TSHZ3, RAI1, EP400, PTPRB, HDAC4, PREX1, KMT2C,
INTS6, GABBR2, PSMD11, GABRB3, HECW2, POGZ, ASXL3,
MYCBP2, UNC79, DYNC1H1, TSC1, MAP1B, MET, SRSF1, ASH1L,
NBEA, ARNT2, NRXN3, CCT4, TAOK2, CACNALI, CLASP1,
RIMS2, TEK, YEATS?2, TNRCE6B, EXT1, RFX7, TBX22,
PABPC1, MAP1B, GRIK5, GRB10, GRMS5, CTRY, PCDH19, MBD1,
EHMT1, JIMJD1C SRCAP, PRKD2 RIMS1 MYTIL, CASKINI,

CACNB1, NAV2, UBRS,
BIRCG6, IQSEC2, UBE3C,
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CHD3, CHD2, NCOR1,
PHLPP1, SATB2,
HNRNPU, ARID1B,
SCAF1, SAEL, ERBIN,
EMSY, SETD2, GRIN2B,
GRIAL AR, CNOTL,
ANK2, KMT5B, MCM6,
MYO5A, CDH8, KDM3A,
TCF7L2, DST, SETD1A,
CASZ1, CLIP2, DMXL2,
CACNAIG, DIP2C,
GRIK3, ANKRD17,
TSHZ1, MAGEL2, EPC2,
PTPRC, CREBBP,
MAOA, CACNAILC,
AGAP1, PACS],
MED12L, CHD7, KCNB1,
CHD9, FGF14, PRR12,
PPP3CA, NSD2, GRM7,
PPFIAL, MACF1,
DLGAP2, NSD1,
YTHDC2, KDM4B,
SCN2A, MRTFB,
MYH10, FLNA, LEMD3,
CACNAI1A, SHANK1,
PRKDC, FBN1, BTAF1,
HIVEP3, RELN, SPEN,
TM9ISF4, SON, NR4A2,
KDM3B, UBAP2L,
MTOR, AUTS2, PAK2
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Table 9. Rare non-coding variants of neuro-behavioral clusters — qualitative analysis

Variant
type Overlapping Cluster 1 (N=6)  Cluster 2 (N=5) Cluster 3 (N=20)
Non- NCKAPS, SETDBI, KDM4C, TAOK2, KDM6B, NRXN1, MBD1,
coding CHMPIA, SKI, HDLBP, MCPH1, NSD1, SRPRA, PCDHAL11,
LILRB2, CC2DIA, CSNK1G1, SLC7A7, SAMD11, PTGS2,
PRR12, DOCKS8 DMWD, SEZ6L2, CHDS8, SMARCC2, SETD1A,
MBOAT7, NINL, KDMS5A, DDHD2, SUPT16H, EIF4G1,
ABCA7, SNXS5, TAF6, CD276, PTEN, CUL7, HLA-B,
SLC12A5 DEAF1 SLC7A5, EXOC6B, HNRNPU,

ARID1B, ANK3, PRR25, PHF12,
SETD2, TM9SF4, TMEM39B,
UBAP2L, TNS2, SRSF1,
PRKAR1B, CLN8, MAPT-AS1,
AUTS2, MUC4, DNAH10,
PPFIAL, TSC2, ANK2
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3.3. Multi-modal model performance

3.3.1. Autism symptom severity prediction model performance

Uni-modal vs multi-modal without retrospective cluster information vs multi-modal with
retrospective cluster information. Multi-modal model showed comparable performance in autism
symptom severity assessment task across all performance metrics: AUROC, accuracy, precision, and
recall. The fMRI uni-modal model outperformed with respect to AUROC, and accuracy compared

to that of video model. The results are presented in Table 10.

Table 10. Uni-modal vs. multi-modal model symptom severity prediction performance

Prospective AUROC Accuracy Precision Recall
dataset
0.5,
. 0.60, 0.65, 0.35,
Video only 95%CI= (0.5-
95%CI=(0.52-0.63) 95%CI=(0.6-0.7)  95%CI=(0.35-0.35) 0.5)
0.86, 0.7, 0.35, 0.5,

rs-fMRI only”
95%CI=(0.76,0.95)  95%CI=(0.7,0.7)  95%CI=(0.35-0.35) 95%CI=(0.5-0.5)

Multi-modal
0.84, 0.7, 0.35, 0.5,

(video + rs-
95%CI1=(0.74,0.93) 95%CI=(0.7,0.7) 95%CI1=(0.35-0.35)  95%CI=(0.5-0.5)

fMRI)"

Multi-model
with

0.81, 0.7, 0.5, 0.5,

R 95%CI=(0.69,0.93) 95%CI=(0.7,0.7) ~ 95%CI=(0.35-0.35)  95%CI=(0.5-0.5)
clustering

* Mean (95% CI)

3.3.2. Shapley value-based visualization
Incorporating cluster information from retrospectively derived clustering algorithms into
multimodal feature-based models improved the prediction of autism severity. The integration

utilized a broader range of features from both modalities, rather than relying on a single modality.
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This comprehensive approach is evidenced in the enhanced accuracy reflected in the Deep SHAP

results, as depicted in Fig 8.

fmri_feature 12 | ia_feature_sac. |
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0.000 0.002
mean(|SHAP value|) (average impact on model output magnitude)

Fig 8. Multimodal features used for predicting symptom severity—Shapley values. Model prediction of
autism severity using multimodal features (left) without clustering information, (right) with clustering

information.
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4. DISCUSSION

Our prospective study pioneers a novel approach by developing and validating a neuro-behavioral
subclassification system through the concurrent collection of functional neuroimaging, neuro-
behavioral video, and genomic data from the same participants, a methodology not previously
attempted. The validity of these neuro-behavioral subgroups was verified through clinical
presentation, gaze patterns, neural connectivity, and genetic profiles. Additionally, we evaluated the
classification of autism symptom severity based on combined neural and behavioral features using
supervised learning, with clinical scores as benchmarks for symptom severity, to determine if the
extracted features correspond to clinically significant information. Employing meticulously
designed deep learning architectures for each data type allowed us to effectively extract features.
These features were then integrated and subjected to advanced clustering techniques suitable for

high-dimensional data, resulting in purely data-driven neuro-behavioral clusters.

We identified three distinct neuro-behavioral clusters in individuals with autism, each comprising a
mix of mild, moderate, and severe cases, as measured by the ADOS CSS—standardized scores for
autism severity. Interestingly, these clusters did not differ significantly in their total ADOS CSS
scores, underscoring the limitations of severity scores in forming clear, distinct groups, as noted in
previous studies.”"’> Additionally, our findings align with earlier research indicating a poor
correlation between data-driven clustering and clinical severity scores.”>’* This suggests that
traditional observation-based severity assessments may not adequately capture the neuro-biological

features used in unsupervised data-driven classification, such as gaze patterns or fMRI signals.

The three distinct clusters we identified in individuals with autism primarily varied based on their
performance in joint attention tasks, which correlated with differences in clinical features, gaze
patterns, and neural connectivity patterns. Cluster 1, characterized by mild genetic vulnerability and
no significant neural connectivity abnormalities, excelled in IJA, correlating with higher IQs and
milder autism symptoms. In contrast, Cluster 2 displayed pronounced impairments in joint attention
tasks, coupled with hub node compensation in neural connectivity and moderate genetic
vulnerability; these individuals showed profound social deficits, lower full-scale 1Q, and reduced

verbal comprehension, suggesting overall developmental delays. Cluster 3, which demonstrated
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partial impairment in joint attention, especially in initiating tasks, exhibited the highest genetic
vulnerability and marked neural segregation. This cluster also showed moderate-to-severe autistic

traits and lower adaptive functioning.

Further distinguishing Cluster 2 and Cluster 3 were their distinctive substructural connectivity
patterns, particularly between R TPJ—an integrative center for multimodal sensory processing—
and other network regions.” These differences in neural connectivity support existing research
suggesting that disruptions in multimodal sensory integration may underpin autism.”’® The variance
in task performance, such as in RJApigh versus RJAow or IJA, where RJAnign requires minimal effort
compared to the more challenging RJAjow and IJA, might be attributed to the clusters' differing
abilities to process sensory inputs like visual and auditory information. This aligns with the observed
clinical and behavioral discrepancies across the clusters, emphasizing the value of joint attention

tasks as a more effective basis for clustering than traditional severity scores.

We validated the neuro-behavioral clusters using genetic data and found differences in their genetic
makeup, contributing to their distinct clinical manifestations and neural connectivity patterns.
Cluster 1 had the most common variants and highest PRS for autism and schizophrenia, which are
associated with milder forms of autism spectrum disorder.”” Cluster 2 uniquely possessed SNPs
related to chromatin remodeling and synaptic regulation, explaining its poor integration and
overcompensated neural connectivity. This high genetic and neural burden contributed to severe
social deficiency, low 1Q, and overall developmental delay (language, motor, etc.). Cluster 3 had
SNPs associated with key pathways in neural development, synaptic function, and epigenetic
regulation. With the most influence from both coding and non-coding high-deleterious variants, in
accordance with previous studies that showed association with presence of high-deleterious rare
variants and increased autism severioty,*° Cluster 3 exhibited significant difficulties in joint attention

tasks, daily functioning, and fine motor control.

The explainability of our model was substantiated using Shapley values visualization. While fMRI
data-driven autism symptom severity prediction was the most accurate, the multi-modal model,
incorporating features from both fMRI and video, resulted in distinct clusters from genetic, neural,

and behavioral perspectives. The lower prediction capacity of the video model was attributed to the
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low sample size used for training via SSL. Increasing the sample size for video training would make
the combined multi-modal model more robust and effective in predicting clinical traits of autism.
Our preliminary results do not definitively show that a multimodal approach outperforms unimodal
strategies but suggest it could extract a richer set of features relevant to autism symptom severity. In
the future, with larger sample sizes, the development of such a multi-modal model could enhance
feature selection and improve understanding of unique autism traits. Our clustering analysis suggests

potential benefits, but further validation of the multi-modal model is needed.

Our approach holds significant potential in multimodal modeling of neurobiological conditions like
ASD. By leveraging the complementary information from diverse data types, we not only deepen
our understanding of individuals' autistic traits and severity but also enhance the predictive accuracy
of models concerning overall symptom severity. Importantly, by integrating genetic, neural
connectivity, and behavioral data from the same individuals, we can hypothesize about the
constituents of their autism spectrum traits. Clinically, this enables the development of more
personalized interventions, tailored to the primary challenges faced by each individual. For instance,
individuals in cluster 1 could benefit more from behavioral therapies and parental guidance focused
on nurturing social interactions. Conversely, for those in clusters 2 or 3, behavioral modification
alone may not suffice. In such cases, genetic testing, pharmacological approaches, or
neuromodulatory interventions like repetitive transcranial magnetic stimulation (r-TMS) could be
necessary alternatives. Crucially, this nuanced understanding can prevent the depletion of resources
on ineffective behavioral modifications when the underlying issue may be rooted more deeply in

genetic or neural connectivity dysfunctions.

Strengths and limitations: The strength of our study lies in its innovative design, which collects and
integrates multiple data types from a single source for clustering and classification. This approach
allows for interpretations across various levels and axes, facilitating discussions about the divergent
pathways within different groups—something previously unattainable in multimodal research that
relied on disparate datasets. Our meticulous clustering validation, supported by visualization
techniques and downstream task analysis, bolsters the credibility of the clusters identified. However,
the study is constrained by the intensive nature of its design, which is highly sensitive to the patient

enrollment process. Participant dropout results in the loss of multiple data points simultaneously,

4 2



complicating data collection and hindering short-term sample size expansion. Moreover, the novelty
of our concept calls for replication and further studies with larger sample sizes to affirm our initial

findings and extend the validity of our groundbreaking work.

5. CONCLUSION

The single-source multi-data approach utilized in this dissertation to develop a multimodal model
for the subclassification of a heterogeneous disorder such as ASD has yielded promising results. The
robust and reliable clustering achieved using integrated features, along with rigorous validation steps,
substantiates our subclassification method. While further research involving larger cohorts or
replication studies is needed to corroborate our findings, this study suggests that neuro-behavioral
clustering can lead to the identification of biologically distinct groups with divergent pathways. Such
insights have profound implications for advancing personalized treatment strategies that target

specific issues at the genetic, neural connectivity, or behavioral levels.
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