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ABSTRACT 

 

Development and Validation of a Novel Neuro-Behavioral 

Subclassification System for Autism Spectrum Disorder  
 

 

 

 

Heterogeneity in clinical presentations and underlying neurobiological mechanisms pose significant 

challenges in delivering personalized interventions for autism spectrum disorder (ASD). With the 

increasing prevalence of ASD and its growing societal impact, research into subclassifying ASD 

phenotypes and deciphering unique neurobiological etiologies has gained urgency. In our study, we 

leverage both retrospective and prospective ASD datasets to construct and validate a multimodal 

subclassification system. Our multi-modal modeling through integration of features derived from 

fMRI and behavioral video data aims to identify clusters with distinct clinical and biological profiles. 

 

Utilizing precision-engineered deep learning architectures tailored to each data type – video and 

fMRI, we successfully extracted key features. Integration of these features followed by the 

application of advanced clustering techniques for high-dimensional data led to the formation of 

distinct, data-driven neuro-behavioral clusters. We delineated three clusters: ‘Cluster 3’ with partial 

impairment in social capacity with the highest overall neural segregation and receiving the strongest 

genetic influence of the high-deleterious rare coding and non-coding variants; ‘Cluster 2’ with 

significant autism-related behavioral patterns, abnormal hub node compensation for overall low 

neural integration and under the effect of less deleterious autism-associated non-coding variants; 

‘Cluster 1’ with less evident autism-related behaviors and receiving more genetic contribution of the 

common variants. The multimodal approach not only enabled the extraction of a broader spectrum 

of data-driven features to identify clinically distinct subgroups and predict autistic symptom severity,  

but also enhanced the understanding of individual participants’ neuro-, behavioral-, and genetic 

profiles, contributing to their unique clinical manifestations. The feature extraction model's 

explainability was validated by Shapley values. 

 

Our single-source, multi-data approach to creating a multimodal model for ASD subclassification 
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has produced promising results. The reliable clustering obtained from integrated features and 

thorough validation supports our methodology. Although replication studies are necessary to 

confirm our findings, this research points to neuro-behavioral clustering as a means to discern 

biologically distinct groups with unique pathways, significantly impacting personalized treatment 

strategies aimed at specific genetic, neural, or behavioral challenges. 

 

                                                                   

Key words: autism spectrum disorder, biomarkers, subclassification, multimodal data integration, 

deep learning  
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1. INTRODUCTION 

 

1.1. Heterogeneity of autism spectrum disorder  

Heterogeneity in clinical manifestation and underlying etiologies are major obstacles for identifying 

key biomarkers in the field of psychiatry and thereby making it difficult for targeted intervention.1 

Psychiatrists and scientists have recognized the limitations of the traditional nosology;2,3 the past 

few years, there has been a trend towards partitioning psychiatric heterogeneity into more 

homogeneous groups—subclassification via various data modalities and data modality specific 

feature extraction methods.4,5  

 

The current research focuses on autism spectrum disorder (ASD), which with its early-childhood 

onset6, notable clinical and neuro-biological variability,4,5,7 and increasing prevalence (0.05% in 

1966 to ~2% in 2019)8,9 calls for the scientific and medical community’s attention to the need for 

and challenges related to subclassification of ASD. The complexity of ASD has also been noted by 

advances in genomics7,10,11 and neurobiological studies.12,13 which have collectively pointed toward 

multiple etiological pathways. The resulting wide range of clinical and neuro-biological ASD 

manifestations represents both a challenge and motivation of subclassification, which is necessary 

for providing personalized interventions for ASD.  

 

1.2. Subclassification methods 

Subclassification approaches can be characterized in terms of both the unit(s) of analysis on which 

variation among individuals is indexed and the nature of the algorithm(s) used to sort individuals 

into groups.1 Target units of analyses can be categorized under behavior and biology.14 The behavior-

based units are thought to indirectly index variation of underlying biology and vice versa.15 

Furthermore, quantitative subclassification algorithm can be broadly categorized as supervised (i.e., 

label driven), unsupervised (i.e., data driven), or their hybrids.16 These approaches leverage 

univariate or multivariate statistics, each having advantages and disadvantages.16 

 

1.3. Previous ASD subclassification research efforts  
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1.3.1. Behavioral video-based subclassification of ASD 

Previously, our group conducted a study that used video-based deep-learning technique to assess 

joint attention behaviors with the goal of objectively identifying children aged 18-72 months with 

ASD. The study cohort included 95 children, 45 of whom were clinically diagnosed with ASD.17 

Joint attention describes one’s attending to other people and sharing an attentional focus on objects 

or events with other individuals; early joint attention situations are thought to facilitate learning to 

socialize.18,19 We developed a digitalized method for joint attention assessment, which requires a 

new protocol for specific task administration guidelines to elicit three types of joint attention – 

initiation of joint attention (IJA), low level response to joint attention (RJAlow), and high-level 

response to joint attention (RJAhigh) – mentioned in the Early Social Communication Scales 

(ESCS)20 for video recording of task-related behaviors. The collected video data were then used as 

input for training a deep learning (DL) model to identify ASD and assess ASD symptom severity.17 

We found that IJA model performed the best at distinguishing children with ASD from those with 

ASD. The RJAlow and RJAhigh models also performed well as classifying children with vs. without 

ASD, but these models did not perform quite as well as the IJA model. Based on these results, we 

concluded that digital measurement of joint attention may facilitate scalable ASD screening and 

symptom severity assessment.17  

 

Additional analysis on the ASD group from previous study revealed that there may be a correlation 

between joint attention success rate and either Autism Diagnostic Observation Schedule (ADOS) 

symptom domain scores for social affect (SA) and restricted repetitive behavior (RRB).21 Roughly, 

we could observe four distinct clusters of ASD by their social-communication ability, severity of 

restricted repetitive behavior, initiation of joint attention, and lastly response to joint attention. In 

fact, principal component analysis using the four variables revealed that the two types of joint 

attention contributed to within group variance far greater than either domain score. This is an 

interesting trend that is worthy of further exploration. Previously various ASD subclassification 

research utilized difference between the two sub-scores to develop clinically distinct ASD subtypes 

(i.e. SC>RRB, SC=RRB, RRB>SC) in pursuit of finding new neural and genetic mechanisms that 

explain such phenotypic heterogeneity.22,23 Based on sub-analysis using our very own ASD data, 

perhaps, objective behavior biomarker such as joint attention may be more important in explaining 

the variance in ASD than human rated clinical scores such as ADOS.   
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1.3.2. Gaze-based subclassification of ASD 

Eye-tracker is a popular and frequently used tool for studying ASD characteristics in the context of 

abnormal sensory systems. To this day, there are several studies that investigated gaze pattern 

differences between individuals with ASD and those with typical development, which showed 

intriguing results where individuals with ASD tended to show preference for non-human objects, 

while those with typical development showed preference for human faces.24–27  One study explored 

gaze response to dyadic bids at 2 years, which related to outcomes at 3 years in ASD.25 In this 

particular study, the authors were able to perform a cluster analysis in which three clusters or groups 

of ASD showed varying patterns of eye gaze in terms of which human body parts they tended to 

view during a social context. One group of ASD that showed least amount of gaze on the face 

showed the poorest prognosis. Another recent gaze study on ASD revealed that not only are there 

gaze pattern differences between ASD and TD but also within ASD.24 

 

1.3.3. Genomic subclassification of ASD 

Although genetic subclassification approaches have provided many new insights about the 

possible biological mechanisms that are linked with phenotypic heterogeneity, results from 

these research studies need to be interpreted with much caution. For example, different 

penetrance between common and rare variants, the low prevalence of any single 

variant/mutation, although cumulatively all identified ASD-related gene mutations contribute 

to ~20-40% of clinical non-syndromic ASD, the high genotype-to-phenotype variability, and 

variable degrees of spatiotemporal convergence across independent risk genes may limit the 

use of these data to better understand heterogeneity associated with ASD.28–30 Thus, efforts 

focusing on discovering clinically relevant subtypes based on genetic approaches alone may 

not be feasible. Still, recent genetic studies on ASD have shown how a phenotypic spectrum of 

autism is attributable to the combined effects of de novo mutations, rare variants, polygenic risk 

and sex.11 Moreover, there has been a report that different classes of genetic variants have 

differential impact on phenotypic severity in ASD; while de novo or inherited truncating 

variants and gene-disruptive copy number variants are associated with more severe forms of 

ASD, with intellectual disability, variants such as copy number polymorphisms, common 
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variants are associated with ASD individuals with better prognosis and higher intelligence 

quotient (IQ).30,31 Such findings may be suggestive of that even though genetic vulnerability 

does not solely determine and explain for varying clinical manifestations of ASD, its 

contribution is significant and need to be accounted for. With a growing number of newly 

discovered gene variants in various ASD whole genome sequence cohorts, there may be a better 

chance of utilizing such pathway-driven data, perhaps with other complementary data of 

different modalities to identify new ways to characterize or subclassify ASD.  

 

1.3.4. Neuro-subclassification of ASD 

There have been several studies investigating differences in neuroanatomy between individuals with 

ASD and those without.1,32 Most of these studies used Autism Brain Imaging Data Exchange 

(ABIDE) dataset, which is a publicly available dataset of brain imaging data from individuals with 

ASD and typically developing controls.33 Hong et al. using this dataset showed that three classes of 

ASD of three distinct patterns of clinical outcome could be clustered based on cortical thickness, 

intensity contrast, surface area, and geodesic distance.32 Choi et al. attempted at subclassification of 

ASD via an unsupervised clustering method using ABIDE’s resting state functional magnetic 

resonance imaging (rs-fMRI) data.13 Using ‘connectome-based gradient’ and ‘functional random 

forest’, the authors were able to find subgroups of ASD based on rs-fMRI. Unfortunately, their 

results were not readily replicable as subgroups resulting from cluster analysis using a replication 

dataset showed different clinical scores compared to the subgroups that were derived from the 

discovery dataset. Moreover, the different clusters of ASD individuals did not show significant 

differences in neural connectivity. Such findings suggest that perhaps purely unsupervised clustering 

using a complex data such as fMRI may not give way to clinically meaningful subtyping. 

 

1.3.5. Multimodal subclassification of ASD           

Recently, many research teams have aimed to use more than one data modality to develop ASD 

subclassification methods.23,24,34 EU-AIMS Longitudinal European Autism Project (LEAP) has been 

accumulating multi-modality data – multimodal MRI, whole genome sequence, eye-tracker, clinical 

assessment data – from ASD and typical control individuals of European descents and several 

research teams are tapping on to this multi-modal dataset to better understand ASD more holistically 
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and to develop new methods of subclassification. In one of these studies, Bertelsen et al. took a top-

down approach where in which cluster analysis was performed using a scoring system derived from 

clinical scores, which represent social-communicative—restricted repetitive behavior (SC-RRB) 

balance as the very first step.23 By modeling the balance or imbalance thereof between SC and RRB 

(the two core symptoms of ASD), distinct subgroups of ASD could be identified. Unfortunately, the 

ASD subgroups resulting from such method did not yield distinct patterns of neural circuitry and 

genetic components. 

 

1.4. Previous studies’ limitations 

Cluster analysis via unsupervised learning on complex data such as fMRI did not result in replicable 

and consistent subclassification; clustering with the replication dataset failed to produce the same 

ASD subgroups as when clustering with the discovery dataset even while keeping an identical 

experimental set-up.35,36 This may be due to relatively small study’s sample size, hindering 

generalizability and replicability; however, another probable explanation would be that without any 

kind of label to perform the cluster analysis with these individuals were clustered into distinct 

subclusters solely based on non-linear data patterns—signal patterns devoid of clinical meanings. 

Concurrently, studies that performed cluster analysis using supervised learning methods failed to 

produce subgroups of both distinct clinical phenotypes and distinct neuro-biological mechanisms.23 

One should note that these studies employed human rated autism-related scale sub-scores as label 

for supervised learning. While these human scoring systems are clinically valid and widely used in 

practice, these human rated scores may not necessarily reflect objective and qualitative differences 

in phenotype among individuals with ASD. Approaches lacking objective behavioral biomarkers 

may have limited capacity to segregate heterogeneous ASD populations into distinct subgroups with 

unique biological underpinnings. A more effective strategy for ASD subclassification involves 

employing self-supervised learning to derive data-driven features.37,38 Subsequently, the efficacy and 

robustness of the feature extraction process can be validated through downstream tasks that utilize 

clinical scores as labels. 

 

In summary, identifying the most affected ASD neuroscience system level—biology, neural, or 

behavior—in an individual with ASD to determine the suitable targeted intervention is a significant 

challenge. Although prior research employing brain imaging, genomics, and clinical assessments 
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has distinguished ASD from typical development, these single modalities fall short in stratifying 

ASD into distinct neurological, genetic, and behavioral subgroups. Integrating diverse data types, 

collected from the same individuals, is a rational next step for identifying unique ASD pathways and 

developing specific treatments. To date, no subclassification models in ASD research have employed 

such a single-source, multi-modal data approach. An integrated multi-modal subclassification 

system could enable clinicians to differentiate and treat various ASD types based on a composite 

profile of system-level abnormalities. 

 

To that end, we conducted a prospective study to develop and validate a neuro-behaviorally driven 

subclassification system, collecting functional neuroimaging, behavioral video, and genomic data 

from the same individuals. We aim to synergize resting-state fMRI data, which offers neural-level 

insights, with joint attention metrics from video data, reflecting behavioral dynamics. The validity 

of these neuro-behavioral subgroups is verified through clinical presentation, gaze patterns, neural 

connectivity, and genetic profiles. Additionally, we analyzed the effectiveness of feature extraction 

from each data modality and assessed whether integrating these modalities enhances our 

understanding of ASD. Specifically, we evaluated the classification of autism symptom severity 

based on combined neural and behavioral features using supervised learning, with clinical scores as 

benchmarks for symptom severity, to determine if the extracted features correspond to clinically 

significant information. 
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2. MATERIALS AND METHODS 

 

2.1. Retrospective data 

2.1.1. Video data 

We accessed the ‘JointAttention’ dataset from our previous study,17,39 where we had collected video 

data from 95 individuals for joint attention-based AI model training. Detailed description of 

‘JointAttention’ dataset’s participants is presented in the Ko et al. 2022 JAMA Network Open paper. 

The video data were acquired in a single 10-minute session per participant. Tasks were filmed from 

a front-facing viewpoint using a Sony DSC-RX100 IV digital camera (resolution: 1920 × 1080, 30 

frames/second). Video data for each trial per participant are gathered, pre-processed to remove 

background, center-cropped, and resized to 224 × 224 pixels. For IJA task, input size of one video 

is 224x224x300 (30 frames/second x 10 seconds). For RJA task, input size of one video is 

224x224x150 (30 frames/second x 5 seconds). 

 

2.1.2. fMRI data 

ABIDE is an initiative that compiles rs-fMRI data and related phenotypic information collected 

across various sites.40 This data is made available through the Preprocessed Connectomes Project.41 

Data acquisition was performed using a 3.0 Tesla Allegra scanner, adhering to the imaging 

parameters described in a previous study.40 The Configurable Pipeline for the Analysis of 

Connectomes (C-PAC) was utilized to preprocess the data, with the specific steps and settings 

detailed in the corresponding literature,42 facilitating appropriate preparation for subsequent 

analyses. Each brain is partitioned into 39 regions of interest (ROI) based on multi-subject dictionary 

learning (MSDL) atlas.43 From the initial dataset comprised of 1,112 scans from 539 individuals 

with ASD and 573 individuals with TD, removing functional data not meeting the Quality 

Assessment Protocol standards set by the Preprocessed Connectomes Project community,41 resulted 

in a revised dataset of 866 participants, including 402 with ASD and 470 with TD. Further exclusion 

of individuals lacking valid Autism Diagnostic Observation Schedule (ADOS)41,44 and full-scale IQ 

(FSIQ)41 scores, resulted in a final sample of 750 participants, comprising 282 individuals with ASD 

and 468 individuals with TD. 
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2.2. Building DL-assisted feature extractors using retrospective data 

2.2.1. Video feature extraction DL model 

 

 

Fig 1. Model architecture for extracting video features 

Self-supervised learning method was employed to learn features based on the inherent behavioral 

features contained in each video rather than clinical variables associated with each participant in the 

video. Using the methods from Chen et al. SimCLR paper, Normalized Temperature-Scaled Cross-

Entropy (InfoNCE/NT-Xent) loss was used which allows for contrastive learning of visual 

representations.44 Two separate data augmentation operators are sampled from the same family of 

augmentations (t ~ T and t’ ~ T) and applied to each data example to obtain two correlated views. A 

base encoder network – in our case Convolutional Neural Network (CNN)-Long Short-Term 

Memory (LSTM)-Attention (Fig. 1) – f(•) and a projection head g(•) are trained to maximize 

agreement using a contrastive loss. After training is completed, we throw away the projection head 

g(•) and use encoder f(•) and representation h for downstream tasks—training with our newly 

acquired prospective dataset. The video dataset was split 8:2 for training and validation of deep 

learning model over 100 epochs. 
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2.2.2. fMRI feature extraction DL model  

2.2.2.1. Graph node feature engineering 

Functional connectivity matrices are widely utilized in rs-fMRI research to extract statistical 

correlations from fMRI blood-oxygen-level-dependent (BOLD) signal time-series data, providing 

framework for understanding brain interactions in downstream tasks.45,46 However, their 

dimensionality reduction can oversimplify data, potentially losing insights about individual brain 

region’s activity and nonlinear connectivity between brain regions47 and masking the functional 

network’s intricate variability across time.48 An alternative, employing advanced feature engineering 

to extract multifaceted features from BOLD time-series49 – such as time-frequency features via 

continuous wavelet transform (CWT)50–52 – can inform graph-based analyses for a more detailed 

representation of connectivity. CWT is an established method in bio-signal analysis50,51,53 that 

decomposes signals into localized wavelets for time-frequency analysis.53 Unlike the Fourier 

transform, the CWT excels in analyzing non-stationary frequencies over time.52 The CWT generates 

a two-dimensional time-frequency representation by convolving the signal with scaled and 

translated version of a mother wavelet, providing local frequency information over time. Each 

participant’s CWT data, initially derived from time-series signal data across 39 ROIs, are 

transformed into scalogram images,50 which are then fed into a CNN (Resnet18) framework to 

extract the corresponding CWT features.51 

 

2.2.2.2. CWT-based graph neural network architecture for feature extraction 

Graph Neural Networks (GNNs), well-suited for spatially structured, relational data, 48 can be 

enhanced by feature engineering preprocessing that enable the capture of complexities related to 

time, frequency, and spatial-structure.54–56 Our custom GNN architecture includes a feature-

engineering step that extracts CWT from the BOLD signal time-series for each ROI and training 

step, where these preprocessed features are then integrated into the GNN using the spatial 

coordinates of each ROI as baseline edge information. Thereafter, with each iteration the weights of 

the 741 edges (total number of edges of complete graph consisting of 39 nodes) are updated based 

on different features. The 39 nodes’ updated weights based on training are concatenated to perform 

graph-level binary classification. The same SimCLR loss function was used to conduct contrastive 

learning similar to the method employed for training and extracting features from video data. The 

GNN with pre- feature engineering step is presented in Fig 2.  
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Fig 2. Model architecture for extracting fMRI features 

 

2.3. Prospective data                                                                                               

2.3.1. Participant enrollment 

Enrollment for a prospective cohort study was conducted from the Child and Adolescent Psychiatry 

Division of Seoul National University Hospital. The research protocol was approved by the Seoul 

National University Hospital IRB Review Board (I                                     

RB No. H-2210-137-1374). Enrollment criteria are: 1) age of 48~71 months, 2) male, 3) children 

diagnosed with ASD by a psychiatrist and confirmed by ADOS2. Exclusion criteria are: 1) receiving 

pharmacological treatment, 2) having comorbid neuropsychiatric conditions such as developmental 

coordination disorder, attention deficit hyperactivity disorder, etc.  

 

2.3.2. Clinical assessments 

The diagnosis of ASD is confirmed using Autism Diagnostic Observation Schedule II (ADOS-2),21 

the gold standard diagnostic tool for ASD diagnosis. Autistic tendencies are measured using the 

Korean versions of the Social Responsiveness Scale (K-SRS) as well as Social Communication 

Questionnaire (K-SCQ).57 The SRS is a 65-item questionnaire that asks parents and/or teachers 

about the characteristics of the social interactions shown by children over the past 6 months.57 Each 

question is scored from zero to three points, depending on the frequency of the action described in 

each item. Higher scores mean a lower social function. The SCQ is a 40-item screening instrument 

that is based on Autism Diagnostic Interview-Revised (ADI-R), a tool for more in-depth assessment 

of ASD symptoms, and selects key items that deviate from normal development.57 Child behavioral 
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problems were checked with Child Behavior Checklist (CBCL) as well as Vineland Adaptive 

Behavior Scale (VABS).58 The child’s motor functions were assessed through Developmental 

Coordination Disorder Questionnaire (DCDQ).58 To assess the cognitive levels of participants, the 

Korean Wechsler Preschool and Primary Scale of Intelligence–Fourth Edition (K-WPPSI-IV) was 

be used.59  

 

2.3.3. Joint attention tasks and video data acquisition 

2.3.3.1. Initiation of joint attention 

The initiation of joint attention (IJA) task was designed as follows. A rotation of age- and 

culture-appropriate tests toys, which were selected following the guidelines of the ADOS-260 and 

Mundy’s ESCS manual (10 different types or shapes of similar size: width × length × height = 3 cm 

× 5 cm × 3 cm), was placed along the midline, 70 cm away from the edge of the table at which the 

child was seated. If the toy was placed too close to the child, they would simply pick it up and play 

with it without making any effort to interact with the examiner. A trained examiner was seated 

adjacent to where the toy was placed, such that the child could see the examiner’s face by making 

an approximately 45-degree head turn or by shifting their gaze considerably to their right. The 

experimental process was as follows: the examiner placed a toy at the designated spot, waited for 

30 seconds, and simply faced the child without providing verbal instructions. Once the child initiated 

joint attention by shifting their gaze from the toy to the examiner and back to the toy (sometimes 

also pointing at the toy), the examiner was asked to shift their gaze or turn their head to the toy to 

match the child’s response. This task was repeated once more with the same toy after a 30 second 

pause, and then a different toy was introduced. The order of the toy presentation was pseudo-

randomized across participants. If the children failed to show any interest in the toy after 30 seconds, 

the examiner could use an alternate toy. 

 

2.3.3.2. Response to joint attention 

Response to joint attention (RJA) tasks were designed to observe whether a child would direct and 

maintain their attention on an object to which the examiner pointed with their index finger. 

Depending on the distance between the examiner’s index finger and the object, the RJA tasks were 

further divided into RJAlow (near) and RJAhigh(far) tasks, where RJAlow involved the examiner 

pointing to toy objects on the table and RJAhigh involved the examiner pointing to poster pictures on 
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the walls. The RJAlow task utilized stimuli similar to that of the initiation of joint attention task, 

except that two toy objects (one as a stimulus and the other as a distractor) were used. Four posters 

depicting a child-friendly image (a car, butterfly, bananas, and puppy) covering half of an A4 sheet 

were pasted onto three walls—left, right, and behind—with respect to where the child participant 

was seated. Each poster was approximately 100 cm from the child’s position. The three types of 

joint attention are illustrated in Fig 3. 

  

 

 

Fig 3. The different types of joint attention tasks 
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2.3.4. Setup for joint attention experiments based on our protocol  

Initiation of joint attention (IJA) tasks required use of only toy 1, while response to joint attention 

tasks, low (RJAlow), required the use of toy 1 and toy 2 (distraction), and response to joint attention 

tasks, high (RJAhigh), required use of pictures 1–4 as shown in Fig 4.  

 

 

 

Fig 4. Joint attention task-video data acquisition set-up 

 

2.3.5. Video data pre-processing for model training and feature extraction  

Same method was used to pre-process the video data as that used in Ko et al. 2022 paper.39 

 

2.3.6. fMRI data acquisition  

Brain imaging data was collected on 3T Siemens Tim Trio Systems scanner at Seoul National 

University Hospital. Resting state fMRI scans were acquired using a standard gradient-echo echo 

planar imaging paradigm: FOV of 220 x 220mm (64 x 64 matrix), TR=2s, TE=30ms, FA= 77°, 162 

vol, 32 sequential ascending axial slices of 4mm thickness and 1mm skip. Participants were sedated 

and had their eyes closed during the scan. Data were processed using C-PAC preprocessing 

= Good responder
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pipeline,42 which include slice timing correction, motion correction, intensity normalization, 

nuisance signal removals, such as respiration, heartbeat, low-frequency scanner drifts, global mean 

signal regression, head motion, etc. The preprocessed data were band-pass filtered (0.01-0.1 Hz) and 

spatially registered to MN152 template space. ROI time series data will then be extracted from the 

resulting fMRI images using the MSDL brain atlas.43  

 

2.3.7. Genomic data acquisition 

2.3.7.1. Whole genome sequencing  

Whole genome sequencing (WGS) was performed on peripheral blood samples from 31 participants 

with autism spectrum disorder (ASD) using the NextSeq 550Dx System (Illumina, San Diego, CA, 

USA). Excluding participant ASD010, 29 samples were analyzed. The WGS was conducted by 

TheragenBio with a custom quality control sequence analysis pipeline. Variants were identified 

using HaplotypeCaller and MuTect2 from the GATK package (3.8-0) and VarScan2 (2.4.0). 

 

2.3.7.2. Filtering and annotation 

The VCF (Variant Call Format) files representing 29 participants were initially filtered using GATK 

Variant Filtration, applying a filter to PASS, with a Mapping Quality (MQ) greater than 30 and Read 

Depth (DP) exceeding 10 to ensure high-quality variant selection. Further filtering and annotation 

processes were conducted using Python and Java scripts to distinguish between common and rare 

variants, defined by allele frequency (AF). Common variants, identified as those with AF greater 

than 1%, were used for subsequent polygenic risk score (PRS) calculations. The VCF files were 

normalized, and PLINK binary files were prepared using Bcftools. 

 

2.3.7.3. Polygenic risk score calculation 

To calculate the PRS for various conditions, including ASD, ADHD, schizophrenia (SCZ), 

educational attainment (EA), and intelligence, the filtered variants were processed using PLINK 1.9 

and Bcftools. Initially, indels and multiallelic variants were excluded, and the variants were 

normalized to generate PLINK binary files. The input files were then merged. Reference data for 

PRS calculation included refined Genome-Wide Association Study (GWAS) data for the 

aforementioned conditions. Clumping was performed to sort single nucleotide polymorphisms 
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(SNPs) based on linkage disequilibrium and p-values, followed by the extraction of index SNP IDs. 

A range-list file containing different p-value thresholds for SNP inclusion in the PRS was created. 

PRS scores were then calculated using the prepared binary files, refined GWAS data, range-list files, 

SNP p-values, and extracted SNP IDs, resulting in comprehensive PRS profiles for each participant 

across multiple conditions. 

 

2.3.7.4. Annotation of rare variants 

For rare variants (AF less than 1%), annotation included both coding and non-coding regions. 

Coding region variants were annotated using tools and databases such as pLI (probability of being 

Loss-of-function Intolerant), CADD (Combined Annotation Dependent Depletion), SIFT (Sorting 

Intolerant From Tolerant), PolyPhen (Polymorphism Phenotyping), and the SFARI gene list. Non-

coding region variants were annotated using databases including the Enhancer Atlas, HACER, and 

the Promoter Atlas provided by the FANTOM5 project, with CADD scores used to assess their 

significance. This comprehensive annotation ensured a detailed understanding of both common and 

rare variants, contributing to the robust analysis of genetic factors in ASD. 

 

2.3.8. Feature extraction using pretrained model weights 

Using the pretrained deep learning model architectures and pretrained weights using retrospective 

dataset, we fine-tuned or further trained using preprocessed prospective data per data modality 

(video and rs-fMRI). The same loss function (InfoNCE/NT-Xent) was utilized as the pretraining 

phase, for at least 50 epochs and upon completion of training, feature vectors were stored for 

downstream tasks. 

 

2.4. Prospective data cluster extraction via retrospective clustering algorithm 

Prior to performing multi-modal clustering analysis using prospective cohort dataset, we conducted 

clustering analysis using the retrospective cohort datasets to build a clustering algorithm for the 

“behavioral clusters” and “brain clusters”. For the video data, indirect measures of gaze patterns 

using computer vision-derived variables computed from face landmark variability such as ‘yaw’, 

‘pitch’, ‘roll’, ‘kurtosis’, and ‘skewness’ were utilized. Face landmark localization on collected 

videos was feasible using face detection algorithms provided by Dlib library.61 Rotation matrix to 
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Euler angles conversion algorithms were used to impute ‘yaw’, ‘pitch’, and ‘roll.’ Due to the curse 

of dimensionality principal component analysis and k-means clustering method was employed to 

develop a clustering algorithm based on these behavioral patterns observed in large retrospective 

dataset. This process was repeated using the ABIDE dataset: using the edge connectivity features 

derived from the trained GNN model results for each participant, clustering algorithm was 

developed after principal component analysis and k-means clustering was applied. Then, on the 

prospective dataset, these “gaze-based clusters” and “brain connectivity clusters” algorithms were 

applied onto the prospective video and rs-fMRI datasets to assign clusters based on patterns learned 

from retrospective datasets. This clustering information was then integrated into the multi-modal 

model.  

 

2.5. Multi-modal data integration for downstream tasks 

Various multimodal integration techniques have been introduced to utilize data from different 

modalities such as fMRI, SNP, clinical data for the purpose of developing a machine-learning model 

for disease detection.62 Depending on the stage at which the data integration occurs, there may be 

early, intermediate, and late phase multimodal integration approaches. Late phase approach is where 

separate machine-learning model is trained for each type of data then predictions of different models 

are combined to make a final decision.  

 

Early data fusion works best for integrating data types sharing the same number of dimensions such 

as different MRI modalities. In this study, we utilized late-stage integration treating the different 

data types separately, processing each using appropriate preprocessing and feature extraction 

pipeline, then latent vectors derived from each modality are concatenated then an ensemble (voting) 

classifier predicts outcome.63 One machine learning classifier (XGBoost)64 and a fully connected 

multi-layer perceptron (MLP)64 were utilized to learn from the integrated features from video and 

rs-fMRI data sources for the purpose of clustering and autism symptom severity classification. 

Similarity network fusion (SNF)65 was employed for data integration—method that allows for 

integration of different data modalities by using networks of samples. Initially, similarity matrices 

are created for each data type for each participant, then these matrices are fused through iterative 

processes over a wide range of SNF hyperparameters (k-nearest neighbors weighted similarity 

kernel; K and 𝑢) until convergence (z-Rand similarity index), ensuring stable integration.65 The 
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final output is a co-assignment matrix, which represents the combined similarity across all nodal 

measures; this integrated network is subsequently used for spectral clustering based on optimal 

parameters.65 The overall process of data integration and downstream tasks are visually represented 

in Fig 5. 

 

 

 

Fig 5. Overall study design and modeling of multi-modal system 

 

2.6. Cluster analysis 

2.6.1. Clustering methods 

Two clustering methods were utilized: K-means clustering and SNF-based spectral clustering 

followed by hierarchical clustering. K-means was applied to dimension-reduced feature vectors of 

the 3456 combined features (consisting of both video and fMRI) via PCA. The SNF-based clustering 

used the final co-assignment matrix, leveraging cosine similarity across all nodal measures. Spectral 

clustering was employed to identify a pre-specified number of subgroups (i.e., 3). Hierarchical 

clustering was then performed on the final co-assignment matrix to identify subgroups across a range 

of clusters (2-10). A dendrogram was constructed, and the optimal number of clusters was 

determined using the Calinski-Harabasz index.66 This comparative approach aims to determine the 

more effective clustering method for the same set of individuals.  
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2.6.2. Genetic validation of multi-modal clustering 

After neuro-behavioral clustering was conducted, SNP information gathered from each sample were 

used to compare the genetic profiles among the different neuro-behavioral clusters. Furthermore, 

the Human Protein Atlas (https://www.proteinatlas.org/) was utilized to understand how having 

certain genetic variant contributed to abnormal neural connectivity evidenced by the rs-fMRI GNN 

model outcomes. 

 

2.7. Autism symptom severity prediction 

Lastly, we addressed the task of classifying autism symptom severity using the ADOS-2 calibrated 

total scores, ranging from 0-4 for non-to-mild severity and ≥5 for moderate-to-severe autism. This 

classification was performed using both an XGBoost classifier and a custom MLP model. The 

objective was to evaluate whether integrating multi-modal information from distinct data 

modalities—behavioral and neurobiological—enhances the model's predictive performance in 

identifying levels of autism symptom severity. This investigation also aimed to substantiate the 

utility of multi-modal clustering or subclassification. The premise is that richer, more diverse 

information sources facilitate the grouping into more finely delineated, targeted subcategories. 

Additionally, we explored the potential for predicting clinical scores—which assess the severity of 

autism—through a composite of objective behavioral assessments and neurobiological data. This 

approach could also reveal the relative contributions of behavioral and neurological factors to the 

overall clinical symptom severity. Such insights are invaluable for designing tailored intervention 

plans that are specific to the patient’s characteristics, potentially enhancing therapeutic outcomes. 

 

2.8. Statistical analysis 

2.8.1. Power calculation – sample size estimation 

For this exploratory study, the lack of preceding data precludes the establishment of a definitive 

sample size. Nevertheless, referencing guidelines for comparable studies, we advocate a minimum 

sample size of 1267, considering the study's feasibility, precision of means and variances, and 

compliance with regulatory requirements. Reflecting on a previous investigation that effectively 

classified three distinct severity subclasses of ASD with a cohort of 45 individuals17, our study plans 

to recruit 60 participants. This number takes into consideration potential participant dropouts or 

https://www.proteinatlas.org/
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missing data essential for statistical analysis. 

 

2.8.2. Evaluation of effective clustering using metric scores  

To validate or determine the effectiveness of clustering mythology employed, metrics such as 

Silhouette Score,68 Davies-Bouldin Index,69 and Cluster Stability70 were used. Silhouette score 

measures how similar an object is to its own cluster compared to other clusters; Davies-Bouldin 

index evaluates the clustering algorithm by taking the average similarity measure of each cluster 

with its most similar cluster, where similarity is the ratio of within-cluster distances to between-

cluster distances. Cluster stability allows for evaluating stability of clusters over multiple runs with 

different subsets of the data to check the robustness of clustering.  

 

2.8.3. Evaluation of multi-modal autism symptom severity prediction  

Multi-modal model’s classification performance was evaluated using area under the receiver 

operating characteristics (AUROC), accuracy, precision, and recall.  

 

2.8.4. Cluster characteristics 

Group comparison among the different clusters were statistically analyzed. Clinical characteristics, 

eye-gaze patterns (head movement response to joint attention induction – ‘yaw’, ‘pitch’, ‘roll’, 

‘kurtosis’, and ‘skewness’), rs-fMRI profiles (top 5 nodes of importance and 1 or 2-step eigenvector 

centrality), number of ASD-associated (with high CADD score) coding and non-coding genes, the 

ratio between coding to non-coding gene variants, the ratio between common and rare variants, and 

polygenic risk scores for ASD. Means, standard deviations, medians, and ranges is used to express 

continuous variables. The chi-squared test is used to compare categorical variables. Statistical 

analyses and calculations of the validation measures are performed using Python 3.9.12 with SciPy 

version 1.13.1 and Statsmodels 0.14.1. The threshold for statistical significance was set at p<0.05. 
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3. RESULTS 

 

3.1. Participant characteristics 

3.1.1. Retrospective datasets  

Using dataset from our previous project ‘JointAttention,’ which was geared towards building a 

video-based deep learning model for predicting ASD vs typical development (TD) as well as 

symptom severity by ADOS total calibrated scores (CSS) include total of 95 individuals – where 58 

showed non-mild ASD symptom severity (ADOS total css≤4) and 37 showed moderate to severer 

(ADOS total css>4). ABIDE dataset was used for developing deep learning model for extracting rs-

fMRI features. From the preprocessed ABIDE database, only participants with available ADOS 

scores were included for analysis and model training, which were 817 in total, 470 meeting criteria 

for non-mild and 347 individuals meeting criteria for moderate to severe ASD. 

 

3.1.2. Prospective dataset  

SNU dataset included total of 31 participants, 9 of whom met criteria for non-mild ASD and 22 

meeting criteria for moderate to severe ASD.   

 

3.1.3. Clinical characteristics of participants across retrospective and prospective 

datasets 

The clinical characteristics of participants across retrospective and prospective datasets are shown 

in Table 1. While the JointAttention and SNU datasets showed a similar severity range, of overall 

mean (SD) ADOS total css scores of 6.1 (1.6) and 6.4 (2.4), respectively; ABIDE dataset’s overall 

average ADOS total css score was that of 2.79 (2.48). Such class (severity) imbalance could 

contribute to imbalanced class representation, rendering difficult to perform transfer learning using 

symptom severity score as label. Furthermore, FSIQ was overall higher for ABIDE dataset 

compared to the other datasets. 
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Table 1. Participant characteristics across datasets 

* Non-Mild (ADOS Total CSS≤4), Moderate-Severe (ADOS Total CSS >4) 

 

3.2. Multi-modal clustering results 

As a result of clustering using integrated features from MLP model, using K-means clustering, 

optimal k = 3 based on elbow method. Across 5 folds, fold 3 showed the highest silhouette score of 

0.132 (0.0612-0.132), which is considered poor clustering. Based on Calinski-Harabasz index, the 

optimal number of clusters based on SNF followed by hierarchical clustering was also 3. The SNF 

plus hierarchical clustering fared much better. For k=12, 5 iterations, the best fold (fold 3)’s 

silhouette score was 0.639 (0.396-0.639) and the adjusted Rand Index was 1, which is considered 

very good. Hence, the cluster analysis to explore the differences in clinical characteristics, neural 

connectivity and genetic profile were done using the clusters discovered using SNF plus hierarchical 

clustering. The list of participants belonging to each cluster are shown in Table 2. The similarity 

network fusion for aggregating feature vectors of video and rs-fMRI is presented graphically in Fig. 

6 and the visualization of the result of hierarchical clustering is shown in Fig. 7.  

 Retrospective datasets Prospective dataset 

Database JointAttention [21] ABIDE [22] SNU 

Group by 

Severity 

Non-

Mild  

(N=58) 

Moderate-

Severe 

(N=37) 

Overall  

(N=95) 

Non-

Mild  

(N=523) 

Moderate-

Severe 

(N=227) 

Overall  

(N=750) 

Non-

Mild  

(N=9) 

Moderate-

Severe 

(N=22) 

Overall  

(N=31) 

Age 

Mean (SD) 

4.04 

(1.02) 

3.93 

(1.17) 

(4.0, 

1.08) 

16.8 

(7.20) 

16.8 

(7.69) 

16.8 

(7.35) 

4.2 

(0.7) 
4.3 (0.8) 

4.2 

(0.7) 

Sex, n(%) 

Male 

31 

(53.4) 
20 (54.1) 

51 

(53.7) 

426 

(81.5) 
204 (89.9) 

630 

(84.0) 

9 

(100.0) 
18 (100.0) 

31 

(100.0) 

FSIQ 

Mean (SD) 

98.3 

(23.3) 

57.5 

(19.0) 

82.4 

(29.4) 

111 

(12.2) 
105 (16.3) 

109 

(13.9) 

84.3 

(24.2) 

63.4 

(26.0) 

69.7 

(26.9) 

ADOS 

CSS* 

Mean (SD) 

3.8 

(0.5) 
6.6 (1.3) 

6.1 

(1.6) 

1.23 

(0.70) 

6.40 

(0.699) 

2.79 

(2.48) 

3.1 

(0.3) 
8.0 (1.2) 

6.2 

(2.4) 
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Table 2. SNF plus hierarchical clustering-based neuro-behavioral clusters 

Clusters  

(total N=31) 
Participant ID 

Cluster 1 (N=6) 
asd001, asd002, asd013, asd014, asd036,  

asd038 

Cluster 2 (N=5) asd017, asd024, asd025, asd027, asd031 

Cluster 3(N=20) 

asd003, asd005, asd006, asd007, asd008,  

asd009, asd011, asd012, asd015, asd016,  

asd018, asd019, asd021, asd022, asd023,  

asd026, asd028, asd029, asd030, asd035 

 

 

3.2.1. Clinical manifestations of neuro-behavioral clusters 

The clinical differences of the three neuro-behavioral clusters are shown in Table 3. The 

characteristics of each cluster are indicated by arrows, which depict the severity and quantity of 

specific symptoms, with upward arrows indicating an increase in severity. These results reflect the 

clinical characteristics of each cluster and facilitate a clearer understanding of the various aspects of 

ASD. The data is presented as median values with the first and third quartiles. While there were no 

significant differences in the ADOS scores (severity scores) among the three groups, differences in 

other clinical manifestations were noted. 

 

Cluster 1 displayed mild autism symptoms with lower scores in social interaction. This group 

showed high intelligence and no significant impairments in language delay or visual information 

processing abilities, maintaining capabilities necessary for daily living. Video data revealed well-

preserved social skills in initiating social interactions during joint attention tasks, and their 

responsiveness to social cues was nearly at the level of typically developing children. 
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Cluster 2 was the most deficient group in terms of social interaction, especially in social 

communication skills, and showed the most pronounced intellectual disabilities. This cluster had 

significant deficits in language development and visual information processing abilities, and motor 

skill development was impaired, reducing their ability to coordinate movements. Their overall 

performance in video tasks was poor, marking this group as having the most distinct overall social 

deficits and developmental delays related to autism. 

 

Cluster 3 consisted of children with social communication abilities that were inferior to those in 

Cluster 1 but milder compared to Cluster 2. However, this group displayed various functional 

impairments in daily living activities, especially in fine motor skills. In video tasks, their ability to 

respond to social signals was somewhat better preserved compared to their ability to initiate social 

interactions voluntarily. This group might require further investigation into underlying pathways 

that could be causing adaptive behavior issues and other autism-related symptoms. 

 

Table 3. Clinical manifestations of neuro-behavioral clusters 

Clinical scores Cluster 1 (N=6) Cluster 2 (N=5) Cluster 3 (N=20) p-value 

ADOS total* ↑ 

Median [Q1, Q3] 
7.0 [4.0,7.8] 7.0 [6.0,8.0] 7.0 [3.8,9.0] 0.889 

SRS comm** ↑ 

Median [Q1, Q3] 
12.0 [12.0,37.0] 35.0 [29.0,47.0] 27.5 [20.0,37.0] 0.272 

SRS motivation** ↑ 

Median [Q1, Q3] 
7.0 [6.0,17.0] 15.0 [12.0,20.0] 14.0 [8.8,22.2] 0.523 

FSIQ§ ↓ 

Median [Q1, Q3] 
76.0 [74.0,86.0] 56.0 [42.0,63.0] 65.0 [43.2,99.0] 0.379 
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VCI§ ↓ 

Median [Q1, Q3] 
83.0 [59.0,83.0]] 53.0 [53.0,62.0] 62.0 [45.0,107.0 0.571 

VSI§ ↓ 

Median [Q1, Q3] 
87.0 [85.0,96.0] 67.0 [64.0,70.0] 79.0 [67.0,94.5] 0.205 

VABS daily‡ ↓ 

Median [Q1, Q3] 
80.0 [80.0,85.0] 80.0 [63.0,80.0] 74.0 [69.5,88.5] 0.275 

VABS social‡ ↓ 

Median [Q1, Q3] 
83.0 [73.0,92.0] 58.0 [48.0,60.0] 56.0 [51.5,83.0] 0.045 

DCDQ fine motor‡ ↓ 

Median [Q1, Q3] 
10.0 [8.0,10.0] 12.0 [5.0,14.0] 7.0 [5.0,13.5] 0.857 

DCDQ coord‡ ↓ 

Median [Q1, Q3] 
16.0 [15.0,16.0] 6.0 [5.0,8.0] 10.5 [8.8,14.0] 0.11 

IJA success(%)† ↓ 

Median [Q1, Q3] 
77.5 [52.5,95.0] 35.0 [30.0,35.0] 40.0 [13.8,55.0] 0.072 

RJAlow success(%)† ↓ 

Median [Q1, Q3] 
50.0 [37.5,62.5] 25.0 [20.0,35.0] 57.5 [20.0,76.2] 0.372 

RJAhigh success(%)† ↓ 

Median [Q1, Q3] 
93.8 [91.7,99.0] 66.7 [62.5,95.8] 81.2 [64.4,96.2] 0.226 

↑, ↓ Symptom is more severe in the direction of arrow 

* Currently available tool used for classifying ASD, † Our proposed method of behavioral classification 

** Autism-associated traits 

§ FSIQ: full scale intelligence; VCI: verbal comprehension, VSI: visuospatial index 

‡ VABS: Vineland Adaptive Behavior Scales (adaptive function); DCDQ: developmental coordination disorder 

quesetionnaire (motor function) 

 

3.2.2. Joint attention performance in neuro-behavioral clusters 
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Higher initiation of joint attention success rates was observed in cluster 1, which is suggestive of 

that individuals belonging to cluster 1 tend to show less impaired initiation of joint attention, which 

could translate to greater motivation or need for social interaction. There was statistically significant 

difference in IJA performance between cluster 1 and cluster 3; thought not statistically significant, 

cluster 1 performed better at IJA compared to cluster 2 as well. Overall, response to joint attention 

were low across all clusters and no statistically significant difference was observed. However, cluster 

3 showed trends of improvement from IJA during RJAlow task. These results are shown graphically 

in Fig 6.  

 

 

 

Fig 6. Joint attention performance in neuro-behavioral clusters 

 

 

3.2.3. Gaze pattern analysis in neuro-behavioral clusters  

In the context of head pose estimation, variables such as pitch, yaw, roll, skewness, and kurtosis 

were utilized in cluster analysis, illustrated via parallel coordinates to distinguish patterns by cluster. 

The mean roll (head tilt left/right) differed significantly across the three clusters. Cluster 1 showed 



２６ 

 

 

consistent left tilt, indicating a preference to face the examiner during the initiation of joint attention 

tasks. In contrast, cluster 2’s right tilt might be interpreted as facing away from examiner, 

highlighting decreased need for initiating social interaction. Cluster 3 showed a balanced head tilt, 

which may mean indecisiveness or flexibility in engagement. Cluster 2 showed significantly lower 

skewness suggests a more consistent or repetitive head tilting pattern, indicating less variability in 

their head movements. Cluster 1 and 3 showed higher skewness suggesting more varied head 

movements. Cluster 2 with lower variability in head movements could be indicative of more rigid 

or restricted social interaction patterns. Cluster 1 showing higher kurtosis could indicate more 

pronounced peaks in yaw movements, suggesting occasional but significant head turns. Cluster 2 

and 3 with lower kurtosis could mean more evenly distributed yaw movements, suggesting less 

pronounced head turns and less reactivity during RJA tasks. Cluster 2 showed negative yaw 

skewness, which is suggestive of a tendency towards more consistent head movement in one 

direction. Cluster 1 and 3 that show positive skewness may mean a broader range of head movements. 

These gaze (head pose) patterns in neuro-behavioral clusters are represented in the following 

figures– Fig 7.  
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Fig 7. Mean roll, roll skewness, yaw kurtosis, and yaw skewness in neuro-behavioral clusters 

 

3.2.4. Neural connectivity analysis in neuro-behavioral clusters 

3.2.4.1. PageRank-based node importance by clusters 

Self-supervised learning of GNN using feature engineering steps initially on the ABIDE dataset and 

then transfer learning on our prospective dataset for over 5 folds yielded updated edge weights for 

741 edges connecting the 39 fully connected nodes. Applying PageRank, informed by edge weights 

from model training, revealed key nodes that the Graph Neural Network (GNN) model identified as 

critical features. For the 5 folds for fold 0, 2, 3 all showed right temporoparietal junction (R TPJ) to 

be the most important node for clustering the rs-fMRI data as shown in Table 4. The other two nodes 

were left insula and left anterior intraparietal sulcus.  

 

3.2.4.1.2. Segregation and integration as measures of neural connectivity 

In the graph-theoretic and GNN architecture evaluation of brain networks, which encompass 39 
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regions of interest from a multi-subject dictionary learning atlas, nodes were engineered using 

retrospective data and then applied prospectively in a self-supervised manner. The overall clustering 

coefficient and eigenvector centrality were calculated, particularly focusing on key nodes like right 

TPJ, left insula, and left anterior intraparietal sulcus, identified via 5-fold cross-validation as critical 

in distinguishing the clusters. The neural connectivity analysis results using hub nodes are shown in 

Table 5. Clusters 2 and 3 showed higher segregation compared to Cluster 1, indicating more 

specialized and tightly knit networks. Cluster 2 displayed high segregation but also showed signs of 

increased integration, possibly due to compensatory mechanisms at R TPJ, which could be 

contributing to behavioral and developmental delays. Cluster 3, showing the highest segregation and 

a lack of compensatory integration, indicated reduced cooperative interactions among brain regions, 

potentially leading to impairments in adaptive behaviors necessary for daily living. 

 

 

Table 4. Hub nodes of ASD participants from retro-, prospective datasets 

Fold number for GNN–SSL  

(retro- & pro-spective dataset) 

Top node with most influence in  

neural connectivity 

Fold 0 Vis, R TPJ* 

Fold 1 L Ins 

Fold 2 R TPJ 

Fold 3 R TPJ 

Fold 4 L Ant IPS 

*Top two nodes with highest model weights, thereby contributing most to predicting different 

clusters of ASD. Abbreviations: R TPJ, right temporoparietal junction; L Ins, left insula; L Ant IPS, 

left anterior intraparietal sulcus. 
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Table 5. Neural connectivity analysis in neuro-behavioral clusters using hub nodes 

Multi-modal  

clusters 
Segregation 

Hub node 

compensation 

Cluster 1  

(good IJA) 
Overall CC: 0.491 

R TPJ (EC: 0.156) 

L Ins (EC: 0.160) 

L Ant IPS (EC: 0.153) 

Cluster 2  

(poor IJA & RJA) 
Overall CC: 0.506 

R TPJ (EC: 0.176) 

L Ins (EC: 0.156) 

L Ant IPS (EC: 0.154) 

Cluster 3  

(RJA > IJA) 
Overall CC: 0.512 

R TPJ (EC: 0.159) 

L Ins (EC: 0.155) 

L Ant IPS (EC: 0.162) 

Abbreviations: R TPJ, right temporoparietal junction; L Ins, left insula; L Ant IPS, left anterior 

intraparietal sulcus. 

 

3.2.5. Genetic profile analysis in neuro-behavioral clusters 

Firstly, cluster 3 showed greatest number of total gene variants (common and rare) with 1.04×107 

(8.90×106, 1.53×106). The common to rare variant ratio was highest for cluster 1 = 5.69 (0.15), 

indicating that the influence of common variants might be stronger than that of rare variants in this 

cluster. This is reflected in the higher polygenic risk scores for autism, schizophrenia in this group. 

The polygenic risk score of intelligence was lowest for cluster 2. These common vs. rare variant 

effect on the three neuro-behavioral clusters are detailed in Table 6. 

 

Cluster 3 also displayed the highest number of rare coding variants, categorized by either CADD 

(0-20) or CADD (≥20). This suggests that Cluster 3 is significantly impacted by deleterious coding 

variants, which are likely associated with autism. Additionally, this cluster was strongly influenced 

by deleterious non-coding variants. In contrast, Cluster 1 showed the least influence from non-
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coding variants, as it is predominantly affected by the effects of common variants. These findings 

are detailed in Table 7. 

  

 

Table 6. Common vs. rare variants in neuro-behavioral clusters 

Genetic measures Overall (N=31) Cluster 1 (N=6) Cluster 2 (N=5) Cluster 3 (N=20) 

Total variants* 
1.02×107 

(1.38×106) 

1.03×107 

(8.73×104) 

8.65×106 

(3.57×106) 

1.04×107 

(1.51×105) 

Common variants* 
8.67×106  

(1.17×106) 

8.85×106 

(4.94×104) 

7.38×106 

(3.04×106) 

8.90×106 

(1.02×105) 

Rare variants* 
1.49×106  

(2.11×105) 

1.49×106 

(4.27×104) 

1.27×106 

(5.37×105) 

1.53×106 

(5.59×104) 

Common:rare* 5.84 (0.16) 5.96 (0.15) 5.85 (0.15) 5.81 (0.16) 

Autism PRS* 
5.0×10−4 

(2.0×10−4) 

5.0×10−4 

(1.0×10−4) 

4.0×10−4 

(2.0×10−4) 

5.0×10−4 

(2.0×10−4) 

Schizo. PRS* 
4.2×10−4 

(8.0×10−5) 

4.5×10−4 

(6.0×10−5) 

4.1×10−4 

(6.0×10−5) 

4.1×10−4 

(9.0×10−5) 

Intelligence PRS* 
-6.0×10−5 

(4.0×10−5) 

-6.0×10−5 

(4.0×10−5) 

-3.0×10−5 

(2.0×10−5) 

-7.0×10−5 

(4.0×10−5) 

* Mean (SD) 

Abbreviations: PRS, polygenic risk score; Schizo, schizophrenia. 
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Table 7. Rare variants of neuro-behavioral clusters—quantitative analysis 

CADD /  

rare variant type 
Overall (N=31) Cluster 1 (N=6) Cluster 2 (N=5) Cluster 3 (N=20) 

CADD (0-20) 

pLI > 0.9 

Coding* 

14.08 (11.01) 12.50 (13.00) 9.67 (7.57) 15.11 (11.36) 

CADD (≥20) 

pLI >0.9 

Coding* 

25.46 (12.52) 25.00 (6.38) 19.00 (9.85) 26.58 (13.85) 

CADD (0-20)  

Non-coding* 
12.22 (15.99) 9.25 (3.86) 16.33 (17.04) 12.19 (18.09) 

CADD (≥20)  

Non-coding* 
6.48 (7.56) 2.00 (2.16) 4.00 (0.00) 8.06 (8.57) 

* Mean (SD) 

Abbreviations: CADD, combined annotation-dependent depletion; pLI, probability of being loss-of-function 

intolerant. pLI > 0.9: This indicates that the variants listed are in genes highly intolerant to loss-of-function 

mutations, with a probability greater than 90%. Such mutations in these genes are likely deleterious and 

contribute significantly to disease phenotypes. CADD (0-20): Variants with CADD scores in this range are 

considered less likely to be deleterious. These scores suggest that the genetic variants might have milder impacts 

on gene function and are less likely to cause harmful effects. CADD (≥20): Variants with CADD scores of 20 

or above are predicted to be more deleterious. High CADD scores indicate that these variants could have 

significant negative impacts on gene function and are potentially associated with substantial health 

consequences. 

 

 

3.2.5.1. Interpretation of coding genes in relation to cluster traits 

To interpret the coding genes exclusive to each neuro-behavioral cluster and their associations with 

neurodevelopment, autism spectrum disorder (ASD), and related pathways, the specific functions 

and implications of these genes are examined. The qualitative analysis are shown in Table 8. 

 

Cluster 1: good joint attention, visuospatial processing, and integration  
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The genes that were found exclusively in this cluster were AHDC1, HERC1, KANSL1, RALGAPB, 

SHANK3, ARID2, SETDB1, PLPPR4, PTPRB, PSMD11, DYNC1H1, NRXN3, CCT4, YEATS2, 

GRIK5, GRB10, SRCAP, and PRKD2. These genes contribute to the strong integration and efficient 

synaptic connectivity observed in Cluster 1, facilitating better joint attention and visuospatial 

processing. SHANK3 is a scaffolding protein involved in synapse formation and maintenance, 

crucial for the development and function of neural circuits. Mutations in SHANK3 are strongly 

associated with ASD and Phelan-McDermid syndrome, often leading to intellectual disability and 

impaired communication skills. The pathways involving SHANK3 are critical for synaptic signaling, 

neural connectivity, and plasticity. Mutations in AHDC1 cause Xia-Gibbs syndrome, characterized 

by global developmental delay and intellectual disability. This gene has been implicated in ASD due 

to its role in DNA repair and epigenetic regulation during neurodevelopment. GRIK5 encodes a 

subunit of the kainate type of glutamate receptors, important for excitatory neurotransmission in the 

brain. Alterations in glutamate receptors have been linked to neurodevelopmental disorders, 

including ASD, affecting learning and memory processes. NRXN3 is part of the neurexin family 

involved in synapse formation and neurotransmission. Neurexins are crucial for synaptic stability 

and plasticity, and mutations in these genes are associated with ASD. 

 

Cluster 2: poor joint attention, poor integration, and overcompensated neural connectivity 

The genes exclusively discovered in this cluster were: BRSK2, DLGAP3, CARD11, SETBP1, 

KAT2B, SMARCA4, CDKL5, SMG6, ADCY5, HDAC4, GABRB3, TSC1, MAP1B, TAOK2, 

TNRC6B, GRM5, CTR9, and RIMS1. The presence of these genes in Cluster 2 suggests a disruption 

in neural inhibition and growth pathways, contributing to poor integration and overcompensated 

neural connectivity observed in this cluster. GABRB3 encodes a subunit of the GABA-A receptor, 

which is critical for inhibitory neurotransmission in the brain. Mutations in GABRB3 have been 

linked to ASD, epilepsy, and Angelman syndrome, often leading to disrupted neural inhibition and 

balance. TSC1 is involved in the TSC1/TSC2 complex, which regulates cell growth and proliferation. 

Mutations in TSC1 are associated with tuberous sclerosis complex, a condition that often includes 

ASD and intellectual disability. CDKL5 is a serine/threonine kinase that is critical for postnatal brain 

development. Mutations in CDKL5 cause severe neurodevelopmental disorders, including early-

onset epileptic encephalopathy with features of ASD. 
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Cluster 3: Mixed joint attention patterns, impaired daily living skills and motor coordination 

The genes exclusively found in this cluster were: NTRK3, NFIB, ZMIZ1, CACNA1B, PTGS2, 

CHD8, GIGYF2, DNM1, KIAA0232, MYH9, VPS54, PRR14L, PRICKLE1, ANK3, PAK2, among 

others. These genes suggest that Cluster 3 may have issues related to inflammation, chromatin 

remodeling, and neuronal connectivity, contributing to their unique social interaction and motor 

coordination challenges. CHD8 is a chromodomain helicase DNA-binding protein involved in 

chromatin remodeling and transcriptional regulation. Mutations in CHD8 are strongly linked to ASD, 

often leading to macrocephaly, intellectual disability, and social interaction difficulties. The 

pathways involving CHD8 affect chromatin modification and gene expression critical for 

neurodevelopment. ANK3 encodes ankyrin-G, a protein crucial for the stability and function of 

neuronal axon initial segments. Variants in ANK3 have been implicated in bipolar disorder, 

schizophrenia, and ASD, affecting neural connectivity and signaling. PTGS2 (COX-2) encodes an 

enzyme involved in the inflammatory response. Inflammation has been linked to ASD, and 

alterations in PTGS2 expression can impact neurodevelopment and behavior. 

 

3.2.5.2. Interpretation of non-coding genes in relation to cluster traits 

To understand how the non-coding genes exclusive to certain neuro-behavioral clusters relate to 

neurodevelopment, autism spectrum disorder (ASD), and associated pathways, an in-depth analysis 

of the specific genes was conducted. The qualitative analysis are shown in Table 9. 

 

Cluster 1: good joint attention, visuospatial processing, and integration  

The genes in this cluster include SETDB1, SKI, HDLBP, CC2D1A, and DOCK8. These genes were 

analyzed for their functional roles and associations with ASD. These findings suggest that the genes 

exclusive to Cluster 1 may benefit from robust epigenetic regulation and transcriptional control, 

contributing to better integration and joint attention capabilities observed in individuals associated 

with this cluster. SETDB1 is a gene involved in the epigenetic regulation of chromatin structure, 

which significantly impacts gene expression. Dysregulation of SETDB1 has been linked to ASD 

through its critical role in neural cell differentiation and brain inflammation. Overexpression of 

SETDB1 is associated with neurodevelopmental abnormalities. The primary pathways influenced 

by SETDB1 include epigenetic regulation, chromatin modification, and neural development. SKI 

functions as a proto-oncogene that regulates transcription and suppresses TGF-β signaling. 
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Mutations or dysregulation in SKI can lead to developmental delays and congenital abnormalities 

that overlap with ASD features. Therefore, SKI's role in transcriptional regulation is crucial for 

normal neurodevelopment. High-Density Lipoprotein Binding Protein (HDLBP) is involved in RNA 

binding and the regulation of lipid metabolism. Although direct links to ASD are limited, disruptions 

in RNA binding proteins like HDLBP can affect neural development and function. The influence of 

HDLBP on neurodevelopment underscores its potential role in ASD-related pathways. 

 

Cluster 2: poor joint attention, poor integration, and overcompensated neural connectivity 

Cluster 2 encompasses genes that are associated with poor joint attention, poor integration, and 

overcompensated connectivity. The exclusive non-coding genes in this cluster include KDM4C, 

TAOK2, MCPH1, CSNK1G1, DMWD, SEZ6L2, NINL, KDM5A, SNX5, TAF6, DEAF1, among 

others. The genes in Cluster 2 highlight significant disruptions in neural development and synaptic 

regulation, contributing to the observed poor integration and overcompensated connectivity in 

affected individuals. KDM4C is a histone demethylase involved in chromatin remodeling and gene 

expression regulation. Dysregulation of KDM4C can disrupt normal neural development processes 

and has been implicated in various neurodevelopmental disorders, including ASD. The primary 

pathways influenced by KDM4C involve chromatin remodeling and epigenetic regulation. TAOK2 

is involved in the regulation of the cytoskeleton and synaptic development. Mutations in TAOK2 

have been associated with ASD and intellectual disability, influencing neural connectivity and 

synaptic function. This gene's role in synaptic development is critical for understanding its impact 

on ASD. Microcephalin 1 (MCPH1) is involved in DNA repair and cell cycle regulation. Mutations 

in MCPH1 can lead to primary microcephaly, characterized by a significantly smaller brain size, 

which can be associated with neurodevelopmental disorders including ASD. MCPH1's involvement 

in DNA repair pathways highlights its importance in maintaining neural integrity. 

 

Cluster 3: Mixed joint attention patterns, impaired daily living skills and motor coordination 

The genes exclusive to Cluster 3 are associated with challenges in social interaction, daily living, 

and motor coordination. The significant non-coding genes in this cluster include KDM6B, NRXN1, 

MBD1, NSD1, SRPRA, PCDHA11, SLC7A7, SAMD11, PTGS2, CHD8, among others. The genes 

in Cluster 3 are associated with crucial pathways in neural development, synaptic function, and 

epigenetic regulation. These associations help explain the unique social interaction challenges and 



３５ 

 

 

motor coordination issues observed in individuals related to this cluster. KDM6B is involved in 

histone demethylation, impacting gene expression and neural development. Mutations in KDM6B 

are linked to neurodevelopmental disorders, including ASD, due to their role in epigenetic regulation. 

The primary pathways influenced by KDM6B involve epigenetic regulation and neural development. 

NRXN1 is crucial for synaptic function and neural communication. Mutations in NRXN1 are 

strongly linked to ASD, affecting synaptic stability and plasticity. This gene's role in synaptic 

function is essential for understanding its contribution to ASD. CHD8 is a chromatin remodeler 

involved in gene transcription regulation. Mutations in CHD8 are one of the most significant genetic 

risk factors for ASD, impacting neurodevelopment and resulting in features such as macrocephaly 

and intellectual disability. CHD8's involvement in transcriptional regulation underscores its critical 

role in neurodevelopment. 

 

 

Table 8. Rare coding variants of neuro-behavioral clusters – qualitative analysis 

Variant  

type 
Overlapping Cluster 1 (N=6) Cluster 2 (N=5) Cluster 3 (N=20) 

Coding NRXN1, PLXNA4, 

ZNF462, MAP1A, 

CUX2, MYO16, 

KDM6B, GGNBP2, 

CIC, HIVEP2, 

WDFY4, TNRC6C, 

SLC12A5, SETD1B, 

KDM5A, SRRM2, 

TSHZ3, RAI1, EP400, 

INTS6, GABBR2, 

MYCBP2, UNC79, 

NBEA, ARNT2, 

RIMS2, TEK, 

PABPC1, MAP1B, 

EHMT1, JMJD1C 

AHDC1, 

HERC1, 

KANSL1, 

RALGAPB, 

SHANK3, 

ARID2, 

SETDB1, 

PLPPR4, 

PTPRB, 

PSMD11, 

DYNC1H1, 

NRXN3, CCT4, 

YEATS2, 

GRIK5, GRB10, 

SRCAP, PRKD2 

 

 

BRSK2, 

DLGAP3, 

CARD11, 

SETBP1, 

KAT2B, 

SMARCA4, 

CDKL5, SMG6, 

ADCY5, 

HDAC4, 

GABRB3, 

TSC1, MAP1B, 

TAOK2, 

TNRC6B, 

GRM5, CTR9, 

RIMS1 

NTRK3, NFIB, ZMIZ1, 

CACNA1B, PTGS2, 

CHD8, GIGYF2, DNM1, 

KIAA0232, MYH9, 

VPS54, PRR14L, 

PRICKLE1, ANK3, 

ZNF292, ANKRD11, 

ADGRL1, ARHGAP5, 

PREX1, KMT2C, 

HECW2, POGZ, ASXL3, 

MET, SRSF1, ASH1L, 

CACNA1I, CLASP1, 

EXT1, RFX7, TBX22, 

PCDH19, MBD1, 

MYT1L, CASKIN1, 

CACNB1, NAV2, UBR5, 

BIRC6, IQSEC2, UBE3C, 
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CHD3, CHD2, NCOR1, 

PHLPP1, SATB2, 

HNRNPU, ARID1B, 

SCAF1, SAE1, ERBIN, 

EMSY, SETD2, GRIN2B, 

GRIA1, AR, CNOT1, 

ANK2, KMT5B, MCM6, 

MYO5A, CDH8, KDM3A, 

TCF7L2, DST, SETD1A, 

CASZ1, CLIP2, DMXL2, 

CACNA1G, DIP2C, 

GRIK3, ANKRD17, 

TSHZ1, MAGEL2, EPC2, 

PTPRC, CREBBP, 

MAOA, CACNA1C, 

AGAP1, PACS1, 

MED12L, CHD7, KCNB1, 

CHD9, FGF14, PRR12, 

PPP3CA, NSD2, GRM7, 

PPFIA1, MACF1, 

DLGAP2, NSD1, 

YTHDC2, KDM4B, 

SCN2A, MRTFB, 

MYH10, FLNA, LEMD3, 

CACNA1A, SHANK1, 

PRKDC, FBN1, BTAF1, 

HIVEP3, RELN, SPEN, 

TM9SF4, SON, NR4A2, 

KDM3B, UBAP2L, 

MTOR, AUTS2, PAK2 
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Table 9. Rare non-coding variants of neuro-behavioral clusters – qualitative analysis 

Variant  

type 
Overlapping Cluster 1 (N=6) Cluster 2 (N=5) Cluster 3 (N=20) 

Non-

coding 

NCKAP5, 

CHMP1A, 

LILRB2, 

PRR12, 

MBOAT7, 

ABCA7, 

SLC12A5 

SETDB1, 

SKI, HDLBP, 

CC2D1A, 

DOCK8 

KDM4C, TAOK2, 

MCPH1, 

CSNK1G1, 

DMWD, SEZ6L2, 

NINL, KDM5A, 

SNX5, TAF6, 

DEAF1 

KDM6B, NRXN1, MBD1, 

NSD1, SRPRA, PCDHA11, 

SLC7A7, SAMD11, PTGS2, 

CHD8, SMARCC2, SETD1A, 

DDHD2, SUPT16H, EIF4G1, 

CD276, PTEN, CUL7, HLA-B, 

SLC7A5, EXOC6B, HNRNPU, 

ARID1B, ANK3, PRR25, PHF12, 

SETD2, TM9SF4, TMEM39B, 

UBAP2L, TNS2, SRSF1, 

PRKAR1B, CLN8, MAPT-AS1, 

AUTS2, MUC4, DNAH10, 

PPFIA1, TSC2, ANK2 
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3.3. Multi-modal model performance  

3.3.1. Autism symptom severity prediction model performance 

Uni-modal vs multi-modal without retrospective cluster information vs multi-modal with 

retrospective cluster information. Multi-modal model showed comparable performance in autism 

symptom severity assessment task across all performance metrics: AUROC, accuracy, precision, and 

recall. The fMRI uni-modal model outperformed with respect to AUROC, and accuracy compared 

to that of video model. The results are presented in Table 10.  

 

Table 10. Uni-modal vs. multi-modal model symptom severity prediction performance 

Prospective 

dataset 

AUROC Accuracy Precision Recall 

Video only* 
0.60, 

95%CI=(0.52-0.63) 

0.65, 

95%CI=(0.6-0.7) 

0.35, 

95%CI=(0.35-0.35) 

0.5, 

95%CI= (0.5-

0.5) 

rs-fMRI only* 
0.86, 

95%CI=(0.76,0.95) 

0.7, 

95%CI=(0.7,0.7) 

0.35, 

95%CI=(0.35-0.35) 

0.5, 

95%CI=(0.5-0.5) 

Multi-modal  

(video + rs-

fMRI)* 

0.84, 

95%CI=(0.74,0.93) 

0.7, 

95%CI=(0.7,0.7) 

0.35, 

95%CI=(0.35-0.35) 

0.5, 

95%CI=(0.5-0.5) 

Multi-model 

with 

clustering* 

0.81, 

95%CI=(0.69,0.93) 

0.7, 

95%CI=(0.7,0.7) 

0.5, 

95%CI=(0.35-0.35) 

0.5, 

95%CI=(0.5-0.5) 

* Mean (95% CI) 

 

3.3.2. Shapley value-based visualization 

Incorporating cluster information from retrospectively derived clustering algorithms into 

multimodal feature-based models improved the prediction of autism severity. The integration 

utilized a broader range of features from both modalities, rather than relying on a single modality. 
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This comprehensive approach is evidenced in the enhanced accuracy reflected in the Deep SHAP 

results, as depicted in Fig 8. 

 

 

  

Fig 8. Multimodal features used for predicting symptom severity—Shapley values. Model prediction of 

autism severity using multimodal features (left) without clustering information, (right) with clustering 

information. 

 

 

  



４０ 

 

 

4. DISCUSSION 

 

Our prospective study pioneers a novel approach by developing and validating a neuro-behavioral 

subclassification system through the concurrent collection of functional neuroimaging, neuro-

behavioral video, and genomic data from the same participants, a methodology not previously 

attempted. The validity of these neuro-behavioral subgroups was verified through clinical 

presentation, gaze patterns, neural connectivity, and genetic profiles. Additionally, we evaluated the 

classification of autism symptom severity based on combined neural and behavioral features using 

supervised learning, with clinical scores as benchmarks for symptom severity, to determine if the 

extracted features correspond to clinically significant information. Employing meticulously 

designed deep learning architectures for each data type allowed us to effectively extract features. 

These features were then integrated and subjected to advanced clustering techniques suitable for 

high-dimensional data, resulting in purely data-driven neuro-behavioral clusters.  

 

We identified three distinct neuro-behavioral clusters in individuals with autism, each comprising a 

mix of mild, moderate, and severe cases, as measured by the ADOS CSS—standardized scores for 

autism severity. Interestingly, these clusters did not differ significantly in their total ADOS CSS 

scores, underscoring the limitations of severity scores in forming clear, distinct groups, as noted in 

previous studies.71,72 Additionally, our findings align with earlier research indicating a poor 

correlation between data-driven clustering and clinical severity scores.73,74 This suggests that 

traditional observation-based severity assessments may not adequately capture the neuro-biological 

features used in unsupervised data-driven classification, such as gaze patterns or fMRI signals. 

 

The three distinct clusters we identified in individuals with autism primarily varied based on their 

performance in joint attention tasks, which correlated with differences in clinical features, gaze 

patterns, and neural connectivity patterns. Cluster 1, characterized by mild genetic vulnerability and 

no significant neural connectivity abnormalities, excelled in IJA, correlating with higher IQs and 

milder autism symptoms. In contrast, Cluster 2 displayed pronounced impairments in joint attention 

tasks, coupled with hub node compensation in neural connectivity and moderate genetic 

vulnerability; these individuals showed profound social deficits, lower full-scale IQ, and reduced 

verbal comprehension, suggesting overall developmental delays. Cluster 3, which demonstrated 
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partial impairment in joint attention, especially in initiating tasks, exhibited the highest genetic 

vulnerability and marked neural segregation. This cluster also showed moderate-to-severe autistic 

traits and lower adaptive functioning. 

 

Further distinguishing Cluster 2 and Cluster 3 were their distinctive substructural connectivity 

patterns, particularly between R TPJ—an integrative center for multimodal sensory processing—

and other network regions.75 These differences in neural connectivity support existing research 

suggesting that disruptions in multimodal sensory integration may underpin autism.75,76 The variance 

in task performance, such as in RJAhigh versus RJAlow or IJA, where RJAhigh requires minimal effort 

compared to the more challenging RJAlow and IJA, might be attributed to the clusters' differing 

abilities to process sensory inputs like visual and auditory information. This aligns with the observed 

clinical and behavioral discrepancies across the clusters, emphasizing the value of joint attention 

tasks as a more effective basis for clustering than traditional severity scores. 

 

We validated the neuro-behavioral clusters using genetic data and found differences in their genetic 

makeup, contributing to their distinct clinical manifestations and neural connectivity patterns. 

Cluster 1 had the most common variants and highest PRS for autism and schizophrenia, which are 

associated with milder forms of autism spectrum disorder.77 Cluster 2 uniquely possessed SNPs 

related to chromatin remodeling and synaptic regulation, explaining its poor integration and 

overcompensated neural connectivity. This high genetic and neural burden contributed to severe 

social deficiency, low IQ, and overall developmental delay (language, motor, etc.). Cluster 3 had 

SNPs associated with key pathways in neural development, synaptic function, and epigenetic 

regulation. With the most influence from both coding and non-coding high-deleterious variants, in 

accordance with previous studies that showed association with presence of high-deleterious rare 

variants and increased autism severioty,30 Cluster 3 exhibited significant difficulties in joint attention 

tasks, daily functioning, and fine motor control. 

 

The explainability of our model was substantiated using Shapley values visualization. While fMRI 

data-driven autism symptom severity prediction was the most accurate, the multi-modal model, 

incorporating features from both fMRI and video, resulted in distinct clusters from genetic, neural, 

and behavioral perspectives. The lower prediction capacity of the video model was attributed to the 
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low sample size used for training via SSL. Increasing the sample size for video training would make 

the combined multi-modal model more robust and effective in predicting clinical traits of autism. 

Our preliminary results do not definitively show that a multimodal approach outperforms unimodal 

strategies but suggest it could extract a richer set of features relevant to autism symptom severity. In 

the future, with larger sample sizes, the development of such a multi-modal model could enhance 

feature selection and improve understanding of unique autism traits. Our clustering analysis suggests 

potential benefits, but further validation of the multi-modal model is needed. 

 

Our approach holds significant potential in multimodal modeling of neurobiological conditions like 

ASD. By leveraging the complementary information from diverse data types, we not only deepen 

our understanding of individuals' autistic traits and severity but also enhance the predictive accuracy 

of models concerning overall symptom severity. Importantly, by integrating genetic, neural 

connectivity, and behavioral data from the same individuals, we can hypothesize about the 

constituents of their autism spectrum traits. Clinically, this enables the development of more 

personalized interventions, tailored to the primary challenges faced by each individual. For instance, 

individuals in cluster 1 could benefit more from behavioral therapies and parental guidance focused 

on nurturing social interactions. Conversely, for those in clusters 2 or 3, behavioral modification 

alone may not suffice. In such cases, genetic testing, pharmacological approaches, or 

neuromodulatory interventions like repetitive transcranial magnetic stimulation (r-TMS) could be 

necessary alternatives. Crucially, this nuanced understanding can prevent the depletion of resources 

on ineffective behavioral modifications when the underlying issue may be rooted more deeply in 

genetic or neural connectivity dysfunctions. 

 

Strengths and limitations: The strength of our study lies in its innovative design, which collects and 

integrates multiple data types from a single source for clustering and classification. This approach 

allows for interpretations across various levels and axes, facilitating discussions about the divergent 

pathways within different groups—something previously unattainable in multimodal research that 

relied on disparate datasets. Our meticulous clustering validation, supported by visualization 

techniques and downstream task analysis, bolsters the credibility of the clusters identified. However, 

the study is constrained by the intensive nature of its design, which is highly sensitive to the patient 

enrollment process. Participant dropout results in the loss of multiple data points simultaneously, 
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complicating data collection and hindering short-term sample size expansion. Moreover, the novelty 

of our concept calls for replication and further studies with larger sample sizes to affirm our initial 

findings and extend the validity of our groundbreaking work. 

 

 

5. CONCLUSION 

 

The single-source multi-data approach utilized in this dissertation to develop a multimodal model 

for the subclassification of a heterogeneous disorder such as ASD has yielded promising results. The 

robust and reliable clustering achieved using integrated features, along with rigorous validation steps, 

substantiates our subclassification method. While further research involving larger cohorts or 

replication studies is needed to corroborate our findings, this study suggests that neuro-behavioral 

clustering can lead to the identification of biologically distinct groups with divergent pathways. Such 

insights have profound implications for advancing personalized treatment strategies that target 

specific issues at the genetic, neural connectivity, or behavioral levels. 
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자폐스펙트럼장애의 새로운 세부 분류를 위한 뇌신경-행동학적 

시스템 개발 및 검증 

 

 

 

 

임상 증상의 이질성과 근본적인 신경생물학적 메커니즘은 자폐 스펙트럼 장애에 대한 

개인 맞춤형 개입을 제공하는 데 상당한 어려움을 야기한다. 자폐 스펙트럼 장애의 

유병률이 증가하고 사회적 영향력이 커지면서 자폐 스펙트럼 장애 표현형을 

세분화하고 고유한 신경생물학적 원인을 규명하는 연구가 시급해졌다. 본 연구에서는 

후향적 및 전향적 자폐스펙트럼장애 데이터를 모두 활용하여 다중모드 하위 분류 

시스템을 구축하고 검증하고자 하였다. 휴지기 자기공명영상과 행동 비디오 

데이터에서 추출된 특징을 통합한 다중모드 모델링은 각기 다른 임상 및 생물학적 

특성을 지닌 클러스터들을 식별하는 것을 목표로 하였다. 

 

각 데이터 유형에 맞게 정밀하게 설계된 딥러닝 아키텍처 (비디오 및 휴지기 

자기공명영상)를 사용하여 주요 특징을 추출하였다. 이러한 특징을 융합한 후 고차원 

데이터를 위한 고급 클러스터링 기법을 적용하여 뚜렷한 데이터 기반의 신경 행동 

클러스터를 형성했다. 세개의 클러스터가 도출되었다: 특정 상황에서 유독 자폐증 

관련 행동양상이 두드러지며, 유전학적 취약성이 가장 저명하고, 가장 낮은 

뇌연결성을 보인 ‘클러스터 3’, 자폐증 관련 행동 패턴이 가장 두드러졌으며, 
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유전학적 취약성도 보이고, 저하된 뇌연결성을 특정 융합 노드가 과도한 보상을 하는 

‘클러스터 2’, 자폐증 관련 행동과 신경학적이 뚜렷하지 않으며, 일반변이의 영향을 

주로 받고 희귀변이의 영향을 특히 덜 받은 ‘클러스터 1’. 융합 피쳐 추출 모델의 

설명력은 샤플리 값으로 확인하고 시각화 하였다.  

 

다중모드를 활용한 데이터 기반 중요 피쳐 추출 및 융합 방법론은 더 넓은 

스펙트럼의 특징을 통해 임상적으로 뚜렷한 하위 그룹을 식별하고 자폐 증상의 

심각도를 예측할 뿐만 아니라, 개별 참여자(환자)의 신경-, 행동-, 유전적- 특성을 

심층적으로 이해하고, 이러한 정보가 개별 환자의 임상 표현형에 기여하는지 파악할 

수 있게 하였다. 개별 환자 마다 다중 데이터를 수집하고 데이터 활용하는 연구 

방법론을 도입했을 때 기대했던 결과가 초래되었으며, 통합된 특징과 철저한 검증을 

통해 얻은 신뢰할 수 있는 클러스터링이 방법론이 해당 결과를 뒷받침한다. 이 연구 

결과의 재현성 검증을 위해서는 대규모 또는 복제 연구가 필요하지만, 이 연구는 

신경-행동 클러스터링이 고유한 경로를 가진 생물학적으로 구별되는 그룹을 식별하는 

방법론으로서, 특정 유전, 신경 및 행동 문제를 타겟으로 하는 개인 맞춤형 치료 전략 

수립에 기여할 수 있는 가능성을 제시한다. 

 

                                                                   

핵심되는 말: 자폐스펙트럼장애, 바이오마커, 세부분류, 다중모드 데이터 융합, 딥러닝  
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