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ABSTRACT 

 

Biomechanical Comparison of Fixation Methods for Posterior Wall 

Fractures of the Acetabulum: Conventional Reconstruction Plate vs. 

Spring Plate vs. Variable Angle Locking Compression Plate 

 

HoeJeong Chung 

Dept. of Medicine 

The Graduate School 

Yonsei University 

Acetabular fractures, though infrequent, present considerable challenges in treatment 

due to their association with high-energy trauma and poor prognoses. Posterior wall 

fractures, the most common type among them, typically have a more favorable prognosis 

compared to other types. Anatomical reduction and stable fixation of the posterior wall are 

crucial for optimal treatment outcomes. This study aimed to biomechanically compare 

three commonly used fixation methods for posterior wall fractures of the acetabulum: 

conventional reconstruction plate, spring plate, and 2.7mm variable angle locking 

compression plate (VA-LCP). The study utilized 6 fresh-frozen cadavers, yielding 12 

hemipelvises free from prior trauma or surgery. Three fixation methods were compared 

using a simple acetabulum posterior wall fracture model. Fixation was performed by an 

orthopedic specialist, with prebending of plates to minimize errors. Hemipelvises were 

subjected to quasi-static and cyclic loading tests, measuring fracture gap, stiffness, and 

displacement under load. It showed no significant differences in fracture gap among the 

three fixation methods under cyclic loading conditions simulating walking. However, the 

conventional reconstruction plate exhibited greater stiffness compared to the spring and 

variable angle plates. Fatigue analysis revealed no significant differences among the plates, 



v 

indicating similar stability throughout cyclic loading. Despite differences in stiffness, all 

three fixation methods demonstrated adequate stability under loading conditions. While the 

conventional reconstruction plate demonstrated superior stiffness, all three fixation 

methods provided sufficient stability under cyclic loading conditions similar to walking. 

This suggests that postoperative limitations are unlikely with any of the three methods, 

provided excessive activities are avoided. Furthermore, the variable angle plate -like the 

spring plate- offers appropriate stability for fragment-specific fixation, supporting its use 

in surgical applications. These findings contribute to understanding the biomechanical 

performance of different fixation methods for acetabular fractures, facilitating improved 

surgical outcomes in challenging cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                

Keywords: biomechanics; acetabulum; posterior wall fracture; variable angle plate
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1. Introduction 

 

Acetabular fractures are relatively uncommon but present significant treatment 

challenges, primarily due to their association with high-energy trauma, often resulting in 

poor prognoses [1,2]. Among the various classifications, posterior wall fractures are the 

most prevalent and are generally associated with a relatively simpler treatment approach 

and better outcomes [3,4]. These fractures can be managed either non-surgically or 

surgically, depending on the stability and congruence of the fracture. Non-surgical 

treatment is considered for stable, congruent posterior wall fractures [5], whereas surgical 

intervention is recommended when fractures lead to hip joint instability or incongruity [6]. 

According to Moed et al., posterior wall fragments that comprise more than 50% of the hip 

joint surface on a CT scan are deemed unstable [7,8]. For borderline cases, examination 

under anesthesia (EUA) is utilized to assess the stability and to determine the necessity for 

surgery [9]. The standard surgical approach typically involves open reduction and internal 

fixation (ORIF), with total hip arthroplasty being an option for severely comminuted 

fractures in elderly patients [2,10]. Achieving an anatomical reduction and stable fixation 

of the posterior wall is crucial for successful outcomes [10-12]. 

Various techniques for fixing posterior wall fractures have been developed, including 

the use of plates, lag screws, and spring plates [13-17]. Locking compression plates (LCPs) 

are gaining favor in orthopedic trauma treatments due to their enhanced stability and the 

presumed benefits in osteopenic bone. These plates reduce the need for lag screws, thus 

mitigating the risk of intra-articular penetration [18-22]. However, they may pose 

challenges in managing small peripheral or comminuted fracture fragments due to potential 

joint penetration post-fixation [23]. 

Spring plates have proven effective in managing marginal fractures of the posterior 

wall, as they provide adequate stability without necessitating extensive dissection like 
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larger reconstruction plates [24]. Although spring plates alone do not increase the stiffness 

of the fixation, they do improve the ultimate yield strength, making them a viable option 

for marginal and/or comminuted fragments that are unsuitable for lag screw fixation [25]. 

For superior dome or comminuted posterior wall fractures, the fragment-specific 

fixation technique using 2.7 mm VA LCP plates represents a promising alternative. This 

method provides the stable fixation of small fracture fragments, eliminating the need for an 

overlapping reconstruction plate. Yet, it carries a potential risk of screw joint penetration in 

peripheral fractures; further biomechanical evaluation of this technique is needed [26]. 

Recent clinical reports have underscored the efficacy of the 2.7 mm VA LCP for 

fragment-specific fixation. Research by Cho et al. highlights the advantages of the Variation 

angle LCP plate in multifragmentary fractures, such as improved positioning of each 

fragment, reduced soft tissue damage, and enhanced fixation of challenging areas, 

including the superior dome [26]. Nonetheless, more biomechanical studies are required to 

fully understand the mechanics of fracture fixation. Clinical trials are crucial, but laboratory 

tests, including comparative studies using saw bone models and cadaver studies for 

biocompatibility, also play an essential role in this domain [27-30]. 

This study aims to perform a mechanical analysis of different fixation plates using a 

posterior wall fracture model from a cadaveric hemipelvis, with a particular focus on 

evaluating the stability of the 2.7mm VA-LCP plate, which has been the subject of less 

clinical research compared to other plates. 
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2. Materials and Methods 

 

2.1. Cadaveric Specimen Preparation 

The study utilized 6 fresh frozen cadavers, yielding 12 hemipelvises, free from trauma, 

surgery, or metabolic bone diseases. The cadavers, averaging 62.5 years of age (ranging 

from 53 to 78), consisted of 5 males and 1 female. Stored at -20 °C, the cadavers were 

thawed at room temperature 24 hours prior to the experiment. After removing surrounding 

muscles and soft tissues from the pelvis, the bones were cleaned using acetone. The 

cadavers used were ethically sourced, each donated with informed consent from tertiary 

care hospitals, in strict accordance with national legal and ethical standards. 

 

2.2. Fixation Methods 

For the posterior fracture wall model, three fixation methods were compared. The first 

method involves fixation using a reconstruction plate with 3.5 mm cortical screws [22]. 

The second method uses two spring plates. We cut 1/3 of a semitubular plate and took a 

four-hole one-third tubular plate. First, we cut off the tip through a hole and bent the newly 

created prongs downwards to create small hooks, fixing it with 3.5 mm cortical screws 

[24,31]. The third method employs fixation using two 2.7 mm VA LCPs and 2.7 mm 

locking screws (Figure 1, 2, and 3) [26]. The plates used are as follows: titanium 3.5 mm 

LCP Reconstruction Plate, DePuy Synthes, Base, Switzerland; titanium 3.5 mm 1/3 

Tubular Plate, DePuy Synthes, Base, Switzerland; and Titanium 2.7 mm VA-LCP 

Cloverleaf fusion plate, DePuy Synthes, Base, Switzerland. Four hemipelves were used for 

each type of plate. 
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2.3. Fracture Model Creation 

The fracture model employed was a simple acetabulum posterior wall fracture, not 

considering marginal impaction (AO/OTA classification 62-A1.1) [32]. According to Cho 

et al. (who investigated the mapping of acetabular posterior wall fractures using three-

dimensional virtual reconstruction software: Mimics Medical 21.0 version software, 

Materialise, Leuven, Belgium and 3-matic Medical 13.0 version software, Materialise, 

Leuven, Belgium), when viewing the acetabular intraarticular portion as a two-dimensional 

circle, setting the transverse ligament at 0 degrees, and then considering the acetabular 

posterior area at a positive angle, the fracture angle 90 degrees included angles from 6.2 to 

96.3 degrees. The ratio of the fracture angle 90 degrees and the fragment including the 

acetabulum rim to the longest part of the acetabulum outer cortex, termed as the 'fracture 

span', is described. (Figure 4) The shape with a fracture span of 0.65 is reported to be the 

most common type of posterior wall fracture [33]. Based on this study, we created our 

posterior wall fracture model. We marked the fracture line on the acetabulum with a pen 

and created the most common type of posterior wall fracture model using a linear saw. 

 

 

Figure 1. Experimental gross photo of cadaveric posterior fracture wall model fixed with reconstruction plate. 
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Figure 2. Experimental gross photo of cadaveric posterior fracture wall model fixed with two spring plates. 

 

 

 

Figure 3. Experimental gross photo of cadaveric posterior fracture wall model fixed with two variable angle plates. 
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Figure 4. Posterior wall fracture model of study. We set up the transverse ligament as 0 degrees (for use as a 

reference point (red line)) and then considered the acetabular posterior area at a positive angle. We made a 

fracture model using a linear saw by setting the point corresponding to 90 degrees as the most common area 

for posterior wall fractures (blue line). 

 

Fixation was performed using reduction forceps and pointed ball tip pushers to 

maintain reduction, keeping the fracture gap within 2 mm. All fixation methods were 

conducted by an orthopedic specialist. Three-dimensional-printed anatomical models for 

planning and surgery simulation, patient-specific instruments (PSI), generation of 

prostheses with 3D-additive manufacturing, and custom 3D-printed prostheses were used.  

Prebending for each hemipelvis was performed using 3D modeling to minimize errors 

related to the inherent fixation strength of the plate. Also, proper bending is important to 

provide sufficient stability [34,35]. The prebending of the reconstruction plate and LCP VA 

plate, respectively, produced 3D-printed model and was also performed by the same 

specialist to reduce bias. (Figure 5) We used a 3D printer (Sindoh A1 SD, Sindoh Co., Ltd, 

Seoul, South Korea, and S-Plastic Model 2.0, Graphy, Seoul, South Korea) as materials. 
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For representing 3D bone models, Mimics Medical 21.0 version software, Materialise, 

Leuven, Belgium and 3-matic Medical 13.0 version software, Materialise, Leuven, 

Belgium were used. 

 

 

Figure 5. A Three-dimensional printed anatomical models for planning and surgery simulation. B Prebending 

of plate for each hemipelvis was performed to minimize errors related to the inherent fixation and to provide 

stability 

 

2.4. Biomechanical Testing Protocols 

The posterior wall model was attached to a specially made jig, in which the hemipelvis 

fit. The Jig was designed to apply loading in a direction perpendicular to the plane 

connecting the iliac spine and the symphysis pubis, reflecting the direction of maximum 

loading during rehabilitation and walking. For cycle testing, MultiTest 2.5-I, ILC 2500 N 

(load cell), Mecmesin Ltd, Horsham, UK was used. For load failure testing, OmniTest 10, 

ILC 10 KN (load cell), Mecmesin Ltd, UK was used. The jig used in the experiments had 
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a 40 mm metal head for applying loading to the acetabulum; the hemipelvis was fixed using 

10 bolts drilled through the jig to minimize error due to size and rotational variables [36]. 

For each fixation method, the hemipelvis was fixed to the specific jig, and the jig’s 

metal head was aligned perpendicularly to the fracture site. Both quasi-static loading and 

cyclic loading tests were conducted, with quasi-static loading measuring the force until 

mechanical failure - defined as the point where the compression force and the plate’s 

buttress force diverged from linearity. (Figure 6) The Vector pro MT program (Mecmesin 

Ltd, UK) software was used for force measurements [37]. 

 

 

Figure 6. Scheme of experiment. (A) The jig was manually adjusted using metal bolts and was fixed to the 

posterior wall model. (B) The jig was manually adjusted using metal bolts and was fixed to the posterior wall 

model. (C) Both quasi-static loading and cyclic loading tests were conducted, with quasi-static loading 

measuring the force until mechanical failure. The cyclic test was set biomechanically based on a 70 kg subject, 

with the maximum loading during walking being set at 1400 N. The preload was set at 1000 N for 1000 cycles, 

followed by 1400 N for another 1000 cycles at a frequency of 1Hz. 
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The cyclic test was set biomechanically based on a 70 kg subject, with the maximum 

loading during walking being set at 1400 N (2.0-3.5 times body weight) [38,39]. The 

preload was set at 1000 N for 1000 cycles, followed by 1400 N for another 1000 cycles at 

a frequency of 1Hz. The EmperorTM program (Mecmesin Ltd, UK) was used for 

measuring force, stiffness, and displacement during the test. The experiment was concluded 

when displacement exceeded 2 mm.  

Furthermore, this study also conducted a fatigue study for each type of plate during 

cyclic testing. Fatigue is defined as the difference in the interfragment gap observed after 

100 preloads in a 10,000-cycle test, namely the difference between the gap at 1500N and 

the gap at free load, which is set as the starting point value. The difference in the 

interfragment gap at the end of 10,000 cycles is set as the endpoint value. The fatigue of 

the plate is defined as the difference between the gap at the endpoint and the starting point.  

To minimize bias, subjects with the highest and lowest displacements were excluded 

from the statistical analysis. In our study, subjects with the highest and lowest 

displacements were excluded from the statistical analysis to minimize bias. This aligns with 

standard biomechanics practices, as extreme values can disproportionately influence results. 

Barnett and Lewis in 'Outliers in Statistical Data' recommend excluding such data points if 

they distort outcomes [40]. Our methodology follows these principles to accurately 

represent biomechanical effects.  

 

2.5. Statistical Analysis 

Data are presented as mean ± standard deviation. Displacement data from different 

experimental groups were analyzed using one-way ANOVA, with a 95% confidence level 

indicating significant differences. R statistical programming language (R Foundation for 

Statistical Computing, Vienna, Austria) version 4.3.1 for Windows, was utilized for 

statistical analysis.  
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3. Results 
 

3.1. Fracture Gap Analysis 

Table 1 displays the mean fracture gap observed in experiments conducted with a 

1500N force according to the cyclic test protocol. ANOVA analysis revealed no statistically 

significant differences when comparing the conventional reconstruction plate with the 

spring plate, the spring plate with the variable angle plate, or when all three were compared 

together. This suggests that, in a cyclic test scenario, where plates are subjected to a force 

of 1500 N over 10,000 cycles, there is no discernible difference in the ability of the plates 

to withstand the load. (Figure 7)  

 

3.2. Stiffness Evaluation 

Table 2, however, showed that the conventional reconstruction plate had statistically 

significant results compared to the other two plates. When each plate was analyzed one-

on-one, the conventional reconstruction plate demonstrated significant results against both 

the spring plate and the variable angle plate, indicating that the stiffness of the conventional 

reconstruction plate is stronger than the other two. However, no significant difference in 

stiffness was found between the variable angle plate and the spring plate (Figure 8, 9). 

 

3.3. Fatigue Performance 

Statistical analysis of the fatigue values for each plate showed no significant 

differences among the three types of plates (Figure 10).  This indicates that there were no 

discernible differences in the material properties and design of the plates when subjected 

to repeated loads of 1500 N over 10,000 cycles. Fatigue results showed no significant 
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differences, and it was decided to proceed accordingly. There was a cyclic test failure in 

one model using 2.7 mm LCP VA plate out of a total of 12 hemipelvis. An obvious porosity 

was observed in the evaluation of the surgeon who conducted the experiment. We assumed 

this to be the cause of the cyclic test failure. 

 

 

Figure 7. The mean fracture gap of each plate in cyclic test protocol. plates are subjected to a force of 1500 N 

over 10,000 cycles and the experiment was concluded when displacement exceeded 2 mm. ANOVA analysis 

revealed no statistically significant differences when comparing the conventional reconstruction plate with the 

spring plate, the spring plate with the variable angle plate, or when all three were compared together 

*, **, ***, ns: significant at p-value ≤ 0.05, 0.01, 0.001, or not significant, respectively. 
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Figure 8. A qusai-static loading testing for each type of plate. Using quasi-static loading, we measured the force 

applied to each plate until mechanical failure, defined as the point at which the compression force and the 

plate’s buttress force deviated from linear behavior. The conventional reconstruction plate demonstrated 

significant results against both the spring plate and the variable angle plate. 

*, **, ***, ns: significant at p-value ≤ 0.05, 0.01, 0.001, or not significant, respectively. 
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Figure 9. A fatigue study for each type of plate. The fatigue of the plate is defined as the difference between 

the gap at the endpoint and the starting point. The starting point is the difference between the gap at 1500 N 

and the gap at free load, while the endpoint is the difference in the interfragment gap at the end of 10,000 cycles 

and is set as the e value. 

*, **, ***, ns: significant at p-value ≤ 0.05, 0.01, 0.001, or not significant, respectively. 
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Figure 10. Average displacement of plates during the cyclic test. Each type of plate is subjected to a force of 

1500 N over 10,000 cycles. We compared and analyzed the degree of displacement in 500 units of the cycle. In 

total, four hemipelves were used for each type of plate, but a failure occurred in one of the models of the spring 

plate, so the spring plate has only three results. 
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Table 1. The mean fracture gap observed in experiments 

Group Mean (mm) SD* SEM† 

RP‡ 2.37 1.04 0.42 

SP§ 2.51 1.42 0.63 

VA∥ 2.16 1.75 1.24 

Group vs Group p -value 95% CI¶ 

RP : SP 0.87 -1.93 – 1.67 

RP : VA 0.89 -10.34 – 10.78 

SP : VA 0.83 --7.47 – 8.18 

   
* Standard Deviation 
† Standard error of the mean 
‡ Reconstruction plate. 
§ Spring plate 

∥Variable angle plate 

¶ Confidence Interval 

 
 

Table 2. Load failure testing 

Group Mean (N)  SD* SEM† 
RP‡ 1855.47  509.43 207.93 
SP§ 1111.79 592.6 264.55 

VA∥ 1007.72  260.85 116.45 

Group vs Group p -value 95% CI¶ 
RP : SP 0.05  -32.96 – 1520.31 
RP : VA 0.01  293.98 – 1401.51 
SP : VA 0.73  -620.57 – 828.72 

 
* Standard Deviation 
† Standard error of the mean 
‡ Reconstruction plate. 
§ Spring plate 
∥Variable angle plate 
¶ Confidence Interval  
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4. Discussion 
 

Posterior wall fractures are notably difficult to reduce and the success of surgical 

outcomes is heavily reliant on the quality of reduction rather than merely on the choice of 

fixation hardware [41-43]. Factors such as marginal impaction, femoral head chondral 

injury, and labral damage also significantly influence outcomes [44]. This study aimed to 

evaluate different reduction methods for the most commonly observed type of acetabular 

fractures. All fracture models were uniformly created and reduced without any instances of 

screw penetration, with variations solely based on the types of plates and screws used. 

The conventional reconstruction plate demonstrated superior stiffness compared to the 

spring and variable angle plates, which showed no significant differences between them. 

Despite using screws of different diameters (2.7 mm for VA and 3.5 mm for spring plates), 

the strength and footprint size of the plates were comparable, suggesting that further 

investigation is needed to understand the impact of screw diameter on bone fixation 

strength. 

In a secondary experiment, we subjected the same fracture model and fixation 

methods to a 10,000-cycle load of 1500 N, mimicking the force exerted by a 75 kg patient 

standing on one leg [45]. No significant differences were found among the groups, 

suggesting that under consistent load, the type of fixation does not compromise the stability 

of the implant during rehabilitation [46]. However, failures in cyclic testing were noted 

with the variable angle plate in older cadavers with osteoporotic bone, hinting at a potential 

reduction in fixation strength due to smaller screw diameters [26]. This underscores the 

necessity for further research into the effects of screw diameter on fixation strength in 

different bone qualities. 

The fatigue analysis from cyclic testing did not reveal any significant differences in 

gap formation at the fracture site before and after testing, although gaps appeared during 
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the cycles. For instance, the midpoint and endpoint gaps at the 10th and 9990th cycles 

showed fluctuations, which were statistically analyzed to assess the fatigue resistance of 

each plate. No significant differences in fatigue were observed, indicating that all plates 

maintained stability throughout the cycles, an important consideration for postoperative 

rehabilitation timing. 

Furthermore, our study draws comparisons with previous studies such as by F. Pease 

[28], who evaluated different fixation strategies. Although Pease's study used Sawbones 

and showed different outcomes, the findings in our cadaver study suggest the need for 

additional research on the VA LCP plate, which might outperform traditional lag screws. 

Clinical relevance is also supported by studies such as those by Abo Elsoud et al. and 

Kang et al., which have shown promising in vivo results for the stability of these plates, 

with most patients achieving union and excellent functional outcomes [47,48]. This is 

corroborated by our findings from the VA-LCP plate study [26], which also reported 

successful outcomes without complications. 

However, the study faces limitations such as the variability in bone quality and the 

potential presence of osteoporosis in two hemipelvises, reflective of the aging population 

in Korea and the advanced age of the cadavers, which may compromise experimental 

validity. Additionally, the use of a saw to create the fracture model and direct loading via 

the Jig may not fully replicate clinical scenarios, potentially skewing results towards 

mechanical rather than clinical outcomes. 

Despite these challenges, this study is the first biomechanical evaluation of the 2.7 

mm LCP VA plate, providing valuable insights into the biomechanical performance of 

different fixation methods for posterior wall fractures. This contributes significantly to our 

understanding of these fractures and aids in improving surgical strategies for these complex 

injuries.     
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5. Conclusions 
 

In conclusion, our findings demonstrate that while the conventional reconstruction 

plate exhibited superior stiffness, there were no significant differences in performance 

under cyclic loading conditions among the three plate types. This suggests that all three 

surgical options - conventional reconstruction, spring, and variable angle plates - provide 

sufficient stability for postoperative rehabilitation, assuming that patients avoid excessive 

activities. This study supports the continued use of the conventional reconstruction plate 

due to its proven stability, making it a reliable choice for surgical interventions. 

Additionally, the variable angle and spring plates also proved effective for fragment-

specific fixation, ensuring adequate stability for these specific surgical procedures. Overall, 

each method has its merits, allowing for tailored surgical approaches based on patient needs 

and specific fracture characteristics. 
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Abstract in Korean 

 

사체 연구를 통한 골반골 비구 후벽 골절의 고정법의  

생역학적 연구 

 

비구 골절은 비교적 드물게 발생하지만 고에너지 외상과 연관되어 치료에 상당한 

어려움을 초래하며 예후도 좋지 않은 경우가 많습니다. 이 중 비구 후벽 골절은 가장 흔한 

유형으로 다른 유형에 비해 예후가 비교적 양호한 편입니다. 후벽의 해부학적 정복을 통한 

연골의 회복과 안정적인 고정은 최적의 치료 결과를 얻기 위한 필수적인 요건입니다.   

본 연구는 비구 후벽 골절에 대한 세 가지 주요 고정 방법(재건 플레이트, 스프링 

플레이트, 2.7mm 가변 각도 잠금 압박 플레이트)의 생체역학적 성능을 비교하는 것을 

목적으로 합니다. 연구에는 6 구의 신선 동결 사체가 사용되었으며 이전에 외상이나 수술 

병력이 없는 12 개의 반골반을 분석 대상으로 하였습니다. 단순 비구 후벽 골절 모델을 

이용해 세 가지 고정 방법을 비교하였으며 한 명의 정형외과 전문의가 플레이트 고정을 

시행하였습니다. 반골반은 준정적 및 반복 하중 테스트를 통해 골절 간격, 강성 및 하중 

조건에서의 변위를 측정하였습니다. 반복 하중 조건에서는 세 가지 고정 방법 간 골절 

간격에서 유의미한 차이가 나타나지 않았습니다. 그러나 제건 플레이트는 스프링 

플레이트는 스프링 플레이트와 가변 각도 잠금 압박 플레이트보다 더 높은 강성을 

보였습니다. 피로 분석 결과, 세 가지 플레이트 간 유의미한 차이는 나타나지 않았으며 

반복 하중 조건에서도 유사한 안정성을 보였습니다. 강성의 차이에도 불구하고, 세 가지 

고정 방법 모두 하중 조건에서 적절한 안정성을 입증하였습니다.  

본 연구 결과는 비구 후벽 골절에 대한 다양한 고정 방법의 생체역학적 성능 이해에 

기여하며, 복잡한 수술에서 플레이트 선택의 다양성에 도움을 줄 수 있습니다.  

 

____________________________________________________________________________ 

핵심되는 말 : 생역학적 연구, 비구, 후벽 골절, 가변 각도 플레이트  
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