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ABSTRACT 

Development of clinically validated artificial intelligence model for 

detecting ST-segment elevation myocardial infarction 
 

Background and aim: Although the importance of primary percutaneous coronary intervention 

(PCI) has been emphasized for ST-segment elevation myocardial infarction (STEMI), the 

appropriateness of the cardiac catheterization laboratory (CCL) activation remains suboptimal. This 

study aimed to develop a precise artificial intelligence (AI) model for diagnosis of STEMI and 

accurate CCL activation. 

Methods: We used electrocardiography (ECG) waveform data from a prospective PCI registry in 

Korea in this study. Two independent board-certified cardiologists confirmed the true label of each 

ECG based on corresponding coronary angiography data. A deep ensemble model was developed 

by combining five convolutional neural networks. Clinical validation based on a symptom-based 

ECG dataset, comparisons with clinical physicians, and external validation were performed. 

Additive benefit on top of the critical pathway for detection of STEMI was evaluated. ECGs were 

visualized by the Gradient-weighted Class Activation Mapping (Grad-CAM) for assessment of 

model explainability. 

Results: A total of 18,697 ECGs were used for the model development dataset and 1,745 (9.3 %) 

were STEMI. The AI model achieved an accuracy of 92.1 %, sensitivity of 95.4 % and specificity 

of 91.8 %. The performances of the AI model were well-balanced and outstanding in the clinical 

validation, comparison with clinical physicians, and the external validation. The AI model correctly 

re-classified 31.6 % of patients who incorrectly diagnosed as STEMI. 

Conclusions: The deep ensemble AI model showed a well-balanced and outstanding performance. 

As visualized with the Grad-CAM, the AI model has a reasonable explainability. 

 

 

 

 

                                                                                

Key words : STEMI, electrocardiography, deep ensemble model
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1. INTRODUCTION 

ST-segment elevation myocardial infarction (STEMI) is a fatal cardiovascular condition usually 

caused by the obstruction of the coronary artery, characteristically presenting as an elevation of the 

ST-segment on electrocardiography (ECG). With the advent of reperfusion therapy, particularly 

primary percutaneous coronary intervention (PCI), mortality rates associated with STEMI have 

markedly improved. Consequently, timely activation of the cardiac catheterization laboratory (CCL) 

for primary PCI is of paramount importance, as emphasized by current STEMI management 

guidelines. 1-3 

 

However, the diagnostic landscape is fraught with challenges. Various medical conditions, 

distinct from STEMI, can also manifest as an elevation of the ST-segment on ECG, causing 

unnecessary activation of the CCL. 4-6 The inappropriate CCL activation is further exacerbated by 

the misinterpretation of both ECG machines and clinicians. Alarmingly, the misinterpretation rate 

of STEMI ranges from 14% to 36% and patients with CCL cancellation were reported to be 

associated with a higher rate of comorbidities and mortality. 7-11 In addition, considering the 

complications associated with emergent invasive coronary angiography, such as access site bleeding 

or vascular injury, an accurate differential diagnosis is important, which may affect clinical 

outcomes. 12 In this context, several artificial intelligence (AI)-based algorithms for detecting 

STEMI have been developed; however, these studies have several limitations, including a limited 

number of ECGs, exclusive inclusion of ECGs with normal sinus rhythm, and absence of 

corresponding coronary angiography results. 13-20  

 

Hence, we aimed to develop an AI-based model for accurate STEMI diagnosis with clinical 

relevance in this study. 

 

2. METHOD 

2.1 Study Design and Setting 

We identified all patients older than 19 years old who underwent PCI at the Severance Hospital 

(Seoul, South Korea) between 2006 and 2020 from a prospective multicenter PCI registry (Korean 



２ 

 

Multicenter Angioplasty Team [KOMATE] registry, NCT03908463). The major exclusion criteria 

were as follow: 1) absence of coronary angiography data or 2) absence of an adequate ECG 

performed within 24 hours of PCI. Eligible ECGs were classified into two groups (the STEMI or 

Not-STEMI groups) at the discretion of two independent board-certified cardiologists.  

 

According to the current guidelines for the management of STEMI, STEMI was identified by at 

least two contiguous leads with an ST-segment elevation of ≥ 2.5 mm in men aged < 40 years, ≥ 2.0 

mm in men aged ≥ 40 years, or ≥ 1.5 mm in women in leads V2–3 and ≥ 1 mm in the other leads. 2,3 

ECGs meeting the criteria were determined to be STEMI when a significant coronary artery stenosis 

that was compatible with the location of ST-segment elevation was detected in coronary angiography. 

Furthermore, patients in whom an abnormal finding, such as spontaneous coronary artery dissection, 

resulting flow limitation and coronary stent implantation was identified in coronary angiography 

were also determined to be STEMI. In case that the decisions from the two cardiologists were not 

identical, the group allocation was made after further discussion with a third investigator. All ECGs 

not identified as STEMI were allocated to the Not-STEMI group. 

 

This study was approved by the Institutional Review Board of Yonsei University, which waived 

the requirement for informed consent owing to the retrospective nature of this study. The Transparent 

Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) 

statement was followed in this study for ensuring the appropriateness of study design. 

 

2.2 Data Collection 

Standard 12-lead ECG waveform records, which had 10 seconds record with a 500 Hz sampling, 

and the corresponding computer-based interpretation information were extracted from the MUSE 

Cardiology Information System (GE HealthCare, Chicago, IL, USA) of Yonsei University Health 

System. We used data from eight leads (Leads I, II, and V1–6), as the data of remaining leads were 

calculated using a linear combination of those leads according to the nature of the ECG. 21 The 

detailed process for data specification is presented in APPENDICES (Eligible Data Specification). 

 

The model development dataset consisting of eligible ECGs were divided into three separate 

datasets (training, internal validation, and test sets). The training and internal validation sets were 
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randomly constructed from ECGs collected between 2006 and 2019 in a 9:1 ratio, while the test set 

consisted of ECGs collected in 2020 (Fig. 1). 

 

 

Figure 1. The model development dataset 

Note: ECGs from patients who underwent percutaneous coronary intervention in Severance 

Hospital from the KOMATE registry were included for the model development dataset and were 

divided into three different datasets (training, internal validation, and test sets). Abbreviation: ECG, 

electrocardiography; KOMATE, Korean Multicenter Angioplasty Team; STEMI, ST-segment 

elevation myocardial infarction. 
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2.3 Development and Evaluation of the AI Model 

For developing an AI model to classify ECG data into the STEMI or Not-STEMI groups without 

additional preprocessing, we employed a convolutional neural network (CNN)-based ensemble 

algorithm. The structure of the CNN was based on a previous model for identifying age and sex 

based on 12-lead ECG with additional hyperparameters and simplified layers. 22-24 During training, 

the model minimized Binary Cross Entropy Loss to align its classified outputs with actual labels, 

adjusting the neural network to learn ECG features for each STEMI class. To address class 

imbalance, we assigned class-specific weights to the loss function based on STEMI proportion in 

the training set. The simplest CNN architecture with the highest area under the precision-recall curve 

(AUPRC) value on the internal validation set was selected. An ensemble model was generated by 

combining five CNNs, averaging their outputs and determining a cutoff value maximizing Youden’s 

index, which is calculated as (Sensitivity + Specificity - 1). 25,26 This ensemble model produced 

binary outcomes (1 for STEMI, 0 for Not-STEMI). The detailed process is illustrated in 

APPENDICES (Details of Model Development).  

 

In this study, we evaluated the model performance in terms of accuracy, sensitivity, and specificity. 

Furthermore, to evaluate the reliability of the AI models, calibration plots were generated, visually 

confirming whether the model output scores, ranging from 0 to 1, accurately reflect the proportion 

of ECGs having true STEMI labels. 27 Alignment with the diagonal reference line on the calibration 

plot implies the perfect agreement between the model output scores and proportion of true labels, 

suggesting high reliability of the AI model. 

 

To compensate the black-box phenomenon, which is an inevitable limitation of deep neural 

network, we generated the Gradient-weighted Class Activation Mapping (Grad-CAM) plots to 

visualize the explainability of the developed AI model. 28,29 A localization map highlighting the ECG 

segments of interest to the AI model was presented in the Grad-CAM using a gradient of the final 

convolutional layers. 

 

2.4 Statistical Analyses 

Continuous variables are presented as medians with interquartile ranges, and categorical variables 

are presented as numbers with percentages. The variables were compared using the Mann–Whitney 
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U test for continuous variables, and the chi-square or Fisher’s exact test was used for categorical 

variables, as appropriate. For evaluating the interrater reliability of development data, we calculated 

the Cohen’s kappa score based on the decisions of the two cardiologists. 30 The bootstrap resampling 

method was used to calculate the 95% confidence intervals (CIs) of the area under the receiver 

operating characteristic curve (AUROC) and AUPRC. 31 The two-tailed P-value was computed and 

P-value < 0.05 was considered statistically significant. Python (Python Software Foundation) was 

used for all analyses in this study. 

 

2.5 Performance of Clinical Physicians 

In the real-world practice, even though the current commercial ECG machine provides a 

diagnostic result of STEMI, clinical physicians eventually make decision for diagnosis of STEMI. 

Therefore, the assessment of the AI model should include a comparison with clinical physicians. In 

this study, we recruited three second-year residents in training for internal medicine in order to 

evaluate their STEMI diagnosis performance. We randomly selected a total of 300 different ECGs 

from the test set while maintaining the prevalence of STEMI. The physicians were blinded to the 

prediction results from either the AI model or the ECG machine and independently determined 

whether provided ECGs were STEMI or not. 

 

2.6 Clinical Validation 

To evaluate the real-world efficacy of the AI model, we performed a clinical validation using 

ECGs from patients with chest pain who visited the emergency department of Severance Hospital 

in 2020, regardless of PCI implementation (Fig. 2). The clinical validation set consists of adequate 

ECGs within 48 hours of emergency department arrival. The true labels for ECGs in the clinical 

validation set were determined in the same way to the model development dataset. In case that 

coronary angiography data was not available, the decision was made based on the clinical decision 

considering the result of other exams, such as computed tomography or echocardiography. 
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Figure 2. The clinical validation set 

Note: Electrocardiography from patients who visited the emergency department with chest pain was 

included for the clinical validation set. Abbreviation: STEMI, ST-segment elevation myocardial 

infarction. 

 

2.7 Additive Benefit of the AI Model 

The eventual aim of the AI model is to support clinical physicians for precise diagnosis of STEMI. 

For evaluating the additive benefit of the AI model, we assessed the expected changes in clinical 

decision resulted from the AI model using a critical pathway (CP) cohort. In Severance Hospital, 

there is a CP for the rapid diagnosis of STEMI and subsequent activation of CCL. The CP is activated 

by an agreement of two physicians in the emergency department. For this analysis, we analyzed 

patients in whom the CP was activated from 2007 to 2020 (Fig. 3). The true STEMI labels were 

reviewed in the same way to the clinical validation set. Then, the proportions of patients in whom 

the decisions were changed by the AI model were evaluated. 
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Figure 3. The critical pathway cohort 

Note: Electrocardiography from patients in whom the critical pathway was activated were included 

for the critical pathway cohort. Abbreviation: STEMI, ST-segment elevation myocardial infarction. 

 

2.8 External Validation 

For external validation of the AI model, we used a publicly available ECG dataset in this study, 

which is the PTB-XL. 32,33 As validated in the previous study using the PTB-XL, ECGs annotated 

to acute myocardial infarction in the PTB-XL were reviewed by the two cardiologists and those that 

were considered STEMI were included in the external validation set. 34 

 

3. RESULTS 

3.1 Baseline Characteristics of Study Population 

The CONSORT diagram for the model development dataset is shown in Fig. 1. Among the 30,133 

PCIs performed in Severance Hospital from the KOMATE registry, 2,609 ECGs were excluded 

because of the absence of either coronary angiography or ECG data. In addition, 8,827 ECGs were 

excluded because they were performed > 24 h apart from the PCI or had inadequate quality for 

model development. Finally, 18,697 ECGs were eligible, of which 1,745 (9.3 %) were classified as 

STEMI (Fig. 1). For the model development dataset, the Cohen’s kappa score was 0.848 (Table 1). 
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Table 1. Interrater agreement for the model development dataset 

  Rater 1 

  STEMI Not-STEMI Total 

Rater 2 

STEMI 1,655 222 1,877 

Not-STEMI 299 16,521 16,820 

Total 1,954 16,743 18,697 

Note: The decisions by the two cardiologists for the model development dataset are presented. The 

Cohen’s kappa score is 0.848 accordingly. Abbreviation: STEMI, ST-segment elevation myocardial 

infarction. 

 

The baseline characteristics for the model development dataset is presented in Table 2. ECGs 

included in the STEMI group were associated with patients who were more likely to be younger (64 

years vs. 66 years), male (78.3 % vs. 72.4 %), have a lower body mass index (24.2 kg/m2 vs. 24.4 

kg/m2), and be current smokers (35.0 % vs. 19.4 %) than those included in the Not-STEMI group. 

The STEMI group was associated with lower proportions of comorbidities, such as hypertension 

(51.9 % vs. 66.0 %), diabetes (29.2 % vs. 37.0 %), and dyslipidemia (54.6 % vs. 76.0 %), than the 

Not-STEMI group. The proportions of patients with prior PCI (15.5 % vs. 27.6 %) and coronary 

artery bypass graft surgery (0.6 % vs. 3.4 %) were lower in the STEMI group than in the Not-STEMI 

group. Plasma hemoglobin (14.4 mg/dL vs. 13.7 mg/dL), platelet count (244,000 /μL vs. 225,000 

/μL), and serum creatinine (0.99 mg/dL vs. 0.91 mg/dL) levels were higher in the STEMI group than 

in the Not-STEMI group. 

 

Table 2. Baseline characteristics for the model development dataset 

 
STEMI 

(N=1,745) 

Not-STEMI 

(N=16,952) 
P-value 

Age, yr. 64 (53–72) 66 (58–73) <0.001 

Male 1,367 (78.3) 12,273 (72.4) <0.001 

Body mass index, kg/m2 24.2 (22.3–26.3) 24.4 (22.6–26.4) 0.002 

Hypertension 905 (51.9) 11,177 (66.0) <0.001 
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Diabetes 510 (29.2) 6,266 (37.0) <0.001 

Dyslipidemia 952 (54.6) 12,870 (76.0) <0.001 

Atrial fibrillation 89 (5.1) 700 (4.1) 0.063 

Current smoker 611 (35.0) 3,297 (19.4) <0.001 

Prior PCI 270 (15.5) 4,680 (27.6) <0.001 

Prior CABG 11 (0.6) 583 (3.4) <0.001 

Prior MI 181 (10.4) 1,386 (8.2) 0.002 

Pacemaker 1 (0.1) 64 (0.4) 0.051 

Bundle branch block   0.002 

LBBB 32 (1.8) 162 (1.0)  

RBBB 85 (4.9) 740 (4.4)  

None 1,627 (93.3) 15,986 (94.7)  

Hemoglobin, g/dL 14.4 (13.0–15.6) 13.7 (12.4–14.9) <0.001 

Platelet count, /μL 
244,000 

(197,000–297,000) 

225,000 

(188,000–268,000) 
<0.001 

Serum creatinine, mg/dL 0.99 (0.84–1.20) 0.91 (0.78–1.09) <0.001 

Note: Data are presented as medians (interquartile ranges) or numbers (%). Abbreviation: CABG, 

coronary artery bypass graft; ECG, electrocardiography; LBBB, left bundle branch block; MI, 

myocardial infarction; PCI, percutaneous coronary intervention; RBBB, right bundle branch block; 

STEMI, ST-segment elevation myocardial infarction. 

 

3.2 Performance Assessment of the AI Model 

For the deep ensemble, the cut-off value of the model output scores was optimized at 0.0768 by 

which the Youden’s index was maximized (Fig. 4). While the deep ensemble outperformed the single 

neural network in terms of AUROC (0.979 [0.969–0.988] vs. 0.973 [0.960–0.984]; P=0.007), the 

deep ensemble showed an AUPRC value comparable to that of the single neural network (0.870 

[0.817–0.914] vs. 0.850 [0.796–0.898]; P=0.062) (Table 3). The calibration plots of the single neural 

network and deep ensemble models are presented in Fig. 5. 
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Figure 4. Model architecture of the deep ensemble model 

Note: The architecture of the deep ensemble model consisted of five single convolutional neural 

networks, each trained using the same architecture with different random seeds and dropout. Each 

individual network used ECG waveforms as inputs, recorded at 500 Hz for 10 s with eight leads. 

After passing through the convolutional neural network, the softmax function generates outputs, 

ranging from 0 to 1, for the two labels, 1 for ‘STEMI’, 0 for ‘Not-STEMI’. The ensemble averaged 

the outputs across five networks as model output score, and then compared them with a 

predetermined cut-off to classify the presence of STEMI. Abbreviation: ECG, electrocardiography; 

STEMI, ST-segment elevation myocardial infarction. 
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Table 3. Comparison between the single neural network and deep ensemble model for the 

internal validation set 

 Single neural network Deep ensemble P-value 

AUROC 0.973 (0.960–0.984) 0.979 (0.969–0.988) 0.007 

AUPRC 0.850 (0.796–0.898) 0.870 (0.817–0.914) 0.062 

Note: The values of AUROC and AUPRC with 95% confidence intervals are presented. P-value 

indicates comparisons between the single neural network and deep ensemble models. Abbreviation: 

AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating 

characteristic curve. 

 

 

Figure 5. Calibration plots for the single neural network and deep ensemble models 

Note: For the internal validation set, the proportions of ECGs having true STEMI labels are 

presented with 95% confidence intervals according to the stratified model output scores. The I bars 

indicate the 95% confidence intervals of the proportions. The deep ensemble model had better 

alignment with the diagonal reference line (dashed line) than did the single neural network model. 

Abbreviation: ECG, electrocardiography; STEMI, ST-segment elevation myocardial infarction. 
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3.3 Performance Comparison between the AI Model, ECG Machine, 

and Clinical Physicians 

The AI model had AUROC of 0.981 and AUPRC of 0.913 in the test set while achieving an 

accuracy of 92.1 %, sensitivity of 95.4 %, and specificity of 91.8 % (Youden’s index 0.872) (Fig. 6 

and Table 4). Meanwhile, the commercial ECG machine achieved an accuracy of 94.6 %, sensitivity 

of 60.5 %, and specificity of 98.3 % (Youden’s index 0.588). Clinical physicians achieved an 

accuracy of 79.6 %, sensitivity of 81.1 %, and specificity of 77.4 % in average (Youden’s index 

0.585) (Fig. 6 and Table 4). 

 

 

Figure 6. The performances of the AI model, ECG machine algorithm, and clinical physicians 

Note: The receiver operating characteristic curve and the selected interpretation point of the AI 

model are presented (Red line and red star) with the performance of the ECG machine algorithm 

(Green star) and clinical physicians (Blue star). Abbreviation: AI, artificial intelligence; ECG, 

electrocardiography. 
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Table 4. Performances of the AI model, the ECG machine algorithm, and the clinical 

physicians 

  Accuracy Sensitivity Specificity 

Test set 

AI model 92.1 % 95.4 % 91.8 % 

ECG machine 94.6 % 60.5 % 98.3 % 

Clinical physicians 79.6 % 81.1 % 77.4 % 

Clinical validation 
AI model 89.3 % 95.0 % 89.1 % 

ECG machine 96.9 % 60.0 % 98.3 % 

External validation AI model 97.6 % 83.3 % 97.9 % 

Note: The performances of three different diagnostic systems were presented. The performances of 

clinical physicians were assessed on a dataset consisting of 300 ECGs randomly selected from the 

test set. The external validation was performed using the PTB-XL dataset. Abbreviation: AI, 

artificial intelligence; ECG, electrocardiography. 

 

3.4 The Grad-CAM 

Examples of Grad-CAM for ECGs accurately predicted as STEMI or Not-STEMI are presented 

in Fig. 7, highlighting ECG segments with higher contribution and relevance to the model’s 

predictive performance. 

 

Figure 7. Examples of Grad-CAM 
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Note: (A) True positive and (B) true negative examples of Grad-CAM are presented. The degree of 

contribution of each ECG segment is highlighted in the Grad-CAM. ST and T segments are mainly 

considered a recognition feature as highlighted. Abbreviation: ECG, electrocardiography; Grad-

CAM, gradient-weighted class activation mapping. 

 

3.5 Clinical Validation 

A total of 2,699 ECGs, which were 5.2 % of the total patients visited emergency department in 

2020, were included in the clinical validation set and the prevalence of STEMI was 3.7 % among 

them (Fig. 2). The baseline characteristics of patients in the clinical validation set are presented in 

Table 5. Among 2,599 Not-STEMI patients in the clinical validation set, 283 (10.9 %) patients were 

identified as STEMI by the AI model. The final diagnoses for those patients are presented in Table 

6. 

 

Table 5. Baseline characteristics of the clinical validation set 

 STEMI (N=100) Not-STEMI (N=2,599) P-value 

Age, yr. 63 (54–70) 60 (44–72) 0.031 

Male 79 (79.0) 1,458 (56.1) <0.001 

Body mass index, kg/m2 25.1 (22.9–27.5) 23.9 (21.9–26.4) 0.005 

Hypertension 21 (21.0) 908 (34.9) 0.006 

Diabetes 13 (13.0) 489 (18.8) 0.182 

Dyslipidemia 13 (13.0) 650 (25.0) 0.009 

Atrial fibrillation 4 (4.0) 263 (10.1) 0.066 

Current smoker 30 (30.0) 98 (3.8) <0.001 

Prior PCI 10 (10.0) 291 (11.2) 0.833 

Prior CABG 0 (0.0) 7 (0.3) >0.999 

Prior MI 7 (7.0) 186 (7.2) >0.999 

Pacemaker 1 (1.0) 19 (0.7) 0.531 

Bundle branch block   0.745 

LBBB 2 (2.0)    35 (1.4)  

RBBB 3 (3.0)   101 (3.9)  
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None 94 (94.9)  2,444 (94.7)  

Hemoglobin, g/dL 13.9 (12.7–14.9) 13.9 (12.8–15.0) 0.776 

Platelet count, /μL 
231,000 

(191,000–263,000) 

242,000 

(202,000–284,000) 
0.112 

Serum creatinine, mg/dL 0.80 (0.72–1.04) 0.81 (0.68–0.95) 0.530 

Note: Data are presented as medians (interquartile ranges) or numbers (%). Abbreviation: CABG, 

coronary artery bypass graft; ECG, electrocardiography; LBBB, left bundle branch block; MI, 

myocardial infarction; PCI, percutaneous coronary intervention; RBBB, right bundle branch block; 

STEMI, ST-segment elevation myocardial infarction. 

 

Table 6. Final diagnosis in patients with false-positive prediction in the clinical validation set 

Category of final diagnosis Number of patients 

Cardiac cause 166 

NSTE-ACS 80 

Arrhythmia 43 

Cardiomyopathy 22 

Perimyocarditis 11 

Other cardiac 10 

Extracardiac cause 77 

Gastrointestinal disorder 37 

Chest wall pain 23 

Pleuritic pain 17 

Systemic cause 40 

Hyperventilation or panic disorder 20 

Ethanol intoxication 12 

Sepsis 5 

Contrast allergy 2 

Seizure 1 

Total 283 

Abbreviation: NSTE-ACS, non-ST-segment elevation acute coronary syndrome 
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For the clinical validation, the AI model achieved an accuracy of 89.3 %, a sensitivity of 95.0 %, 

and a specificity of 89.1 %, while AUROC was 0.978 (0.959–0.992), and AUPRC was 0.808 (0.718–

0.893) (Table 4 and Fig. 8). Meanwhile, the ECG machine achieved an accuracy of 96.9 %, 

sensitivity of 60.0 %, and specificity of 98.3 % in the clinical validation set (Table 4). 

 

 

Figure 8. Receiver operating characteristic and precision-recall curves of the developed model 

Note: (A) Receiver operating characteristic and (B) precision-recall curves are presented with the 

AUROC, AUPRC values and 95% confidence intervals. Abbreviation: AUPRC, area under the 

precision-recall curve; AUROC, area under the receiver operating characteristic curve 

 

3.6 Additive Benefit in the Critical Pathway Cohort 

A total of 3,307 ECGs from 2007 to 2020 were included in the CP cohort (Fig. 3). Among them, 

1,640 (49.6 %) ECGs were identified to be Not-STEMI. Meanwhile, the AI model reclassified 518 

patients, in whom the CP was inappropriately activated, to Not-STEMI, while 34 patients with true 

STEMI labels were reclassified to Not-STEMI (Table 7). 
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Table 7. The confusion matrix for the AI model for the CP cohort 

 

True label 

STEMI Not-STEMI Total 

AI model 

prediction 

STEMI 1,633 1,122 2,755 

Not-STEMI 34 518 552 

Total 1,667 1,640 3,307 

Note: The prediction of the AI model for the CP cohort is presented. Among 1,640 patients in whom 

the CP were inappropriately activated, 518 (31.6 %) patients were reclassified to Not-STEMI. 

Abbreviation: AI, artificial intelligence; CP, critical pathway; STEMI, ST-segment elevation 

myocardial infarction. 

 

3.7 External Validation 

For the external validation set consisted of 5,991 ECGs with “Normal” annotation and 79 STEMI 

ECGs, the AI model achieved an accuracy of 97.6 %, sensitivity of 83.3 %, and specificity of 97.9 % 

(Table 4). Meanwhile, AUROC of the AI model was 0.979 (0.963–0.992) and AUPRC was 0.680 

(0.577–0.774) in the external validation set (Fig. 8). 

 

4. DISCUSSION 

The AI model provided in this study based on the 12-lead ECG has several advantages over 

previous models. First, the AI model was trained and validated using a set of ECGs combined with 

real-world coronary angiography information to guarantee the accuracy of the true values. Second, 

a deep ensemble model was developed for a higher performance than that of a single model. Third, 

the clinical validation using a symptom-based ECG data and the external validation were performed 

to minimize the selection bias and the overfitting issue of the AI model. Fourth, the Grad-CAM 

implied the explainability of the AI model and compensated the black box phenomenon. Last, the 

possible additional benefit from the AI model was presented in this study using the CP cohort. 
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To develop an accurate AI model and avoid verification bias, an accurate true diagnosis should be 

guaranteed. Therefore, previous AI models for STEMI diagnosis had their own confirmation 

processes for true diagnoses by cardiologists or trained experts. 13-20 Similarly in the current study, 

two independent attending cardiologists confirmed the diagnosis using the coronary angiography 

data corresponding to each ECG. Furthermore, as the Cohen’s kappa score was over 0.8 and a senior 

cardiologist was involved in case of disagreement, the accuracy of the ECGs used for the 

development of the AI model was highly guaranteed. 

 

The AUROC value is inappropriate for assessing model performance, as it often leads to the 

overestimation of model performance in an imbalanced dataset. 35 Previous studies have primarily 

evaluated model performance using only the AUROC, along with corresponding sensitivity and 

specificity values. However, to address this limitation, we used the AUPRC, which represents a 

different trade-off between precision and recall, as a primary metric for model development as the 

prevalence of STEMI was less than 10% in the dataset. 14-16,18,19 Furthermore, because an overfitted 

model can make incorrect decisions for data not represented in the training set, we expanded the AI 

model to an ensemble of five independently trained neural networks. This decision was made 

because the deep ensemble model has been reported to mitigate overfitting of the AI model 

compared to a single model. 21,36 Consequently, the calibration plot showed that the deep ensemble 

model had better alignment with the diagonal reference line compared to the single neural network. 

This improvement indicated enhanced calibration of the deep ensemble model compared to the 

single neural network. 

 

In this study, we compared the developed AI model with the ECG machine algorithm and the 

clinical physicians. Although the ECG machine algorithm showed an excellent accuracy and 

specificity, the sensitivity was not acceptable. Meanwhile, the clinical physicians had a higher 

sensitivity and a lower specificity compared to the ECG machine algorithm. In contrary, the AI 

model achieved well-balanced performance. As there is always a trade-off between sensitivity and 

specificity, the Youden’s index is usually measured as an overall metric for estimation of the AI 

model. 26 In this study, the AI model achieved the Youden’s index of 0.872, while the ECG machine 

algorithm achieved 0.588, and the clinical physicians achieved 0.585, which implies the AI model 

was evenly excellent algorithm for diagnosis of STEMI. 
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As the training data was limited in ECGs from patients who underwent PCI, the excellent 

performance from the data constructed for model development did not guarantee the performance 

from the real-world data. In this regard, we performed the clinical validation to evaluate predictive 

performance of the AI model in the data representing real-world practice. Even though the 

performance indices of the AI model were lower in the clinical validation set than in the test set, the 

values were still well-balanced compared to that from the ECG machine algorithm. Considering the 

difference in clinical characteristics between the training data and the clinical validation set, the 

clinical validation implies the probability for expanding the AI model to the real-world practice. 

Furthermore, the benefit of the AI model on top of previous clinical practice, which was represented 

by the CP, was elucidated in this study. As approximately a half of the decision by the CP was 

incorrect and induced inappropriate CCL activation, the AI model identified 31.6 % (518/1,640) of 

patients to be correctly reclassified to Not-STEMI, by which the AI model could prevent 

inappropriate CCL activation. Regarding the possibility of benefit reported in this study, further 

prospective validation should follow to elucidate real-world benefit of the AI model. 

 

As the detailed logical process is not elucidated, one of the most critical hurdles is the 

explainability of the result from the AI model. As observed in the Grad-CAM, the AI model 

recognizes a feature including the ST and T segments for identifying ECG, which is similar to what 

clinical physicians concentrate on based on the current STEMI guidelines. The model explainability 

is essential for achievement of clinical adherence for the AI model. Without the explainable rationale 

of the AI model, the clinical physicians might hesitate to accept the result from the AI model, 

resulting limitation of application to the real-world practice. With this regard, this study could 

support the further application of the AI model by providing the model explainability with the Grad-

CAM. 

 

5. CONCLUSION 

In conclusion, the developed deep ensemble model for the diagnosis of STEMI achieved 

outstanding and well-balanced performance in both a PCI registry and a symptom-based ECG set. 

The Grad-CAM also enhanced the explainability of the AI model and its alignment with real-world 
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practice. Further studies with prospective validation regarding clinical benefit in a real-world 

setting should be warranted. 
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APPENDICES 

1. Eligible Data Specification 

In this section, we specify the requirements for the electrocardiography (ECG) waveform data 

utilized in our model. The resting 12-lead ECG waveforms were collected from both emergency 

department, outpatient, and inpatient settings at Severance Hospital, Seoul, South Korea, using the 

MUSE Cardiology Information System (GE HealthCare, Chicago, IL, USA). ECG data points were 

subjected to both a high-pass filter (cut-off frequency, 0.16 Hz) and a low-pass filter (cut-off 

frequency, 150 Hz). An alternating current filter with a frequency of 60 Hz was applied. The standard 

12-lead ECG data were recorded at a 500 Hz sampling rate for 10 seconds, resulting in 5,000 samples, 

with amplitude values expressed in microvolts per lead. Notably, no further preprocessing was 

conducted, and data containing noise were not excluded from the analysis. 

 

2. Details of Model Development 

2.1 Input of the Model 

Each input datum was transformed into an 8 × 5000 matrix, where the first dimension represents 

spatial positions over leads, and the second represents temporal dimensions.  

 

2.2 Rationale of the Convolutional Neural Network (CNN) 

We utilized a CNN implemented using the Keras Framework with a TensorFlow backend. It 

includes one-dimensional convolutional layers with varying dilation rates, batch normalization, and 

activation layers to enhance receptive fields without increasing parameters, enabling the network to 

learn local and global patterns. A global average pooling layer followed by fully connected layers 

with dropout regularization and softmax activation was employed for class prediction. The model 

architecture was based on a previous CNN algorithm for ECG feature identification. 1 Unlike the 

reference model that diagnosed seven ECG abnormalities using residual blocks and complex 

parameters, we omitted residual blocks for the ST-segment elevation myocardial infarction (STEMI) 

identification task due to excessive complexity. Additionally, inspired by a model for estimating age 

and sex, we diversified the number of convolutional layers and kernel sizes, reduced max pooling, 
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and incorporated dilated convolutions to mitigate information loss while maintaining computational 

efficiency. 2 

 

2.3. Ensemble of CNNs 

An ensemble model was then derived from five independent deep neural networks with the same 

architecture. Each model was initialized with a unique random seed and trained separately using a 

batch size of 128, a learning rate of 0.001, and 50 epochs with the Adam optimizer and binary cross-

entropy loss function. Class weights of 5.3601 and 0.5514 were used to address class imbalance, 

and early stopping with a patience of 30 was applied. The model output score for the deep ensemble 

model was calculated as the average of the probabilities derived from the softmax function of the 

five neural networks. The cut-off for the model output score was then calculated to be 0.0768, 

maximizing Youden’s index using internal validation set. 

 

3. References for Appendices 

1.  Ribeiro AH, Ribeiro MH, Paixão GMM, et al. Automatic diagnosis of the 12-lead ECG using a 

deep neural network. Nat Commun. 2020;11:1760. 

2.  Attia ZI, Friedman PA, Noseworthy PA, et al. Age and Sex Estimation Using Artificial 

Intelligence From Standard 12-Lead ECGs. Circ Arrhythm Electrophysiol. 2019;12:e007284.  
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ABSTRACT IN KOREAN 

 

ST-분절 상승 심근경색에 대한 임상적으로 검증된 인공지능 

진단 모델의 개발 

 

배경 및 목적: ST-분절 상승 심근경색 (ST-segment elevation myocardial 

infarction, STEMI)에 대해 일차적 경피적 관상동맥 중재술 (percutaneous 

coronary intervention, PCI)이 강조되고 있지만, 적절한 심도자실 활성화가 이루어지

지 못하는 경우가 많다. 본 연구에서는 적절한 심도자실 활성화를 위해 인공지능 

(artificial intelligence, AI)을 이용한 STEMI 진단 모델을 개발하고 성능을 평가하고

자 한다.  

방법: 본 연구에서는 전향적 PCI 레지스트리에 등록된 환자들의 심전도 파형 정보를 

이용하였다. 두 명의 독립적인 심장내과 전문의가 환자의 관상동맥 조영술 결과를 기

반으로 각 심전도의 STEMI 여부를 확인하였다. 5개의 개별 합성곱 신경망 

(convolutional neural network, CNN)을 통합하여 딥 앙상블 모델 (deep ensemble 

model)을 개발하였다. 모델 성능 검증을 위해 증상-기반 데이터셋을 바탕으로 한 임

상 검증, 임상의와의 성능 비교, 원내 진료지침 (critical pathway, CP)과의 성능 비교, 

및 외부 검증을 시행하였다. 모델의 설명 가능성을 확인하기 위해 Grad-CAM 방법

을 이용해 시각화하였다. 

결과: 총 18,697 개의 심전도가 모델 개발에 사용되었으며, 이 중 1,745 (9.3 %) 개

의 심전도가 STEMI로 확인되었다. 개발된 AI 모델은 92.1 %의 정확도, 95.4 %의 민

감도 및 91.8 %의 특이도를 보였다. 임상 검증, 임상의와의 비교, 및 외부 검증에서 

AI 모델은 민감도 및 특이도 측면에서 균형 잡힌 성능을 보였다. AI 모델은 원내 CP

를 통해 STEMI로 잘못 확인된 환자 중 31.6 %를 비-STEMI로 재분류하였다. 

Grad-CAM을 통한 시각화에서는 심전도의 ST 분절이 강조되는 것이 확인되었다. 

결론: 본 연구를 통해 개발된 딥 앙상블 AI 모델은 균형 잡힌 높은 성능을 보였다. 

Grad-CAM에서의 ST 분절의 강조를 통해 본 AI 모델의 합리적인 설명 가능성을 
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확인하였다. 
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핵심되는 말: ST-분절 상승 심근경색, 심전도, 딥 앙상블 모델 
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