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ABSTRACT

Development of clinically validated artificial intelligence model for
detecting ST-segment elevation myocardial infarction

Background and aim: Although the importance of primary percutaneous coronary intervention
(PCI) has been emphasized for ST-segment clevation myocardial infarction (STEMI), the
appropriateness of the cardiac catheterization laboratory (CCL) activation remains suboptimal. This
study aimed to develop a precise artificial intelligence (AI) model for diagnosis of STEMI and
accurate CCL activation.

Methods: We used electrocardiography (ECG) waveform data from a prospective PCI registry in
Korea in this study. Two independent board-certified cardiologists confirmed the true label of each
ECG based on corresponding coronary angiography data. A deep ensemble model was developed
by combining five convolutional neural networks. Clinical validation based on a symptom-based
ECG dataset, comparisons with clinical physicians, and external validation were performed.
Additive benefit on top of the critical pathway for detection of STEMI was evaluated. ECGs were
visualized by the Gradient-weighted Class Activation Mapping (Grad-CAM) for assessment of
model explainability.

Results: A total of 18,697 ECGs were used for the model development dataset and 1,745 (9.3 %)
were STEMI. The Al model achieved an accuracy of 92.1 %, sensitivity of 95.4 % and specificity
of 91.8 %. The performances of the Al model were well-balanced and outstanding in the clinical
validation, comparison with clinical physicians, and the external validation. The Al model correctly
re-classified 31.6 % of patients who incorrectly diagnosed as STEMI.

Conclusions: The deep ensemble Al model showed a well-balanced and outstanding performance.

As visualized with the Grad-CAM, the Al model has a reasonable explainability.

Key words : STEMI, electrocardiography, deep ensemble model



1. INTRODUCTION

ST-segment elevation myocardial infarction (STEMI) is a fatal cardiovascular condition usually
caused by the obstruction of the coronary artery, characteristically presenting as an elevation of the
ST-segment on electrocardiography (ECG). With the advent of reperfusion therapy, particularly
primary percutaneous coronary intervention (PCI), mortality rates associated with STEMI have
markedly improved. Consequently, timely activation of the cardiac catheterization laboratory (CCL)
for primary PCI is of paramount importance, as emphasized by current STEMI management

guidelines. 3

However, the diagnostic landscape is fraught with challenges. Various medical conditions,
distinct from STEMI, can also manifest as an elevation of the ST-segment on ECG, causing
unnecessary activation of the CCL. #® The inappropriate CCL activation is further exacerbated by
the misinterpretation of both ECG machines and clinicians. Alarmingly, the misinterpretation rate
of STEMI ranges from 14% to 36% and patients with CCL cancellation were reported to be
associated with a higher rate of comorbidities and mortality. ™! In addition, considering the
complications associated with emergent invasive coronary angiography, such as access site bleeding
or vascular injury, an accurate differential diagnosis is important, which may affect clinical
outcomes. 2 In this context, several artificial intelligence (Al)-based algorithms for detecting
STEMI have been developed; however, these studies have several limitations, including a limited
number of ECGs, exclusive inclusion of ECGs with normal sinus rhythm, and absence of

corresponding coronary angiography results. 13-20

Hence, we aimed to develop an Al-based model for accurate STEMI diagnosis with clinical

relevance in this study.

2. METHOD
2.1 Study Design and Setting

We identified all patients older than 19 years old who underwent PCI at the Severance Hospital

(Seoul, South Korea) between 2006 and 2020 from a prospective multicenter PCI registry (Korean



Multicenter Angioplasty Team [KOMATE] registry, NCT03908463). The major exclusion criteria
were as follow: 1) absence of coronary angiography data or 2) absence of an adequate ECG
performed within 24 hours of PCI. Eligible ECGs were classified into two groups (the STEMI or
Not-STEMI groups) at the discretion of two independent board-certified cardiologists.

According to the current guidelines for the management of STEMI, STEMI was identified by at
least two contiguous leads with an ST-segment elevation of > 2.5 mm in men aged < 40 years, > 2.0
mm in men aged > 40 years, or > 1.5 mm in women in leads V2-3 and > | mm in the other leads. >
ECGs meeting the criteria were determined to be STEMI when a significant coronary artery stenosis
that was compatible with the location of ST-segment elevation was detected in coronary angiography.
Furthermore, patients in whom an abnormal finding, such as spontaneous coronary artery dissection,
resulting flow limitation and coronary stent implantation was identified in coronary angiography
were also determined to be STEMI. In case that the decisions from the two cardiologists were not
identical, the group allocation was made after further discussion with a third investigator. All ECGs

not identified as STEMI were allocated to the Not-STEMI group.

This study was approved by the Institutional Review Board of Yonsei University, which waived
the requirement for informed consent owing to the retrospective nature of this study. The Transparent
Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)

statement was followed in this study for ensuring the appropriateness of study design.

2.2 Data Collection
Standard 12-lead ECG waveform records, which had 10 seconds record with a 500 Hz sampling,

and the corresponding computer-based interpretation information were extracted from the MUSE
Cardiology Information System (GE HealthCare, Chicago, IL, USA) of Yonsei University Health
System. We used data from eight leads (Leads I, II, and V1-6), as the data of remaining leads were
calculated using a linear combination of those leads according to the nature of the ECG. ?' The

detailed process for data specification is presented in APPENDICES (Eligible Data Specification).

The model development dataset consisting of eligible ECGs were divided into three separate

datasets (training, internal validation, and test sets). The training and internal validation sets were



randomly constructed from ECGs collected between 2006 and 2019 in a 9:1 ratio, while the test set
consisted of ECGs collected in 2020 (Fig. 1).

Patients who underwent percutaneous coronary

intervention in Severance Hospital MUSE (GE HealthCare) database
from the KOMATE registry (2006-2020) in Yonsei University Health System
N=30,133

[ I

2,609 Excluded
2,483 Absence of coronary angiography data
126 Absence of ECG data in MUSE

ECGs combined with coronary angiography data
N=27,524

8,827 Excluded
6,748 > 24 h apart from percutaneous coronary intervention
2,079 Tnadequate quality (250 Hz sampling)

Confirmation by two independent
board-certified cardiologists

I

Model development dataset

N=18,697
[
[ ]
STEMI group Not-STEMI group
N=1,745 N=16,952
[ I
[
2006-2019 2020
Training set Internal validation set Test set
N=15,641 N=1,738 N=1,318
STEMI: 1,459 (9.3%) STEMI: 157 (9.0%) STEML: 129 (9.8%)

‘ 9:1 random assignment |

Figure 1. The model development dataset

Note: ECGs from patients who underwent percutaneous coronary intervention in Severance
Hospital from the KOMATE registry were included for the model development dataset and were
divided into three different datasets (training, internal validation, and test sets). Abbreviation: ECG,
electrocardiography; KOMATE, Korean Multicenter Angioplasty Team; STEMI, ST-segment

elevation myocardial infarction.



2.3 Development and Evaluation of the AI Model
For developing an Al model to classify ECG data into the STEMI or Not-STEMI groups without

additional preprocessing, we employed a convolutional neural network (CNN)-based ensemble
algorithm. The structure of the CNN was based on a previous model for identifying age and sex
based on 12-lead ECG with additional hyperparameters and simplified layers. 2*?* During training,
the model minimized Binary Cross Entropy Loss to align its classified outputs with actual labels,
adjusting the neural network to learn ECG features for each STEMI class. To address class
imbalance, we assigned class-specific weights to the loss function based on STEMI proportion in
the training set. The simplest CNN architecture with the highest area under the precision-recall curve
(AUPRC) value on the internal validation set was selected. An ensemble model was generated by
combining five CNNs, averaging their outputs and determining a cutoff value maximizing Youden’s
index, which is calculated as (Sensitivity + Specificity - 1). 2>2° This ensemble model produced
binary outcomes (1 for STEMI, 0 for Not-STEMI). The detailed process is illustrated in
APPENDICES (Details of Model Development).

In this study, we evaluated the model performance in terms of accuracy, sensitivity, and specificity.
Furthermore, to evaluate the reliability of the Al models, calibration plots were generated, visually
confirming whether the model output scores, ranging from 0 to 1, accurately reflect the proportion
of ECGs having true STEMI labels. 2’ Alignment with the diagonal reference line on the calibration
plot implies the perfect agreement between the model output scores and proportion of true labels,

suggesting high reliability of the Al model.

To compensate the black-box phenomenon, which is an inevitable limitation of deep neural
network, we generated the Gradient-weighted Class Activation Mapping (Grad-CAM) plots to
visualize the explainability of the developed Al model. 28?° A localization map highlighting the ECG
segments of interest to the Al model was presented in the Grad-CAM using a gradient of the final

convolutional layers.

2.4 Statistical Analyses

Continuous variables are presented as medians with interquartile ranges, and categorical variables

are presented as numbers with percentages. The variables were compared using the Mann—Whitney



U test for continuous variables, and the chi-square or Fisher’s exact test was used for categorical
variables, as appropriate. For evaluating the interrater reliability of development data, we calculated
the Cohen’s kappa score based on the decisions of the two cardiologists. 3° The bootstrap resampling
method was used to calculate the 95% confidence intervals (Cls) of the area under the receiver
operating characteristic curve (AUROC) and AUPRC. 3! The two-tailed P-value was computed and
P-value < 0.05 was considered statistically significant. Python (Python Software Foundation) was

used for all analyses in this study.

2.5 Performance of Clinical Physicians

In the real-world practice, even though the current commercial ECG machine provides a
diagnostic result of STEMI, clinical physicians eventually make decision for diagnosis of STEMI.
Therefore, the assessment of the Al model should include a comparison with clinical physicians. In
this study, we recruited three second-year residents in training for internal medicine in order to
evaluate their STEMI diagnosis performance. We randomly selected a total of 300 different ECGs
from the test set while maintaining the prevalence of STEMI. The physicians were blinded to the
prediction results from either the Al model or the ECG machine and independently determined

whether provided ECGs were STEMI or not.

2.6 Clinical Validation

To evaluate the real-world efficacy of the Al model, we performed a clinical validation using
ECGs from patients with chest pain who visited the emergency department of Severance Hospital
in 2020, regardless of PCI implementation (Fig. 2). The clinical validation set consists of adequate
ECGs within 48 hours of emergency department arrival. The true labels for ECGs in the clinical
validation set were determined in the same way to the model development dataset. In case that
coronary angiography data was not available, the decision was made based on the clinical decision

considering the result of other exams, such as computed tomography or echocardiography.



Patients visited emergency department
with chest pain (2020)
N=3,067

MUSE (GE HealthCare) database
in Yonsei University Health System

368 Excluded
368 >48 h after
emergency department arrivals

Clinical validation set
N=2,699
STEMI: 100 (3.7%)

Figure 2. The clinical validation set
Note: Electrocardiography from patients who visited the emergency department with chest pain was
included for the clinical validation set. Abbreviation: STEMI, ST-segment elevation myocardial

infarction.

2.7 Additive Benefit of the AI Model

The eventual aim of the Al model is to support clinical physicians for precise diagnosis of STEMI.
For evaluating the additive benefit of the Al model, we assessed the expected changes in clinical
decision resulted from the Al model using a critical pathway (CP) cohort. In Severance Hospital,
there is a CP for the rapid diagnosis of STEMI and subsequent activation of CCL. The CP is activated
by an agreement of two physicians in the emergency department. For this analysis, we analyzed
patients in whom the CP was activated from 2007 to 2020 (Fig. 3). The true STEMI labels were
reviewed in the same way to the clinical validation set. Then, the proportions of patients in whom

the decisions were changed by the Al model were evaluated.



Patients in whom the critical
pathway were activated (2007-2020)
N=3,507

MUSE (GE HealthCare) database
in Yonsei University Health System

200 Excluded
193 > 24 h apart from activation
7 Inadequate quality (250 Hz sampling)

Critical pathway cohort
N=3,307
STEMI: 1,667 (50.4%)

Figure 3. The critical pathway cohort
Note: Electrocardiography from patients in whom the critical pathway was activated were included

for the critical pathway cohort. Abbreviation: STEMI, ST-segment elevation myocardial infarction.

2.8 External Validation

For external validation of the Al model, we used a publicly available ECG dataset in this study,
which is the PTB-XL. 3>%* As validated in the previous study using the PTB-XL, ECGs annotated
to acute myocardial infarction in the PTB-XL were reviewed by the two cardiologists and those that

were considered STEMI were included in the external validation set. 3

3. RESULTS

3.1 Baseline Characteristics of Study Population

The CONSORT diagram for the model development dataset is shown in Fig. 1. Among the 30,133
PCIs performed in Severance Hospital from the KOMATE registry, 2,609 ECGs were excluded
because of the absence of either coronary angiography or ECG data. In addition, 8,827 ECGs were
excluded because they were performed > 24 h apart from the PCI or had inadequate quality for
model development. Finally, 18,697 ECGs were eligible, of which 1,745 (9.3 %) were classified as
STEMI (Fig. 1). For the model development dataset, the Cohen’s kappa score was 0.848 (Table 1).



Table 1. Interrater agreement for the model development dataset

Rater 1
STEMI Not-STEMI Total
STEMI 1,655 222 1,877
Rater 2 Not-STEMI 299 16,521 16,820
Total 1,954 16,743 18,697

Note: The decisions by the two cardiologists for the model development dataset are presented. The
Cohen’s kappa score is 0.848 accordingly. Abbreviation: STEMI, ST-segment elevation myocardial

infarction.

The baseline characteristics for the model development dataset is presented in Table 2. ECGs
included in the STEMI group were associated with patients who were more likely to be younger (64
years vs. 66 years), male (78.3 % vs. 72.4 %), have a lower body mass index (24.2 kg/m? vs. 24.4
kg/m?), and be current smokers (35.0 % vs. 19.4 %) than those included in the Not-STEMI group.
The STEMI group was associated with lower proportions of comorbidities, such as hypertension
(51.9 % vs. 66.0 %), diabetes (29.2 % vs. 37.0 %), and dyslipidemia (54.6 % vs. 76.0 %), than the
Not-STEMI group. The proportions of patients with prior PCI (15.5 % vs. 27.6 %) and coronary
artery bypass graft surgery (0.6 % vs. 3.4 %) were lower in the STEMI group than in the Not-STEMI
group. Plasma hemoglobin (14.4 mg/dL vs. 13.7 mg/dL), platelet count (244,000 /puL vs. 225,000
/uL), and serum creatinine (0.99 mg/dL vs. 0.91 mg/dL) levels were higher in the STEMI group than
in the Not-STEMI group.

Table 2. Baseline characteristics for the model development dataset

STEMI Not-STEMI
P-value
(N=1,745) (N=16,952)
Age, yr. 64 (53-72) 66 (58-73) <0.001
Male 1,367 (78.3) 12,273 (72.4) <0.001
Body mass index, kg/m? 24.2 (22.3-26.3) 24.4 (22.6-26.4) 0.002
Hypertension 905 (51.9) 11,177 (66.0) <0.001




Diabetes 510 (29.2) 6,266 (37.0) <0.001

Dyslipidemia 952 (54.6) 12,870 (76.0) <0.001
Atrial fibrillation 89 (5.1) 700 (4.1) 0.063
Current smoker 611 (35.0) 3,297 (19.4) <0.001
Prior PCI 270 (15.5) 4,680 (27.6) <0.001
Prior CABG 11 (0.6) 583 (3.4) <0.001
Prior Ml 181 (10.4) 1,386 (8.2) 0.002
Pacemaker 1(0.1) 64 (0.4) 0.051
Bundle branch block 0.002

LBBB 32 (1.8) 162 (1.0)

RBBB 85 (4.9) 740 (4.4)

None 1,627 (93.3) 15,986 (94.7)
Hemoglobin, g/dL 14.4 (13.0-15.6) 13.7 (12.4-14.9) <0.001
Platelet count, /pL. 244,000 225,000 <0.001

(197,000-297,000) (188,000-268,000)

Serum creatinine, mg/dL 0.99 (0.84-1.20) 0.91 (0.78-1.09) <0.001

Note: Data are presented as medians (interquartile ranges) or numbers (%). Abbreviation: CABG,
coronary artery bypass graft; ECG, electrocardiography; LBBB, left bundle branch block; MI,
myocardial infarction; PCI, percutaneous coronary intervention; RBBB, right bundle branch block;

STEMI, ST-segment elevation myocardial infarction.

3.2 Performance Assessment of the AI Model

For the deep ensemble, the cut-off value of the model output scores was optimized at 0.0768 by
which the Youden’s index was maximized (Fig. 4). While the deep ensemble outperformed the single
neural network in terms of AUROC (0.979 [0.969-0.988] vs. 0.973 [0.960-0.984]; P=0.007), the
deep ensemble showed an AUPRC value comparable to that of the single neural network (0.870
[0.817—0.914] vs. 0.850 [0.796—0.898]; P=0.062) (Table 3). The calibration plots of the single neural

network and deep ensemble models are presented in Fig. 5.
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Figure 4. Model architecture of the deep ensemble model

Note: The architecture of the deep ensemble model consisted of five single convolutional neural
networks, each trained using the same architecture with different random seeds and dropout. Each
individual network used ECG waveforms as inputs, recorded at 500 Hz for 10 s with eight leads.
After passing through the convolutional neural network, the softmax function generates outputs,
ranging from 0 to 1, for the two labels, 1 for ‘STEMI’, 0 for ‘Not-STEMI’. The ensemble averaged
the outputs across five networks as model output score, and then compared them with a
predetermined cut-off to classify the presence of STEMI. Abbreviation: ECG, electrocardiography;

STEMI, ST-segment elevation myocardial infarction.
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Table 3. Comparison between the single neural network and deep ensemble model for the

internal validation set

Single neural network Deep ensemble P-value
AUROC 0.973 (0.960-0.984) 0.979 (0.969-0.988) 0.007
AUPRC 0.850 (0.796-0.898) 0.870 (0.817-0.914) 0.062

Note: The values of AUROC and AUPRC with 95% confidence intervals are presented. P-value
indicates comparisons between the single neural network and deep ensemble models. Abbreviation:
AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating

characteristic curve.

1.0 { =@ Single neural network -
=@= Deep ensemble

0.8 A

0.6 1

0.4

0.2 A

Proportion of ECGs having true STEMI labels

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
Average of model output scores
Figure 5. Calibration plots for the single neural network and deep ensemble models
Note: For the internal validation set, the proportions of ECGs having true STEMI labels are
presented with 95% confidence intervals according to the stratified model output scores. The I bars
indicate the 95% confidence intervals of the proportions. The deep ensemble model had better
alignment with the diagonal reference line (dashed line) than did the single neural network model.

Abbreviation: ECG, electrocardiography; STEMI, ST-segment elevation myocardial infarction.

11



3.3 Performance Comparison between the AI Model, ECG Machine,

and Clinical Physicians
The AI model had AUROC of 0.981 and AUPRC of 0.913 in the test set while achieving an
accuracy of 92.1 %, sensitivity of 95.4 %, and specificity of 91.8 % (Youden’s index 0.872) (Fig. 6

and Table 4). Meanwhile, the commercial ECG machine achieved an accuracy of 94.6 %, sensitivity

of 60.5 %, and specificity of 98.3 % (Youden’s index 0.588). Clinical physicians achieved an

accuracy of 79.6 %, sensitivity of 81.1 %, and specificity of 77.4 % in average (Youden’s index

0.585) (Fig. 6 and Table 4).
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Figure 6. The performances of the AI model, ECG machine algorithm, and clinical physicians

Note: The receiver operating characteristic curve and the selected interpretation point of the Al

model are presented (Red line and red star) with the performance of the ECG machine algorithm

(Green star) and clinical physicians (Blue star). Abbreviation: Al, artificial intelligence; ECG,

electrocardiography.
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Table 4. Performances of the AI model, the ECG machine algorithm, and the clinical

physicians

Accuracy Sensitivity Specificity

Al model 92.1 % 95.4 % 91.8 %

Test set ECG machine 94.6 % 60.5 % 98.3 %

Clinical physicians 79.6 % 81.1 % 77.4 %

Clinical validation Al model 89.3 % 95.0 % 89.1 %

ECG machine 96.9 % 60.0 % 98.3 %

External validation Al model 97.6 % 83.3% 97.9 %

Note: The performances of three different diagnostic systems were presented. The performances of
clinical physicians were assessed on a dataset consisting of 300 ECGs randomly selected from the
test set. The external validation was performed using the PTB-XL dataset. Abbreviation: Al,

artificial intelligence; ECG, electrocardiography.

3.4 The Grad-CAM

Examples of Grad-CAM for ECGs accurately predicted as STEMI or Not-STEMI are presented
in Fig. 7, highlighting ECG segments with higher contribution and relevance to the model’s

predictive performance.

(A) True Positive (lead aVI7)

0 500 1900 1503 2300 2508

(B} True Negative (lead T)

0 500 1900 1500 2000 2500

Figure 7. Examples of Grad-CAM
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Note: (A) True positive and (B) true negative examples of Grad-CAM are presented. The degree of
contribution of each ECG segment is highlighted in the Grad-CAM. ST and T segments are mainly
considered a recognition feature as highlighted. Abbreviation: ECG, electrocardiography; Grad-

CAM, gradient-weighted class activation mapping.

3.5 Clinical Validation

A total of 2,699 ECGs, which were 5.2 % of the total patients visited emergency department in
2020, were included in the clinical validation set and the prevalence of STEMI was 3.7 % among
them (Fig. 2). The baseline characteristics of patients in the clinical validation set are presented in
Table 5. Among 2,599 Not-STEMI patients in the clinical validation set, 283 (10.9 %) patients were
identified as STEMI by the AI model. The final diagnoses for those patients are presented in Table
6.

Table 5. Baseline characteristics of the clinical validation set

STEMI (N=100) Not-STEMI (N=2,599) P-value
Age, yr. 63 (54-70) 60 (44-72) 0.031
Male 79 (79.0) 1,458 (56.1) <0.001
Body mass index, kg/m? 25.1(22.9-27.5) 23.9 (21.9-26.4) 0.005
Hypertension 21 (21.0) 908 (34.9) 0.006
Diabetes 13 (13.0) 489 (18.8) 0.182
Dyslipidemia 13 (13.0) 650 (25.0) 0.009
Atrial fibrillation 4 (4.0 263 (10.1) 0.066
Current smoker 30 (30.0) 98 (3.8) <0.001
Prior PCI 10 (10.0) 291 (11.2) 0.833
Prior CABG 0(0.0) 7(0.3) >0.999
Prior Ml 7(7.0) 186 (7.2) >0.999
Pacemaker 1(1.0) 19 (0.7) 0.531
Bundle branch block 0.745
LBBB 2(2.0) 35 (1.4)
RBBB 3(3.0) 101 (3.9)
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None 94 (94.9) 2,444 (94.7)

Hemoglobin, g/dL 13.9 (12.7-14.9) 13.9 (12.8-15.0) 0.776
231,000 242,000
Platelet count, /pL. 0.112
(191,000-263,000) (202,000-284,000)
Serum creatinine, mg/dL 0.80 (0.72-1.04) 0.81 (0.68-0.95) 0.530

Note: Data are presented as medians (interquartile ranges) or numbers (%). Abbreviation: CABG,
coronary artery bypass graft; ECG, electrocardiography; LBBB, left bundle branch block; MI,
myocardial infarction; PCI, percutaneous coronary intervention; RBBB, right bundle branch block;

STEMI, ST-segment elevation myocardial infarction.

Table 6. Final diagnosis in patients with false-positive prediction in the clinical validation set

Category of final diagnosis Number of patients
Cardiac cause 166
NSTE-ACS 80
Arrhythmia 43
Cardiomyopathy 22
Perimyocarditis 11
Other cardiac 10
Extracardiac cause 77
Gastrointestinal disorder 37
Chest wall pain 23
Pleuritic pain 17
Systemic cause 40
Hyperventilation or panic disorder 20
Ethanol intoxication 12
Sepsis 5
Contrast allergy 2
Seizure 1
Total 283

Abbreviation: NSTE-ACS, non-ST-segment elevation acute coronary syndrome
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For the clinical validation, the Al model achieved an accuracy of 89.3 %, a sensitivity of 95.0 %,
and a specificity of 89.1 %, while AUROC was 0.978 (0.959-0.992), and AUPRC was 0.808 (0.718—
0.893) (Table 4 and Fig. 8). Meanwhile, the ECG machine achieved an accuracy of 96.9 %,

sensitivity of 60.0 %, and specificity of 98.3 % in the clinical validation set (Table 4).
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Figure 8. Receiver operating characteristic and precision-recall curves of the developed model

Note: (A) Receiver operating characteristic and (B) precision-recall curves are presented with the

AUROC, AUPRC values and 95% confidence intervals. Abbreviation: AUPRC, area under the

precision-recall curve; AUROC, area under the receiver operating characteristic curve

3.6 Additive Benefit in the Critical Pathway Cohort

A total of 3,307 ECGs from 2007 to 2020 were included in the CP cohort (Fig. 3). Among them,
1,640 (49.6 %) ECGs were identified to be Not-STEMI. Meanwhile, the AI model reclassified 518

patients, in whom the CP was inappropriately activated, to Not-STEMI, while 34 patients with true

STEMI labels were reclassified to Not-STEMI (Table 7).
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Table 7. The confusion matrix for the AI model for the CP cohort

True label
STEMI Not-STEMI Total
STEMI 1,633 1,122 2,755
Al model
o Not-STEMI 34 518 552
prediction
Total 1,667 1,640 3,307

Note: The prediction of the Al model for the CP cohort is presented. Among 1,640 patients in whom
the CP were inappropriately activated, 518 (31.6 %) patients were reclassified to Not-STEMI.
Abbreviation: Al artificial intelligence; CP, critical pathway; STEMI, ST-segment elevation

myocardial infarction.

3.7 External Validation

For the external validation set consisted of 5,991 ECGs with “Normal” annotation and 79 STEMI
ECGs, the Al model achieved an accuracy of 97.6 %, sensitivity of 83.3 %, and specificity of 97.9 %
(Table 4). Meanwhile, AUROC of the Al model was 0.979 (0.963—0.992) and AUPRC was 0.680
(0.577-0.774) in the external validation set (Fig. 8).

4. DISCUSSION

The Al model provided in this study based on the 12-lead ECG has several advantages over
previous models. First, the Al model was trained and validated using a set of ECGs combined with
real-world coronary angiography information to guarantee the accuracy of the true values. Second,
a deep ensemble model was developed for a higher performance than that of a single model. Third,
the clinical validation using a symptom-based ECG data and the external validation were performed
to minimize the selection bias and the overfitting issue of the Al model. Fourth, the Grad-CAM
implied the explainability of the Al model and compensated the black box phenomenon. Last, the

possible additional benefit from the Al model was presented in this study using the CP cohort.
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To develop an accurate Al model and avoid verification bias, an accurate true diagnosis should be
guaranteed. Therefore, previous Al models for STEMI diagnosis had their own confirmation
processes for true diagnoses by cardiologists or trained experts. '*?* Similarly in the current study,
two independent attending cardiologists confirmed the diagnosis using the coronary angiography
data corresponding to each ECG. Furthermore, as the Cohen’s kappa score was over 0.8 and a senior
cardiologist was involved in case of disagreement, the accuracy of the ECGs used for the

development of the Al model was highly guaranteed.

The AUROC value is inappropriate for assessing model performance, as it often leads to the
overestimation of model performance in an imbalanced dataset. *° Previous studies have primarily
evaluated model performance using only the AUROC, along with corresponding sensitivity and
specificity values. However, to address this limitation, we used the AUPRC, which represents a
different trade-off between precision and recall, as a primary metric for model development as the
prevalence of STEMI was less than 10% in the dataset. 14161819 Furthermore, because an overfitted
model can make incorrect decisions for data not represented in the training set, we expanded the Al
model to an ensemble of five independently trained neural networks. This decision was made
because the deep ensemble model has been reported to mitigate overfitting of the Al model
compared to a single model. 2!*¢ Consequently, the calibration plot showed that the deep ensemble
model had better alignment with the diagonal reference line compared to the single neural network.
This improvement indicated enhanced calibration of the deep ensemble model compared to the

single neural network.

In this study, we compared the developed Al model with the ECG machine algorithm and the
clinical physicians. Although the ECG machine algorithm showed an excellent accuracy and
specificity, the sensitivity was not acceptable. Meanwhile, the clinical physicians had a higher
sensitivity and a lower specificity compared to the ECG machine algorithm. In contrary, the Al
model achieved well-balanced performance. As there is always a trade-off between sensitivity and
specificity, the Youden’s index is usually measured as an overall metric for estimation of the Al
model. % In this study, the Al model achieved the Youden’s index of 0.872, while the ECG machine
algorithm achieved 0.588, and the clinical physicians achieved 0.585, which implies the Al model

was evenly excellent algorithm for diagnosis of STEMI.
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As the training data was limited in ECGs from patients who underwent PCI, the excellent
performance from the data constructed for model development did not guarantee the performance
from the real-world data. In this regard, we performed the clinical validation to evaluate predictive
performance of the Al model in the data representing real-world practice. Even though the
performance indices of the Al model were lower in the clinical validation set than in the test set, the
values were still well-balanced compared to that from the ECG machine algorithm. Considering the
difference in clinical characteristics between the training data and the clinical validation set, the
clinical validation implies the probability for expanding the Al model to the real-world practice.
Furthermore, the benefit of the Al model on top of previous clinical practice, which was represented
by the CP, was elucidated in this study. As approximately a half of the decision by the CP was
incorrect and induced inappropriate CCL activation, the AI model identified 31.6 % (518/1,640) of
patients to be correctly reclassified to Not-STEMI, by which the AI model could prevent
inappropriate CCL activation. Regarding the possibility of benefit reported in this study, further

prospective validation should follow to elucidate real-world benefit of the Al model.

As the detailed logical process is not elucidated, one of the most critical hurdles is the
explainability of the result from the Al model. As observed in the Grad-CAM, the Al model
recognizes a feature including the ST and T segments for identifying ECG, which is similar to what
clinical physicians concentrate on based on the current STEMI guidelines. The model explainability
is essential for achievement of clinical adherence for the ATl model. Without the explainable rationale
of the Al model, the clinical physicians might hesitate to accept the result from the Al model,
resulting limitation of application to the real-world practice. With this regard, this study could
support the further application of the Al model by providing the model explainability with the Grad-
CAM.

5. CONCLUSION

In conclusion, the developed deep ensemble model for the diagnosis of STEMI achieved
outstanding and well-balanced performance in both a PCI registry and a symptom-based ECG set.
The Grad-CAM also enhanced the explainability of the Al model and its alignment with real-world
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practice. Further studies with prospective validation regarding clinical benefit in a real-world

setting should be warranted.
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APPENDICES

1. Eligible Data Specification

In this section, we specify the requirements for the electrocardiography (ECG) waveform data
utilized in our model. The resting 12-lead ECG waveforms were collected from both emergency
department, outpatient, and inpatient settings at Severance Hospital, Seoul, South Korea, using the
MUSE Cardiology Information System (GE HealthCare, Chicago, IL, USA). ECG data points were
subjected to both a high-pass filter (cut-off frequency, 0.16 Hz) and a low-pass filter (cut-off
frequency, 150 Hz). An alternating current filter with a frequency of 60 Hz was applied. The standard
12-lead ECG data were recorded at a 500 Hz sampling rate for 10 seconds, resulting in 5,000 samples,
with amplitude values expressed in microvolts per lead. Notably, no further preprocessing was

conducted, and data containing noise were not excluded from the analysis.

2. Details of Model Development

2.1 Input of the Model
Each input datum was transformed into an 8 x 5000 matrix, where the first dimension represents

spatial positions over leads, and the second represents temporal dimensions.

2.2 Rationale of the Convolutional Neural Network (CNN)

We utilized a CNN implemented using the Keras Framework with a TensorFlow backend. It
includes one-dimensional convolutional layers with varying dilation rates, batch normalization, and
activation layers to enhance receptive fields without increasing parameters, enabling the network to
learn local and global patterns. A global average pooling layer followed by fully connected layers
with dropout regularization and softmax activation was employed for class prediction. The model
architecture was based on a previous CNN algorithm for ECG feature identification. ! Unlike the
reference model that diagnosed seven ECG abnormalities using residual blocks and complex
parameters, we omitted residual blocks for the ST-segment elevation myocardial infarction (STEMI)
identification task due to excessive complexity. Additionally, inspired by a model for estimating age

and sex, we diversified the number of convolutional layers and kernel sizes, reduced max pooling,

25



and incorporated dilated convolutions to mitigate information loss while maintaining computational

efficiency. 2

2.3. Ensemble of CNNs

An ensemble model was then derived from five independent deep neural networks with the same
architecture. Each model was initialized with a unique random seed and trained separately using a
batch size of 128, a learning rate of 0.001, and 50 epochs with the Adam optimizer and binary cross-
entropy loss function. Class weights of 5.3601 and 0.5514 were used to address class imbalance,
and early stopping with a patience of 30 was applied. The model output score for the deep ensemble
model was calculated as the average of the probabilities derived from the softmax function of the
five neural networks. The cut-off for the model output score was then calculated to be 0.0768,

maximizing Youden’s index using internal validation set.

3. References for Appendices

1. Ribeiro AH, Ribeiro MH, Paixdo GMM, et al. Automatic diagnosis of the 12-lead ECG using a
deep neural network. Nat Commun. 2020;11:1760.

2. Attia ZI, Friedman PA, Noseworthy PA, et al. Age and Sex Estimation Using Artificial
Intelligence From Standard 12-Lead ECGs. Circ Arrhythm Electrophysiol. 2019;12:¢007284.
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