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ABSTRACT

Clinical relevance of 7P53 mutation and its characteristics in breast
cancer with long-term follow-up data

Introduction

TP53 mutations is one of the most frequently identified mutations in human cancers.
Generally, breast cancers with 7P53 mutations are known to have a poor prognosis, though
there are also controversial findings. Therefore, we aimed to verify the clinical relevance
of TP53 mutations in breast cancer including all subtypes and treatments with long-term

follow-up data.
Methods

We retrospectively collected data of patients who underwent 7P53 mutation testing after
being diagnosed with breast cancer. Stratified log-rank tests and Cox regression analysis
was performed to compare oncologic outcomes based on the 7P53 mutation status and
characteristics of 7P53 mutations, such as mutation type and locations. In this study,
polymerase chain reaction-denaturing high performance liquid chromatography (PCR-
DHPLC) and direct sequencing was used to identify 7P53 mutations in exons 5-9. All

statistical significance set as p < 0.05.
Results

Between January 2007 and December 2015, 650 breast cancer patients underwent 7P53
mutation testing. Among them, there were 172 patients (26.5%) who were detected 7P53
mutations. Of the 172 cases with 7P53 mutations, 34 (19.8%) had missense hotspot

mutations. Patients with 7P53 mutations (7P53-mutated group) had worse prognosis (10-



year recurrence free survival (RFS), 83.5% vs. 86.6%, HR, 1.67; 95% Cls, 1.06-2.64; p =
0.026 and 10-year overall survival (OS), 88.1% vs. 91.0%, HR, 3.02; 95% Cls, 1.43-6.70,
p = 0.003). However, within the 7P53-mutated group, subgroup analyses based on

characteristics of mutation did not reveal any significant differences in oncologic outcomes.
Conclusion

We found that 7P53 mutations are associated with worse prognosis in breast cancer
including all subtypes and treatments with long-term follow-up data. But, within the TP53-
mutated group, there were no differences in oncological outcomes based on the

characteristics of 7P53 mutations such as mutation type and location.

Keywords: 7P53 mutation, Missense mutation, DNA-binding domain, Hotspots mutation,

Recurrence-free survival (RFS), Overall survival (OS)



I. INTRODUCTION

TP53 gene, coding for the tumor-suppressor p53, is the most frequently mutated gene in human
cancers.! TP53, situated on chromosome 17p13.1, comprises 11 exons, 10 introns, and 393 amino
acid residues, encodes the p53 protein which functions as a transcription factor with distinct amino-
terminal, DNA-binding, and carboxy-terminal domains.? TP53-activated pathway exerts its tumor
suppressive functions by regulating DNA repair, cell-cycle arrest, senescence, and apoptosis, thereby
inhibiting early tumorigenesis, tumor growth and development.>> Given these circumstances, the
activation of p53 in normal tissues is imperative to protect themselves from tumorigenesis. However,
tumor with TP53 mutations not only lose the functions necessary for tumor suppression but may
also harbors gain-of-functions that promote tumor growth.®’ Consequently, tumors with TP53
mutations typically have a poor prognosis because of its rapid progression and resistance to
treatment.3-1°

According to the International Agency for Research on Cancer (IACR) database, over 75% of TP53
mutations were missense mutations, and approximately 97% were situated in exons encoding for
the DNA-binding domain (DBD) (residues 98-292). Six codons (175, 220, 245, 248, 273, and 282)
with a frequency of more than 2% among all missense mutations are well-known missense hotspots

(https://www.cbioportal.org/). Theses single nucleotide substitution mutations affect the 3D

structure of the p53 protein or its contact with DNA, leading to a loss-of-function.!!

Mutations of the TP53 gene are identified in nearly 30% of all breast cancers.'>!* Many preclinical
and clinical trials have explored the clinical significance of 7P53 mutations in breast cancer, and it
is generally associated with poor prognosis.!*!7 However, there were some studies that reported
neutral'®!® or even positive outcomes,?® making the clinical relevance of TP53 mutations still
controversial. Furthermore, there are few studies that assess the prognosis based on the
characteristics of TP53 mutations, such as mutation type or location of mutation. Given these
circumstances, we investigated the association between TP53 mutations and prognosis in breast
cancer patients using long follow-up data. Additionally, we explored the clinical relevance of the

characteristics of 7P53 mutations within the patients with 7P53 mutation.


https://www.cbioportal.org/

II. METHODS

2.1 Data collection

The study protocol received approval from the Institutional Review Boards of Gangnam Severance
Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (IRB no. 3-2024-0197)
and adhered to the principles of the Declaration of Helsinki. The need for written informed consent
was waived because of retrospective study design.

We retrospectively identified patients diagnosed with breast cancer who underwent 7P53 mutation
testing at our institution from January 2007 to December 2015. Clinicopathological data were
collected from electronic medical records including age at diagnosis, histologic subtype, histologic
grade, estrogen receptor (ER) and progesterone receptor (PR) status, human epidermal growth factor
receptor 2 (HER2) status, lymphovascular invasion (LVI), Ki-67 index, T stage, N stage, and
implementation of (neo)adjuvant systemic treatment and/or radiotherapy. We also collected genetic
information about 7P53 mutation status and characteristics of 7P53 mutation. Patients diagnosed
with recurrent breast cancer, or de novo metastatic breast cancer were excluded.

T and N stage were determined using surgical specimens according to the American Joint Committee
on Cancer Guidelines (AJCC) (8th edition). ER and PR status were also determined from surgical
specimen using immunohistochemistry (IHC). Positive for ER and PR were defined as those in
which more than 1% of tumor nuclei in the sample were stained. HER2 status was assessed
following the recommendation of the 2013 American Society of Clinical Oncology (ASCO)/College
of American Pathologist (CAP). In this study, we defined high Ki67 as a value more than 20%.
Neoadjuvant or adjuvant systemic therapies and/or radiotherapy were administered in accordance
with established guidelines based on the age at diagnosis, tumor characteristics, and axillary lymph

node status.

2.2 Mutational analysis of 7P53 gene
Mutational analysis of exon 5-9 of the P53 gene was performed using polymerase chain reaction-
denaturing high performance liquid chromatography (PCR-DHPLC) and direct sequencing.

Approximately 1mg of samples from either biopsies or surgical specimens, freshly frozen or



paraffin-embedded, were cut into pieces, and DNA was extracted using the Easy-DNA™ kit
(Invitrogen, Carlsbad, CA, USA) with 100 ng/pL of DNA used for each PCR reaction, where each
PCR was performed in a 20 pL reaction mixture containing 100 ng of DNA, 20 uM of forward and
reverse primers, 2 pL of Taq buffer (10x), 2.5 mM of deoxyribonucleotide triphosphates (ANTPs),
2.5 mM of MgCl2, and 0.7 U of Taq DNA polymerase, under conditions of 95 °C for 5 minutes,
followed by 50 cycles of 94 °C for 10 seconds, 62 °C for 10 seconds, 72 °C for 15 seconds, and a
final extension at 72 °C for 5 minutes in a DNA terminal cycler (Perkin-Elmer, GeneAmp PCR
System 2400, USA), after which the PCR products were kept at 4 °C until further analysis, initially
screened for mutations by denaturing high-performance liquid chromatography (DHPLC) (WAVE;
Transgenomic, Omaga, Nebraska, USA), followed by sequence analysis if heteroduplex formation
was detected, with DHPLC performed by mixing 20 pL of each exon PCR product with an equal
amount of the corresponding wild-type PCR product, incubating at 95 °C for 5 minutes, and then at
room temperature, and separating heteroduplex and homoduplex strands using triethylammonium
acetate (TEAA) absorbed into the surface of the DNASep cartridge (Transgenomic, USA) through
an association with the negatively charged phosphate backbone of DNA, with elution using
acetonitrile (ACN), in a gradient solution of buffer A (0.1 M TEAA solution, pH 7.0) and buffer B
(0.1 M TEAA and 25% ACN, pH 7.0), with buffer C (8% ACN (syringe washing solution)) and
buffer D (75% ACN (DNASep Cartridge UltraClean and Storage Solution)) used for cleansing,
while the stationary phase involved the DNASep Cartridge (Transgenomic, USA) column in an
alkylated nonporous poly(styrene-divinylbenzene) form, washed with buffer D at 0.9 mL/min for
60 minutes, and the detection of separated DNA checked for purity by injecting 0.5 pL of the non-
denatured specimen into the column at 0.9 mL/min at 50 °C, with the temperature elevated to 63 °C
and the eluted DNA detected using an ultraviolet light detector at 260 nm, with analysis showing
heteroduplexes eluted more rapidly than homoduplexes and appearing as separate forms in the
chromatogram, and the DHPLC device operated per the manufacturer’s instructions, with denatured
PCR products at 95 °C for 5 minutes, annealed at 55 °C for about 40 minutes, and monitored as a
chromatogram, where heterogenous molecules typically displayed an additional peak compared to
homozygous molecules, which had only one peak, and sequence analysis was performed using
commercial reagents and an automated sequencer (ABI Prism BigDye Terminator v3.1 cycles
sequencing kit and ABI 310 Genetic Analyzer; Applied Biosystems, Foster City, USA), with both

forward and reverse strands sequenced to confirm nucleotide alterations.



2.3 Definition of 7P53 mutation characteristics and oncologic outcomes

In this study, we classified cases with mutations identified in exons 5-9 through DNA sequencing,

as previously described,?"-?

into the 7P53-mutated group and cases with no mutations detected into
the 7P53 wild-type group. To validate the clinical relevance of the characteristics of 7P53 mutation,
we subcategorized the TP53-mutated group into some categories. Since most 7P53 mutations are
missense mutations and are predominantly found in the DBD, we performed a subgroup analysis by
subdividing the TP53-mutated group into missense mutation vs. other mutations and DBD vs. other
locations. Additionally, we distinguished and analyzed cases with missense hotspot mutations
(missense mutations situated at codon 175, 220, 245,248, 273, and 282) separately from other cases.
The types and locations of 7P53 mutations in patients within the 7P53-mutated group were
summarized in Supplementary Figure 1.

Recurrence-free survival (RFS) was defined as the time from treatment of breast cancer (surgery or
neoadjuvant chemotherapy) to recurrence or death from any cause. Recurrent tumor occurring in the
parenchyma of the ipsilateral breast affected the primary cancer was defined as local recurrence (LR)
and metastasis to ipsilateral axillary lymph node, internal mammary node, and supraclavicular node
were classified as regional recurrence (RR). Metachronous breast cancer (recurrence affecting the
contralateral breast diagnosed after 1 year from the first cancer diagnosis®®) was also defined as
regional recurrence in this study. Metastasis to all other organs was defined as distant metastasis

(DM). Overall survival (OS) was defined as the time from the treatment to death from any cause.

2.4 Statistical analysis

We utilized the chi-square test or Fisher’s exact test to compare the proportion of demographic and
clinicopathological variables between the two groups based on 7P53 mutation status. Comparisons
among TP53-mutated subgroups, based on characteristics of 7P53 mutation including mutation
types and locations, were also conducted. Oncologic outcomes between the two groups, classified
according to 7P53 mutation status and characteristics, were compared using a stratified log-rank test
at a two-sided significance level of 0.05. A stratified Cox regression analysis was performed to
estimate hazard ratio (HR) and 95% confidence intervals (CIs) for oncologic outcomes. To estimate
HR of each clinicopathological variables and 7P53 mutation status for RFS and OS, we performed

Cox proportional hazards model. Multivariable Cox analyses were performed using all variables



with p-value < 0.05. All statistical significance was set as p < 0.05. All data analysis were conducted
with SPSS software version 26.0 (SPSS Inc., Chicago, IL, USA) and GraphPad Prism software
version 10.0 (GraphPad software Inc., Boston, MA, USA).

III. RESULTS

3.1 Baseline patients’ characteristics

Between January 2007 and December 2015, there were 650 patients who underwent 7P53 mutation
testing on preoperative biopsies or surgical specimens in Gangnam Severance Hospital. In total,
there were 172 (26.5%) patients who were detected 7P53 mutations. Among the 172 patients with

confirmed 7P53 mutations, 34 (19.8%) had missense hotspot mutations (Figure 1).

From January 2007 to December 2015,

breast cancer patients underwent TP53 mutation test

(N=650)
TP53 mutation TP53 wild-type
(N=172) (N=478)
Missense hotspot mutation Other mutations
(N=39) (N=133)

Figure 1. Consort diagram

Table 1 presented demographic and clinicopathological characteristics of patients according to 7P53



mutation status. The median age of patients in both groups was 52 years. Compared to 7P53 wild-
type group, the 7P53-mutated group exhibited a higher proportion of ductal-type breast cancer (86.0%
vs. 76.6%, p = 0.016), high histologic grade (61.6% vs. 28.9%, p < 0.001), and increased rates of
LVI (34.5% vs. 17.4%, p < 0.001) and high Ki67 index (73.8% vs. 31.4%, p < 0.001). Furthermore,
the 7P53-mutated group had a higher incidence of negative ER tumor (64.5% vs. 39.2%, p <0.001)
and negative PR tumor (74.7% vs. 46.1%, p <0.001), along with higher frequency of positive HER2
tumor (44.2% vs. 26.8%, p < 0.001). In summary, the 7P53-mutated group had a higher proportion
of HER2-positive breast cancer (44.2% vs. 29.4%) and TNBC (37.8% vs. 19.7%), and a lower
proportion of HR-positive, HER2-negative breast cancer (18.0% vs. 50.9%) compared to the 7P53
wild-type group (p < 0.001). After excluding patients who underwent neoadjuvant chemotherapy,
the distribution of T stage in the 7P53 wild-type group was 54.6% (253/463) for T1, 42.1% (195/463)
for T2, and 3.2% (15/463) for T3-4, whereas in the 7P53-mutated group, it was 42.9% (69/161) for
T1, 53.4% (86/161) for T2, and 3.7% (6/161) for T3-4. At the time of data cut-off of this study,
median follow-up period was 86.2 months (IQR, 60.3-111.8) in 7P53-mutated group and 97.4
months (IQR, 63.6-134.4) in TP53 wild-type group.

Table 1. Baseline patient characteristics according to 7P53 mutation status

TP53-mutated TP53 wild-type
N (%) (N=172) (NeATS) P
Age, median [range] 52 [27-78] 52 [51-87] 0.284
Age distribution 0.2
<50 years 78 (45.3) 244 (51.0)
> 50 years 94 (54.7) 234 (49.0)
Tumor subtype 0.016
Ductal 148 (86.0) 366 (76.6)
Lobular 2(1.2) 23 (4.8)
Others and Mixed 22 (12.8) 89 (18.6)
Histologic grade <0.001
Grade I-11 66 (38.4) 340 (71.1)
Grade 111 106 (61.6) 138 (28.9)
ER status * <0.001
Positive 60 (35.1) 253 (60.8)
Negative 111 (64.9) 163 (39.2)
PR status * <0.001
Positive 43 (25.3) 226 (53.9)



Negative 127 (74.7) 193 (46.1)

HER?2 status <0.001
Positive 76 (44.2) 128 (26.8)

Negative 96 (55.8) 350 (73.2)

Molecular subtype * <0.001
HR-positive, HER2-negative 31 (18.0) 222 (50.9)
HER2-positive 76 (44.2) 128 (29.4)
Triple-negative 65 (37.8) 86 (19.7)

LVI# <0.001
Positive 59 (34.5) 83 (17.4)

Negative 112 (65.5) 395 (82.6)

Ki67 index (cut-off 20%) <0.001
High 127 (73.8) 150 (31.4)

Low 45 (26.2) 328 (68.6)

Neoadjuvant chemotherapy 0.062
Yes 11 (6.4) 15(3.1)

No 161 (93.6) 463 (96.9)

T stage” 0.035
T1 69 (42.9) 253 (54.6)

T2 86 (53.4) 195 (42.1)
T3-4 6 (3.7) 15(3.2)

N stage” 0.922
NO 98 (60.9) 276 (59.7)

N1 49 (30.4) 141 (30.5)
N2-3 14 (8.7) 45 (9.7)

Adjuvant chemotherapy* <0.001
Yes 140 (87.0) 314 (67.8)

No 21 (13.0) 149 (32.2)

# Patients without definite data was excluded.

* Patients who underwent neoadjuvant chemotherapy was excluded.

Abbreviation, ER; estrogen receptor, PR: progesterone receptor, HER2; human epidermal growth
factor receptor 2, HR; hormone receptor, LVI; lymphovascular invasion



3.2 Oncologic outcomes according to 7P53 mutation status

With an extended follow-up period, we assessed 5-year and 10-year oncologic outcomes and HR by
using Kaplan-Meier analysis and Cox regression analysis. The RFS rates at 5-year were 88.1% (95%
Cls, 84.1-91.1) in TP53-mutated group, 93.7% (95% Cls, 91.0-95.7) in TP53 wild-type group, and
the 10-year RFS rates were 83.5% (95% Cls, 76.2-88.8) in TP53-mutated group, 86.6% (95% Cls,
80.2-91.1) in TP53 wild-type group, showing a statistically significant difference between the two
groups (HR, 1.67; 95% Cls, 1.06-2.64; p = 0.026; Figure 2A). The OS rates at 5-year were 89.8%
(95% ClIs, 83.8-93.6) in TP53-mutated group and 95.3% (95% Cls, 92.8-97.0) in TP53 wild-type
group, while the 10-year OS rates were 88.1% (95% Cls, 81.7-92.4) in TP53-mutated group and
91.0% (95% Cls, 87.3-93.6) in TP53 wild-type group, indicating that the 7P53-mutated group had
a worse prognosis compared to 7P53 wild-type group (HR, 3.02; 95% ClIs, 1.43-6.70; p = 0.003;
Figure 2B).

A 100— —— TP53 wild-type
—— TP53 mutation
95—
]
2
2 90—
=]
v
s
2 85—
E
F 80—
[
a HR: 1.67 (95% Cls, 1.06-2.64)
75—
Log-rank P = 0.026
70 | I N R R B B BN RN R
0 12 24 36 48 60 72 84 96 108 120

Number at risk. Month

TP53wild-type | 478 459 437 417 394 371 328 300 240 180 153

/P53 mutation | 172 162 154 144 139 125 113 103 73 47 35

T T T T T T T T T T T
0 12 24 36 48 60 72 84 9% 108 120

Month

Figure 2A. Kaplan-Meier curve for RFS in patients stratified by 7P53 mutation status. Stratified



log-rank test and Cox regression analysis showed a significant difference between the two groups
(HR, 1.67; 95% Cls, 1.06-2.64; p = 0.026). (The 5-year RFS rate: 88.1% (95% Cls, 84.1-91.1) in
TP53 mutation group vs. 93.7% (95% Cls, 91.0-95.7) in TP53 wild-type group, the 10-year RFS
rate: 83.5% (95% Cls, 76.2-88.8) in TP53 mutation group vs. 86.6% (95% Cls, 80.2-91.1) in TP53

wild-type group)
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Figure 2B. Kaplan-Meier curve for OS in patients stratified by 7P53 mutation status. Stratified
log-rank test and Cox regression analysis showed a significant difference between the two groups
(HR, 3.02; 95% ClIs, 1.43-6.70; p = 0.003). (The 5-year OS rate: 89.8% (95% Cls, 83.8-93.6) in
TP53 mutation group vs. 95.3% (95% CIs, 92.8-97.0) in TP53 wild-type group, the 10-year OS
rate: 88.1% (95% Cls, 81.7-92.4) in TP53 mutation group vs. 91.0% (95% Cls, 87.3-93.6) in TP53
wild-type group)

However, when recurrence events were analyzed by sites, there were no differences between the two



groups in terms of local recurrence-free survival (LRFS), regional recurrence-free survival (RRFS),
and distant metastasis-free survival (DMFS) (Supplementary Figure 2).

Univariable Cox analysis showed that 7P53 mutation was significantly associated with a shorter
period of RFS (HR, 1.669; 95% Cls, 1.058-2.635; p-value = 0.028; Table 2A) and OS (HR, 3.092;
95% Cls, 1.427-6.698; p-value = 0.004; Table 3A). In multivariable Cox analysis, which included
all predictors with a p-value < 0.05 from the univariable Cox analysis, 7P53 mutation remained an
independent predictor of worse RFS (HR, 1.29; 95% ClIs, 1.008-1.832; p-value = 0.046; Table 2B)
and OS (HR, 2.488; 95% ClIs, 1.407-3.788, p-value = 0.044; Table 3B). Additionally, the
multivariable Cox analysis indicated that the presence of LVI and a high Ki-67 index were
significantly associated with worse RFS (Table 2B), and the presence of LVI was also an

independent predictor of worse OS (Table 3B).

Table 2A. Univariable analyses for RFS

Univariable
Variables
HR 95% Cls p-value

Age > 50 years ref.

<50 years 1.24 0.813-1.893 0.318
TP53 status Wild-type ref.

Mutation 1.669 1.058-2.635 0.028
Histologic type Ductal ref.

Lobular 1.236 0.277-5.525 0.781

1(\)&?5 and 1.906 0.468-7.768 0.368
Histologic grade  I-11 ref.

I 1.123 0.730-1.730 0.597
ER status * Negative ref.

Positive 1.25 0.797-1.961 0.331
PR status # Negative ref.

Positive 1.02 0.652-1.597 0.930
HER?2 status Negative ref.

Positive 0.718 0.439-1.172 0.185
LVI# No ref.

Yes 2.604 1.686-4.021 <0.001
Ki-67 index Low (<20%) ref.
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High ((=20%) 1.829 1.198-2.790 0.005

Tumor size * <2cm ref.

>2cm 1.659 1.063-2.587 0.026
Nodal status * Negative ref.

Positive 1.343 0.874-2.064 0.178

#Patients without definite data was excluded.

*Patients who underwent neoadjuvant chemotherapy was excluded.

Abbreviation, HR; hazard ratio, Cls; confidence intervals, ER; estrogen receptor, PR; progesterone
receptor, HER2; human epidermal growth factor receptor 2, LVI; lymphovascular invasion, ref;
reference

Table 2B. Multivariable analysis for RFS

Variables Multivariable
HR 95% Cls p-value

TP53 status Wild-type ref.

Mutation 1.29 1.008-1.832 0.046
LVI# No ref.

Yes 2.366 1.495-3.747 <0.001
Ki-67 index Low (<20%) ref.

High ((= 20%) 1.607 1.030-2.506 0.037
Tumor size " <2cm ref.

>2cm 1.29 0.805-2.607 0.291

Variables that were not significant in the univariable analysis were excluded from the
multivariable analysis.

#Patients without definite data was excluded.

*Patients who underwent neoadjuvant chemotherapy was excluded.

Abbreviation, HR; hazard ratio, CIs; confidence intervals, LVI; lymphovascular invasion, ref;
reference

Table 3A. Univariable analyses for OS

Univariable
Variables
HR 95% Cls p-value

Age > 50 years ref.

< 50 years 0.812 0.375-1.757 0.597
TP53 status Wild-type ref.

Mutation 3.092 1.427-6.698 0.004
Histologic type Ductal ref.
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Lobular undefined

g/[ti})lils and undefined
Histologic grade  I-II ref.

I 0.909 0.405-2.038 0.816
ER status # Negative ref.

Positive 0.515 0.225-1.178 0.116
PR status # Negative ref.

Positive 0.758 0.340-1.689 0.498
HER?2 status Negative ref.

Positive 1.017 0.442-2.339 0.968
LVI* No ref.

Yes 2.889 1.326-6.294 0.008
Ki-67 index Low (< 20%) ref.

High ((= 20%) 2.419 1.096-5.340 0.029
Tumor size " <2cm ref.

>2cm 2.788 1.082-7.186 0.034
Nodal status " Negative ref.

Positive 1.999 0.876-4.558 0.1

#Patients without definite data was excluded.
"Patients who underwent neoadjuvant chemotherapy was excluded.

Abbreviation, HR; hazard ratio, CIs; confidence intervals, ER; estrogen receptor, PR; progesterone
receptor, HER2; human epidermal growth factor receptor 2, LVI; lymphovascular invasion, ref;

reference

Table 3B. Multivariable analysis for RFS

Varigbles Multivariable
HR 95% Cls p-value

TP53 status Wild-type Ref.

Mutation 2.488 1.407-3.788 0.044
LVI* No Ref.

Yes 2.659 1.113-6.357 0.028
Ki-67 index Low (<20%) Ref.

High ((= 20%) 2.35 0.966-5.717 0.06
Tumor size " <2cm Ref.

>2cm 2.089 0.776-5.627 0.145

Variables that were not significant in the univariable analysis were excluded from the
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multivariable analysis.

#Patients without definite data was excluded.

*Patients who underwent neoadjuvant chemotherapy was excluded.

Abbreviation, HR; hazard ratio, CIs; confidence intervals, LVI; lymphovascular invasion, ref;
reference

3.3 Subgroup analysis based on mutation types within the 7P53-mutated
group

Since most 7P53 mutations are known to be missense mutations, we conducted a subgroup analysis
to determine if there were differences in oncologic outcomes between the missense type and other
mutation types. Among the 172 cases with confirmed 7P53 mutations, 96 (55.8%) had missense
mutations and 76 (44.2%) had other types of mutations. There were no significant differences in
demographic and clinicopathological variables between the two groups, except for a higher
prevalence of T1 stage tumor in the missense mutation group (50.6% vs. 33.3%, p = 0.026) when
patient who received neoadjuvant chemotherapy were excluded. Table 4 presented detailed

information.

Table 4. Patients’ characteristics based on 7P53 mutation type within the 7P53-mutated group

Missense mutation Other mutations
N (%) (N=96) (N=76) P
Age, median [range] 52 [34-76] 52 [27-87] 0.383
Age distribution 0.285
<50 years 47 (49.0) 31 (40.8)
> 50 years 49 (51.0) 45 (59.2)
Tumor subtype 0.201
Ductal 79 (82.3) 69 (90.8)
Lobular 2 2.1 0
Others and Mixed 15 (15.6) 7(9.2)
Histologic grade 0.495
Grade I-11 39 (40.6) 27 (35.5)
Grade 111 57 (59.4) 49 (64.5)
ER status * 0.455
Positive 36 (37.5) 24 (32.0)
Negative 60 (62.5) 51 (68.0)
PR status * 0.730
Positive 25 (26.3) 18 (24.0)
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Negative 70 (73.7) 57 (76.0)

HER?2 status 0.625
Positive 44 (45.8) 32 (42.1)

Negative 52 (54.2) 44 (57.9)

Molecular subtype 0.554
HR-positive, HER2-negative 19 (19.8) 12 (15.8)
HER2-positive 44 (45.8) 32 (42.1)
Triple-negative 33 (34.4) 32 (42.1)

LVI# 0.943
Positive 33(34.7) 26 (34.2)

Negative 62 (65.3) 50 (65.8)

Ki67 index (cut-off 20%) 0.175
High 67 (69.8) 60 (78.9)

Low 29 (30.2) 16 (21.1)

Neoadjuvant chemotherapy 0.589
Yes 7(7.3) 4(5.3)

No 89 (92.7) 72 (94.7)

T stage” 0.026
T1 45 (50.6) 24 (33.3)

T2 43 (48.3) 43 (59.7)
T3-4 1(1.1) 5(6.9)

N stage” 0.113
NO 52 (58.4) 46 (63.9)

N1 32 (36.0) 17 (23.6)
N2-3 5(5.6) 9 (12.5)

Adjuvant chemotherapy* 0.110
Yes 74 (83.1) 66 (91.7)

No 15 (16.9) 6 (8.3)

# Patients without definite data was excluded.

* Patients who underwent neoadjuvant chemotherapy was excluded.

Abbreviation, ER; estrogen receptor, PR: progesterone receptor, HER2; human epidermal growth
factor receptor 2, HR; hormone receptor, LVI; lymphovascular invasion

With a median follow-up period of 86.1 months (IQR, 54.1-110.8), there was no significant
differences of RFS and OS between two groups (Figure 3).
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Figure 3A. Kaplan-Meier curve for RFS in patients with 7P53 mutation, stratified by type of
mutation. Stratified log-rank test and Cox regression analysis showed that there was no significant
difference between the two groups (HR, 0.63; 95% CIs, 0.30-1.32; p = 0.217). (The 5-year RFS
rate: 89.9% (95% Cls, 81.4-94.6) in missense mutation group vs. 82.3% (95% Cls, 70.8-89.5) in
other mutations group, the 10-year RFS rate: 86.3% (95% Cls, 76.3-92.3) in missense mutation
group vs. 79.6% (95% Cls, 67.0-87.8) in other mutations group)
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Figure 3B. Kaplan-Meier curve for OS in patients with 7P53 mutation, stratified by type of
mutation. Stratified log-rank test and Cox regression analysis showed that there was no significant
difference between the two groups (HR, 1.63; 95% Cls, 0.55-4.84; p = 0.378). (The 5-year OS
rate: 93.9% (95% Cls, 84.5-97.7) in missense mutation group vs. 93.2% (95% Cls, 85.4-96.9) in
other mutations group, the 10-year OS rate: 88.0% (95% Cls, 76.3-94.2) in missense mutation
group vs. 93.2% (95% Cls, 85.4-96.9) in other mutations group)

The 5-year RFS rates were 89.9% (95% Cls, 81.4-94.6) in missense mutation group and 82.3% (95%
Cls, 70.8-89.5) in other mutations group, while the rates of RFS at 10 years were 86.3% (95% Cls,
76.3-92.3) in missense mutation group and 79.6% (95% Cls, 67.0-87.8) in other mutations group
(HR, 0.63; 95% CIs, 0.30-1.32; p = 0.217). The 5-year OS rates were 93.9% (95% Cls, 84.5-97.7)
in missense mutation group and 93.2% (95% Cls, 85.4-96.9) in other mutations group, while the 10-
year OS rates were 88.0% (95% Cls, 76.3-94.2) in missense mutation group and 93.2% (95% Cls,
85.4-96.9) in other mutations group (HR, 1.63; 95% ClIs, 0.55-4.84; p = 0.378). Additionally, LRFS,
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RRFS, and DMFS did not differ significantly between two groups (Supplementary Figure 3).

3.4 Subgroup analysis based on locations of mutation within the 7P53-

mutated group

Next, within the patient with 7P53 mutation, we conducted a subgroup analysis to investigate
oncologic outcomes based on the locations of 7P53 mutations. First, we classified the location of
TP53 mutations into the DBD and other locations. In total, there were 151 cases (87.8%) in DBD
group and 21 cases (12.2%) in other locations group. Compared to the other locations group, the
DBD group had a higher proportion of TNBC and lower proportion of HER2-positive tumors
(TNBC; 41.7% vs. 9.5%, HER2-positive; 41.7% vs. 61.9%; p = 0.016). No other significant

differences were observed between the two groups (Table 5).

Table 5. Patients’ characteristics based on location of 7P53 mutations in 7P53-mutated group

DNA-binding domain Other locations

N (%) (N=151) (N=21) P
Age, median [range] 54 [27-87] 52 [37-75] 0.819
Age distribution 0.824
<50 years 68 (45.0) 10 (47.6)
> 50 years 83 (55.0) 11 (52.4)
Tumor subtype 0.140
Ductal 127 (84.1) 21 (100)
Lobular 2(1.3) 0
Others and Mixed 22 (14.6) 0
Histologic grade 0.352
Grade I-1I 56 (37.1) 10 (47.6)
Grade 111 95 (62.9) 11 (52.4)
ER status * 0.013
Positive 48 (31.8) 12 (60.0)
Negative 103 (68.2) 8 (40.0)
PR status # 0.031
Positive 34 (22.7) 9 (45.0)
Negative 116 (77.3) 11 (55.0)
HER?2 status 0.081
Positive 63 (41.7) 13 (61.9)
Negative 88 (58.3) 8 (38.1)
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Molecular subtype 0.016

HR-positive, HER2-negative 25 (16.6) 6 (28.6)
HER2-positive 63 (41.7) 13 (61.9)
Triple-negative 63 (41.7) 2(9.5)

LVI*# 0.542
Positive 53 (35.3) 6 (28.6)
Negative 97 (64.7) 15 (71.4)

Ki67 index (cut-off 20%) 0.063
High 115 (76.2) 12 (57.1)
Low 36 (23.8) 9 (42.9)

Neoadjuvant chemotherapy >0.999
Yes 10 (6.6) 1 (4.8)
No 141 (93.4) 20 (95.2)

T stage” 0.736
T1 62 (44.0) 7 (35.0)
T2 74 (52.5) 12 (60.0)
T3-4 5(3.5) 1(5.0)

N stage” 0.440
NO 88 (62.4) 10 (50.0)
N1 42 (29.8) 7 (35.0)
N2-3 11(7.8) 3 (15.0)

Adjuvant chemotherapy* 0.078
Yes 120 (85.1) 20 (100)
No 21 (14.9) 0

# Patients without definite data was excluded.

* Patients who underwent neoadjuvant chemotherapy was excluded.

Abbreviation, ER; estrogen receptor, PR: progesterone receptor, HER2; human epidermal growth
factor receptor 2, HR; hormone receptor, LVI; lymphovascular invasion
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As with TP53 mutation type, there were no differences in oncologic outcomes between the two

groups based on mutation location (Figure 4).
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Figure 4A. Kaplan-Meier curve for RFS in patients with 7P53 mutation, stratified by locations of
mutation. Stratified log-rank test and Cox regression analysis showed that there was no significant
difference between the two groups (HR, 0.79; 95% CIs, 0.24-2.63; p = 0.378). (The 5-year RFS
rate: 86.8% (95% Cls, 79.9-91.5) in DBD group vs. 85.2% (95% Cls, 60.6-95.0) in other locations
group, the 10-year RFS rate: 83.2% (95% Cls, 75.2-88.9) in DBD group vs. 85.2% (95% ClIs,
60.6-95.0) in other locations group)
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Figure 4B. Kaplan-Meier curve for OS in patients with 7P53 mutation, stratified by locations of
mutation. Stratified log-rank test and Cox regression analysis showed that there was no significant
difference between the two groups (HR, 1.24; 95% Cls, 0.27-5.58; p = 0.781). (The 5-year OS
rate: 93.2% (95% Cls, 87.4-96.4) in DBD group vs. 95.2% (95% Cls, 70.7-99.3) in other locations
group, the 10-year OS rate: 91.4% (95% Cls, 84.9-95.2) in DBD group vs. 88.4% (95% Cls, 60.3-

97.1) in other locations group)

The 5-year RFS rates were 86.8% (95% Cls, 79.9-91.5) in DBD group, 85.2% (95% Cls, 60.6-95.0)
in other locations group, and the 10-year RFS rates were 83.2% (95% Cls, 75.2-88.9) in DBD group,
85.2% (95% Cls, 60.6-95.0) in other locations group (HR, 0.79; 95% CIs, 0.24-2.63; p = 0.378).
The OS rates at 5 years were 93.2% (95% Cls, 87.4-96.4) in DBD group and 95.2% (95% Cls, 70.7-
99.3) in other locations group, while the 10-year OS rates were 91.4% (95% Cls, 84.9-95.2) in DBD
group and 88.4% (95% Cls, 60.3-97.1) in other locations group (HR, 1.24; 95% CIs, 0.27-5.58; p =
0.781). LRFS, RRFS, and DMFS did not differ significantly between two groups (Supplementary
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Figure 4).

3.5 Subgroup analysis based on missense hotspot mutations or not within the

TP53-mutated group

Lastly, we analyzed oncologic outcomes by distinguishing between cases with missense hotspot

domains and those without within the patients with 7P53 mutation. Majority of mutations identified

at hotspot codons were missense mutations (39/44, 88.6%). Although no statistically significant

differences in patients’ characteristics were observed between the two groups, the missense hotspot

mutations group had a higher proportion of T1 tumors and relatively fewer T2 tumors (T1 tumors;

70.0% vs. 36.6%, T2 tumors; 26.7% vs. 59.5%, p = 0.003) (Table 6).

Table 6. Patients’ characteristics between missense hotspot mutations and other mutations

Missense hotspot

Other mutations

N (% mutations
(%) (N=34) (N=138) p
Age, median [range] 53 [34-76] 53 [27-87] 0.953
Age distribution 0.823
<50 years 16 (47.1) 62 (44.9)
> 50 years 18 (52.9) 76 (55.1)
Tumor subtype 0.448
Ductal 32 (94.1) 116 (84.1)
Lobular 0 2(1.4)
Others and Mixed 2(5.9) 20 (14.5)
Histologic grade 0.680
Grade I-11 12 (35.3) 54 (39.1)
Grade III 22 (64.7) 84 (60.9)
ER status * 0.667
Positive 13 (38.2) 47 (34.3)
Negative 21 (61.8) 90 (65.7)
PR status # 0.537
Positive 10 (29.4) 33(24.3)
Negative 24 (70.6) 103 (75.7)
HER?2 status 0.993
Positive 15 (44.1) 61 (44.2)
Negative 19 (55.9) 77 (55.8)
Molecular subtype 0.894
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HR-positive, HER2-negative 7 (20.6) 24 (17.4)

HER2-positive 15 (44.1) 61 (44.2)
Triple-negative 12 (35.3) 53 (38.4)

LVI# 0.331
Positive 9(27.3) 50 (36.2)
Negative 24 (72.7) 88 (63.8)

Ki67 index (cut-off 20%) 0.697
High 26 (76.5) 101 (73.2)
Low 8 (23.5) 37 (26.8)

Neoadjuvant chemotherapy 0.231
Yes 4 (11.8) 7(5.1)
No 30 (88.2) 131 (94.9)

T stage” 0.003
T1 21 (70.0) 48 (36.6)
T2 8 (26.7) 78 (59.5)
T3-4 1(3.3) 5(3.8)

N stage” 0.429
NO 18 (60.0) 80 (61.1)
N1 11 (36.7) 38 (29.0)
N2-3 1(3.3) 13 (9.9)

Adjuvant chemotherapy* 0.168
Yes 28 (80.0) 112 (88.9)
No 7 (20.0) 14 (11.1)

# Patients without definite data was excluded.

* Patients who underwent neoadjuvant chemotherapy was excluded.

Abbreviation, ER; estrogen receptor, PR: progesterone receptor, HER2; human epidermal growth
factor receptor 2, LVI; lymphovascular invasion

The median follow-up period was 95.1 months (IQR, 81.9-98.8) in missense hotspot mutation group,
83.7 months (IQR, 75.6-89.3) in other mutations group. At 5 years, RFS rates were 100% in missense
hotspot mutation group and 84.5% (95% Cls, 75.6-88.8) in other mutations group. The Kaplan-
Meier estimates of 10-year RFS rate was 100% in missense hotspot mutation group and 79.6% (95%
Cls, 70.8-86.0) in other mutations group, indicating missense hotspot mutation group had a better
oncologic outcome than other mutations group (HR, 0.15; 95% CIs, 0.06-0.39; p = 0.033). However,
there was no significant difference in OS between the two groups (HR, 0.70; 95% Cls, 0.18-2.66; p
=0.636) (Figure 5).
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Figure 5A. Kaplan-Meier curve for RFS in patients with 7P53 mutation, stratified by the presence
or absence of missense hotspot mutation. Compared to patients without missense hotspot mutation,
patients with missense hotspot mutation had a longer RFS period (HR, 0.15; 95% Cls, 0.06-0.39; p
=0.033). (The 5-year RFS rate: 100% in missense hotspot mutation group vs. 83.4% (95% Cls,
75.6-88.8) in other mutations group, the 10-year RFS rate: 100% in missense hotspot mutation
group vs. 79.6% (95% Cls, 70.8-86.0) in other mutations group)
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Figure 5B. Kaplan-Meier curve for OS in patients with 7P53 mutation, stratified by the presence
or absence of missense hotspot mutation. Stratified log-rank test and Cox regression analysis
showed that there was no significant difference between two groups. (HR, 0.70; 95% Cls, 0.18-
2.66; p =0.636). (The 5-year OS rate: 93.3% (95% Cls, 75.9-98.3) in missense hotspot mutation
group vs. 93.6% (95% Cls, 87.6-96.7) in other mutations group, the 10-year OS rate: 93.3% (95%
Cls, 75.9-98.3) in missense hotspot mutation group vs. 90.4% (95% Cls, 83.3-94.6) in other

mutations group)

Additionally, the RFS rates stratified by recurrence sites were not significantly different between the

two groups (Supplementary Figure 5).

3.6. Clinical relevance of 7P53 within molecular subtypes of breast cancer

As part of an exploratory analysis, we examined the clinical relevance of 7P53 mutations within
specific molecular subtypes. After excluding 72 patients for whom IHC-based HR status was
unavailable, there were 239 patients (41.3%) with HR-positive/HER2-negative (HR+/HER2-) breast
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cancer, 188 patients (32.5%) with HER2-positive breast cancer, and 151 patients (26.1%) with
TNBC. The proportion of patients with confirmed 7P53 mutations in each subtype was 30 patients
(12.6%) in the HR+/HER2- subtype, 75 patients (39.9%) in the HER2-positive subtype, and 65
patients (43.0%) in the TNBC group. When comparing survival outcomes based on 7P53 mutation
status within each subtype using the Kaplan-Meier estimated model, there were no differences in
RFS or OS in HR+/HER2- and HER2-positive breast cancer. However, in TNBC, patients with 7P53
mutation had worse RFS compared to those with 7P53 wild-type (HR, 2.13; 95% Cls, 1.01—4.50;
p = 0.046; Figure 6E). Nevertheless, there was no statistical difference in OS according to 7P53
mutation status in TNBC (HR, 1.83; 95% CIs, 0.58—5.73; p = 0.295; Figure 6F).
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Figure 6. Kaplan-Meier curve for RFS and OS according to 7P53 mutation status in each subtype.
In HR+/HER2- subtype, there was no difference in (A) RFS (HR, 0.47; 95% ClIs, 0.17—1.34; p =
0.287) or (B) OS (HR, 1.82; 95% ClIs; 0.12—26.73; p = 0.585) between TP53-muated group and
TP53 wild-type group. Similarly, in the HER2-positive subtype, no differences were observed in (C)
RFS (HR, 1.45; 95% Cls; 0.55—3.81; p = 0.417) or (D) OS (HR, 4.03; 95% ClIs; 0.88—18.5; p =
0.07) based on TP53 mutation status. In the TNBC group, (E) TP53-mutated tumors showed worse
RFS compared to the TP53 wild-type group (HR, 2.13; 95% ClIs; 1.01—4.50; p = 0.046). However,
(F) although there was a trend toward worse OS in 7P53-mutated tumors, it was not statistically

significant (HR, 1.83; 95% Cls, 0.58—5.73; p = 0.295).

IV. DISCUSSION

In this retrospective cohort study, we assessed the clinical relevance of 7P53 mutations in breast
cancer patients, including all subtypes and treatments, and conducted subgroup analyses based on
the characteristics of 7P53 mutations within the 7P53-mutated group. 7P53 mutations were more

frequent in breast cancer with more aggressive clinicopathological variables, such as large tumor,
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tumor with LVI or high tumor grade, and overexpression of HER2. Patients with 7P53 mutations
had shorter RFS and OS compared to patients with 7P53 wild-type tumor. However, within the
TP53-mutated group, the oncologic outcomes did not significantly differ between subgroups based
on the characteristics of the 7P53 mutations. Missense mutation, locations within the DBD, and
even missense mutation situated in hotspots, which all well-known dominant characteristics of 7P53
mutation, did not have clinical relevance compared to other types or locations of 7P53 mutations.
Although patients with missense hotspot mutations in the 7P53-mutated group had a longer RFS
period compared to other patients, there was no difference in OS rate. Therefore, prognostic impact
of missense hotspot mutations of 7P53 gene remains questionable.

Although TP53 mutations are found in approximately 30% of all breast cancers, ' the proportion of
these mutations varies by tumor subtypes. Furthermore, due to the differing mechanisms of p53
protein among tumor subtypes and treatments, most studies on the clinical relevance of 7P53
mutations in breast cancer have been conducted within specific subtypes or treatments. Given that
p53 regulates cell response to DNA damage, there have been several studies investigating the role
of TP53 mutations in patients undergoing chemotherapy or radiation, which induces tumor cell
damage. Early preclinical trials indicated that p53 plays a role in regulating apoptosis or cell cycle
arrest following the cell damage such as radiation or systemic anticancer treatments.”*-?” Subsequent
studies have shown that breast cancer patients with 7P53 mutations often have higher pathologic

2831 Otherwise, there were

complete response (pCR) rates following neoadjuvant chemotherapy.
studies showing neutral or negative results regarding the association between 7P53 mutations and
pCR rates following neoadjuvant chemotherapy.*2-** Most of previous studies had small sample sizes
and used different chemotherapy regimens and detecting method of 7P53 mutations, making it
difficult to define the clinical relevance of TP53 mutations. Recently, a meta-analysis of 26 studies
involving 3,476 breast cancer patients who underwent neoadjuvant chemotherapy found that those
with TP53 mutations had a higher pCR rate.?’ However, even this study confirmed the clinical
relevance of TP53 mutations through a sizable cohort, it also had the limitation of inconsistent 7P53
mutation detection methods across the including studies. Additionally, most cases receiving
neoadjuvant chemotherapy are HER2-positive breast cancer or triple-negative breast cancer (TNBC).
Therefore, it is difficult to consider these studies as having a balanced representation of all breast
tumor subtypes.

ER-positive breast tumors account for approximately 70% of all breast cancers, making them the
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most prevalence subtype. In ER-positive breast tumors, the frequency of 7P53 mutations is lower
than in other subtypes;3! however, when these mutations are present, they are associated with a poor
prognosis. Many studies presented that 7P53 mutations could lead to alterations in the p53 protein,
potentially causing endocrine resistance®>-’. However, the relationship between TP53 mutations and
survival outcome in patients receiving only hormone therapy has been controversial.3!*%3® This is
due to several factors such as the small sample size, the detection of 7P53 mutations primarily
through THC, and the lack of information on additional treatments beyond hormone therapy. In a
meta-analysis examining the clinical relevance of 7P53 mutations in patients receiving only
hormone therapy, it was found that patients with 7P53 mutations had worse overall survival
compared to those without 7P53 mutations.*® Although a difference dataset with varying TP53
mutation detection methods was utilized, we previously identified an association between TP53
mutations and high 21-gene recurrence score (RS) in ER+HER2- breast tumors.*® This finding aligns
with prior research indicating that 7P53 mutations are associated with endocrine resistance in ER-
positive breast tumors. Compared to ER-positive breast cancer, ER-negative breast cancer accounts
for a smaller proportion of all breast tumors; however, the frequency of 7P53 mutations is higher in
ER-negative breast cancer. 7P53 mutation rates are higher in HER2-positive and TNBC (also
referred to as basal-like type) compared to luminal-type breast cancer, which are predominantly ER-
positive tumors.'>*!47 Some studies indicated that the presence of 7P53 mutations is associated with
poor prognosis and might confer resistance to chemotherapy in HER2-positive cancer and
TNBC.#-% However, some studies showed no difference in oncologic outcomes based on TP53

51-55

mutation status in ER-negative tumors, or even suggested that 7P53 mutations are associated

with better prognosis.3%36>7

This trend has become more pronounced in recent studies as
chemotherapy regimens have continuously evolved and the clinical use of new drugs, such as dual
HER?2 blockade and immune checkpoint inhibitors, has increased. Consequently, determining the
clinical significance of 7P53 mutations in ER-negative breast cancer has become even more
challenging. Given these circumstances, conducting studies to determine the clinical relevance of
TP53 mutations across all subtypes and treatments have many hurdles and interpreting the results is
also challenging.

Therefore, the strength of our study is its ability to assess long-term oncologic outcomes using a

large cohort that encompasses all breast cancer subtypes and treatments. Excluding 42 patients

whose hormone receptor status was not clearly identified, the data for this study included 253
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HR+/HER2- case (41.6%), 204 HER2-positive cases (33.6%), and 172 triple-negative cases (28.3%),
which means the distribution of tumor subtypes in collected data was well-balanced. To date, there
have been few studies that investigated the clinical relevance of 7P53 mutations using cohorts that
include all breast cancer subtypes and treatments. In most of these studies, patients with 7P53
mutations were found to have worse survival compared to the wild-type group.’¥*! However, these
studies had limitations such as small sample sizes, lack of follow-up data, and inconsistent
treatments even within the same subtypes. This study, leveraging a large cohort from a single center,
ensured consistent treatments according to tumor subtypes and stage, thereby minimizing bias from
the data. In addition, by collecting data from patients who underwent P53 mutation testing between
2007 and 2015, we were able to secure comprehensive long-term follow-up data. Moreover, few
studies have examined surgical outcomes based on location and type of 7P53 mutations in patients
with confirmed 7P53 mutations, highlighting the significant of this study. As it has been revealed
that mutations causing loss of DNA-binding can be critical to the biological activity of p53,%? there
is growing interest in the characteristics of 7P53 mutations. Although some studies have suggested
that mutations situated in certain domains (especially in DBD) and type (such as truncating mutation)

might be considered worse prognostic predictors in breast cancer compared to mutations in other

63-66 64,67

regions, other studies have reported neutral®™ or contrary results, leading to ongoing
controversy. These studies varied in their breast cancer subtypes, treatment protocols, and methods
for detecting 7P53 mutations, making it challenging to interpret the results comprehensively. In our
study, when performing subgroup analysis within the 7P53-mutated group, there were no differences
in the proportions of tumor subtypes and treatments between the two groups. This consistency
minimizes the limitations caused by data inconsistencies that were present in previous studies.

Although our study allowed us to assess the clinical relevance of 7P53 mutations and their
characteristics within a large cohort encompassing all tumor subtypes and treatments, it still had
inherent limitations. The first limitation is the sensitivity of 7P53 mutations. In our study, we
identified 7P53 mutations in exons 5-9 using PCR-DHPLC and direct sequencing., Despite most
TP53 mutations occur in exons 5-9, this approach might have missed mutations occurring outside
these exons, incorrectly categorizing them as wild-type.®® In addition, somatic mutations identified
by PCR-DHPLC might not always be detectable by direct sequencing, because it has a threshold of
detection of approximately 15 to 20%.%%7° To overcome this limitation, next-generation sequencing

(NGS) is now used for DNA sequencing in breast cancer.”! However, since NGS was introduced at
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our institution in 2017, it was not applied for the patients retrospectively collected for this study.
Additionally, we were unable to fully control for confounding variables with relatively old data.
Lastly, since the data was collected before 10 years ago, the treatment protocols at that time might
differ significantly from those currently used in clinical practice. Most patients in this study did not
receive neoadjuvant chemotherapy, and treatments such as CDK4/6 inhibitors, immune checkpoint
inhibitors, and dual HER2 blockade including pertuzumab were rarely administered at that time.
Nevertheless, based on this study, we expected that we could conduct further research addressing a
prognostic influence on the characteristics of 7P53 mutations in breast cancer patients with

advanced research methods and molecular studies.

V. CONCLUSION

Using consistently collected long-term follow-up data, we found that 7P53 mutations are associated
with worse prognosis in breast tumors including all subtypes and treatments. Additionally, within
the TP53-mutated group, there were no differences in surgical outcomes based on the characteristics
of TP53 mutations such as mutation type and location. Based on our study, further research could
be conducted to address a prognostic influence of the types of 7P53 mutations in patients with breast

cancer.
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Supplementary Figure 1. Characteristics of 7P53 mutations in patients within the TP53-
mutated group. More than half of the identified 7P53 mutations were missense mutations, with the
majority occurring in the DNA-binding domain (DBD). Each circle represents a codon where a
TP53 mutation occurred, with mutation types distinguishing by color. The number of circles

indicates the total number of mutations occurring within specific codons
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Supplementary Figure 2. Kaplan-Meier curve for (A) LRFS, (B) RRFS, and (C) DMFS in
patients stratified by TP53 mutation. Stratified log-rank test and Cox regression analysis presented
that there were no significant differences between two groups. (The 5-year LRFS rate: 96.7%
(95% CIs, 92.3-98.6) in TP53 mutation group vs. 97.9% (95% Cls, 95.9-98.9) in TP53 wild-type
group, the 10-year LRFS rate: 93.6% (95% Cls, 87.2-96.8) in TP53 mutation group vs. 96.9%
(95% Cls, 94.6-98.3) in TP53 wild-type group (HR, 1.82; 95% ClIs, 0.76-4.38; p = 0.173)), (The 5-
year RRFS rate: 99.4% (95% Cls, 95.7-99.9) in TP53 mutation group vs. 99.3% (95% Cls, 97.9-
99.8) in TP53 wild-type group, the 10-year RRFS rate: 97.5% (95% Cls, 92.4-99.2) in TP53
mutation group vs. 97.3% (95% Cls, 94.1-98.8) in TP53 wild-type group (HR, 1.06; 95% ClIs,
0.29-3.86; p = 0.936)), (The 5-year DMFS rate: 89.8% (95% Cls, 83.8-93.6) in TP53 mutation
group vs. 95.3% (95% CIs, 92.8-97.0) in TP53 wild-type group, the 10-year DMFS rate: 88.1%
(95% CIs, 91.7-92.4) in TP53 mutation group vs. 91.0% (95% Cls, 87.3-93.6) in TP53 wild-type
group (HR, 1.54; 95% Cls, 0.87-2.71; p = 0.135))
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Supplementary Figure 3. Kaplan-Meier curve for (A) LRFS, (B) RRFS, and (C) DMFS in
patients with 7P53 mutation, stratified by types of mutation. Stratified log-rank test and Cox
regression analysis presented that there were no significant differences between two groups. (The
S-year LRFS rate: 97.7% (95% Cls, 90.9-99.4) in missense mutation group vs. 95.4% (95% Cls,
86.5-98.5) in other mutations group, the 10-year LRFS rate: 97.7% (95% Cls, 90.9-99.4) in
missense mutation group vs. 88.1% (95% Cls, 74.5-94.7) in other mutations group (HR, 0.24; 95%
Cls, 0.05-1.19; p = 0.06)), (The 5-year RRFS rate: 98.5% (95% Cls, 90.0-99.8) in missense
mutation group vs. 100% in other mutations group, the 10-year RRFS rate: 98.5% (95% Cls, 90.0-
99.8) in missense mutation group vs. 96.9% (95% Cls, 88.0-99.2) in other mutations group (HR,
1.43; 95% Cls, 0.13-15.72; p = 0.771)), (The 5-year DMFS rate: 88.0% (95% Cls, 77.4-93.8) in
missense mutation group vs. 89.9% (95% Cls, 81.4-94.6) in other mutations group, the 10-year
DMEFS rate: 88.0% (95% Cls, 77.4-93.8) in missense mutation group vs. 88.2% (95% Cls, 78.9-
93.5) in other mutations group (HR, 1.13; 95% CIs, 0.45-2.87; p = 0.793)).
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Supplementary Figure 4. Kaplan-Meier curve for (A) LRFS, (B) RRFS, and (C) DMFS in
patients with 7P53 mutation, stratified by locations of mutation. Stratified log-rank test and Cox
regression analysis presented that there were no significant differences between two groups. (The
5-year LRFS rate: 96.9% (95% Cls, 92.0-98.8) in DBD group vs. 95.0% (95% Cls, 69.5-99.3) in
other locations group, the 10-year LRFS rate: 93.3% (95% Cls, 86.0-96.9) in DBD group vs.
95.0% (95% Cls, 69.5-99.3) in other locations group (HR, 0.96; 95% Cls, 0.12-7.77; p = 0.966)),
(The 5-year RRFS rate: 99.3% (95% Cls, 95.1-99.9) in DBD group vs. 100% in other locations
group, the 10-year RRFS rate: 97.2% (95% Cls, 91.4-99.1) in DBD group vs. 100% in other
locations group (HR, 0.4; 95% Cls, 0-111526.0; p = 0.509)), (The 5-year DMFS rate: 89.0% (95%
Cls, 82.3-93.2) in DBD group vs. 89.6% (95% Cls, 64.3-97.3) in other locations group, the 10-
year DMFS rate: 87.9% (95% Cls, 80.8-92.4) in DBD group vs. 89.6% (95% Cls, 64.3-97.3) in
other locations group (HR, 0.84; 95% Cls, 0.19-3.65; p = 0.814))
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Supplementary Figure 5. Kaplan-Meier curve for (A) LRFS, (B) RRFS, and (C) DMFS in
patients with 7P53 mutation, stratified by the presence or absence of missense hotspot mutation.
Stratified log-rank test and Cox regression analysis presented that there were no significant
differences between two groups. (The S5-year LRFS rate: 97.4% (95% Cls, 82.8-99.6) in missense
hotspot mutation group vs. 96.5% (95% Cls, 90.9-98.7) in other mutations group, the 10-year
LRFS rate: 97.4% (95% Cls, 82.8-99.6) in missense hotspot mutation group vs. 92.2% (95% Cls,
83.8-96.4) in other mutations group (HR, 0.43; 95% Cls, 0.09-2.13; p = 0.416)), (The 5-year
RREFS rate: 100% in missense hotspot mutation group vs. 99.2 (95% Cls, 94.4-99.9) in other
mutations group, the 10-year RRFS rate: 96.4% (95% Cls, 77.2-99.5) in missense hotspot
mutation group vs. 98.0% (95% Cls, 92.3-99.5) in other mutations group (HR, 1.40; 95% ClIs,
0.11-18.38; p = 0.78)), (The 5-year DMFS rate: 100% in missense hotspot mutation group vs.
85.6% (95% Cls, 77.9-90.8) in other mutations group, the 10-year DMFS rate: 100% in missense
hotspot mutation group vs. 84.4% (95% Cls, 76.2-89.9) in other mutations group (undefined HR))
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Abstract in Korean
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