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Table 1. Summary of clinical outcome prediction model

Author  Country Data source  Outcome Predictors Algorithm  AUROC
(year) (setting) (sample size) rates (95% CI)
Hospital admission
Araz USA ED data - age, gender, arrival mode, LR 0.832
(2019) (SC) (118,005) triage acuity level, flu season, ANN 0.835
time of day, ICD-9 coded SVM 0.790
complaints DT 0.810
RF 0.770
XGBoost 0.863
Cameron Scotland ED data - age, NEWS, triage category, LR 0.877
(2015) (MC) (322,846) referred by GP, arrive by (0.875-0.880)
ambulance, admitted within 1
year
Dinh Australia  EDDC 40.7% Age, ambulance arrival, triage LR 0.820
(2016) (MC) (1,721,294) category, previous admission, (0.810-0.820)
presenting problem, ED arrival
time
Graham Ireland ED data 24.0% hospital site, age, arrival mode, LR 0.849
(2018) (MC) (107,545) triage category, care group, DT 0.824
previous admission GBM 0.859
Handly  USA ED data 30.8% age, sex, race, time of arrival, NN
(2015)  (SC) (derivation;  derivation day of arrival, emergency without 0.840
74,056 26.3%  severity index (ESI), coded CCC (0.838-0.842)
validation; validation chief complaint (CCC) 0.860
85,144) with CCC  (0.858-0.862)
Hong USA ED data 29.7% ESI level, age, gender, Full set:
(2018) (MC) (560,486) ethnicity, primary language, LR 0.909
number of ED visits within 1 (0.906-0.911)
year, number of admissions XGBoost 0.924
within 1 year, disposition of the (0.922-0.927)
previous ED visit, total number DNN 0.920
of prior surgeries or (0.917-0.922)
procedures, medication counts,
insurance type
Kim Australia  ED data 38.6% age, sex, time of day, day of LR 0.835
(2014)  (SC) (100,123) the week, ATS category, (0.833-0.837)

arrival by ambulance, referral
by local medical officer, blood

test results

Abbreviations. AUROC = area under the receiver operating characteristic curve, CI = confidence interval, ED
= emergency department, EDDC = emergency department data collection, ANN = artificial neural network,
SVM = support vector machine, DT = decision tree, RF = random forest, XGBoost = extreme gradient boosting,
NEWS = national early warning score, GP = general practitioner, LR = logistic regression, GBM = gradient
boosting machine, NN = neural network, ESI = emergency severity index, CCC = coded chief complaint, ATS
= Australasian triage scale, DNN = deep neural network, ICD-9 = international classification of diseases, 9th

revision, MC = multicenter, SC = single center.
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Table 1. Summary of clinical outcome prediction model (continued)

Author  Country Data source  Outcome Predictors Algorithm  AUROC
(year) (setting) (sample size) rates (95% CI)
Hospital admission
Kwon Korea NEDIS data 27.0% age, sex, chief complaint, deep 0.804
(2018) (MC) (10,967,518) symptom onset time, arrival learning (0.803-0.804)
EMR data mode, trauma, vital signs,
(13,989) mental status
Levin USA ED data 22.3— age, sex, arrival mode, vital RF 0.820-0.840
(2018)  (MC) (172,726)  26.0% signs (BT, PR, RR, SBP,

Sp02), chief complaint,
medical history

Lucke Netherlands ED data @ <70y age, sex, triage category multivariable (1) 0.860
(2018) (SC) (21,287) - 23.1% (MTS), mode of arrival, LR (0.850-0.870)
@270y performance of blood test, @ 0.770

chief complaint, ED revisit,

$43.2% type of specialist, blood (0.750-0.790)

sample, vital signs

Parker  Singapore eHINTS 38.7% age, race, postal code, day of LR 0.825

(2019) (SC) (1,232,016) week, shift time, mode of (0.824-0.827)
arrival, triage category (PAC),
fever status

Raita USA NHAMCS 16.2% age, sex, mode of arrival, vital LR, Lasso DNN

(2019) (MC) (135,470) signs, chief complaints, Regression  0.820
comorbidities RF, GBDT, (0.820-0.830)

DNN

Sun Singapore  ED data 30.2%  age, PAC status, arrival mode, LR 0.849

(2011) (SC) (317,581) ethnic group, chronic (0.847-0.851)
conditions (DM, HTN,
dyslipidemia), ED/hospital visit
in last 3 months

Zhang USA NHAMCS 13.4% age, sex, race, vital signs, triage LR 0.846

(2017)  (MC) (47,200) level, comorbidities, arrival (0.839-0.853)
mode, chief complaint (PCA  MLNN 0.844
from NLP) (0.836-0.852)

Zlotnik  Spain ED data 13.6% age, gender, visit source, LR 0.857

(2016)  (SC) (255,668) arrival mode, MTS triage level, (0.851-0.858)
MTS chief complaint group, ~ ANN 0.858
insurance status, visit (0.854-0.861)

Abbreviations. EMR = electronic medical record, NEDIS = national emergency department information system,
BT = body temperature, PR = pulse rate, RR = respiratory rate, SBP = systolic blood pressure, SpO2 =
peripheral capillary oxygen saturation, MTS = Manchester triage system, PAC = patient acuity category,
NHAMCS = national hospital ambulatory medical care survey, NLP = natural language processing, ANN =
artificial neural network, RF = random forest, GBDT = gradient boosting decision tree, DNN = deep neural
network, LR = logistic regression, MLNN = multilayer neural network, SC = single center, MC = multicenter,
DM = diabetes mellitus, HTN = hypertension.
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Table 1. Summary of clinical outcome prediction model (continued)

Author Country Data source Outcome Predictors Algorithm AUROC
(year) (setting) (sample size) rates (95% CI)
Critical care
Chen Taiwan EHR data 2.5% age, gender, arrival mode,  Clinical 0.874
(2023) (SC) (171,275) vital signs, clinical narrative-aware (0.873-0.882)
narratives (chief complaints, deep neural
present illness, medical network
history)
Joseph USA ED data 13.7%  age, sex, vital signs (HR, LR 0.805
(2020) (SC) (445,925) RR, BP, SpO2, temp), (0.801-0.808)
chief complaint (text data) 2-layer NN 0.812
(0.811-0.814)
XGBoost 0.820
(0.818-0.821)
NN 0.857
(+text data) (0.856-0.858)
Kwon Korea  NEDIS data 5.7% age, sex, chief complaint,  deep learning  0.894
(2018) (MC) (10,967,518) symptom onset time, arrival (0.894-0.895)
EMR data mode, trauma, vital signs,
(13,989) mental status
Levin  USA ED data 1.6— age, sex, arrival mode, vital RF 0.900-0.920
(2018) (MC)  (172,726)  2.0%  signs (BT, PR, RR, SBP,
Sp02), chief complaint,
medical history
Raita  USA NHAMCS 2.1% age, sex, mode of arrival, LR, Lasso DNN
(2019) (MC) (135,470) vital signs, chief complaints, Regression 0.860
comorbidities RF, GBDT, (0.850-0.870)
DNN
Yu Korea CDW 3.5% age, gender, vital signs, deep learning  0.876
(2020) (SC) (86,309) chief complaint, level of (0.863-0.889)
consciousness, arrival mode
Yun Korea  NEDIS data 4.6% age, gender, mode of ED  XGBoost 0.861
(2021) (SC) (80,433) arrival, time interval (0.848-0.874)
between onset and ED DNN 0.833

arrival, reason for ED visit,
chief complaints, vital signs,

COoNsciousness

(0.819-0.848)

Abbreviations. EHR = electronic health record, EMR = electronic medical record, NEDIS = national emergency
department information system, CDW = clinical data warehouse, BT = body temperature, PR = pulse rate, RR
= respiratory rate, SBP = systolic blood pressure, SpO2 = peripheral capillary oxygen saturation, HR = heart
rate, BP = blood pressure, NN = neural network, RF = random forest, GBDT = gradient boosting decision tree,

DNN = deep neural network, LR = logistic regression, SC = single center, MC = multicenter.
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Table 1. Summary of clinical outcome prediction model (continued)

Author Country  Data source Outcome Predictors Algorithm ~ AUROC
(year) (setting)  (sample size) rates (95% CI)
Mortality
Fernandes Portugal EDIS data 0.48% age, GCS, pulse oximetry, LR 0.950
(2020) (SC) (235,826) arrival mode, triage vitals, (0.940-0.960)
chief complaints (TF-IDF  RF 0.940
vectorized) (0.930-0.950)
XGBoost  0.960
(0.950-0.970)
Klug Israel EMR data @ early; age, arrival mode, XGBoost  (7) 0.962
(2020) (SC) (799,522) 0.60% structured chief complaint, (0.956-0.968)
@ short- vital signs (BT, SpO2, HR, @ 0.923
term: 2.5006 SC» DBP). ESI level (0.919-0.926)
Kwon Korea NEDIS data 1.40% age, sex, chief complaint,  deep 0.935
(2018) (MC) (10,967,518) symptom onset time, learning (0.935-0.936)
EMR data arrival mode, trauma, vital
(13,989) signs, mental status
Lee Korea NEDIS data @ 24 hours age, sex, SBP, HR, RR, multi- @ 0.910
(2020a)  (MC) (81,520) - 3.04% BT, SpO2, level of variable (0.907-0.914)
@ 48 hours consciousness, oxygen LR @ 0.899
ca08%  SUPPY (0.895-0.903)
® 7 days (® 0.876
; 5.82% (0.872-0.880)
@ 30 days @ 0.832
; 7.99% (0.828-0.837)
Teubner  Australia EDIS datasets @ derivation age, gender, calendar year, LR @ 0.859
(2015) (MC) (derivation; - 3.04% ambulance arrival, ATS (0.856-0.865)
424,316, o @ internal category, triage complaint @ 0.848
T;gfgg'z\"a"dat'on’ c20705  COUES (0.840-0.856)
external validation; @ external ® 0.837
34,434) ; 1.64% (0.823-0.851)
Xie Singapore EMR data @ 2-days  age, heart rate, respiratory AutoScore- (1) 0.821
(2021) (SC) (280,833) - 0.8% rate, systolic and diastolic based_ (0.796-0.847)
@ 7-days blood pressure, mach_lne @ 0.826
-2 20 COh’]OI’bejIFIeS (Charlson Iearnl_ng + (0.811-0.841)
' Comorbidity Index) logistic
® 30-days regression (® 0.823
; 5.9% (0.814-0.832)

Abbreviations. EDIS = emergency department information system, EMR = electronic medical record, NEDIS
= national emergency department information system, BT = body temperature, HR = heart rate, RR =
respiratory rate, SBP = systolic blood pressure, DBP = diastolic blood pressure, SpO2 = peripheral capillary
oxygen saturation, GCS = Glasgow coma scale, TF-IDF = term frequency-inverse document frequency, ESI =
emergency severity index, LR = logistic regression, RF = random forest, XGBoost = extreme gradient boosting,
MC = multicenter, SC = single center, ATS = Australasian triage scale.
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Table 1. Summary of clinical outcome prediction model (continued)

Author  Country Data source  Outcome rates  Predictors Algorithm ~ AUROC
(year)  (setting) (sample size) (95% CI)
Hospital admission
Lee USA EHR data admission to age, gender, prior ED multinomial (1) 0.970
(2020b) (SC) (172,809) different units visits, arrival time, LR @ 0.950
@ ICU (3.6%)  severity score, chief NN
@ TU (2.2%) complaints, vital signs, SVM ®0.890
. lab test results, @ 0.840
® GPU (11.9%) imaging orders
@ OU (6.6%)
Discharge
Riordan USA EHR data Discharge vs. age, sex, arrival mode, LR 0.730

(2017) (SC) (49,755) non-discharge systolic BP, diastolic
BP, pulse, respiratory
rate, Sp0O2,
temperature, pain
score

(0.720-0.740)

Abbreviations. EHR = electronic health record, BP = blood pressure, SpO2 = peripheral capillary oxygen
saturation, ICU = intensive care unit, TU = telemetry unit, GPU = general practice unit, OU = observation unit,
LR =logistic regression, NN = neural network, SVM = support vector machine, SC = single center.
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Healthcare Process Modeling Framework to Phenotype Clinician Behaviors
for Exploiting the Signal Gain of Clinical Expertise (HPM-ExpertSignals)
Constructs

Concepts
Clinician Knowledge and Expertise

Behavioral Data
:

: FY
A = A : . . n Surveillance ) . .
Clinical Decision Making : gl“"ca' m and i + Entries with Increased Frequency
and Clinical Processes : el Differential ) AND/OR )
E Diagnosis g * Entries Done at Uncommon Times
. Cycle s

Data, Environmental, &

Individual Structures ot . * Environmental and system  * Individual modifiers
* Clinician Interaction s A
5 R modifiers * Clinician
with Clinical * Clinical System Characteristics
2 ?i:fm:al Patterms Configuration * Patient Characteristics
Key: po « Standards of Care * Physiology
+ Clinical Protocols * Disease processes
i i choialdemn gt * Hospital Policy
& P * Local Practices

— Nursing Process

Figure 1. Healthcare Process Modeling Framework to Phenotype Clinician Behaviors for Exploiting

the Signal Gain of Clinical Expertise (HPM-ExpertSignals)
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Clinician Knowledge and Expertise

=]
- n Surveillance
e OV O 2

Differential

Diagnosis
Cycle v

—

Nursing data Modifiers
Triage assessment Individual modifiers
- Vital signs - Age
- Mental status - Sex
- Type of chief complaint - Number of Admission < 1 year
- Initial KTAS level - Number of Visit ED < 1 month

- Pain assessment

Nursing documentation patterns Environmental & system modifiers
» Frequency - Time of day

- Vital sign - Day of week

- Mental status - Route of ED visit

- Pain assessment - Mode of arrival

-  Waiting time

» Intervention . .
- Symptom onset to ED arrival time

- Record of notifying a doctor
- Record of abnormal lab results
- Record ofrequest for additional tests

- Escalation of care

- Comments on flowsheet
Clinical outcomes prediction models

Figure 2. Conceptual framework for this study
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Table 2. Eligibility criteria

Inclusion criteria Exclusion criteria
e Age =18 » Canceled registrations
o Initial KTAS level 3 or 4 « Visit without treatment

» Left against medical advice
* Left without being seen
» Dead on arrival (DOA)

» Missing data
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Table 3. Summary of candidate predictors

Category Candidate predictors Type of CDW tables
data
Nursing data
Triage Vital signs Continuous NIA-ED
assessment Mental status Discrete NIA-ED
Type of chief complaint Discrete NIA-ED
Initial KTAS level Continuous NIA-ED
Pain Discrete Flowsheet
Pain scale Continuous  Flowsheet
Nursing Frequency Continuous  Flowsheet
documentation « Vital signs
patterns » Mental status

« Pain assessment
Intervention
« Record of notifying a doctor* Continuous  Nursing records
« Record of abnormal lab
results*
« Record of request for
additional tests*

« Escalation of care Discrete ED location history
« Comments on flowsheet* Continuous  Flowsheet
Modifiers
Individual Age Continuous NIA-ED
modifiers Sex Discrete NIA-ED
Number of Admission < 1 year Continuous  Admission information
Number of Visit ED < 1 month Continuous  Emergency information
Environmental Time of day Discrete NIA-ED
& system Day of week Discrete NIA-ED
modifiers Route of ED visit Discrete NIA-ED
Mode of arrival Discrete NIA-ED
Waiting time Continuous  ED location history

Symptom onset to ED arrival time ~ Continuous NIA-ED

Abbreviations. NIA-ED = nursing initial assessment-emergency department, KTAS = Korean triage
and acuity scale, PRN = pro re nata, ED = emergency department
* Record and comments in nursing documentation patterns indicate the frequency of entries.
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Table 4. Summary of selected features

Category

Predictors (range)

Possible value

Nursing data

Triage
assessment (11)

Nursing
documentation
patterns (12)

Modifiers

Individual
modifiers (4)

Environmental
& system
modifiers (6)

Vital signs
» Systolic blood pressure
» Diastolic blood pressure
e Pulse rate
* Respiratory rate
« Body temperature
» Oxygen saturation
Mental status
Type of chief complaint
Initial KTAS level (1-5)
Pain
Pain scale (0-10)

Frequency
« Single vital sign:
systolic blood pressure, pulse rate
or heart rate, respiratory rate, body
temperature, oxygen saturation
« Mental status (AVPU or GCS)
« Pain assessment

Intervention
« Record of notifying a doctor
* Record of abnormal lab results
» Record of request for additional tests
« Escalation of care
o Comments on flowsheet

Age, years

Sex

Number of Admission < 1 year
Number of Visit ED < 1 month

Time of day

Day of week

Route of ED visit

Mode of arrival

Waiting time

Symptom onset to ED arrival time

Maximum and median values

AVPU
Disease/Trauma
3/4

Yes/No
Maximum value

Frequency/6hours

Frequency/6hours

Zone classification
Frequency/6hours

Maximum value
Female/Male

Maximum value
Maximum value

Day/Evening/Night
Weekdays/Weekends
Direct/Transfer/From OPD
Ambulance/Others
Maximum and median values
Maximum and median values

Abbreviations. KTAS = Korean triage and acuity scale; AVPU = alert, verbal, pain, unresponsive
scale, GCS = Glasgow coma scale, ED = emergency department, OPD = outpatient department
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Figure 3. Model development and validation process
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Total ED visits during 2023
(n=71,000)

I

Included Patient visits
(n=46,900; 66.1%)

* KTAS 3 (n= 27,111)
* KTAS 4 (n= 19,789)

|
I !

l

Age under 18 years old
(n=10,395)

KTAS level 1, 2, 5
(N=5,373)

Excluded Patient visits
(n=24,100; 33.9%)

Canceled registrations
(n=6,132)

Training Set Test Set
(n=37,520; 80%) (n=9,380; 20%)

Figure 4. Flowchart illustrating the cohort selection process for the study
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Visit without treatment
(n=1,706)

Left against medical advice
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Left without being seen
(n=24)

Missing data
(n=62)




Table 5. Comparison of patient characteristics between training and test sets (n= 46,900)

Variables Training set (80%) Test set (20%) U2 0
(n=37,520) (n=19,380)
Individual modifiers
Age 58.69 +£17.46 58.74 £17.49 -0.214 0.830
Sex 0.641 0.423
Female 18,912 (50.4) 4,727 (50.4)
Male 18,608 (49.6) 4,653 (49.6)
Number of admission < 1 year 1.09 +2.12 1.08 +2.11 0.246 0.805
Number of visit ED < 1 month 0.25 +0.71 0.25 +0.66 0.509 0.611
Environmental & system
modifiers
Time of day 3.214 0.523
08:00~16:00 18,776 (50.0) 4,703 (50.1)
16:00~24:00 12,454 (33.2) 3,103 (33.1)
00:00~08:00 6,290 (16.8) 1,574 (16.8)
Day of week 0.251 0.616
Weekday 27,488 (73.3) 6,851 (73.0)
Weekend 10,032 (26.7) 2,529 (27.0)
Route of ED visit 1.899 0.754
Direct visit 26,954 (71.8) 6,703 (71.5)
Refer from OPD 3,568 (9.5) 907 (9.7)
Transfer from other hospital 6,998 (18.7) 1,770 (18.8)
Mode of arrival 0.558 0.455
Ambulance 6,079 (16.2) 1,542 (16.4)
Others 31,441 (83.8) 7,838 (83.6)
Waiting time 55.73 £85.05 56.26 £85.20 -0.541 0.588
(Sgomuf)mm onset to ED arrival time 50.78 +137.2 49.45+12408 0859  0.301
Outcomes 8.738 0.924
ICU admission 635 (1.7) 159 (1.7)
GW admission 10,077 (26.9) 2,519 (26.9)
Transfer 1,416 (3.8) 354 (3.8)
Death 48 (0.1) 12 (0.1)
Discharge 25,344 (67.5) 6,336 (67.5)

Abbreviations. ICU = intensive care unit, GW = general ward, ED = emergency department, OPD =
outpatient department
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Table 5. Comparison of patient characteristics between training and test sets (n=46,900) (continue)

Training set (80%) Test set (20%)

Variables (n= 37,520) (n= 9.380) t/y2 p
Triage assessment

Vital signs
SBP (mmHg) 134.33 £25.40  134.13 +25.25 0.677 0.499
DBP (mmHg) 81.63 +£16.15 81.46 +15.96 0.904 0.366
PR (bpm) 92.02 +19.26 92.01 +£19.44 0.030 0.976
RR (per min) 18.38 £2.28 18.38 +2.22 -0.063 0.950
BT (°C) 36.88 +0.80 36.87 +£0.81 1.084 0.278
Sp0O2 (%) 97.45 £2.25 97.45 £2.24 0.175 0.861

Mental statue 7.607 0.574
Alert 37,139 (99.0) 9,301 (99.1)
Verbal response 269 (0.7) 63 (0.7)
Pain response 88 (0.2) 14 (0.1)
Unconscious 24 (0.1) 2 (<0.1)

Type of chief complaint 1.080 0.299
Disease 33,437 (89.1) 8,314 (88.6)
Trauma 4,083 (10.9) 1,066 (11.4)

Initial KTAS level 0.007 0.935
3 21,693 (57.8) 5,418 (57.8)
4 15,827 (42.2) 3,962 (42.2)

Pain location 0.322 0.570
Yes 10,657 (28.4) 2,629 (28.0)
No 26,863 (71.6) 6,751 (72.0)

Pain scale 1.40 £2.42 1.40 £2.44 -0.093 0.926

Nursing documentation patterns

Frequency (within 6hrs)
SBP/DBP 244 £1.77 2.44 £1.82 -0.130 0.897
PR or HR 2.53 £1.85 2.55 +1.98 -0.777 0.437
RR 2.36 £1.59 2.37 +£1.68 -0.768 0.442
BT 2.14 £1.13 2.14 £1.15 0.012 0.990
Sp02 4.01 +4.04 4.04 £4.12 -0.664 0.507
Mental status (AVPU or GCS) 1.25+1.26 1.26 +£1.30 -0.328 0.743
Pain scale 0.32 +0.77 0.31 +0.76 1.175 0.240

Intervention (within 6hrs)
Notifying a doctor 0.16 +0.45 0.17 £0.45 -0.676 0.499
Abnormal lab results 0.32 £0.83 0.32 +0.83 -0.613 0.540
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Request for additional tests 0.14 +=0.47 0.15 +0.50 -1.852 0.064
Escalation of care 39.959 0.106
A zone to B zone 6,838 (18.2) 1,732 (18.5)
A zone to C zone 1,046 (2.8) 267 (2.8)
A zone to R zone 923 (2.5) 226 (2.4)
B zone to C zone 12 (<0.1) 4 (<0.1)
B zone to R zone 11 (<0.1) 3(<0.1)
C zone to R zone 9 (<0.1) 3(<0.1)
None 28,681 (76.4) 7,145 (76.2)
Comments on flowsheet 0.31+1.12 0.32 +1.15 -0.722 0.470

Abbreviations. SBP = systolic blood pressure, DBP = diastolic blood pressure, PR = pulse rate, RR
= respiratory rate, BT = body temperature, SpO2 = peripheral oxygen saturation, KTAS = Korean
triage and acuity scale, A zone = ambulatory zone, B zone = bed zone, C zone = critical care zone,
R zone = resuscitation zone

2. KIAS 3, 497 82t 54 4 343
& 46,900 9] oA W A HolHE 24
ttebstth(Table  6).

, 4t s Y S 12,596 A(26.9%) ©

L
o

A3,

FRAUE YU BAE
=

jaleA

g Aol wE g

l"

E¥xs g3 o
(1.70) €] %1 271 gl ik, E3,
g gedozw AYd A= 1,770 A(3.8%), AP A= 60 A(0.1%) 0] AL,

[e)
L

i
(e

alo] #71sk B2} 31,680 71(67.5%) 0.2 VERTE, E A tel A KTAS 3, 4 ©HA

olo
Al
(1
riet
2
Lo
ol
A
rl
o

© 28.6%% 31T},
AN =4 29 BAR Ane tew g dd #de W@ Ay
58.70 AI(£17.471) % emf, A3t Wo] uel fFofvgd zto]s B SATH(H=1055.69,
p<.001). A BA74(71.18+13.55)7 =3kapa A 324(65.29+14.85)0] thE
ol vla) o)k weken, HA7h BAT(56.83+18.01)0] 7 ek ALF EA
Ax A SRy 2 JLsAre duk HE Q9 sx 2 A9 sxpwoh
ol 7} weka, At #AstE o 2

Aols BY. A EHddAM = EAol

T2 Y FAT(60.29)3 AL FAL(56.90) A4 o =S



A P (p<.001). FY BFep S HE 3en A Axel foludk ztol=
Ak 1d W Fa 9 Sl dnk HE e #1197 £ 2.62)9 TEAA
A9 A(1.66 £ 1.82)7F tE aERT F9shA BArh(p<.001). 1 /AL W

suA WE Slae A 2ol A 7R Bkth(0.58 £ 0.85, p<.001).

J

B34 24 gl M A A% du WE Y AT S T3 A
s F3 A WAE gl B Avkrel e gt $HA WY Az

&
T E Zpol7h vebt=dl, B el A 2 @b ARG #hxH(43.3%) 9t

Z3214 dd 334,304 T HS HE&S A FWTH(p<.001). FEI FHAES
ol g3le] w3 FaAE T3 A FAH(35.9%) 9 AFE BAH(66.7%) A Fe
H&S Btk 7] Akl gisk AR A du WHE Y

$2H(67.44+90.74)8F AL $24(64.70+93.37)7F AVF D FEAAN 4 AR
7] Azl FoskAl AA JERETHp<.001). S TdHAAH SHA E=FAA 9
AlZEe HA Bl A et 50.52 Alte g YEhgern,  dwk wE 99
321(59.30£133.28) 7F tf2 Azptoll vlal] folskAl 2 ATH(p<.001).

sEA A Wl Al triage FEARS] VIRV BA A ved 2
ST T FF7] H(SBP)Y HE2 AVF FAE(136.20£24.88 mmig) ©]
71 ko | AR (118.65+32.92 mmig) o] 71 WEEtH(H=593.79, p<.001). AF$-
A AR, A7 @A BE U8 FHT $£57] 9ol FostAl =okth. o] ¢k
g<eH(DBP) w3 A7} $kAR(83.24+15.68 mmHg)7F 7P E=ka, A Sz
(70.53+23.13 mmHg) 7} 7H4 Stk (p<.001). #A7} AL RE 02 FRU
frolshAl oty dokel Eokth. wWubR(PR)E AFET(106.28+25.74 bpm)o] 7HF
Eotom  F7F #AH(90.28+18.38 bpm)o] 7 WTH(p<.001). AFS EA] A}

Ay B e TR felsl Must wga, A7 39

=y
flo
°
i
=l
T
O

51



gatA  WurerE 2ot SEF(RR)E APYT(21.47+4.36 0 3] /E)o]  IHF
]_

rl

K

A (18.18+1.97  3]/%)o] 7bF R UTH(p<.001). F3pA

AL AP g2 TR fFoeiA 577 =9u. A=2(BTY 45, Lt
RS Ol (37.02+0.87C) T} Y T(36.99+0.85C) 9] A7} R

(36.82+0.76 C)RT} 98t A =hoh(p<.001). AFAEFE(Sp02)E AZF A

(97.70£1.83%) 0] 7bd =skom, AP (95.27£5.02%)¢] 7HF ETh (p<.001).

_‘>L
-+
M
1%
i)
K
-
)
riet
Ny
SN
rlo
il
i
i)
(i
SN
f
v}
>
B>
bl

3P e, dnk W

el o4 £E 94 94 Avl Wk FouF Aolg ngld. AA B4

99.0%= Wa FEdoy, Al st o4l WRe AE7F 83.3%% LtEY

N
)
ON
>1¥~
oz
=
o
/\
o
S
C
>~
=
oL
rﬂ
D)
r—LI
_>.:
o
o
§
rlr
re
2
rE
olo
tlo
f
32
=
>
ﬂ
=R
r
o
ol\

=
o A= 11.0%= YERETE. AFE 3EAte] 98.3%% HAWE T O FHOE
Haustglom, o4 e 1.7%%2 Foidom A Jrh(p<.001).

KTAS A3l 344 A9 29 88.8%7F 3 @AZ yewton Al ghxle]
93.3%7F 3@AIZ EHFHAH(p<.001). WH, A7} #xpe] A9 3eA 4 GATL
Zk7y 50%= #Fol7b flTh. BT #wd BAdAE AA #Ae] 28.3%7F TS
T3 Aoz Yeiwt. 53], dY AT E 5 &4 H|Eo] 36.2%2 U
gApte] wls) m=dth. 5 HAae A9, dYa(1.86x2.70)0] 7MY H& @

Boow A7 AFH(1.44+2.43)0] AA oz wFekrh(p<.001).

52



Table 6. Characteristics and clinical outcomes of the included cohort (n=46,900)

Total set (n (%), mean +SD)

Variables Total ICU admission®  GW admission®  Transfer out ® Death ¢ Discharge © Hiy2 b post hoc
(n= 46,900) (n=794) (n=12,596) (n=1,770) (n=160) (n=31,680)

Individual modifiers
Age 58.70417.47 65.29+14.85 62.38415.40 62.68+16.98 71.18#13.55 56.83+8.01 105569 <001 (ad)>(b.c)>e
Sex 414.03  <.001

Female 23,639 (50.4) 316 (39.8) 5,541 (44.0) 762 (43.1) 28(46.7) 16,992 (53.6)

Male 23,261 (49.6) 478 (60.2) 7,055 (56.0) 1,008 (56.9) 32(53.3) 14,688 (46.4)
Number of admission < 1 year 1.08+2.12 1.64+1.82 1.97%2.62 0.93+1.96 1.55+1.98 0.73+1.78 7373.03 <001 (a,b,d)>c>e
Number of visit ED < 1 month 0.2540.70 0.1940.49 0.2740.59 0.3240.75 0.5840.85 0.2440.74 200.76 <001 d>(b,c)>(ae)
Environmental & system modifiers
Time of day 43831 <.001

08:00~16:00 23,479 (50.1) 392 (49.4) 7,081 (56.2) 864 (48.8) 25 (41.7) 15,117 (47.7)

16:00~24:00 15,557 (33.2) 270 (34.0) 4,083 (32.4) 595 (33.6) 22(36.7) 10,587 (33.4)

00:00~08:00 7,864 (16.8) 132 (16.6) 1,432 (11.4) 311 (17.6) 13(21.7) 5,976 (18.9)
Day of week 471.03 <.001

Weekdays 34,339 (73.2) 608 (76.6) 10,098 (80.2) 1,348 (76.2) 47(783)  22,238(70.2)

Weekend 12,561 (26.8) 186 (23.4) 2,498 (19.8) 422 (23.8) 13 (21.7) 9,442 (29.8)
Route of ED visit 6300.03  <.001

Direct visit 33,657 (71.8) 423 (53.3) 6,215 (49.3) 964 (54.5) 33(55.0) 26,022 (82.1)

Refer from OPD 4,475 (9.5) 99 (12.5) 2,888 (22.9) 108 (6.1) 1(L7) 1,379 (4.4)

Transfer from other hospital 8,768 (18.7) 272 (34.3) 3,493 (27.7) 698 (39.4) 26 (43.3) 4,279 (13.5)
Modk of arrival 101720 <001

Ambulance 7,621 (16.2) 285 (35.9) 2,419 (19.2) 606 (34.2) 40 (66.7) 4,271 (135)

Others 39,279 (83.8) 509 (64.1) 10,177 (80.8) 1,164 (65.8) 20(33.3) 27,409 (86.5)
Waiting time (min) 55.83485.08 42.22469.28 67.44490.74 64.70493.37 30.34459.99 51.11482.11 863.82 <.001 (b,c)>(ae)

50.52+134.68 45.62+218.06 59.30+133.28 45.91491.59 25.48+40.27 47.45+134.49 262.14 <001 b>(ae)|e>c

Symptom onset to ED arrival time (hour)
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Table 6. Characteristics and clinical outcomes of the included cohort (n=46,900) (continue)

Total set (n (%), mean +SD)
Variables Total ICU admission®  GW admission®  Transfer out ® Death ¢ Discharge © Hi2

p post hoc
(n=46,900) (n=794) (n=12,596) (n=1,770) (n=60) (n=31,680)
Triage assessment
Vital signs
SBP (mmHg) 134.29425.37  129.05%31.09  130.33#25.56  131.11425.70  118.65432.92  136.20424.88  593.79 <.001 e>(a,b,c,d)
DBP (mmHg) 81.59+16.11 76.25+18.80 78.33416.31 78.02415.95 70.53423.13 83.24+15.68 1130.87 <.001 e>(a,b,c,d)
PR (bpm) 92.02+19.29 95.90+423.00 95.60+20.45 95.50420.28  106.28425.74 90.28+18.38  748.03 <.001 d>(a,b,c)>e
RR (per min) 18.38%2.27 19.5843.46 18.7442.67 18.81+2.74 21.4744.36 18.18#1.97  570.42 <.001 (a,d)>(b,c)>e
BT (°C) 36.8840.81 36.9040.92 37.0240.87 36.9940.85 36.79+1.09 36.8240.76  483.78 <.001 (b,c)>e | b>a
SpO2 (%) 97.4532.25 96.4243.34 96.98+2.83 96.8742.75 95.2745.02 97.7041.83  772.10 <.001 e>(ab,cd)|b>a
Mental statue 715.44 <.001
Alert 46,440 (99.0) 747 (94.1) 12,413 (98.5) 1,702 (96.2) 50(83.3) 31,528 (99.5)
Verbal response 332(0.7) 32 (4.0 134 (1.1) 42 (2.4) 5(8.3) 119 (0.4)
Pain response 102 (0.2) 15 (1.9) 40 (0.3) 24 (1.4) 4(6.7) 19 (0.1)
Unconscious 26 (0.1) 0(0) 9(0.1) 2(0.1) 1(17) 14 (0)
Chief complaint 1125.71 <.001
Disease 41,751 (89.0) 771(97.1) 12,169 (96.6) 1,498 (84.6) 59 (98.3) 27,254 (86.0)
Trauma 5,149 (11.0) 23 (2.9) 427 (3.4) 272 (15.4) 1(17) 4,426 (14.0)
Initial KTAS level 2538.91 <.001
3 27,111 (57.8) 705 (88.8) 9,329 (74.1) 1,167 (65.9) 56 (93.3) 15,854 (50.0)
4 19,789 (42.2) 89 (11.2) 3,267 (25.9) 603 (34.1) 4(6.7) 15,826 (50.0)
Pain 169.23 <.001
Yes 13,286 (28.3) 209 (26.3) 3,082 (24.5) 641 (36.2) 15 (25.0) 9,339 (29.5)
No 33614 (71.7) 585 (73.7) 9,514 (75.5) 1,129 (63.8) 45(75.0) 22,341 (70.5)
Pain scale 1.4042.42 1.3542.43 1.2342.34 1.86+2.70 1.2242.31 1.4442.43 156.63 <.001 c>e>b |c>a

Note. Mean + SD are presented for simplicity, but group differences were analyzed using the Kruskal-Wallis test due to non-normal data distribution. Dunn's test with
Bonferroni correction was used for post hoc analysis, and adjusted p-values were considered significant at p < 0.01.

Abbreviations. ICU = intensive care unit, GW = general ward, ED = emergency department, OPD = outpatient department, SD = standard deviation, SBP = systolic blood
pressure, DBP = diastolic blood pressure, PR = pulse rate, RR = respiratory rate, BT = body temperature, SpO2 = peripheral oxygen saturation, AVPU = alert, verbal, pain,
unresponsive, GCS = Glasgow coma scale
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Table 7. Nursing documentation patterns in the included cohort (n=46,900)

Total set (n (%), mean £SD)

Variables Total ICU admission®  GW admission®  Transfer out © Death ¢ Discharge Hiy2 h
(n= 46,900) (n="794) (n=12,59) (n=1,770) (n=160) (n=31,680) x P post hac
Nursing documentation patterns

Frequency (within 6hrs) range
SBP/DBP 2.4441.782 (0-30) 5.1243.982 3.0441.993  2.87+1.865 7.5046.069  2.10+.401  5400.27 <.001 (a,d)>b>c>e
PR 2.5341.881 (0-38) 5.2743.834 3.20#2.123  3.07+2.036 7.6035.552 2.16+1.490 5522.91 <.001 (a,d)>b>c>e
RR 2.36+1.608 (0-30) 4.6843.234 3.05+.854  2.93#.770 6.2844.514  1.99+.215  6486.29 <.001 (a,d)>b>c>e
BT 2.1441.135 (0-22) 3.13+.655 2.66+1.204  2.50+1.087 3.254+.910 1.8840.990 5528.14 <.001 a>b>c>e |d>e
SpO2 4.0244.056  (0-89) 7.5045.617 7.1144.940  6.9145533  14.73+10.447 2.5242.219  18468.79 <.001 d>c>e|b>c|(ab)>e
Mental status (AVPU, GCS) 1.2641.268 (0-20) 2.714#.950 1.8241.432  1.724.389 2.9242.181  0.97+.037  6007.01 <.001 (a,d)>b>c>e
Pain scale 0.3240.768  (0-8) 0.5540.982 0.4440.869  0.59+1.063 0.87+1.282 0.2520.682 1060.97 <.001 (a,c)>b>e | d>e
Intervention
Recording of notifying a doctor 0.1640.448  (0-6) 0.3720.720 0.2320.543  0.23#0.521 0.5740.927 0.1320.380 653.09 <.001 (a,d)>(b,c)>e
Recording of abnormal lab results 0.3240.829 (0-15) 0.67+1.169 0.60+1.150  0.69+1.359 1.554#.682  0.1740.530  3155.88 <.001 d>a>b>e | d>c>e
Recording of request for additional tests 0.1440.476 (0-10) 0.1940.496 0.1540.482  0.1620.512 0.3040.788  0.1340.471 61.53 <.001 (ab)>e
Escalation of care 7835.63 <.001

A zone to B zone 8,570 (18.3) 44 (5.5) 3,810 (30.2) 383 (21.6) 0(0.0) 4333(13.7)

A zone to C zone 1,313 (2.8) 96 (12.1) 576 (4.6) 71 (4.0) 3(5.0) 567 (1.8)

A zone to R zone 12 (<0.1) 4(0.5) 1(<0.1) 0(0.0) 2(3.3) 5(<0.1)

B zone to C zone 1,149 (2.4) 124 (15.6) 636 (5.0) 125 (7.1) 13 (21.7) 251 (0.8)

B zone to R zone 16 (<0.1) 4(0.5) 2(<0.1) 0(0.0) 6 (10.0) 4(<0.1)

C zone to R zone 14 (<0.1) 6 (0.8) 0(0.0) 1(0.1) 5(8.3) 2(<0.1)

None 35,826 (76.4) 516 (65.0) 7571(60.1) 1,190 (67.2) 31(51.7) 26518 (83.7)
Comments on flowsheet 0.324.129 (0-23) 1.3+2.46 0.42+1.288  0.37#.185 24543306  0.2440.967  1121.60 <.001 d>a>(b.c)>e

Note. Mean + SD are presented for simplicity, but group differences were analyzed using the Kruskal-Wallis test due to non-normal data distribution. Dunn's
test with Bonferroni correction was used for post hoc analysis, and adjusted p-values were considered significant at p < 0.01.

Abbreviations: SBP = systolic blood pressure, DBP = diastolic blood pressure, PR = pulse rate, RR = respiratory rate, BT = body temperature, SpO2 = peripheral
oxygen saturation, AVPU = alert, verbal, pain, unresponsive, GCS = Glasgow coma scale, A zone = ambulatory zone, B zone = bed zone, C zone = critical care
zone, R zone = resuscitation zone
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Table 8. Confusion matrix of clinical outcome predictions

Prediction Actual
Model modeling Predicted K_:U_ G_W_ . Accuracy
method admission admission Transfer Death Discharge
(n=159) (n=2519) (n=354) (n=12) (n=6,336)

Model 1  Logistic ICU admission 21 190 23 1 282  60.7%
regression G admission 45 985 63 5 802
Transfer 12 233 68 1 527
Death 29 139 39 4 107
Discharge 52 972 161 1 4,618

Random ICU admission 11 27 3 0 21 72.4%
forest GW admission 113 1,692 128 12 1111
Transfer 5 71 34 0 151
Death 0 1 1 0 0
Discharge 30 728 188 0 5,053

XGBoost ICU admission 50 234 20 3 205 63.3%
GW admission 82 1,670 116 4 1,283
Transfer 10 198 113 3 742
Death 2 21 6 1 6
Discharge 15 396 99 1 4,100

Model 2 Logistic ICU admission 35 208 17 0 256 68.8%
regression G admission 43 1,293 85 4 612
Transfer 13 297 96 2 392
Death 24 105 31 6 48
Discharge 44 616 125 0 5,028

Random ICU admission 24 53 6 3 37 79.6%
forest GW admission 120 2,149 198 9 928
Transfer 1 48 41 0 117
Death 0 0 1 0 0
Discharge 14 269 108 0 5,254

XGBoost ICU admission 63 200 20 2 186 74.0%
GW admission 69 1,921 137 6 813
Transfer 9 205 133 2 517
Death 5 16 6 1 0
Discharge 13 177 58 1 4,820

Note. Model 1 includes 21 predictors based on triage information only. Model 2 includes 33
predictors, integrating nursing documentation patterns with triage information.
Abbreviations. ICU = intensive care unit, GW = general ward, XGBoost = extreme gradient boosting
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Table 9. Model performance of clinical outcome prediction models

Model AUROC [95% CI] AUPRC[95% CI]  Sensitivity Specificity PPV NPV F1 score

Model 1
Logistic regression  0.850 [0.845,0.855] 0.641 [0.630, 0.653] 0.607 0.861 0.680 0.853 0.641
Random forest 0.941[0.938,0.944] 0.813 [0.805, 0.821] 0.724 0.892 0.726 0.888 0.725
XGBoost 0.893[0.890,0.898] 0.705 [0.695, 0.715] 0.633 0.891 0.748 0.870 0.686

Model 2
Logistic regression  0.891 [0.887,0.896] 0.715 [0.705, 0.727] 0.688 0.896 0.760 0.884 0.722
Random forest 0.964 [0.961,0.966] 0.888 [0.882, 0.894] 0.796 0.932 0.809 0.920 0.802
XGBoost 0.940 [0.937,0.944] 0.837 [0.830, 0.845] 0.740 0.928 0.826 0.903 0.781

Note. Model 1 includes 21 predictors based on triage information only. Model 2 includes 33 predictors, integrating nursing

documentation patterns with triage information.

Abbreviations. AUROC = area under the receiver operating characteristic curve, AUPRC = area under the precision-recall curve, CI

= confidence interval, PPV = positive predictive value, NPV = negative predictive value, XGBoost = extreme gradient boosting
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Figure 5. Receiver operating characteristic curves of prediction models
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Figure 6. Precision-recall curves of prediction models
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Figure 7. Feature importance in the random forest model 2

freq_SPO2
waiting time

PR

onset(hrs)

SBP

DBP

age

BT

adm_count
freq_SBP

RR

freq_HRPR
escalation of care
arrival mode
Sp02

freq_RR

freq_BT

freq_Ms
pain_score

time of day
Route of ED visit
freq_lab_record
freq_comment
ED_visits
initial_KTAS_level
freq_pain

sex

day of week
freq_notify
pain_presence
freq_request
patient_response
disease_classification

RandomForestClassifier - Feature Importance on Original Dataset

T T T
0.02 0.04 0.06
Importance

67




AR E

=

S8 S8 A% A

2l

o

o+

VS

Hr} Al

ki3

0
o

™ 7] (SHAP)

7} Zoh(Figure 8).

Ko
=]

t}

A=

SHAP summary plot & &

#HA 9

15 At

slo
1 =

At

p—

jay

)
)
=
1%0
Ar
_E;
ﬂo

w

<7Fek it

el

A Jd THE

Za7

o

A

i

o)
ir

—

T
%

ol

iy
fite)

il

X
A

Gl

K

Gl

PAL B arlesy

Bk

il h

9]

deE =

oA,

ol
wjr
of
~
o

No

e

o
i

GApell A AL

68



]

Rl

o] X

T

sttt

<]

=

=

< BT,
83 714

]
=}
==
3

o

ohe

=
=

3t
S

W o
¢
B wW _
X
~
o o
o N o
o T
—
—~ ~X o
XO _—
-
X
B

o wﬁ
A= R g
H
» 07
o M
M -
= %A m&
A )
~ M
N D
®OR T
= o
(-

g g
T 4
7z N
N LN
T D -
FL Y
~ m o
T oo R
I

69

stk 1 ol 9

S

7}

=

o

3ol

-

717k 7S

1

T

}

R

R

o

7

o

B4
x|



Figure 8. SHAP summary plots for feature contributions in random forest model 2
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Figure 8. SHAP summary plots for feature contributions in random forest model 2 (continued)

freq_SPO2
adm_count
arrival mode
escalation of care
Route of ED visit
waiting time
freq_SBP

PR
initial_KTAS_level
time of day
onset(hrs)

age

freq_HRPR

RR

SBP

pain_score
freq_BT

freq_RR

DBP

BT

General ward admission

High

-0.20 -0.15 —0.10 —0.05 0.00 0.05 0.10 0.15

Low

SHAP value (impact on model output)

71

Feature value



Figure 8. SHAP summary plots for feature contributions in random forest model 2 (continued)
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Figure 8. SHAP summary plots for feature contributions in random forest model 2 (continued)
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Figure 8. SHAP summary plots for feature contributions in random forest model 2 (continued)
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APPENDICES

Appendix 1. TRIPOD+AI Checklist: Model development and validation

Section/Topic  Item Develop_ment Checklist item Reported
/evaluation on page
TITLE
. Identify the study as developing or evaluating the performance of a multivariable .
Title 1 DiE Lo . . vi
prediction model, the target population, and the outcome to be predicted
ABSTRACT
Abstract [ 2 | DiE |See TRIPOD+AI for Abstracts checklist vi
INTRODUCTION
Background Explain the healthcare context (including whether diagnostic or prognostic) and
3a D;E rationale for developing or evaluating the prediction model, including references to 1-3
existing models
Describe the target population and the intended purpose of the prediction model in
3b D;E the context of the care pathway, including its intended users (e.g., healthcare 1-3
professionals, patients, public)
3c D;E Describe any known health inequalities between sociodemographic groups -
I . Specify the study objectives, including whether the study describes the
Objectives 4 D:E development or validation of a prediction model (or both) 4
METHODS
Data Describe the sources of data separately for the development and evaluation
5a D;E datasets (e.g., randomised trial, cohort, routine care or registry data), the rationale 30
for using these data, and representativeness of the data
5h DE Specify the dates of the collected participant data, including start and end of 1
’ participant accrual; and, if applicable, end of follow-up
Participants Specify key elements of the study setting (e.g., primary care, secondary care,
6a DiE Lo . . 30
general population) including the number and location of centres
6b DE Describe the eligibility criteria for study participants 31
6c DE Give details of any treatments received, and how they were handled during model )
’ development or evaluation, if relevant
Data 7 DE Describe any data pre-processing and quality checking, including whether this 37-39
preparation ’ was similar across relevant sociodemographic groups
Outcome Clearly define the outcome that is being predicted and the time horizon, including
8a D:E how and when assessed, the rationale for choosing this outcome, and whether the 32
method of outcome assessment is consistent across sociodemographic groups
8 DE If outcome assessment requires subjective interpretation, describe the )
’ qualifications and demographic characteristics of the outcome assessors
8c D;E Report any actions to blind assessment of the outcome to be predicted -
Predictors % D Describe the choice of initial predictors (e.g., literature, previous models, all 3
available predictors) and any pre-selection of predictors before model building
Clearly define all predictors, including how and when they were measured (and
% D;E any actions to blind assessment of predictors for the outcome and other 35-36
predictors)
% DE If predictor measurement requires subjective interpretation, describe the )
’ qualifications and demographic characteristics of the predictor assessors
Explain how the study size was arrived at (separately for development and
Sample size 10 D;E evaluation), and justify that the study size was sufficient to answer the research 34
question. Include details of any sample size calculation
Missing data 11 D;E Describe how missing data were handled. Provide reasons for omitting any data 38
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Appendix 1. TRIPOD+AI Checklist: Model development and validation (Continue)

METHODS
Analytical Describe how the data were used (e.g., for development and evaluation of model
methods 12a D performance) in the analysis, including whether the data were partitioned, 40-42
considering any sample size requirements
12b D Depending on the type of model, describe how predictors were handled in the 13-4
analyses (functional form, rescaling, transformation, or any standardisation).
Specify the type of model, rationale2, all model-building steps, including any
12c D . . o 43-44
hyperparameter tuning, and method for internal validation
Describe if and how any heterogeneity in estimates of model parameter values
12d D;E and model performance was handled and quantified across clusters (e.g., -
hospitals, countries). See TRIPOD-Cluster for additional considerations
12e D;E Specify all measures and plots used (and their rationale) to evaluate
12e DiE model performance (e.qg., discrimination, calibration, clinical utility) and, if relevant, 44
to compare multiple models
128 £ Describe any model updating (e.qg., recalibration) arising from the model )
evaluation, either overall or for particular sociodemographic groups or settings
129 £ For model evaluation, describe how the model predictions were calculated (e.g., )
formula, code, object, application programming interface)
Class If class imbalance methods were used, state why and how this was done, and any
. 13 DE . - 39
imbalance subsequent methods to recalibrate the model or the model predictions
Fairness 14 DE De_scribe any approaches that were used to address model fairness and their )
rationale
Specify the output of the prediction model (e.g., probabilities, classification).
Model output 15 D Provide details and rationale for any classification and how the thresholds were 40-41
identified
Training versus 16 DE Identify any differences between the development and evaluation data in )
evaluation ' healthcare setting, eligibility criteria, outcome, and predictors
Ethical Name the institutional research board or ethics committee that approved the study
17 D;E and describe the participant-informed consent or the ethics committee waiver of 45
approval .
informed consent
OPEN SCIENC
Funding 18a D;E Give the source of funding and the role of the funders for the present study -
i(f](:::eh;ts of 18b DE Declare any conflicts of interest and financial disclosures for all authors -
Protocol 18¢ DE Indicate where the study protocol can be accessed or state that a protocol was )
not prepared
. . . Provide registration information for the study, including register name and
Registration 18d D:E registration number, or state that the study was not registered )
Data sharing 18e D;E Provide details of the availability of the study data 30
Code sharing 18f D;E Provide details of the availability of the analytical code -
PATIENT & PUBLIC INVOLVEMENT
Ezgfi:t & 19 DE Provid_e dgtails of any patienF and pub!ic involvement during the dfesign, conduct, )
Involvement ’ reporting, interpretation, or dissemination of the study or state no involvement.
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Appendix 1. TRIPOD+AI Checklist: Model development and validation (Continue)

RESULTS
Participants Describe the flow of participants through the study, including the number of
20a D;E participants with and without the outcome and, if applicable, a summary of the 46-47
follow-up time. A diagram may be helpful.
Report the characteristics overall and, where applicable, for each data source or
setting, including the key dates, key predictors (including demographics),
20b D:E treatments received, sample size, number of outcome events, follow-up time, and 50-54
amount of missing data. A table may be helpful. Report any differences across
key demographic groups.
For model evaluation, show a comparison with the development data of the
20c E s . . . . -
distribution of important predictors (demographics, predictors, and outcome).
Model 7 DE Specify the number of participants and outcome events in each analysis (e.g., for 16-48
development ' model development, hyperparameter tuning, model evaluation)
Model Provide details of the full prediction model (e.g., formula, code, object, application
specification 2 D programming interface) to allow predictions in new individuals and to enable third- )
party evaluation and implementation, including any restrictions to access or re-use
(e.g., freely available, proprietary)
Model 2% DE Report model performance estimates with confidence intervals, including for any 60
performance ’ key subgroups (e.g., sociodemographic). Consider plots to aid presentation.
23b DE If examined, report results of any heterogeneity in model performance across 5863
' clusters. See TRIPOD Cluster for additional details.
Model updating| 24 E Report the results from any model updating, including the updated model and )
subsequent performance
DISCUSSION
Interpretation 25 DiE Give an overall in.ter;.)retation of th.e main rt?sults, including issues of fairness in the 778
context of the objectives and previous studies
Discuss any limitations of the study (such as a non-representative sample, sample
Limitations 26 D;E size, overfitting, missing data) and their effects on any biases, statistical 82-84
uncertainty, and generalizability
Usability of the Describe how poor quality or unavailable input data (e.g., predictor values) should
. 27a D . . L -
model in the be d and handled when implementing the prediction model
context of 27b D Specify whether users will be required to interact in the handling of the input data )
current care or use of the model, and what level of expertise is required of users
27c DiE Discuss any. ne>.<t. steps for future research, with a specific view to applicability 8486
and generalizability of the model

Note. D=items relevant only to the development of a prediction model, E=items relating solely to
the evaluation of a prediction model, D;E=items applicable to both the development and evaluation
of a prediction model
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ABSTRACT

Development of a clinical outcome prediction model for emergency patients
classified in level 3 and 4 of the Korean Triage and Acuity Scale (KTAS)

using electronic nursing records

Shin, Hyun A
Department of Nursing

The Graduate School of Yonsei University

Background: Predicting clinical outcomes in emergency department (ED) patients is essential for
efficient resource allocation and timely clinical decision-making. Patients categorized as Korean
Triage and Acuity Scale (KTAS) levels 3 and 4 often present heterogeneous and unpredictable
clinical states, necessitating advanced predictive tools. This study aimed to develop and evaluate a
predictive model for clinical outcomes in KTAS level 3 and 4 adult patients by integrating triage

information and nursing data using the HPM-ExpertSignals conceptual framework.

Methods: This retrospective study utilized anonymized data from 46,900 KTAS level 3 and 4 adult
patients who visited a 2,000-bed tertiary hospital in Seoul, Korea, between January 1 and December
31, 2023. Two predictive models were developed: Model 1 utilized triage information only, while
Model 2 integrated both triage information and nursing data. Clinical outcomes included intensive
care unit (ICU) admission, general ward (GW) admission, transfer, discharge, and mortality. Three
machine learning algorithms—multinomial logistic regression, random forest, and gradient

boosting—were employed. Model performance was assessed using accuracy, AUROC, AUPRC,
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sensitivity, specificity, F1 score, and calibration curves. To address class imbalance, one-vs-rest
SMOTE (Synthetic Minority Over-sampling Technique) and cost-sensitive learning approaches

were employed.

Results: Model 2 consistently outperformed Model 1 across all performance metrics. The random
forest algorithm applied to Model 2 achieved the highest predictive performance, with an AUROC
0f 0.964. Key predictive variables included oxygen saturation measurement frequency, mode of ED
arrival, and previous admission history. SHAP (Shapley Additive Explanations) analysis further
highlighted the relative importance of these variables, enhancing the model's transparency and
applicability. Although SMOTE and cost-sensitive learning improved predictive performance for

minority classes (ICU admission and mortality), class imbalance remained a limitation.

Conclusion: The integration of nursing data with triage information significantly enhanced the
predictive performance and interpretability of the model, highlighting its potential as a clinical
decision-support system. The random forest-based model demonstrated robust performance in
predicting clinical outcomes for KTAS level 3 and 4 patients. Future research should focus on
validating the model using multi-center datasets to improve generalizability and explore innovative

methods to address class imbalance in predictive modeling.

Keywords: KTAS, Emergency Department, Predictive Model, Nursing Data, SHAP, Machine

Learning, Class Imbalance, Clinical Decision Support
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Introduction

Emergency department (ED) overcrowding, worsened by the increasing number of
critically ill patients, remains a significant challenge. Providing prompt and optimal
medical services to all patients in overcrowded EDs is highly challenging. Therefore, early
recognition and timely intervention for patients with life-threatening conditions are crucial
(Lee et al., 2019).

The process of triage refers to the decision-making procedure used to categorize the
severity of a patient’s condition and allocate limited medical resources efficiently to
provide appropriate emergency care within the "golden hour" for patients presenting with
various acute conditions of differing severity (Patel et al., 2008). Triage is predominantly
conducted by nurses in both domestic and international settings (Goransson et al., 2005;
Park et al., 2014).

In South Korea, the Korean Triage and Acuity Scale (KTAS), developed based on CTAS
(Canadian Triage and Acuity Scale), has been the standard triage tool since 2016. KTAS
classifies patients into five levels based on severity and urgency, with recommended
intervention times ranging from immediate for Level 1 ("resuscitation") to within two hours
for Level 5 ("non-urgent"). (Korean Society of Emergency Medicine KTAS Committee,
2021). Although patients in Levels 1 and 2 often receive prompt care, those in Levels 3 and

below may experience delayed treatment if under-triaged, potentially leading to worsened
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outcomes. Conversely, over-triage can result in unnecessary consumption of human and
material resources (Ekins & Morphet, 2015).

According to 2022 statistics, KTAS Level 1 and 2 patients comprised 1.3% and 5.8% of
ED visits, respectively, while Level 3 (“urgent”) and Level 4 (“semi-urgent”) patients
accounted for 43.4% and 39.4%, representing over 80% of all visits (Emergency Medical
Statistics Annual Report, 2023). This group, while crucial for the efficient utilization of
medical resources, poses challenges for accurate prediction of clinical outcomes compared
to higher acuity patients in Levels 1 and 2.

Multiclass outcome modeling provides detailed predictions and improves resource
allocation. While Riordan (2017) reported limited performance with a binary model
(AUROC 0.730), Lee et al. (2020) demonstrated the effectiveness of a multiclass approach
for predicting diverse clinical outcomes.

Nursing records, particularly those within electronic medical record (EMR) systems,
have demonstrated their value in predicting clinical deterioration and mortality (Collins et
al., 2013). Nurses frequently document vital signs and unstructured clinical observations in
response to patient condition changes, providing critical insights (Collins & Vawdrey,
2012). While numerous studies have developed predictive models for ED patient outcomes,
most have focused on triage information or laboratory results, with limited attention to
nursing documentation (Brink et al., 2022; Larburu et al., 2023).

This study aims to address these gaps by developing and evaluating predictive models

for clinical outcomes in KTAS Levels 3 and 4 patients, incorporating electronic nursing
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records alongside traditional triage data. This approach seeks to improve the accuracy of
clinical outcome predictions, facilitate efficient resource allocation, and enhance the overall
quality of emergency care. Furthermore, by leveraging nursing data as key predictors, this
study contributes to the body of evidence supporting the clinical value and scientific

foundation of nursing documentation in ED settings.

Conceptual Framework

This study utilizes a modified HPM-ExpertSignals framework to develop and evaluate
predictive models for KTAS Level 3 and 4 ED patients, incorporating triage data and
nursing records. The framework emphasizes the role of nursing assessments (e.g., vital
signs, consciousness, KTAS level) and nursing record patterns (e.g., frequency of vital sign
monitoring, interventions like notifying medical staff or documenting abnormalities) in
reflecting patient conditions. Additionally, individual factors (e.g., age, prior
hospitalizations) and environmental factors (e.g., arrival mode, waiting time) are integrated.
By leveraging electronic nursing records, the study aims to enhance predictive accuracy,
optimize ED resource allocation, and improve patient outcomes, highlighting the critical

value of nursing documentation in clinical decision-making.
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Methods

Study Design
This study is a retrospective descriptive analysis aimed at investigating the
characteristics and patterns of nursing records for KTAS Level 3 and 4 ED patients and

their associations with clinical outcomes.

Data Source

The data for this study were collected from patients who visited the ED of a 2,000-bed
tertiary hospital in Seoul, South Korea, between January 1 and December 31, 2023. The
ED handles over 60,000 patient visits annually, and all data were extracted from the

hospital’s Clinical Data Warehouse (CDW) system, DARWIN-C.

Study Population

The study included ED visits by patients aged 18 years or older with an initial KTAS
level of 3 or 4, excluding visits with canceled registrations, non-treatment visits, patients
who left against medical advice or without being seen, dead on arrival (DOA) cases, and

those with missing data. Each ED visit was analyzed as a separate event.

Variables
The potential predictors for clinical outcomes in KTAS Level 3 and 4 patients were

identified through a comprehensive literature review and categorized according to the
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conceptual framework into triage information, nursing data patterns, individual adjustment
factors, and environmental adjustment factors.

Triage information included 11 variables collected during the nursing initial assessment,
such as vital signs, level of consciousness, chief complaints, initial KTAS classification,
pain status, and pain score. Nursing record patterns comprised 12 variables designed to
capture clinical observation and intervention activities. Frequency patterns included the
number of recorded instances for vital sign measurements, consciousness assessments, and
pain evaluations. Intervention-related factors included documentation of physician
notifications, abnormal test results, additional test requests, transfers to higher-acuity areas,
and specific notes regarding events in the flowsheet.

Individual adjustment factors included four variables: sex, age, history of hospital
admissions within the past year, and ED visits within the past month. Environmental
adjustment factors included six variables: time of ED arrival, day of the week, route of ED
arrival, mode of arrival, waiting time for medical evaluation, and the time elapsed from
symptom onset to ED arrival.

The outcome variable was categorized into five clinical outcomes: general ward

admission, ICU admission, transfer to another facility, death, discharge.
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Data Construction

Identification of Data Sources for Analysis Variables
Data sources for analysis variables were identified from the CDW. Nursing data were
extracted from tables such as Nursing Initial Assessment — Emergency, Flowsheet Search

Items, Patient Nursing Records, and Emergency Patient Location Change History.

Development of a Variable Definition Document
The findings from the investigation of data sources for each variable were compiled into
a variable definition document. This document systematically outlined the data sources,

extractable data fields, and associated codes for each variable.

Extraction of Raw Data

After finalizing the variable definition document and obtaining reviews from at least two
experts, the document was further refined with input from CDW specialists. Based on the
finalized definitions, the researcher directly extracted the necessary raw data from the

CDW according to the defined variables.

Data Preprocessing

To ensure data reliability, preprocessing involved integrating and cleaning the dataset.
Steps included outlier detection, handling missing data through imputation or exclusion,
and addressing data imbalance using a combination of One-vs-Rest SMOTE (Synthetic

Minority Over-sampling Technique) and cost-sensitive learning.
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Development and Validation of Predictive Models

As proposed in the conceptual framework, this study developed two models to evaluate
the impact of nursing record pattern variables on model performance: one excluding
nursing record pattern variables (Model 1) and one including them (Model 2). The
performance of these two models was subsequently compared.

To prevent overfitting and ensure model reliability, the dataset was randomly split into a
training set (80%) and a test set (20%). The training set was further processed to address
class imbalance using a combination of One-vs-Rest SMOTE and cost-sensitive learning.
This study employed three machine learning algorithms to develop the predictive models:
multinomial logistic regression, random forest, and Extreme Gradient Boosting (XGBoost).
The models were trained using stratified 10-fold cross-validation. The performance of the
developed models was evaluated through internal validation using the test set. After

identifying the optimal model, variable importance was assessed to provide further insights.

Data Analysis

Data preprocessing, model development, and validation were conducted using Python
version 3.10.12. Descriptive statistics were presented as means and standard deviations for
continuous variables and frequencies with percentages for categorical variables.
Relationships between predictor and outcome variables were analyzed using chi-squared
tests for categorical variables and the Kruskal-Wallis test for non-normal continuous

variables, with Dunn's test and Bonferroni correction applied for post-hoc analysis.
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Hyperparameter optimization was performed using GridSearchCV, and model
performance was evaluated using metrics such as AUROC, AUPRC, accuracy, sensitivity,
specificity, PPV, NPV, and F1 score. Initial variable importance was assessed using the Gini
importance method in the Random Forest model, and SHAP (Shapley Additive
Explanations) analysis provided a deeper evaluation, with a summary plot visually
displaying the relative importance of variables across outcome classes. Calibration plots
were used to assess the alignment between predicted probabilities and actual outcomes,

ensuring model reliability and interpretability.

Ethical Considerations
This study was conducted with the approval of the Institutional Review Board (IRB) of

Samsung Medical Center, with an exemption granted (IRB No. SMC 2024-07-063).

Results

Cohort Selection and Characteristics

Between January 1 and December 31, 2023, a total of 50,251 patients visited the ED,
resulting in 71,000 ED visit records. Of these, 24,100 records (33.9%) were excluded based
on the inclusion and exclusion criteria, leaving 46,900 records (66.1%) from 33,885 ED
patients for the final analysis.

Exclusions based on inclusion criteria included patients under 18 years of age (n =

10,395) and patients classified as KTAS Levels 1, 2, or 5 (n = 5,373). Exclusions based on
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exclusion criteria included canceled registrations (n = 6,132), non-treatment-related visits
(n = 1,706), patients who left against medical advice (n = 408), patients who left without
being seen (n = 24), and records with missing data (n = 62). The proportion of excluded
data due to missing values was less than 0.1%.

The eligible data were randomly allocated, with 80% assigned to the training set (n =
37,520) and 20% to the test set (n = 9,380). The training set was used for model

development, while the test set was employed for internal validation of the model.

Characteristics and Clinical Outcomes of KTAS Level 3 and 4 Patients

Analysis of 46,900 ED visits showed that 67.5% of patients were discharged, 26.9%
were admitted to a general ward, 1.7% to the ICU, 3.8% were transferred, and 0.1% resulted
in death, with an overall hospital admission rate of 28.6%. Significant differences in clinical
outcomes were observed: ICU and deceased patients were older, had abnormal vital signs,
and higher ED visit rates. General ward admissions had the longest waiting times, while
transfers reported the highest pain levels. Most ICU and deceased patients were KTAS
Level 3, while discharged patients were evenly distributed between Levels 3 and 4. Severe

outcomes were more common in males and ambulance arrivals.

Analysis of Nursing Record Patterns by Clinical Outcomes
The analysis of nursing record patterns revealed significant differences across clinical
outcomes. Vital signs, including BP, PR, RR, BT, and SpO-, were recorded most frequently

for deceased patients, while discharged patients had the lowest recording frequencies.
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Nursing interventions, such as physician notifications and abnormal test documentation,
were also more frequent for deceased patients and ICU admissions. Treatment escalation
occurred in 48.3% of deceased patients and 39.9% of general ward admissions, compared
to 16.3% of discharged patients. Additionally, flowsheet comments were most frequent for
deceased patients, emphasizing the importance of nursing documentation in managing

severe clinical outcomes.

Development and Performance Evaluation of Predictive Models

This study evaluated two predictive models: Model 1, which included 21 predictors, and
Model 2, which incorporated nursing record data for a total of 33 predictors. Using three
machine learning algorithms (multinomial logistic regression, random forest, and gradient
boosting), six models were developed and validated. Model 2 consistently outperformed
Model 1 across all algorithms, highlighting the positive impact of including nursing data.

For Model 1, random forest achieved the highest overall accuracy (72.4%), followed by
gradient boosting (63.3%) and logistic regression (60.7%). However, minority classes such
as ICU admissions and transfers showed poor predictive performance across all algorithms,
with accuracies below 40%. Model 2 showed substantial improvement, with random forest
achieving the highest overall accuracy (79.6%), followed by gradient boosting (74.0%) and
logistic regression (68.8%). Notably, Model 2 demonstrated significant gains in minority
class predictions, particularly with gradient boosting, which achieved the best performance

for ICU admissions (39.6%) and transfers (37.6%).
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Comprehensive metrics further confirmed the improved performance of Model 2.
Random forest in Model 2 showed the highest AUROC (0.964) and AUPRC (0.888), with
balanced sensitivity (0.796) and specificity (0.932). Gradient boosting also demonstrated
enhanced performance in Model 2, achieving an AUROC of 0.940, AUPRC of 0.837, and
an F1 score of 0.771. Logistic regression in Model 2 showed modest improvements, with
an AUROC of 0.891 and an F1 score of 0.720.

Visual analyses of AUROC and precision-recall curves highlighted consistent gains with
Model 2. Discharge predictions achieved the highest average precision (0.960 in Model 2
vs. 0.905 in Model 1), while general ward admissions also improved significantly (0.713
in Model 2 vs. 0.601 in Model 1). Although ICU admissions and transfers continued to
show lower precision, Model 2 demonstrated incremental improvements, underscoring the

value of incorporating nursing data for clinical outcome prediction.

Final Model Selection and Variable Importance

Random forest Model 2, with the highest AUROC (0.964), AUPRC (0.888), sensitivity
(0.796), and specificity (0.932), demonstrated superior performance across all metrics,
making it the optimal predictive model.

Variable importance analysis using Gini importance identified the most influential
predictors in random forest Model 2. The most significant variable was the frequency of
oxygen saturation measurements, followed by waiting time, pulse rate, time from symptom
onset to arrival, systolic and diastolic blood pressure, age, body temperature, prior
hospitalizations, and frequency of blood pressure measurements.
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SHAP analysis provided additional insights into the contribution of each variable to the
model’s predictions. For ICU admissions, key predictors included prior hospitalizations,
initial KTAS levels, and frequency of vital sign measurements, reflecting higher monitoring
for severe cases. For general ward admissions, oxygen saturation measurement frequency
and prior hospitalizations were most critical. Transfers and deaths were influenced by
factors such as oxygen saturation, mode of arrival (e.g., ambulance use), and frequency of
vital sign monitoring, indicating the importance of initial severity. Conversely, discharges
were associated with lower oxygen saturation measurement frequency, arrival on foot, and
less need for higher-acuity care. These findings highlight the nuanced role of nursing data

and triage variables in predicting diverse clinical outcomes.

Calibration Plot

The calibration plot for random forest Model 2 showed varying alignment with observed
probabilities across classes. Discharge and general ward admissions were better calibrated,
though discharges showed overestimation in the 0.2—0.8 range. ICU admissions, transfers,
and mortality classes demonstrated poor calibration, particularly due to class imbalance

and data scarcity, highlighting challenges in predicting minority outcomes.

Discussion

This study developed and validated predictive models for clinical outcomes of KTAS

Level 3 and 4 adult patients using triage data and nursing records. Analysis of 46,900 ED
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visits revealed a high proportion of discharge cases (67.5%), followed by general ward
admissions (26.9%), ICU admissions (1.7%), transfers (3.8%), and deaths (0.1%). The
findings emphasized the heterogeneity of outcomes within the same KTAS levels,
highlighting the limitations of KTAS in accurately predicting clinical outcomes and
underscoring the need for advanced predictive models. Additionally, the study confirmed
that abnormal vital signs, such as oxygen saturation levels and frequent monitoring, were
prominent in severe cases, aligning with prior research on the significance of nursing
observations in early detection of clinical deterioration.

The inclusion of nursing data improved model performance across all algorithms,
particularly in Model 2, which demonstrated superior accuracy, AUROC, and AUPRC
compared to Model 1. The random forest algorithm in Model 2 achieved the best overall
performance, with high sensitivity (0.796) and specificity (0.932), effectively identifying
severe cases while minimizing unnecessary classifications. This result supports the value
of incorporating nursing records, such as oxygen saturation measurement frequency, arrival
mode, and prior hospitalizations, which provide critical clinical context beyond triage
information alone. These findings align with previous studies showing that combining
nursing data with physiological measures enhances model accuracy.

SHAP analysis further validated the importance of key predictors, such as prior
hospitalizations, initial KTAS levels, oxygen saturation monitoring, and arrival mode, in
explaining model predictions. The analysis highlighted how these variables support clinical

decision-making, particularly in ICU admission and mortality prediction. For discharge
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cases, predictors like low oxygen saturation monitoring frequency and arrival on foot
indicated a higher likelihood of discharge, suggesting the potential of these models to
optimize ED resource allocation. Overall, the study demonstrates the clinical value of
integrating nursing data into predictive models, offering actionable insights to improve ED
efficiency and patient outcomes.

This study developed and evaluated predictive models for KTAS Level 3 and 4
emergency patients, but several limitations warrant attention in future research. First,
reliance on single-institution data limits the external validity and generalizability of the
results to diverse clinical settings, highlighting the need for multicenter validation. Second,
class imbalance, particularly for minority outcomes such as deaths and ICU admissions,
constrained prediction performance despite applying SMOTE and cost-sensitive learning.
Expanding datasets and employing advanced augmentation techniques could address this
issue. Third, the lack of standardized nursing documentation posed challenges for data
quality and model reliability, underscoring the need for standardized systems. Fourth, the
exclusion of nurse-specific factors, such as experience and education, may have reduced
the model's explanatory power. Additionally, initial symptoms, a critical indicator of patient
status, were not categorized in sufficient detail, limiting predictive precision. Lastly,
overlapping variables across outcome classes, such as oxygen saturation measurement
frequency, reduced immediate clinical applicability. Adopting rule-based approaches to
simplify variable interactions could enhance model interpretability and utility in real-world

applications.
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Conclusion

This study developed and evaluated predictive models for KTAS level 3 and 4
emergency patients using triage information and nursing data. The model incorporating
nursing data outperformed the triage-only model, with significant improvements in
predicting outcomes such as discharge and general ward admission. Key variables,
including oxygen saturation frequency and mode of arrival, enhanced clinical decision
support, while SHAP analysis improved model interpretability and reliability. These
findings highlight the potential of nursing data to optimize resource allocation and predict
clinical outcomes, demonstrating the practical utility of integrating triage and nursing data

in predictive modeling.
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