
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

 

 

Development of a multi-modal immunotherapy 
response predictor for colorectal cancer based on 
clinical, genomic, imaging, and pathological data 

Hong, Jiyun 

 
 

Department of Medical Science 

Graduate School 

Yonsei University 
  



 

 

 

Development of a multi-modal immunotherapy response 
predictor for colorectal cancer based on clinical, genomic, 

imaging, and pathological data  

         

Advisor Kim, Sangwoo  
 

A Dissertation Submitted 

to the Department of Medical Science 

and the Committee on Graduate School  

of Yonsei University in Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy in Medical Science  

Hong, Jiyun 
 

 

 

June 2025 



 

 

Development of a multi-modal immunotherapy response predictor for 
colorectal cancer based on clinical, genomic, imaging, and pathological 

data 

This Certifies that the Dissertation 
of Hong, Jiyun is Approved 

`    

 Committee Chair Kim, Han Sang 

 

 

    

 Committee Member Kim, Sangwoo 

 

 

    

 Committee Member  Kim, Jin Sung 

 

 

    

 Committee Member Kim, Hyun Seok 

 

 

    

 Committee Member Jung, Minsun 

 

 

 
 

Department of Medical Science 
Graduate School 
Yonsei University 

June 2025  



 

ACKNOWLEDGEMENTS 
 
 

First and foremost, my heartfelt thanks go to my advisor, Professor 
Sangwoo Kim. His unwavering support and insightful guidance have 
been instrumental in the successful completion of my research. The six 
years I spent at TGIL, including my internship, have provided 
invaluable experiences that I will cherish for a lifetime. 

 
I extend my sincere gratitude to all the professors who offered 

valuable insights during the thesis review process. In particular, I 
would like to thank Professor Hansang Kim for his passionate 
mentorship, Professor Jinsung Kim for his invaluable advice on 
imaging data, Professor Hyunseok Kim for his meticulous attention to 
detail, and Professor Minsun Jung for her generous assistance with 
pathology data. 

 
I am deeply grateful to my fellow researchers and mentors at TGIL 

for fostering a collaborative and supportive environment. The 
friendships and shared experiences we built together will always 
remain close to my heart. Special thanks to my senior colleagues 
Mikyung, Hyeonduk, and Beumjin for helping me settle into the lab, 
and to my junior colleagues Eunwoo and Chaejoo for the joy of 
working together on various projects. I would also like to warmly thank 
Jeongsoo, Seunghee, and Seungseok for the lively discussions and 
memorable lab moments. Your camaraderie made my time here truly 
meaningful. 



 

 

 
I sincerely thank the Heo Ji-young Cancer Scholarship Foundation 

for their generous support, which enabled me to continue my studies 
and pursue my aspirations. I am truly honored and committed to 
making the most of this opportunity. 

 
Lastly, I am profoundly grateful to my family for their unwavering 

support and belief in me. Their love and sacrifices have been the 
bedrock of my journey. A very special thanks to my best friend and 
fiancée, Eunyoung Choi, for her boundless love, encouragement, and 
steadfast support throughout my Ph.D. journey. Her presence has made 
this experience truly extraordinary. 
 



i 

 

TABLE OF CONTENTS 
 

LIST OF FIGURES ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ iv 

LIST OF TABLES ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ vi 

ABSTRACT IN ENGLISH ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ vii 

1. INTRODUCTION ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 1 

2. MATERIALS AND METHODS ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 3 

2.1. Clinical cohorts and tissue collection ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 3 

2.2. Study design ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 5 

2.3. Library preparation ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 7 

2.4. Bioinformatical pipeline ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 7 

2.4.1. Clinical feature analysis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 7 

2.4.2. Data preprocessing and alignment ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 8 

2.4.3. Genomics feature analysis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 8 

2.4.4. Transcriptomics feature analysis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 8 

2.4.5. Metagenomics feature analysis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 8 

2.4.6. Machine learning techniques ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 9 

    2.4.7. Statistical analysis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 9 

3. RESULTS ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 10 

3.1. Basic clinical characteristics ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 10 

3.2. The impact of clinical variables on ICB response ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 12 

3.2.1. Comparison of ICB markers between ICB response groups ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 12 

3.2.2. The impact of MSI-H status (MSI-H vs MSS/MSI-L) on prognosis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 13 

3.2.3. The impact of ICB response on prognosis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 14 



ii 

 

3.2.4. The impact of ICB response and MSI status on prognosis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 16 

3.2.5. The association between ICB response and MSI status ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 17 

3.3. Genomic profiling ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18 

3.3.1. Association between best response group and TMB ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18 

3.3.2. Mutation landscape for colorectal cancer ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 19 

3.4. Transcriptomic profiling ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20 

3.4.1. Expression-based PCA Analysis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20 

3.4.2. Identification of differentially expressed genes ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 21 

3.4.3. Comparison of tumor microenvironments ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 22 

3.4.4. Gene set enrichment analysis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 24 

3.4.5. Identification of enriched cell types ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 26 

3.5. Metagenomic profiling ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 27 

3.5.1. Comparison of taxonomy enrichment between two groups ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 27 

3.5.2. Gut microbial diversity indices analysis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 30 

3.6. Machine learning-based modeling for response prediction ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 31 

3.6.1. Process of feature selection and importance ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 31 

3.6.2. Performance improvement by combining modalities and validation ∙∙∙∙∙∙∙∙∙∙∙∙∙ 37 

3.6.3. Performance variations and validation based on modality combinations ∙∙∙∙∙ 40 

3.6.4. Machine learning based model performance on the internal dataset ∙∙∙∙∙∙∙∙∙∙∙∙∙ 43 

3.6.5. Machine learning based model performance on the external dataset ∙∙∙∙∙∙∙∙∙ 45 

3.6.6. Deep learning model development ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 46 

4. DISCUSSION ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 49 

5. CONCLUSION ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 52 

REFERENCES ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 53 



iii 

 

ABSTRACT IN KOREAN ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 55 

PUBLICATION LIST ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 57 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iv 

 

LIST OF FIGURES 

 
Figure 1. Overview of patient cohorts and data modalities in the study ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 6 

Figure 2. Workflow for developing an ensemble model using multi-modal data ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 7 

Figure 3. Comparison of clinical variables between clinical groups ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 11 

Figure 4. Comparison of expressions of conventional ICB markers ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 12 

Figure 5. Comparison of expressions of other ICB markers ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 13 

Figure 6. PFS comparison between MSI-H and MSS/MSI-L groups ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 13 

Figure 7. OS comparison between MSI-H and MSS/MSI-L groups ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 14 

Figure 8. PFS comparison between R and NR groups ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 15 

Figure 9. OS comparison between R and NR groups ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 15 

Figure 10. PFS Comparison among ICB response and MSI status groups ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 16 

Figure 11. OS Comparison among ICB response and MSI status groups ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 17 

Figure 12. Correlation between ICB response and MSI status ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18 

Figure 13. Comparison between best responder group and TMB binarized group ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18 

Figure 14. Comparison of TMB between best responder groups ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 19 

Figure 15. Landscape of driver mutations in colorectal cancer ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20 

Figure 16. Visualization of PCA based on expression patterns ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 21 

Figure 17. Visualization of DEG volcano plot ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 22 

Figure 18. Comparison of tumor microenvironments ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 23 

Figure 19. Comparison of T cell functionality related scores ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 23 

Figure 20. Ridgeline plot of gene set enrichment analysis (REACTOME) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 24 

Figure 21. Ridgeline plot of gene set enrichment analysis (HALLMARK) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 25 

Figure 22. Ridgeline plot of gene set enrichment analysis (GO biological process terms) ∙∙∙∙ 25 

Figure 23. Cell type deconvolution analysis in ICB responder and non-responder groups ∙∙∙∙ 27 

Figure 24. Enrichment of taxonomy using LDA score between two groups ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 27 

Figure 25. Phylogenetic tree of enriched microbiome in responders and non-responders ∙ 28 

Figure 26. Enrichment of genus levels using log10 fold change between two groups ∙∙∙∙∙∙∙∙ 29 

Figure 27. Comparison of relative abundance at the phylum level ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 30 

Figure 28. Comparison of microbial diversity indices between two groups ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 31 

Figure 29. Feature importance and odds ratios for clinical information modality ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 32 



v 

 

Figure 30. Feature importance and odds ratios for DNA modality ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 33 

Figure 31. Feature importance and odds ratios for RNA modality ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 34 

Figure 32. Feature importance and odds ratios for MGS modality ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 35 

Figure 33. Feature importance and odds ratios for pathology modality ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 36 

Figure 34. Feature importance and odds ratios for MGS modality ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 37 

Figure 35. Comparison of Accuracy values by integrating modalities ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 38 

Figure 36. Comparison of Sensitivity values by integrating modalities ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 38 

Figure 37. Comparison of PPV by integrating modalities ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 39 

Figure 38. Comparison of Specificity values by integrating modalities ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 39 

Figure 39. Comparison of NPV by integrating modalities ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 40 

Figure 40. Comparison of multiple metrics by integrating modalities in the internal dataset 
with imputation  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 

 
41 

Figure 41. Comparison of multiple metrics by integrating modalities in the simulated 
dataset  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 

 
41 

Figure 42. Comparison of multiple metrics by integrating modalities in the IMMUNOMSI 
dataset  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 

 
42 

Figure 43. Comparison of multiple metrics by integrating modalities in the NIPICOL 
dataset  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 

 
43 

Figure 44. AUC of model performance with imputation ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 44 

Figure 45. AUC of model performance without imputation ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 44 

Figure 46. AUC of model performance on the external IMMUNOMSI dataset ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 45 

Figure 47. AUC of model performance on the external NIPICOL dataset ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 46 

Figure 48. Performance metrics for the HEALNet Model with all modalities ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 47 

Figure 49. Confusion Matrix for the HEALNet Model ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 47 

Figure 50. AUC of the model based on the HEALNet framework ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 48 

 
 
 
 
 
 
 
 



vi 

 

LIST OF TABLES 

 
Table 1. Patient characteristics of severance CRC cohort ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 4 

Table 2. Comparison of clinical features between R (n = 36) and NR (n = 70) group ∙∙∙∙∙∙ 11 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

  



vii 

 

ABSTRACT 
 
Development of a multi-modal immunotherapy response predictor for 
colorectal cancer based on clinical, genomic, imaging, and pathological 

data 
 

 
 

Colorectal cancer (CRC) is the third most prevalent cancer globally, accounting for 

approximately 10% of all cancer cases and serving as the second leading cause of cancer-related 

deaths. While mismatch repair-deficient and microsatellite instability-high CRCs have shown 

favorable responses to immunotherapy, particularly with FDA-approved immune checkpoint 

inhibitors (ICIs), significant unmet medical needs remain, especially for mismatch repair-

proficient and microsatellite instability-low CRCs that exhibit resistance to current treatments. 

Although therapeutic options exist for advanced-stage patients, there is an urgent need for more 

effective and systematic approaches. To address these needs, the identification of suitable 

biomarkers for drug selection and the prediction of individual patient responses is crucial. Recent 

efforts have focused on integrating diverse data types—including genomic, clinical, digital 

imaging, and digital pathology—to enhance predictive accuracy. This study aims to develop a 

multimodal immunotherapy response predictor for CRC that incorporates whole exome 

sequencing (WES), RNA sequencing, metagenomic sequencing, clinical data, pathology, and 

radiology images. We collected samples from 106 patients at Severance Hospital, including 36 

responders and 70 non-responders. Our findings indicate that features derived from individual 

modalities are insufficient for accurately distinguishing between responders and non-responders. 

However, integrating these modalities produces a synergistic effect that significantly enhances 

classification accuracy. Our machine learning-based multimodal models, utilizing techniques such 

as Random Forest, Logistic Regression, Naïve Bayes, and XGBoost, demonstrated improved 

performance with the incorporation of additional modalities, leading to substantial enhancements 

in accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value 

(NPV). Notably, the tool we developed offers a significant advantage by providing response 

prediction scores even in cases of missing modalities or missing features within a modality. This 
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robustness enhances its applicability in clinical settings where complete data may not always be 

available. We validated our model’s generalization performance through stratified k-fold cross-

validation, an independent external validation set, and comparisons with single-modality immune 

checkpoint inhibitor response predictors. This research represents a pioneering effort to develop a 

multimodal predictive model for immune checkpoint inhibitor responses in colorectal cancer. 

Furthermore, we demonstrate that predictive performance improves incrementally with the 

combination of modalities, offering the potential to enhance treatment strategies and patient 

outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                

Key words: colorectal cancer, immunotherapy response predictor, predictive biomarker, multi-
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1. INTRODUCTION 
 

Colorectal cancer (CRC) is referred cancers arise from the colon and rectum, making up the large 

bowel. CRC accounts for about the 10% of cancer types and second deleterious cancer worldwide1. 

Although death and incidence rate are declined over the past 10 years due to regular diagnosis and 

screening test, they are not still favorable cancer about the advanced stage patients, accounting only 

40% of CRCs are early stage and survival rate is highly beneficial over 90%2. Available treatment 

options for CRC include chemotherapy, radiation therapy, surgery, and immunotherapy. Among 

them, immunotherapy is type of treatment which manipulating own tumor immune 

microenvironments to reduce cancer cells. Specifically, there are various FDA-approved treatments 

for the high microsatellite instability (MSI-H), and deficient DNA mismatch repair (dMMR), 

including monoclonal antibody that targets VEGF, EGFR pathway, and immune checkpoint 

inhibitors (ICIs)2. Many promise immunotherapies are ongoing clinical test for the CRC, some 

limitations are not still resolved. In the clinical field, several unmet needs are evident. Currently, 

metastatic CRCs with proficient DNA mismatch repair (pMMR) or microsatellite stability (MSS) 

types, which are typically considered immune-cold, do not respond to immunotherapy agents3. 

While there have been some improvements observed in MSI-H cases through several studies, the 

response rate has remained within the range of 30% to 50%, indicating the necessity for more 

promising therapeutics4. Therefore, predicting treatment responses and recommending the best 

actionable drugs based on individual patient characteristics could prove invaluable in prescribing 

optimal therapeutics. Recent advances in machine learning approaches have led to studies focusing 

on the development of drug response prediction models using various biomarkers in different cancer 

types 5-8. Moreover, in contrast to previous studies, multimodal prediction models that integrate 

radiology, pathology, and various genomics data have shown higher precision and recall scores9-10. 

To address these challenges, we have already gathered multi-institutional and public datasets that 

include perfectly or partially combined multimodal data, encompassing genomics, clinical 

information, images, and pathological digital data. We aim to construct a prediction model and 

validate it using independent datasets to enhance confidence in our approach. In summary, our 

pursuit of a multimodal immunotherapy response predictor for CRC is driven by the imperative need 

to address the unmet needs in clinical practice. We aspire to provide oncologists with a powerful 
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tool that not only identifies the most sensitive biomarkers for diverse treatments but also 

recommends the optimal drug tailored to individual patient profiles. Through the integration of 

cutting-edge machine learning techniques and extensive multimodal datasets, we aim to make 

significant strides in enhancing the efficacy of CRC treatment strategies, ultimately advancing the 

prospects for improved patient outcomes.  
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2. MATERIALS AND METHODS 
2.1. Clinical cohorts and tissue collection 

This research was conducted in compliance with ethical standards and received approval from the 

Severance Hospital Institutional Review Board (IRB 2019-1690-036), ensuring adherence to the 

Declaration of Helsinki throughout the study process. A total of 106 patients were enrolled in this 

study, and their characteristics are summarized in Table 1. The samples were collected based on 

clinical data from patients who received immune checkpoint inhibitors at Severance Hospital. The 

study aimed to analyze DNA, RNA, and gut microbial profiles from formalin-fixed paraffin-

embedded (FFPE) tissue samples. According to the Response Evaluation Criteria in Solid Tumors 

(RESIST), patients were categorized into immune checkpoint inhibitor responders (complete 

response [CR], partial response [PR], or progression-free survival [PFS] of 180 days or more) and 

non-responders (progressive disease [PD]) based on their best response. The immune checkpoint 

inhibitors administered to the participants included three types: Durvalumab (anti-PD-L1), and two 

anti-PD-1 agents, Nivolumab and Pembrolizumab. 
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Table 1. Patient characteristics of severance CRC cohort 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clinical features n = 106 

Age. 
 mean±sd 
 Range 

 
55±14 
21-85 

Best overall response. 
 CR/PR 
 SD/PD 
 NE 

 
22 
74 
10 

Progression free survival: months 
 mean±sd 
 Range 

 
7.5±11.2 
0.1-58.2 

Overall survival: months 
 mean±sd 
 Range 

 
18.7±19.3 
0.1-82.6 

Sex: n (%). 
 M 
 F 

 
63 (59.4%) 
43 (40.6%) 

Stage: n (%). 
 I, II, III 
 IV 
 unknown 

 
57 (53.8%) 
48 (45.3%) 
1 (0.9%) 

Sidedness: n (%). 
 Right 
 Left 
 unknown 

 
64 (60.4%) 
41 (38.7%) 
1 (0.9%) 

Microsatellite: n (%). 
 MSI-H 
 MSS 
 unknown 

 
45 (42.5%) 
42 (39.6%) 
19 (17.9%) 

Drug: n (%). 
 pembrolizumab  
 durvalumab 
       nivolumab 
 nivolumab + ipilimumab 

 
89 (84.0%) 
7 (6.6%) 
6 (5.7%) 
4 (3.7%) 
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2.2. Study design 
We classified 106 patients with colorectal cancer who received immune checkpoint inhibitors at 

Severance Hospital based on their clinical information and the best response according to RECIST 

criteria. From their FFPE tissue samples, we collected Whole Exome Sequencing (WES) data for 

52 patients, RNA sequencing data for 53 patients, and metagenomic sequencing (MGS) data for 57 

patients. Additionally, we obtained pathology and radiology information for all 106 patients, as 

illustrated in Figure 1. In our discovery set, there are 36 responders and 70 non-responders, among 

whom 7 received the PD-L1 inhibitor durvalumab, 89 received the PD-1 inhibitor pembrolizumab, 

10 received nivolumab, and 4 received a combination of nivolumab and the CTLA-4 inhibitor 

ipilimumab. Our results were validated using a total of two independent public external sets with 

immune checkpoint inhibitor response information: the first is the IMMUNOMSI dataset, which 

includes 71 patients (67 responders and 4 non-responders), and the second is the NIPICOL dataset, 

which consists of 47 patients (34 responders and 13 non-responders). The internal dataset utilized 

clinical, radiologic (image), and pathologic information for all 106 patients, as well as DNA 

modality data for 52 patients, RNA modality data for 53 patients, and MGS modality data for 57 

patients. Among these, 51 patients had complete information across all six modalities. The 

IMMUNOMSI dataset employed clinical information, DNA, RNA, and pathologic modalities, while 

NIPICOL utilized clinical information, DNA, and pathologic modality data (Figure 1). 

We developed a model based on clinical information (C), Whole Exome Sequencing (WES) (D), 

RNA sequencing (R), metagenomic sequencing (MGS) (M), pathologic information (P), and 

imaging information (I) (Figure 2). In the internal dataset, we split the data into training and testing 

sets in an 80:20 ratio and performed stratified k-fold cross-validation with k=5 to address the issue 

of data imbalance. The ratio of responders (R) to non-responders (NR) in each training and testing 

set was set to 3:7. Feature selection was conducted within the training set based on Random Forest-

based importance. Using the selected features from each modality, we constructed ensemble model 

objects for logistic regression (LR), random forest (RF), XGBoost (XG), and naive Bayes (NB) for 

each modality, and calculated the immune checkpoint inhibitor response score using ensemble 

techniques based on combinations of modalities. 
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Figure 1. Overview of patient cohorts and data modalities in the study. This figure presents 
the demographics of the 106 colorectal cancer patients treated with immune checkpoint inhibitors, 
including 36 responders and 70 non-responders. It outlines the data collected from FFPE tissue 
samples: Whole Exome Sequencing (WES) for 52 patients, RNA sequencing for 53 patients, and 
metagenomic sequencing (MGS) for 57 patients. Additionally, it summarizes available pathology 
and radiology information, as well as the two independent validation datasets: IMMUNOMSI 
(n=71) and NIPICOL (n=47). 
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Figure 2. Workflow for developing an ensemble model using multi-modal data. This figure 
illustrates the workflow for model development utilizing clinical, genomic, pathologic, and 
imaging data. The data was split into training and testing sets, followed by stratified k-fold cross-
validation and feature selection using Random Forest importance. Ensemble models were 
constructed for each modality to calculate the immune checkpoint inhibitor response score. 

 

2.3. Library preparation 
Fresh frozen tissues were collected for RNA sequencing library preparation following the 

SureSelect RNA Direct Human Sample Preparation protocol. Concurrently, tumor samples 

underwent paired-end whole exome sequencing (WES) using the SureSelect V6 Post-FFPE kit, 

which targets 60 Mb of the human exome to provide a comprehensive analysis of genetic variations. 

To enhance this analysis and investigate the associated microbial profiles, metagenomic shotgun 

sequencing was performed with the TruSeq Nano DNA 350 META kit. The quality and integrity of 

the libraries were assessed using the Agilent Technologies 2100 Bioanalyzer to ensure optimal 

sequencing performance. Finally, sequencing was conducted on the Illumina NovaSeq X platform. 

 

2.4. Bioinformatical pipeline 
2.4.1. Clinical feature analysis 

To assess the impact of clinical variables on the probability of being classified as a responder 

compared to a non-responder, we performed a logistic regression analysis utilizing the generalized 

linear model (GLM) framework11. The outcome variable for our analysis was a binary indicator of 

response status, where responders were coded as 1 and non-responders as 0. The independent 

variables included sex, age group (mean age), disease stage, type of drug administered, laterality 

(sidedness), and microsatellite instability (MSI) status. The model summary yields coefficients that 

reflect the log odds of being classified as a responder in relation to each clinical variable. When 

exponentiated, these coefficients represent odds ratios, providing valuable insights into how the 
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likelihood of treatment response is affected by each variable. 

 

2.4.2. Data preprocessing and alignment 
To initiate our analysis, we performed a thorough quality assessment and preprocessing of all 

sequencing reads using fastp (v0.21.0)12, ensuring that only high-quality reads were retained for 

further investigation. The filtered reads were aligned to the human reference genome (GRCh38), 

utilizing BWA-MEM (v0.7.17) for DNA sequencing13 and STAR (v2.7.3a) in a two-pass mode for 

RNA sequencing14. For genomic variant calling, we corrected base quality scores using GATK's 

BaseRecalibrator and ApplyBQSR modules15. For our metagenome sequencing analysis, we 

commenced by aligning reads with Bowtie2 (v2.3.5.1)16, followed by the removal of host reads. The 

remaining unmapped reads were utilized for downstream analysis. 

 

2.4.3. Genomics feature analysis 
Somatic variants were filtered to eliminate artifacts through Mutect2, which compared matched 

normal DNA samples against public variant databases. The genomic variants obtained were then 

annotated with the Ensembl Variant Effect Predictor (VEP)17 to elucidate their biological 

implications and converted to MAF format using vcf2maf (v1.6.20). Our detailed analysis focused 

on non-synonymous genomic variants, where we calculated the Tumor Mutation Burden (TMB) as 

the count of non-synonymous somatic mutations per megabase (Mb). 

 

2.4.4. Transcriptomics feature analysis 
In our transcriptomic analysis, we quantified gene expression through read counts using HTSeq 

(v0.11.1)18. Lowly expressed genes were filtered out to mitigate bias, and batch effects were adjusted 

using Combat-seq19. The resulting normalized gene expression matrix allowed for the identification 

of differentially expressed genes (DEGs) through the DESeq2 R package (v1.26.0)20, applying the 

following selection criteria: (1) adjusted p-value < 0.05 and (2) absolute Log2 fold change > 2. 

Moreover, the normalized expression data enabled us to classify consensus molecular subtypes 

(CMS) of colorectal cancer using the nearest-centroid single-sample predictor algorithm from the 

CMSclassifier R package (v1.0.0)21. 

 

2.4.5. Metagenomics feature analysis 
Taxonomic profiling was performed against a standard database using Kraken2 (v2.1.1)22 
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and Bracken (v2.9)23, successfully classifying 2,329 genera, which were subsequently refined to a 

total of 1,590 genera for analysis. We constructed a genus-by-sample matrix through Counts Per 

Million (CPM) normalization and employed the LEfSe method from the microbiomeMarker R 

package (v1.8.0)24 to conduct differential abundance analyses. Additionally, we assessed microbial 

diversity by calculating alpha and beta diversity metrics, including Shannon, Simpson, and inverse 

Simpson indices. 

 
2.4.6. Machine learning techniques 

To integrate modalities, we first conducted data curation for each modality. We removed NA 

values, and for continuous values that were not applicable or categorical values with insufficient 

sample sizes, we applied one-hot encoding. To prevent overfitting, we limited the features used in 

the individual analyses of each modality to a maximum of two. During the feature extraction process, 

we utilized filter methods (correlation, variance), wrapper methods (stepwise selection), and 

embedded methods (elastic net). Using the selected features, we developed a multi-modality-based 

response predictive model employing three algorithms: logistic regression, XGBoost, and random 

forest. For data splitting, we allocated the dataset into training and testing sets in a 70:30 ratio, 

ensuring that each subset contained a minimum number of responder and non-responder samples. 

The test set maintained the distribution of raw data, and if the training set displayed data imbalance, 

we performed up-sampling. Our model's performance was evaluated using 5-fold cross-validation. 

 

2.4.7. Statistical analysis 
We used statistical tests to assess differences between groups and determine significance. In this 

study, comparisons between groups were performed using the Wilcoxon Rank Sum test. For multiple 

group comparisons, we applied the Kruskal-Wallis test. Additionally, we employed Fisher's exact 

test for evaluating the association between categorical variables. To manage multiple comparisons, 

we implemented corrections using both the False Discovery Rate (FDR) methods. The significance 

of differences between groups was determined based on the following thresholds: *P < 0.05, **P < 

0.01, ***P < 0.001, ****P < 0.0001. 
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3. RESULTS 
3.1. Basic clinical characteristics 

We identified colorectal cancer patients from the Severance cohort who received immune 

checkpoint inhibitors between 2017 and 2024, with known best responses and outcomes. The best 

response was measured based on RECIST criteria, resulting in 1 patient classified as a complete 

responder (CR), 21 as partial responders (PR), 28 as stable disease (SD), and 46 as progressive 

disease (PD), with 10 classified as not estimable (NE). Due to data imbalance in our analysis, we 

binarized the cohort, classifying CR and PR, or patients with progression-free survival (PFS) of 

180 days or more, as responders, while the remaining patients were classified as non-responders. 

Additionally, to account for the distribution of the data in logistic regression, we also binarized 

variables such as stage, sidedness, microsatellite instability (MSI), and drug type. Detailed 

information about these variables is provided in Table 1. The comparison of clinical variables 

between the responder and non-responder groups revealed significant differences in progression-

free survival (PFS) and overall survival (OS) (Table 2). The cohort consisted of 36 responders and 

70 non-responders. It was confirmed that age, sex, stage, and sidedness do not statistically 

contribute to the classification of response to immune checkpoint blockade (ICB). However, 

microsatellite instability (MSI) status showed a highly significant difference (p < 0.001) between 

responders and non-responders, with MSI-H patients being more likely to be responders. 

Additionally, responders had statistically significantly higher progression-free survival and overall 

survival compared to non-responders (both p < 0.001). When comparing the two groups using 

univariable and multivariable analyses, there were no significant differences in binarized sidedness 

(right and left), age (old and young), sex (male and female), and stage (I, II, III, and IV) (Figure 

3). 

 

 

 

 

 

 

 



１１ 

 

Table 2. Comparison of clinical features between R (n = 36) and NR (n = 70) group 

 

 

 

 
Figure 3. Comparison of clinical variables between clinical groups. This section presents the 
hazard ratios of clinical variables based on the estimate values calculated through logistic 
regression for the best response.  
 

  Responder Non-responder p-value 

Age Mean (SD) 54 (14.9) 55.7 (14.1) 0.655 
Progression free survival Mean (SD) 18.2 (13.4) 1.7 (1.1) <0.001 
Overall survival Mean (SD) 31.4 (22) 12 (13.8) <0.001 

Sex 
M (%) 19 (17.9) 44 (41.5) 

0.428 
F (%) 17 (16) 26 (24.5) 

Stage 
I, II, III (%) 24 (22.6) 33 (31.1) 

0.102 
IV (%) 12 (11.3) 36 (34) 

Sidedness 
Right (%) 17 (16) 24 (22.6) 

0.229 
Left (%) 18 (17) 46 (43.4) 

Microsatellite 
MSI-H (%) 25 (23.6) 20 (18.9) 

<0.001 
MSS (%) 6 (5.7) 36 (34) 
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3.2. The impact of clinical variables on ICB response 
3.2.1. Comparison of ICB markers between ICB response groups 

In our cohort, we compared the expression information of ICB markers (CD274, PDCD1, CTLA4) 

in 53 individuals, consisting of 13 responders and 38 non-responders (Figure 4). When comparing 

PD-1 (PDCD1), CTLA4, and PD-L1 (CD274) between the two groups, the p-values were 0.52, 0.96, 

and 0.82, respectively, indicating no significant differences. Furthermore, when comparing the two 

groups for the additional inhibitory markers B7-1, GAL9, PD-L2, and TIM3, B7-1 and GAL9 showed 

no significant differences with p-values of 0.59 and 0.84, respectively. However, PD-L2 and TIM3 

had p-values of less than 0.01, indicating higher expressions in the responder group (Figure 5). 

 
Figure 4. Comparison of expressions of conventional ICB markers. The figure illustrates the 
expression levels of ICB markers (CD274, PDCD1, CTLA4) in the cohort of 53individuals, 
consisting of 13 responders and 38 non-responders. The green color represents the ICB responder 
group, while the red color indicates the non-responder group. 
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Figure 5. Comparison of expressions of other ICB markers. The figure illustrates the 
expression levels of other ICB markers (B7-1, GAL9, PD-L2, TIM3) in the cohort of 53 
individuals, consisting of 13 responders and 38 non-responders. The green color represents the 
ICB responder group, while the red color indicates the non-responder group. 

 

 
3.2.2. The impact of MSI-H status (MSI-H vs MSS/MSI-L) on prognosis 

In a cohort of 103 patients, a comparison of progression-free survival (PFS) and overall survival 

(OS) between 45 patients with MSI-H and 41 patients with MSS/MSI-L confirmed that MSI status 

significantly contributes to prognosis (Figures 6 and 7). Patients with MSI-H exhibited statistically 

longer PFS and OS compared to those with MSS/MSI-L (both p-value < 0.001). 

 
Figure 6. PFS comparison between MSI-H and MSS/MSI-L groups. This Kaplan-Meier plot 
illustrates the comparison of PFS between MSI-H and MSS/MSI-L. The red line represents MSI-
H, while the blue line represents MSS/MSI-L. 
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Figure 7. OS comparison between MSI-H and MSS/MSI-L groups. This Kaplan-Meier plot 
illustrates the comparison of OS between MSI-H and MSS/MSI-L. The red line represents MSI-
H, while the blue line represents MSS/MSI-L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.2.3. The impact of ICB response on prognosis 

In a cohort of 106 patients, a comparison of progression-free survival (PFS) and overall survival 

(OS) between 36 responders and 70 non-responders revealed that responders had significantly better 

prognoses (Figures 8 and 9). Both PFS and OS showed p-values of less than 0.001, indicating that 

responders experienced delayed disease progression and longer survival. 
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Figure 8. PFS comparison between R and NR groups. This Kaplan-Meier plot illustrates the 
comparison of PFS between Responder and Non-responder. The green line represents R group, 
while the red line represents NR group. 

 

 
Figure 9. OS comparison between R and NR groups. This Kaplan-Meier plot illustrates the 
comparison of OS between Responder and Non-responder. The green line represents R group, 
while the red line represents NR group. 
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3.2.4. The impact of ICB response and MSI status on prognosis 
When comparing PFS across the four conditions, considering both ICB response and MSI status 

revealed statistically significant longer PFS (Figure 10). Patients who were ICB responders with 

MSI-H status experienced the slowest disease progression and the longest survival. Following 

them, patients with MSS/MSI-L status who were ICB responders also had favorable outcomes. In 

contrast, patients who did not respond to ICB showed no significant differences when comparing 

MSI-H and MSS/MSI-L, and they exhibited the poorest prognosis among the four groups, 

regardless of MSI status. While patients who were ICB responders with MSI-H status showed the 

longest OS, there were no significant differences among the other groups (Figure 11).  

 

 

 

 

 

 

 
Figure 10. PFS Comparison among ICB response and MSI status groups. This Kaplan-Meier 
plot illustrates the comparison of PFS among the four groups: (i) ICB responders with MSI-H 
status (light green line), (ii) ICB responders with MSS/MSI-L status (dark green line), (iii) ICB 
non-responders with MSI-H status (light red line), and (iv) ICB non-responders with MSS/MSI-
L status (dark red line). 
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Figure 11. OS Comparison among ICB response and MSI status groups. This Kaplan-Meier 
plot illustrates the comparison of OS among the four groups: (i) ICB responders with MSI-H 
status (light green line), (ii) ICB responders with MSS/MSI-L status (dark green line), (iii) ICB 
non-responders with MSI-H status (light red line), and (iv) ICB non-responders with MSS/MSI-
L status (dark red line). 
 
 
 
 
 
 
 
 
 
 
 

 
3.2.5. The association between ICB response and MSI status 

We investigated the relationship between ICB (immune checkpoint blockade) response and MSI 

(microsatellite instability) status, and our results confirmed a statistically significant correlation 

between ICB response and MSI status within our cohort, with a p-value of less than 0.001 (Figure 

12). As suggested, higher levels of MSI-H were associated with a greater likelihood of response, 

and our results replicated this finding, indicating that patients with MSI-H were more likely to be 

responders. This implies the utility of MSI-H as an independent biomarker for ICB response. 
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Figure 12. Correlation between ICB response and MSI status. This figure illustrates the 
relationship between ICB response and MSI status within our cohort. The colors represent the 
ICB response groups; green indicates responders, while red indicates on-responders. 

 

3.3. Genomic profiling 
3.3.1. Association between best response group and TMB 

In our cohort, there were a total of 52 patients with genomic data, comprising 15 responders 

(28.8%) and 37 non-responders (71.2%). We classified the relative binarized TMB (tumor 

mutational burden) groups based on the mean TMB values and found no significant correlation 

between the TMB groups and the ICB response groups, with a p-value of 0.064 (Figure 13). 

Furthermore, when comparing TMB values between the ICB response groups, we observed no 

significant difference, with a p-value of 0.75 (Figure 14). 

 
Figure 13. Comparison between best responder group and TMB binarized group. The TMB 
binarized groups were classified based on the mean TMB value within the cohort, and the p-
value was calculated using Fisher's exact test. Red represents non-responders, while green 
represents responders. 
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3.3.2. Mutation landscape for colorectal cancer 
Genomic profiling was conducted utilizing the mutation landscape of driver mutations in 

colorectal cancer as listed in the IntOGen database. This analysis included the top five genes with 

the highest frequencies in colorectal cancer: APC, TP53, KRAS, PIK3CA, and SMAD4. These genes 

showed no significant differences in mutation frequency compared to the large cohort reported in 

the IntOGen database for colorectal cancer (APC: 61%; TP53: 56%; KRAS: 40%; PIK3CA: 17%; 

SMAD4: 11%). Furthermore, the comparison between the two groups showed that most driver 

mutations exhibited no significant differences (Figure 15). However, among the driver mutations, 

three genes demonstrated statistically significant differences: AMER1 (p = 0.02), ATM (p = 0.05), 

and CTNNB1 (p < 0.01). Notably, AMER1 (R: 5/15, NR: 2/37) and CTNNB1 (R: 5/15, NR: 1/37) 

were more frequent in the responder group, whereas ATM was significantly more prevalent in the 

non-responder group (R: 0/15, NR: 10/37). 

 
Figure 14. Comparison of TMB between best responder groups. TMB was compared 
between the two groups based on the number of mutations per megabase. A Wilcoxon test was 
performed. 
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3.4. Transcriptomic profiling 
3.4.1. Expression-based PCA Analysis 

A total of 51 patients with expression data were included (13 responders and 38 non-responders), 

and PCA was conducted based on the gene by sample matrix to assess the variance and patterns in 

gene expression data. This analysis demonstrates the absence of any clearly identifiable batch effects 

within the cohort (Figure 16). 

 
Figure 15. Landscape of driver mutations in colorectal cancer. The landscape of driver 
mutations in colorectal cancer was visualized using an oncoplot based on the driver mutation list 
from the IntOGen database. The red asterisks indicate driver mutations with statistically 
significant differences between the two groups. 
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3.4.2. Identification of differentially expressed genes  

There are a total of 4 differentially expressed genes (DEGs) between the two groups (Figure 17). 

All of these are down-regulated DEGs in responders. These genes are OR4N3P (log2FC = -23.2), 

COL25A1 (log2FC = -4.6), CYP2E1 (log2FC = -4.4), and MUC12 (log2FC = -2.4). 

 
Figure 16. Visualization of PCA based on expression patterns. PCA visualization was 
performed using the expression matrix based on DESeq2 VST normalization. The red dots 
represent non-responders, while the green dots indicate responders. 
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3.4.3. Comparison of tumor microenvironments 
To compare the tumor microenvironments between responders and non-responders, we evaluated 

the tumor microenvironment scores of the two groups by assessing immune cell infiltration (IIS), T 

cell infiltration (TIS), cytolytic activity (CYT), angiogenesis (ANG), and the antigen presentation 

mechanism (APM) (Figure 18). As a result, no significant differences were found between the two 

groups in all tumor microenvironment-related scores. Additionally, we compared interferon gamma 

(IFNG), T cell dysfunction and exclusion score, cancer-associated fibroblast score, cytotoxic 

lymphocyte score (CTL), and myeloid-derived suppressor cell score to assess T cell functionality. 

The results showed that there were no statistically significant differences in T cell functionality-

related scores between the two groups (Figure 19). 

 
Figure 17. Visualization of DEG volcano plot. The volcano plot is visualized based on 
differentially expressed genes (DEGs). The x-axis represents the log2 fold change, while the y-
axis displays the adjusted p-value. The significance threshold is set at an adjusted p-value of 
0.05. 
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Figure 18. Comparison of tumor microenvironments. Tumor microenvironment scores were 
evaluated based on immune cell infiltration (IIS), T cell infiltration (TIS), cytolytic activity 
(CYT), angiogenesis (ANG), and the antigen presentation mechanism (APM). 

 
Figure 19. Comparison of T cell functionality related scores. Evaluation of T cell 
functionality through the comparison of interferon gamma (IFNG) levels, T cell dysfunction and 
exclusion score, cancer-associated fibroblast score, cytotoxic lymphocyte score (CTL), and 
myeloid-derived suppressor cell score. 
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3.4.4. Gene set enrichment analysis 

When comparing responders and non-responders based on the REACTOME database, several 

terms were up-regulated in responders, including neutrophil degranulation (FDR < 0.001), and 

chemokine receptors bind chemokines (FDR < 0.001) (Figure 20). Additionally, terms related to 

extracellular matrix (ECM) remodeling, such as assembly of collagen fibrils and other multimeric 

structures (FDR < 0.001), and collagen formation (FDR < 0.01) were also found to be up-regulated 

in the responder group (Figure 20). Furthermore, when comparing the two groups using the cancer 

hallmark database, we observed increases in inflammatory response (FDR < 0.01), and allograft 

rejection (FDR < 0.01) in the responder group (Figure 21). Additionally, using the biological 

process-related gene ontology database, terms related to antigen processing and presentation (FDR 

< 0.05) were significantly increased in the responder group (Figure 22). 

 

 

 

 

 

 

 

 
Figure 20. Ridgeline plot of gene set enrichment analysis (REACTOME). Gene set 
enrichment analysis was conducted through 100 rounds of bootstrapping, selecting the top 10 
terms based on FDR values for both responder and non-responder groups. The x-axis represents 
-log10 FDR, while the y-axis displays individual terms from the REACTOME database. Green 
indicates up-regulated terms in responders, while red represents down-regulated terms in 
responders. 
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Figure 21. Ridgeline plot of gene set enrichment analysis (HALLMARK). Gene set 
enrichment analysis was conducted through 100 rounds of bootstrapping, selecting the top 10 
terms based on FDR values for both responder and non-responder groups. The x-axis represents 
-log10 FDR, while the y-axis displays individual terms from the cancer hallmark database. 

 
Figure 22. Ridgeline plot of gene set enrichment analysis (GO biological process terms). 
Gene set enrichment analysis was conducted through 100 rounds of bootstrapping, selecting the 
top 10 terms based on FDR values for both responder and non-responder groups. The x-axis 
represents -log10 FDR, while the y-axis displays individual terms from the Gene Ontology 
database. 
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3.4.5. Identification of enriched cell types 

To identify the cell types that were up-regulated or down-regulated in the ICB responder group, 

we conducted a cell deconvolution analysis (Figure 23). When comparing the two groups, we 

observed an increase in M2-polarized macrophages (p < 0.01), regulatory T cells (p < 0.01), and 

total macrophages (p < 0.05) in the responder group. However, there were no cell types that showed 

a statistically significant decrease in the responder group compared to the non-responder group. 

 

 

 
 

 
Figure 23. Cell type deconvolution analysis in ICB responder and non-responder groups. 
Cell deconvolution analysis revealed significant differences in the composition of cell types 
between the ICB responder and non-responder groups. 
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3.5. Metagenomic profiling 
3.5.1. Comparison of taxonomy enrichment between responders and non-

Responders 
In the cohort, the metagenomic data consisted of a total of 57 individuals, with 18 responders and 

39 non-responders. The comparison of these two groups based on the metagenomic data revealed 

abundant taxonomy in both responders and non-responders. According to the LDA score, the 

responder group exhibited statistically significant enrichment of the following taxa, which represent 

the top five significant findings: Bacteroides, Fusobacterium, Flavonifractor, Enterocloster, and 

Porphyromonas. Conversely, the following taxa demonstrated a significant decrease in the responder 

group: Croceicoccus, Rhizorhabdus, Burkholderia, Streptomyces, and Sphingomonas (Figure 24).  

 
Additionally, we assessed the enriched microbiome in responders and non-responders using a 

phylogenetic tree (Figure 25). The analysis identified a total of 110 species at the species level, of 

which 30 were enriched in responders and 80 were downregulated in responders. Notably, 

Bacteroides, Fusobacterium, and Porphyromonas showed a significant increase in the responder 

group. However, the previously identified taxon Prevotella, which was reported to increase in 

responder groups in prior studies, was not replicated in our research. Furthermore, the association 

 
Figure 24. Enrichment of taxonomy using LDA score between two groups. A comparison of 
taxonomy enrichment between the two groups was performed. The x-axis represents the log10-
based LDA score, while the y-axis indicates each taxonomy. Green dots represent taxa enriched 
in responders, while red dots indicate taxa that decreased in responders. 
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of Fusobacterium with immune response to immunotherapy yielded results that were contrary to 

those reported in previous studies. 

 

 
Figure 25. Cladogram of enriched microbiome in responders and non-responders. This 
cladogram illustrates the phylogenetic relationships among the microbiome species identified in 
the responder and non-responder groups. 
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We additionally compared the enriched microbiome between the two groups using log2 fold change 

(Figure 26). Specifically, we identified the top 10 genera that were increased in responders: 

Bacteroides, Fusobacterium, Flavonifractor, Enterocloster, Parabacteroides, Phocaeicola, 

Porphyromonas, Dysosmobacter, Lachnoclostridium, and Methylobacterium. Conversely, the top 

10 genera that were decreased in responders included Sphingomonas, Streptomyces, Burkholderia, 

Rhizorhabdus, Altererythrobacter, Croceicoccus, Erythrobacter, Paraburkholderia, 

Porphyrobacter, and Amycolatopsis.  

 
Additionally, we examined the relative abundance at the phylum level (Figure 27). We compared 

the top five phyla with high relative abundance: Pseudomonadota, Bacteroidota, Bacillota, 

 
Figure 26. Enrichment of top 10 genus levels using log10 fold change. This figure presents the 
comparison of enriched microbiome between responders and non-responders based on log10 fold 
change. 
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Actinomycetota, and Fusobacteriota between the two groups. Among these, Bacteroidota was found 

to be significantly higher in responders (p < 0.001). Notably, we also observed an increase in 

the Bacteroides genus level in responders in accordance with previous results (Figure 24-26). 

 

 

 

 

 

 

 
3.5.2. Gut microbial diversity indices analysis   

We assessed the diversity indices of patients based on a genus-by-sample normalized matrix. 

When comparing these indices, no statistically significant differences were observed between the 

two groups (observed: 0.17, Shannon: 0.44, inverse Simpson: 0.32, Chao1: 0.17) (Figure 28).  

 
Figure 27. Comparison of relative abundance at the phylum level. This figure illustrates the 
relative abundance of the top five phyla: Pseudomonadota, Bacteroidota, Bacillota, 
Actinomycetota, and Fusobacteriota in responders and non-responders. 
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3.6. Machine learning-based modeling for response prediction 
3.6.1. Process of feature selection and importance 

In this analysis, we performed feature selection for each modality: clinical information (C), DNA 

(D), RNA (R), metagenomic sequencing (M), pathology (P), and radiology (I).For the clinical 

information modality (C), we utilized four features: age, sidedness, stage, and sex, to determine 

feature importance based on a random forest model (Figure 29). Among these, age had the highest 

importance, followed by sidedness, stage, and sex, in contributing to the C modality-based model. 

Additionally, we assessed the contribution of each C modality feature through the odds ratios based 

on a ridge regression model. Among the features analyzed, sidedness exhibited an odds ratio greater 

than 1, while the other features demonstrated odds ratios less than 1. 

 
Figure 28. Comparison of microbial diversity indices between two groups. Each metric 
represents diversity calculated based on the genus-by-sample matrix, and it has the same 
meaning as the y-axis. The green color represents responders, while the red color represents non-
responders. 
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For the DNA modality (D), we utilized ten features: FAT1, ABCA7, MYO10, KIF26A, HNRNPA0, 

RALGAPA2, GPR137B, PPP1R2B, ARNTL2, and PCDHGA6 (Figure 30). Among these, FAT1 was 

identified as the most significant feature in contributing to the model based on the D modality. 

Furthermore, only MYO10 exhibited an odds ratio of less than 1, while the remaining features 

showed odds ratios greater than 1. 

 
Figure 29. Feature importance and odds ratios for clinical information modality. This figure 
presents the feature importance ranking for the clinical information modality (C) based on a 
random forest model, highlighting the relative contributions of various features to the model's 
predictive performance. Additionally, it displays the odds ratios for these features as identified 
in the clinical information modality (C) through a ridge regression model. The x-axis has been 
scaled by applying the square root to the odds ratios, thereby facilitating a clearer visualization 
of the relationships between the features and clinical responses. 
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In the RNA modality (R), we utilized ten features: CTL, CD8, IFNG, MSI score, Dysfunction 

score, MDSC, CD274, Exclusion score, TIDE, and M2-polarized macrophage (Figure 31). Among 

these, the cytotoxic lymphocyte score was identified as the most significant contributor to the R 

modality model. Furthermore, the exclusion score exhibited the highest odds ratio within the R 

modality, while MSI score, CD8, CTL, CD274, and M2-polarized macrophage all displayed odds 

ratios greater than 1. In contrast, the remaining features presented odds ratios below 1. 

 
Figure 30. Feature importance and odds ratios for DNA modality. This figure presents the 
feature importance ranking for the DNA modality (D) based on a random forest model, 
highlighting the relative contributions of various features to the model's predictive performance. 
Additionally, it displays the odds ratios for these features as identified in the DNA modality (D) 
through a ridge regression model. The x-axis has been scaled by applying the square root to the 
odds ratios, thereby facilitating a clearer visualization of the relationships between the features 
and clinical responses. 
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In the context of the MGS modality (M), we employed ten features: Umezawaea, 

Hydrogenimonas, Capillimicrobium, Shingomonas, observed, Citrobacter, Porphyromonas, 

Streptomyces, Pseudolysobacter, and Sporomusa (Figure 32). Among these features, Umezawaea 

was recognized as the most influential factor in the M modality model. Additionally, Porphyromonas 

demonstrated the highest odds ratio, whereas Pseudolysobacter, Citrobacter, Sporomusa, and 

Hydrogenimonas showed odds ratios exceeding 1, while the other features had odds ratios below 1. 

 
Figure 31. Feature importance and odds ratios for RNA modality. This figure presents the 
feature importance ranking for the RNA modality (R) based on a random forest model, 
highlighting the relative contributions of various features to the model's predictive performance. 
Additionally, it displays the odds ratios for these features as identified in the RNA modality (R) 
through a ridge regression model. The x-axis has been scaled by applying the square root to the 
odds ratios, thereby facilitating a clearer visualization of the relationships between the features 
and clinical responses. 
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In the pathology modality (P), we analyzed four key features: MSI status, KRAS, BRAF, 

and NRAS (Figure 33). Among these features, MSI status emerged as the most significant factor 

contributing to the P modality model. Additionally, MSI status exhibited the highest odds ratio, 

while BRAF and KRAS showed odds ratios exceeding 1. Conversely, the other features had odds 

ratios that fell below 1. 

 
Figure 32. Feature importance and odds ratios for MGS modality. This figure presents the 
feature importance ranking for the MGS modality (M) based on a random forest model, 
highlighting the relative contributions of various features to the model's predictive performance. 
Additionally, it displays the odds ratios for these features as identified in the MGS modality (M) 
through a ridge regression model. The x-axis has been scaled by applying the square root to the 
odds ratios, thereby facilitating a clearer visualization of the relationships between the features 
and clinical responses. 
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In the radiology modality (I), we analyzed six key features: lung metastases, bone 

metastases, abdominal and pelvic metastases, increase of primary tumor, lymph node metastases, 

and head and neck metastases (Figure 34). Among these features, lung metastases emerged as the 

most significant factor influencing the I modality model. Furthermore, head and neck 

metastases exhibited the highest odds ratio, while all other features, except for the increase of 

primary tumor, demonstrated odds ratios below 1. 

 
Figure 33. Feature importance and odds ratios for pathology modality. This figure presents 
the feature importance ranking for the pathology modality (P) based on a random forest model, 
highlighting the relative contributions of various features to the model's predictive performance. 
Additionally, it displays the odds ratios for these features as identified in the pathology modality 
(P) through a ridge regression model. The x-axis has been scaled by applying the square root to 
the odds ratios, thereby facilitating a clearer visualization of the relationships between the 
features and clinical responses. 
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3.6.2. Performance improvement by combining modalities and validation 

We constructed models for each modality and then evaluated the performance of these models 

using an ensemble approach. We primarily focused on accuracy, sensitivity, positive predictive 

value (PPV), specificity, and negative predictive value (NPV), observing that these metrics 

increased with the combination of modalities. First, we confirmed that combining six modalities 

from the internal dataset resulted in increased accuracy, sensitivity, PPV, specificity, and NPV, 

demonstrating significantly better performance compared to a single-modality-based predictive tool 

for immune checkpoint inhibitor response (Figures 35-39). The accuracy values were as follows: for 

uni-modality, 0.7; for bi-modality, 0.69; for tri-modality, 0.7; for quadra-modality, 0.7; for penta-

modality, 0.7; and for hexa-modality, 0.75 (Figure 35). Notably, even the uni-modality was higher 

than the RNA-based predictive tools IMPRES and TIDE. The sensitivity values were: uni-modality, 

0.66; bi-modality, 0.63; tri-modality, 0.67; quadra-modality, 0.74; penta-modality, 0.8; and hexa-

modality, 0.85 (Figure 36), which were also higher than those of IMPRES and TIDE. The PPV 

values were: uni-modality, 0.5; bi-modality, 0.59; tri-modality, 0.58; quadra-modality, 0.55; penta-

modality, 0.55; and hexa-modality, 0.6 (Figure 37). Although relatively unstable compared to other 

metrics, these values remained higher than those of IMPRES and TIDE. The specificity values were: 

 
Figure 34. Feature importance and odds ratios for image modality. This figure presents the 
feature importance ranking for the image modality (I) based on a random forest model, 
highlighting the relative contributions of various features to the model's predictive performance. 
Additionally, it displays the odds ratios for these features as identified in the image modality (I) 
through a ridge regression model. The x-axis has been scaled by applying the square root to the 
odds ratios, thereby facilitating a clearer visualization of the relationships between the features 
and clinical responses. 
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uni-modality, 0.7; bi-modality, 0.7; tri-modality, 0.7; quadra-modality, 0.67; penta-modality, 0.65; 

and hexa-modality, 0.69 (Figure 38). Here, the uni-modality exhibited the highest performance, and 

in some datasets, it performed lower than IMPRES and TIDE. Finally, the NPV values were: uni-

modality, 0.83; bi-modality, 0.81; tri-modality, 0.82; quadra-modality, 0.84; penta-modality, 0.86; 

and hexa-modality, 0.9 (Figure 39). These results indicate that the performance increased with the 

combination of modalities, surpassing that of IMPRES and TIDE. 

 

 

 

 

 

 

 
Figure 35. Comparison of Accuracy values by integrating modalities. The accuracy is 
presented for uni-modality (0.7), bi-modality (0.69), tri-modality (0.7), quadra-modality (0.7), 
penta-modality (0.7), and hexa-modality (0.75). 

 
Figure 36. Comparison of Sensitivity values by integrating modalities. The accuracy is 
presented for uni-modality (0.66), bi-modality (0.63), tri-modality (0.67), quadra-modality 
(0.74), penta-modality (0.8), and hexa-modality (0.85). 
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Figure 37. Comparison of PPV by integrating modalities. The accuracy is presented for uni-
modality (0.5), bi-modality (0.59), tri-modality (0.58), quadra-modality (0.55), penta-modality 
(0.55), and hexa-modality (0.6). 

 
Figure 38. Comparison of Specificity values by integrating modalities. The accuracy is 
presented for uni-modality (0.7), bi-modality (0.7), tri-modality (0.7), quadra-modality (0.67), 
penta-modality (0.65), and hexa-modality (0.69). 
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3.6.3. Performance variations and validation based on modality combinations 

We measured five metrics (accuracy, sensitivity, positive predictive value (PPV), specificity, and 

negative predictive value (NPV)) for all modalities based on combinations across the internal dataset, 

simulated dataset, and two external datasets (Figure 40-43). In the internal dataset, where imputation 

was performed, all metrics gradually improved as more modalities were combined. Specifically, in 

the hexa combination, we observed an accuracy of 0.6, sensitivity of 0.857, PPV of 0.6, specificity 

of 0.692, and NPV of 0.9 (Figure 40). Additionally, we assumed scenarios with missing features for 

each modality and utilized the internal dataset to evaluate model performance based on the simulated 

dataset without imputation (Figure 41). The results indicated that while the performance was best 

when all modalities were combined, accuracy, sensitivity, and PPV gradually increased with more 

modality combinations. In contrast, specificity and NPV remained stable. 

 
Figure 39. Comparison of NPV by integrating modalities. The accuracy is presented for uni-
modality (0.83), bi-modality (0.81), tri-modality (0.82), quadra-modality (0.84), penta-modality 
(0.86), and hexa-modality (0.9). 
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Figure 40. Comparison of multiple metrics by integrating modalities in the internal dataset 
with imputation. This figure visualizes five metrics, where the y-axis represents the value of 
each metric, and the x-axis denotes the number of modality combinations. 

 
Figure 41. Comparison of multiple metrics by integrating modalities in the simulated 
dataset. This figure visualizes five metrics, where the y-axis represents the value of each metric, 
and the x-axis denotes the number of modality combinations. 
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We validated the model's performance using two external validation sets (Figures 42 and 43). 

Utilizing the C, D, R, and P modalities, we were able to evaluate the performance of the four-

modality combinations in the IMMUNOMSI dataset. The performance metrics observed were an 

accuracy of 0.55, sensitivity of 0.71, positive predictive value (PPV) of 0.42, specificity of 0.46, and 

negative predictive value (NPV) of 0.75 (Figure 42). Although these metrics are relatively low, they 

replicate the performance observed in previous results (Figure 41) when utilizing the four-modality 

combination. Additionally, in the NIPICOL dataset, we assessed the performance of a three-

modality combination using the C, D, and P modalities (Figure 43), yielding metrics of accuracy 

0.65, sensitivity 0.71, PPV 0.5, specificity 0.62, and NPV 0.8. While both datasets showed somewhat 

low AUC values, our analysis confirmed that overall performance increases as modalities are 

integrated. 

 

 

 

 

 

 

 
Figure 42. Comparison of multiple metrics by integrating modalities in the IMMUNOMSI 
dataset. This figure visualizes five metrics, where the y-axis represents the value of each metric, 
and the x-axis denotes the number of modality combinations. 
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3.6.4. Machine learning based model performance on the internal dataset   
In this analysis, we utilized an internal dataset consisting of 106 patient samples, which included 

partially combined data from clinical, DNA, RNA, metagenomic, pathology, and imaging 

modalities, to assess the performance of the predictive model when all modalities were integrated. 

We performed stratified 5-fold cross-validation, and the results showed a mean AUC of 0.8 in the 

test set, indicating that overfitting was adequately regulated (Figure 44). Furthermore, we created a 

simulation dataset by intentionally removing specific features from the internal dataset. Similarly, 

we performed stratified 5-fold cross-validation to assess the mean performance of the model that 

combined modalities without imputation (Figure 45). As a result, we found that the mean AUC was 

0.655, indicating a decrease in model performance compared to the case with imputation. 

 
Figure 43. Comparison of multiple metrics by integrating modalities in the NIPICOL 
dataset. This figure visualizes five metrics, where the y-axis represents the value of each metric, 
and the x-axis denotes the number of modality combinations. 
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Figure 44. AUC of model performance with imputation. This figure represents the mean ROC 
of the test set after imputation, with the x-axis indicating specificity and the y-axis indicating 
sensitivity. 

 
Figure 45. AUC of model performance without imputation. This figure represents the mean 
ROC of the simulation set without imputation, with the x-axis indicating specificity and the y-
axis indicating sensitivity. 
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3.6.5. Machine learning based model performance on the external dataset 
To evaluate the performance of the modality combination model, we utilized two independent 

external datasets: IMMUNOMSI and NIPICOL. The IMMUNOMSI dataset incorporated the C, D, 

R, and P modalities, whereas the NIPICOL dataset utilized the C, D, and P modalities to validate 

the model's performance (Figures 46 and 47). The IMMUNOMSI dataset showed an AUC of 0.697 

(Figure 46), while the NIPICOL dataset demonstrated an AUC of 0.622 (Figure 47). 

 

 

 

 

 

 

 

 

 

 
Figure 46. AUC of model performance on the external IMMUNOMSI dataset. This figure 
represents the mean ROC curve of the model evaluated on the IMMUNOMSI dataset, where the 
x-axis indicates specificity and the y-axis indicates sensitivity. 
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3.6.6. Deep learning model development  

To address the challenges of limited sample size and the complexities of multimodal fusion, we 

developed a model utilizing deep learning techniques. Based on the HEALNet model, we fused all 

modalities for our development; however, we observed incomplete metrics (accuracy: 0.53, 

sensitivity: 0.6, specificity: 0.5, positive predictive value (PPV): 0.33, negative predictive value 

(NPV): 0.75) (Figure 48). We also examined the confusion matrix for the 51 samples that included 

all modalities (Figure 49). In the internal dataset, the HEALNet-based model achieved an AUC of 

0.569, which was lower than the performance of the machine learning ensemble models (Figures 

44-47 and 50). 

 
Figure 47. AUC of model performance on the external NIPICOL dataset. This figure 
represents the mean ROC curve of the model evaluated on the NIPICOL dataset, where the x-
axis indicates specificity and the y-axis indicates sensitivity. 



４７ 

 

 

 

 

 

 

 

 

 
Figure 48. Performance metrics for the HEALNet Model with all modalities. This figure 
illustrates the performance metrics of the HEALNet model incorporating all modalities. 

 
Figure 49. Confusion Matrix for the HEALNet Model. This figure presents the confusion 
matrix for the HEALNet model evaluated on 51 samples that included all modalities. The 
confusion matrix shows the distribution of true positives, true negatives, false positives, and 
false negatives, which provides insight into the model's classification performance. 
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Figure 50. AUC of the model based on the HEALNet framework. This figure represents the 
ROC curve of the model evaluated on the internal dataset, where the x-axis indicates specificity 
and the y-axis indicates sensitivity. 
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4. DISCUSSION 
 

Recent technological advancements have led to the emergence of multimodal approaches aimed 

at addressing the limitations of classifiers and predictors that rely solely on single modalities. While 

such initiatives have been undertaken in cancers such as breast, lung, and ovarian cancer, similar 

efforts in colorectal cancer remain limited. Furthermore, past analyses have often relied on a 

restricted scope of data, primarily focusing on DNA panels and specific blood biomarkers, resulting 

in significant gaps in the research. Additionally, studies utilizing single modalities have generally 

produced lower area under the curve (AUC) values, which suggests limited predictive power 

compared to multimodal approaches. These limitations highlight the need for comprehensive 

analyses that integrate various data types to enhance the robustness and reliability of predictive 

models for colorectal cancer. Moreover, tools based on specific modalities face a significant 

drawback as they become unusable when there are missing modalities or missing features. This 

unmet demand underscores the necessity for a multimodal-based immune checkpoint inhibitor 

response predictor in colorectal cancer that can provide response predictions even in the presence of 

missing modalities and features. 

Our study addresses these challenges by collecting a comprehensive range of multimodal data 

from colorectal cancer patients undergoing immune checkpoint inhibitor therapies, leading to the 

development of a high-performance treatment response prediction model. We aimed to distinguish 

responders from non-responders with high accuracy by comparing these groups across each modality. 

Our analysis of the combined modalities revealed notable improvements across all five metrics used 

to evaluate classification performance. Our findings demonstrate significant novelty from several 

perspectives. First, we developed the highest-performing multimodal classifier for predicting 

responses to immune checkpoint inhibitors globally, addressing a critical gap in current research. 

Second, our results indicate that combining various modalities in colorectal cancer allows for more 

accurate classification of responder groups compared to predictions made using single-modal 

approaches. Third, the ability of our combined modality dataset—despite being minimal and 

containing missing modalities and features in real-world data—to provide useful prediction scores 

is particularly valuable. Fourth, we demonstrate that biomarkers identified within single modalities 

can still hold substantial utility. 
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While a study published in Nature Cancer in 2022 reported relatively high AUC values for 

unimodal approaches in non-small cell lung cancer, a global effort to develop a unimodal classifier 

for immune checkpoint inhibitor response in colorectal cancer has not yet been undertaken. 

Moreover, unimodal models often experience trade-offs between different metrics, as illustrated by 

significant gaps among AUC, recall, F1 score, specificity, and precision. In contrast, our integrated 

multimodal approach led to improved scores across accuracy, sensitivity, positive predictive value 

(PPV), specificity, and negative predictive value (NPV) metrics. This indicates that while unimodal 

models may demonstrate high sensitivity, they often lack precision; conversely, our final model 

effectively mitigated this trade-off. 

Furthermore, as cancer arises from complex biological mechanisms, a diverse omics approach is 

essential for achieving more accurate classifications. This study represents the first global effort to 

develop a multimodal classifier for predicting responses to immune checkpoint inhibitors in 

colorectal cancer, showcasing commendable performance and enhancing the potential for 

personalized treatment strategies in this field. 

However, we recognize certain limitations, including a relatively small sample size, data 

imbalances, algorithm simplicity, and validation requirements. Despite this, we addressed issues 

related to sample size and data imbalance by implementing data up-sampling within the training set. 

We also sought to regulate overfitting through stratified k-fold cross-validation. Although we could 

not use a full modality combined dataset for validation, we intend to validate our model's 

generalization performance using two independent external datasets that combine up to four 

modalities. Currently, our research applies ensemble techniques involving logistic regression, 

random forest, Naïve Bayes, and XGBoost algorithms, and we are also exploring the potential of 

attention models to enhance our predictions. 

To address the limitations of data availability, we employed three validation methods to emphasize 

our model's robustness and generalizability. First, we validated the performance of individual 

modality features based on independent single-modality data. While this may not showcase the 

synergistic effects of all modalities, it confirmed the importance of the features we've utilized in our 

model. Second, we compared our model's performance against existing single-modality immune 

checkpoint inhibitor response predictors, such as TIDE and IMPRES, which provide predictions 

based on RNA signatures. This comparison illustrated how our model performs relative to existing 

tools. Lastly, to minimize the risk of overfitting, we conducted stratified k-fold cross-validation, 
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which is particularly valuable given the significant challenges posed by data imbalance. 

By addressing these limitations, we aim to meet the unmet needs related to colorectal cancer 

immune checkpoint inhibitor treatment by developing a multimodal-based predictor that remains 

valuable even in scenarios involving missing modalities and features. Our results emphasize the 

study's importance on a global scale, highlighting its potential utility and contribution to addressing 

clinical unmet needs in this area. 
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5. CONCLUSION 
 

In conclusion, our study presents the first multimodal classifier specifically designed to predict 

responses to immune checkpoint inhibitors in colorectal cancer. The integration of diverse data 

types has enhanced the robustness and reliability of our predictive model, which addresses the 

critical limitations observed in previous single-modal studies. By demonstrating improved 

performance across various metrics, our work significantly advances the field of colorectal cancer 

treatment, offering new insights into the potential of multimodal approaches. 

Our findings underscore the importance of developing predictive models that can function 

effectively even in the presence of missing modalities and features, thereby meeting the clinical 

need for accurate treatment response predictions. The ability of our model to achieve high accuracy 

while addressing these common challenges emphasizes its utility in real-world settings, where data 

completeness cannot always be guaranteed. 

Despite acknowledging certain limitations, such as a relatively small sample size and data 

imbalances, we have implemented strategies to mitigate these issues, including data up-sampling 

and comprehensive validation methods. This ensures that our model remains resilient and 

applicable to diverse patient populations. 

Overall, this research not only fills a significant gap in the current understanding of colorectal 

cancer treatment but also lays the groundwork for future studies aiming to refine and expand 

multimodal predictive modeling in oncology. By leveraging this innovative approach, we hope to 

contribute to the advancement of personalized treatment strategies that can improve outcomes for 

patients with colorectal cancer. 
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Abstract in Korean 

 

임상, 유전체, 이미징 및 병리학적 다중 모달리티 데이터를 

기반으로 한 대장암 면역항암요법 반응 예측기 개발 

 

 

대장암(CRC)은 전 세계에서 세 번째로 흔한 암으로, 전체 암 발병률의 약 10%를 

차지하며, 암 관련 사망의 두 번째 주요 원인이다. 이 중 미스매치 수리 결핍과 

미세위성 불안정성이 높은 유형의 대장암은 면역항암요법, 특히 FDA에서 승인한 

면역관문억제제에 긍정적인 반응을 보이지만, 미세위성 불안정성이 낮은 타입은 

면역관문억제제에 저항성을 나타내며, 반응을 보이는 약제가 뚜렷하지 않아 여전히 

약제 선택에 대한 미충족 수요가 남아 있다. 이러한 문제를 해결하기 위해 최근에는 

임상 정보, 유전체 데이터, 영상 이미지 등 다양한 데이터 유형을 통합하여 예측 

정확도를 향상시키고 최적의 의사결정을 돕기 위한 노력이 이루어지고 있다. 

이번 연구는 세브란스 병원에서 면역항암제 투여 환자 106명(반응군 36명, 

비반응군 70명)으로부터 샘플을 수집하여 차세대 유전자 시퀀싱, 메타게놈 시퀀싱, 

임상 데이터, 병리학 및 영상 데이터를 활용했다. 이들을 통합하여 대장암을 위한 

다중 모달리티 기반 면역항암요법 반응 예측기를 개발하는 것을 목표로 했다. 이를 

통해 단일 모달리티 특징만으로는 반응자와 비반응자를 정확하게 구분하기에 

충분하지 않다는 것을 확인하였으나, 다중 모달리티를 통합하면 시너지 효과를 

생성하여 분류 정확성을 크게 향상시킬 수 있음을 입증하였다. 

특히, 랜덤 포레스트, 로지스틱 회귀, 나이브 베이즈, XGBoost와 같은 기계 학습 

기반의 앙상블 모델을 활용하여 정확도, 민감도, 특이도, 긍정적 예측 가치(Positive 

Predictive Value, PPV), 부정적 예측 가치(Negative Predictive Value, NPV)에서 

개선된 성과를 확인했다. 개발한 예측기는 누락된 모달리티나 모달리티 내에서 

누락된 특징이 있는 경우에도 반응 예측 점수를 제공하는 중요한 장점을 갖춘다. 

이러한 견고함은 완전한 데이터가 항상 사용 가능하지 않은 임상 환경에서의 적용 
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가능성을 높일 수 있다. 본 모델의 일반화 성능은 계층화된 k-겹 교차 검증, 

독립적인 외부 검증 세트, 단일 모달 면역 체크포인트 억제제 반응 예측기와의 

비교를 통해 검증했다. 이번 연구는 대장암에서 면역 체크포인트 억제제 반응을 

예측하기 위한 다중 모달리티 기반 모델 개발의 선구적인 노력을 나타내며, 모달리티 

조합에 따라 예측 성능이 점진적으로 향상되는 것을 보여주어 치료 전략 및 환자 

결과 개선의 잠재력을 제공한다. 
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