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ABSTRACT

Development of a multi-modal immunotherapy response predictor for
colorectal cancer based on clinical, genomic, imaging, and pathological
data

Colorectal cancer (CRC) is the third most prevalent cancer globally, accounting for
approximately 10% of all cancer cases and serving as the second leading cause of cancer-related
deaths. While mismatch repair-deficient and microsatellite instability-high CRCs have shown
favorable responses to immunotherapy, particularly with FDA-approved immune checkpoint
inhibitors (ICIs), significant unmet medical needs remain, especially for mismatch repair-
proficient and microsatellite instability-low CRCs that exhibit resistance to current treatments.
Although therapeutic options exist for advanced-stage patients, there is an urgent need for more
effective and systematic approaches. To address these needs, the identification of suitable
biomarkers for drug selection and the prediction of individual patient responses is crucial. Recent
efforts have focused on integrating diverse data types—including genomic, clinical, digital
imaging, and digital pathology—to enhance predictive accuracy. This study aims to develop a
multimodal immunotherapy response predictor for CRC that incorporates whole exome
sequencing (WES), RNA sequencing, metagenomic sequencing, clinical data, pathology, and
radiology images. We collected samples from 106 patients at Severance Hospital, including 36
responders and 70 non-responders. Our findings indicate that features derived from individual
modalities are insufficient for accurately distinguishing between responders and non-responders.
However, integrating these modalities produces a synergistic effect that significantly enhances
classification accuracy. Our machine learning-based multimodal models, utilizing techniques such
as Random Forest, Logistic Regression, Naive Bayes, and XGBoost, demonstrated improved
performance with the incorporation of additional modalities, leading to substantial enhancements
in accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value
(NPV). Notably, the tool we developed offers a significant advantage by providing response

prediction scores even in cases of missing modalities or missing features within a modality. This

vii



robustness enhances its applicability in clinical settings where complete data may not always be
available. We validated our model’s generalization performance through stratified k-fold cross-
validation, an independent external validation set, and comparisons with single-modality immune
checkpoint inhibitor response predictors. This research represents a pioneering effort to develop a
multimodal predictive model for immune checkpoint inhibitor responses in colorectal cancer.
Furthermore, we demonstrate that predictive performance improves incrementally with the
combination of modalities, offering the potential to enhance treatment strategies and patient

outcomes.

Key words: colorectal cancer, immunotherapy response predictor, predictive biomarker, multi-
omics, multimodal integration
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1. INTRODUCTION

Colorectal cancer (CRC) is referred cancers arise from the colon and rectum, making up the large
bowel. CRC accounts for about the 10% of cancer types and second deleterious cancer worldwide'.
Although death and incidence rate are declined over the past 10 years due to regular diagnosis and
screening test, they are not still favorable cancer about the advanced stage patients, accounting only
40% of CRCs are early stage and survival rate is highly beneficial over 90%?2. Available treatment
options for CRC include chemotherapy, radiation therapy, surgery, and immunotherapy. Among
them, immunotherapy is type of treatment which manipulating own tumor immune
microenvironments to reduce cancer cells. Specifically, there are various FDA-approved treatments
for the high microsatellite instability (MSI-H), and deficient DNA mismatch repair (AIMMR),
including monoclonal antibody that targets VEGF, EGFR pathway, and immune checkpoint
inhibitors (ICIs)>. Many promise immunotherapies are ongoing clinical test for the CRC, some
limitations are not still resolved. In the clinical field, several unmet needs are evident. Currently,
metastatic CRCs with proficient DNA mismatch repair (pMMR) or microsatellite stability (MSS)
types, which are typically considered immune-cold, do not respond to immunotherapy agents”.
While there have been some improvements observed in MSI-H cases through several studies, the
response rate has remained within the range of 30% to 50%, indicating the necessity for more
promising therapeutics*. Therefore, predicting treatment responses and recommending the best
actionable drugs based on individual patient characteristics could prove invaluable in prescribing
optimal therapeutics. Recent advances in machine learning approaches have led to studies focusing
on the development of drug response prediction models using various biomarkers in different cancer
types >%. Moreover, in contrast to previous studies, multimodal prediction models that integrate
radiology, pathology, and various genomics data have shown higher precision and recall scores®!°.

To address these challenges, we have already gathered multi-institutional and public datasets that
include perfectly or partially combined multimodal data, encompassing genomics, clinical
information, images, and pathological digital data. We aim to construct a prediction model and
validate it using independent datasets to enhance confidence in our approach. In summary, our
pursuit of a multimodal immunotherapy response predictor for CRC is driven by the imperative need

to address the unmet needs in clinical practice. We aspire to provide oncologists with a powerful



tool that not only identifies the most sensitive biomarkers for diverse treatments but also
recommends the optimal drug tailored to individual patient profiles. Through the integration of
cutting-edge machine learning techniques and extensive multimodal datasets, we aim to make
significant strides in enhancing the efficacy of CRC treatment strategies, ultimately advancing the

prospects for improved patient outcomes.



2. MATERIALS AND METHODS

2.1. Clinical cohorts and tissue collection

This research was conducted in compliance with ethical standards and received approval from the
Severance Hospital Institutional Review Board (IRB 2019-1690-036), ensuring adherence to the
Declaration of Helsinki throughout the study process. A total of 106 patients were enrolled in this
study, and their characteristics are summarized in Table 1. The samples were collected based on
clinical data from patients who received immune checkpoint inhibitors at Severance Hospital. The
study aimed to analyze DNA, RNA, and gut microbial profiles from formalin-fixed paraffin-
embedded (FFPE) tissue samples. According to the Response Evaluation Criteria in Solid Tumors
(RESIST), patients were categorized into immune checkpoint inhibitor responders (complete
response [CR], partial response [PR], or progression-free survival [PFS] of 180 days or more) and
non-responders (progressive disease [PD]) based on their best response. The immune checkpoint
inhibitors administered to the participants included three types: Durvalumab (anti-PD-L1), and two

anti-PD-1 agents, Nivolumab and Pembrolizumab.



Table 1. Patient characteristics of severance CRC cohort

Clinical features n=106
Age.
mean+sd 55«14
Range 21-85
Best overall response.
CR/PR 22
SD/PD 74
NE 10
Progression free survival: months
meantsd 7.5+£11.2
Range 0.1-58.2
Overall survival: months
mean=+sd 18.7419.3
Range 0.1-82.6
Sex: n (%).
M 63 (59.4%)
F 43 (40.6%)
Stage: n (%).
L IL, 11 57 (53.8%)
v 48 (45.3%)
unknown 1 (0.9%)
Sidedness: n (%).
Right 64 (60.4%)
Left 41 (38.7%)
unknown 1 (0.9%)

Microsatellite: n (%).

MSI-H 45 (42.5%)
MSS 42 (39.6%)
unknown 19 (17.9%)
Drug: n (%).
pembrolizumab 89 (84.0%)
durvalumab 7 (6.6%)
nivolumab 6 (5.7%)
nivolumab + ipilimumab 4 (3.7%)




2.2. Study design

We classified 106 patients with colorectal cancer who received immune checkpoint inhibitors at
Severance Hospital based on their clinical information and the best response according to RECIST
criteria. From their FFPE tissue samples, we collected Whole Exome Sequencing (WES) data for
52 patients, RNA sequencing data for 53 patients, and metagenomic sequencing (MGS) data for 57
patients. Additionally, we obtained pathology and radiology information for all 106 patients, as
illustrated in Figure 1. In our discovery set, there are 36 responders and 70 non-responders, among
whom 7 received the PD-L1 inhibitor durvalumab, 89 received the PD-1 inhibitor pembrolizumab,
10 received nivolumab, and 4 received a combination of nivolumab and the CTLA-4 inhibitor
ipilimumab. Our results were validated using a total of two independent public external sets with
immune checkpoint inhibitor response information: the first is the IMMUNOMSI dataset, which
includes 71 patients (67 responders and 4 non-responders), and the second is the NIPICOL dataset,
which consists of 47 patients (34 responders and 13 non-responders). The internal dataset utilized
clinical, radiologic (image), and pathologic information for all 106 patients, as well as DNA
modality data for 52 patients, RNA modality data for 53 patients, and MGS modality data for 57
patients. Among these, 51 patients had complete information across all six modalities. The
IMMUNOMSI dataset employed clinical information, DNA, RNA, and pathologic modalities, while
NIPICOL utilized clinical information, DNA, and pathologic modality data (Figure 1).

We developed a model based on clinical information (C), Whole Exome Sequencing (WES) (D),
RNA sequencing (R), metagenomic sequencing (MGS) (M), pathologic information (P), and
imaging information (I) (Figure 2). In the internal dataset, we split the data into training and testing
sets in an 80:20 ratio and performed stratified k-fold cross-validation with k=5 to address the issue
of data imbalance. The ratio of responders (R) to non-responders (NR) in each training and testing
set was set to 3:7. Feature selection was conducted within the training set based on Random Forest-
based importance. Using the selected features from each modality, we constructed ensemble model
objects for logistic regression (LR), random forest (RF), XGBoost (XG), and naive Bayes (NB) for
each modality, and calculated the immune checkpoint inhibitor response score using ensemble

techniques based on combinations of modalities.



Discovery set

External validation set

Figure 1. Overview of patient cohorts and data modalities in the study. This figure presents
the demographics of the 106 colorectal cancer patients treated with immune checkpoint inhibitors,
including 36 responders and 70 non-responders. It outlines the data collected from FFPE tissue
samples: Whole Exome Sequencing (WES) for 52 patients, RNA sequencing for 53 patients, and
metagenomic sequencing (MGS) for 57 patients. Additionally, it summarizes available pathology
and radiology information, as well as the two independent validation datasets: IMMUNOMSI

(n=71) and NIPICOL (n=47).
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4 ' ™
YUHS (Total n=106) IMMUNOMSI (Total n=71)
Responder No responder Responder No responder
(R) (NR) (R) (NR)
n=36 n=70 n=67 n=4
o o J
PD-L1 inhibitor
Durvalumab (Imfinzi) n=7 é A
NIPICOL (Total n=47)
PD-1 inhibitor "‘ :“
Pembrolizumab (Keytruda) n =89
Nivolumab (Opdivo)  n=10 Responder  No responder
(R) (NR)

CTLA-4 inhibitor n=34 n=13
Ipilimumab (Yervoy) n=4 \_ J
o /

Clinical modalit: _
(Patient |nf0rrnalion)y n=106
NA modalit _
(Whole-exome sequenging) n=52
RNA modalit -
(RNA Sequencing)y n=53
MGS modalit _
(Microbiome shotgun sequ%ncing) n=57
athology modalit: _
(Histolog%?nformalion} y n=106
Image modality n=106

(Radiological information)



/(.? 1. Data split |Q
TRAIN set (0.8) TEST set (0.2) LR B @
(o
R 2. Stratified K-fold cross validation (k=5) XG RF r
ul = = [C|] O] [RI
” Ne (D] [R] [M] [P]
RI(C3) IR ) R(O3) RO Ensemble model object 0] [/ — ? 1]
] 3. Feature selection
/ Ensemble modality

Figure 2. Workflow for developing an ensemble model using multi-modal data. This figure
illustrates the workflow for model development utilizing clinical, genomic, pathologic, and
imaging data. The data was split into training and testing sets, followed by stratified k-fold cross-
validation and feature selection using Random Forest importance. Ensemble models were
constructed for each modality to calculate the immune checkpoint inhibitor response score.

2.3.Library preparation

Fresh frozen tissues were collected for RNA sequencing library preparation following the
SureSelect RNA Direct Human Sample Preparation protocol. Concurrently, tumor samples
underwent paired-end whole exome sequencing (WES) using the SureSelect V6 Post-FFPE kit,
which targets 60 Mb of the human exome to provide a comprehensive analysis of genetic variations.
To enhance this analysis and investigate the associated microbial profiles, metagenomic shotgun
sequencing was performed with the TruSeq Nano DNA 350 META kit. The quality and integrity of
the libraries were assessed using the Agilent Technologies 2100 Bioanalyzer to ensure optimal

sequencing performance. Finally, sequencing was conducted on the Illumina NovaSeq X platform.

2.4. Bioinformatical pipeline

2.4.1. Clinical feature analysis

To assess the impact of clinical variables on the probability of being classified as a responder
compared to a non-responder, we performed a logistic regression analysis utilizing the generalized
linear model (GLM) framework!!. The outcome variable for our analysis was a binary indicator of
response status, where responders were coded as 1 and non-responders as 0. The independent
variables included sex, age group (mean age), disease stage, type of drug administered, laterality
(sidedness), and microsatellite instability (MSI) status. The model summary yields coefficients that
reflect the log odds of being classified as a responder in relation to each clinical variable. When

exponentiated, these coefficients represent odds ratios, providing valuable insights into how the



likelihood of treatment response is affected by each variable.

2.4.2. Data preprocessing and alignment

To initiate our analysis, we performed a thorough quality assessment and preprocessing of all
sequencing reads using fastp (v0.21.0)'2, ensuring that only high-quality reads were retained for
further investigation. The filtered reads were aligned to the human reference genome (GRCh38),
utilizing BWA-MEM (v0.7.17) for DNA sequencing'? and STAR (v2.7.3a) in a two-pass mode for
RNA sequencing'®. For genomic variant calling, we corrected base quality scores using GATK's
BaseRecalibrator and ApplyBQSR modules'®. For our metagenome sequencing analysis, we
commenced by aligning reads with Bowtie2 (v2.3.5.1)'¢, followed by the removal of host reads. The

remaining unmapped reads were utilized for downstream analysis.

2.4.3. Genomics feature analysis
Somatic variants were filtered to eliminate artifacts through Mutect2, which compared matched
normal DNA samples against public variant databases. The genomic variants obtained were then
annotated with the Ensembl Variant Effect Predictor (VEP)'7 to elucidate their biological
implications and converted to MAF format using vef2maf (v1.6.20). Our detailed analysis focused
on non-synonymous genomic variants, where we calculated the Tumor Mutation Burden (TMB) as

the count of non-synonymous somatic mutations per megabase (Mb).

2.4.4. Transcriptomics feature analysis

In our transcriptomic analysis, we quantified gene expression through read counts using HTSeq
(v0.11.1)"%. Lowly expressed genes were filtered out to mitigate bias, and batch effects were adjusted
using Combat-seq!. The resulting normalized gene expression matrix allowed for the identification
of differentially expressed genes (DEGs) through the DESeq2 R package (v1.26.0)%°, applying the
following selection criteria: (1) adjusted p-value < 0.05 and (2) absolute Log2 fold change > 2.
Moreover, the normalized expression data enabled us to classify consensus molecular subtypes
(CMS) of colorectal cancer using the nearest-centroid single-sample predictor algorithm from the

CMSclassifier R package (v1.0.0)%.

2.4.5. Metagenomics feature analysis

Taxonomic profiling was performed against a standard database using Kraken2 (v2.1.1)%



and Bracken (v2.9)%, successfully classifying 2,329 genera, which were subsequently refined to a
total of 1,590 genera for analysis. We constructed a genus-by-sample matrix through Counts Per
Million (CPM) normalization and employed the LEfSe method from the microbiomeMarker R
package (v1.8.0)** to conduct differential abundance analyses. Additionally, we assessed microbial
diversity by calculating alpha and beta diversity metrics, including Shannon, Simpson, and inverse

Simpson indices.

2.4.6. Machine learning techniques

To integrate modalities, we first conducted data curation for each modality. We removed NA
values, and for continuous values that were not applicable or categorical values with insufficient
sample sizes, we applied one-hot encoding. To prevent overfitting, we limited the features used in
the individual analyses of each modality to a maximum of two. During the feature extraction process,
we utilized filter methods (correlation, variance), wrapper methods (stepwise selection), and
embedded methods (elastic net). Using the selected features, we developed a multi-modality-based
response predictive model employing three algorithms: logistic regression, XGBoost, and random
forest. For data splitting, we allocated the dataset into training and testing sets in a 70:30 ratio,
ensuring that each subset contained a minimum number of responder and non-responder samples.
The test set maintained the distribution of raw data, and if the training set displayed data imbalance,

we performed up-sampling. Our model's performance was evaluated using 5-fold cross-validation.

2.4.7. Statistical analysis
We used statistical tests to assess differences between groups and determine significance. In this
study, comparisons between groups were performed using the Wilcoxon Rank Sum test. For multiple
group comparisons, we applied the Kruskal-Wallis test. Additionally, we employed Fisher's exact
test for evaluating the association between categorical variables. To manage multiple comparisons,
we implemented corrections using both the False Discovery Rate (FDR) methods. The significance
of differences between groups was determined based on the following thresholds: *P < 0.05, **P <

0.01, ***P < 0.001, ****P < 0.0001.



3. RESULTS

3.1.Basic clinical characteristics

We identified colorectal cancer patients from the Severance cohort who received immune
checkpoint inhibitors between 2017 and 2024, with known best responses and outcomes. The best
response was measured based on RECIST criteria, resulting in 1 patient classified as a complete
responder (CR), 21 as partial responders (PR), 28 as stable disease (SD), and 46 as progressive
disease (PD), with 10 classified as not estimable (NE). Due to data imbalance in our analysis, we
binarized the cohort, classifying CR and PR, or patients with progression-free survival (PFS) of
180 days or more, as responders, while the remaining patients were classified as non-responders.
Additionally, to account for the distribution of the data in logistic regression, we also binarized
variables such as stage, sidedness, microsatellite instability (MSI), and drug type. Detailed
information about these variables is provided in Table 1. The comparison of clinical variables
between the responder and non-responder groups revealed significant differences in progression-
free survival (PFS) and overall survival (OS) (Table 2). The cohort consisted of 36 responders and
70 non-responders. It was confirmed that age, sex, stage, and sidedness do not statistically
contribute to the classification of response to immune checkpoint blockade (ICB). However,
microsatellite instability (MSI) status showed a highly significant difference (p < 0.001) between
responders and non-responders, with MSI-H patients being more likely to be responders.
Additionally, responders had statistically significantly higher progression-free survival and overall
survival compared to non-responders (both p < 0.001). When comparing the two groups using
univariable and multivariable analyses, there were no significant differences in binarized sidedness
(right and left), age (old and young), sex (male and female), and stage (I, 11, I1I, and IV) (Figure
3).

10



Table 2. Comparison of clinical features between R (n = 36) and NR (n = 70) group

Responder  Non-responder p-value
Age Mean (SD) 54 (14.9) 55.7 (14.1) 0.655
Progression free survival Mean (SD) 18.2 (13.4) 1.7 (1.1) <0.001
Overall survival Mean (SD) 31.4(22) 12 (13.8) <0.001
M (¢ 19 (17.9 44 (41.5
Sex (%) 2 ( ) ( ) 0.428
F (%) 17 (16) 26 (24.5)
I, 11, IIT (% 24 (22.6 33 (31.1
Stage - L 1T (%) (22.6) GLL) 0.102
IV (%) 12 (11.3) 36 (34)
Right (%) 17 (16) 24 (22.6)
Sided 0.229
1deaness Left (%) 18 (17) 46 (43.4)
MSI-H (%) 25 (23.6) 20 (18.9)
Mi tellit <0.001
ferosatetite MSS (%) 6 (5.7) 36 (34)
Sideness : Right r S : g;g
Age : Young I_ g : gg?
i Analysis Type
: + Multivariate
| = + Univariate
Sex : Male : g _ g?;
Stage : IV :i_ S : gg;
0 20

Odds Ratio (95% CI)

Figure 3. Comparison of clinical variables between clinical groups. This section presents the
hazard ratios of clinical variables based on the estimate values calculated through logistic
regression for the best response.
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3.2. The impact of clinical variables on ICB response

3.2.1. Comparison of ICB markers between ICB response groups
In our cohort, we compared the expression information of ICB markers (CD274, PDCD1, CTLA4)
in 53 individuals, consisting of 13 responders and 38 non-responders (Figure 4). When comparing
PD-1 (PDCD1I), CTLA4, and PD-L1 (CD274) between the two groups, the p-values were 0.52, 0.96,
and 0.82, respectively, indicating no significant differences. Furthermore, when comparing the two
groups for the additional inhibitory markers B7-1, GAL9, PD-L2, and TIM3, B7-1 and GAL9 showed
no significant differences with p-values of 0.59 and 0.84, respectively. However, PD-L2 and TIM3

had p-values of less than 0.01, indicating higher expressions in the responder group (Figure 5).

!‘%‘\r‘?‘?‘fﬁ-ﬂmgﬁr:ﬁ%

g i

normalized expression  Response status

. T mR

-2-10 1 2 3 BnNR

Condilion
PD-1
(PDCDA)

CTLA4

PD-L1
(CD274)

Figure 4. Comparison of expressions of conventional ICB markers. The figure illustrates the
expression levels of ICB markers (CD274, PDCD1, CTLA4) in the cohort of 53individuals,
consisting of 13 responders and 38 non-responders. The green color represents the ICB responder
group, while the red color indicates the non-responder group.
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Figure 5. Comparison of expressions of other ICB markers. The figure illustrates the
expression levels of other ICB markers (B7-1, GAL9, PD-L2, TIM3) in the cohort of 53
individuals, consisting of 13 responders and 38 non-responders. The green color represents the
ICB responder group, while the red color indicates the non-responder group.

3.2.2. The impact of MSI-H status (MSI-H vs MSS/MSI-L) on prognosis
In a cohort of 103 patients, a comparison of progression-free survival (PFS) and overall survival
(OS) between 45 patients with MSI-H and 41 patients with MSS/MSI-L confirmed that MSI status
significantly contributes to prognosis (Figures 6 and 7). Patients with MSI-H exhibited statistically
longer PFS and OS compared to those with MSS/MSI-L (both p-value < 0.001).

Progression free survival (PFS) = MSS/MSI-L === MSI-H
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Figure 6. PFS comparison between MSI-H and MSS/MSI-L groups. This Kaplan-Meier plot
illustrates the comparison of PFS between MSI-H and MSS/MSI-L. The red line represents MSI-
H, while the blue line represents MSS/MSI-L.
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Figure 7. OS comparison between MSI-H and MSS/MSI-L groups. This Kaplan-Meier plot
illustrates the comparison of OS between MSI-H and MSS/MSI-L. The red line represents MSI-
H, while the blue line represents MSS/MSI-L.

3.2.3. The impact of ICB response on prognosis
In a cohort of 106 patients, a comparison of progression-free survival (PFS) and overall survival
(OS) between 36 responders and 70 non-responders revealed that responders had significantly better
prognoses (Figures 8 and 9). Both PFS and OS showed p-values of less than 0.001, indicating that

responders experienced delayed disease progression and longer survival.
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Figure 8. PFS comparison between R and NR groups. This Kaplan-Meier plot illustrates the
comparison of PFS between Responder and Non-responder. The green line represents R group,
while the red line represents NR group.
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Figure 9. OS comparison between R and NR groups. This Kaplan-Meier plot illustrates the
comparison of OS between Responder and Non-responder. The green line represents R group,
while the red line represents NR group.



3.2.4. The impact of ICB response and MSI status on prognosis

When comparing PFS across the four conditions, considering both ICB response and MSI status
revealed statistically significant longer PFS (Figure 10). Patients who were ICB responders with
MSI-H status experienced the slowest disease progression and the longest survival. Following
them, patients with MSS/MSI-L status who were ICB responders also had favorable outcomes. In
contrast, patients who did not respond to ICB showed no significant differences when comparing
MSI-H and MSS/MSI-L, and they exhibited the poorest prognosis among the four groups,
regardless of MSI status. While patients who were ICB responders with MSI-H status showed the

longest OS, there were no significant differences among the other groups (Figure 11).

Time
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Figure 10. PFS Comparison among ICB response and MSI status groups. This Kaplan-Meier
plot illustrates the comparison of PFS among the four groups: (i) ICB responders with MSI-H
status (light green line), (ii) ICB responders with MSS/MSI-L status (dark green line), (iii) ICB
non-responders with MSI-H status (light red line), and (iv) ICB non-responders with MSS/MSI-
L status (dark red line).
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Figure 11. OS Comparison among ICB response and MSI status groups. This Kaplan-Meier
plot illustrates the comparison of OS among the four groups: (i) ICB responders with MSI-H
status (light green line), (ii) ICB responders with MSS/MSI-L status (dark green line), (iii) ICB
non-responders with MSI-H status (light red line), and (iv) ICB non-responders with MSS/MSI-
L status (dark red line).

3.2.5. The association between ICB response and MSI status
We investigated the relationship between ICB (immune checkpoint blockade) response and MSI
(microsatellite instability) status, and our results confirmed a statistically significant correlation
between ICB response and MSI status within our cohort, with a p-value of less than 0.001 (Figure
12). As suggested, higher levels of MSI-H were associated with a greater likelihood of response,
and our results replicated this finding, indicating that patients with MSI-H were more likely to be

responders. This implies the utility of MSI-H as an independent biomarker for ICB response.
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Figure 12. Correlation between ICB response and MSI status. This figure illustrates the
relationship between ICB response and MSI status within our cohort. The colors represent the
ICB response groups; green indicates responders, while red indicates on-responders.

3.3. Genomic profiling

3.3.1. Association between best response group and TMB
In our cohort, there were a total of 52 patients with genomic data, comprising 15 responders
(28.8%) and 37 non-responders (71.2%). We classified the relative binarized TMB (tumor
mutational burden) groups based on the mean TMB values and found no significant correlation
between the TMB groups and the ICB response groups, with a p-value of 0.064 (Figure 13).
Furthermore, when comparing TMB values between the ICB response groups, we observed no

significant difference, with a p-value of 0.75 (Figure 14).

T™B
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NR
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15
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Figure 13. Comparison between best responder group and TMB binarized group. The TMB
binarized groups were classified based on the mean TMB value within the cohort, and the p-
value was calculated using Fisher's exact test. Red represents non-responders, while green
represents responders.
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Figure 14. Comparison of TMB between best responder groups. TMB was compared
between the two groups based on the number of mutations per megabase. A Wilcoxon test was
performed.

3.3.2. Mutation landscape for colorectal cancer

Genomic profiling was conducted utilizing the mutation landscape of driver mutations in
colorectal cancer as listed in the IntOGen database. This analysis included the top five genes with
the highest frequencies in colorectal cancer: APC, TP53, KRAS, PIK3CA, and SMAD4. These genes
showed no significant differences in mutation frequency compared to the large cohort reported in
the IntOGen database for colorectal cancer (APC: 61%; TP53: 56%; KRAS: 40%; PIK3CA: 17%;
SMAD4: 11%). Furthermore, the comparison between the two groups showed that most driver
mutations exhibited no significant differences (Figure 15). However, among the driver mutations,
three genes demonstrated statistically significant differences: AMERI (p = 0.02), ATM (p = 0.05),
and CTNNBI (p < 0.01). Notably, AMER1 (R: 5/15, NR: 2/37) and CTNNBI (R: 5/15, NR: 1/37)
were more frequent in the responder group, whereas 4ATM was significantly more prevalent in the

non-responder group (R: 0/15, NR: 10/37).
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Figure 15. Landscape of driver mutations in colorectal cancer. The landscape of driver
mutations in colorectal cancer was visualized using an oncoplot based on the driver mutation list
from the IntOGen database. The red asterisks indicate driver mutations with statistically
significant differences between the two groups.

3.4. Transcriptomic profiling
3.4.1. Expression-based PCA Analysis
A total of 51 patients with expression data were included (13 responders and 38 non-responders),
and PCA was conducted based on the gene by sample matrix to assess the variance and patterns in
gene expression data. This analysis demonstrates the absence of any clearly identifiable batch effects

within the cohort (Figure 16).
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Figure 16. Visualization of PCA based on expression patterns. PCA visualization was
performed using the expression matrix based on DESeq2 VST normalization. The red dots
represent non-responders, while the green dots indicate responders.

3.4.2. Identification of differentially expressed genes

There are a total of 4 differentially expressed genes (DEGs) between the two groups (Figure 17).
All of these are down-regulated DEGs in responders. These genes are OR4N3P (log2FC = -23.2),

COL25A1 (log2FC = -4.6), CYP2E1 (log2FC = -4.4), and MUCI2 (log2FC = -2.4).

21



Down DEGs in R group 4 ,
OR4N3P !
75 -
o '
pd i
o 1
\ 1
— 1
=] '
8 :
~ 50 1
[0} '
E 1
[ '
T '
-g- COL25A1 H
Z :
S 25 1
g i
< MUC12,
CYP2E1 .
e

0.0 :

T T i T T

-20 -10 0 10 20

Log?2 fold change

Figure 17. Visualization of DEG volcano plot. The volcano plot is visualized based on
differentially expressed genes (DEGs). The x-axis represents the log2 fold change, while the y-
axis displays the adjusted p-value. The significance threshold is set at an adjusted p-value of
0.05.

3.4.3. Comparison of tumor microenvironments

To compare the tumor microenvironments between responders and non-responders, we evaluated
the tumor microenvironment scores of the two groups by assessing immune cell infiltration (IIS), T
cell infiltration (TIS), cytolytic activity (CYT), angiogenesis (ANG), and the antigen presentation
mechanism (APM) (Figure 18). As a result, no significant differences were found between the two
groups in all tumor microenvironment-related scores. Additionally, we compared interferon gamma
(IFNG), T cell dysfunction and exclusion score, cancer-associated fibroblast score, cytotoxic
lymphocyte score (CTL), and myeloid-derived suppressor cell score to assess T cell functionality.
The results showed that there were no statistically significant differences in T cell functionality-

related scores between the two groups (Figure 19).
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Figure 18. Comparison of tumor microenvironments. Tumor microenvironment scores were
evaluated based on immune cell infiltration (IIS), T cell infiltration (TIS), cytolytic activity

(CYT), angiogenesis (ANG), and the antigen presentation mechanism (APM).
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Figure 19. Comparison of T cell functionality related scores. Evaluation of T cell
functionality through the comparison of interferon gamma (IFNG) levels, T cell dysfunction and
exclusion score, cancer-associated fibroblast score, cytotoxic lymphocyte score (CTL), and
myeloid-derived suppressor cell score.
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3.4.4. Gene set enrichment analysis

When comparing responders and non-responders based on the REACTOME database, several
terms were up-regulated in responders, including neutrophil degranulation (FDR < 0.001), and
chemokine receptors bind chemokines (FDR < 0.001) (Figure 20). Additionally, terms related to
extracellular matrix (ECM) remodeling, such as assembly of collagen fibrils and other multimeric
structures (FDR < 0.001), and collagen formation (FDR < 0.01) were also found to be up-regulated
in the responder group (Figure 20). Furthermore, when comparing the two groups using the cancer
hallmark database, we observed increases in inflammatory response (FDR < 0.01), and allograft
rejection (FDR < 0.01) in the responder group (Figure 21). Additionally, using the biological
process-related gene ontology database, terms related to antigen processing and presentation (FDR

< 0.05) were significantly increased in the responder group (Figure 22).
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Figure 20. Ridgeline plot of gene set enrichment analysis (REACTOME). Gene set
enrichment analysis was conducted through 100 rounds of bootstrapping, selecting the top 10
terms based on FDR values for both responder and non-responder groups. The x-axis represents
-log10 FDR, while the y-axis displays individual terms from the REACTOME database. Green
indicates up-regulated terms in responders, while red represents down-regulated terms in
responders.
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Figure 21. Ridgeline plot of gene set enrichment analysis (HALLMARK). Gene set
enrichment analysis was conducted through 100 rounds of bootstrapping, selecting the top 10
terms based on FDR values for both responder and non-responder groups. The x-axis represents
-log10 FDR, while the y-axis displays individual terms from the cancer hallmark database.
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Figure 22. Ridgeline plot of gene set enrichment analysis (GO biological process terms).
Gene set enrichment analysis was conducted through 100 rounds of bootstrapping, selecting the
top 10 terms based on FDR values for both responder and non-responder groups. The x-axis
represents -logl0 FDR, while the y-axis displays individual terms from the Gene Ontology
database.
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3.4.5. Identification of enriched cell types
To identify the cell types that were up-regulated or down-regulated in the ICB responder group,
we conducted a cell deconvolution analysis (Figure 23). When comparing the two groups, we
observed an increase in M2-polarized macrophages (p < 0.01), regulatory T cells (p < 0.01), and
total macrophages (p < 0.05) in the responder group. However, there were no cell types that showed

a statistically significant decrease in the responder group compared to the non-responder group.

M2 Macrophage B
C

T cell regulatory

(Tregs) Eosinophil
Macrophage cytotoxicity
score
S
C;\ Endothelial
CD4+ cell
Myeloid
dendritic Monocyte
cell
Macrophage NK
M1 cell
[ ] notsig
. Enriched in Responder T
immune cell
score gamma
delta
-
cell Neutrophil
CD8+
Cancer
MAST h
cell associated
fibroblast

Figure 23. Cell type deconvolution analysis in ICB responder and non-responder groups.
Cell deconvolution analysis revealed significant differences in the composition of cell types
between the ICB responder and non-responder groups.
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3.5.Metagenomic profiling

3.5.1. Comparison of taxonomy enrichment between responders and non-
Responders

In the cohort, the metagenomic data consisted of a total of 57 individuals, with 18 responders and
39 non-responders. The comparison of these two groups based on the metagenomic data revealed
abundant taxonomy in both responders and non-responders. According to the LDA score, the
responder group exhibited statistically significant enrichment of the following taxa, which represent
the top five significant findings: Bacteroides, Fusobacterium, Flavonifractor, Enterocloster, and
Porphyromonas. Conversely, the following taxa demonstrated a significant decrease in the responder

group: Croceicoccus, Rhizorhabdus, Burkholderia, Streptomyces, and Sphingomonas (Figure 24).
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Figure 24. Enrichment of taxonomy using LDA score between two groups. A comparison of
taxonomy enrichment between the two groups was performed. The x-axis represents the log10-
based LDA score, while the y-axis indicates each taxonomy. Green dots represent taxa enriched
in responders, while red dots indicate taxa that decreased in responders.

Additionally, we assessed the enriched microbiome in responders and non-responders using a
phylogenetic tree (Figure 25). The analysis identified a total of 110 species at the species level, of
which 30 were enriched in responders and 80 were downregulated in responders. Notably,
Bacteroides, Fusobacterium, and Porphyromonas showed a significant increase in the responder
group. However, the previously identified taxon Prevotella, which was reported to increase in

responder groups in prior studies, was not replicated in our research. Furthermore, the association

27



of Fusobacterium with immune response to immunotherapy yielded results that were contrary to

those reported in previous studies.
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Figure 25. Cladogram of enriched microbiome in responders and non-responders. This
cladogram illustrates the phylogenetic relationships among the microbiome species identified in
the responder and non-responder groups.



We additionally compared the enriched microbiome between the two groups using log2 fold change
(Figure 26). Specifically, we identified the top 10 genera that were increased in responders:
Bacteroides, Fusobacterium, Flavonifractor, Enterocloster, Parabacteroides, Phocaeicola,
Porphyromonas, Dysosmobacter, Lachnoclostridium, and Methylobacterium. Conversely, the top
10 genera that were decreased in responders included Sphingomonas, Streptomyces, Burkholderia,
Rhizorhabdus, Altererythrobacter, Croceicoccus, Erythrobacter, Paraburkholderia,

Porphyrobacter, and Amycolatopsis.
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Figure 26. Enrichment of top 10 genus levels using log10 fold change. This figure presents the
comparison of enriched microbiome between responders and non-responders based on log10 fold
change.
Additionally, we examined the relative abundance at the phylum level (Figure 27). We compared

the top five phyla with high relative abundance: Pseudomonadota, Bacteroidota, Bacillota,



S

ll.l-_l. -

4T

"l
r

Actinomycetota, and Fusobacteriota between the two groups. Among these, Bacteroidota was found

to be significantly higher in responders (p < 0.001). Notably, we also observed an increase in

the Bacteroides genus level in responders in accordance with previous results (Figure 24-26).
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Figure 27. Comparison of relative abundance at the phylum level. This figure illustrates the
relative abundance of the top five phyla: Pseudomonadota, Bacteroidota, Bacillota,
Actinomycetota, and Fusobacteriota in responders and non-responders.

3.5.2. Gut microbial diversity indices analysis

We assessed the diversity indices of patients based on a genus-by-sample normalized matrix.

When comparing these indices, no statistically significant differences were observed between the

two groups (observed: 0.17, Shannon: 0.44, inverse Simpson: 0.32, Chaol: 0.17) (Figure 28).
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Figure 28. Comparison of microbial diversity indices between two groups. Each metric
represents diversity calculated based on the genus-by-sample matrix, and it has the same
meaning as the y-axis. The green color represents responders, while the red color represents non-
responders.

3.6. Machine learning-based modeling for response prediction

3.6.1. Process of feature selection and importance

In this analysis, we performed feature selection for each modality: clinical information (C), DNA
(D), RNA (R), metagenomic sequencing (M), pathology (P), and radiology (I).For the clinical
information modality (C), we utilized four features: age, sidedness, stage, and sex, to determine
feature importance based on a random forest model (Figure 29). Among these, age had the highest
importance, followed by sidedness, stage, and sex, in contributing to the C modality-based model.
Additionally, we assessed the contribution of each C modality feature through the odds ratios based
on a ridge regression model. Among the features analyzed, sidedness exhibited an odds ratio greater

than 1, while the other features demonstrated odds ratios less than 1.
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Figure 29. Feature importance and odds ratios for clinical information modality. This figure
presents the feature importance ranking for the clinical information modality (C) based on a
random forest model, highlighting the relative contributions of various features to the model's
predictive performance. Additionally, it displays the odds ratios for these features as identified
in the clinical information modality (C) through a ridge regression model. The x-axis has been
scaled by applying the square root to the odds ratios, thereby facilitating a clearer visualization
of the relationships between the features and clinical responses.

For the DNA modality (D), we utilized ten features: FATI, ABCA7, MYO10, KIF26A, HNRNPAO,
RALGAPA2, GPRI137B, PPPIR2B, ARNTL2, and PCDHGA6 (Figure 30). Among these, FATI was
identified as the most significant feature in contributing to the model based on the D modality.
Furthermore, only MYO10 exhibited an odds ratio of less than 1, while the remaining features

showed odds ratios greater than 1.
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Figure 30. Feature importance and odds ratios for DNA modality. This figure presents the
feature importance ranking for the DNA modality (D) based on a random forest model,
highlighting the relative contributions of various features to the model's predictive performance.
Additionally, it displays the odds ratios for these features as identified in the DNA modality (D)
through a ridge regression model. The x-axis has been scaled by applying the square root to the
odds ratios, thereby facilitating a clearer visualization of the relationships between the features

and clinical responses.

In the RNA modality (R), we utilized ten features: CTL, CDS8, IFNG, MSI score, Dysfunction
score, MDSC, CD274, Exclusion score, TIDE, and M2-polarized macrophage (Figure 31). Among
these, the cytotoxic lymphocyte score was identified as the most significant contributor to the R
modality model. Furthermore, the exclusion score exhibited the highest odds ratio within the R

modality, while MSI score, CD8, CTL, CD274, and M2-polarized macrophage all displayed odds

ratios greater than 1. In contrast, the remaining features presented odds ratios below 1.
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Figure 31. Feature importance and odds ratios for RNA modality. This figure presents the
feature importance ranking for the RNA modality (R) based on a random forest model,
highlighting the relative contributions of various features to the model's predictive performance.
Additionally, it displays the odds ratios for these features as identified in the RNA modality (R)
through a ridge regression model. The x-axis has been scaled by applying the square root to the
odds ratios, thereby facilitating a clearer visualization of the relationships between the features
and clinical responses.

In the context of the MGS modality (M), we employed ten features: Umezawaea,
Hydrogenimonas, Capillimicrobium, Shingomonas, observed, Citrobacter, Porphyromonas,
Streptomyces, Pseudolysobacter, and Sporomusa (Figure 32). Among these features, Umezawaea
was recognized as the most influential factor in the M modality model. Additionally, Porphyromonas
demonstrated the highest odds ratio, whereas Pseudolysobacter, Citrobacter, Sporomusa, and

Hydrogenimonas showed odds ratios exceeding 1, while the other features had odds ratios below 1.

34



I NRindicaton [l R indication

Umezawaea sp Da 62 37 Porphyromonas asaccharolytica | I
Hydrogenimonas thermophila — Pseudolysobacter antarcticus — [ ]
Capillimicrobium parvum — Citrobacter braakii | ——
Sphingomonas piscis | Sporomusa rhizae | —
Observed (Richness) | Hydrogenimonas thermophila -| —
Citrobacter braakii — Observed (Richness) — ]
Porphyromonas asaccharolytica | Sphingomonas piscis — L}
Streptomyces formicae -| Capillimicrobium parvum —{ L]
Pseudolysobacter antarcticus | Umezawaea sp Da 62 37 4 L]
Sporomusa rhizae | Streptomyces formicae —| q
T I T T
o + & © < w 2 - 2 o
Feature importance Square root of odds ratio

Figure 32. Feature importance and odds ratios for MGS modality. This figure presents the
feature importance ranking for the MGS modality (M) based on a random forest model,
highlighting the relative contributions of various features to the model's predictive performance.
Additionally, it displays the odds ratios for these features as identified in the MGS modality (M)
through a ridge regression model. The x-axis has been scaled by applying the square root to the
odds ratios, thereby facilitating a clearer visualization of the relationships between the features
and clinical responses.

In the pathology modality (P), we analyzed four key features: MSI status, KRAS, BRAF,
and NRAS (Figure 33). Among these features, MSI status emerged as the most significant factor
contributing to the P modality model. Additionally, MSI status exhibited the highest odds ratio,
while BRAF and KRAS showed odds ratios exceeding 1. Conversely, the other features had odds
ratios that fell below 1.
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Figure 33. Feature importance and odds ratios for pathology modality. This figure presents
the feature importance ranking for the pathology modality (P) based on a random forest model,
highlighting the relative contributions of various features to the model's predictive performance.
Additionally, it displays the odds ratios for these features as identified in the pathology modality
(P) through a ridge regression model. The x-axis has been scaled by applying the square root to
the odds ratios, thereby facilitating a clearer visualization of the relationships between the
features and clinical responses.

In the radiology modality (I), we analyzed six key features: lung metastases, bone
metastases, abdominal and pelvic metastases, increase of primary tumor, lymph node metastases,
and head and neck metastases (Figure 34). Among these features, lung metastases emerged as the
most significant factor influencing the I modality model. Furthermore, head and neck
metastases exhibited the highest odds ratio, while all other features, except for the increase of

primary tumor, demonstrated odds ratios below 1.
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Figure 34. Feature importance and odds ratios for image modality. This figure presents the
feature importance ranking for the image modality (I) based on a random forest model,
highlighting the relative contributions of various features to the model's predictive performance.
Additionally, it displays the odds ratios for these features as identified in the image modality (I)
through a ridge regression model. The x-axis has been scaled by applying the square root to the
odds ratios, thereby facilitating a clearer visualization of the relationships between the features
and clinical responses.

3.6.2. Performance improvement by combining modalities and validation

We constructed models for each modality and then evaluated the performance of these models
using an ensemble approach. We primarily focused on accuracy, sensitivity, positive predictive
value (PPV), specificity, and negative predictive value (NPV), observing that these metrics
increased with the combination of modalities. First, we confirmed that combining six modalities
from the internal dataset resulted in increased accuracy, sensitivity, PPV, specificity, and NPV,
demonstrating significantly better performance compared to a single-modality-based predictive tool
for immune checkpoint inhibitor response (Figures 35-39). The accuracy values were as follows: for
uni-modality, 0.7; for bi-modality, 0.69; for tri-modality, 0.7; for quadra-modality, 0.7; for penta-
modality, 0.7; and for hexa-modality, 0.75 (Figure 35). Notably, even the uni-modality was higher
than the RN A-based predictive tools IMPRES and TIDE. The sensitivity values were: uni-modality,
0.66; bi-modality, 0.63; tri-modality, 0.67; quadra-modality, 0.74; penta-modality, 0.8; and hexa-
modality, 0.85 (Figure 36), which were also higher than those of IMPRES and TIDE. The PPV
values were: uni-modality, 0.5; bi-modality, 0.59; tri-modality, 0.58; quadra-modality, 0.55; penta-
modality, 0.55; and hexa-modality, 0.6 (Figure 37). Although relatively unstable compared to other

metrics, these values remained higher than those of IMPRES and TIDE. The specificity values were:
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uni-modality, 0.7; bi-modality, 0.7; tri-modality, 0.7; quadra-modality, 0.67; penta-modality, 0.65;
and hexa-modality, 0.69 (Figure 38). Here, the uni-modality exhibited the highest performance, and
in some datasets, it performed lower than IMPRES and TIDE. Finally, the NPV values were: uni-
modality, 0.83; bi-modality, 0.81; tri-modality, 0.82; quadra-modality, 0.84; penta-modality, 0.86;
and hexa-modality, 0.9 (Figure 39). These results indicate that the performance increased with the

combination of modalities, surpassing that of IMPRES and TIDE.
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Figure 35. Comparison of Accuracy values by integrating modalities. The accuracy is
presented for uni-modality (0.7), bi-modality (0.69), tri-modality (0.7), quadra-modality (0.7),
penta-modality (0.7), and hexa-modality (0.75).
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Figure 36. Comparison of Sensitivity values by integrating modalities. The accuracy is
presented for uni-modality (0.66), bi-modality (0.63), tri-modality (0.67), quadra-modality
(0.74), penta-modality (0.8), and hexa-modality (0.85).
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Figure 37. Comparison of PPV by integrating modalities. The accuracy is presented for uni-
modality (0.5), bi-modality (0.59), tri-modality (0.58), quadra-modality (0.55), penta-modality
(0.55), and hexa-modality (0.6).
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Figure 38. Comparison of Specificity values by integrating modalities. The accuracy is
presented for uni-modality (0.7), bi-modality (0.7), tri-modality (0.7), quadra-modality (0.67),
penta-modality (0.65), and hexa-modality (0.69).
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Figure 39. Comparison of NPV by integrating modalities. The accuracy is presented for uni-
modality (0.83), bi-modality (0.81), tri-modality (0.82), quadra-modality (0.84), penta-modality
(0.86), and hexa-modality (0.9).

3.6.3. Performance variations and validation based on modality combinations

We measured five metrics (accuracy, sensitivity, positive predictive value (PPV), specificity, and
negative predictive value (NPV)) for all modalities based on combinations across the internal dataset,
simulated dataset, and two external datasets (Figure 40-43). In the internal dataset, where imputation
was performed, all metrics gradually improved as more modalities were combined. Specifically, in
the hexa combination, we observed an accuracy of 0.6, sensitivity of 0.857, PPV of 0.6, specificity
0f 0.692, and NPV of 0.9 (Figure 40). Additionally, we assumed scenarios with missing features for
each modality and utilized the internal dataset to evaluate model performance based on the simulated
dataset without imputation (Figure 41). The results indicated that while the performance was best
when all modalities were combined, accuracy, sensitivity, and PPV gradually increased with more

modality combinations. In contrast, specificity and NPV remained stable.
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Figure 40. Comparison of multiple metrics by integrating modalities in the internal dataset
with imputation. This figure visualizes five metrics, where the y-axis represents the value of
each metric, and the x-axis denotes the number of modality combinations.
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Figure 41. Comparison of multiple metrics by integrating modalities in the simulated
dataset. This figure visualizes five metrics, where the y-axis represents the value of each metric,
and the x-axis denotes the number of modality combinations.
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We validated the model's performance using two external validation sets (Figures 42 and 43).
Utilizing the C, D, R, and P modalities, we were able to evaluate the performance of the four-
modality combinations in the IMMUNOMSI dataset. The performance metrics observed were an
accuracy of 0.55, sensitivity of 0.71, positive predictive value (PPV) of 0.42, specificity of 0.46, and
negative predictive value (NPV) of 0.75 (Figure 42). Although these metrics are relatively low, they
replicate the performance observed in previous results (Figure 41) when utilizing the four-modality
combination. Additionally, in the NIPICOL dataset, we assessed the performance of a three-
modality combination using the C, D, and P modalities (Figure 43), yielding metrics of accuracy
0.65, sensitivity 0.71, PPV 0.5, specificity 0.62, and NPV 0.8. While both datasets showed somewhat

low AUC values, our analysis confirmed that overall performance increases as modalities are

integrated.
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Figure 42. Comparison of multiple metrics by integrating modalities in the IMMUNOMSI
dataset. This figure visualizes five metrics, where the y-axis represents the value of each metric,
and the x-axis denotes the number of modality combinations.
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Figure 43. Comparison of multiple metrics by integrating modalities in the NIPICOL
dataset. This figure visualizes five metrics, where the y-axis represents the value of each metric,
and the x-axis denotes the number of modality combinations.

3.6.4. Machine learning based model performance on the internal dataset

In this analysis, we utilized an internal dataset consisting of 106 patient samples, which included
partially combined data from clinical, DNA, RNA, metagenomic, pathology, and imaging
modalities, to assess the performance of the predictive model when all modalities were integrated.
We performed stratified 5-fold cross-validation, and the results showed a mean AUC of 0.8 in the
test set, indicating that overfitting was adequately regulated (Figure 44). Furthermore, we created a
simulation dataset by intentionally removing specific features from the internal dataset. Similarly,
we performed stratified 5-fold cross-validation to assess the mean performance of the model that
combined modalities without imputation (Figure 45). As a result, we found that the mean AUC was

0.655, indicating a decrease in model performance compared to the case with imputation.
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Figure 44. AUC of model performance with imputation. This figure represents the mean ROC
of the test set after imputation, with the x-axis indicating specificity and the y-axis indicating
sensitivity.
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Figure 45. AUC of model performance without imputation. This figure represents the mean
ROC of the simulation set without imputation, with the x-axis indicating specificity and the y-
axis indicating sensitivity.
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3.6.5. Machine learning based model performance on the external dataset
To evaluate the performance of the modality combination model, we utilized two independent
external datasets: IMMUNOMSI and NIPICOL. The IMMUNOMSI dataset incorporated the C, D,
R, and P modalities, whereas the NIPICOL dataset utilized the C, D, and P modalities to validate
the model's performance (Figures 46 and 47). The IMMUNOMSI dataset showed an AUC of 0.697
(Figure 46), while the NIPICOL dataset demonstrated an AUC of 0.622 (Figure 47).
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Figure 46. AUC of model performance on the external IMMUNOMSI dataset. This figure
represents the mean ROC curve of the model evaluated on the IMMUNOMSI dataset, where the
x-axis indicates specificity and the y-axis indicates sensitivity.
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Figure 47. AUC of model performance on the external NIPICOL dataset. This figure
represents the mean ROC curve of the model evaluated on the NIPICOL dataset, where the x-
axis indicates specificity and the y-axis indicates sensitivity.

3.6.6. Deep learning model development

To address the challenges of limited sample size and the complexities of multimodal fusion, we
developed a model utilizing deep learning techniques. Based on the HEALNet model, we fused all
modalities for our development; however, we observed incomplete metrics (accuracy: 0.53,
sensitivity: 0.6, specificity: 0.5, positive predictive value (PPV): 0.33, negative predictive value
(NPV): 0.75) (Figure 48). We also examined the confusion matrix for the 51 samples that included
all modalities (Figure 49). In the internal dataset, the HEALNet-based model achieved an AUC of
0.569, which was lower than the performance of the machine learning ensemble models (Figures

44-47 and 50).
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Figure 48. Performance metrics for the HEALNet Model with all modalities. This figure
illustrates the performance metrics of the HEALNet model incorporating all modalities.
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Figure 49. Confusion Matrix for the HEALNet Model. This figure presents the confusion
matrix for the HEALNet model evaluated on 51 samples that included all modalities. The
confusion matrix shows the distribution of true positives, true negatives, false positives, and
false negatives, which provides insight into the model's classification performance.
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Figure 50. AUC of the model based on the HEALNet framework. This figure represents the
ROC curve of the model evaluated on the internal dataset, where the x-axis indicates specificity
and the y-axis indicates sensitivity.
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4. DISCUSSION

Recent technological advancements have led to the emergence of multimodal approaches aimed
at addressing the limitations of classifiers and predictors that rely solely on single modalities. While
such initiatives have been undertaken in cancers such as breast, lung, and ovarian cancer, similar
efforts in colorectal cancer remain limited. Furthermore, past analyses have often relied on a
restricted scope of data, primarily focusing on DNA panels and specific blood biomarkers, resulting
in significant gaps in the research. Additionally, studies utilizing single modalities have generally
produced lower area under the curve (AUC) values, which suggests limited predictive power
compared to multimodal approaches. These limitations highlight the need for comprehensive
analyses that integrate various data types to enhance the robustness and reliability of predictive
models for colorectal cancer. Moreover, tools based on specific modalities face a significant
drawback as they become unusable when there are missing modalities or missing features. This
unmet demand underscores the necessity for a multimodal-based immune checkpoint inhibitor
response predictor in colorectal cancer that can provide response predictions even in the presence of
missing modalities and features.

Our study addresses these challenges by collecting a comprehensive range of multimodal data
from colorectal cancer patients undergoing immune checkpoint inhibitor therapies, leading to the
development of a high-performance treatment response prediction model. We aimed to distinguish
responders from non-responders with high accuracy by comparing these groups across each modality.
Our analysis of the combined modalities revealed notable improvements across all five metrics used
to evaluate classification performance. Our findings demonstrate significant novelty from several
perspectives. First, we developed the highest-performing multimodal classifier for predicting
responses to immune checkpoint inhibitors globally, addressing a critical gap in current research.
Second, our results indicate that combining various modalities in colorectal cancer allows for more
accurate classification of responder groups compared to predictions made using single-modal
approaches. Third, the ability of our combined modality dataset—despite being minimal and
containing missing modalities and features in real-world data—to provide useful prediction scores
is particularly valuable. Fourth, we demonstrate that biomarkers identified within single modalities

can still hold substantial utility.
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While a study published in Nature Cancer in 2022 reported relatively high AUC values for
unimodal approaches in non-small cell lung cancer, a global effort to develop a unimodal classifier
for immune checkpoint inhibitor response in colorectal cancer has not yet been undertaken.
Moreover, unimodal models often experience trade-offs between different metrics, as illustrated by
significant gaps among AUC, recall, F1 score, specificity, and precision. In contrast, our integrated
multimodal approach led to improved scores across accuracy, sensitivity, positive predictive value
(PPV), specificity, and negative predictive value (NPV) metrics. This indicates that while unimodal
models may demonstrate high sensitivity, they often lack precision; conversely, our final model
effectively mitigated this trade-off.

Furthermore, as cancer arises from complex biological mechanisms, a diverse omics approach is
essential for achieving more accurate classifications. This study represents the first global effort to
develop a multimodal classifier for predicting responses to immune checkpoint inhibitors in
colorectal cancer, showcasing commendable performance and enhancing the potential for
personalized treatment strategies in this field.

However, we recognize certain limitations, including a relatively small sample size, data
imbalances, algorithm simplicity, and validation requirements. Despite this, we addressed issues
related to sample size and data imbalance by implementing data up-sampling within the training set.
We also sought to regulate overfitting through stratified k-fold cross-validation. Although we could
not use a full modality combined dataset for validation, we intend to validate our model's
generalization performance using two independent external datasets that combine up to four
modalities. Currently, our research applies ensemble techniques involving logistic regression,
random forest, Naive Bayes, and XGBoost algorithms, and we are also exploring the potential of
attention models to enhance our predictions.

To address the limitations of data availability, we employed three validation methods to emphasize
our model's robustness and generalizability. First, we validated the performance of individual
modality features based on independent single-modality data. While this may not showcase the
synergistic effects of all modalities, it confirmed the importance of the features we've utilized in our
model. Second, we compared our model's performance against existing single-modality immune
checkpoint inhibitor response predictors, such as TIDE and IMPRES, which provide predictions
based on RNA signatures. This comparison illustrated how our model performs relative to existing

tools. Lastly, to minimize the risk of overfitting, we conducted stratified k-fold cross-validation,
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which is particularly valuable given the significant challenges posed by data imbalance.

By addressing these limitations, we aim to meet the unmet needs related to colorectal cancer
immune checkpoint inhibitor treatment by developing a multimodal-based predictor that remains
valuable even in scenarios involving missing modalities and features. Our results emphasize the
study's importance on a global scale, highlighting its potential utility and contribution to addressing

clinical unmet needs in this area.
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5. CONCLUSION

In conclusion, our study presents the first multimodal classifier specifically designed to predict
responses to immune checkpoint inhibitors in colorectal cancer. The integration of diverse data
types has enhanced the robustness and reliability of our predictive model, which addresses the
critical limitations observed in previous single-modal studies. By demonstrating improved
performance across various metrics, our work significantly advances the field of colorectal cancer
treatment, offering new insights into the potential of multimodal approaches.

Our findings underscore the importance of developing predictive models that can function
effectively even in the presence of missing modalities and features, thereby meeting the clinical
need for accurate treatment response predictions. The ability of our model to achieve high accuracy
while addressing these common challenges emphasizes its utility in real-world settings, where data
completeness cannot always be guaranteed.

Despite acknowledging certain limitations, such as a relatively small sample size and data
imbalances, we have implemented strategies to mitigate these issues, including data up-sampling
and comprehensive validation methods. This ensures that our model remains resilient and
applicable to diverse patient populations.

Overall, this research not only fills a significant gap in the current understanding of colorectal
cancer treatment but also lays the groundwork for future studies aiming to refine and expand
multimodal predictive modeling in oncology. By leveraging this innovative approach, we hope to
contribute to the advancement of personalized treatment strategies that can improve outcomes for

patients with colorectal cancer.
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