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ABSTRACT 

 

Diagnosing mouse liver fibrosis using machine learning models  

based on T2-weighted MRI radiomics 

 

 

We aimed to determine whether machine learning models developed using radiomics features 

of T2-weighted MRI can evaluate fibrosis in a mouse model with liver injury. 

In this study, 6-week-old male C57BL/6 mice were fed a special diet of 3,5-diethoxycarbonyl-

1,4-dihydrocollidine (DDC) to induce cholestatic liver fibrosis. T2-weighted images were acquired 

using a 9.4 T MRI and images from the mice were further classified into the training set and test set 

to develop machine learning models. The training set consisted of 39 mice on the DDC diet for one 

to eleven weeks, with imaging conducted both before and after the feeding period. The test set 

consisted of 20 mice, with ten on a standard diet (feed without DDC) and ten on a two-week DDC 

diet. The characteristics of the T2-weighted images were analyzed using radiomics features. After 

MRI scanning, animals were sacrificed to establish a radiologic-pathologic correlation for liver 

fibrosis. Liver specimens were stained with Sirius Red, and the collagen proportional area (CPA, %) 

was measured to quantify liver fibrosis. Fibrosis grades were categorized as none, mild, or moderate 

based on the CPA. A commercial software package (Syngo.via Frontier, version 1.3.0; Siemens 

Healthineers, Munich, Germany) was used to develop multiple linear regression (MLR) and random 

forest (RF) models based on radiomics features. Model performance for evaluating the 

presence/absence of liver fibrosis was assessed using the area under the receiver operating 

characteristic curve (AUC). Additionally, correlations between the severity of liver fibrosis, assessed 

using CPA and fibrosis grade, and radiomics variables were analyzed using the Spearman and 

Kendall methods. 

39 mice (baseline MRI: fibrosis MRI = 22: 28) were included in the training set, and 20 mice 

(control MRI: fibrosis MRI = 8: 10) were included in the test set. From the T2-weighted images of 

the training set, 845 radiomics features were extracted and ten of the most relevant features were 

selected. The AUC for diagnosing liver fibrosis was 0.991 for the MLR model (sensitivity 97.5%, 

specificity 94.2%), and the average AUC was 0.945 (sensitivity 88.9%, specificity 85.5%) for the 
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RF model after 10-fold cross-validation. When MLR and RF models were applied to the test set, the 

AUC of the MLR model was 0.645 (sensitivity 90%, specificity 33.3%), and the AUC of the RF 

model was 0.817 (sensitivity 90%, specificity 41.7%). In both the training and test sets, the key 

variables from the MLR and RF models showed correlations with liver CPA and fibrosis grade. In 

the training set, the most significant ten variables of the RF model were all significantly correlated 

with fibrosis grade (all, P ≤ 0.001). 

In this study, the random forest model derived from the radiomics features of T2-weighted MRI 

was able to help diagnose liver fibrosis in a mouse model.  
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1. Introduction 

 

The importance of non-invasive imaging for evaluating liver fibrosis in patients with chronic 

liver disease has been increasingly recognized, particularly in pediatric patients.1,2 In children, 

radiation-free methods for diagnosing liver fibrosis include ultrasound, biopsy, and MRI. While 

measuring elasticity through ultrasound is well-established, its results are subject to variability 

depending on the ultrasound machine used and the skills of its operator. Thus, biopsy remains the 

gold standard for diagnosing liver fibrosis, despite its limitations, including sampling error, 

invasiveness, and the need for anesthesia in pediatric patients.3 MRI, specifically MR elastography 

(MRE), has shown high accuracy for predicting fibrosis and can be performed in pediatric 

patients.2,4-7 However, MRE requires specialized equipment that may not be available in every 

hospital. Also, while possible, performing MRE in infants and young children is challenging because 

mechanical drivers are not fit to their smaller bodies, making effective vibration transmission 

difficult. This challenge is further compounded by the rapid breathing of young children compared 

to adults.4  

Biliary atresia is a rare but critical cholestatic liver disease where early diagnosis and treatment 

are essential. In patients suffering from this condition, liver cholestasis can begin prenatally or 

perinatally, and progressive liver fibrosis is sometimes observed at birth. Making an accurate and 

timely diagnosis is critically important for these younger patients despite its difficulty since early 

diagnosis of liver fibrosis can aid treatment planning and improve prognosis. If liver fibrosis can be 

diagnosed and quantified with conventional T2-weighted imaging—through a basic anatomical 

sequence of MRI that is routinely performed to assess pediatric liver disease—it would significantly 

benefit patient care.  

Radiomics analyzes relationships between pixels in medical images such as CT, MRI, and PET 

to extract features ranging from first-order characteristics like entropy and skewness to higher-order 

features like texture analysis.8-10 It quantifies complex image information, reflecting the 

heterogeneity of pathological tissues, and applies it to diagnosis, prognosis prediction, and treatment 

planning. Radiomics encompasses morphological, histogram, texture, and higher-order features, 

leveraging data mining and artificial intelligence techniques like machine learning and deep learning 

to optimize clinical decision-support systems.11 By detecting subtle differences in shape, size, and 
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texture, it enhances the ability to classify diseases, determine disease presence and severity, and even 

predict critical clinical outcomes.12 By combining radiomics with machine learning, medical 

imaging is advancing towards more precise and data-driven diagnostics and prognostics.13-16 

Technological developments so far suggest that radiomics using conventional MRI sequence images 

can be a potential alternative to conventional methods of evaluating liver fibrosis in children. 

However, there are limited studies on using T2-weighted MRI radiomics to predict liver pathology 

in children.13,14,17-19  

We aimed to determine whether machine learning models derived using radiomics features of 

T2-weighted MRI can evaluate liver fibrosis in mice with cholestatic liver injury. If hepatic fibrosis 

can be evaluated using T2-weighted images in mice, these findings might be a springboard for the 

development of further diagnostic approaches using T2-weighted MRI for liver fibrosis in pediatric 

patients, as well as patients in hospitals without access to MRE equipment.  

 

2. Materials and methods 

 

2.1. Animal model 

All animal research was conducted in accordance with the Laboratory Animals Welfare Act, 

the Guide for the Care and Use of Laboratory Animals, and the Guidelines and Policies for 

Rodent Experimentation provided by the Institutional Animal Care and Use Committee of the 

Yonsei University Health System (IACUC, 2022-0131). Radiologists and veterinarians 

monitored the condition of the studied mice. 

The mouse model of this study consisted of mice that were orally administered a special 

rodent diet including 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) (DooYeol Biotech, 

Seocho-gu, Seoul, South Korea). The DDC model is a well-known in vivo model for cholestatic 

liver fibrosis caused by intraductal porphyrin plugs and obstruction of the intrahepatic bile 

ducts.20 The mice were allowed free access to food, and no other feed was provided apart from 

the special feed containing DDC. In the training set, 39 male C57BL/6 mice, aged 6 weeks, were 

included. The mice were housed three per cage and underwent a one-week acclimatization period 

before receiving the special feed or undergoing MRI imaging. Mice underwent baseline imaging 
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before starting the DDC diet. Following the baseline scans, they were fed the DDC diet for 

durations ranging from 1 to 11 weeks. The mice were either sacrificed after the initial MRI 

imaging, or if their conditions were stable, they continued to be fed the DDC diet followed by 

additional MRI imaging. In the test set, 20 male C57BL/6 mice, aged 6 weeks, were included. 

The mice were housed five per cage and underwent a one-week acclimatization period before 

receiving the special diet or undergoing MRI imaging. In the test set, ten mice in the control 

group underwent MRI after two weeks on a normal diet, while ten mice in the fibrosis group 

underwent MRI after two weeks on the DDC diet (Figure 1). 

 

 

Figure 1. Mouse model in the training and test sets. DDC: 3,5-diethoxycarbonyl-1,4-

dihydrocollidine 

 

2.2. MRI scanning 

All MRI experiments were performed with a 9.4 T Bruker BioSpec scanner (Ettlingen, 

Germany). Fasting was not conducted before MRI imaging. Mice were anesthetized using 1–2% 



４ 

 

isoflurane and their heart rates were monitored during the MRI scan. Their body temperatures 

were maintained by circulating warm water. The MRI scans were conducted contingent upon the 

physical condition of the mice, with scans excluded if respiratory rates were unstable (less than 

30 breaths per minute) following anesthesia. T2-weighted images were acquired using a 72 mm 

trans-receiver coil. Imaging parameters were as follows: matrix = 192×192, field of view = 

35×35 mm, 30 slices, slice thickness 0.5 mm, effective echo time = 22 ms, repetition time = 2000 

ms, and number of average = 2.   

 

2.3. Fibrosis grading  

Liver specimens were collected only if the mice could be dissected immediately after death 

to minimize tissue damage. Mice that died before or during MRI imaging were excluded. In the 

training set, liver tissues were obtained from 18 mice. In the test set, liver specimens were 

obtained from 18 mice. 

The liver specimens were fixed in a formaldehyde solution for over 24 hours, embedded in 

paraffin blocks, and stained with Sirius Red. Using image analysis software (Image J, version 

1.52a; National Institutes of Health), areas stained with Sirus Red were quantitatively 

assessed.21,22 The collagen proportional area (CPA) was defined as the percentage of the area 

stained for Sirus Red. Images at 20 × magnification were converted to red-green-blue (RGB) 

images using the same operator-dependent threshold to detect areas of stained collagen. The 

researcher determined the threshold at which fibrosis appeared as red on the converted image. 

Additionally, areas stained red but not representing fibrosis, such as bile stains, were manually 

removed. Tissue within 5 mm of the capsule and large blood vessels were avoided when drawing 

region of interest. The severity of liver fibrosis was expressed with the CPA and classified into 

three grades (no fibrosis in cases with CPA < 4.8%; mild fibrosis with CPA of 4.8–10.3%; and 

moderate fibrosis with CPA > 10.3%).23   

 

2.4. Segmentation 

Axial liver MRI images without motion artifacts were included in the study in both the 

training and test sets. The liver was manually segmented on T2-weighted MR images by a 

radiologist (with 7 years of experience) using a commercial software package (Syngo.via 

Frontier, version 1.3.0; Siemens Healthineers, Munich, Germany). The regions of interest (ROIs) 
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were drawn three times: first at the right liver, second at the left liver, and third at the whole liver, 

excluding the hepatic hilar vascular structures. The ROIs were selected from the largest available 

cross-section within the entire volume of axial images (Figure 2).  

 

Figure 2. Regions of interest drawn at the right liver, left liver, and whole liver on T2-

weighted axial images taken (A) at baseline and (B) after six weeks of the DDC diet. 

Pathology on the same day of imaging (B) confirmed moderate fibrosis. DDC: 3,5-

diethoxycarbonyl-1,4-dihydrocollidine 

 

2.5. Normalization 

All MR images were resampled with a spatial resolution of 1×1×1 mm3 using the linear 

interpolation method run by the software package for normalization before radiomics analysis.  

Equation for Normalized Intensity: f(x)= 
𝑠(𝑥−μx)

σx
 

In the above equation, f(x) is the normalized intensity, x is the original intensity, μx is the 

mean, and σx is the standard deviation of the image signal intensity of each drawn ROI. 

 

2.6. Extraction, selection, and modeling of radiomics features 

Radiomics models were derived using T2-weighted images from mice (Figure 3). 

Radiomics features were analyzed in a binary manner based on the presence or absence of liver 

fibrosis.  
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Figure 3. Development and training flow charts for the radiomics models. 

mRMR: minimum Redundancy Maximum Relevance, minAIC: minimum Akaike 

Information Criterion.  

 ········································································································  

A software package (syngo.via Frontier, version 1.3.0; Siemens Healthineers) was used for 

the radiomics analysis, which was developed based on the PyRadiomics library, version 3.0.1 

(https://github.com/Radiomics/pyradiomics) and scikit-learn machine learning library 

(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier. 

html). A total of 845 radiomics features—including 101 original and 744 wavelet-filtered— were 

extracted from the training set. A cluster map was generated through agglomerative hierarchical 

clustering to display associations between the found clusters of mice and radiomics features.  

The multiple linear regression (MLR) model was built by selecting the optimal subset using 

the minimum Akaike Information Criterion (minAIC) method. The random forest (RF) model 

was built utilizing decision-making trees with Gini Inpurity. Both the MLR model and the RF 
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model underwent feature selection before training, and to minimize feature redundancy, 

decorrelation was performed using classic minimum redundancy maximum relevance (mRMR) 

and R2 difference calculations (Figure 3). The 10-fold cross-validation was used to evaluate non-

linear relationships and avoid overfitting. The average area under the receiver operating 

characteristic curves (AUCs) of the MLR model and RF model were provided for the training 

set. Both the trained MLR and RF models were tested in the test set. 

 

2.7. Statistical analysis 

Statistical analyses were performed using SPSS software (version 25.0; IBM Corp., 

Armonk, NY, USA) and R software (R Foundation for Statistical Computing). A commercial 

software package (Syngo.via Frontier, version 1.3.0; Siemens Healthineers, Munich, Germany) 

was used to analyze univariate and multivariate analyses and to build MLR and RF models. The 

diagnostic performance of the MLR and RF models for the presence of liver fibrosis was assessed 

using the AUC, sensitivity, and specificity. The varying degrees of liver fibrosis were 

represented using the CPA or the three-stage fibrosis grading system, and the correlations 

between these representations and the significant radiomics features of the MLR and RF models 

were analyzed using Spearman analysis and Kendall analysis. Statistical analyses accounted for 

repeated measurements within individual subjects as three ROIs were measured from each 

mouse. The intraclass correlation coefficient (ICC) was calculated to assess the reproducibility 

of significant radiomics feature values derived from the MLR and RF models across the three 

ROIs. P values less than 0.05 were considered statistically significant. 

 

3. Results 

 

3.1. Mice MRI acquisition 

In the training set, 39 mice were initially enrolled in the experiment. Baseline imaging was 

successfully performed for 27 mice, while 12 did not undergo imaging due to unstable heart rates. 

Of the 27 baseline MRIs, 5 were excluded from analysis due to significant motion artifacts, 

resulting in 22 baseline MRIs being included in the final analysis. MRIs acquired after the DDC 
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diet were classified as the fibrosis group, yielding 30 MRIs. However, two of these were 

excluded due to severe motion artifacts, leaving 28 fibrosis MRIs for analysis. Among them, 

seven mice in good physical condition underwent MRI scans twice after beginning the DDC diet. 

In the test set, ten mice in the control group underwent MRI after two weeks on a normal 

diet, producing ten control MRIs. Two MRIs were excluded due to motion artifacts. Another ten 

mice in the fibrosis group underwent MRI after two weeks of the DDC diet, yielding ten fibrosis 

MRIs. 

 

3.2. Mice hepatic fibrosis results 

Pathology specimens were obtained from 18 mice (CPA median 8.0%, ranging from 5.5 to 

20.8%), including 11 mice in the mild fibrosis group (CPA median 7.2%, ranging from 5.5 to 

8.6%) and 7 mice in the moderate fibrosis group (CPA median 13.3%, ranging from 11.1 to 

20.8%) (Figure 4). Liver specimens were not collected from the control group. When analyzing 

pathologic correlations, the control group was classified as the no fibrosis group. 

 

 



９ 

 

Figure 4. Axial T2-weighted images from (A) a mouse after three weeks of the DDC 

diet and (C) a mouse after nine weeks of the DDC diet. Liver specimens ([B] for mouse 

[A] image and [D] for mouse [C] image) were obtained on the same day of MRI and stained 

with Sirius Red. The CPA was 7.2% in (B), which graded the severity of liver fibrosis as 

mild and 17.5% in (D), which graded it as moderate. DDC: 3,5-diethoxycarbonyl-1,4-

dihydrocollidine, CPA: collagen proportional area 

 

In the test set, pathology specimens were obtained from all 18 mice, including 8 in the 

control group (CPA median 3.0%, ranging from 0.3% to 4.3%), which were all classified as the 

no fibrosis group and ten in the fibrosis group (CPA median 9.0%, ranging from 6.2% to 14.6%). 

In the fibrosis group, eight were in the mild fibrosis group (CAP median 8.2%, ranging from 6.2% 

to 10.3%), and two were in the moderate fibrosis group (CPA median 12.9%, ranging from 11.2% 

to 14.6%).  

 

3.3.  Development and testing of the radiomics model for the presence of 

hepatic fibrosis 

A total of 845 radiomics features, including 101 original and 744 wavelet-filtered, were 

extracted from T2-weighted images in the training set (Figure 5).  
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Figure 5. Cluster map from agglomerative hierarchical clustering to visualize the 

associations between the found clusters of subjects and radiomics features regarding 

liver fibrosis. 

 

The top 10 most relevant features were selected, including wavelet- HLH_ 

GLRLM_ShortRunEmphasis, wavelet- LLL_firstorder_Minimum, LLH_firstorder_Entropy, 

wavelet-HLH_ GLSZM_HighGrayLevelZoneEmphasis, wavelet-HLL_firstorder_Mean, 

wavelet-LLL_ GLCM_Idn, wavelet-LHL_glcm_MCC, wavelet-

HHH_glszm_SmallAreaHighGrayLevelEmphasis, wavelet-HLH_glcm_ClusterProminence, 

and wavelet-LHH_glszm_GrayLevelNonUniformityNormalized. The heatmap of these 

radiomics features showed differences between the baseline and fibrosis groups (Figure 6). 
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Figure 6. Heatmap of the ten most important radiomics features from T2-Weighted 

MRI for evaluating the presence of liver fibrosis.  

 

The best subset among these radiomics features was identified using the minAIC method 

to build the MLR model. The MLR model includes wavelet-HLH_glrlm_ShortRunEmphasis 

(odds ratios [OR] 749.074, 95% confidence interval [CI] 32.857- 17077.623, P < 0.001), 

wavelet-LLL_firstorder_Minimum (OR 27.12, 95% CI 3.094-237.737, P < 0.001), wavelet-

LLH_firstorder_Entropy (OR 2.561, 95% CI 1.077-6.092, P = 0.033), wavelet-

HLH_glszm_HighGrayLevelZoneEmphasis (OR 1.974, 95% CI 0.703-5.539, P = 0.197),  

wavelet-HLL_firstorder_Mean (OR 3.632, 95% CI 0.981-13.443, P = 0.053), and wavelet-

LLL_glcm_Idn (OR 1.533, 95% CI 0.552-4.261, P = 0.412). The MLR model showed excellent 

diagnostic performance for differentiating the presence and absence of liver fibrosis (AUC 0.991, 

sensitivity 97.5%, specificity 94.2%). Machine learning using classic mRMR with R2 difference, 

followed by decorrelation to reduce feature redundancy, identified the eight most important 

random forest features for distinguishing the presence and absence of fibrosis from all the 

extracted radiomics features. These eight features were wavelet-HLH_glrlm_ShortRunEmphasis, 

wavelet-HLH_glcm_ClusterTendency, wavelet-HLH_glrlm_ShortRunLowGrayLevelEmphasis, 

wavelet-HLH_glcm_ClusterProminence, wavelet-LLL_firstorder_Minimum, wavelet-

HHH_glcm_DifferenceEntropy, wavelet-LLL_glcm_Correlation, and wavelet-
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HLL_firstorder_Mean. The average AUC of the RF model showed excellent diagnostic 

performance for differentiating the presence and absence of liver fibrosis (AUC 0.945, sensitivity 

88.9%, specificity 85.5%)   

When the MLR model and RF model were applied to the test set, the MLR model showed 

poor performance (AUC 0.645, sensitivity 90%, specificity 33.3%), but the RF model showed 

good performance (AUC 0.817, sensitivity 90%, specificity 41.7%) (Figure 7 and Figure 8).  
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Figure 7. Receiver operating characteristics curves of the MLR and RF models from 

10-fold cross-validation to differentiate the presence and absence of liver fibrosis in 

the (A) training set and (B) test set. MLR: multiple linear regression, RF: random forest.  

 

Figure 8. Sensitivity and specificity of the (A) MLR model and (B) RF model in the 

training set and sensitivity and specificity of the (C) MLR model and (D) RF model in 

test set.  

MLR: multiple linear regression, RF: random forest.  

 

3.4. Radiomics model and pathologic correlation of liver fibrosis 

The radiomics features selected as the best subsets in the MLR and RF models showed 

correlations with liver fibrosis grades in the training set (Table 1).  
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Table 1. Correlation between radiomics features selected in the MLR and RF Models 

and fibrosis grades of mice liver pathology in the training set 

MLR: multiple linear regression, RF: random forest 

 

The radiomics features selected as the best subset in the MLR and RF models correlated 

with varying degrees of liver fibrosis, including the CPA and liver fibrosis grade in the test set 

(Table 2).   

 

 

 

Model Correlation 

analysis 

Variables Coefficient 

(tau) 

P-value 

MLR 

model 

Kendall 

analysis for 

fibrosis 

grades 

wavelet-

HLH_glrlm_ShortRunEmphasis  

-0.689 <0.001 

 wavelet-HLL_firstorder_Mean  

 

-0.338 

 

<0.001 

wavelet-LLL_firstorder_Minimum 0.374 <0.001 

RF 

model 

Kendall 

analysis for 

fibrosis 

grades 

wavelet-

HHH_glcm_DifferenceEntropy 

0.474 <0.001 

wavelet-

HLH_glcm_ClusterProminence 

0.669 <0.001 

wavelet-

HLH_glcm_ClusterTendency 

0.669 <0.001 

wavelet-

HLH_glrlm_ShortRunEmphasis 

-0.689 <0.001 

 wavelet-

HLH_glrlm_ShortRunLowGrayLev

elEmphasis 

-0.672 <0.001 

wavelet-HLL_firstorder_Mean -0.338 <0.001 

 

wavelet-LLL_firstorder_Minimum -0.374 <0.001 

wavelet-LLL_glcm_Correlation -0.235 0.001 
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Table 2. Correlations between radiomics features selected in the MLR and RF Models 

and the CPA and fibrosis grades of mice liver pathology in the test set 

Model Correlation 

analysis 

Variables Coefficient 

(rho) 

Coefficient 

(tau) 

P-

value 

MLR 

model 

Spearman 

analysis for 

CPA 

wavelet-

HLH_glrlm_ShortRun

Emphasis  

0.505  <0.001 

  wavelet-

HLH_glszm_HighGra

yLevelZoneEmphasis 

0.385  0.004 

  wavelet-

LLH_firstorder_Entro

py  

0.348  0.010 

  wavelet-

LLL_firstorder_Minim

um 

0.387  0.004 

 Kendall 

analysis for 

fibrosis 

grades 

wavelet-

HLH_glrlm_ShortRun

Emphasis  

 0.462 <0.001 

  wavelet-

HLH_glszm_HighGra

yLevelZoneEmphasis 

 0.339 0.002 

  wavelet-

LLH_firstorder_Entro

py  

 0.218 0.046 

  wavelet-

LLL_firstorder_Minim

um 

 0.382 <0.001 

RF 

model 

Spearman 

analysis for 

CPA 

wavelet-

HLH_glcm_ClusterPro

minence 

0.497  <0.001 

  wavelet-

HLH_glcm_ClusterTe

ndency 

0.535  <0.001 

  wavelet-

HLH_glrlm_ShortRun

Emphasis 

0.505  <0.001 

  wavelet-

HLH_glrlm_ShortRun

LowGrayLevelEmphas

-0.312  0.022 
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is 

  wavelet-

LLL_firstorder_Minim

um 

0.387  0.004 

 Kendall 

analysis for 

fibrosis 

grades 

wavelet-

HLH_glcm_ClusterPro

minence 

 0.448 <0.001 

  wavelet-

HLH_glcm_ClusterTe

ndency 

 0.471 <0.001 

  wavelet-

HLH_glrlm_ShortRun

Emphasis  

 0.462 <0.001 

  wavelet-

LLL_firstorder_Minim

um 

 0.382 <0.001 

MLR: multiple linear regression, RF: random forest, CPA: collagen proportional area 

 

3.4.1 Correlation between MLR model variables and mice liver fibrosis 

grade in the training set 

When performing a Kendall analysis to assess correlations between fibrosis grades and 

the variables in the best subset of the MLR model, wavelet-HLH_glrlm_ShortRunEmphasis, 

wavelet-HLL_firstorder_Mean, and wavelet-LLL_firstorder_Minimum, (P < 0.001 for all) 

showed significant correlation (Table 1 and Figure 9). 
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Figure 9. Kendall correlation analysis between liver fibrosis grades and variables in 

the best subset of the MLR model in the training set.  

MLR: multiple linear regression. A: wavelet-HLH_glrlm_ShortRunEmphasis, B: wavelet-

HLH_glszm_HighGrayLevelZoneEmphasis, C: wavelet-HLL_firstorder_Mean, D: 

wavelet-LLH_firstorder_Entropy, E: wavelet-LLL_firstorder_Minimum, F: wavelet-

LLL_glcm_Idn 
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3.4.2. Correlation between RF model variables and mice liver fibrosis 

grade in the training set 

When performing a Kendall correlation analysis between fibrosis grades and the variables 

in the best subset of the RF model, all eight important variables showed significant correlations, 

including wavelet-HHH_glcm_DifferenceEntropy (P < 0.001), wavelet-

HLH_glcm_ClusterProminence (P < 0.001), wavelet-HLH_glcm_ClusterTendency (P < 

0.001), wavelet-HLH_glrlm_ShortRunEmphasis (P < 0.001), wavelet-

HLH_glrlm_ShortRunLowGrayLevelEmphasis (P < 0.001), wavelet-HLL_firstorder_Mean 

(P < 0.001) , wavelet-LLL_firstorder_Minimum (P < 0.001), and wavelet-

LLL_glcm_Correlation (P = 0.001) (Table1 and Figure 10). 
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Figure 10. Kendall correlation analysis between liver fibrosis grades and variables in 

the best subset of the RF model in the training set.  

RF: random forest. A: wavelet-HHH_glcm_DifferenceEntropy, B: wavelet-

HLH_glcm_ClusterProminence, C: wavelet-HLH_glcm_ClusterTendency, D: wavelet-

HLH_glrlm_ShortRunEmphasis, E: wavelet-

HLH_glrlm_ShortRunLowGrayLevelEmphasis, F: wavelet-HLL_firstorder_Mean, G: 

wavelet-LLL_firstorder_Minimum, H: wavelet-LLL_glcm_Correlation 
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3.4.3. Correlation between MLR model variables and the CPA of mice 

liver pathology and liver fibrosis grades in the test set 

When performing a Spearman analysis to assess correlations between the CPA of mice 

liver pathology and the variables in the best subset of the MLR model, wavelet-

HLH_glrlm_ShortRunEmphasis (P < 0.001), wavelet-

HLH_glszm_HighGrayLevelZoneEmphasis (P = 0.004), wavelet-LLH_firstorder_Entropy (P 

= 0.010), and wavelet-LLL_firstorder_Minimum (P = 0.004) showed significant correlation 

(Table 2). The Kendall correlation analysis between fibrosis grades and the variables in the 

best subset of the MLR model showed correlations in wavelet-HLH_glrlm_ShortRunEmphasis 

(P < 0.001), wavelet-HLH_glszm_HighGrayLevelZoneEmphasis (P = 0.002), wavelet-

LLH_firstorder_Entropy (P =0.046), and wavelet-LLL_firstorder_Minimum (P < 0.001) 

(Table 2, Figure11).   
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Figure 11. Kendall correlation analysis between liver fibrosis grades and variables in 

the best subset of the MLR model in the test set.  

MLR: multiple linear regression. A: wavelet-HLH_glrlm_ShortRunEmphasis, B: wavelet-

HLH_glszm_HighGrayLevelZoneEmphasis, C: wavelet-HLL_firstorder_Mean, D: 

wavelet-LLH_firstorder_Entropy, E: wavelet-LLL_firstorder_Minimum, F: wavelet-

LLL_glcm_Idn 
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3.4.4. Correlations between RF model variables and the CPA of mice 

liver pathology and liver fibrosis grades in the test set 

When performing a Spearman analysis to assess correlations between the CPA of mice 

liver pathology and the variables in the best subset of the RF model, wavelet-

HLH_glcm_ClusterProminence (P < 0.001), wavelet-HLH_glcm_ClusterTendency (P < 

0.001), wavelet-HLH_glrlm_ShortRunEmphasis (P < 0.001), wavelet-

HLH_glrlm_ShortRunLowGrayLevelEmphasis (P = 0.022), and wavelet-

LLL_firstorder_Minimum (P = 0.004) showed significant correlation (Table 2). Additionally, 

the Kendall correlation analysis between fibrosis grades and four of the important variables in 

the best subset of the RF model showed significant correlations including wavelet-

HLH_glcm_ClusterProminence (P < 0.001), wavelet-HLH_glcm_ClusterTendency (P < 

0.001), wavelet-HLH_glrlm_ShortRunEmphasis (P < 0.001), and wavelet-

LLL_firstorder_Minimum (P < 0.001) (Table 2, Figure 12). 
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Figure 12. Kendall correlation analysis between liver fibrosis grades and variables in 

the best subset of the RF model in test set.  

RF: random forest. A: wavelet-HHH_glcm_DifferenceEntropy, B: wavelet-

HLH_glcm_ClusterProminence, C: wavelet-HLH_glcm_ClusterTendency, D: wavelet-

HLH_glrlm_ShortRunEmphasis, E: wavelet-

HLH_glrlm_ShortRunLowGrayLevelEmphasis, F: wavelet-HLL_firstorder_Mean, G: 

wavelet-LLL_firstorder_Minimum, H: wavelet-LLL_glcm_Correlation 
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3.5. Intraclass correlation analysis of radiomics features for the right, left, 

and whole liver ROIs 

In the MLR model, the average ICC of the important radiomics features was fair (0.56). 

HLH_glrlm_ShortRunEmphasis showed excellent ICC (0.88), LLH _firstorder_Entropy and 

LLL _firstorder_Minimum showed good ICC (0.73 and 0.66, respectively), LLL_glcm _Idn 

showed fair ICC (0.50), and HLL _firstorder_Mean and HLH_glszm 

_HighGrayLevelZoneEmphasis showed poor ICC (0.29 and 0.28, respectively).  

In the RF model, the average ICC of the important radiomics features was good (0.72). 

Wavelet-HLH_glcm_ClusterProminence and wavelet-HLH_glcm_ClusterTendency showed 

excellent ICC (0.90), wavelet-HLH_glrlm_ShortRunEmphasis and wavelet-

HLH_glrlm_ShortRunLowGrayLevelEmphasis showed excellent ICC (0.88), wavelet-

HHH_glcm_DifferenceEntropy and wavelet-LLH_firstorder_Minimum showed good ICC 

(0.65), wavelet-LLL_glcm_Correlation showed fair ICC (0.60), and wavelet-

HLL_firstorder_Mean showed poor ICC (0.29). 

 

4. Discussion 

In our study, we developed and tested machine learning models, including the MLR and RF 

models, based on radiomics features extracted from T2-weighted images of mice to diagnose 

cholestatic liver fibrosis. Both models demonstrated excellent performance in differentiating the 

presence and absence of liver fibrosis in the training set. For the test set, only the RF model showed 

good diagnostic performance for liver fibrosis. Additionally, key radiomics features from the MLR 

and RF models showed significant correlations with liver fibrosis grades in the training set, and both 

the CPA and liver fibrosis grades in the test set.  

We selected 6-week-old male C57BL/6 mice as our experimental subjects, as their small liver 

size and rapid breathing rate24 closely reflect those of neonates. The DDC diet was chosen to induce 

liver fibrosis because prolonged DDC feeding in mice replicates key histopathological features of 

human cholestatic liver fibrosis, including the bile duct remodeling that leads to ductular reactions, 

periductular fibrosis, and infiltration of inflammatory cells.25 This DDC model effectively mirrors 

the liver fibrosis observed in cholestatic conditions, making it valuable for studying fibrosis in a 

non-invasive manner.  
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Although the pathophysiology of mice may not exactly match that of neonatal liver disease 

such as biliary atresia, we believed our mouse model could appropriately represent neonatal 

cholestatic liver fibrosis and any findings from this model could be extended to research for the 

pediatric population. 

Radiomics involves post-image processing to extract features from radiological images and 

transform the data using artificial intelligence techniques, such as machine learning, to enhance 

predictive accuracy.11,26 It is based on the premise that pathophysiological tissues and organs hold 

substantial information that can be quantified and distinguished from normal tissues and organs. 

Radiomics considers texture as the spatial arrangement of predefined voxels, enabling the 

interpretation of complex image features.27 Mathematical analysis of these characteristic 

arrangements helps distinguish normal tissues from abnormal tissues. The heterogeneity of the 

selected features mirrors the heterogeneity of histopathological changes.  

Our study suggests that MLR and RF models developed from MRI radiomics features may 

have the potential to diagnose liver fibrosis in humans. This finding aligns with that of previously 

published papers showing that radiomics and machine learning based on MRI images can diagnose 

liver fibrosis in older patients.8 In adult studies, radiomics and machine learning approaches that 

incorporate T2-weighted images28, T1-weighted images29, R2* mapping30, and gadoxetic acid-

enhanced MRI14,29,31 have been explored to diagnose liver fibrosis. In adolescent studies, machine 

learning models that incorporate radiomics data from T2-weighted images, along with liver volume 

and liver chemical shift-encoded fat fraction, have shown promise when diagnosing liver fibrosis.13 

Moreover, advances in artificial intelligence have enabled liver segmentation using a convolutional 

neural network pre-trained on the ImageNet archive and deep transfer learning to detect liver 

cirrhosis with expert-level accuracy in adult patients.32 However, studies that focus on infants and 

young children are rare and far between. One of the few studies published indicated that a radiomic-

based nomogram derived from T1-weighted and T2-weighted images could aid in diagnosing liver 

fibrosis in young children, including infants.18 One animal study compared the performance of 

individual radiomic models based on multiparametric MRI sequence and showed good performance 

for predicting early liver fibrosis.33 Our study used T2-weighted images as it is routinely performed 

in young patients and is less susceptible to motion artifacts due to its higher sensitivity to magnetic 

field changes.19,34 The radiomics features gained from T2-weighted images could differentiate liver 

fibrosis based on fine-grained details.  ·····································································  
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The most important features selected from the RF model were wavelet-transformed features, 

which effectively capture multi-scale texture and intensity patterns by separating high-frequency 

and low-frequency components of images.10,27,35 The HLH and HHH components primarily focus 

on fine textures and high-frequency details, essential for identifying subtle patterns and intricate 

textures. Meanwhile, the LLL components highlight broader, low-frequency structures crucial for 

understanding the overall composition and intensity distribution within an image. The features 

selected in both MLR and RF models—wavelet-HLH_glrlm_ShortRunEmphasis, wavelet-

LLL_firstorder_Minimum, and wavelet-HLH_glcm_ClusterProminence—indicate that both models 

rely on capturing fine texture details and broader structural characteristics. Wavelet-

HLH_glrlm_ShortRunEmphasis and wavelet-HLH_glcm_ClusterProminence suggest sensitivity to 

detailed textures and clustering patterns, while wavelet-LLL_firstorder_Minimum reflects the 

importance of low-intensity regions in the overall image structure. The significance of these features 

makes intuitive sense because the normal liver shows relatively homogenous and hypointense signal 

intensity, and the liver starts to show heterogenous and hyperintense signal intensity as fibrosis 

progresses on T2-weighted images. The model’s reliance on these diverse features suggests it is 

well-equipped to capture even small differences in data, leading to more accurate evaluation of liver 

fibrosis. In this study, the RF model outperformed the MLR model. This is probably because the RF 

model consists of multiple decision trees trained on different subsets of data or feature subspaces, 

with each tree built using independently sampled random vectors.36 By aggregating the predictions 

of these diverse trees, the RF model enhances generalization and reduces overfitting, leading to 

improved performance. 

Our findings show that key radiomics features from MLR and RF models correlate with varying 

degrees of liver fibrosis and seem promising as diagnostic factors. The key features that were 

significantly correlated to the CPA of mice liver pathology and fibrosis grades were all wavelet 

features. Wavelet filtering methods involve decomposing the original image to offer benefits such 

as adjustable spatial resolution for optimal texture representation, enhanced texture visibility, and 

flexibility in choosing wavelet functions.27 Previous research has also shown that texture-based 

classification of liver fibrosis using MRI is feasible.28 Recent studies showed that incorporating 

clinical and radiomic features led to better diagnostic performance for liver stiffness than radiomics 

features alone.9,13,37 Further studies that refine models by combining radiomics and clinical data to 

diagnose liver fibrosis grade could possibly decrease the need for MRE which needs additional exam 
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time and specialized equipment.  

This study has several limitations. First, the small sample size used to develop the machine 

learning model limits its generalizability. Due to ethical and practical constraints in animal 

experiments, we used a minimum number of subjects and analyzed three ROIs per mouse to 

maximize the available data. However, this approach may cause overfitting and statistical 

dependence. To mitigate these issues, we applied methods such as mRMR, R2 difference, 

decorrelation, and 10-fold cross-validation. Second, a single radiologist performed ROI 

segmentation, which can raise concerns about reproducibility. To address this, we analyzed ROIs 

from multiple liver regions (right, left, and whole liver), and the ICC of key radiomics features from 

MLR and RF models showed fair to good correlation. Furthermore, our models did not directly 

diagnose the CPA or liver fibrosis grade but instead explored correlations between radiomics features 

and these parameters, which limits the direct clinical applicability of our results. The small number 

of liver pathology samples also restricted the development and validation of a predictive model. We 

evaluated the performance of both the MLR and RF models, but we did not analyze the statistical 

significance of the difference in their performance. Nevertheless, our findings suggest that T2-

weighted MRI-based radiomics features from MLR and RF models have the potential to differentiate 

fibrosis severity. Future studies with larger datasets and methods that facilitate direct application to 

human patients including neonates, are needed to validate our findings and explore the actual clinical 

utility of the two machine learning models. 

 

5. Conclusion 

In conclusion, machine learning models based on radiomics features from T2-weighted images 

were trained and tested in a mouse liver fibrosis model. The RF model showed excellent diagnostic 

performance for diagnosing liver fibrosis in both training and test sets of our animal study. Key 

radiomics features showed significant correlations with the CPA and liver fibrosis grade. Therefore, 

our RF model shows potential for diagnosing liver fibrosis in pediatric patients, albeit with further 

research.  

––––– 
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Appendices 

1. Radiomics Feature Abbreviations 

Table 3. Radiomics feature abbreviations 

Abbreviation Full Term 

wavelet- HLH_ 

glrlm_ShortRunEmphasis 

wavelet- High-Low-High_ Gray 

Level Run Length 

Matrix_ShortRunEmphasis 

wavelet- LLL_firstorder_Minimum wavelet- Low-Low-

Low_firstorder_Minimum 

wavelet- LLH_firstorder_Entropy wavelet- Low-Low-

High_firstorder_Entropy 

wavelet-HLH_ 

glszm_HighGrayLevelZoneEmphasis 

wavelet-High-Low-High_ Gray 

Level Size Zone 

Matrix_HighGrayLevelZoneEmpha

sis 

wavelet-HLL_firstorder_Mean wavelet-High-Low-

Low_firstorder_Mean 

wavelet-LLL_ glcm_Idn wavelet-Low-Low-Low_ Gray 

Level Co-occurrence 

Matrix_Inverse Difference 

Normalized 

wavelet-LHL_glcm_MCC wavelet-Low-High-Low_Gray 

Level Co-occurrence 

Matrix_Maximal Correlation 

Coefficient 

wavelet-

HHH_glszm_SmallAreaHighGrayLevel

wavelet-High-High-High_Gray 

Level Size Zone 
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Emphasis Matrix_SmallAreaHighGrayLevelE

mphasis 

wavelet-HLH_glcm_ClusterProminence wavelet-High-Low-High_Gray 

Level Co-occurrence 

Matrix_ClusterProminence 

wavelet-

LHH_glszm_GrayLevelNonUniformity

Normalized 

wavelet-Low-High-High_Gray 

Level Size Zone 

Matrix_GrayLevelNonUniformityN

ormalized 

wavelet-HLH_glcm_ClusterTendency wavelet-High-Low-High_Gray 

Level Co-occurrence 

Matrix_ClusterTendency 

wavelet-

HLH_glrlm_ShortRunLowGrayLevelE

mphasis 

wavelet-High-Low-High_Gray 

Level Run Length 

Matrix_ShortRunLowGrayLevelEm

phasis 

wavelet-HHH_glcm_DifferenceEntropy wavelet-High-High-High_Gray 

Level Co-occurrence 

Matrix_DifferenceEntropy 

wavelet-LLL_glcm_Correlation wavelet-Low-Low-Low_Gray 

Level Co-occurrence 

Matrix_Correlation 
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Abstract in Korean 

 

마우스 간 섬유화를 T2-weighted MRI Radiomics기반으로 한 

머신러닝 모델로 진단하는 방법에 대한 연구 

 

 

 본 연구에서 T2-강조 영상에서 얻은 방사선 유래 특징(radiomics feature)들을 

대상으로 개발된 머신러닝 모델이 간 손상 마우스 모델에서 다양한 정도의 섬유증을 

평가할 수 있는지 연구하고자 했습니다.  

 본 연구에서, 6주령의 수컷 C57BL/6 마우스에게 3,5-디에톡시카보닐-1,4-

디히드로콜리딘(DDC)이 포함된 특수 사료를 먹여 간의 섬유화를 유발하였습니다. T2-

강조영상은 9.4T MRI에서 촬영하였습니다. 훈련세트는 DDC 사료를 1주에서 11주간 

급여받은 39마리 마우스의 간 이미지가 포함되었고, DDC 사료 급여 전과 후에 영상은 

촬영하였습니다. 테스트 세트는 일반 사료를 급여받은 10마리와 DDC 사료를 2주간 

급여받은 10마리, 총 20마리 마우스로 구성되었습니다. 모든 MRI 사진은 방사선 유래 

특징들로 분석되었습니다. 방사선 병리학적 상관관계를 확인하고자, 마우스들은 

MRI촬영 후 희생하여 간조직 샘플을 얻었습니다. Sirus red 염색을 통해 콜라겐 면적 

비율을 측정하여 간 섬유증을 정량화하였습니다. 섬유증 등급은 콜라겐 면적 비율에 

따라 없음, 경도, 중증도로 분류되었습니다.  

 방사선 유래 특징 분석 및 머신러닝 모델 개발에는 상용 소프트웨어 (Syngo.via 

Frontier, version 1.3.0; Siemens Healthineers, Munich, Germany)를 사용했으며, 

다중 선형 회귀 (Multiple linear regression MLR)과 랜덤 포레스트 (Random Forest, 

RF) 모델이 개발되었습니다. 간 섬유증 유무 평가에 대한 모델 성능은 수신자 조작 

특성 곡선 (Receiver Operating Characteristic, ROC)을 통하여 평가되었습니다. 

다양한 섬유증 정도는 콜라겐 면적비율 또는 섬유증 등급으로 표현하여, radiomics 

변수들과의 상관관계를 Spearman 및 Kendall 방법으로 분석했습니다.  

 훈련 세트에는 총 50개의 MRI (기저 데이터: 섬유증 = 22:28)이 포함되었으며, 
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테스트 세트에는 총 18개의 MRI (대조군: 섬유증: 8:10)이 포함되었고, 총 845개의 

방사선 유래 특징이 추출되었습니다. 이 중 가장 관련성 높은 10개의 특징이 

선택되었습니다. 간 섬유증 진단에 대한 곡선 아래 면적(Area under the cureve, 

AUC)은 MLR 모델에서 0.991(민감도 97.5%, 특이도 94.2%)였으며, RF 모델에서 10-겹 

교차 검증 평균 AUC는 0.945(민감도 88.9%, 특이도 85.5%)였습니다. 테스트 세트에 

적용했을 때, MLR 모델의 AUC는 0.645(민감도 90%, 특이도 33.3%)였으며, RF 모델의 

AUC는 0.817(민감도 90%, 특이도 41.7%)로 나타났습니다. MLR 및 RF 모델에서의 주요 

방사선 유래 특징은 훈련 세트에서는 섬유증 등급과 상관관계를 보였고, 

테스트세트에서는 간 CPA 및 섬유증 등급과 상관관계를 보였으며, 특히 RF 모델의 

모든 변수가 섬유증 등급과 유의미한 상관관계를 보였습니다(모두 P ≤ 0.001). 

 T2-가중 MRI의 방사선 유래 특징으로부터 개발된 RF 모델은 마우스 모델에서 간 

섬유증을 진단하고 분류하는데 유용할 수 있을 것입니다.  
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핵심되는 말 : 간 섬유화, 자기공명영상, 방사선유래특징, 마우스  


