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ABSTRACT

Diagnosing mouse liver fibrosis using machine learning models

based on T2-weighted MRI radiomics

We aimed to determine whether machine learning models developed using radiomics features
of T2-weighted MRI can evaluate fibrosis in a mouse model with liver injury.

In this study, 6-week-old male C57BL/6 mice were fed a special diet of 3,5-diethoxycarbonyl-
1,4-dihydrocollidine (DDC) to induce cholestatic liver fibrosis. T2-weighted images were acquired
using a 9.4 T MRI and images from the mice were further classified into the training set and test set
to develop machine learning models. The training set consisted of 39 mice on the DDC diet for one
to eleven weeks, with imaging conducted both before and after the feeding period. The test set
consisted of 20 mice, with ten on a standard diet (feed without DDC) and ten on a two-week DDC
diet. The characteristics of the T2-weighted images were analyzed using radiomics features. After
MRI scanning, animals were sacrificed to establish a radiologic-pathologic correlation for liver
fibrosis. Liver specimens were stained with Sirius Red, and the collagen proportional area (CPA, %)
was measured to quantify liver fibrosis. Fibrosis grades were categorized as none, mild, or moderate
based on the CPA. A commercial software package (Syngo.via Frontier, version 1.3.0; Siemens
Healthineers, Munich, Germany) was used to develop multiple linear regression (MLR) and random
forest (RF) models based on radiomics features. Model performance for evaluating the
presence/absence of liver fibrosis was assessed using the area under the receiver operating
characteristic curve (AUC). Additionally, correlations between the severity of liver fibrosis, assessed
using CPA and fibrosis grade, and radiomics variables were analyzed using the Spearman and
Kendall methods.

39 mice (baseline MRI: fibrosis MRI = 22: 28) were included in the training set, and 20 mice
(control MRI: fibrosis MRI = 8: 10) were included in the test set. From the T2-weighted images of
the training set, 845 radiomics features were extracted and ten of the most relevant features were
selected. The AUC for diagnosing liver fibrosis was 0.991 for the MLR model (sensitivity 97.5%,
specificity 94.2%), and the average AUC was 0.945 (sensitivity 88.9%, specificity 85.5%) for the



RF model after 10-fold cross-validation. When MLR and RF models were applied to the test set, the
AUC of the MLR model was 0.645 (sensitivity 90%, specificity 33.3%), and the AUC of the RF
model was 0.817 (sensitivity 90%, specificity 41.7%). In both the training and test sets, the key
variables from the MLR and RF models showed correlations with liver CPA and fibrosis grade. In

the training set, the most significant ten variables of the RF model were all significantly correlated
with fibrosis grade (all, P < 0.001).

In this study, the random forest model derived from the radiomics features of T2-weighted MRI

was able to help diagnose liver fibrosis in a mouse model.

Key words : liver fibrosis, magnetic resonance imaging, radiomics, mice
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1. Introduction

The importance of non-invasive imaging for evaluating liver fibrosis in patients with chronic
liver disease has been increasingly recognized, particularly in pediatric patients."? In children,
radiation-free methods for diagnosing liver fibrosis include ultrasound, biopsy, and MRI. While
measuring elasticity through ultrasound is well-established, its results are subject to variability
depending on the ultrasound machine used and the skills of its operator. Thus, biopsy remains the
gold standard for diagnosing liver fibrosis, despite its limitations, including sampling error,
invasiveness, and the need for anesthesia in pediatric patients.> MRI, specifically MR elastography
(MRE), has shown high accuracy for predicting fibrosis and can be performed in pediatric
patients.>*” However, MRE requires specialized equipment that may not be available in every
hospital. Also, while possible, performing MRE in infants and young children is challenging because
mechanical drivers are not fit to their smaller bodies, making effective vibration transmission
difficult. This challenge is further compounded by the rapid breathing of young children compared
to adults.*

Biliary atresia is a rare but critical cholestatic liver disease where early diagnosis and treatment
are essential. In patients suffering from this condition, liver cholestasis can begin prenatally or
perinatally, and progressive liver fibrosis is sometimes observed at birth. Making an accurate and
timely diagnosis is critically important for these younger patients despite its difficulty since early
diagnosis of liver fibrosis can aid treatment planning and improve prognosis. If liver fibrosis can be
diagnosed and quantified with conventional T2-weighted imaging—through a basic anatomical
sequence of MRI that is routinely performed to assess pediatric liver disease—it would significantly
benefit patient care.

Radiomics analyzes relationships between pixels in medical images such as CT, MRI, and PET
to extract features ranging from first-order characteristics like entropy and skewness to higher-order
features like texture analysis.®!® It quantifies complex image information, reflecting the
heterogeneity of pathological tissues, and applies it to diagnosis, prognosis prediction, and treatment
planning. Radiomics encompasses morphological, histogram, texture, and higher-order features,
leveraging data mining and artificial intelligence techniques like machine learning and deep learning

to optimize clinical decision-support systems.!! By detecting subtle differences in shape, size, and



texture, it enhances the ability to classify diseases, determine disease presence and severity, and even
predict critical clinical outcomes.'> By combining radiomics with machine learning, medical
imaging is advancing towards more precise and data-driven diagnostics and prognostics.'3!
Technological developments so far suggest that radiomics using conventional MRI sequence images
can be a potential alternative to conventional methods of evaluating liver fibrosis in children.
However, there are limited studies on using T2-weighted MRI radiomics to predict liver pathology
in children.!31417-19

We aimed to determine whether machine learning models derived using radiomics features of
T2-weighted MRI can evaluate liver fibrosis in mice with cholestatic liver injury. If hepatic fibrosis
can be evaluated using T2-weighted images in mice, these findings might be a springboard for the
development of further diagnostic approaches using T2-weighted MRI for liver fibrosis in pediatric

patients, as well as patients in hospitals without access to MRE equipment.

2. Materials and methods

2.1. Animal model

All animal research was conducted in accordance with the Laboratory Animals Welfare Act,
the Guide for the Care and Use of Laboratory Animals, and the Guidelines and Policies for
Rodent Experimentation provided by the Institutional Animal Care and Use Committee of the
Yonsei University Health System (IACUC, 2022-0131). Radiologists and veterinarians
monitored the condition of the studied mice.

The mouse model of this study consisted of mice that were orally administered a special
rodent diet including 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) (DooYeol Biotech,
Seocho-gu, Seoul, South Korea). The DDC model is a well-known in vivo model for cholestatic
liver fibrosis caused by intraductal porphyrin plugs and obstruction of the intrahepatic bile
ducts.?’ The mice were allowed free access to food, and no other feed was provided apart from
the special feed containing DDC. In the training set, 39 male C57BL/6 mice, aged 6 weeks, were
included. The mice were housed three per cage and underwent a one-week acclimatization period

before receiving the special feed or undergoing MRI imaging. Mice underwent baseline imaging



before starting the DDC diet. Following the baseline scans, they were fed the DDC diet for
durations ranging from 1 to 11 weeks. The mice were either sacrificed after the initial MRI
imaging, or if their conditions were stable, they continued to be fed the DDC diet followed by
additional MRI imaging. In the test set, 20 male C57BL/6 mice, aged 6 weeks, were included.
The mice were housed five per cage and underwent a one-week acclimatization period before
receiving the special diet or undergoing MRI imaging. In the test set, ten mice in the control
group underwent MRI after two weeks on a normal diet, while ten mice in the fibrosis group

underwent MRI after two weeks on the DDC diet (Figure 1).

Training set (39 mice)

Baseline (n= 22 MRIs) Fibrosis (n= 28 MRIs)

DDC diet/

R @ &
T2-weighted MRI @/ @
8

DDC feeding for one to eleven weeks

s - 22

Control (10mice, 8 MRIs) Fibrosis (10mice, 10 MRIs)

MRI after normal diet for two weeks MRI after DDC diet for two weeks

G R & & 2 5

Figure 1. Mouse model in the training and test sets. DDC: 3,5-diethoxycarbonyl-1,4-
dihydrocollidine

2.2. MRI scanning

All MRI experiments were performed with a 9.4 T Bruker BioSpec scanner (Ettlingen,

Germany). Fasting was not conducted before MRI imaging. Mice were anesthetized using 1-2%



isoflurane and their heart rates were monitored during the MRI scan. Their body temperatures
were maintained by circulating warm water. The MRI scans were conducted contingent upon the
physical condition of the mice, with scans excluded if respiratory rates were unstable (less than
30 breaths per minute) following anesthesia. T2-weighted images were acquired using a 72 mm
trans-receiver coil. Imaging parameters were as follows: matrix = 192x192, field of view =
35%35 mm, 30 slices, slice thickness 0.5 mm, effective echo time =22 ms, repetition time = 2000

ms, and number of average = 2.

2.3. Fibrosis grading

Liver specimens were collected only if the mice could be dissected immediately after death
to minimize tissue damage. Mice that died before or during MRI imaging were excluded. In the
training set, liver tissues were obtained from 18 mice. In the test set, liver specimens were
obtained from 18 mice.

The liver specimens were fixed in a formaldehyde solution for over 24 hours, embedded in
paraffin blocks, and stained with Sirius Red. Using image analysis software (Image J, version
1.52a; National Institutes of Health), areas stained with Sirus Red were quantitatively
assessed.??? The collagen proportional area (CPA) was defined as the percentage of the area
stained for Sirus Red. Images at 20 x magnification were converted to red-green-blue (RGB)
images using the same operator-dependent threshold to detect areas of stained collagen. The
researcher determined the threshold at which fibrosis appeared as red on the converted image.
Additionally, areas stained red but not representing fibrosis, such as bile stains, were manually
removed. Tissue within 5 mm of the capsule and large blood vessels were avoided when drawing
region of interest. The severity of liver fibrosis was expressed with the CPA and classified into
three grades (no fibrosis in cases with CPA < 4.8%; mild fibrosis with CPA of 4.8-10.3%; and
moderate fibrosis with CPA > 10.3%).%

2.4. Segmentation

Axial liver MRI images without motion artifacts were included in the study in both the
training and test sets. The liver was manually segmented on T2-weighted MR images by a
radiologist (with 7 years of experience) using a commercial software package (Syngo.via

Frontier, version 1.3.0; Siemens Healthineers, Munich, Germany). The regions of interest (ROIs)



were drawn three times: first at the right liver, second at the left liver, and third at the whole liver,

excluding the hepatic hilar vascular structures. The ROIs were selected from the largest available

cross-section within the entire volume of axial images (Figure 2).

Figure 2. Regions of interest drawn at the right liver, left liver, and whole liver on T2-
weighted axial images taken (A) at baseline and (B) after six weeks of the DDC diet.
Pathology on the same day of imaging (B) confirmed moderate fibrosis. DDC: 3,5-
diethoxycarbonyl-1,4-dihydrocollidine

2.5. Normalization

All MR images were resampled with a spatial resolution of 1x1x1 mm?2 using the linear
interpolation method run by the software package for normalization before radiomics analysis.
Equation for Normalized Intensity: f(x)= %

In the above equation, f(x) is the normalized intensity, x is the original intensity, ux is the

mean, and ox is the standard deviation of the image signal intensity of each drawn ROI.

2.6. Extraction, selection, and modeling of radiomics features

Radiomics models were derived using T2-weighted images from mice (Figure 3).
Radiomics features were analyzed in a binary manner based on the presence or absence of liver

fibrosis.



Baseline Fibrosis

(22MRls (28MRIs)

Test set

Multiple linear regression model Control (BMRIs) | Fibrosis (10MRIs)

Univariate: Logistic Regression model
Classic mMRMR, R? Quotient

Multivariate: minAlC Random forest model

Random forest model

Classic mRMR, R? Difference
Decorrelation

10-fold cross-validation

Figure 3. Development and training flow charts for the radiomics models.
mRMR: minimum Redundancy Maximum Relevance, minAIC: minimum Akaike

Information Criterion.

A software package (syngo.via Frontier, version 1.3.0; Siemens Healthineers) was used for
the radiomics analysis, which was developed based on the PyRadiomics library, version 3.0.1
(https://github.com/Radiomics/pyradiomics) and scikit-learn machine learning library
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
html). A total of 845 radiomics features—including 101 original and 744 wavelet-filtered— were
extracted from the training set. A cluster map was generated through agglomerative hierarchical
clustering to display associations between the found clusters of mice and radiomics features.

The multiple linear regression (MLR) model was built by selecting the optimal subset using
the minimum Akaike Information Criterion (minAIC) method. The random forest (RF) model

was built utilizing decision-making trees with Gini Inpurity. Both the MLR model and the RF



model underwent feature selection before training, and to minimize feature redundancy,
decorrelation was performed using classic minimum redundancy maximum relevance (mRMR)
and R? difference calculations (Figure 3). The 10-fold cross-validation was used to evaluate non-
linear relationships and avoid overfitting. The average area under the receiver operating
characteristic curves (AUCs) of the MLR model and RF model were provided for the training
set. Both the trained MLR and RF models were tested in the test set.

2.7. Statistical analysis

Statistical analyses were performed using SPSS software (version 25.0; IBM Corp.,
Armonk, NY, USA) and R software (R Foundation for Statistical Computing). A commercial
software package (Syngo.via Frontier, version 1.3.0; Siemens Healthineers, Munich, Germany)
was used to analyze univariate and multivariate analyses and to build MLR and RF models. The
diagnostic performance of the MLR and RF models for the presence of liver fibrosis was assessed
using the AUC, sensitivity, and specificity. The varying degrees of liver fibrosis were
represented using the CPA or the three-stage fibrosis grading system, and the correlations
between these representations and the significant radiomics features of the MLR and RF models
were analyzed using Spearman analysis and Kendall analysis. Statistical analyses accounted for
repeated measurements within individual subjects as three ROIs were measured from each
mouse. The intraclass correlation coefficient (ICC) was calculated to assess the reproducibility
of significant radiomics feature values derived from the MLR and RF models across the three

ROIs. P values less than 0.05 were considered statistically significant.

3. Results

3.1. Mice MRI acquisition

In the training set, 39 mice were initially enrolled in the experiment. Baseline imaging was
successfully performed for 27 mice, while 12 did not undergo imaging due to unstable heart rates.
Of the 27 baseline MRIs, 5 were excluded from analysis due to significant motion artifacts,
resulting in 22 baseline MRIs being included in the final analysis. MRIs acquired after the DDC



diet were classified as the fibrosis group, yielding 30 MRIs. However, two of these were
excluded due to severe motion artifacts, leaving 28 fibrosis MRIs for analysis. Among them,
seven mice in good physical condition underwent MRI scans twice after beginning the DDC diet.

In the test set, ten mice in the control group underwent MRI after two weeks on a normal
diet, producing ten control MRIs. Two MRIs were excluded due to motion artifacts. Another ten
mice in the fibrosis group underwent MRI after two weeks of the DDC diet, yielding ten fibrosis
MRIs.

3.2. Mice hepatic fibrosis results

Pathology specimens were obtained from 18 mice (CPA median 8.0%, ranging from 5.5 to
20.8%), including 11 mice in the mild fibrosis group (CPA median 7.2%, ranging from 5.5 to
8.6%) and 7 mice in the moderate fibrosis group (CPA median 13.3%, ranging from 11.1 to

20.8%) (Figure 4). Liver specimens were not collected from the control group. When analyzing

pathologic correlations, the control group was classified as the no fibrosis group.




Figure 4. Axial T2-weighted images from (A) a mouse after three weeks of the DDC
diet and (C) a mouse after nine weeks of the DDC diet. Liver specimens ([B] for mouse
[A] image and [D] for mouse [C] image) were obtained on the same day of MRI and stained
with Sirius Red. The CPA was 7.2% in (B), which graded the severity of liver fibrosis as
mild and 17.5% in (D), which graded it as moderate. DDC: 3,5-diethoxycarbonyl-1,4-
dihydrocollidine, CPA: collagen proportional area

In the test set, pathology specimens were obtained from all 18 mice, including 8 in the
control group (CPA median 3.0%, ranging from 0.3% to 4.3%), which were all classified as the
no fibrosis group and ten in the fibrosis group (CPA median 9.0%, ranging from 6.2% to 14.6%).
In the fibrosis group, eight were in the mild fibrosis group (CAP median 8.2%, ranging from 6.2%
to 10.3%), and two were in the moderate fibrosis group (CPA median 12.9%, ranging from 11.2%
to 14.6%).

3.3. Development and testing of the radiomics model for the presence of

hepatic fibrosis

A total of 845 radiomics features, including 101 original and 744 wavelet-filtered, were

extracted from T2-weighted images in the training set (Figure 5).
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Figure 5. Cluster map from agglomerative hierarchical clustering to visualize the
associations between the found clusters of subjects and radiomics features regarding

liver fibrosis.

The top 10 most relevant features were selected, including wavelet- HLH
GLRLM_ShortRunEmphasis, wavelet- LLL firstorder Minimum, LLH firstorder Entropy,
wavelet-HLH ~ GLSZM HighGrayLevelZoneEmphasis, = wavelet-HLL firstorder Mean,
wavelet-LLL GLCM_Idn, wavelet-LHL glem MCC, wavelet-
HHH glszm SmallAreaHighGrayLevelEmphasis, = wavelet-HLH glcm ClusterProminence,
and wavelet-LHH glszm GrayLevelNonUniformityNormalized. The heatmap of these

radiomics features showed differences between the baseline and fibrosis groups (Figure 6).

10



Wavelet-HLH_girim_ShortRunEmphasis

| | I ‘wavelet-HLH_glcm_ClusterProminence
| | | p—— .

IIIIII |I |'l

wavelet HLL_firstorder_Mean
| II | |

' ||| | III 11|
| | I I | | I | || | ‘wavelet-LHH_giszm_GrayLevelNonUniformityNormalizec

Radiomic Features

- wavelet-HLH_glszm_HightrayLevelZoneEmphasis
| - wavelet-LLL gicm_idn

|- waveiet-LLH _firstorder_Entropy

Figure 6. Heatmap of the ten most important radiomics features from T2-Weighted

MRI for evaluating the presence of liver fibrosis.

The best subset among these radiomics features was identified using the minAIC method
to build the MLR model. The MLR model includes wavelet-HLH_glrlm_ShortRunEmphasis
(odds ratios [OR] 749.074, 95% confidence interval [CI] 32.857- 17077.623, P < 0.001),
wavelet-LLL _firstorder Minimum (OR 27.12, 95% CI 3.094-237.737, P < 0.001), wavelet-
LLH firstorder Entropy (OR 2.561, 95% CI 1.077-6.092, P = 0.033), wavelet-
HLH glszm HighGrayLevelZoneEmphasis (OR 1.974, 95% CI 0.703-5.539, P = 0.197),
wavelet-HLL firstorder Mean (OR 3.632, 95% CI 0.981-13.443, P = 0.053), and wavelet-
LLL glem Idn (OR 1.533, 95% C1 0.552-4.261, P=0.412). The MLR model showed excellent
diagnostic performance for differentiating the presence and absence of liver fibrosis (AUC 0.991,
sensitivity 97.5%, specificity 94.2%). Machine learning using classic mRMR with R? difference,
followed by decorrelation to reduce feature redundancy, identified the eight most important
random forest features for distinguishing the presence and absence of fibrosis from all the
extracted radiomics features. These eight features were wavelet-HLH_glrlm_ShortRunEmphasis,
wavelet-HLH glem_ ClusterTendency, wavelet-HLH glrlm ShortRunLowGrayLevelEmphasis,
wavelet-HLH glem_ClusterProminence, wavelet-LLL _firstorder Minimum, wavelet-

HHH_glcm_DifferenceEntropy, wavelet-LLL glem_ Correlation, and wavelet-

11



HLL firstorder Mean. The average AUC of the RF model showed excellent diagnostic
performance for differentiating the presence and absence of liver fibrosis (AUC 0.945, sensitivity
88.9%, specificity 85.5%)

When the MLR model and RF model were applied to the test set, the MLR model showed
poor performance (AUC 0.645, sensitivity 90%, specificity 33.3%), but the RF model showed
good performance (AUC 0.817, sensitivity 90%, specificity 41.7%) (Figure 7 and Figure 8).
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Figure 7. Receiver operating characteristics curves of the MLR and RF models from
10-fold cross-validation to differentiate the presence and absence of liver fibrosis in

the (A) training set and (B) test set. MLR: multiple linear regression, RF: random forest.
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Figure 8. Sensitivity and specificity of the (A) MLR model and (B) RF model in the
training set and sensitivity and specificity of the (C) MLR model and (D) RF model in
test set.

MLR: multiple linear regression, RF: random forest.

3.4. Radiomics model and pathologic correlation of liver fibrosis

The radiomics features selected as the best subsets in the MLR and RF models showed

correlations with liver fibrosis grades in the training set (Table 1).
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Table 1. Correlation between radiomics features selected in the MLR and RF Models

and fibrosis grades of mice liver pathology in the training set

Model Correlation Variables Coefficient P-value
analysis (tau)
MLR  Kendall wavelet- -0.689 <0.001
model analysis for HLH_glrlm_ShortRunEmphasis
fibrosis
grades
wavelet-HLL _firstorder Mean -0.338 <0.001
wavelet-LLL _firstorder Minimum  0.374 <0.001
RF Kendall wavelet- 0.474 <0.001
model analysis for HHH glem DifferenceEntropy
fibrosis wavelet- 0.669 <0.001
grades HLH_glem_ClusterProminence
wavelet- 0.669 <0.001
HLH glcm_ ClusterTendency
wavelet- -0.689 <0.001
HLH_glrlm_ShortRunEmphasis
wavelet- -0.672 <0.001
HLH glrlm_ShortRunLowGrayLev
elEmphasis
wavelet-HLL firstorder Mean -0.338 <0.001
wavelet-LLL _firstorder Minimum  -0.374 <0.001
wavelet-LLL glecm_Correlation -0.235 0.001

MLR: multiple linear regression, RF: random forest

The radiomics features selected as the best subset in the MLR and RF models correlated
with varying degrees of liver fibrosis, including the CPA and liver fibrosis grade in the test set

(Table 2).
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Table 2. Correlations between radiomics features selected in the MLR and RF Models

and the CPA and fibrosis grades of mice liver pathology in the test set

Model Correlation Variables Coefficient Coefficient P-
analysis (rho) (tau) value
MLR  Spearman wavelet- 0.505 <0.001
model analysis for HLH_glrlm_ShortRun
CPA Emphasis
wavelet- 0.385 0.004
HLH_ glszm HighGra
yLevelZoneEmphasis
wavelet- 0.348 0.010
LLH_firstorder Entro
py
wavelet- 0.387 0.004
LLL _firstorder Minim
um
Kendall wavelet- 0.462 <0.001
analysis for HLH_glrlm ShortRun
fibrosis Emphasis
grades

wavelet- 0.339 0.002
HLH glszm HighGra
yLevelZoneEmphasis
wavelet- 0.218 0.046
LLH firstorder Entro
py
wavelet- 0.382 <0.001
LLL _firstorder Minim
um

RF Spearman  wavelet- 0.497 <0.001

model analysis for HLH glem_ ClusterPro

CPA minence

wavelet- 0.535 <0.001
HLH_glem_ClusterTe
ndency
wavelet- 0.505 <0.001
HLH_glrlm_ShortRun
Emphasis
wavelet- -0.312 0.022
HLH_glrlm_ShortRun
LowGrayLevelEmphas
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is
wavelet- 0.387 0.004
LLL firstorder Minim
um

Kendall wavelet- 0.448 <0.001

analysis for HLH_glem_ClusterPro

fibrosis minence

grades
wavelet- 0.471 <0.001
HLH_glem_ClusterTe
ndency
wavelet- 0.462 <0.001
HLH_glrlm_ShortRun
Emphasis
wavelet- 0.382 <0.001
LLL firstorder Minim
um

MLR: multiple linear regression, RF: random forest, CPA: collagen proportional area

3.4.1 Correlation between MLR model variables and mice liver fibrosis

grade in the training set

When performing a Kendall analysis to assess correlations between fibrosis grades and
the variables in the best subset of the MLR model, wavelet-HLH_glrlm ShortRunEmphasis,
wavelet-HLL _firstorder Mean, and wavelet-LLL _firstorder Minimum, (P < 0.001 for all)

showed significant correlation (Table 1 and Figure 9).
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Figure 9. Kendall correlation analysis between liver fibrosis grades and variables in
the best subset of the MLR model in the training set.

MLR: multiple linear regression. A: wavelet-HLH_glrlm_ShortRunEmphasis, B: wavelet-
HLH_glszm HighGrayLevelZoneEmphasis, C: wavelet-HLL firstorder Mean, D:
wavelet-LLH_firstorder Entropy, E: wavelet-LLL firstorder Minimum, F: wavelet-

LLL glem Idn
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3.4.2. Correlation between RF model variables and mice liver fibrosis

grade in the training set

When performing a Kendall correlation analysis between fibrosis grades and the variables
in the best subset of the RF model, all eight important variables showed significant correlations,
including wavelet-HHH glecm_DifferenceEntropy P < 0.001), wavelet-
HLH_glem_ ClusterProminence (P < 0.001), wavelet-HLH glem ClusterTendency (P <
0.001), wavelet-HLH glrlm ShortRunEmphasis (P < 0.001), wavelet-
HLH glrlm_ShortRunLowGrayLevelEmphasis (P < 0.001), wavelet-HLL firstorder Mean
(P < 0.001) , wavelet-LLL firstorder Minimum (P < 0.001), and wavelet-
LLL glem_ Correlation (P =0.001) (Tablel and Figure 10).
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Figure 10. Kendall correlation analysis between liver fibrosis grades and variables in
the best subset of the RF model in the training set.

RF: random forest. A: wavelet-HHH glem DifferenceEntropy, B: wavelet-
HLH glcm_ ClusterProminence, C: wavelet-HLH glem ClusterTendency, D: wavelet-
HLH_glrlm_ShortRunEmphasis, E: wavelet-
HLH_glrlm_ShortRunLowGrayLevelEmphasis, F: wavelet-HLL firstorder Mean, G:

wavelet-LLL _firstorder Minimum, H: wavelet-LLL glecm_ Correlation
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3.4.3. Correlation between MLR model variables and the CPA of mice

liver pathology and liver fibrosis grades in the test set

When performing a Spearman analysis to assess correlations between the CPA of mice
liver pathology and the variables in the best subset of the MLR model, wavelet-
HLH_glrlm_ShortRunEmphasis (P < 0.001), wavelet-
HLH_glszm HighGrayLevelZoneEmphasis (P = 0.004), wavelet-LLH_firstorder Entropy (P
= 0.010), and wavelet-LLL _firstorder Minimum (P = 0.004) showed significant correlation
(Table 2). The Kendall correlation analysis between fibrosis grades and the variables in the
best subset of the MLR model showed correlations in wavelet-HLH glrlm_ShortRunEmphasis
(P < 0.001), wavelet-HLH glszm HighGrayLevelZoneEmphasis (P = 0.002), wavelet-
LLH firstorder Entropy (P =0.046), and wavelet-LLL firstorder Minimum (P < 0.001)
(Table 2, Figurell).
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Figure 11. Kendall correlation analysis between liver fibrosis grades and variables in
the best subset of the MLR model in the test set.

MLR: multiple linear regression. A: wavelet-HLH_glrlm_ShortRunEmphasis, B: wavelet-
HLH_glszm HighGrayLevelZoneEmphasis, C: wavelet-HLL firstorder Mean, D:
wavelet-LLH_firstorder Entropy, E: wavelet-LLL firstorder Minimum, F: wavelet-

LLL glecm Idn
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3.4.4. Correlations between RF model variables and the CPA of mice

liver pathology and liver fibrosis grades in the test set

When performing a Spearman analysis to assess correlations between the CPA of mice
liver pathology and the variables in the best subset of the RF model, wavelet-
HLH_glem_ ClusterProminence (P < 0.001), wavelet-HLH glem ClusterTendency (P <
0.001), wavelet-HLH glrlm ShortRunEmphasis P < 0.001), wavelet-
HLH_glrlm_ShortRunLowGrayLevelEmphasis (P = 0.022), and wavelet-
LLL firstorder Minimum (P = 0.004) showed significant correlation (Table 2). Additionally,
the Kendall correlation analysis between fibrosis grades and four of the important variables in
the best subset of the RF model showed significant correlations including wavelet-
HLH glem_ClusterProminence (P < 0.001), wavelet-HLH glcm_ClusterTendency (P <
0.001), wavelet-HLH glrlm ShortRunEmphasis (P < 0.001), and wavelet-
LLL firstorder Minimum (P < 0.001) (Table 2, Figure 12).
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Figure 12. Kendall correlation analysis between liver fibrosis grades and variables in
the best subset of the RF model in test set.

RF: random forest. A: wavelet-HHH glem DifferenceEntropy, B: wavelet-
HLH_glem_ClusterProminence, C: wavelet-HLH glem ClusterTendency, D: wavelet-
HLH_glrlm_ShortRunEmphasis, E: wavelet-
HLH_glrlm_ShortRunLowGrayLevelEmphasis, F: wavelet-HLL firstorder Mean, G:

wavelet-LLL _firstorder Minimum, H: wavelet-LLL glecm_ Correlation
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3.5. Intraclass correlation analysis of radiomics features for the right, left,

and whole liver ROIls

In the MLR model, the average ICC of the important radiomics features was fair (0.56).
HLH_glrlm_ShortRunEmphasis showed excellent ICC (0.88), LLH _firstorder Entropy and
LLL firstorder Minimum showed good ICC (0.73 and 0.66, respectively), LLL glcm Idn
showed fair ICC (0.50), and HLL firstorder Mean and HLH_glszm
_HighGrayLevelZoneEmphasis showed poor ICC (0.29 and 0.28, respectively).

In the RF model, the average ICC of the important radiomics features was good (0.72).
Wavelet-HLH_glem_ClusterProminence and wavelet-HLH glecm_ClusterTendency showed
excellent ICC (0.90), wavelet-HLH_glrlm_ShortRunEmphasis and wavelet-

HLH glrlm_ShortRunLowGrayLevelEmphasis showed excellent ICC (0.88), wavelet-
HHH_glem_DifferenceEntropy and wavelet-LLH_firstorder Minimum showed good ICC
(0.65), wavelet-LLL glem_Correlation showed fair ICC (0.60), and wavelet-

HLL _firstorder Mean showed poor ICC (0.29).

4. Discussion

In our study, we developed and tested machine learning models, including the MLR and RF
models, based on radiomics features extracted from T2-weighted images of mice to diagnose
cholestatic liver fibrosis. Both models demonstrated excellent performance in differentiating the
presence and absence of liver fibrosis in the training set. For the test set, only the RF model showed
good diagnostic performance for liver fibrosis. Additionally, key radiomics features from the MLR
and RF models showed significant correlations with liver fibrosis grades in the training set, and both
the CPA and liver fibrosis grades in the test set.

We selected 6-week-old male C57BL/6 mice as our experimental subjects, as their small liver
size and rapid breathing rate?* closely reflect those of neonates. The DDC diet was chosen to induce
liver fibrosis because prolonged DDC feeding in mice replicates key histopathological features of
human cholestatic liver fibrosis, including the bile duct remodeling that leads to ductular reactions,
periductular fibrosis, and infiltration of inflammatory cells.?> This DDC model effectively mirrors
the liver fibrosis observed in cholestatic conditions, making it valuable for studying fibrosis in a

non-invasive manner.
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Although the pathophysiology of mice may not exactly match that of neonatal liver disease
such as biliary atresia, we believed our mouse model could appropriately represent neonatal
cholestatic liver fibrosis and any findings from this model could be extended to research for the
pediatric population.

Radiomics involves post-image processing to extract features from radiological images and
transform the data using artificial intelligence techniques, such as machine learning, to enhance
predictive accuracy.!!® It is based on the premise that pathophysiological tissues and organs hold
substantial information that can be quantified and distinguished from normal tissues and organs.
Radiomics considers texture as the spatial arrangement of predefined voxels, enabling the
interpretation of complex image features.?’” Mathematical analysis of these characteristic
arrangements helps distinguish normal tissues from abnormal tissues. The heterogeneity of the
selected features mirrors the heterogeneity of histopathological changes.

Our study suggests that MLR and RF models developed from MRI radiomics features may
have the potential to diagnose liver fibrosis in humans. This finding aligns with that of previously
published papers showing that radiomics and machine learning based on MRI images can diagnose
liver fibrosis in older patients.® In adult studies, radiomics and machine learning approaches that
incorporate T2-weighted images®®, T1-weighted images®, R2* mapping®, and gadoxetic acid-
enhanced MRI'*?>3! have been explored to diagnose liver fibrosis. In adolescent studies, machine
learning models that incorporate radiomics data from T2-weighted images, along with liver volume
and liver chemical shift-encoded fat fraction, have shown promise when diagnosing liver fibrosis.'?
Moreover, advances in artificial intelligence have enabled liver segmentation using a convolutional
neural network pre-trained on the ImageNet archive and deep transfer learning to detect liver
cirrhosis with expert-level accuracy in adult patients.>?> However, studies that focus on infants and
young children are rare and far between. One of the few studies published indicated that a radiomic-
based nomogram derived from T1-weighted and T2-weighted images could aid in diagnosing liver
fibrosis in young children, including infants.!® One animal study compared the performance of
individual radiomic models based on multiparametric MRI sequence and showed good performance
for predicting early liver fibrosis.>* Our study used T2-weighted images as it is routinely performed
in young patients and is less susceptible to motion artifacts due to its higher sensitivity to magnetic
field changes.!** The radiomics features gained from T2-weighted images could differentiate liver

fibrosis based on fine-grained details. =«-sseereremmmmemmmem
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The most important features selected from the RF model were wavelet-transformed features,
which effectively capture multi-scale texture and intensity patterns by separating high-frequency
and low-frequency components of images.'®?”3 The HLH and HHH components primarily focus
on fine textures and high-frequency details, essential for identifying subtle patterns and intricate
textures. Meanwhile, the LLL components highlight broader, low-frequency structures crucial for
understanding the overall composition and intensity distribution within an image. The features
selected in both MLR and RF models—wavelet-HLH glrlm ShortRunEmphasis, wavelet-
LLL firstorder Minimum, and wavelet-HLH glcm ClusterProminence—indicate that both models
rely on capturing fine texture details and broader structural characteristics. Wavelet-
HLH_glrlm_ShortRunEmphasis and wavelet-HLH_ glecm_ClusterProminence suggest sensitivity to
detailed textures and clustering patterns, while wavelet-LLL firstorder Minimum reflects the
importance of low-intensity regions in the overall image structure. The significance of these features
makes intuitive sense because the normal liver shows relatively homogenous and hypointense signal
intensity, and the liver starts to show heterogenous and hyperintense signal intensity as fibrosis
progresses on T2-weighted images. The model’s reliance on these diverse features suggests it is
well-equipped to capture even small differences in data, leading to more accurate evaluation of liver
fibrosis. In this study, the RF model outperformed the MLR model. This is probably because the RF
model consists of multiple decision trees trained on different subsets of data or feature subspaces,
with each tree built using independently sampled random vectors.>® By aggregating the predictions
of these diverse trees, the RF model enhances generalization and reduces overfitting, leading to
improved performance.

Our findings show that key radiomics features from MLR and RF models correlate with varying
degrees of liver fibrosis and seem promising as diagnostic factors. The key features that were
significantly correlated to the CPA of mice liver pathology and fibrosis grades were all wavelet
features. Wavelet filtering methods involve decomposing the original image to offer benefits such
as adjustable spatial resolution for optimal texture representation, enhanced texture visibility, and
flexibility in choosing wavelet functions.?’ Previous research has also shown that texture-based
classification of liver fibrosis using MRI is feasible.?® Recent studies showed that incorporating
clinical and radiomic features led to better diagnostic performance for liver stiffness than radiomics
features alone.”'*37 Further studies that refine models by combining radiomics and clinical data to

diagnose liver fibrosis grade could possibly decrease the need for MRE which needs additional exam
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time and specialized equipment.

This study has several limitations. First, the small sample size used to develop the machine
learning model limits its generalizability. Due to ethical and practical constraints in animal
experiments, we used a minimum number of subjects and analyzed three ROIs per mouse to
maximize the available data. However, this approach may cause overfitting and statistical
dependence. To mitigate these issues, we applied methods such as mRMR, R2 difference,
decorrelation, and 10-fold cross-validation. Second, a single radiologist performed ROI
segmentation, which can raise concerns about reproducibility. To address this, we analyzed ROIs
from multiple liver regions (right, left, and whole liver), and the ICC of key radiomics features from
MLR and RF models showed fair to good correlation. Furthermore, our models did not directly
diagnose the CPA or liver fibrosis grade but instead explored correlations between radiomics features
and these parameters, which limits the direct clinical applicability of our results. The small number
of liver pathology samples also restricted the development and validation of a predictive model. We
evaluated the performance of both the MLR and RF models, but we did not analyze the statistical
significance of the difference in their performance. Nevertheless, our findings suggest that T2-
weighted MRI-based radiomics features from MLR and RF models have the potential to differentiate
fibrosis severity. Future studies with larger datasets and methods that facilitate direct application to
human patients including neonates, are needed to validate our findings and explore the actual clinical

utility of the two machine learning models.

5. Conclusion

In conclusion, machine learning models based on radiomics features from T2-weighted images
were trained and tested in a mouse liver fibrosis model. The RF model showed excellent diagnostic
performance for diagnosing liver fibrosis in both training and test sets of our animal study. Key
radiomics features showed significant correlations with the CPA and liver fibrosis grade. Therefore,
our RF model shows potential for diagnosing liver fibrosis in pediatric patients, albeit with further

research.
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Appendices

1. Radiomics Feature Abbreviations

Table 3. Radiomics feature abbreviations

Abbreviation

Full Term

wavelet- HLH
glrlm_ShortRunEmphasis

wavelet- LLL _firstorder Minimum

wavelet- LLH_firstorder Entropy

wavelet-HLH

glszm HighGrayLevelZoneEmphasis

wavelet-HLL firstorder Mean

wavelet-LLL glem Idn

wavelet-LHL glem MCC

wavelet-

HHH_glszm SmallAreaHighGrayLevel

wavelet- High-Low-High Gray
Level Run Length
Matrix_ShortRunEmphasis
wavelet- Low-Low-
Low_firstorder Minimum
wavelet- Low-Low-
High_firstorder Entropy
wavelet-High-Low-High_ Gray

Level Size Zone

Matrix_HighGrayLevelZoneEmpha

sis

wavelet-High-Low-
Low_firstorder Mean
wavelet-Low-Low-Low_ Gray
Level Co-occurrence
Matrix_Inverse Difference
Normalized
wavelet-Low-High-Low_Gray
Level Co-occurrence
Matrix_Maximal Correlation
Coefficient
wavelet-High-High-High Gray

Level Size Zone
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Emphasis

wavelet-HLH glcm_ClusterProminence

wavelet-

LHH_ glszm GrayLevelNonUniformity

Normalized

wavelet-HLH glcm_ClusterTendency

wavelet-

HLH_glrlm_ShortRunLowGrayLevelE

mphasis
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