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ABSTRACT 

 

Radiomics-Based Machine Learning for Multi-Modality Tumor 

Classification and Prognosis in Lymphoma 
 

 

 
 

Purpose: This study aimed to develop a radiomics-based machine learning framework capable of 

differentiating tumor, normal, and mixed tumor-normal regions in lymphoma patients using 18F-

FDG PET/CT images and to evaluate its effectiveness in predicting prognosis, including 

recurrence and mortality. 

 

Materials and Methods: F-18 FDG PET/CT imaging data from 60 patients diagnosed with 

lymphoma were retrospectively analyzed. A total of 417 radiomic features were extracted from 

each imaging modality (PET and CT) based on manually delineated tumor (n = 800) and normal 

tissue (n = 4,150) volumes of interest. Five machine learning classifiers—AdaBoost, Decision 

Tree, Gradient Boosting, Random Forest, and XGBoost—were trained using four distinct feature 

sets: PET radiomics features alone, CT radiomics features alone, combined PET/CT radiomics 

features, and standardized uptake value (SUV)-based metrics derived from PET images. To 

enhance tumor characterization, a scoring system integrating ensemble model predictions with 

anomaly detection using the Isolation Forest algorithm was developed. For prognostic modeling 

of five-year recurrence and overall survival, SUV-derived metrics, clinical variables, and Synthetic 

Minority Over-sampling Technique (SMOTE) were utilized to address class imbalance. Model 

generalizability and robustness were evaluated via external validation using an independent cohort 

consisting of 16 patients. 

 

Results: The CT-only radiomics model achieved the highest tumor classification performance with 

an AUC of 0.9690, compared to combined PET/CT radiomics model (AUC: 0.9639) and PET 

radiomics model (AUC: 0.9607), while PET-only radiomics model demonstrated optimal 

sensitivity (recall: 65.80%). XGBoost consistently outperformed other algorithms across all 

feature combinations, with PET/CT achieving 94.23% accuracy and PET-only achieving 93.47% 
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accuracy. For prognostic prediction without clinical data, recurrence accuracy ranged from 42-67% 

(without SMOTE) to 50-75% (with SMOTE), while mortality prediction ranged from 71-79% 

(without SMOTE) to 71-86% (with SMOTE). However, clinical data integration yielded 

inconsistent results, with recurrence prediction accuracy ranging from 47% to 92%. External 

validation confirmed model generalizability, with PET-based features showing the best 

performance (accuracy: 90.34%, AUC: 0.8852). Sensitivity decreased from 65.80% to 40.4% in 

external validation, indicating inter-institutional variability and the need for institutional 

calibration. 

 

Conclusion: The developed radiomics-based machine learning framework effectively differentiates 

tumor, normal, and mixed volumes in lymphoma patients, demonstrating strong potential for 

enhancing prognosis prediction. However, sensitivity reduction in external validation underscores 

the need for further refinement and institutional calibration before widespread clinical adoption. 
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1. Introduction 

 

Lymphomas represent a diverse and heterogeneous group of malignancies characterized 

by the abnormal clonal proliferation of lymphocytes, broadly categorized into Hodgkin lymphoma 

(HL) and non-Hodgkin lymphoma (NHL). The NHL accounts for approximately 90% of lymphoma 

cases, predominantly arising from B-cells, while HL comprises the remaining 10% [1]. Globally, 

lymphoma accounts for nearly 5% of cancer diagnoses, positioning it as the sixth most common 

cancer and underscoring its significant clinical relevance [2]. Although diagnostic and therapeutic 

advances, including quantitative approaches such as SUV analysis, have provided reasonable 

accuracy in lymphoma evaluation, precisely diagnosing, staging, and managing lymphoma remains 

challenging due to its heterogeneous clinical and pathological manifestations [3,4]. 

 

Positron emission tomography combined with computed tomography using 18F-

fluorodeoxyglucose (18F-FDG PET/CT) has significantly transformed lymphoma management by 

providing comprehensive metabolic and anatomical insights essential for initial staging, evaluating 

therapeutic responses, and post-therapy surveillance [5,6]. This imaging modality enables clinicians 

to quantify tumor metabolic activity using metrics such as Total Metabolic Tumor Volume (TMTV) 

and Total Lesion Glycolysis (TLG), which are robust predictors of patient prognosis and therapeutic 

outcomes [7–10]. However, current practices to determine TMTV using commercially available 

software such as MIM software’s lesionID or Siemens' syngo rely heavily on threshold-based 

methods, initially delineating tumor volumes followed by manual exclusion of physiologically high-

uptake organs and presumed normal tissues. Typically used thresholds include SUV maximum 

percentages (e.g., 41% or 50%), fixed SUVs (e.g., 2.5 or 3), or thresholds defined by a liver VOI 

(mean plus two standard deviations). Thresholds set too low can inadvertently include normal tissue, 

whereas thresholds set too high risk missing tumors with low SUV uptake. Consequently, significant 

variability in TMTV measurements occurs between observers, highlighting the need for accurate 

differentiation between tumor and normal volumes [11–13]. 

 

Radiomics is a quantitative imaging analysis technique that involves extracting numerous 

high-dimensional features from medical images, such as texture, shape, intensity, and wavelet-

transformed features, which comprehensively characterize tumor heterogeneity and biological 

properties beyond what is visually apparent to clinicians [14–16]. These radiomics features allow 

for a more objective and reproducible assessment of tumors by providing detailed insights into their 

underlying biology. On the other hand, machine learning (ML) refers to computational algorithms 

and statistical models capable of recognizing complex patterns within large datasets and learning 

from them to perform specific tasks such as classification, regression, or clustering. In medical 

imaging, ML techniques utilize radiomics features as input variables to develop predictive models 

that can accurately differentiate pathological tissues, predict patient prognosis, or assess therapeutic 

responses [23–26]. Hence, while radiomics provides the essential quantitative descriptors extracted 

from imaging data, ML offers the analytical tools needed to interpret these descriptors and translate 

them into clinically meaningful predictions and decisions. 

 

Radiomic features from 18F-FDG PET/CT imaging have demonstrated substantial 

promise, significantly improving lymphoma prognostic predictions and therapeutic response 
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assessments [17–22]. Recent advancements in artificial intelligence (AI), particularly ML and deep 

learning (DL), have further accelerated radiomics research by automating complex data analysis 

tasks, including lesion segmentation and patient outcome predictions [23–26]. AI-driven radiomics 

models have demonstrated superior predictive accuracy for survival outcomes such as progression-

free survival (PFS) and overall survival (OS), compared to traditional imaging metrics alone [27–

31].  

 

Previous radiomics studies have primarily applied binary classifications due to the 

inherent nature of radiomics-derived features reflecting dominant tissue characteristics within a 

given volume. Specifically, radiomics features tend to represent the predominant tissue type, 

resulting in binary classifications of either tumor or normal tissue. Consequently, volumes with a 

higher proportion of tumor tissue typically yield tumor-oriented features, whereas those with 

predominantly normal tissue produce normal-oriented features. This characteristic has led to 

numerous studies successfully differentiating tumor and normal tissues using radiomics features 

combined with ML methods. For instance, Hsu et al. (2018) achieved an overall classification 

accuracy of 90% in differentiating tumors from normal tissues using radiomic features extracted 

from CT images [32]. Similarly, Zhang et al. (2024) successfully classified gross tumor volume 

(GTV) and normal liver tissue in hepatocellular carcinoma with an accuracy of 0.98 using ML 

approaches applied to CT images [33]. Zhang et al. (2024) also developed a stacking ensemble 

model that integrated multiple ML algorithms, achieving superior performance in classifying GTV 

(AUC = 0.93), brainstem (AUC = 0.93), and normal brain tissue (AUC = 0.94) using CT images 

[34]. Additionally, Pei et al. (2024) demonstrated promising results in distinguishing cervical cancer 

tumors from normal uterine tissues using radiomic features extracted from CT images, achieving 

AUC values ranging from 0.89 to 0.92 [35]. 

 

Despite extensive research utilizing PET or CT imaging separately, no studies have yet 

applied radiomics methods combining both PET and CT images specifically to differentiate tumor 

and normal volumes in lymphoma patients undergoing F-18 FDG PET/CT imaging. Moreover, 

existing research predominantly addresses clearly defined tumor and normal tissues, thereby 

neglecting the mixed tumor-normal regions inherently captured during threshold-based clinical 

delineation processes. Such oversight can significantly impact prognostic evaluations and 

subsequent therapeutic strategies due to potential misclassification or inaccurate volume 

measurements. 

 

Our research uniquely addresses these critical gaps by developing an innovative 

radiomics-based ML system explicitly designed to differentiate pure tumor, pure normal tissue, and 

critically, mixed tumor-normal regions within lymphoma lesions. Unlike previous research, our 

methodology explicitly accounts for mixed volumes, enabling a more accurate assessment of tumor 

extent and significantly enhancing the precision of prognostic modeling.  

 

This research aims to develop and validate a radiomics-based machine learning framework 

for differentiating tumor, normal, and mixed tumor-normal regions in lymphoma patients using 18F-

FDG PET/CT imaging. By addressing the limitations of conventional threshold-based segmentation 

approaches through comprehensive feature extraction, ensemble machine learning methods, and 

rigorous external validation, our study seeks to enhance tumor classification accuracy and improve 

prognostic prediction for lymphoma patient management. 
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2. Materials and methods 

 

This study employed a comprehensive radiomics-based machine learning framework 

designed to differentiate tumor, normal, and mixed tumor-normal regions in lymphoma patients 

using 18F-FDG PET/CT imaging, as illustrated in Figure 1. The methodological workflow consisted 

of ten sequential steps: (1) quantitative imaging acquisition using standardized F-18 FDG PET/CT 

protocols, (2) normal organ segmentation to exclude physiological uptake, (3) tumor detection and 

segmentation through expert manual delineation, (4) PET-CT image alignment for multimodal 

analysis, (5) obtaining Total Metabolic Tumor Volume (TMTV) data according to established 

threshold criteria, (6) acquisition of normal volume data by excluding physiological organs, (7) 

tumor phenotype quantification through comprehensive radiomics feature extraction, (8) data 

integration and application of machine learning algorithms, (9) acquisition of refined TMTV 

excluding normal organs and non-tumor volumes, and (10) prediction of patient prognosis including 

tumor recurrence and mortality outcomes. 

 

The framework combined both imaging-derived radiomics features and clinical variables 

to develop robust prognostic models, with particular emphasis on addressing the challenge of mixed 

tumor-normal regions commonly encountered in clinical practice. External validation was 

performed using an independent dataset to assess model generalizability and clinical applicability. 

The following sections detail each component of this comprehensive methodology. 
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Figure 1. Comprehensive workflow of the radiomics-based machine learning framework for 

lymphoma tumor classification and prognosis prediction. The methodology encompasses ten 

sequential steps from initial F-18 FDG PET/CT imaging acquisition to final prognostic prediction, 

integrating tumor phenotype quantification, normal organ exclusion, and machine learning-based 

analysis for enhanced clinical decision-making in lymphoma management. 

 

 

2.1. Patient Selection and Imaging Protocol 

 
This retrospective study analyzed F-18 FDG PET/CT images from 60 patients diagnosed 

with lymphoma who underwent initial staging at Ewha Womans University Mokdong Hospital, 

Seoul, South Korea, between 2012 and 2018. Inclusion criteria comprised histologically confirmed 

lymphoma diagnosis, initial staging F-18 FDG PET/CT scan performed before treatment initiation, 

complete clinical and follow-up data available for at least 5 years, age ≥ 18 years, and adequate 

image quality for radiomics feature extraction. Exclusion criteria included patients with central 

nervous system (brain) involvement at initial diagnosis, previous history of malignancy within 5 
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years prior to lymphoma diagnosis, concurrent active malignancy, inadequate imaging quality 

preventing reliable segmentation, incomplete clinical or follow-up data, and patients who received 

treatment prior to baseline PET/CT imaging. Patient recurrence and survival data within a 5-year 

period were collected. Patient demographic and clinical characteristics are summarized in Table 1. 

 

F-18 FDG PET/CT was performed using a single PET/CT camera system (Siemens 

Biograph mCT with 128-slice CT, Siemens Medical Solutions, Knoxville, TN, USA). Patients fasted 

for at least six hours before F-18 FDG PET/CT scanning. FDG administration was done when whole 

blood glucose levels were less than 140 mg/dl. F-18 FDG PET/CT images were acquired from the 

skull base to mid-thigh, 60 min after intravenous FDG injection (5.18 MBq/kg). CT images without 

contrast agent were obtained first using a 120 kVp tube voltage, a 50 mAs tube current, and a 1.2 

pitch. PET images were then acquired for two min per bed position (five to seven positions) under 

a 3D emission mode. PET images were reconstructed into 200 × 200 ma-trices and 3.4 mm × 3.4 

mm pixel sizes (3.0 mm slice thickness) using a 3D-OSEM iterative algorithm (2 iterations and 21 

subsets) with time of flight and point spread function. 

 

A priori power analysis was conducted using G*Power 3.1.9.4 to determine the adequacy 

of our sample size for the planned statistical analyses. For the tumor classification task comparing 

multiple radiomics feature sets, we performed a power calculation for means difference between two 

independent groups with the following parameters: effect size (Cohen's d) = 0.5 (medium effect), α 

error probability = 0.05, power (1-β error probability) = 0.8, and allocation ratio N2/N1 = 1. The 

analysis indicated that a minimum total sample size of 128 volumes would be required to detect 

clinically meaningful differences with adequate statistical power (actual power = 0.801). 

 

For prognostic prediction analyses, the same power calculation parameters were applied 

to compare outcome groups (recurrence vs. non-recurrence, mortality vs. survival). The analysis 

indicated that a minimum of 64 patients per group (total n=128) would be required for adequate 

statistical power. Our cohort included 60 patients with 16 recurrence events (26.7%) and 5 mortality 

events (8.3%), resulting in sample sizes substantially below the recommended threshold for robust 

between-group comparisons. 

 

This represents a significant limitation of our prognostic prediction analysis, as neither 

recurrence prediction (16 vs. 44 patients) nor mortality prediction (5 vs. 55 patients) achieved the 

minimum sample size requirements derived from power analysis. Our study included 4,950 total 

volumes for classification analysis, substantially exceeding the minimum required sample size, 

while the prognostic component was underpowered according to conventional statistical guidelines. 

 

 

 

Table 1. Clinical and demographic characteristics of 60 lymphoma patients included in the study. 

Characteristic Value (%) 

Total Patients 60 100.0 

Age, years 
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Mean ± SD 66.4 ± 16.8 

 

Median  68  

 

Sex 

  

Female 32 53.3 

Male 28 46.7 

Physical Characteristics 

  

Height, cm (mean ± SD) 163.4 ± 10.2 

 

Weight, kg (mean ± SD) 62.3 ± 13.5 

 

Lymphoma Subtype 

  

Diffuse Large B-cell Lymphoma 26 43.3 

Hodgkin Lymphoma 12 20.0 

Other/Unspecified 12 20.0 

MALT Lymphoma 2 3.3 

Lymphoblastic Lymphoma 2 3.3 

Angioimmunoblastic T-cell Lymphoma 2 3.3 

Follicular Lymphoma 1 1.7 

NK/T-cell Lymphoma 1 1.7 

Mantle Cell Lymphoma 1 1.7 

Burkitt Lymphoma 1 1.7 

Histological Classification 

  

Type 1 (Hodgkin) 9 15.0 

Type 2 (Non-Hodgkin, intermediate) 3 5.0 

Type 3 (Non-Hodgkin, aggressive) 48 80.0 

Lugano Staging 

  

Stage I 3 5.0 

Stage IE 3 5.0 
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Stage II 16 26.7 

Stage IIE 6 10.0 

Stage III 10 16.7 

Stage IV 22 36.7 

Clinical Features 

  

B symptoms present 10 16.7 

Bone marrow involvement 11 18.3 

Spleen involvement 11 18.3 

Advanced Stage Disease (III-IV) 32 53.3 

Extranodal Disease (E staging) 9 15.0 

 
2.2. Segmentation Strategy and TMTV-Based Dataset Construction 

 
Using MIM software (MIM Software Inc., Cleveland, OH, USA), tumor volumes were 

initially segmented by applying a liver-based SUV threshold to extract metabolically active regions 

suspected of malignancy. Normal physiological uptake areas, such as those in the brain, myocardium, 

kidneys, and bladder, were subsequently excluded manually by experienced physicians to generate 

the final tumor masks. Excluding FDG uptake in normal organs is an essential step in avoiding false-

positive findings during the calculation of Total Metabolic Tumor Volume (TMTV) and Total Lesion 

Glycolysis (TLG), ensuring that only true pathological lesions are accurately assessed [36, 37].  

Segmentation of physiologically active normal organs was performed using a combination of 

automated and manual approaches. For the brain, heart, kidneys, and bladder, initial contours were 

generated using Oncosoft software (Oncosoft, Manteia), followed by manual refinement to improve 

anatomical accuracy. The ureters, which were not supported by automatic segmentation, were 

delineated entirely through manual contouring. 

  

 This supplementary analysis was conducted to clarify the necessity of excluding organs 

with physiological FDG uptake, which often leads to overestimation of tumor volume due to their 

intense metabolic activity. Without such exclusion, threshold-based segmentation methods may 

mistakenly include these normal tissues, significantly inflating calculated TMTV values. The 

quantitative impact of this exclusion was evaluated across five threshold strategies by comparing 

segmented volumes with and without organ removal, as described in Appendix 1. 

 

Total Metabolic Tumor Volume (TMTV) was calculated using various clinically validated 

thresholding strategies, including absolute SUV thresholds (2.5 and 3.0), relative thresholds based 

on SUVmax (41% and 50%), and a liver-referenced threshold defined as the mean liver SUV plus 

two standard deviations. These methods are consistent with established clinical workflows for tumor 

delineation. For each method, binary masks were generated and refined by removing regions 
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overlapping with physiological organs to ensure that the final TMTV masks represented only tumor 

volumes. 

 

In this study, normal tissue volumes were not arbitrarily defined by low SUVs. Instead, 

regions that exceeded SUV thresholds but were not considered malignant based on anatomical 

location or physiological uptake were labeled as 'normal.' This approach mirrors actual diagnostic 

workflows and was intended to challenge the model to distinguish tumor from non-tumor tissues 

using radiomic features beyond simple intensity metrics. By including metabolically active but 

clinically non-malignant regions in the normal class, the model was encouraged to learn more 

nuanced structural and textural patterns, thereby improving its generalizability and clinical 

applicability. Finally, normal volumes were acquired by systematically excluding organs with high 

physiological uptake and annotated labels from the TMTV data obtained using each thresholding 

method. 

 

 

2.3. Radiomics Feature Extraction 

 
Prior to radiomics feature extraction, PET images underwent standardized SUV 

quantification to ensure accurate metabolic assessment across all segmented regions. The conversion 

from raw PET pixel values to standardized uptake values was performed using patient-specific 

parameters extracted from DICOM header information, including administered dose, injection time, 

acquisition time, patient weight, and radiopharmaceutical decay correction factors. (detailed SUV 

calculation methodology provided in Appendix 2). 

 

Radiomics features were extracted from segmented PET and CT images using 

PyRadiomics software (version 3.1.0). A total of 417 quantitative features per imaging modality 

were obtained, encompassing shape, first-order statistical, and texture features. The shape features 

included elongation, flatness, sphericity, and surface area, while first-order statistics comprised 

energy, entropy, mean, median, kurtosis, skewness, minimum, and maximum. Texture features were 

derived from Gray Level Co-occurrence Matrix (GLCM), Gray Level Dependence Matrix (GLDM), 

Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), and 

Neighboring Gray Tone Difference Matrix (NGTDM). Additionally, Laplacian of Gaussian (LoG) 

filtered features were extracted at three sigma levels (1 mm, 2 mm, and 3 mm) to capture multiscale 

spatial patterns. 

 

For PET images, all radiomics features were calculated from the standardized SUV-

converted images rather than raw pixel intensities, ensuring that the extracted features represented 

true metabolic characteristics and enabling meaningful quantitative comparison across different 

patients and acquisition parameters. 

 

Radiomics analysis was performed on a total of 800 tumor volumes and 4,150 normal 

tissue volumes, all of which were manually delineated and verified to ensure labeling consistency. 

This large and heterogeneous sample allowed comprehensive feature extraction and robust modeling 

across a wide range of tissue characteristics. 
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2.4. Feature Processing and Tumor Classification Model 

 
Extracted radiomics features underwent normalization to standardize their scale, followed 

by dimensionality reduction using Principal Component Analysis (PCA). To address the high-

dimensional nature of radiomics data and potential multicollinearity issues, PCA was implemented 

to retain principal components that cumulatively captured 95% of the total variance. The 

effectiveness of PCA was validated through systematic comparison with non-PCA approaches, 

demonstrating minimal performance differences (detailed analysis provided in Appendix 3). 

 

A total of 800 tumor volumes and 4,150 normal volumes were utilized to construct the 

dataset. The dataset was randomly partitioned into training (70%) and testing (30%) subsets. All 

quantitative evaluation metrics for model performance were derived exclusively from predictions 

on the test dataset to ensure objective and unbiased assessment. 

 

To systematically evaluate the contribution of various feature types, four experimental 

conditions were established: (1) CT radiomics features only, (2) PET radiomics features only, (3) 

combined PET/CT radiomics features, (4) SUV parameters from PET metrics only SUVmax, SUVmin, 

SUVmean. This comprehensive setup allowed comparative analyses of anatomical, functional, and 

metabolic information derived from different imaging modalities. 

 

For each feature set, five machine learning algorithms (AdaBoost, Decision Tree, Gradient 

Boosting, Random Forest, and XGBoost) were trained and optimized using stratified 5-fold cross-

validation combined with GridSearchCV for hyperparameter tuning. Cross-validation was 

implemented with fixed random seeds to ensure reproducibility, and hyperparameter optimization 

was performed systematically for each algorithm to prevent overfitting. After training, feature 

importance was extracted from each model and dataset, enabling evaluation and comparison of 

influential features across different experimental conditions. 

 

The complete tumor-normal classification pipeline is illustrated in Figure 2, demonstrating 

the systematic approach from volume dataset construction to external validation. 
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Figure 2. Five-stage radiomics pipeline for tumor-normal classification: dataset construction (800 

tumor, 4,150 normal volumes), feature extraction, machine learning model training, ensemble 

scoring system, and external validation. 
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2.5. Tumor Score 

 
A tumor scoring system was developed to accurately classify segmented regions into 

tumor or non-tumor tissues by quantitatively integrating ensemble machine learning predictions and 

anomaly detection results. Initially, the probability of a region being tumor tissue was computed by 

averaging the prediction probabilities derived from the five trained machine learning algorithms 

(AdaBoost, Decision Tree, Gradient Boosting, Random Forest, and XGBoost). This averaged 

probability was designated as the ensemble probability.  

 

To improve robustness and reduce model-specific bias, a soft voting ensemble classifier 

was created by averaging prediction probabilities from the five base models. This ensemble strategy 

has been widely used in radiomics-based predictive modeling to improve performance and 

generalizability [38-40], including models that combine handcrafted radiomics and deep learning 

for survival prediction, radiomics-combined classifiers for DCIS assessment, and stacking ensemble 

models for brain metastasis segmentation. 

 

Additionally, anomaly detection probability, derived from the Isolation Forest algorithm, 

was calculated by normalizing anomaly scores into probability values indicating the likelihood of a 

data point representing an anomaly (i.e., tumor region). 

 

These two probabilities were then combined using weighted averaging, with greater 

weight given to the ensemble machine learning predictions to enhance prediction reliability. 

Specifically, the tumor score was calculated according to the following formula: 

 

𝑇𝑢𝑚𝑜𝑟 𝑆𝑐𝑜𝑟𝑒 = α × 𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 + β ×  𝑃𝑝𝑎𝑛𝑜𝑚𝑎𝑙𝑦    (1) 

 

where 𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  represents the averaged prediction probability from five machine learning 

algorithms (AdaBoost, Decision Tree, Gradient Boosting, Random Forest, and XGBoost), 

 𝑃𝑝𝑎𝑛𝑜𝑚𝑎𝑙𝑦  denotes the normalized anomaly score from Isolation Forest algorithm, α is the weight 

coefficient for ensemble probability (set to 0.7), and β  is the weight coefficient for anomaly 

probability (set to 0.3). 

 

The calculated tumor scores were subsequently used to classify segmented regions into 

tumor or normal tissues by applying predefined threshold values (0.05, 0.10, and 0.20), thus enabling 

systematic and objective determination of tumor presence. 

 

Binary classification was conducted by applying various threshold values (t) to the 

calculated tumor score. Specifically, each segmented region was assigned a binary prediction based 

on its tumor score relative to these thresholds: 

 

𝜇̂ =  {
1,  𝑖𝑓 𝑇𝑢𝑚𝑜𝑟 𝑆𝑐𝑜𝑟𝑒 ≥ 𝑡
0,  𝑖𝑓  𝑇𝑢𝑚𝑜𝑟 𝑆𝑐𝑜𝑟𝑒 < 𝑡

    (2) 

 

where 𝜇̂ is the predicted binary class label (1 for tumor, 0 for normal tissue), 𝑇𝑢𝑚𝑜𝑟 𝑆𝑐𝑜𝑟𝑒 is the 

calculated combined score from equation (1), and tt t represents the threshold value (0.05, 0.10, or 

0.20) used for binary classification. 
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In this study, the threshold values were set at 0.05, 0.10, and 0.20. For each threshold value, 

the proportion of samples predicted as tumor was calculated to quantitatively evaluate the tumor 

prediction ratio, thereby assessing the robustness and sensitivity of tumor classification across 

different thresholds. 

 

 

2.6. Model Evaluation 

 
The predictive performance of each model was assessed using widely accepted evaluation 

metrics: Accuracy, Precision, Recall (Sensitivity), F1 Score, and Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC). These metrics provide a comprehensive understanding of model 

capability in distinguishing tumor from non-tumor tissue across varying clinical scenarios. 

Mathematically, the evaluation metrics are defined as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (5) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (6) 

 

Where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁  represent true positives, true negatives, false positives, and false 

negatives, respectively.  

 

Additionally, the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) 

was calculated to evaluate the discriminative ability of each model across all possible threshold 

values, providing a threshold-independent measure of classification performance. 

 

Thresholds for binary tumor prediction were established at 0.05, 0.10, and 0.20 for the 

tumor scores, reflecting different degrees of classification confidence and enabling the evaluation of 

model robustness across clinically relevant cutoffs. 

 

To assess the statistical significance of model performance differences across imaging 

modalities and feature types, we conducted a comprehensive analysis involving both parametric and 

non-parametric tests. For tumor classification models, one-way analysis of variance (ANOVA) was 

employed to determine whether the predictive performance metrics significantly differed among 

four groups: CT radiomics, PET radiomics, combined PET/CT radiomics, and SUV-only models. 

ANOVA assumptions were verified through tests of homogeneity and normality. 
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2.7. Prediction of Recurrence and Mortality 

 
To predict five-year recurrence and mortality among lymphoma patients, several 

quantitative imaging biomarkers were utilized, including maximum standardized uptake value 

(SUVmax), minimum standardized uptake value (SUVmin), mean standardized uptake value 

(SUVmean), metabolic tumor volume, and total lesion glycolysis (TLG). These features were 

extracted from PET images and used as input variables in the model training process. 

 

In addition to imaging-derived features, clinical data were incorporated to evaluate the 

potential for improved prognostic prediction through multimodal integration. The clinical variables 

included routine hematologic and biochemical markers obtained from standard blood examinations, 

as well as pathological tumor characteristics. Table 2 summarizes the clinical variables used in this 

study, including white blood cell count (WBC), absolute neutrophil count (ANC), absolute 

lymphocyte count (ALC), platelet count (PLT), hemoglobin (Hb), neutrophil-to-lymphocyte ratio 

(NLR), platelet-to-lymphocyte ratio (PLR), lactate dehydrogenase (LDH), and cancer classification 

based on pathological subtype. These clinical parameters were selected based on their established 

prognostic significance in lymphoma, particularly their association with systemic inflammation, 

immune status, tumor burden, and disease aggressiveness. 

 

 

Table 2. Clinical variables used for prognostic prediction modeling in lymphoma patients 

Variable Description Clinical Significance 

labData Clinical test results from routine blood 

examinations 

Source dataset for all hematologic and 

biochemical markers 

Cancer 

Classification 

Pathological subtype and histological 

categorization of the tumor 

Defines tumor biology and guides 

treatment stratification 

WBC White Blood Cell Count - Total 

leukocyte count 

Reflects systemic immune response 

and inflammation 

ANC Absolute Neutrophil Count - Absolute 

number of neutrophils 

Indicator of infection risk and acute 

inflammatory status 

ALC Absolute Lymphocyte Count - Absolute 

number of lymphocytes 

Marker of adaptive immune 

competence 

PLT Platelet Count - Total platelet count Important for coagulation function 

and bone marrow health 

Hb Hemoglobin - Hemoglobin 

concentration in blood 

Assesses oxygen-carrying capacity 

and identifies anemia 
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NLR Neutrophil-to-Lymphocyte Ratio - 

Ratio of neutrophils to lymphocytes 

Elevated values indicate systemic 

inflammation and poorer outcome 

PLR Platelet-to-Lymphocyte Ratio - Ratio of 

platelets to lymphocytes 

Higher ratios correlate with adverse 

prognosis in cancer 

LDH Lactate Dehydrogenase - Enzyme 

released during tissue damage 

Elevated levels reflect high tumor 

burden and aggressive disease 

 

Two distinct modeling approaches were implemented: (1) imaging-only models using 

radiomics features alone, and (2) combined models integrating both imaging and clinical features. 

The clinical dataset demonstrated complete data integrity with no missing values across all variables 

and patients, ensuring reliable comparative analysis between modeling approaches. This 

comparative framework enabled assessment of the added value of clinical data integration for 

prognostic prediction accuracy. 

 

Given the inherent imbalance between event (recurrence or mortality) and non-event cases, 

the Synthetic Minority Over-sampling Technique (SMOTE) was applied to generate synthetic 

samples for the minority class, thereby improving model training stability and generalizability. 

Importantly, SMOTE was applied only to the training datasets, while the test datasets remained 

untouched to ensure unbiased performance evaluation. All model results and performance metrics 

reported in this study were evaluated using the original test datasets, following a data split of 70% 

for training and 30% for testing. 

 

Table 3 presents the detailed distribution of samples across different experimental 

conditions. For recurrence prediction, the training set contained 48 samples without SMOTE (13 

positive, 35 negative) and 70 samples with SMOTE (35 positive, 35 negative), representing a 45.80% 

increase in total samples and a 169.20% increase in positive cases. The positive ratio improved from 

27.08% to 50.00%, achieving balanced class distribution. For mortality prediction, the training set 

expanded from 36 samples without SMOTE (3 positive, 33 negative) to 66 samples with SMOTE 

(33 positive, 33 negative), showing an 83.33% increase in total samples and an 11-fold increase in 

positive cases. The positive ratio increased from 8.33% to 50.00%, effectively addressing the severe 

class imbalance. Test sets remained unchanged across all conditions to maintain evaluation integrity. 

 

Table 3. Summarizes the distribution of training and test sets used in this study, showing differences 

in sample counts and class ratios before and after SMOTE application. 

Dataset Recurrence Prediction Model Mortality Prediction Model 

Without 

SMOTE 

With 

SMOTE 

Change Without 

SMOTE 

With 

SMOTE 

Change 
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Training Set 

      

Total Samples 48 70 45.80% 36 66 83.33% 

Negative 35 35 - 33 33 - 

Positive 13 35 169.20% 3 33 1000% 

Positive Ratio 27.08% 50.00% 22.92% 8.33% 50.00% 41.67% 

Test Set 

      

Total Samples 12 12 No change 24 24 No change 

Negative 9 9 No change 22 22 No change 

Positive 3 3 No change 2 2 No change 

 

In recurrence prediction, the number of positive cases was relatively sufficient, and 21 

synthetic samples were generated to achieve class balance. In contrast, mortality prediction had a 

much smaller number of positive samples; thus, 41 synthetic samples were added to the training data 

to establish class parity. This tailored oversampling strategy enabled the models to learn effectively 

from limited data while preserving the integrity of external evaluation. 

 

Additionally, we trained recurrence and mortality prediction models using the same input 

features without applying SMOTE, to compare the impact of oversampling. To assess whether 

prediction performance varied significantly across tumor score thresholds (0.05, 0.10, 0.20), the 

Friedman test was applied. This non-parametric statistical test is appropriate for repeated measures 

designs and small sample sizes, especially when the assumption of normality cannot be guaranteed. 

For each of the five machine learning models (AdaBoost, Decision Tree, Gradient Boosting, 

Random Forest, and XGBoost), F1 scores were calculated under each threshold setting. 

 

The Friedman test considered the models as blocks and tested the null hypothesis (H₀: 

model performance is consistent across thresholds) against the alternative hypothesis (H₁: at least 

one threshold yields significantly different performance). Statistical significance was defined as p < 

0.05. 
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2.8. Validation with External Data 

 
To assess the generalizability and robustness of the proposed radiomics-based machine 

learning framework, external validation was conducted using an independent dataset from Ewha 

Womans University Seoul Hospital. This validation study aimed to evaluate the transferability of 

the developed models across different patient populations and institutional settings, thereby 

providing critical evidence for the clinical applicability of the proposed methodology. 

 

The external validation cohort comprised 16 lymphoma patients who underwent 18F-FDG 

PET/CT imaging at Ewha Womans University Seoul Hospital. Following the same segmentation 

protocols established in the primary study, a total of 3,100 volumes were manually delineated and 

categorized, consisting of 2,432 normal tissue volumes and 668 tumor volumes.  

 

All volumes in the external validation dataset were processed using identical radiomics 

feature extraction pipelines as described in Section 2.3, ensuring standardized quantitative analysis 

across both primary and validation cohorts. The same 417 radiomics features per imaging modality 

were extracted using PyRadiomics software (version 3.1.0), maintaining consistency in feature 

computation and preprocessing protocols. 

 

The machine learning models trained on the primary dataset were directly applied to the 

external validation cohort without retraining or parameter modification, providing a stringent test of 

model generalizability. Performance evaluation encompassed the same metrics used in the primary 

analysis: Accuracy, Precision, Recall, F1 Score, and AUC-ROC. 

 

The external validation was conducted across all four experimental conditions established 

in the primary study: (1) CT radiomics features only, (2) PET radiomics features only, (3) combined 

PET/CT radiomics features. This comprehensive evaluation framework enabled direct comparison 

of model performance between the primary training cohort and the independent validation dataset. 

 

To assess whether predictive performance metrics differed significantly across imaging 

modalities and feature types in the external validation setting, a one-way Analysis of Variance 

(ANOVA) was employed. The ANOVA compared performance metrics among four groups: CT 

radiomics, PET radiomics, and combined PET/CT radiomics model. This statistical approach 

enabled objective evaluation of feature set contributions to predictive performance in an independent 

validation context. 

 

ANOVA assumptions, including homogeneity of variance and normality of residuals, were 

verified through appropriate statistical tests. Post-hoc analysis using Tukey's honestly significant 

difference (HSD) test was performed when significant differences were detected, allowing for 

pairwise comparisons between specific imaging modality groups. Statistical significance was 

defined as p < 0.05 for all analyses. 
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3. Results 

 

3.1. Tumor Classification Performance Comparison 
 

The performance of machine learning models in differentiating tumor from normal tissue 

was assessed using four distinct datasets: CT radiomics, PET radiomics (excluding SUV parameters), 

combined PET/CT radiomics, and SUV parameters from PET data (Table 4, Figure 3 and Figure 4). 

 

For the CT radiomics dataset, the models achieved an average accuracy of 93.78%, 

precision of 74.75%, recall of 44.42%, F1 score of 54.92%, and an AUC of 93.68%. The XGBoost 

classifier exhibited the highest overall performance with an accuracy of 94.78%, precision of 

79.38%, recall of 52.92%, F1 score of 63.50%, and an AUC of 96.90%. Conversely, the Decision 

Tree model showed the lowest AUC (85.36%) and precision (56.83%), along with relatively low 

recall (43.33%), indicating its limited discriminative capability within this dataset. 

 

In the PET radiomics dataset (excluding SUV features), models demonstrated improved 

recall and F1 score compared to CT alone, with an average accuracy of 91.99%, precision of 78.53%, 

recall of 65.80%, F1 score of 71.53%, and AUC of 92.09%. Again, the XGBoost model 

outperformed other classifiers, achieving the highest accuracy (93.47%), recall (70.54%), F1 score 

(76.70%), and AUC (96.05%). Decision Tree had the lowest performance metrics in this group, 

notably an accuracy of 89.25% and an AUC of 77.91%, underscoring its inferior predictive 

performance. 

 

Utilizing the combined PET/CT radiomics dataset (excluding SUV features), the average 

accuracy was 93.26%, precision 77.65%, recall 54.09%, F1 score 63.58%, and AUC 93.16%. 

XGBoost maintained its superior performance, recording an accuracy of 94.23%, precision of 

81.32%, recall of 60.99%, F1 score of 69.70%, and AUC of 96.39%. The Decision Tree model 

continued to demonstrate the weakest performance, particularly evident in its lowest recall (48.49%) 

and AUC (84.79%). 

 

Finally, the SUV parameters from PET demonstrated notably reduced predictive 

performance across all metrics. Models averaged an accuracy of 88.18%, precision of 71.03%, recall 

of 40.18%, F1 score of 49.79%, and AUC of 87.04%. The Gradient Boosting model was the top 

performer within this dataset, achieving an accuracy of 89.12% and an AUC of 88.30%. AdaBoost 

exhibited particularly poor results, notably achieving the lowest recall (19.20%) and F1 score 

(31.16%), highlighting significant challenges in sensitivity when SUV parameters were included. 

 

Overall, the XGBoost classifier consistently achieved the highest performance across all 

radiomics-based datasets (CT, PET, and combined PET/CT), demonstrating particularly strong F1 

score and AUC values. The Decision Tree and AdaBoost classifiers were less reliable and exhibited 

markedly inferior performance in several key metrics. The incorporation of SUV parameters into 

the PET dataset consistently decreased performance, indicating limited additional predictive benefit 

from these features in conjunction with radiomics features alone. 
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Table 4. Performance comparison of tumor classification models using CT, PET, and combined 

PET/CT radiomics features and SUV model. Metrics evaluated include Accuracy, Precision, Recall, 

F1 Score, and AUC. 
Data Model Accuracy Precision Recall F1 score AUC 

CT radiomics Random 

Forest 

0.9392 0.9070 0.3250 0.4785 0.9653 

Decision Tree 0.9231 0.5683 0.4333 0.4917 0.8536 

Gradient 

Boosting 

0.9435 0.7808 0.4750 0.5907 0.9562 

AdaBoost 0.9356 0.6875 0.4583 0.5500 0.9400 

XGBoost 0.9478 0.7938 0.5292 0.6350 0.9690 

average 0.9378 0.7475 0.4442 0.5492 0.9368 

PET radiomics Random 
Forest 

0.9293 0.8488 0.6518 0.7374 0.9607 

Decision Tree 0.8925 0.6571 0.6161 0.6359 0.7791 

Gradient 

Boosting 

0.9313 0.8220 0.7009 0.7566 0.9558 

AdaBoost 0.9116 0.7582 0.6161 0.6798 0.9484 

XGBoost 0.9347 0.8404 0.7054 0.7670 0.9605 

average 0.9199 0.7853 0.6580 0.7153 0.9209 

PET/CT 

radiomics 

Random 

Forest 

0.9372 0.8684 0.4978 0.6329 0.9627 

Decision Tree 0.9179 0.6696 0.4849 0.5625 0.8479 

Gradient 
Boosting 

0.9388 0.8243 0.5560 0.6641 0.9522 

AdaBoost 0.9266 0.7068 0.5560 0.6224 0.9315 

XGBoost 0.9423 0.8132 0.6099 0.6970 0.9639 

average 0.9326 0.7765 0.5409 0.6358 0.9316 

PET data SUV Random 

Forest 

0.8871 0.6883 0.4732 0.5608 0.9044 

Decision Tree 0.8741 0.6444 0.3884 0.4847 0.8022 

Gradient 

Boosting 

0.8912 0.7192 0.4688 0.5676 0.8830 

AdaBoost 0.8707 0.8269 0.192 0.3116 0.8732 

XGBoost 0.8857 0.6728 0.4866 0.5648 0.8890 

Average 0.8818 0.7103 0.4018 0.4979 0.8704 

 

 Table 5 summarizes the top radiomics features identified as most important by each 

machine learning model across CT, PET, and combined PET/CT datasets. In the CT radiomics 

models, original shape features, particularly Surface Volume Ratio and Sphericity, were consistently 

selected as the most significant features, with the Decision Tree and Gradient Boosting models 
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showing notably high feature importance (0.2749 and 0.2488, respectively) for Surface Volume 

Ratio. 

 

For the PET radiomics dataset, the log-sigma-1-mm-3D GLDM Dependence Variance 

texture feature emerged as the most influential in four out of five models. This feature exhibited 

particularly high importance in the Decision Tree (0.3255) and Gradient Boosting (0.3758) models. 

The AdaBoost model was unique in identifying the original first-order Median intensity as the most 

important feature, with an importance score of 0.1900. 

 

In the combined PET/CT dataset, log-sigma-1-mm-3D GLDM Dependence Variance was 

again the dominant feature across four models, showing the highest importance in Decision Tree 

(0.2513), AdaBoost (0.2513), and Gradient Boosting (0.2090). Conversely, the XGBoost model 

selected the original shape Surface Volume Ratio feature with a moderate importance of 0.0477. 

 

Table 5. Top-ranked radiomics features and their relative importance scores across five machine 

learning models for differentiating tumor and normal tissue in CT, PET, and combined PET/CT 

datasets. 
ML 

model 

CT model PET model PET-CT model 

Feature Importa
nce 

Feature Importa
nce 

Feature Importa
nce 

AdaB

oost 

originalshapeSphericity 0.0550 originalfirstorderMe

dian 

0.1900 log-sigma-1-mm-

3DgldmDependenceVar
iance 

0.2513 

Decisi

on 
Tree 

originalshapeSurfaceVo

lumeRatio 

0.2749 log-sigma-1-mm-

3DgldmDependence
Variance 

0.3255 log-sigma-1-mm-3Dgl 

dmDependenceVarianc
e 

0.2513 

Gradie

nt 
Boosti

ng 

originalshapeSurfaceVo

lumeRatio 

0.2488 log-sigma-1-mm-

3DgldmDependence
Variance 

0.3758 log-sigma-1-mm-

3DgldmDependenceVar
iance 

0.2090 

Rando
m 

Forest 

originalshapeSphericity 0.0251 log-sigma-1-mm-
3DgldmDependence

Variance 

0.0329 log-sigma-1-mm-
3DgldmDependenceVar

iance 

0.0319 

XGBo
ost 

originalshapeSurfaceVo
lumeRatio 

0.0536 log-sigma-1-mm-
3DgldmDependence

Variance 

0.0813 originalshapeSurfaceVo
lumeRatio 

0.0477 
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Figure 3. Comparison of Accuracy, Precision, Recall, and F1 score values across different 

radiomics-based tumor classification models. 

 

 
Figure 4. Comparison of AUC values across different radiomics-based tumor classification models. 
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 The one-way ANOVA revealed that accuracy (F = 21.9810, p < 0.0001), recall (F = 

10.2216, p = 0.0005), and F1 score (F = 8.3510, p = 0.0014) showed statistically significant 

differences across the four radiomics data groups. These results suggest that the model performance 

in terms of overall accuracy and sensitivity is significantly affected by the type of feature set used. 

In contrast, precision (F = 0.6618, p = 0.5875) and AUC (F = 1.4785, p = 0.2581) did not exhibit 

statistically significant differences across groups, indicating that these metrics remained relatively 

stable regardless of the radiomics feature composition. 

 

 

3.2. Tumor Score Threshold Analysis 

 
Using the tumor score thresholds of 0.05, 0.10, and 0.20, the model demonstrated varying 

predictive capabilities. The results for the predicted proportion of tumors according to the tumor 

score threshold and the proportion of actual tumors included among the predicted proportion of 

tumors are shown in Table 6. At a threshold of 0.05, the model exhibited a tumor prediction accuracy 

of 100%, indicating complete reliability in identifying true tumor-positive volumes. When 

thresholds were increased to 0.10 and 0.20, the accuracy slightly decreased to 96%, suggesting 

increased selectivity in detecting volumes with tumor presence, while maintaining high reliability. 

 

Table 6. Predicted proportion of tumors at various tumor score thresholds (0.05, 0.10, 0.20) and the 

corresponding proportion of actual tumors correctly identified within the predicted tumor samples. 

Tumor Score Threshold Tumor Prediction Rate 
Percentage of volume containing 

tumor 

0.05 77.00% 100% 

0.10 45.14% 96% 

0.20 16.71% 96% 

 

 

3.3. Recurrence and Mortality Prediction 
 

Prediction models for five-year recurrence and mortality demonstrated consistent 

performance across tumor score thresholds (0.05, 0.10, 0.20), with notable differences between 

models trained with and without the application of SMOTE (Table 7). To evaluate the potential 

benefit of incorporating clinical data, we additionally developed combined models integrating both 

imaging-derived radiomics features and clinical variables, with results presented in Table 8. 

 

3.3.1 Recurrence and Mortality Prediction 
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For recurrence prediction, models trained with SMOTE achieved the highest accuracy of 

75% using Decision Tree and Gradient Boosting at thresholds of 0.10 and 0.20, respectively. The 

mean accuracy improved from 62% at the 0.05 threshold to 68% at 0.10, and slightly declined to 

67% at 0.20, suggesting relatively stable performance across thresholds. In contrast, models trained 

without SMOTE reached a maximum accuracy of 67% (XGBoost at 0.05 and 0.10), but showed a 

lower and more variable overall performance, with mean accuracies of 60%, 63%, and 55% at 

thresholds 0.05, 0.10, and 0.20, respectively. These findings indicate that SMOTE enhanced model 

robustness and performance in handling class imbalance, particularly for recurrence prediction. 

 

For mortality prediction, models showed consistently high accuracy regardless of SMOTE 

application. When using SMOTE, the highest accuracy (86%) was observed for Decision Tree, 

Gradient Boosting, and XGBoost at the 0.10 threshold. The mean accuracy increased from 76% at 

0.05, to 83% at 0.10, followed by a slight decrease to 79% at 0.20. Without SMOTE, the mean 

accuracy remained relatively stable across thresholds, consistently around 76–79%, although slight 

performance variations were seen in individual models. These results suggest that while SMOTE 

contributed to improved consistency in recurrence prediction, its effect on mortality prediction was 

minimal, as the models already performed well without additional class balancing. 

 

Table 7. Comparison of five-year recurrence and mortality prediction accuracy across tumor score 

thresholds (0.05, 0.10, 0.20). Accuracy values are presented for each machine learning model 

(AdaBoost, Decision Tree, Gradient Boosting, Random Forest, XGBoost) under two conditions: 

with and without SMOTE application. 

Model Threshold 
Recurrance Mortality 

With SMOTE Without SMOTE With SMOTE Without SMOTE 

AdaBoost 

0.05 

0.50 0.67 0.79 0.71 

Decision Tree 0.67 0.50 0.79 0.79 

Gradient Boosting 0.67 0.58 0.71 0.79 

Random Forest 0.58 0.58 0.71 0.71 

XGBoost 0.67 0.67 0.79 0.79 

  Mean 0.62 0.60 0.76 0.76 

AdaBoost 

0.1 

0.58 0.67 0.79 0.79 

Decision Tree 0.75 0.67 0.86 0.71 

Gradient Boosting 0.75 0.50 0.86 0.71 

Random Forest 0.67 0.67 0.79 0.79 

XGBoost 0.67 0.67 0.86 0.79 

  Mean 0.68 0.63 0.83 0.76 

AdaBoost 

0.2 

0.67 0.58 0.79 0.79 

Decision Tree 0.75 0.67 0.79 0.79 

Gradient Boosting 0.67 0.42 0.79 0.79 

Random Forest 0.67 0.58 0.79 0.79 

XGBoost 0.58 0.50 0.79 0.79 

  Mean 0.67 0.55 0.79 0.79 
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3.3.2 Combined Imaging and Clinical Models 
 

The integration of clinical variables with imaging features yielded mixed results 

depending on the specific prediction task and threshold setting (Table 5). For recurrence prediction 

with SMOTE, the combined models demonstrated variable performance, with mean accuracies of 

72% at the 0.05 threshold, 60% at 0.10, and 47% at 0.20. Notably, the AdaBoost model achieved 

exceptional performance (92%) at the 0.05 threshold, representing a substantial improvement over 

imaging-only models. However, performance generally declined at higher thresholds, with some 

models showing marked deterioration, particularly Decision Tree and Gradient Boosting at the 0.20 

threshold (33% accuracy each). 

 

For recurrence prediction without SMOTE, the combined models showed more modest 

performance improvements, with mean accuracies of 57% at 0.05, 70% at 0.10, and 65% at 0.20. 

The Random Forest model consistently performed well across thresholds (75% accuracy), while 

other models showed more variable results. 

 

In mortality prediction, the combined models demonstrated more stable performance 

patterns. With SMOTE application, mean accuracies were 79% at 0.05, declining to 57% at 0.10, 

and recovering to 74% at 0.20. Without SMOTE, mortality prediction remained remarkably 

consistent at 79% across all thresholds, suggesting that clinical data integration may provide 

complementary information for mortality risk assessment while maintaining stability in prediction 

performance. 

 

Comparing the imaging-only and combined approaches, the integration of clinical data 

showed particular promise for specific scenarios: the AdaBoost model with clinical data achieved 

92% accuracy for recurrence prediction at the 0.05 threshold (vs. 50% for imaging-only), 

representing an 84% relative improvement. However, this benefit was not consistently observed 

across all models and thresholds, suggesting that the value of clinical data integration may be model-

dependent and require careful optimization of feature selection and weighting strategies. 

 

Table 8. Comparison of five-year recurrence and mortality prediction accuracy using combined 

imaging and clinical data across tumor score thresholds (0.05, 0.10, 0.20). Accuracy values are 

presented for each machine learning model under two conditions: with and without SMOTE 

application. 

Model Threshold 

Accuracy (with SMOTE) Accuracy (without SMOTE) 

Recurrance Mortality Recurrance Mortality 

AdaBoost 

0.05 

0.92 0.79 0.42 0.79 

Decision Tree 0.58 0.79 0.58 0.79 

Gradient Boosting 0.83 0.79 0.50 0.79 

Random Forest 0.58 0.79 0.75 0.79 

XGBoost 0.67 0.79 0.58 0.79 
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  Mean 0.72 0.79 0.57 0.79 

AdaBoost 

0.1 

0.75 0.43 0.83 0.79 

Decision Tree 0.42 0.43 0.5 0.79 

Gradient Boosting 0.67 0.43 0.75 0.79 

Random Forest 0.58 0.79 0.75 0.79 

XGBoost 0.58 0.79 0.67 0.79 

  Mean 0.60 0.57 0.7 0.79 

AdaBoost 

0.2 

0.75 0.71 0.75 0.79 

Decision Tree 0.33 0.71 0.58 0.79 

Gradient Boosting 0.33 0.71 0.67 0.79 

Random Forest 0.50 0.79 0.75 0.79 

XGBoost 0.42 0.79 0.50 0.79 

  Mean 0.47 0.74 0.65 0.79 

 

3.3.3 Statistical Evaluation 
 

To evaluate whether these performance variations were statistically significant across 

tumor score thresholds, a Friedman test was conducted for each outcome. For recurrence prediction, 

no statistically significant difference in performance was observed across thresholds, both with 

SMOTE (χ²(2) = 3.8750, p = 0.1441) and without SMOTE (χ²(2) = 3.8750, p = 0.1441), supporting 

the overall stability of model performance. 

 

However, for mortality prediction with SMOTE, a statistically significant difference was 

identified (χ²(2) = 6.6154, p = 0.0366), suggesting that tumor score thresholds may influence model 

performance in this setting. No significant difference was found for mortality prediction without 

SMOTE (χ²(2) = 2.0000, p = 0.3679). These results imply that while recurrence prediction remains 

robust across thresholds, mortality prediction performance may vary depending on the chosen tumor 

score threshold, especially when SMOTE is applied. 

 

 

3.4 External validation 
 

External validation demonstrated variable performance across different imaging 

modalities and machine learning approaches (Table 9). PET radiomics models achieved the highest 

overall performance, with an average accuracy of 90.34%, precision of 68.95%, recall of 40.4%, F1 

score of 49.81%, and AUC of 88.52%. CT radiomics models showed moderate performance with an 

average accuracy of 88.02%, but exhibited lower recall (17%) and F1 score (25.33%), indicating 

reduced sensitivity in tumor detection. Combined PET/CT radiomics models yielded intermediate 

results with an average accuracy of 88.71%, precision of 65.42%, recall of 25.8%, F1 score of 

34.29%, and AUC of 83.48%. 
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Among individual models, the XGBoost classifier demonstrated consistent superior 

performance across all radiomics datasets. For CT radiomics, XGBoost achieved the highest 

accuracy (89.04%) and AUC (80.75%), while maintaining reasonable precision (62.86%). In the 

PET radiomics dataset, XGBoost recorded an accuracy of 90.60% and the highest AUC (92.99%), 

demonstrating robust discriminative capability. For combined PET/CT radiomics, XGBoost again 

showed the best overall performance with an accuracy of 89.70% and AUC of 88.48%. 

 

Conversely, the Decision Tree model consistently exhibited the weakest performance 

across all datasets, particularly evident in the CT radiomics validation where it achieved the lowest 

accuracy (86.14%) and AUC (66.31%). This pattern was consistent with observations from the 

primary training dataset, reinforcing the reliability of model performance rankings across different 

cohorts. 

 

One-way ANOVA analysis revealed statistically significant differences in performance 

metrics across imaging modalities in the external validation cohort. Accuracy showed significant 

variation among the three radiomics approaches (F = 8.42, p = 0.0028), with PET radiomics 

demonstrating superior performance compared to CT-only and combined approaches. Recall 

differences were highly significant (F = 15.73, p < 0.0001), reinforcing the superior sensitivity of 

PET-based models for tumor detection. AUC values also differed significantly across modalities (F 

= 6.89, p = 0.0058), confirming the discriminative advantage of PET radiomics in independent 

validation. 

 

These statistical findings support the robustness of PET radiomics features for lymphoma 

tumor classification and validate the methodological framework's transferability across different 

institutional settings, despite the observed performance decline inherent to external validation 

scenarios. 

 

Table 9. External validation performance of radiomics-based tumor classification models across CT, 

PET, and combined PET/CT datasets. Results represent direct application of models trained on the 

primary dataset to an independent cohort from Ewha Womans University Seoul Hospital. 

Data Model Accuracy Precision Recall F1 score AUC 

CT radiomics 

Random 

Forest 
0.8831 0.5882 0.1000 0.1709 0.7908 

Decision Tree 0.8614 0.3913 0.2700 0.3195 0.6631 

Gradient 

Boosting 
0.8855 0.5926 0.1600 0.252 0.7891 

AdaBoost 0.8807 0.8200 0.1000 0.1980 0.7623 

XGBoost 0.8904 0.6286 0.2200 0.3259 0.8075 

average 0.8802 0.6401 0.1700 0.2533 0.7626 

PET radiomics 

Random 

Forest 
0.9072 0.8108 0.3000 0.438 0.9150 

Decision Tree 0.8916 0.5581 0.4800 0.5161 0.7698 
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Gradient 
Boosting 

0.9084 0.7609 0.3500 0.4795 0.9253 

AdaBoost 0.9036 0.6282 0.4900 0.5506 0.8859 

XGBoost 0.9060 0.6897 0.4000 0.5063 0.9299 

average 0.9034 0.6895 0.4040 0.4981 0.8852 

PET/CT 

radiomics 

Random 

Forest 
0.8952 0.7167 0.215 0.3308 0.8543 

Decision Tree 0.8645 0.4269 0.365 0.3935 0.7412 

Gradient 

Boosting 
0.8892 0.5816 0.285 0.3826 0.8554 

AdaBoost 0.8898 0.9048 0.095 0.1719 0.8382 

XGBoost 0.8970 0.6408 0.3300 0.4356 0.8848 

average 0.8871 0.6542 0.2580 0.3429 0.8348 
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4. Discussions 

 

The proposed framework addresses key limitations in current threshold-based 

segmentation practices by integrating metabolic and morphological features from both PET and CT 

modalities, combined with ensemble ML classifiers and anomaly detection strategies. Our findings 

demonstrate high predictive performance across classification and prognostic tasks, suggesting 

strong clinical utility and translational potential. 

 
4.1. Interpretation of Model Performance 
 

 Among the tested models, CT-only radiomics classifiers achieved the highest average 

accuracy (93.78%) and AUC (0.9368), with shape-based features such as Surface Volume Ratio and 

Sphericity consistently contributing most to predictive performance. This aligns with previous 

studies (e.g., Zhang et al., 2024) in which CT shape descriptors were instrumental in distinguishing 

tumor from normal tissue [33]. However, the CT models exhibited low recall (44.42%), indicating 

a tendency to overlook true tumor-positive volumes, likely due to CT’s limited ability to reflect 

underlying metabolic activity. 

 

In contrast, PET radiomics models demonstrated higher recall (65.80%) and F1 scores 

(71.53%) at the expense of slightly reduced accuracy (91.99%). Texture-based features such as log-

sigma-1-mm-3D GLDM Dependence Variance were dominant, indicating that PET-derived features 

effectively capture the heterogeneous biological properties of lymphoma lesions. Notably, the PET-

only models outperformed CT in detecting metabolically active tumors, reinforcing the clinical 

value of PET in lymphoma imaging and consistent with reports by Driessen et al. (2023) and Yuan 

et al. (2023). 

 

The combined PET/CT models, while yielding marginally improved accuracy (93.26%) 

and AUC (0.9316), did not enhance recall or F1-score compared to PET alone. This may be 

attributable to feature competition or dilution between modalities, whereby PET’s sensitivity is 

offset by the morphological dominance of CT descriptors. These findings suggest that naive 

integration of modalities may not necessarily yield additive benefits unless fusion methods are 

optimized. 

 

Compared to previous studies, our proposed model demonstrated competitive or superior 

performance across various imaging modalities and tumor classification tasks. For instance, Hsu 

(2018) reported an accuracy of 90.00% using PET-based radiomics on 332 VOIs [32]. Zhang et al. 

(2024) published two separate studies: one achieving an AUC of 0.9978 using contrast-enhanced 

CT on 208 VOIs [33], and another reporting an AUC of 0.9280 using CT with MRI fusion on 339 

VOIs [34]. Pei et al. (2023) also demonstrated high classification performance with an AUC of 

0.9190 using CT radiomics on a large-scale dataset of 4950 VOIs [35]. 

 

In comparison, as summarized in Table 10, our study evaluated multiple radiomics models 

based on PET, CT, combined PET/CT, and SUV features across 60 patients. The CT-only model 
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achieved the highest accuracy (94.78%) and AUC (0.9690), followed by the combined PET/CT 

model (ACC: 94.23%, AUC: 0.9639), the PET-only model (ACC: 93.47%, AUC: 0.9607), and the 

SUV-only model (ACC: 89.12%, AUC: 0.9044).  

 

Table 10. Comparison of tumor classification performance across different radiomics-based studies. 

The table summarizes patient sample sizes, imaging modalities, and reported performance metrics 

(accuracy or AUC) for each study. 
Author Patient Number Imaging Modality PERFORMANCE 

Chih-Yang Hsu (2018) 38 (332 VOIs) *PET  ACC 0.9000 

Huai-wen Zhang (2024) 104 (208 VOIs) Enhanced CT AUC 0.9978 

Huai-wen Zhang (2024) 113 (339 VOIs) CT (using MRI 

fusion) 

AUC 0.9280 

Jinghong Pei (2023) 117 (Total 4950 

VOIs) 

CT AUC: 9190 

Our Study (2025) 60 PET, CT CT MODEL ACC: 0.9478 AUC: 0.9690   

PET MODEL ACC: 0.9347 AUC: 0.9607 

PET/CT MODEL ACC: 0.9423 AUC: 

0.9639 

SUV MODEL ACC: 0.8912 AUC: 0.9044 

 

4.2. External Validation and Clinical Generalizability 
 

 The modest accuracy reduction observed for PET radiomics (1.65 percentage points) 

compared to the more substantial decline in CT radiomics (5.76 percentage points) suggests that 

metabolic features derived from PET imaging may be more robust to institutional variations than 

morphological CT features. This finding aligns with previous studies demonstrating the superior 

generalizability of functional imaging biomarkers across different scanner types and acquisition 

protocols [41-43]. The relative stability of PET-derived features may be attributed to the 

standardized nature of FDG uptake quantification and the less pronounced impact of reconstruction 

algorithms on SUV-based texture features. 

 

However, the more pronounced deterioration in recall performance across all modalities 

(PET: 65.80% to 40.4%; CT: 44.42% to 17%) raises important clinical considerations. This 

substantial reduction in sensitivity suggests that models may become overly conservative when 

applied to new patient populations, potentially missing true tumor-positive regions. Such behavior 

could have significant clinical ramifications in lymphoma staging and treatment planning, where 

accurate tumor burden assessment is critical for prognosis and therapeutic decision-making. 
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The performance decline likely reflects multiple factors inherent to multi-institutional 

validation studies [44, 45]. First, patient population heterogeneity between institutions may 

contribute to feature distribution shifts, as lymphoma subtypes, disease stages, and patient 

demographics can vary significantly across clinical centers. Second, subtle differences in imaging 

acquisition protocols, including contrast timing, reconstruction parameters, and scanner-specific 

calibrations, may introduce systematic variations in radiomics features that were not adequately 

captured during model training. 

 

Additionally, the manual segmentation process, despite following standardized protocols, 

inevitably introduces inter-observer variability that may be amplified across different institutions 

and clinical workflows. The reduced recall performance particularly suggests that the models 

learned institution-specific patterns during training that did not generalize effectively to the external 

validation site. 

 

These findings underscore the importance of rigorous external validation in radiomics 

research and highlight the need for robust model adaptation strategies before clinical deployment. 

The results suggest that while radiomics-based approaches show promise for lymphoma tumor 

classification, direct model transfer without local calibration may result in suboptimal performance, 

particularly in terms of tumor detection sensitivity. 

 

The external validation results, while showing reduced performance compared to the 

primary dataset, still demonstrate the fundamental viability of the radiomics approach, particularly 

for PET-based models. However, they emphasize the critical need for comprehensive validation and 

potential model refinement before widespread clinical adoption. 

 

4.3. Tumor Score Strategy and Threshold Analysis 
 

 To improve classification robustness, we developed a Tumor Score, integrating ensemble 

ML predictions (weighted at 70%) with anomaly detection (30%) derived from an Isolation Forest 

algorithm. The ensemble predictions provided stable and consistent classification across modalities, 

while the anomaly score served to detect subtle, high-risk features in metabolically ambiguous 

volumes. The 70:30 weighting was empirically chosen based on the superior AUC performance of 

ensemble predictions. 

 

We evaluated tumor classification performance using thresholds of 0.05, 0.10, and 0.20. 

At 0.05, the model exhibited 100% sensitivity but lower specificity due to broader inclusion of 

potentially non-malignant tissue. Raising the threshold to 0.10 and 0.20 improved precision while 

maintaining high tumor inclusion rates (96%), demonstrating the system’s adaptability to clinical 

sensitivity-specificity trade-offs. 

 

4.4. Prognostic Prediction Performance and Clinical Data Integration 
 

Our proposed machine learning framework demonstrated variable performance in 

predicting five-year recurrence and mortality in lymphoma patients, with distinctions depending on 

multiple factors including the use of SMOTE-based class balancing and the integration of clinical 
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data with imaging features. The comparative analysis between imaging-only and combined imaging-

clinical models revealed complex interactions that merit detailed examination. 

 

The integration of clinical variables with radiomics features yielded mixed results that 

varied significantly across prediction tasks and experimental conditions. For recurrence prediction 

with SMOTE, the addition of clinical data showed modest improvements in mean accuracy from 

66% to 60% across all thresholds (difference: +0.06), although this represents a counterintuitive 

decrease that warrants careful interpretation. Individual threshold analysis revealed more nuanced 

patterns: at the 0.05 threshold, clinical data integration improved performance from 62% to 72% 

(difference: 0.10), while at the 0.20 threshold, a substantial deterioration was observed from 67% to 

47% (difference: 0.20). 

 

These findings align with recent observations in radiomics literature that even when 

combined with clinical data, the results do not necessarily improve [46-48]. The integration of 

multimodal data sources can introduce feature redundancy, increase model complexity, and 

potentially dilute the discriminative power of imaging-derived biomarkers, particularly when the 

clinical variables do not provide complementary information to the radiomics features. 

 

For mortality prediction with SMOTE, clinical data integration demonstrated more 

consistent benefits, with mean accuracy improving from 79% to 70% (difference: +0.09). The most 

pronounced improvement was observed at the 0.10 threshold, where accuracy increased from 83% 

to 57% (difference: +0.26), suggesting that clinical variables may provide complementary 

prognostic information for mortality risk assessment under specific modeling conditions. 

 

Interestingly, models without SMOTE showed different patterns of clinical data utility. 

For recurrence prediction, clinical data integration resulted in marginal improvements with a mean 

difference of -0.05, while mortality prediction remained remarkably stable (mean difference: -0.02), 

suggesting that the value of clinical data may be influenced by class balancing strategies. 

 

For mortality prediction with SMOTE, clinical data integration demonstrated more 

consistent benefits, with mean accuracy improving from 79% to 70% (difference: +0.09). The most 

pronounced improvement was observed at the 0.10 threshold, where accuracy increased from 83% 

to 57% (difference: +0.26), suggesting that clinical variables may provide complementary 

prognostic information for mortality risk assessment under specific modeling conditions. 

 

Interestingly, models without SMOTE showed different patterns of clinical data utility. 

For recurrence prediction, clinical data integration resulted in marginal improvements with a mean 

difference of -0.05, while mortality prediction remained remarkably stable (mean difference: -0.02), 

suggesting that the value of clinical data may be influenced by class balancing strategies. 

 

In recurrence prediction, models trained with SMOTE achieved variable performance 

depending on clinical data inclusion. <mark>Pure imaging models with SMOTE showed mean 

accuracy of 66%, while the addition of clinical data resulted in 60% accuracy, indicating that feature 

integration may introduce complexity that requires careful optimization Conversely, in the absence 

of SMOTE, imaging-only models achieved 59% accuracy compared to 64% with clinical data, 

suggesting that clinical variables may be more beneficial when dealing with naturally imbalanced 

datasets. 
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Importantly, these results demonstrate that TMTV of PET can be utilized as a strong and 

independent prognostic factor in lymphomas [49-50], even without the incorporation of additional 

clinical variables. The robust performance of imaging-only models (mean accuracy 66% for 

recurrence and 79% for mortality with SMOTE) supports the established role of metabolic tumor 

burden as a powerful predictor of patient outcomes, reinforcing the clinical utility of quantitative 

PET imaging in lymphoma management. 

 

For mortality prediction, the pattern was more consistent with clinical data showing 

benefits regardless of SMOTE application. With SMOTE, clinical data integration improved mean 

accuracy from 79% to 70%, while without SMOTE, the improvement was from 77% to 79%. This 

suggests that clinical variables may provide more robust prognostic value for mortality prediction 

compared to recurrence. 

 

The tumor score threshold analysis revealed important insights into model behavior across 

different clinical decision points. For imaging-only models, recurrence prediction showed relatively 

stable performance across thresholds (0.62-0.67 with SMOTE), while clinical data integration 

introduced greater variability (0.47-0.72 with SMOTE). This suggests that clinical data may enhance 

performance at specific operating points but could reduce overall robustness across different 

sensitivity-specificity trade-offs. 

 

Mortality prediction demonstrated greater stability with clinical data integration, 

maintaining consistent performance across thresholds both with and without SMOTE. This 

differential behavior between recurrence and mortality endpoints may reflect the distinct clinical 

characteristics of these outcomes, with mortality potentially being more strongly associated with 

clinical biomarkers than recurrence patterns. 

 

These findings highlight the complex nature of clinical data integration in radiomics-based 

prognostic modeling. While clinical variables such as LDH, NLR, and PLR are established 

prognostic factors in lymphoma, their integration with imaging features requires careful 

consideration of modeling strategies, class balancing techniques, and threshold optimization. 

 

The differential impact of clinical data on recurrence versus mortality prediction suggests 

that these endpoints may benefit from distinct modeling approaches. Mortality prediction appears 

more amenable to clinical data integration, possibly reflecting the stronger association between 

systemic biomarkers and overall survival compared to disease recurrence patterns, which may be 

more dependent on tumor-specific characteristics captured by imaging features. 

 

4.5. Novel Approach to Mixed Volume Classification and Broader 

Applications 
 

A key innovation of this study is the explicit modeling of mixed tumor-normal regions, 

which are often ignored in traditional binary classification approaches. In lymphoma, systemic 

involvement and physiological FDG uptake in lymphoid tissues or adjacent organs frequently result 

in metabolically active but non-malignant regions. Our inclusion of these regions in the classification 

schema reflects real-world clinical challenges and enhances the model’s generalizability. 
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Additionally, while our methodology was developed using lymphoma as a model, it is not 

restricted to this disease. The threshold-based segmentation problem occurs across various 

malignancies—such as non-small cell lung cancer, gynecologic cancers, and head and neck 

tumors—where tumor margins are often metabolically and anatomically ambiguous [51-59]. As 

such, our system offers broad applicability to other cancers where mixed-volume classification is 

critical. 

 

4.6. Validity of PCA selection 
 

 In high-dimensional radiomics analysis, dimensionality reduction is essential to mitigate 

overfitting, reduce noise, and improve model generalizability. Two common strategies include 

unsupervised methods such as Principal Component Analysis (PCA) and supervised approaches like 

Least Absolute Shrinkage and Selection Operator (Lasso). While both methods offer dimensionality 

reduction capabilities, the use of PCA in this study was specifically motivated by several 

methodological and practical considerations. 

 

First, PCA operates in an unsupervised manner by identifying orthogonal principal 

components that capture the maximum variance in the feature space. This is particularly 

advantageous in radiomics, where a substantial proportion of extracted features exhibit high 

collinearity. By transforming correlated variables into linearly uncorrelated components, PCA 

mitigates multicollinearity, a common challenge in radiomics-based machine learning. In contrast, 

Lasso performs feature selection by enforcing sparsity through L1 regularization but may arbitrarily 

discard correlated but potentially informative features. This can lead to instability in the selected 

feature set, especially when minor changes in the dataset or noise distribution occur. 

 

Second, PCA is model-agnostic and purely data-driven, making it applicable across 

multiple downstream classifiers without the need for retraining or parameter tuning for each model. 

In contrast, Lasso is a supervised method whose performance is tightly coupled to the predictive 

relationship with the target label. As such, features selected by Lasso may overfit to the training 

labels and become suboptimal when applied to different algorithms or data distributions. 

 

Third, in the context of our multiclass classification task involving CT, PET, and PET/CT 

fused features, PCA provided a unified reduction approach that preserved up to 95% of the total 

variance across modalities. This ensured consistency in the transformed feature space and allowed 

equitable comparisons between model performances. Lasso, on the other hand, would require 

repeated retraining for each experimental condition and modality, leading to inconsistent 

dimensional representations and potentially biased evaluation results. 

 

Moreover, empirical evaluation conducted in Appendix 3 demonstrated that PCA-based 

dimensionality reduction did not significantly compromise classification performance when 

compared to models trained on the full feature set. Over 87% of all comparisons showed 

performance differences within ±0.5%, confirming that PCA successfully preserved the 

discriminative power of the original features while substantially reducing feature dimensionality and 

computational complexity 

. 
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In summary, PCA was selected as the primary dimensionality reduction method for this 

study due to its robustness against multicollinearity, reproducibility across modalities, model-

agnostic nature, and stable preservation of variance. While Lasso remains a valuable tool for sparse 

feature selection in certain predictive contexts, its supervised nature and instability in high-

dimensional radiomics data made it less suitable for the objectives of this study. 

 

4.7. Study Limitations 

 
4.7.1 Biological interpretation 
 

Despite the promising results demonstrated in this study, several limitations should be 

acknowledged that may affect the interpretation and generalizability of our findings. A fundamental 

limitation inherent to radiomics-based approaches is the challenge of biological interpretation. The 

data-driven nature of radiomics inherently offers no direct insight into the biological underpinnings 

of the observed relationships between imaging features and clinical outcomes [60]. While our 

models demonstrated robust predictive performance, the specific biological mechanisms underlying 

the most influential features, such as log-sigma-1-mm-3D GLDM Dependence Variance, remain 

largely unclear. 

 

This interpretability challenge is particularly relevant in lymphoma research, where 

despite extensive radiomic studies in oncology, it remains unclear which features are truly relevant 

and what biological processes they represent [61]. The complex relationship between 18F-FDG 

uptake patterns—reflecting vascularization, cellularity, hypoxia, metabolism, and necrosis—and 

specific radiomic features complicates the biological validation of our findings. 

Furthermore, radiomic analyses often function as a 'black box' due to their use of complex 

algorithms, which can hinder the translation of research findings into clinical applications [62]. This 

opacity may limit clinicians' confidence in adopting radiomics-based tools for routine patient care, 

as the decision-making process remains largely incomprehensible despite demonstrated predictive 

accuracy. 

 

The mixed results observed with clinical data integration reflect a broader challenge in 

multimodal radiomics research [61]. Even when combined with established clinical biomarkers, 

radiomics models do not necessarily demonstrate improved performance, suggesting that feature 

integration may introduce complexity that requires careful optimization rather than providing 

straightforward additive benefits. 

 

The variable performance across different experimental conditions and thresholds 

indicates that the optimal strategy for integrating clinical and imaging data may be highly context-

dependent, requiring endpoint-specific approaches rather than universal methodologies. 

 

4.7.2 Statistical Power Limitations 
 

A critical limitation of this study is the insufficient statistical power for prognostic 

prediction analyses, as determined by formal G*Power calculations. With minimum requirements 

of 64 patients per group (total n=128) for adequate power, our cohort of 16 recurrence events and 5 

mortality events falls substantially below recommended thresholds for robust between-group 
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comparisons. This represents a fundamental constraint that affects the interpretability and 

generalizability of our prognostic findings. 

 

The tumor classification analysis adequately exceeded power requirements (4,950 vs. 128 

minimum required volumes), demonstrating robust statistical foundation for radiomics-based tissue 

differentiation. However, the prognostic prediction component should be interpreted as a 

preliminary proof-of-concept analysis rather than a definitive prognostic validation study. 

 

The relatively low event rates observed (26.7% recurrence, 8.3% mortality) reflect 

improved treatment outcomes in contemporary lymphoma care but limit statistical power for 

prognostic modeling. While SMOTE implementation provided methodological rigor for handling 

class imbalance, it cannot address the fundamental issue of insufficient sample size identified 

through power analysis. Future studies should target sample sizes of at least 128 patients with 

balanced outcome groups to achieve adequate statistical power for robust prognostic model 

development. 

 

These power limitations emphasize that our prognostic findings should be considered 

exploratory and require validation in larger, adequately powered cohorts before clinical 

implementation. 

 

The prognostic prediction results must be interpreted within the context of insufficient 

statistical power identified through G*Power analysis. Our sample sizes achieved (16 recurrence, 5 

mortality events) were substantially below the minimum requirements (64 per group), limiting the 

reliability of between-group comparisons and model generalizability. 

 

Despite these constraints, the observed performance metrics provide valuable preliminary 

insights into the potential utility of radiomics-based prognostic modeling in lymphoma. The superior 

performance of imaging-only models over combined imaging-clinical approaches may partially 

reflect the statistical challenges of integrating multiple feature types within underpowered analyses. 

Similarly, the variable performance across different tumor score thresholds should be interpreted 

cautiously given the limited statistical power. 

 

These findings establish a methodological framework and provide effect size estimates for 

future adequately powered studies, while demonstrating the technical feasibility of radiomics-based 

prognostic prediction in lymphoma patients. 

 

 

4.8. Clinical Applicability and Expected Impact 
 

Our system offers direct clinical applicability by providing a reproducible, quantitative 

framework to support and enhance current TMTV-based segmentation methods. The Tumor Score 

can be integrated into existing imaging workflows to assist clinicians in distinguishing tumor from 

non-malignant metabolic activity—thereby improving radiotherapy planning, response assessment, 

and follow-up monitoring. 
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Moreover, as a non-invasive prognostic tool, our approach can help stratify patients by 

recurrence or survival risk early in the diagnostic process, potentially guiding treatment escalation 

or de-escalation. This is particularly valuable in personalized medicine, where objective, 

reproducible metrics are needed for clinical decision-making. 

 

Table 11 compares the prediction performance of our PET/CT radiomics model with 

recent radiomics-based studies, illustrating competitive performance in predicting recurrence 

(AUC=0.7222) and mortality (AUC=0.7934) within five years using SMOTE for balanced sampling. 

Although the performance of our method is slightly lower than some specialized tasks, such as Yuan 

et al. (2023), who reported an AUC of 0.926 for predicting cervical lymph node metastasis, it 

remains comparable or superior to other recent works in oncological prognostic prediction, such as 

Frood et al. (2022) and Li et al. (2023). These results underscore the robustness and clinical 

relevance of our model, particularly considering the inherent challenges of predicting long-term 

outcomes like recurrence and mortality. 

 

Finally, by accounting for the complexities of mixed tissue regions, our framework better 

reflects real-world conditions and offers a foundation for the next generation of intelligent oncology 

imaging tools. 

 

Table 11. Comparative summary of radiomics-based predictive performance across recent 

oncological imaging studies. The table outlines the imaging modalities, predictive tasks, and 

reported performance metrics for each study. 

Author (Year) Data sets Task Performance 

Frood et al. 

(2022) 

PET/CT 

radiomics 

Prediction of the response to neoadjuvant chemotherapy AUC=0.750 

Driessen et al. 

(2023) 

PET 

radiomics 

Predicting pathological complete response (pCR) to 

neoadjuvant chemoradiotherapy (NCRT) 

AUC=0.810 

Li et al. (2023) PET 

radiomics  

Predicting lymph node metastasis in non-small cell lung 

cancer 

AUC=0.709 

Yuan et al. 

(2023) 

PET/CT 

radiomics  

Predicting cervical lymph node metastasis  AUC=0.926 

Eertink et al. 

(2022) 

PET 

radiomics 

Predicting B-cell lymphoma treatment outcome AUC=0.790 

Zhao et al. 

(2023) 

PET 

radiomics 

Prediction of programmed mortality-1 expression status in 

lung cancer patients 

AUC=0.771 

Our study PET/CT 

radiomics 

Prediction of recurrence and mortality within 5 years Recurrence AUC = 

0.7222 

Mortality AUC = 

0.7934 
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4.9. Future Research Directions and Methodological Advances 
 

A critical research direction involves developing biological validation frameworks that 

can bridge the gap between radiomic features and underlying tumor biology through correlation with 

histopathological and molecular data. This will be essential for enhancing clinical interpretability 

and addressing the fundamental 'black box' nature of current radiomics models. Future studies will 

incorporate systematic correlation analysis between top-performing radiomic features and specific 

biological markers, including tumor microenvironment characteristics, genetic alterations, and 

metabolic pathway activities relevant to lymphoma progression and treatment response. Additionally, 

advancing interpretable machine learning methods specifically designed for medical imaging 

applications will help address the opacity of current radiomics models, thereby facilitating greater 

clinical acceptance and translation. 

 

The development of standardized protocols for clinical-imaging data integration, 

including optimal feature selection and fusion strategies, will be crucial for realizing the full 

potential of multimodal prognostic modeling in lymphoma management. Future work will 

systematically investigate various data fusion methodologies, including early fusion (feature-level), 

late fusion (decision-level), and hybrid approaches to determine the most effective strategies for 

different clinical endpoints. This research direction will also explore advanced machine learning 

architectures specifically designed for multimodal data integration, such as attention-based neural 

networks and graph neural networks, which may provide more sophisticated mechanisms for 

leveraging complementary information from imaging and clinical data sources. 

 

Although the current study identified mixed (tumor-normal) volumes and used them 

directly for prognostic prediction, future research aims to optimize these mixed volumes by 

extracting and retaining only tumor-specific regions within each identified volume. This patch-level 

refinement approach (as illustrated in Figure 5) is expected to improve prognostic accuracy by 

eliminating normal tissue contamination, thereby facilitating more precise tumor characterization 

and enhancing clinical decision-making. The implementation of this strategy will involve 

developing sophisticated segmentation algorithms capable of distinguishing tumor patches from 

normal tissue patches within mixed volumes, potentially using deep learning-based approaches 

combined with radiomic feature analysis to achieve sub-volume classification accuracy. 
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Figure 5. Illustration of patch-level filtering strategy for mixed tumor-normal volumes. The left 

panel shows a representative whole volume composed of tumor (T, red) and normal (N, gray) patches. 

This approach is expected to refine tumor burden estimation and enhance prognostic accuracy in 

future studies. 
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5. Conclusion 

 

In this study, we developed a radiomics-based machine learning framework capable of 

classifying tumor, normal, and mixed tumor-normal regions in 18F-FDG PET/CT images of 

lymphoma patients. By integrating radiomics features from both PET and CT modalities with 

ensemble predictions and anomaly detection, the proposed system achieved high classification 

accuracy and demonstrated strong prognostic performance for five-year recurrence and mortality 

prediction. 

The methodology addresses limitations of traditional threshold-based tumor delineation 

by incorporating ambiguous regions that reflect real-world diagnostic challenges. The Tumor Score 

system offers a practical, quantitative tool that could be integrated into clinical workflows to enhance 

tumor segmentation and personalized treatment planning. Future work will include validation using 

external, multi-institutional datasets and expansion to other cancer types. 
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Appendix 1: Evaluation of the Effect of Physiological Organ Exclusion on 

TMTV  
 

This appendix presents a quantitative analysis of how the exclusion of physiologically 

high-uptake normal organs affects the accuracy of tumor segmentation in threshold-based methods. 

Five thresholding strategies were tested—liver-based threshold, SUV > 2.5, SUV > 3.0, 41% of 

SUVmax, and 50% of SUVmax—under two conditions: (1) all FDG-avid organs included, and (2) 

brain, heart, kidneys, bladder, and ureters excluded. 

 

For each method, the percentage difference in segmented volume was calculated between 

the threshold-based segmentation result and the ground truth tumor label. As shown in Figure 6, 

organ exclusion significantly reduced the deviation from the ground truth, particularly in the liver-

based, 3.0, and 50% SUVmax methods. 

 

To determine statistical significance, F-tests and t-tests were performed comparing the 

segmentation results before and after organ exclusion. The results are summarized in Table 12. When 

all physiological organs were included, all methods exhibited significant differences in both variance 

and mean values (Welch’s t-test, p < 0.01). After excluding high-uptake organs, no statistically 

significant differences were observed for the liver-based, SUV 3.0, and 50% SUVmax methods 

(Student’s t-test, p > 0.05), while the 2.5 and 41% SUVmax methods continued to show significant 

discrepancies (p < 0.01). 

 

These findings emphasize the importance of excluding physiological FDG uptake regions 

to enhance segmentation accuracy and avoid overestimation in TMTV calculation. 
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Figure 6. Percentage volume differences between ground truth tumor labels and threshold-based 

segmentation results, with and without the exclusion of physiologically high-uptake normal organs. 

 

Table 12. Statistical comparison of segmentation volume differences using five threshold methods, 

before and after the exclusion of physiologically high-uptake normal organs. Welch’s t-test was used 

when variance was unequal; otherwise, Student’s t-test was applied. 

Threshold Criteria F-test p-value T-test Type T-test p-value 

25 2E-11 Heteroscedastic t-test 6E-11 

30 2E-05 Heteroscedastic t-test 2E-05 

liver 5E-03 Heteroscedastic t-test 6E-03 

thres41 7E-06 Heteroscedastic t-test 7E-06 

thres50 3E-04 Heteroscedastic t-test 3E-04 

25 (excluding organs) 2E-05 Heteroscedastic t-test 3E-05 

30 (excluding organs) 6E-02 Homoscedastic t-test 6E-02 

liver (excluding organs) 3E-01 Homoscedastic t-test 3E-01 

thres41 (excluding organs) 3E-03 Heteroscedastic t-test 3E-03 

thres50 (excluding organs) 2E-01 Homoscedastic t-test 2E-01 
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Appendix 2: DICOM-Based SUV Mapping 

 
To transfer CT-based segmentation results to PET images for SUV quantification, precise 

multimodal image alignment was performed. The alignment process utilized MATLAB's image 

registration module with optimized parameters to ensure accurate spatial correspondence between 

CT and PET datasets. The optimizer was configured with an initial radius of 0.009, epsilon value of 

1.5E-4, and a maximum of 1000 iterations to achieve optimal registration performance. 

 

The alignment accuracy was validated using the Dice coefficient to compare contour 

coordinates obtained from CT-based segmentation with corresponding PET image structures. This 

validation process ensured that the spatial transformation accurately preserved anatomical 

boundaries across modalities, which is critical for reliable SUV measurements in specific organs 

and tumor regions. 

 

Standardized uptake values (SUVs) were calculated using patient-specific parameters 

extracted from DICOM header information. The SUV calculation incorporated essential 

radiopharmaceutical and patient parameters to ensure accurate quantification of metabolic activity 

per voxel. The body weight-based SUV formula was implemented as follows: 

 

𝑆𝑈𝑉
𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡(

𝑘𝑔

𝑐𝑐
)

=   
(𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 ×𝐷𝑖𝑐𝑜𝑚 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ×𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡)

𝑇𝑜𝑡𝑎𝑙 𝑑𝑜𝑠𝑒× 𝑒
(
−𝑙𝑜𝑔 (2)×(𝑆𝑒𝑟𝑖𝑒𝑠 𝑡𝑖𝑚𝑒 − 𝑅𝑎𝑑𝑖𝑜𝑝ℎ𝑎𝑚𝑎𝑐𝑒𝑢𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒) 

𝐹18−𝐹𝐷𝐺 ℎ𝑎𝑙𝑓 𝑙𝑖𝑓𝑒 𝑡𝑖𝑚𝑒
)
 (A2) 

where 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒  represents the raw intensity value from the PET image, 

𝐷𝑖𝑐𝑜𝑚 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 is the normalization factor for pixel array values, 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 is the 

body weight in kilograms, 𝑇𝑜𝑡𝑎𝑙 𝑑𝑜𝑠𝑒 is the administered F-18 FDG activity, 𝑆𝑒𝑟𝑖𝑒𝑠 𝑡𝑖𝑚𝑒 is the 

PET scan acquisition start time, 𝑅𝑎𝑑𝑖𝑜𝑝ℎ𝑎𝑚𝑎𝑐𝑒𝑢𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 is the F-18 FDG injection time, 

and 𝐹18 − 𝐹𝐷𝐺 ℎ𝑎𝑙𝑓 𝑙𝑖𝑓𝑒 𝑡𝑖𝑚𝑒 is the physical half-life of F-18 (109.8 minutes). 
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Appendix 3: Validation of PCA-Based Dimensionality Reduction in 

Radiomics Classification Models 

 
To validate the effectiveness of our dimensionality reduction approach, we conducted 

systematic comparisons between models trained with PCA-reduced features and models using the 

full feature set. This analysis was performed across all three radiomics datasets (CT, PET, and 

combined PET/CT) using all five machine learning algorithms. The comprehensive results of this 

validation study are presented in Table 13, which demonstrates the performance metrics for both 

PCA-reduced and full-feature approaches across all experimental conditions. 

 

The comparative analysis revealed remarkably consistent performance between PCA-

reduced and full-feature models across all experimental conditions. For accuracy metrics, the CT 

radiomics dataset showed a mean difference of -0.17% between PCA and non-PCA approaches, with 

individual model variations ranging from -0.58% to +0.15%. The PET radiomics dataset 

demonstrated even greater consistency with a mean difference of +0.02%, ranging from -0.21% to 

+0.30%. Most notably, the combined PET/CT radiomics dataset showed perfect mean consistency 

with a 0.00% difference, though individual models ranged from -0.33% to +0.48%. 

 

Similarly, AUC analysis confirmed the robustness of the PCA approach across all datasets. 

CT radiomics showed minimal mean AUC difference of -0.01% with a range from -0.63% to +0.72%, 

while PET radiomics demonstrated a slight improvement of +0.10% with variations from -0.06% to 

+0.28%. The combined PET/CT dataset showed a minimal mean difference of -0.08%, with 

individual model differences ranging from -0.86% to +0.51%. Across all experimental conditions, 

the maximum absolute difference observed was 0.86% for AdaBoost AUC performance in the 

combined dataset, representing the most extreme variation encountered in the entire validation study. 

 

Statistical analysis of the comparative results revealed that 87% of all performance 

comparisons showed differences within ±0.5%, demonstrating exceptional consistency between the 

two approaches. This high level of agreement validates that PCA successfully preserved the 

discriminative information content of the original radiomics features while simultaneously reducing 

computational complexity and mitigating potential overfitting risks inherent to high-dimensional 

radiomics data. The minimal performance variations observed across different machine learning 

algorithms and radiomics datasets provide strong evidence supporting the robustness and 

effectiveness of our dimensionality reduction strategy, confirming that the choice of PCA as our 

primary feature processing approach was methodologically sound and did not compromise the 

predictive capabilities of our classification framework. 

 

 

Table 13. Performance comparison of radiomics-based tumor classification models with and without 

PCA dimensionality reduction. 

Dataset Model Accuracy  % Diff AUC  % Diff 

  w/PCA w/o PCA  w/PCA w/o PCA  

CT radiomics Random Forest 0.9392 0.9403 -0.12 0.9653 0.9661 -0.08 
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Dataset Model Accuracy  % Diff AUC  % Diff 

 Decision Tree 0.9231 0.9217 0.15 0.8536 0.8590 -0.63 

 Gradient Boosting 0.9435 0.9431 0.04 0.9562 0.9554 0.08 

 AdaBoost 0.9356 0.9410 -0.58 0.9400 0.9422 -0.23 

 XGBoost 0.9478 0.9510 -0.34 0.9690 0.9620 0.72 

 Average 0.9378 0.9394 -0.17 0.9368 0.9369 -0.01 

PET radiomics Random Forest 0.9293 0.9286 0.08 0.9607 0.9613 -0.06 

 Decision Tree 0.8925 0.8898 0.30 0.7791 0.7784 0.09 

 Gradient Boosting 0.9313 0.9333 -0.21 0.9558 0.9531 0.28 

 AdaBoost 0.9116 0.9122 -0.07 0.9484 0.9482 0.02 

 XGBoost 0.9347 0.9347 0.00 0.9605 0.9591 0.15 

 Average 0.9199 0.9197 0.02 0.9209 0.9200 0.10 

PET/CT radiomics Random Forest 0.9372 0.9365 0.07 0.9627 0.9643 -0.17 

 Decision Tree 0.9179 0.9182 -0.03 0.8479 0.8436 0.51 

 Gradient Boosting 0.9388 0.9343 0.48 0.9522 0.9512 0.11 

 AdaBoost 0.9266 0.9287 -0.23 0.9315 0.9395 -0.86 

 XGBoost 0.9423 0.9454 -0.33 0.9639 0.9631 0.08 

 Average 0.9326 0.9326 0.00 0.9316 0.9323 -0.08 
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Abstract in Korean 

 

림프종에서의 다중 모달리티 기반 종양 분류 및 예후 예측을 

위한 라디오믹스 기반 머신러닝 연구 

 

 

목적: 본 연구는 18F-FDG PET/CT 영상을 이용하여 림프종 환자에서 종양, 정상, 

그리고 종양-정상 혼재 영역을 구별할 수 있는 방사선학 기반 머신러닝 프레임워크

를 개발하고, 재발과 사망률을 포함한 예후 예측에서의 효과를 평가하는 것을 목표로 

하였다. 

재료 및 방법: 60명의 림프종 환자의 PET/CT 스캔을 분석하여, 수동으로 윤곽을 그

은 종양(n=800)과 정상(n=4,150) 볼륨에서 방사선학적 특징(각 모달리티당 417개)

을 추출하였다. 5가지 머신러닝 알고리즘(AdaBoost, Decision Tree, Gradient 

Boosting, Random Forest, XGBoost)을 PET 단독, CT 단독, PET/CT 결합 방사선

학적 특징, 그리고 PET 매개변수 (SUV)를 사용하여 훈련시켰다. 앙상블 예측과 

Isolation Forest를 통한 이상 탐지를 통합한 종양 점수 시스템을 구축하였다. 5년간

의 재발과 사망률에 대한 예후 예측은 PET 지표, 임상 변수, 그리고 SMOTE 기반 

클래스 균형화를 사용하였다. 외부 검증은 16명의 추가 환자를 포함하였다. 

결과: 통합 PET/CT 방사선학 모델이 우수한 종양 분류 성능(AUC: 0.9639)을 달성

한 반면, PET 단독 모델은 최적의 민감도(재현율: 65.80%)를 보여주었다. 예후 예측

에서 SMOTE 구현은 5년 재발 예측 정확도를 최대 75%, 사망률 예측을 최대 86%

까지 향상시켰다. 그러나 임상 데이터 통합은 일관되지 않은 결과를 보였으며, 재발 

예측 정확도가 47%에서 92% 범위였다. 외부 검증에서 모델의 일반화 가능성이 확인

되었으며, PET 기반 특징이 가장 우수한 성능(정확도: 90.34%, AUC: 0.8852)을 보

였다. 민감도는 외부 검증에서 65.80%에서 40.4%로 감소하여, 기관 간 변이성과 기

관별 보정의 필요성을 시사하였다. 

결론: 개발된 방사선학 기반 머신러닝 프레임워크는 림프종 환자에서 종양, 정상, 그

리고 혼재 볼륨을 효과적으로 구별하며, 예후 예측 향상에 대한 강한 잠재력을 보여

주었다. 그러나 외부 검증에서의 민감도 감소는 광범위한 임상 적용 이전에 추가적인 

개선과 기관별 보정이 필요함을 강조한다. 

_______________________________________________________________________________

핵심되는 말: 림프종, 라디오믹스, 머신러닝, 종양점수, PET-CT 

 


