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ABSTRACT

Radiomics-Based Machine Learning for Multi-Modality Tumor
Classification and Prognosis in Lymphoma

Purpose: This study aimed to develop a radiomics-based machine learning framework capable of
differentiating tumor, normal, and mixed tumor-normal regions in lymphoma patients using 18F-
FDG PET/CT images and to evaluate its effectiveness in predicting prognosis, including

recurrence and mortality.

Materials and Methods: F-18 FDG PET/CT imaging data from 60 patients diagnosed with
lymphoma were retrospectively analyzed. A total of 417 radiomic features were extracted from
each imaging modality (PET and CT) based on manually delineated tumor (n = 800) and normal
tissue (n = 4,150) volumes of interest. Five machine learning classifiers—AdaBoost, Decision
Tree, Gradient Boosting, Random Forest, and XGBoost—were trained using four distinct feature
sets: PET radiomics features alone, CT radiomics features alone, combined PET/CT radiomics
features, and standardized uptake value (SUV)-based metrics derived from PET images. To
enhance tumor characterization, a scoring system integrating ensemble model predictions with
anomaly detection using the Isolation Forest algorithm was developed. For prognostic modeling
of five-year recurrence and overall survival, SUV-derived metrics, clinical variables, and Synthetic
Minority Over-sampling Technique (SMOTE) were utilized to address class imbalance. Model
generalizability and robustness were evaluated via external validation using an independent cohort

consisting of 16 patients.

Results: The CT-only radiomics model achieved the highest tumor classification performance with
an AUC of 0.9690, compared to combined PET/CT radiomics model (AUC: 0.9639) and PET
radiomics model (AUC: 0.9607), while PET-only radiomics model demonstrated optimal
sensitivity (recall: 65.80%). XGBoost consistently outperformed other algorithms across all

feature combinations, with PET/CT achieving 94.23% accuracy and PET-only achieving 93.47%

Vi



accuracy. For prognostic prediction without clinical data, recurrence accuracy ranged from 42-67%
(without SMOTE) to 50-75% (with SMOTE), while mortality prediction ranged from 71-79%
(without SMOTE) to 71-86% (with SMOTE). However, clinical data integration yielded
inconsistent results, with recurrence prediction accuracy ranging from 47% to 92%. External
validation confirmed model generalizability, with PET-based features showing the best
performance (accuracy: 90.34%, AUC: 0.8852). Sensitivity decreased from 65.80% to 40.4% in
external validation, indicating inter-institutional variability and the need for institutional

calibration.

Conclusion: The developed radiomics-based machine learning framework effectively differentiates
tumor, normal, and mixed volumes in lymphoma patients, demonstrating strong potential for
enhancing prognosis prediction. However, sensitivity reduction in external validation underscores

the need for further refinement and institutional calibration before widespread clinical adoption.

Key words: PET/CT Imaging, Lymphoma, Radiomics, Machine Learning, Tumor Score
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1. Introduction

Lymphomas represent a diverse and heterogeneous group of malignancies characterized
by the abnormal clonal proliferation of lymphocytes, broadly categorized into Hodgkin lymphoma
(HL) and non-Hodgkin lymphoma (NHL). The NHL accounts for approximately 90% of lymphoma
cases, predominantly arising from B-cells, while HL comprises the remaining 10% [1]. Globally,
lymphoma accounts for nearly 5% of cancer diagnoses, positioning it as the sixth most common
cancer and underscoring its significant clinical relevance [2]. Although diagnostic and therapeutic
advances, including quantitative approaches such as SUV analysis, have provided reasonable
accuracy in lymphoma evaluation, precisely diagnosing, staging, and managing lymphoma remains
challenging due to its heterogeneous clinical and pathological manifestations [3,4].

Positron emission tomography combined with computed tomography using 18F-
fluorodeoxyglucose (18F-FDG PET/CT) has significantly transformed lymphoma management by
providing comprehensive metabolic and anatomical insights essential for initial staging, evaluating
therapeutic responses, and post-therapy surveillance [5,6]. This imaging modality enables clinicians
to quantify tumor metabolic activity using metrics such as Total Metabolic Tumor Volume (TMTV)
and Total Lesion Glycolysis (TLG), which are robust predictors of patient prognosis and therapeutic
outcomes [7-10]. However, current practices to determine TMTV using commercially available
software such as MIM software’s lesionID or Siemens' syngo rely heavily on threshold-based
methods, initially delineating tumor volumes followed by manual exclusion of physiologically high-
uptake organs and presumed normal tissues. Typically used thresholds include SUV maximum
percentages (e.g., 41% or 50%), fixed SUVs (e.g., 2.5 or 3), or thresholds defined by a liver VOI
(mean plus two standard deviations). Thresholds set too low can inadvertently include normal tissue,
whereas thresholds set too high risk missing tumors with low SUV uptake. Consequently, significant
variability in TMTV measurements occurs between observers, highlighting the need for accurate
differentiation between tumor and normal volumes [11-13].

Radiomics is a quantitative imaging analysis technique that involves extracting numerous
high-dimensional features from medical images, such as texture, shape, intensity, and wavelet-
transformed features, which comprehensively characterize tumor heterogeneity and biological
properties beyond what is visually apparent to clinicians [14—16]. These radiomics features allow
for a more objective and reproducible assessment of tumors by providing detailed insights into their
underlying biology. On the other hand, machine learning (ML) refers to computational algorithms
and statistical models capable of recognizing complex patterns within large datasets and learning
from them to perform specific tasks such as classification, regression, or clustering. In medical
imaging, ML techniques utilize radiomics features as input variables to develop predictive models
that can accurately differentiate pathological tissues, predict patient prognosis, or assess therapeutic
responses [23—26]. Hence, while radiomics provides the essential quantitative descriptors extracted
from imaging data, ML offers the analytical tools needed to interpret these descriptors and translate
them into clinically meaningful predictions and decisions.

Radiomic features from 18F-FDG PET/CT imaging have demonstrated substantial
promise, significantly improving lymphoma prognostic predictions and therapeutic response



assessments [17-22]. Recent advancements in artificial intelligence (Al), particularly ML and deep
learning (DL), have further accelerated radiomics research by automating complex data analysis
tasks, including lesion segmentation and patient outcome predictions [23-26]. Al-driven radiomics
models have demonstrated superior predictive accuracy for survival outcomes such as progression-
free survival (PFS) and overall survival (OS), compared to traditional imaging metrics alone [27—
31].

Previous radiomics studies have primarily applied binary classifications due to the
inherent nature of radiomics-derived features reflecting dominant tissue characteristics within a
given volume. Specifically, radiomics features tend to represent the predominant tissue type,
resulting in binary classifications of either tumor or normal tissue. Consequently, volumes with a
higher proportion of tumor tissue typically yield tumor-oriented features, whereas those with
predominantly normal tissue produce normal-oriented features. This characteristic has led to
numerous studies successfully differentiating tumor and normal tissues using radiomics features
combined with ML methods. For instance, Hsu et al. (2018) achieved an overall classification
accuracy of 90% in differentiating tumors from normal tissues using radiomic features extracted
from CT images [32]. Similarly, Zhang et al. (2024) successfully classified gross tumor volume
(GTV) and normal liver tissue in hepatocellular carcinoma with an accuracy of 0.98 using ML
approaches applied to CT images [33]. Zhang et al. (2024) also developed a stacking ensemble
model that integrated multiple ML algorithms, achieving superior performance in classifying GTV
(AUC = 0.93), brainstem (AUC = 0.93), and normal brain tissue (AUC = 0.94) using CT images
[34]. Additionally, Pei et al. (2024) demonstrated promising results in distinguishing cervical cancer
tumors from normal uterine tissues using radiomic features extracted from CT images, achieving
AUC values ranging from 0.89 to 0.92 [35].

Despite extensive research utilizing PET or CT imaging separately, no studies have yet
applied radiomics methods combining both PET and CT images specifically to differentiate tumor
and normal volumes in lymphoma patients undergoing F-18 FDG PET/CT imaging. Moreover,
existing research predominantly addresses clearly defined tumor and normal tissues, thereby
neglecting the mixed tumor-normal regions inherently captured during threshold-based clinical
delineation processes. Such oversight can significantly impact prognostic evaluations and
subsequent therapeutic strategies due to potential misclassification or inaccurate volume
measurements.

Our research uniquely addresses these critical gaps by developing an innovative
radiomics-based ML system explicitly designed to differentiate pure tumor, pure normal tissue, and
critically, mixed tumor-normal regions within lymphoma lesions. Unlike previous research, our
methodology explicitly accounts for mixed volumes, enabling a more accurate assessment of tumor
extent and significantly enhancing the precision of prognostic modeling.

This research aims to develop and validate a radiomics-based machine learning framework
for differentiating tumor, normal, and mixed tumor-normal regions in lymphoma patients using 18F-
FDG PET/CT imaging. By addressing the limitations of conventional threshold-based segmentation
approaches through comprehensive feature extraction, ensemble machine learning methods, and
rigorous external validation, our study seeks to enhance tumor classification accuracy and improve
prognostic prediction for lymphoma patient management.



2. Materials and methods

This study employed a comprehensive radiomics-based machine learning framework
designed to differentiate tumor, normal, and mixed tumor-normal regions in lymphoma patients
using 18F-FDG PET/CT imaging, as illustrated in Figure 1. The methodological workflow consisted
of ten sequential steps: (1) quantitative imaging acquisition using standardized F-18 FDG PET/CT
protocols, (2) normal organ segmentation to exclude physiological uptake, (3) tumor detection and
segmentation through expert manual delineation, (4) PET-CT image alignment for multimodal
analysis, (5) obtaining Total Metabolic Tumor Volume (TMTV) data according to established
threshold criteria, (6) acquisition of normal volume data by excluding physiological organs, (7)
tumor phenotype quantification through comprehensive radiomics feature extraction, (8) data
integration and application of machine learning algorithms, (9) acquisition of refined TMTV
excluding normal organs and non-tumor volumes, and (10) prediction of patient prognosis including
tumor recurrence and mortality outcomes.

The framework combined both imaging-derived radiomics features and clinical variables
to develop robust prognostic models, with particular emphasis on addressing the challenge of mixed
tumor-normal regions commonly encountered in clinical practice. External validation was
performed using an independent dataset to assess model generalizability and clinical applicability.
The following sections detail each component of this comprehensive methodology.
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Figure 1. Comprehensive workflow of the radiomics-based machine learning framework for
lymphoma tumor classification and prognosis prediction. The methodology encompasses ten
sequential steps from initial F-18 FDG PET/CT imaging acquisition to final prognostic prediction,
integrating tumor phenotype quantification, normal organ exclusion, and machine learning-based
analysis for enhanced clinical decision-making in lymphoma management.

2.1. Patient Selection and Imaging Protocol

This retrospective study analyzed F-18 FDG PET/CT images from 60 patients diagnosed
with lymphoma who underwent initial staging at Ewha Womans University Mokdong Hospital,
Seoul, South Korea, between 2012 and 2018. Inclusion criteria comprised histologically confirmed
lymphoma diagnosis, initial staging F-18 FDG PET/CT scan performed before treatment initiation,
complete clinical and follow-up data available for at least 5 years, age = 18 years, and adequate
image quality for radiomics feature extraction. Exclusion criteria included patients with central
nervous system (brain) involvement at initial diagnosis, previous history of malignancy within 5



years prior to lymphoma diagnosis, concurrent active malignancy, inadequate imaging quality
preventing reliable segmentation, incomplete clinical or follow-up data, and patients who received
treatment prior to baseline PET/CT imaging. Patient recurrence and survival data within a 5-year
period were collected. Patient demographic and clinical characteristics are summarized in Table 1.

F-18 FDG PET/CT was performed using a single PET/CT camera system (Siemens
Biograph mCT with 128-slice CT, Siemens Medical Solutions, Knoxville, TN, USA). Patients fasted
for at least six hours before F-18 FDG PET/CT scanning. FDG administration was done when whole
blood glucose levels were less than 140 mg/dl. F-18 FDG PET/CT images were acquired from the
skull base to mid-thigh, 60 min after intravenous FDG injection (5.18 MBq/kg). CT images without
contrast agent were obtained first using a 120 kVp tube voltage, a 50 mAs tube current, and a 1.2
pitch. PET images were then acquired for two min per bed position (five to seven positions) under
a 3D emission mode. PET images were reconstructed into 200 x 200 ma-trices and 3.4 mm X 3.4
mm pixel sizes (3.0 mm slice thickness) using a 3D-OSEM iterative algorithm (2 iterations and 21
subsets) with time of flight and point spread function.

A priori power analysis was conducted using G*Power 3.1.9.4 to determine the adequacy
of our sample size for the planned statistical analyses. For the tumor classification task comparing
multiple radiomics feature sets, we performed a power calculation for means difference between two
independent groups with the following parameters: effect size (Cohen's d) = 0.5 (medium effect), a
error probability = 0.05, power (1-B error probability) = 0.8, and allocation ratio N2/N1 = 1. The
analysis indicated that a minimum total sample size of 128 volumes would be required to detect
clinically meaningful differences with adequate statistical power (actual power = 0.801).

For prognostic prediction analyses, the same power calculation parameters were applied
to compare outcome groups (recurrence vs. non-recurrence, mortality vs. survival). The analysis
indicated that a minimum of 64 patients per group (total n=128) would be required for adequate
statistical power. Our cohort included 60 patients with 16 recurrence events (26.7%) and 5 mortality
events (8.3%), resulting in sample sizes substantially below the recommended threshold for robust
between-group comparisons.

This represents a significant limitation of our prognostic prediction analysis, as neither
recurrence prediction (16 vs. 44 patients) nor mortality prediction (5 vs. 55 patients) achieved the
minimum sample size requirements derived from power analysis. Our study included 4,950 total
volumes for classification analysis, substantially exceeding the minimum required sample size,
while the prognostic component was underpowered according to conventional statistical guidelines.

Table 1. Clinical and demographic characteristics of 60 lymphoma patients included in the study.

Characteristic Value (%)
Total Patients 60 100.0
Age, years



Mean + SD

Median

Sex

Female

Male

Physical Characteristics
Height, cm (mean + SD)
Weight, kg (mean + SD)
Lymphoma Subtype
Diffuse Large B-cell Lymphoma
Hodgkin Lymphoma
Other/Unspecified
MALT Lymphoma

Lymphoblastic Lymphoma

Angioimmunoblastic T-cell Lymphoma

Follicular Lymphoma

NK/T-cell Lymphoma

Mantle Cell Lymphoma

Burkitt Lymphoma

Histological Classification

Type 1 (Hodgkin)

Type 2 (Non-Hodgkin, intermediate)
Type 3 (Non-Hodgkin, aggressive)
Lugano Staging

Stage 1

Stage IE

66.4+16.8

68

32 533
28 46.7
163.4+£10.2

62.3+13.5

26 43.3
12 20.0
12 20.0
2 33
2 33
2 33

1 1.7
1 1.7
1 1.7
1 1.7
9 15.0
3 5.0
48 80.0
3 5.0
3 5.0



Stage II 16 26.7

Stage IIE 6 10.0
Stage 111 10 16.7
Stage IV 22 36.7

Clinical Features

B symptoms present 10 16.7
Bone marrow involvement 11 18.3
Spleen involvement 11 18.3
Advanced Stage Disease (III-IV) 32 533
Extranodal Disease (E staging) 9 15.0

2.2. Segmentation Strategy and TMTV-Based Dataset Construction

Using MIM software (MIM Software Inc., Cleveland, OH, USA), tumor volumes were
initially segmented by applying a liver-based SUV threshold to extract metabolically active regions
suspected of malignancy. Normal physiological uptake areas, such as those in the brain, myocardium,
kidneys, and bladder, were subsequently excluded manually by experienced physicians to generate
the final tumor masks. Excluding FDG uptake in normal organs is an essential step in avoiding false-
positive findings during the calculation of Total Metabolic Tumor Volume (TMTV) and Total Lesion
Glycolysis (TLG), ensuring that only true pathological lesions are accurately assessed [36, 37].
Segmentation of physiologically active normal organs was performed using a combination of
automated and manual approaches. For the brain, heart, kidneys, and bladder, initial contours were
generated using Oncosoft software (Oncosoft, Manteia), followed by manual refinement to improve
anatomical accuracy. The ureters, which were not supported by automatic segmentation, were
delineated entirely through manual contouring.

This supplementary analysis was conducted to clarify the necessity of excluding organs
with physiological FDG uptake, which often leads to overestimation of tumor volume due to their
intense metabolic activity. Without such exclusion, threshold-based segmentation methods may
mistakenly include these normal tissues, significantly inflating calculated TMTV values. The
quantitative impact of this exclusion was evaluated across five threshold strategies by comparing
segmented volumes with and without organ removal, as described in Appendix 1.

Total Metabolic Tumor Volume (TMTV) was calculated using various clinically validated
thresholding strategies, including absolute SUV thresholds (2.5 and 3.0), relative thresholds based
on SUVmax (41% and 50%), and a liver-referenced threshold defined as the mean liver SUV plus
two standard deviations. These methods are consistent with established clinical workflows for tumor
delineation. For each method, binary masks were generated and refined by removing regions



overlapping with physiological organs to ensure that the final TMTV masks represented only tumor
volumes.

In this study, normal tissue volumes were not arbitrarily defined by low SUVs. Instead,
regions that exceeded SUV thresholds but were not considered malignant based on anatomical
location or physiological uptake were labeled as 'normal.' This approach mirrors actual diagnostic
workflows and was intended to challenge the model to distinguish tumor from non-tumor tissues
using radiomic features beyond simple intensity metrics. By including metabolically active but
clinically non-malignant regions in the normal class, the model was encouraged to learn more
nuanced structural and textural patterns, thereby improving its generalizability and clinical
applicability. Finally, normal volumes were acquired by systematically excluding organs with high
physiological uptake and annotated labels from the TMTV data obtained using each thresholding
method.

2.3. Radiomics Feature Extraction

Prior to radiomics feature extraction, PET images underwent standardized SUV
quantification to ensure accurate metabolic assessment across all segmented regions. The conversion
from raw PET pixel values to standardized uptake values was performed using patient-specific
parameters extracted from DICOM header information, including administered dose, injection time,
acquisition time, patient weight, and radiopharmaceutical decay correction factors. (detailed SUV
calculation methodology provided in Appendix 2).

Radiomics features were extracted from segmented PET and CT images using
PyRadiomics software (version 3.1.0). A total of 417 quantitative features per imaging modality
were obtained, encompassing shape, first-order statistical, and texture features. The shape features
included elongation, flatness, sphericity, and surface area, while first-order statistics comprised
energy, entropy, mean, median, kurtosis, skewness, minimum, and maximum. Texture features were
derived from Gray Level Co-occurrence Matrix (GLCM), Gray Level Dependence Matrix (GLDM),
Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), and
Neighboring Gray Tone Difference Matrix (NGTDM). Additionally, Laplacian of Gaussian (LoG)
filtered features were extracted at three sigma levels (1 mm, 2 mm, and 3 mm) to capture multiscale
spatial patterns.

For PET images, all radiomics features were calculated from the standardized SUV-
converted images rather than raw pixel intensities, ensuring that the extracted features represented
true metabolic characteristics and enabling meaningful quantitative comparison across different
patients and acquisition parameters.

Radiomics analysis was performed on a total of 800 tumor volumes and 4,150 normal
tissue volumes, all of which were manually delineated and verified to ensure labeling consistency.
This large and heterogeneous sample allowed comprehensive feature extraction and robust modeling
across a wide range of tissue characteristics.



2.4. Feature Processing and Tumor Classification Model

Extracted radiomics features underwent normalization to standardize their scale, followed
by dimensionality reduction using Principal Component Analysis (PCA). To address the high-
dimensional nature of radiomics data and potential multicollinearity issues, PCA was implemented
to retain principal components that cumulatively captured 95% of the total variance. The
effectiveness of PCA was validated through systematic comparison with non-PCA approaches,
demonstrating minimal performance differences (detailed analysis provided in Appendix 3).

A total of 800 tumor volumes and 4,150 normal volumes were utilized to construct the
dataset. The dataset was randomly partitioned into training (70%) and testing (30%) subsets. All
quantitative evaluation metrics for model performance were derived exclusively from predictions
on the test dataset to ensure objective and unbiased assessment.

To systematically evaluate the contribution of various feature types, four experimental
conditions were established: (1) CT radiomics features only, (2) PET radiomics features only, (3)
combined PET/CT radiomics features, (4) SUV parameters from PET metrics only SUVmax, SUV min,
SUVean. This comprehensive setup allowed comparative analyses of anatomical, functional, and
metabolic information derived from different imaging modalities.

For each feature set, five machine learning algorithms (AdaBoost, Decision Tree, Gradient
Boosting, Random Forest, and XGBoost) were trained and optimized using stratified 5-fold cross-
validation combined with GridSearchCV for hyperparameter tuning. Cross-validation was
implemented with fixed random seeds to ensure reproducibility, and hyperparameter optimization
was performed systematically for each algorithm to prevent overfitting. After training, feature
importance was extracted from each model and dataset, enabling evaluation and comparison of
influential features across different experimental conditions.

The complete tumor-normal classification pipeline is illustrated in Figure 2, demonstrating
the systematic approach from volume dataset construction to external validation.



Volume Dataset Construction
Liver-based SUV threshold segmentation with manual expert verification and normal organ exclusion

Radiomics Feature Extraction
417 quantitative features per modality extracted using PyRadiomics v3.1.0 with PCA reduction

Machine Learning Model Training
Five algorithms with stratified 5-fold cross-validation and GridSearchCV hyperparameter optimization

Tumor Score System
Ensemble prediction (70%) combined with Isolation Forest anomaly detection (30%)

e External Validation

Independent dataset from different institution for model generalizability assessment

Figure 2. Five-stage radiomics pipeline for tumor-normal classification: dataset construction (800
tumor, 4,150 normal volumes), feature extraction, machine learning model training, ensemble
scoring system, and external validation.
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2.5. Tumor Score

A tumor scoring system was developed to accurately classify segmented regions into
tumor or non-tumor tissues by quantitatively integrating ensemble machine learning predictions and
anomaly detection results. Initially, the probability of a region being tumor tissue was computed by
averaging the prediction probabilities derived from the five trained machine learning algorithms
(AdaBoost, Decision Tree, Gradient Boosting, Random Forest, and XGBoost). This averaged
probability was designated as the ensemble probability.

To improve robustness and reduce model-specific bias, a soft voting ensemble classifier
was created by averaging prediction probabilities from the five base models. This ensemble strategy
has been widely used in radiomics-based predictive modeling to improve performance and
generalizability [38-40], including models that combine handcrafted radiomics and deep learning
for survival prediction, radiomics-combined classifiers for DCIS assessment, and stacking ensemble
models for brain metastasis segmentation.

Additionally, anomaly detection probability, derived from the Isolation Forest algorithm,
was calculated by normalizing anomaly scores into probability values indicating the likelihood of a
data point representing an anomaly (i.e., tumor region).

These two probabilities were then combined using weighted averaging, with greater
weight given to the ensemble machine learning predictions to enhance prediction reliability.
Specifically, the tumor score was calculated according to the following formula:

Tumor Score = a X Pensemble + B X Ppanomaly (1)

where Pepsempbie Tepresents the averaged prediction probability from five machine learning
algorithms (AdaBoost, Decision Tree, Gradient Boosting, Random Forest, and XGBoost),
Ppanomaly denotes the normalized anomaly score from Isolation Forest algorithm, a is the weight
coefficient for ensemble probability (set to 0.7), and B is the weight coefficient for anomaly
probability (set to 0.3).

The calculated tumor scores were subsequently used to classify segmented regions into
tumor or normal tissues by applying predefined threshold values (0.05, 0.10, and 0.20), thus enabling
systematic and objective determination of tumor presence.

Binary classification was conducted by applying various threshold values (t) to the
calculated tumor score. Specifically, each segmented region was assigned a binary prediction based
on its tumor score relative to these thresholds:

. {1, if Tumor Score >t @)

0, if Tumor Score <t
where I is the predicted binary class label (1 for tumor, 0 for normal tissue), Tumor Score is the
calculated combined score from equation (1), and tt t represents the threshold value (0.05, 0.10, or
0.20) used for binary classification.
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In this study, the threshold values were set at 0.05, 0.10, and 0.20. For each threshold value,
the proportion of samples predicted as tumor was calculated to quantitatively evaluate the tumor
prediction ratio, thereby assessing the robustness and sensitivity of tumor classification across
different thresholds.

2.6. Model Evaluation

The predictive performance of each model was assessed using widely accepted evaluation
metrics: Accuracy, Precision, Recall (Sensitivity), F1 Score, and Area Under the Receiver Operating
Characteristic Curve (AUC-ROC). These metrics provide a comprehensive understanding of model
capability in distinguishing tumor from non-tumor tissue across varying clinical scenarios.

Mathematically, the evaluation metrics are defined as follows:

TP+TN
Accuracy = ——  (3)
TP+TN+FP+FN
.. TP
Precision = 4
TP+FP
TP
Recall = 5)
TP+FN
PrecisionxRecall
FlScore =2 X————— (6

Precision+Recall

Where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively.

Additionally, the Area Under the Receiver Operating Characteristic Curve (AUC-ROC)
was calculated to evaluate the discriminative ability of each model across all possible threshold
values, providing a threshold-independent measure of classification performance.

Thresholds for binary tumor prediction were established at 0.05, 0.10, and 0.20 for the
tumor scores, reflecting different degrees of classification confidence and enabling the evaluation of
model robustness across clinically relevant cutoffs.

To assess the statistical significance of model performance differences across imaging
modalities and feature types, we conducted a comprehensive analysis involving both parametric and
non-parametric tests. For tumor classification models, one-way analysis of variance (ANOVA) was
employed to determine whether the predictive performance metrics significantly differed among
four groups: CT radiomics, PET radiomics, combined PET/CT radiomics, and SUV-only models.
ANOVA assumptions were verified through tests of homogeneity and normality.
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2.7. Prediction of Recurrence and Mortality

To predict five-year recurrence and mortality among lymphoma patients, several
quantitative imaging biomarkers were utilized, including maximum standardized uptake value
(SUVmax), minimum standardized uptake value (SUVmin), mean standardized uptake value
(SUViean), metabolic tumor volume, and total lesion glycolysis (TLG). These features were
extracted from PET images and used as input variables in the model training process.

In addition to imaging-derived features, clinical data were incorporated to evaluate the
potential for improved prognostic prediction through multimodal integration. The clinical variables
included routine hematologic and biochemical markers obtained from standard blood examinations,
as well as pathological tumor characteristics. Table 2 summarizes the clinical variables used in this
study, including white blood cell count (WBC), absolute neutrophil count (ANC), absolute
lymphocyte count (ALC), platelet count (PLT), hemoglobin (Hb), neutrophil-to-lymphocyte ratio
(NLR), platelet-to-lymphocyte ratio (PLR), lactate dehydrogenase (LDH), and cancer classification
based on pathological subtype. These clinical parameters were selected based on their established
prognostic significance in lymphoma, particularly their association with systemic inflammation,
immune status, tumor burden, and disease aggressiveness.

Table 2. Clinical variables used for prognostic prediction modeling in lymphoma patients

Variable Description Clinical Significance

labData Clinical test results from routine blood Source dataset for all hematologic and
examinations biochemical markers

Cancer Pathological subtype and histological Defines tumor biology and guides

Classification categorization of the tumor treatment stratification

WBC White Blood Cell Count - Total Reflects systemic immune response
leukocyte count and inflammation

ANC Absolute Neutrophil Count - Absolute Indicator of infection risk and acute
number of neutrophils inflammatory status

ALC Absolute Lymphocyte Count - Absolute Marker of adaptive  immune
number of lymphocytes competence

PLT Platelet Count - Total platelet count Important for coagulation function

and bone marrow health
Hb Hemoglobin - Hemoglobin Assesses oxygen-carrying capacity

concentration in blood
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NLR Neutrophil-to-Lymphocyte ~ Ratio - Elevated values indicate systemic
Ratio of neutrophils to lymphocytes inflammation and poorer outcome

PLR Platelet-to-Lymphocyte Ratio - Ratio of Higher ratios correlate with adverse
platelets to lymphocytes prognosis in cancer

LDH Lactate Dehydrogenase - Enzyme Elevated levels reflect high tumor

released during tissue damage

burden and aggressive disease

Two distinct modeling approaches were implemented: (1) imaging-only models using
radiomics features alone, and (2) combined models integrating both imaging and clinical features.
The clinical dataset demonstrated complete data integrity with no missing values across all variables
and patients, ensuring reliable comparative analysis between modeling approaches. This
comparative framework enabled assessment of the added value of clinical data integration for
prognostic prediction accuracy.

Given the inherent imbalance between event (recurrence or mortality) and non-event cases,
the Synthetic Minority Over-sampling Technique (SMOTE) was applied to generate synthetic
samples for the minority class, thereby improving model training stability and generalizability.
Importantly, SMOTE was applied only to the training datasets, while the test datasets remained
untouched to ensure unbiased performance evaluation. All model results and performance metrics
reported in this study were evaluated using the original test datasets, following a data split of 70%
for training and 30% for testing.

Table 3 presents the detailed distribution of samples across different experimental
conditions. For recurrence prediction, the training set contained 48 samples without SMOTE (13
positive, 35 negative) and 70 samples with SMOTE (35 positive, 35 negative), representing a 45.80%
increase in total samples and a 169.20% increase in positive cases. The positive ratio improved from
27.08% to 50.00%, achieving balanced class distribution. For mortality prediction, the training set
expanded from 36 samples without SMOTE (3 positive, 33 negative) to 66 samples with SMOTE
(33 positive, 33 negative), showing an 83.33% increase in total samples and an 11-fold increase in
positive cases. The positive ratio increased from 8.33% to 50.00%, effectively addressing the severe
class imbalance. Test sets remained unchanged across all conditions to maintain evaluation integrity.

Table 3. Summarizes the distribution of training and test sets used in this study, showing differences

in sample counts and class ratios before and after SMOTE application.

Dataset Recurrence Prediction Model Mortality Prediction Model
Without With Change Without With Change
SMOTE SMOTE SMOTE SMOTE
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Training Set

Total Samples 48 70 45.80% 36 66 83.33%
Negative 35 35 - 33 33 -
Positive 13 35 169.20% 3 33 1000%
Positive Ratio  27.08% 50.00% 22.92% 8.33% 50.00% 41.67%
Test Set

Total Samples 12 12 No change 24 24 No change
Negative 9 9 No change 22 22 No change
Positive 3 3 No change 2 2 No change

In recurrence prediction, the number of positive cases was relatively sufficient, and 21
synthetic samples were generated to achieve class balance. In contrast, mortality prediction had a
much smaller number of positive samples; thus, 41 synthetic samples were added to the training data
to establish class parity. This tailored oversampling strategy enabled the models to learn effectively
from limited data while preserving the integrity of external evaluation.

Additionally, we trained recurrence and mortality prediction models using the same input
features without applying SMOTE, to compare the impact of oversampling. To assess whether
prediction performance varied significantly across tumor score thresholds (0.05, 0.10, 0.20), the
Friedman test was applied. This non-parametric statistical test is appropriate for repeated measures
designs and small sample sizes, especially when the assumption of normality cannot be guaranteed.
For each of the five machine learning models (AdaBoost, Decision Tree, Gradient Boosting,
Random Forest, and XGBoost), F1 scores were calculated under each threshold setting.

The Friedman test considered the models as blocks and tested the null hypothesis (Ho:
model performance is consistent across thresholds) against the alternative hypothesis (H; : at least

one threshold yields significantly different performance). Statistical significance was defined as p <
0.05.
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2.8. Validation with External Data

To assess the generalizability and robustness of the proposed radiomics-based machine
learning framework, external validation was conducted using an independent dataset from Ewha
Womans University Seoul Hospital. This validation study aimed to evaluate the transferability of
the developed models across different patient populations and institutional settings, thereby
providing critical evidence for the clinical applicability of the proposed methodology.

The external validation cohort comprised 16 lymphoma patients who underwent 18F-FDG
PET/CT imaging at Ewha Womans University Seoul Hospital. Following the same segmentation
protocols established in the primary study, a total of 3,100 volumes were manually delineated and
categorized, consisting of 2,432 normal tissue volumes and 668 tumor volumes.

All volumes in the external validation dataset were processed using identical radiomics
feature extraction pipelines as described in Section 2.3, ensuring standardized quantitative analysis
across both primary and validation cohorts. The same 417 radiomics features per imaging modality
were extracted using PyRadiomics software (version 3.1.0), maintaining consistency in feature
computation and preprocessing protocols.

The machine learning models trained on the primary dataset were directly applied to the
external validation cohort without retraining or parameter modification, providing a stringent test of
model generalizability. Performance evaluation encompassed the same metrics used in the primary
analysis: Accuracy, Precision, Recall, F1 Score, and AUC-ROC.

The external validation was conducted across all four experimental conditions established
in the primary study: (1) CT radiomics features only, (2) PET radiomics features only, (3) combined
PET/CT radiomics features. This comprehensive evaluation framework enabled direct comparison
of model performance between the primary training cohort and the independent validation dataset.

To assess whether predictive performance metrics differed significantly across imaging
modalities and feature types in the external validation setting, a one-way Analysis of Variance
(ANOVA) was employed. The ANOVA compared performance metrics among four groups: CT
radiomics, PET radiomics, and combined PET/CT radiomics model. This statistical approach
enabled objective evaluation of feature set contributions to predictive performance in an independent
validation context.

ANOVA assumptions, including homogeneity of variance and normality of residuals, were
verified through appropriate statistical tests. Post-hoc analysis using Tukey's honestly significant
difference (HSD) test was performed when significant differences were detected, allowing for
pairwise comparisons between specific imaging modality groups. Statistical significance was
defined as p < 0.05 for all analyses.
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3. Results

3.1. Tumor Classification Performance Comparison

The performance of machine learning models in differentiating tumor from normal tissue
was assessed using four distinct datasets: CT radiomics, PET radiomics (excluding SUV parameters),
combined PET/CT radiomics, and SUV parameters from PET data (Table 4, Figure 3 and Figure 4).

For the CT radiomics dataset, the models achieved an average accuracy of 93.78%,
precision of 74.75%, recall of 44.42%, F1 score of 54.92%, and an AUC of 93.68%. The XGBoost
classifier exhibited the highest overall performance with an accuracy of 94.78%, precision of
79.38%, recall of 52.92%, F1 score of 63.50%, and an AUC of 96.90%. Conversely, the Decision
Tree model showed the lowest AUC (85.36%) and precision (56.83%), along with relatively low
recall (43.33%), indicating its limited discriminative capability within this dataset.

In the PET radiomics dataset (excluding SUV features), models demonstrated improved
recall and F1 score compared to CT alone, with an average accuracy of 91.99%, precision of 78.53%,
recall of 65.80%, F1 score of 71.53%, and AUC of 92.09%. Again, the XGBoost model
outperformed other classifiers, achieving the highest accuracy (93.47%), recall (70.54%), F1 score
(76.70%), and AUC (96.05%). Decision Tree had the lowest performance metrics in this group,
notably an accuracy of 89.25% and an AUC of 77.91%, underscoring its inferior predictive
performance.

Utilizing the combined PET/CT radiomics dataset (excluding SUV features), the average
accuracy was 93.26%, precision 77.65%, recall 54.09%, F1 score 63.58%, and AUC 93.16%.
XGBoost maintained its superior performance, recording an accuracy of 94.23%, precision of
81.32%, recall of 60.99%, F1 score of 69.70%, and AUC of 96.39%. The Decision Tree model
continued to demonstrate the weakest performance, particularly evident in its lowest recall (48.49%)
and AUC (84.79%).

Finally, the SUV parameters from PET demonstrated notably reduced predictive
performance across all metrics. Models averaged an accuracy of 88.18%, precision of 71.03%, recall
of 40.18%, F1 score of 49.79%, and AUC of 87.04%. The Gradient Boosting model was the top
performer within this dataset, achieving an accuracy of 89.12% and an AUC of 88.30%. AdaBoost
exhibited particularly poor results, notably achieving the lowest recall (19.20%) and F1 score
(31.16%), highlighting significant challenges in sensitivity when SUV parameters were included.

Overall, the XGBoost classifier consistently achieved the highest performance across all
radiomics-based datasets (CT, PET, and combined PET/CT), demonstrating particularly strong F1
score and AUC values. The Decision Tree and AdaBoost classifiers were less reliable and exhibited
markedly inferior performance in several key metrics. The incorporation of SUV parameters into
the PET dataset consistently decreased performance, indicating limited additional predictive benefit
from these features in conjunction with radiomics features alone.
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Table 4. Performance comparison of tumor classification models using CT, PET, and combined
PET/CT radiomics features and SUV model. Metrics evaluated include Accuracy, Precision, Recall,
F1 Score, and AUC.

Data Model Accuracy Precision Recall F1 score AUC
CT radiomics Random 0.9392 0.9070 0.3250 0.4785 0.9653
Forest
Decision Tree ~ 0.9231 0.5683 0.4333 0.4917 0.8536
Gradient 0.9435 0.7808 0.4750 0.5907 0.9562
Boosting
AdaBoost 0.9356 0.6875 0.4583 0.5500 0.9400
XGBoost 0.9478 0.7938 0.5292 0.6350 0.9690
average 0.9378 0.7475 0.4442 0.5492 0.9368
PET radiomics Random 0.9293 0.8488 0.6518 0.7374 0.9607
Forest
Decision Tree ~ 0.8925 0.6571 0.6161 0.6359 0.7791
Gradient 0.9313 0.8220 0.7009 0.7566 0.9558
Boosting
AdaBoost 09116 0.7582 0.6161 0.6798 0.9484
XGBoost 0.9347 0.8404 0.7054 0.7670 0.9605
average 0.9199 0.7853 0.6580 0.7153 0.9209
PET/CT Random 0.9372 0.8684 0.4978 0.6329 0.9627
radiomics Forest
Decision Tree  0.9179 0.6696 0.4849 0.5625 0.8479
Gradient 0.9388 0.8243 0.5560 0.6641 0.9522
Boosting
AdaBoost 0.9266 0.7068 0.5560 0.6224 0.9315
XGBoost 0.9423 0.8132 0.6099 0.6970 0.9639
average 0.9326 0.7765 0.5409 0.6358 0.9316
PET data SUV Random 0.8871 0.6883 0.4732 0.5608 0.9044
Forest
Decision Tree  0.8741 0.6444 0.3884 0.4847 0.8022
Gradient 0.8912 0.7192 0.4688 0.5676 0.8830
Boosting
AdaBoost 0.8707 0.8269 0.192 0.3116 0.8732
XGBoost 0.8857 0.6728 0.4866 0.5648 0.8890
Average 0.8818 0.7103 0.4018 0.4979 0.8704

Table 5 summarizes the top radiomics features identified as most important by each
machine learning model across CT, PET, and combined PET/CT datasets. In the CT radiomics
models, original shape features, particularly Surface Volume Ratio and Sphericity, were consistently
selected as the most significant features, with the Decision Tree and Gradient Boosting models
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showing notably high feature importance (0.2749 and 0.2488, respectively) for Surface Volume
Ratio.

For the PET radiomics dataset, the log-sigma-1-mm-3D GLDM Dependence Variance
texture feature emerged as the most influential in four out of five models. This feature exhibited
particularly high importance in the Decision Tree (0.3255) and Gradient Boosting (0.3758) models.
The AdaBoost model was unique in identifying the original first-order Median intensity as the most
important feature, with an importance score of 0.1900.

In the combined PET/CT dataset, log-sigma-1-mm-3D GLDM Dependence Variance was
again the dominant feature across four models, showing the highest importance in Decision Tree
(0.2513), AdaBoost (0.2513), and Gradient Boosting (0.2090). Conversely, the XGBoost model
selected the original shape Surface Volume Ratio feature with a moderate importance of 0.0477.

Table 5. Top-ranked radiomics features and their relative importance scores across five machine
learning models for differentiating tumor and normal tissue in CT, PET, and combined PET/CT
datasets.

ML CT model PET model PET-CT model
model
Feature Importa  Feature Importa  Feature Importa
nce nce nce

AdaB originalshapeSphericity ~ 0.0550 originalfirstorderMe  0.1900 log-sigma-1-mm- 0.2513
oost dian 3DgldmDependence Var

iance
Decisi  originalshapeSurfaceVo ~ 0.2749 log-sigma-1-mm- 0.3255 log-sigma-1-mm-3Dgl 0.2513
on lumeRatio 3DgldmDependence dmDependenceVarianc
Tree Variance e
Gradie  originalshapeSurfaceVo ~ 0.2488 log-sigma-1-mm- 0.3758 log-sigma-1-mm- 0.2090
nt lumeRatio 3DgldmDependence 3DgldmDependence Var
Boosti Variance iance
ng
Rando  originalshapeSphericity ~ 0.0251 log-sigma-1-mm- 0.0329  log-sigma-1-mm- 0.0319
m 3DgldmDependence 3DgldmDependence Var
Forest Variance iance
XGBo  originalshapeSurfaceVo  0.0536 log-sigma-1-mm- 0.0813 originalshapeSurfaceVo  0.0477
ost lumeRatio 3DgldmDependence lumeRatio

Variance
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Figure 3. Comparison of Accuracy, Precision, Recall, and F1 score values across different
radiomics-based tumor classification models.

(d)
Figure 4. Comparison of AUC values across different radiomics-based tumor classification models.
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The one-way ANOVA revealed that accuracy (F = 21.9810, p < 0.0001), recall (F =
10.2216, p = 0.0005), and F1 score (F = 8.3510, p = 0.0014) showed statistically significant
differences across the four radiomics data groups. These results suggest that the model performance
in terms of overall accuracy and sensitivity is significantly affected by the type of feature set used.
In contrast, precision (F = 0.6618, p = 0.5875) and AUC (F = 1.4785, p = 0.2581) did not exhibit
statistically significant differences across groups, indicating that these metrics remained relatively
stable regardless of the radiomics feature composition.

3.2. Tumor Score Threshold Analysis

Using the tumor score thresholds of 0.05, 0.10, and 0.20, the model demonstrated varying
predictive capabilities. The results for the predicted proportion of tumors according to the tumor
score threshold and the proportion of actual tumors included among the predicted proportion of
tumors are shown in Table 6. At a threshold of 0.05, the model exhibited a tumor prediction accuracy
of 100%, indicating complete reliability in identifying true tumor-positive volumes. When
thresholds were increased to 0.10 and 0.20, the accuracy slightly decreased to 96%, suggesting
increased selectivity in detecting volumes with tumor presence, while maintaining high reliability.

Table 6. Predicted proportion of tumors at various tumor score thresholds (0.05, 0.10, 0.20) and the
corresponding proportion of actual tumors correctly identified within the predicted tumor samples.

Percentage of volume containing

Tumor Score Threshold Tumor Prediction Rate

tumor
0.05 77.00% 100%
0.10 45.14% 96%
0.20 16.71% 96%

3.3. Recurrence and Mortality Prediction

Prediction models for five-year recurrence and mortality demonstrated consistent
performance across tumor score thresholds (0.05, 0.10, 0.20), with notable differences between
models trained with and without the application of SMOTE (Table 7). To evaluate the potential
benefit of incorporating clinical data, we additionally developed combined models integrating both
imaging-derived radiomics features and clinical variables, with results presented in Table 8.

3.3.1 Recurrence and Mortality Prediction
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For recurrence prediction, models trained with SMOTE achieved the highest accuracy of
75% using Decision Tree and Gradient Boosting at thresholds of 0.10 and 0.20, respectively. The
mean accuracy improved from 62% at the 0.05 threshold to 68% at 0.10, and slightly declined to
67% at 0.20, suggesting relatively stable performance across thresholds. In contrast, models trained
without SMOTE reached a maximum accuracy of 67% (XGBoost at 0.05 and 0.10), but showed a
lower and more variable overall performance, with mean accuracies of 60%, 63%, and 55% at
thresholds 0.05, 0.10, and 0.20, respectively. These findings indicate that SMOTE enhanced model
robustness and performance in handling class imbalance, particularly for recurrence prediction.

For mortality prediction, models showed consistently high accuracy regardless of SMOTE
application. When using SMOTE, the highest accuracy (86%) was observed for Decision Tree,
Gradient Boosting, and XGBoost at the 0.10 threshold. The mean accuracy increased from 76% at
0.05, to 83% at 0.10, followed by a slight decrease to 79% at 0.20. Without SMOTE, the mean
accuracy remained relatively stable across thresholds, consistently around 76—79%, although slight
performance variations were seen in individual models. These results suggest that while SMOTE
contributed to improved consistency in recurrence prediction, its effect on mortality prediction was
minimal, as the models already performed well without additional class balancing.

Table 7. Comparison of five-year recurrence and mortality prediction accuracy across tumor score
thresholds (0.05, 0.10, 0.20). Accuracy values are presented for each machine learning model
(AdaBoost, Decision Tree, Gradient Boosting, Random Forest, XGBoost) under two conditions:
with and without SMOTE application.

Recurrance Mortality

Model Threshold

With SMOTE Without SMOTE  With SMOTE Without SMOTE

AdaBoost 0.50 0.67 0.79 0.71
Decision Tree 0.67 0.50 0.79 0.79
Gradient Boosting ~ 0.05 0.67 0.58 0.71 0.79
Random Forest 0.58 0.58 0.71 0.71
XGBoost 0.67 0.67 0.79 0.79
Mean 0.62 0.60 0.76 0.76
AdaBoost 0.58 0.67 0.79 0.79
Decision Tree 0.75 0.67 0.86 0.71
Gradient Boosting 0.1 0.75 0.50 0.86 0.71
Random Forest 0.67 0.67 0.79 0.79
XGBoost 0.67 0.67 0.86 0.79
Mean 0.68 0.63 0.83 0.76
AdaBoost 0.67 0.58 0.79 0.79
Decision Tree 0.75 0.67 0.79 0.79
Gradient Boosting 0.2 0.67 0.42 0.79 0.79
Random Forest 0.67 0.58 0.79 0.79
XGBoost 0.58 0.50 0.79 0.79
Mean 0.67 0.55 0.79 0.79
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3.3.2 Combined Imaging and Clinical Models

The integration of clinical variables with imaging features yielded mixed results
depending on the specific prediction task and threshold setting (Table 5). For recurrence prediction
with SMOTE, the combined models demonstrated variable performance, with mean accuracies of
72% at the 0.05 threshold, 60% at 0.10, and 47% at 0.20. Notably, the AdaBoost model achieved
exceptional performance (92%) at the 0.05 threshold, representing a substantial improvement over
imaging-only models. However, performance generally declined at higher thresholds, with some
models showing marked deterioration, particularly Decision Tree and Gradient Boosting at the 0.20
threshold (33% accuracy each).

For recurrence prediction without SMOTE, the combined models showed more modest
performance improvements, with mean accuracies of 57% at 0.05, 70% at 0.10, and 65% at 0.20.
The Random Forest model consistently performed well across thresholds (75% accuracy), while
other models showed more variable results.

In mortality prediction, the combined models demonstrated more stable performance
patterns. With SMOTE application, mean accuracies were 79% at 0.05, declining to 57% at 0.10,
and recovering to 74% at 0.20. Without SMOTE, mortality prediction remained remarkably
consistent at 79% across all thresholds, suggesting that clinical data integration may provide
complementary information for mortality risk assessment while maintaining stability in prediction
performance.

Comparing the imaging-only and combined approaches, the integration of clinical data
showed particular promise for specific scenarios: the AdaBoost model with clinical data achieved
92% accuracy for recurrence prediction at the 0.05 threshold (vs. 50% for imaging-only),
representing an 84% relative improvement. However, this benefit was not consistently observed
across all models and thresholds, suggesting that the value of clinical data integration may be model-
dependent and require careful optimization of feature selection and weighting strategies.

Table 8. Comparison of five-year recurrence and mortality prediction accuracy using combined
imaging and clinical data across tumor score thresholds (0.05, 0.10, 0.20). Accuracy values are
presented for each machine learning model under two conditions: with and without SMOTE
application.

Accuracy (with SMOTE) Accuracy (without SMOTE)
Model Threshold

Recurrance Mortality Recurrance Mortality
AdaBoost 0.92 0.79 0.42 0.79
Decision Tree 0.58 0.79 0.58 0.79
Gradient Boosting 0.05 0.83 0.79 0.50 0.79
Random Forest 0.58 0.79 0.75 0.79
XGBoost 0.67 0.79 0.58 0.79
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Mean 0.72 0.79 0.57 0.79

AdaBoost 0.75 0.43 0.83 0.79
Decision Tree 0.42 0.43 0.5 0.79
Gradient Boosting 0.1 0.67 0.43 0.75 0.79
Random Forest 0.58 0.79 0.75 0.79
XGBoost 0.58 0.79 0.67 0.79

Mean 0.60 0.57 0.7 0.79
AdaBoost 0.75 0.71 0.75 0.79
Decision Tree 0.33 0.71 0.58 0.79
Gradient Boosting 0.2 0.33 0.71 0.67 0.79
Random Forest 0.50 0.79 0.75 0.79
XGBoost 0.42 0.79 0.50 0.79

Mean 0.47 0.74 0.65 0.79

3.3.3 Statistical Evaluation

To evaluate whether these performance variations were statistically significant across
tumor score thresholds, a Friedman test was conducted for each outcome. For recurrence prediction,
no statistically significant difference in performance was observed across thresholds, both with
SMOTE (¥*(2) = 3.8750, p = 0.1441) and without SMOTE (y*(2) = 3.8750, p = 0.1441), supporting
the overall stability of model performance.

However, for mortality prediction with SMOTE, a statistically significant difference was
identified (¥*(2) = 6.6154, p = 0.0366), suggesting that tumor score thresholds may influence model
performance in this setting. No significant difference was found for mortality prediction without
SMOTE (¥*(2) = 2.0000, p = 0.3679). These results imply that while recurrence prediction remains
robust across thresholds, mortality prediction performance may vary depending on the chosen tumor
score threshold, especially when SMOTE is applied.

3.4 External validation

External validation demonstrated variable performance across different imaging
modalities and machine learning approaches (Table 9). PET radiomics models achieved the highest
overall performance, with an average accuracy of 90.34%, precision of 68.95%, recall of 40.4%, F1
score of 49.81%, and AUC of 88.52%. CT radiomics models showed moderate performance with an
average accuracy of 88.02%, but exhibited lower recall (17%) and F1 score (25.33%), indicating
reduced sensitivity in tumor detection. Combined PET/CT radiomics models yielded intermediate
results with an average accuracy of 88.71%, precision of 65.42%, recall of 25.8%, F1 score of
34.29%, and AUC of 83.48%.
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Among individual models, the XGBoost classifier demonstrated consistent superior
performance across all radiomics datasets. For CT radiomics, XGBoost achieved the highest
accuracy (89.04%) and AUC (80.75%), while maintaining reasonable precision (62.86%). In the
PET radiomics dataset, XGBoost recorded an accuracy of 90.60% and the highest AUC (92.99%),
demonstrating robust discriminative capability. For combined PET/CT radiomics, XGBoost again
showed the best overall performance with an accuracy of 89.70% and AUC of 88.48%.

Conversely, the Decision Tree model consistently exhibited the weakest performance
across all datasets, particularly evident in the CT radiomics validation where it achieved the lowest
accuracy (86.14%) and AUC (66.31%). This pattern was consistent with observations from the
primary training dataset, reinforcing the reliability of model performance rankings across different
cohorts.

One-way ANOVA analysis revealed statistically significant differences in performance
metrics across imaging modalities in the external validation cohort. Accuracy showed significant
variation among the three radiomics approaches (F = 8.42, p = 0.0028), with PET radiomics
demonstrating superior performance compared to CT-only and combined approaches. Recall
differences were highly significant (F = 15.73, p < 0.0001), reinforcing the superior sensitivity of
PET-based models for tumor detection. AUC values also differed significantly across modalities (F
= 6.89, p = 0.0058), confirming the discriminative advantage of PET radiomics in independent
validation.

These statistical findings support the robustness of PET radiomics features for lymphoma
tumor classification and validate the methodological framework's transferability across different
institutional settings, despite the observed performance decline inherent to external validation
scenarios.

Table 9. External validation performance of radiomics-based tumor classification models across CT,
PET, and combined PET/CT datasets. Results represent direct application of models trained on the
primary dataset to an independent cohort from Ewha Womans University Seoul Hospital.

Data Model Accuracy Precision Recall F1 score AUC
Random
0.8831 0.5882 0.1000 0.1709 0.7908
Forest
Decision Tree  0.8614 0.3913 0.2700 0.3195 0.6631
gg‘:)‘i‘tfgt 0.8855 0.5926 0.1600 0.252 0.7891
CT radiomics £
AdaBoost 0.8807 0.8200 0.1000 0.1980 0.7623
XGBoost 0.8904 0.6286 0.2200 0.3259 0.8075
average 0.8802 0.6401 0.1700 0.2533 0.7626
Random
Forest 0.9072 0.8108 0.3000 0.438 0.9150
PET radiomics
Decision Tree  0.8916 0.5581 0.4800 0.5161 0.7698
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PET/CT
radiomics

Gradient
Boosting

AdaBoost
XGBoost

average

Random
Forest

Decision Tree

Gradient
Boosting

AdaBoost
XGBoost

average

0.9084

0.9036

0.9060

0.9034

0.8952

0.8645

0.8892

0.8898

0.8970

0.8871

0.7609

0.6282

0.6897

0.6895

0.7167

0.4269

0.5816

0.9048

0.6408

0.6542

0.3500

0.4900

0.4000

0.4040

0.215

0.365

0.285

0.095

0.3300

0.2580

0.4795

0.5506

0.5063

0.4981

0.3308

0.3935

0.3826

0.1719

0.4356

0.3429

0.9253

0.8859

0.9299

0.8852

0.8543

0.7412

0.8554

0.8382

0.8848

0.8348
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4. Discussions

The proposed framework addresses key limitations in current threshold-based
segmentation practices by integrating metabolic and morphological features from both PET and CT
modalities, combined with ensemble ML classifiers and anomaly detection strategies. Our findings
demonstrate high predictive performance across classification and prognostic tasks, suggesting
strong clinical utility and translational potential.

4.1. Interpretation of Model Performance

Among the tested models, CT-only radiomics classifiers achieved the highest average
accuracy (93.78%) and AUC (0.9368), with shape-based features such as Surface Volume Ratio and
Sphericity consistently contributing most to predictive performance. This aligns with previous
studies (e.g., Zhang et al., 2024) in which CT shape descriptors were instrumental in distinguishing
tumor from normal tissue [33]. However, the CT models exhibited low recall (44.42%), indicating
a tendency to overlook true tumor-positive volumes, likely due to CT’s limited ability to reflect
underlying metabolic activity.

In contrast, PET radiomics models demonstrated higher recall (65.80%) and F1 scores
(71.53%) at the expense of slightly reduced accuracy (91.99%). Texture-based features such as log-
sigma-1-mm-3D GLDM Dependence Variance were dominant, indicating that PET-derived features
effectively capture the heterogeneous biological properties of lymphoma lesions. Notably, the PET-
only models outperformed CT in detecting metabolically active tumors, reinforcing the clinical
value of PET in lymphoma imaging and consistent with reports by Driessen et al. (2023) and Yuan
et al. (2023).

The combined PET/CT models, while yielding marginally improved accuracy (93.26%)
and AUC (0.9316), did not enhance recall or Fl-score compared to PET alone. This may be
attributable to feature competition or dilution between modalities, whereby PET’s sensitivity is
offset by the morphological dominance of CT descriptors. These findings suggest that naive
integration of modalities may not necessarily yield additive benefits unless fusion methods are
optimized.

Compared to previous studies, our proposed model demonstrated competitive or superior
performance across various imaging modalities and tumor classification tasks. For instance, Hsu
(2018) reported an accuracy of 90.00% using PET-based radiomics on 332 VOIs [32]. Zhang et al.
(2024) published two separate studies: one achieving an AUC of 0.9978 using contrast-enhanced
CT on 208 VOIs [33], and another reporting an AUC of 0.9280 using CT with MRI fusion on 339
VOlIs [34]. Pei et al. (2023) also demonstrated high classification performance with an AUC of
0.9190 using CT radiomics on a large-scale dataset of 4950 VOIs [35].

In comparison, as summarized in Table 10, our study evaluated multiple radiomics models
based on PET, CT, combined PET/CT, and SUV features across 60 patients. The CT-only model
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achieved the highest accuracy (94.78%) and AUC (0.9690), followed by the combined PET/CT
model (ACC: 94.23%, AUC: 0.9639), the PET-only model (ACC: 93.47%, AUC: 0.9607), and the
SUV-only model (ACC: 89.12%, AUC: 0.9044).

Table 10. Comparison of tumor classification performance across different radiomics-based studies.
The table summarizes patient sample sizes, imaging modalities, and reported performance metrics
(accuracy or AUC) for each study.

Author Patient Number Imaging Modality PERFORMANCE
Chih-Yang Hsu (2018) 38 (332 VOIs) *PET ACC 0.9000
Huai-wen Zhang (2024) 104 (208 VOIs) Enhanced CT AUC 0.9978
Huai-wen Zhang (2024) 113 (339 VOIs) CT (using MRI AUC 0.9280
fusion)

Jinghong Pei (2023) 117 (Total 4950 CT AUC: 9190

VOIs)
Our Study (2025) 60 PET, CT CT MODEL ACC: 0.9478 AUC: 0.9690

PET MODEL ACC: 0.9347 AUC: 0.9607

PET/CT MODEL ACC: 0.9423 AUC:
0.9639

SUV MODEL ACC: 0.8912 AUC: 0.9044

4.2. External Validation and Clinical Generalizability

The modest accuracy reduction observed for PET radiomics (1.65 percentage points)
compared to the more substantial decline in CT radiomics (5.76 percentage points) suggests that
metabolic features derived from PET imaging may be more robust to institutional variations than
morphological CT features. This finding aligns with previous studies demonstrating the superior
generalizability of functional imaging biomarkers across different scanner types and acquisition
protocols [41-43]. The relative stability of PET-derived features may be attributed to the
standardized nature of FDG uptake quantification and the less pronounced impact of reconstruction
algorithms on SUV-based texture features.

However, the more pronounced deterioration in recall performance across all modalities
(PET: 65.80% to 40.4%; CT: 44.42% to 17%) raises important clinical considerations. This
substantial reduction in sensitivity suggests that models may become overly conservative when
applied to new patient populations, potentially missing true tumor-positive regions. Such behavior
could have significant clinical ramifications in lymphoma staging and treatment planning, where
accurate tumor burden assessment is critical for prognosis and therapeutic decision-making.

28



The performance decline likely reflects multiple factors inherent to multi-institutional
validation studies [44, 45]. First, patient population heterogeneity between institutions may
contribute to feature distribution shifts, as lymphoma subtypes, disease stages, and patient
demographics can vary significantly across clinical centers. Second, subtle differences in imaging
acquisition protocols, including contrast timing, reconstruction parameters, and scanner-specific
calibrations, may introduce systematic variations in radiomics features that were not adequately
captured during model training.

Additionally, the manual segmentation process, despite following standardized protocols,
inevitably introduces inter-observer variability that may be amplified across different institutions
and clinical workflows. The reduced recall performance particularly suggests that the models
learned institution-specific patterns during training that did not generalize effectively to the external
validation site.

These findings underscore the importance of rigorous external validation in radiomics
research and highlight the need for robust model adaptation strategies before clinical deployment.
The results suggest that while radiomics-based approaches show promise for lymphoma tumor
classification, direct model transfer without local calibration may result in suboptimal performance,
particularly in terms of tumor detection sensitivity.

The external validation results, while showing reduced performance compared to the
primary dataset, still demonstrate the fundamental viability of the radiomics approach, particularly
for PET-based models. However, they emphasize the critical need for comprehensive validation and
potential model refinement before widespread clinical adoption.

4.3. Tumor Score Strategy and Threshold Analysis

To improve classification robustness, we developed a Tumor Score, integrating ensemble
ML predictions (weighted at 70%) with anomaly detection (30%) derived from an Isolation Forest
algorithm. The ensemble predictions provided stable and consistent classification across modalities,
while the anomaly score served to detect subtle, high-risk features in metabolically ambiguous
volumes. The 70:30 weighting was empirically chosen based on the superior AUC performance of
ensemble predictions.

We evaluated tumor classification performance using thresholds of 0.05, 0.10, and 0.20.
At 0.05, the model exhibited 100% sensitivity but lower specificity due to broader inclusion of
potentially non-malignant tissue. Raising the threshold to 0.10 and 0.20 improved precision while
maintaining high tumor inclusion rates (96%), demonstrating the system’s adaptability to clinical
sensitivity-specificity trade-offs.

4.4. Prognostic Prediction Performance and Clinical Data Integration
Our proposed machine learning framework demonstrated variable performance in

predicting five-year recurrence and mortality in lymphoma patients, with distinctions depending on
multiple factors including the use of SMOTE-based class balancing and the integration of clinical
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data with imaging features. The comparative analysis between imaging-only and combined imaging-
clinical models revealed complex interactions that merit detailed examination.

The integration of clinical variables with radiomics features yielded mixed results that
varied significantly across prediction tasks and experimental conditions. For recurrence prediction
with SMOTE, the addition of clinical data showed modest improvements in mean accuracy from
66% to 60% across all thresholds (difference: +0.06), although this represents a counterintuitive
decrease that warrants careful interpretation. Individual threshold analysis revealed more nuanced
patterns: at the 0.05 threshold, clinical data integration improved performance from 62% to 72%
(difference: 0.10), while at the 0.20 threshold, a substantial deterioration was observed from 67% to
47% (difference: 0.20).

These findings align with recent observations in radiomics literature that even when
combined with clinical data, the results do not necessarily improve [46-48]. The integration of
multimodal data sources can introduce feature redundancy, increase model complexity, and
potentially dilute the discriminative power of imaging-derived biomarkers, particularly when the
clinical variables do not provide complementary information to the radiomics features.

For mortality prediction with SMOTE, clinical data integration demonstrated more
consistent benefits, with mean accuracy improving from 79% to 70% (difference: +0.09). The most
pronounced improvement was observed at the 0.10 threshold, where accuracy increased from 83%
to 57% (difference: +0.26), suggesting that clinical variables may provide complementary
prognostic information for mortality risk assessment under specific modeling conditions.

Interestingly, models without SMOTE showed different patterns of clinical data utility.
For recurrence prediction, clinical data integration resulted in marginal improvements with a mean
difference of -0.05, while mortality prediction remained remarkably stable (mean difference: -0.02),
suggesting that the value of clinical data may be influenced by class balancing strategies.

For mortality prediction with SMOTE, clinical data integration demonstrated more
consistent benefits, with mean accuracy improving from 79% to 70% (difference: +0.09). The most
pronounced improvement was observed at the 0.10 threshold, where accuracy increased from 83%
to 57% (difference: +0.26), suggesting that clinical variables may provide complementary
prognostic information for mortality risk assessment under specific modeling conditions.

Interestingly, models without SMOTE showed different patterns of clinical data utility.
For recurrence prediction, clinical data integration resulted in marginal improvements with a mean
difference of -0.05, while mortality prediction remained remarkably stable (mean difference: -0.02),
suggesting that the value of clinical data may be influenced by class balancing strategies.

In recurrence prediction, models trained with SMOTE achieved variable performance
depending on clinical data inclusion. <mark>Pure imaging models with SMOTE showed mean
accuracy of 66%, while the addition of clinical data resulted in 60% accuracy, indicating that feature
integration may introduce complexity that requires careful optimization Conversely, in the absence
of SMOTE, imaging-only models achieved 59% accuracy compared to 64% with clinical data,
suggesting that clinical variables may be more beneficial when dealing with naturally imbalanced
datasets.
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Importantly, these results demonstrate that TMTV of PET can be utilized as a strong and
independent prognostic factor in lymphomas [49-50], even without the incorporation of additional
clinical variables. The robust performance of imaging-only models (mean accuracy 66% for
recurrence and 79% for mortality with SMOTE) supports the established role of metabolic tumor
burden as a powerful predictor of patient outcomes, reinforcing the clinical utility of quantitative
PET imaging in lymphoma management.

For mortality prediction, the pattern was more consistent with clinical data showing
benefits regardless of SMOTE application. With SMOTE, clinical data integration improved mean
accuracy from 79% to 70%, while without SMOTE, the improvement was from 77% to 79%. This
suggests that clinical variables may provide more robust prognostic value for mortality prediction
compared to recurrence.

The tumor score threshold analysis revealed important insights into model behavior across
different clinical decision points. For imaging-only models, recurrence prediction showed relatively
stable performance across thresholds (0.62-0.67 with SMOTE), while clinical data integration
introduced greater variability (0.47-0.72 with SMOTE). This suggests that clinical data may enhance
performance at specific operating points but could reduce overall robustness across different
sensitivity-specificity trade-offs.

Mortality prediction demonstrated greater stability with clinical data integration,
maintaining consistent performance across thresholds both with and without SMOTE. This
differential behavior between recurrence and mortality endpoints may reflect the distinct clinical
characteristics of these outcomes, with mortality potentially being more strongly associated with
clinical biomarkers than recurrence patterns.

These findings highlight the complex nature of clinical data integration in radiomics-based
prognostic modeling. While clinical variables such as LDH, NLR, and PLR are established
prognostic factors in lymphoma, their integration with imaging features requires careful
consideration of modeling strategies, class balancing techniques, and threshold optimization.

The differential impact of clinical data on recurrence versus mortality prediction suggests
that these endpoints may benefit from distinct modeling approaches. Mortality prediction appears
more amenable to clinical data integration, possibly reflecting the stronger association between
systemic biomarkers and overall survival compared to disease recurrence patterns, which may be
more dependent on tumor-specific characteristics captured by imaging features.

4.5. Novel Approach to Mixed Volume Classification and Broader
Applications

A key innovation of this study is the explicit modeling of mixed tumor-normal regions,
which are often ignored in traditional binary classification approaches. In lymphoma, systemic
involvement and physiological FDG uptake in lymphoid tissues or adjacent organs frequently result
in metabolically active but non-malignant regions. Our inclusion of these regions in the classification
schema reflects real-world clinical challenges and enhances the model’s generalizability.
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Additionally, while our methodology was developed using lymphoma as a model, it is not
restricted to this disease. The threshold-based segmentation problem occurs across various
malignancies—such as non-small cell lung cancer, gynecologic cancers, and head and neck
tumors—where tumor margins are often metabolically and anatomically ambiguous [51-59]. As
such, our system offers broad applicability to other cancers where mixed-volume classification is
critical.

4.6. Validity of PCA selection

In high-dimensional radiomics analysis, dimensionality reduction is essential to mitigate
overfitting, reduce noise, and improve model generalizability. Two common strategies include
unsupervised methods such as Principal Component Analysis (PCA) and supervised approaches like
Least Absolute Shrinkage and Selection Operator (Lasso). While both methods offer dimensionality
reduction capabilities, the use of PCA in this study was specifically motivated by several
methodological and practical considerations.

First, PCA operates in an unsupervised manner by identifying orthogonal principal
components that capture the maximum variance in the feature space. This is particularly
advantageous in radiomics, where a substantial proportion of extracted features exhibit high
collinearity. By transforming correlated variables into linearly uncorrelated components, PCA
mitigates multicollinearity, a common challenge in radiomics-based machine learning. In contrast,
Lasso performs feature selection by enforcing sparsity through L1 regularization but may arbitrarily
discard correlated but potentially informative features. This can lead to instability in the selected
feature set, especially when minor changes in the dataset or noise distribution occur.

Second, PCA is model-agnostic and purely data-driven, making it applicable across
multiple downstream classifiers without the need for retraining or parameter tuning for each model.
In contrast, Lasso is a supervised method whose performance is tightly coupled to the predictive
relationship with the target label. As such, features selected by Lasso may overfit to the training
labels and become suboptimal when applied to different algorithms or data distributions.

Third, in the context of our multiclass classification task involving CT, PET, and PET/CT
fused features, PCA provided a unified reduction approach that preserved up to 95% of the total
variance across modalities. This ensured consistency in the transformed feature space and allowed
equitable comparisons between model performances. Lasso, on the other hand, would require
repeated retraining for each experimental condition and modality, leading to inconsistent
dimensional representations and potentially biased evaluation results.

Moreover, empirical evaluation conducted in Appendix 3 demonstrated that PCA-based
dimensionality reduction did not significantly compromise classification performance when
compared to models trained on the full feature set. Over 87% of all comparisons showed
performance differences within +0.5%, confirming that PCA successfully preserved the
discriminative power of the original features while substantially reducing feature dimensionality and
computational complexity
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In summary, PCA was selected as the primary dimensionality reduction method for this
study due to its robustness against multicollinearity, reproducibility across modalities, model-
agnostic nature, and stable preservation of variance. While Lasso remains a valuable tool for sparse
feature selection in certain predictive contexts, its supervised nature and instability in high-
dimensional radiomics data made it less suitable for the objectives of this study.

4.7. Study Limitations

4.7.1 Biological interpretation

Despite the promising results demonstrated in this study, several limitations should be
acknowledged that may affect the interpretation and generalizability of our findings. A fundamental
limitation inherent to radiomics-based approaches is the challenge of biological interpretation. The
data-driven nature of radiomics inherently offers no direct insight into the biological underpinnings
of the observed relationships between imaging features and clinical outcomes [60]. While our
models demonstrated robust predictive performance, the specific biological mechanisms underlying
the most influential features, such as log-sigma-1-mm-3D GLDM Dependence Variance, remain
largely unclear.

This interpretability challenge is particularly relevant in lymphoma research, where
despite extensive radiomic studies in oncology, it remains unclear which features are truly relevant
and what biological processes they represent [61]. The complex relationship between 18F-FDG
uptake patterns—reflecting vascularization, cellularity, hypoxia, metabolism, and necrosis—and
specific radiomic features complicates the biological validation of our findings.

Furthermore, radiomic analyses often function as a 'black box' due to their use of complex
algorithms, which can hinder the translation of research findings into clinical applications [62]. This
opacity may limit clinicians' confidence in adopting radiomics-based tools for routine patient care,
as the decision-making process remains largely incomprehensible despite demonstrated predictive
accuracy.

The mixed results observed with clinical data integration reflect a broader challenge in
multimodal radiomics research [61]. Even when combined with established clinical biomarkers,
radiomics models do not necessarily demonstrate improved performance, suggesting that feature
integration may introduce complexity that requires careful optimization rather than providing
straightforward additive benefits.

The variable performance across different experimental conditions and thresholds
indicates that the optimal strategy for integrating clinical and imaging data may be highly context-
dependent, requiring endpoint-specific approaches rather than universal methodologies.

4.7.2 Statistical Power Limitations

A critical limitation of this study is the insufficient statistical power for prognostic
prediction analyses, as determined by formal G*Power calculations. With minimum requirements
of 64 patients per group (total n=128) for adequate power, our cohort of 16 recurrence events and 5
mortality events falls substantially below recommended thresholds for robust between-group
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comparisons. This represents a fundamental constraint that affects the interpretability and
generalizability of our prognostic findings.

The tumor classification analysis adequately exceeded power requirements (4,950 vs. 128
minimum required volumes), demonstrating robust statistical foundation for radiomics-based tissue
differentiation. However, the prognostic prediction component should be interpreted as a
preliminary proof-of-concept analysis rather than a definitive prognostic validation study.

The relatively low event rates observed (26.7% recurrence, 8.3% mortality) reflect
improved treatment outcomes in contemporary lymphoma care but limit statistical power for
prognostic modeling. While SMOTE implementation provided methodological rigor for handling
class imbalance, it cannot address the fundamental issue of insufficient sample size identified
through power analysis. Future studies should target sample sizes of at least 128 patients with
balanced outcome groups to achieve adequate statistical power for robust prognostic model
development.

These power limitations emphasize that our prognostic findings should be considered
exploratory and require validation in larger, adequately powered cohorts before clinical
implementation.

The prognostic prediction results must be interpreted within the context of insufficient
statistical power identified through G*Power analysis. Our sample sizes achieved (16 recurrence, 5
mortality events) were substantially below the minimum requirements (64 per group), limiting the
reliability of between-group comparisons and model generalizability.

Despite these constraints, the observed performance metrics provide valuable preliminary
insights into the potential utility of radiomics-based prognostic modeling in lymphoma. The superior
performance of imaging-only models over combined imaging-clinical approaches may partially
reflect the statistical challenges of integrating multiple feature types within underpowered analyses.
Similarly, the variable performance across different tumor score thresholds should be interpreted
cautiously given the limited statistical power.

These findings establish a methodological framework and provide effect size estimates for
future adequately powered studies, while demonstrating the technical feasibility of radiomics-based
prognostic prediction in lymphoma patients.

4.8. Clinical Applicability and Expected Impact

Our system offers direct clinical applicability by providing a reproducible, quantitative
framework to support and enhance current TMTV-based segmentation methods. The Tumor Score
can be integrated into existing imaging workflows to assist clinicians in distinguishing tumor from
non-malignant metabolic activity—thereby improving radiotherapy planning, response assessment,
and follow-up monitoring.
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Moreover, as a non-invasive prognostic tool, our approach can help stratify patients by
recurrence or survival risk early in the diagnostic process, potentially guiding treatment escalation
or de-escalation. This is particularly valuable in personalized medicine, where objective,
reproducible metrics are needed for clinical decision-making.

Table 11 compares the prediction performance of our PET/CT radiomics model with
recent radiomics-based studies, illustrating competitive performance in predicting recurrence
(AUC=0.7222) and mortality (AUC=0.7934) within five years using SMOTE for balanced sampling.
Although the performance of our method is slightly lower than some specialized tasks, such as Yuan
et al. (2023), who reported an AUC of 0.926 for predicting cervical lymph node metastasis, it
remains comparable or superior to other recent works in oncological prognostic prediction, such as
Frood et al. (2022) and Li et al. (2023). These results underscore the robustness and clinical
relevance of our model, particularly considering the inherent challenges of predicting long-term
outcomes like recurrence and mortality.

Finally, by accounting for the complexities of mixed tissue regions, our framework better
reflects real-world conditions and offers a foundation for the next generation of intelligent oncology
imaging tools.

Table 11. Comparative summary of radiomics-based predictive performance across recent
oncological imaging studies. The table outlines the imaging modalities, predictive tasks, and
reported performance metrics for each study.

Author (Year) Data sets Task Performance

Frood et al. PET/CT Prediction of the response to neoadjuvant chemotherapy AUC=0.750

(2022) radiomics

Driessen et al. PET Predicting pathological complete response (pCR) to AUC=0.810

(2023) radiomics neoadjuvant chemoradiotherapy (NCRT)

Lietal. (2023) PET Predicting lymph node metastasis in non-small cell lung ~ AUC=0.709
radiomics cancer

Yuan et al. PET/CT Predicting cervical lymph node metastasis AUC=0.926

(2023) radiomics

Eertink et al. PET Predicting B-cell lymphoma treatment outcome AUC=0.790

(2022) radiomics

Zhao et al. PET Prediction of programmed mortality-1 expression status in ~ AUC=0.771

(2023) radiomics lung cancer patients

Our study PET/CT Prediction of recurrence and mortality within 5 years Recurrence AUC =
radiomics 0.7222

Mortality AUC
0.7934
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4.9. Future Research Directions and Methodological Advances

A critical research direction involves developing biological validation frameworks that
can bridge the gap between radiomic features and underlying tumor biology through correlation with
histopathological and molecular data. This will be essential for enhancing clinical interpretability
and addressing the fundamental 'black box' nature of current radiomics models. Future studies will
incorporate systematic correlation analysis between top-performing radiomic features and specific
biological markers, including tumor microenvironment characteristics, genetic alterations, and
metabolic pathway activities relevant to lymphoma progression and treatment response. Additionally,
advancing interpretable machine learning methods specifically designed for medical imaging
applications will help address the opacity of current radiomics models, thereby facilitating greater
clinical acceptance and translation.

The development of standardized protocols for clinical-imaging data integration,
including optimal feature selection and fusion strategies, will be crucial for realizing the full
potential of multimodal prognostic modeling in lymphoma management. Future work will
systematically investigate various data fusion methodologies, including early fusion (feature-level),
late fusion (decision-level), and hybrid approaches to determine the most effective strategies for
different clinical endpoints. This research direction will also explore advanced machine learning
architectures specifically designed for multimodal data integration, such as attention-based neural
networks and graph neural networks, which may provide more sophisticated mechanisms for
leveraging complementary information from imaging and clinical data sources.

Although the current study identified mixed (tumor-normal) volumes and used them
directly for prognostic prediction, future research aims to optimize these mixed volumes by
extracting and retaining only tumor-specific regions within each identified volume. This patch-level
refinement approach (as illustrated in Figure 5) is expected to improve prognostic accuracy by
eliminating normal tissue contamination, thereby facilitating more precise tumor characterization
and enhancing clinical decision-making. The implementation of this strategy will involve
developing sophisticated segmentation algorithms capable of distinguishing tumor patches from
normal tissue patches within mixed volumes, potentially using deep learning-based approaches
combined with radiomic feature analysis to achieve sub-volume classification accuracy.
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Patch-level Prediction: Focusing on Tumor Patches Only

Whole Volume

Filtered Tumor Patches

—
T T T T T

Figure 5. Illustration of patch-level filtering strategy for mixed tumor-normal volumes. The left
panel shows a representative whole volume composed of tumor (T, red) and normal (N, gray) patches.
This approach is expected to refine tumor burden estimation and enhance prognostic accuracy in

future studies.
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5. Conclusion

In this study, we developed a radiomics-based machine learning framework capable of
classifying tumor, normal, and mixed tumor-normal regions in 18F-FDG PET/CT images of
lymphoma patients. By integrating radiomics features from both PET and CT modalities with
ensemble predictions and anomaly detection, the proposed system achieved high classification
accuracy and demonstrated strong prognostic performance for five-year recurrence and mortality
prediction.

The methodology addresses limitations of traditional threshold-based tumor delineation
by incorporating ambiguous regions that reflect real-world diagnostic challenges. The Tumor Score
system offers a practical, quantitative tool that could be integrated into clinical workflows to enhance
tumor segmentation and personalized treatment planning. Future work will include validation using
external, multi-institutional datasets and expansion to other cancer types.
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Appendix 1: Evaluation of the Effect of Physiological Organ Exclusion on
TMTV

This appendix presents a quantitative analysis of how the exclusion of physiologically
high-uptake normal organs affects the accuracy of tumor segmentation in threshold-based methods.
Five thresholding strategies were tested—liver-based threshold, SUV > 2.5, SUV > 3.0, 41% of
SUVmax, and 50% of SUVpa—under two conditions: (1) all FDG-avid organs included, and (2)
brain, heart, kidneys, bladder, and ureters excluded.

For each method, the percentage difference in segmented volume was calculated between
the threshold-based segmentation result and the ground truth tumor label. As shown in Figure 6,
organ exclusion significantly reduced the deviation from the ground truth, particularly in the liver-
based, 3.0, and 50% SUYV nax methods.

To determine statistical significance, F-tests and t-tests were performed comparing the
segmentation results before and after organ exclusion. The results are summarized in Table 12. When
all physiological organs were included, all methods exhibited significant differences in both variance
and mean values (Welch’s t-test, p < 0.01). After excluding high-uptake organs, no statistically
significant differences were observed for the liver-based, SUV 3.0, and 50% SUVmax methods
(Student’s t-test, p > 0.05), while the 2.5 and 41% SUV m.x methods continued to show significant
discrepancies (p < 0.01).

These findings emphasize the importance of excluding physiological FDG uptake regions
to enhance segmentation accuracy and avoid overestimation in TMTV calculation.

Comparison of All Organs vs Except Organs

B 25
30
25004 = liver
I thres4l
I thress0
2000
u
E
=
o
>
g 1500 A
L]
E
£
E
2 1000 4
) I
0
25 30 liver thres41 thress0

46



Figure 6. Percentage volume differences between ground truth tumor labels and threshold-based
segmentation results, with and without the exclusion of physiologically high-uptake normal organs.

Table 12. Statistical comparison of segmentation volume differences using five threshold methods,
before and after the exclusion of physiologically high-uptake normal organs. Welch’s t-test was used
when variance was unequal; otherwise, Student’s t-test was applied.

Threshold Criteria F-test p-value T-test Type T-test p-value
25 2E-11 Heteroscedastic t-test 6E-11
30 2E-05 Heteroscedastic t-test 2E-05
liver SE-03 Heteroscedastic t-test 6E-03
thres41 7E-06 Heteroscedastic t-test 7E-06
thres50 3E-04 Heteroscedastic t-test 3E-04
25 (excluding organs) 2E-05 Heteroscedastic t-test 3E-05
30 (excluding organs) 6E-02 Homoscedastic t-test 6E-02
liver (excluding organs) 3E-01 Homoscedastic t-test 3E-01
thres41 (excluding organs) 3E-03 Heteroscedastic t-test 3E-03
thres50 (excluding organs) 2E-01 Homoscedastic t-test 2E-01
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Appendix 2: DICOM-Based SUV Mapping

To transfer CT-based segmentation results to PET images for SUV quantification, precise
multimodal image alignment was performed. The alignment process utilized MATLAB's image
registration module with optimized parameters to ensure accurate spatial correspondence between
CT and PET datasets. The optimizer was configured with an initial radius of 0.009, epsilon value of
1.5E-4, and a maximum of 1000 iterations to achieve optimal registration performance.

The alignment accuracy was validated using the Dice coefficient to compare contour
coordinates obtained from CT-based segmentation with corresponding PET image structures. This
validation process ensured that the spatial transformation accurately preserved anatomical
boundaries across modalities, which is critical for reliable SUV measurements in specific organs
and tumor regions.

Standardized uptake values (SUVs) were calculated using patient-specific parameters
extracted from DICOM header information. The SUV calculation incorporated essential
radiopharmaceutical and patient parameters to ensure accurate quantification of metabolic activity
per voxel. The body weight-based SUV formula was implemented as follows:

SUvV _ (pixel value xDicom rescale factor xPatient weight) A2
body weight(k—g) - —log (2)x(Series time — Radiophamaceutical start time) ) ( )
ce Total dosex e FI8_FDG half life time

where pixel value represents the raw intensity value from the PET image,
Dicom rescale factor is the normalization factor for pixel array values, Patient weight is the
body weight in kilograms, Total dose is the administered F-18 FDG activity, Series time is the
PET scan acquisition start time, Radiophamaceutical start time is the F-18 FDG injection time,
and F'® — FDG half life time is the physical half-life of F-18 (109.8 minutes).
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Appendix 3: Validation of PCA-Based Dimensionality Reduction in
Radiomics Classification Models

To validate the effectiveness of our dimensionality reduction approach, we conducted
systematic comparisons between models trained with PCA-reduced features and models using the
full feature set. This analysis was performed across all three radiomics datasets (CT, PET, and
combined PET/CT) using all five machine learning algorithms. The comprehensive results of this
validation study are presented in Table 13, which demonstrates the performance metrics for both
PCA-reduced and full-feature approaches across all experimental conditions.

The comparative analysis revealed remarkably consistent performance between PCA-
reduced and full-feature models across all experimental conditions. For accuracy metrics, the CT
radiomics dataset showed a mean difference of -0.17% between PCA and non-PCA approaches, with
individual model variations ranging from -0.58% to +0.15%. The PET radiomics dataset
demonstrated even greater consistency with a mean difference of +0.02%, ranging from -0.21% to
+0.30%. Most notably, the combined PET/CT radiomics dataset showed perfect mean consistency
with a 0.00% difference, though individual models ranged from -0.33% to +0.48%.

Similarly, AUC analysis confirmed the robustness of the PCA approach across all datasets.
CT radiomics showed minimal mean AUC difference of -0.01% with a range from -0.63% to +0.72%,
while PET radiomics demonstrated a slight improvement of +0.10% with variations from -0.06% to
+0.28%. The combined PET/CT dataset showed a minimal mean difference of -0.08%, with
individual model differences ranging from -0.86% to +0.51%. Across all experimental conditions,
the maximum absolute difference observed was 0.86% for AdaBoost AUC performance in the
combined dataset, representing the most extreme variation encountered in the entire validation study.

Statistical analysis of the comparative results revealed that 87% of all performance
comparisons showed differences within +0.5%, demonstrating exceptional consistency between the
two approaches. This high level of agreement validates that PCA successfully preserved the
discriminative information content of the original radiomics features while simultaneously reducing
computational complexity and mitigating potential overfitting risks inherent to high-dimensional
radiomics data. The minimal performance variations observed across different machine learning
algorithms and radiomics datasets provide strong evidence supporting the robustness and
effectiveness of our dimensionality reduction strategy, confirming that the choice of PCA as our
primary feature processing approach was methodologically sound and did not compromise the
predictive capabilities of our classification framework.

Table 13. Performance comparison of radiomics-based tumor classification models with and without
PCA dimensionality reduction.

Dataset Model Accuracy % Diff AUC % Diff
w/PCA w/o PCA w/PCA w/o PCA
CT radiomics Random Forest 0.9392 0.9403 -0.12 0.9653 0.9661 -0.08
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Dataset

PET radiomics

PET/CT radiomics

Model

Decision Tree
Gradient Boosting
AdaBoost
XGBoost
Average

Random Forest
Decision Tree
Gradient Boosting
AdaBoost
XGBoost
Average

Random Forest
Decision Tree
Gradient Boosting
AdaBoost
XGBoost

Average

Accuracy

0.9231
0.9435
0.9356
0.9478
0.9378
0.9293
0.8925
0.9313
09116
0.9347
0.9199
0.9372
0.9179
0.9388
0.9266
0.9423

0.9326

0.9217
0.9431
0.9410
0.9510
0.9394
0.9286
0.8898
0.9333
0.9122
0.9347
0.9197
0.9365
0.9182
0.9343
0.9287
0.9454

0.9326

% Diff AUC

0.15 0.8536
0.04 0.9562
-0.58 0.9400
-0.34 0.9690
-0.17 0.9368
0.08 0.9607
0.30 0.7791
-0.21 0.9558
-0.07 0.9484
0.00 0.9605
0.02 0.9209

0.07 0.9627

-0.03 0.8479
0.48 0.9522
-0.23 0.9315
-0.33 0.9639

0.00 0.9316

0.8590
0.9554
0.9422
0.9620
0.9369
0.9613
0.7784
0.9531
0.9482
0.9591
0.9200
0.9643
0.8436
0.9512
0.9395
0.9631

0.9323

% Diff
-0.63
0.08
-0.23
0.72
-0.01
-0.06
0.09
0.28
0.02
0.15
0.10
-0.17
0.51
0.11
-0.86
0.08

-0.08
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