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ABSTRACT 
 
Integrating Large Language Models and Image-Based Techniques for 

Radiotherapy Toxicity Prediction  
 

  Radiation Therapy (RT) is an important treatment modality for patients with thoracic 

cancer along with concurrent chemotherapy and surgery. Although RT aims to precisely target 

tumors, nearby normal tissues may still receive substantial radiation doses, leading to RT-

induced toxicities such as esophagitis, cardiac toxicity, and pneumonitis, which can adversely 

affect patients' quality of life. With the growing number of long-term survivors, reducing 

treatment-related toxicities has become a key priority in the planning of radiation therapy.  

 

 Management of such toxicities can be addressed at various stages of the RT planning workflow. 

During the simulation phase, patients undergo a CT scan that serves as the basis for treatment 

planning. However, respiratory motion can introduce imaging artifacts and lead to discrepancies 

between the planned and delivered doses. Breath-hold techniques are commonly employed to 

reduce motion-related variability, but the current standard methods often require patients to hold 

their breath for extended periods, which can be difficult for some individuals. In the planning 

stage, accurate delineation of organs-at-risk (OARs) and tumor volumes is critical to ensure 

accurate RT planning, yet remains a significant challenge. Manual contouring is labor-intensive 

and prone to interobserver variability, making it a potential bottleneck in the clinical workflow. 

Finally, in the period between planning and treatment delivery, incorporating patient-specific 

toxicity prediction models can provide valuable decision support, enabling clinicians to better 

anticipate and mitigate potential adverse effects. However, as individual responses to RT vary, 

building these prediction models can be challenging. 

 

 Therefore, the aim of this thesis is to develop novel methods to address key challenges in the 

management of RT–induced toxicity. The thesis is structured into three chapters, each presenting 

a distinct contribution toward improving various aspects of toxicity management in the RT 
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workflow. We first start with clinically implementing a novel breath-hold technique called 

continous positive airway pressure. Its clinical feasibility was tested on patients with breast cancer 

who underwent RT and geomtrically and dosimetrically compared against conventional methods 

including free-breathing and deep inspiration breath-hold.  

 

 In the subsequent chapter, we explore the role of a deep learning-based automated segmentation 

algorithm as a tool for streamlining RT planning while ensuring the accuracy needed to reduce 

errors that may impact RT-induced toxicity. Our deep learning algorithm was applied to 

retrospective breast cancer patient data, where we evaluated the geometric accuracy of the 

segmentations. These results were compared with the conventional atlas-based segmentation 

method to assess improvements in precision and efficiency.  

 

 In the final chapter, we focus on the development of a multi-modal prediction model for RT-

induced esophagitis in patients with esophageal cancer. This chapter introduces an innovative 

approach by integrating both imaging and clinical data. We employ a pretrained image encoder to 

extract relevant features from medical images, alongside a large language model to incorporate 

clinical information, marking a shift away from traditional image-only prediction models. This 

multi-modal framework aims to enhance the accuracy and clinical utility of predicting RT-induced 

esophagitis, ultimately offering a more comprehensive tool for personalized patient care. 

                                                                                

Key words : Deep learning, large language model, multi-modal, prediction
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I. INTRODUCTION 

 
1.1. Background and motivation  

1.1.1 Radiation therapy  
   Cancer is a leading cause of mortality in the world, constituting about 50% of the annual 
cancer mortality among new cases1. Radiation therapy (RT) is a important treatment modality for 
cancer, often used alongside chemotherapy and surgery. RT uses ionizing radiation to damage the 
DNA of cancer cells, either directly by interacting with cellular DNA or indirectly by generating 
free radicals through the ionization or excitation of water molecules within the cell2. This damage 
ultimately leads to tumor cell death. Among the different types of radiation used in therapy, photon 
beams such as X-rays and gamma rays remain the most commonly employed. More recently, 
particle radiation including electrons, protons, and neutrons has been introduced for specific 
clinical applications, providing additional options for tailored treatment approaches2. RT can be 
used to treat a wide variety of cancer sites, with common targets including the breast, lung, 
prostate, head and neck, and skin1. It is estimated that approximately 50% of all cancer patients 
receive RT, with 40% of these cases delivered with curative intent3. 
 
RT is a collaborative effort involving a multidisciplinary team within radiation oncology. The 
workflow for RT consists of several key stages which include simulation, treatment planning, plan 
approval and quality assurance, and finally radiotherapy delivery (Fig 1). After initial consulation 
with the physician, patients first undergo simulation imaging, such as computed tomography (CT) 
and/or magnetic resonance imaging (MRI). The simulation scan acquired at this stage serves as the 
foundation for radiation therapy planning. Therefore, maintaining image quality by reducing 
artifacts caused by patient motion, positioning, or other factors is essential for accurate target 
delineation and dose calculation.Using the anatomic information available from the simulation 
scans, target volumes and normal tissues are segmented. Based on the defined structures and 
treatment constraints specific for each disease site, a personalized radiation dose distribution is 
planned with the goal of delivering an effective dose to the tumor while minimizing exposure to 
surrounding healthy tissue. The treatment plan then undergoes a series of checklists and quality 
assurance procedures by medical physicists to ensure it can be safely and accurately delivered on 
the treatment machine, before being administered to the patient in multiple treatment fractions. 
 

 
Fig 1. Overall workflow of radiation therapy; Abbreviations- QA: quality assurance 
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1.1.2 Radiation therapy-induced toxicity 
Although the primary goal of RT is to deliver an effective dose to the tumor while minimizing 
exposure to surrounding healthy tissues, some degree of irradiation to normal tissues is often 
unavoidable. When healthy tissue is exposed to ionizing radiation, it can result in DNA damage, 
potentially leading to radiation-induced toxicity. This toxicity can manifest as acute side effects, 
typically occurring within 1–2 weeks after treatment, or as late effects that may appear months or 
even years later. Both forms of toxicity can significantly affect a patient’s quality of life, ranging 
from mild discomfort to severe, long-lasting complications.With advances in cancer treatment 
leading to more long-term survivors, modern RT planning has increasingly emphasized 
minimizing these RT-induced toxicity to improve long-term patient outcomes. 
 
In cancers of the thoracic region, such as breast, lung, and esophageal cancer, common radiation-
related toxicities include radiation pneumonitis, which may present with CT abnormalities, cough, 
or shortness of breath4, where severe cases (grade 3 or higher) can require supplemental oxygen. 
Another possible toxicity is cardiotoxicity which is known to be a significant source of mortality 
for cancer survivors 5, which may lead to heart failure (e.g. myocardial fibrosis, valvular heart 
disease) or ischemic coronary artery disease 6. Last but not least, another major thoracic toxicity is 
esophagitis, which refers to inflammation of the esophagus. Symtoms can include pain and 
difficulty swallowing. Although these toxicities vary in severity, they can significantly impact 
patient well-being. Therefore, early identification and mitigation during treatment planning are 
crucial to minimizing side effects and improving clinical outcomes. 
 

1.1.3 Toxicity Prediction 
One approach to managing and potentially reducing RT-induced toxicity is through a pretreatment 
prediction model. Numerous studies across various cancer types have explored the use of patient 
scans and clinical characteristics to predict toxicity before treatment begins. The clinical 
significance of such a model lies in its ability to support decision-making. By using pretreatment 
data, clinicians can identify patients at higher risk of toxicity early on, allowing for timely 
interventions and treatment adjustments. This, in turn, could lead to more personalized care, 
improving both treatment outcomes and patient well-being (Fig 2).  
 

 
 

Fig 2. The clinical implication of pretreatment prediction model for a personalized plan 
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There are a number of different approaches available for RT-induced toxicity. Normal Tissue 
Complication Probability (NTCP) models are one of the first methods developed in order to 
estimate the risk of RT-induced toxicity. NTCP models are essentially mathematical modelling 
utilizing clinical and dose distribution information, tuning the model to best fit the training cohort 
7. The dose distribution informations are typically based on dose volume histograms (DVH) often 
utilizing dose parameters such as the mean organ dose or volume parameters (e.g. V20). NTCP 
models have previously been established for a variety of disease sites 8–10 and has been 
demonstrated to assist as a tool for determining the best treatment plan by comparing the risk of 
each plan 11,12. The most common modelling methods for NTCP is the Lyman-Kutcher-Burman 
(LKB) and relative seriality (RS) models 13,14.  
 
Voxel based analysis (VBA) is another category of prediction model used in radiation oncology. 
VBA is a method that utilizes the 3D dose distributions of patient population with and without 
toxicity in order to determine the heterogeneous dose sensitivities occuring with the organ of 
interest. VBA consists of two main processes which are 1) spatial normalization to common 
reference frame followed by 2) statistical analysis of the dose response between the group with and 
without adverse events. The spatial normalization step involves deformable image registration of 
all patients in the poluation into a single reference patient, typically picked as a patient with a 
typical individual anatomy. This is an important step as it forms the basis of all upcoming analysis 
involved in VBA. Most common models include demons and B-spline algorithms 15,16which are 
iterative registration models and many studies utilized software packages found in SyN and elastix 
17,18. Thorax, head and neck as well as prostate applications have been reported by previous 
research 19–22. 
 
Imaging-based prediction models using deep learning and radiomics have emerged as a key area of 
research in radiation oncology, aiming to enhance treatment personalization and outcome 
prediction. These models typically utilize RT treatment planning data, including CT scans, dose 
distributions, and sometimes contours, to predict clinical endpoints such as toxicity or treatment 
response. Studies have employed various input configurations to optimize model performance. 
Some models use a single modality, such as CT or dose distribution, while others combine 
multiple inputs for improved accuracy. For instance, one study demonstrated enhanced predictive 
power by integrating CT and dose 23, while another showed that incorporating CT, dose, and 
contours outperformed single-input benchmarks 24. Beyond input selection, model architecture and 
feature extraction strategies play a crucial role. Feature extraction can occur at different stages, 
early or late in the model pipeline, with either single-layer or multi-layer approaches. The choice 
of feature extraction method impacts the model’s ability to capture spatial and dosimetric patterns 
relevant to treatment outcomes. Additionally, hybrid approaches combining handcrafted radiomic 
features with deep learning-based feature extraction are being explored to further improve 
robustness and interpretability. 
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1.1.4 Current limitations and motivations  
In order to build a robust prediction model, there are several sources of errors that should be 
addressed. One source of error could be related to target and OAR segmentation during the 
planning stage. Accurate delineation of OARs and tumor forms the basis of RT planning as it 
ultimately determines the radiation dose distribution that the patients are going to receive and 
therefore is crucial for ensuring accurate treatment planning for the patient. However, manual 
delineation of these structures can be time-consuming and resource intensive. Furthermore, manual 
delineation has been reported to be associated with inter-observer variations which could be 
another added source of errors especially if involving multi-centers or multi-observers in a study. 
AI can be used for patient evaluation in the initial phase of the RT planning. RT planning is made 
up of many steps that require human input and many areas have been shown to benefit from 
automation through AI. 
 
Another potential source of error is the simulation imaging. Even though patients are immobilized 
during simulation scans and treatment, tumor motion can still occur due to internal movements, 
such as swallowing or breathing. Since the simulation scan forms the basis of the patient’s RT 
planning this could be problematic. In order to mitigate this, deep inspiration breath-Hold (DIBH) 
is the most commonly used technique for managing breathing during RT for thoracic cancers. This 
technique requires patients to voluntarily hold their breath during treatment. However, some 
patients may have reduced lung capacity, and maintaining a prolonged breath-hold can be difficult, 
making DIBH challenging for certain individuals. Failure to obtain good breath-hold can lead to 
unreliable simulation scan which can not only impact the reliability of the prediction model but the 
entire planning as well as delivery. 
 
Secondly, most deep learning-based prediction models developed to date primarily rely on single-
modality inputs. However, there is a growing trend toward multi-modal integration to enhance 
predictive performance. Beyond imaging data, other valuable patient information exists in the 
form of clinical texts, such as clinical notes, charts, and laboratory test results. The potential for 
leveraging such clinical data has become increasingly feasible with the advancement of large 
language models (LLMs), which have significantly improved the ability to encode and interpret 
textual information. Several studies have demonstrated the benefits of integrating clinical text with 
imaging through image-to-text alignment, enhancing conventional image-based models in 
applications such as segmentation and survival prediction 25,26.  
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1.2. Aims and objectives 
   The primary aim of this thesis is to explore and evaluate innovative imaging techniques 
alongside advanced AI-driven technologies with the goal of enhancing clinical workflow 
efficiency and improving the accuracy of patient-specific predictions. By integrating these 
approaches, the ultimate objective is to develop a comprehensive AI-based framework capable of 
reliably predicting RT-induced toxicity. To systematically address this aim, the study is structured 
around the following three key objectives: 
 

1. To develop a deep learning-based auto-segmentation model and assess its clinical 
feasibility for radiotherapy. 

2. To clinically evaluate a novel breath-hold technique and compare its effectiveness with 
conventional methods. 

3. To develop a multimodal model for predicting adverse events by integrating imaging 
features and clinical data using deep learning and LLMs. 

 
 

1.3. Thesis structure 
   In Chapter 2, we present the development of a deep learning–based autosegmentation model 
using convolutional neural network (CNN) for both tumor structures and organs at risk (OARs), 
with the aim of observing its feasibility within the RT workflow. We evaluated and compared 
conventional and commercially available atlas-based segmentation methods based on image 
registration algorithm with deep learning–based approaches for automatic delineation of key 
structures in breast RT planning, including clinical target volumes (CTVs), OARs, and heart 
substructures. The model’s performance was assessed against physician-drawn ground truth 
contours, highlighting its potential role in supporting automated planning for breast RT. 
 
Chapter 3 explores the clinical evaluation of breathing management techniques aimed at reducing 
radiation therapy–induced toxicity. We begin by assessing the heart-sparing potential of a novel 
breath-hold technology using continuous positive airway pressure (CPAP), a device traditionally 
used for sleep apnea. Given its novel application in RT, evaluating its feasibility and 
reproducibility is essential. In this study, we assessed inter- and intra-fractional reproducibility 
using real patient data by measuring the heart-to-target distance and quantifying lung displacement 
along three spatial directions. We report on its real-world implementation at our institution across 
a large patient cohort. Subsequently, we compare CPAP with the current standard, deep inspiration 
breath-hold (DIBH), through radiation therapy planning analyses to assess its clinical feasibility. 
 
Chapter 4 presents the development of a multi-modal deep learning framework for predicting acute 
esophagitis in esophageal cancer patients. The model integrates imaging features and clinical 
variables to enhance predictive performance by leveraging complementary data modalities. 
Specifically, a transformer architecture was employed as the image encoder to capture spatial and 
contextual information from imaging inputs, while a large language model was utilized as the text 
encoder to process structured and unstructured clinical data. This chapter details the data 
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preprocessing pipelines, model architecture, training strategy, and evaluation metrics used to 
rigorously assess model robustness and clinical applicability. 
 
Finally, Chapter 5 summarizes the key findings and research contributions of the study, 
highlighting their impact on toxicity management in radiation therapy. It also discusses limitations 
and suggests future directions for further development, including improving model performance 
and enhancing clinical application.   
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2. The Role of Deep Learning-based Automated Segmentation 

Model in Radiation Therapy 
 

2.1. Background 
   Breast cancer is one of the most common cancer in the world, being the leading cauase of 
cancer deaths. As a treatment modeality for breast cancer, RT is being increasingly utilized. In the 
era of three-dimensional conformal and intensity-modulated RT, precise delineation of the clinical 
target volume (CTV) and organs at risk (OARs) is essential, as inaccuracies can result in excessive 
radiation to normal tissues and potentially increase treatment-related toxicity. Furthermore, as 
many breast cancer patients live for decades following radiation therapy, they remain at risk for 
long-term adverse effects, such as lymphedema, radiation pneumonitis, hypothyroidism, and 
cardiotoxicity, which can significantly impact their quality of life. However, there are limitations 
in the RT planning workflow related to autosegmentation that still require improvement, 
particularly the burden of manual segmentation and the inter-observer variability resulting from 
the subjective nature of contouring by individual physicians. 
 
Conventionally, manual segmentation had been the standard approach for RT planning; however, it 
is time-intensive and susceptible to inter- and intra-observer variability. To address these 
limitations, auto-segmentation has gained considerable attention for its potential to improve 
efficiency and consistency in clinical workflows. Earlier efforts to automate segmentation 
primarily relied on atlas-based auto-segmentation (ABAS), which became the conventional 
approach and is supported by several commercially available solutions for use in cancer sites 
including the head and neck, prostate, breast and lung cancer. Despite its usage, ABAS has some 
limitations, including suboptimal contouring for low-contrast structures, slow image registration, 
and the frequent need for manual corrections to enhance segmentation accuracy. More recently, 
advancements in computational power and reductions in financial barriers have shifted research 
focus toward deep learning-based auto-segmentation (DLBAS). Studies have demonstrated the 
potential of deep learning algorithms to enhance auto-segmentation accuracy for breast cancer and 
other anatomical sites, further supporting their integration into clinical practice.  
 
Beyond routine clinical operations, deviations from RT protocols are associated with increased 
risks of treatment failure and patient mortality. A critical and longstanding issue contributing to 
such deviations is inter-observer variability in target and OAR contouring, which has remained a 
major focus of research and quality assurance efforts in the field. To date, multiple studies have 
demonstrated significant IOVs in delineating target volumes, including clinical target volumes 
(CTVs) and organs-at-risk (OARs), in various types of cancers, both within and outside clinical 
trials 27–30. Efforts to reduce interobserver variability (IOV) in contouring have focused on 
strategies such as site-specific atlases, consensus guidelines, trial-specific protocols, education, 
audits, and peer review. Benchmark studies, or dummy runs, are commonly used at the start of 
clinical trials or during individual case reviews as part of radiation therapy quality assurance 
(RTQA). While these methods have improved IOV, their limitations highlight the need for 
alternative approaches. DL-based auto-contouring has shown time-saving benefits and reduced 
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IOV in head and neck, prostate, and breast cancers 31. Unlike static guidelines or atlases, it offers 
interactive adjustments, making it easier to adapt contours to individual anatomy and positioning 
27. However, its clinical utility within RTQA programs remains unstudied. 
 
As more DL based tools are being implemented in radiation oncology, few studies have evaluated 
their real-world clinical utility. To address challenges in RT contouring, we investigated DLBAS in 
two contexts: routine clinical RT planning and multi-center collaborative settings. Both efforts 
have centered on breast cancer application. First, we conducted a single-center study comparing 
the accuracy of DLBAS to commercial ABAS and manual contours in RT planning for patients 
with breast cancer where the aim was to demonstrate the feasibility of using an automated 
contouring tool in a clinical workflow. The second part of the study was conducted in collaboration 
with the Korean Radiation Oncology Group (KROG), where we assessed DLBAS’s impact on 
IOV across 31 institutions. Here, we conducted a two-phase study comparing IOV with and 
without the aid of DL-generated contours, visually assessing both the extent and location of 
variation.  
 
 
2.2. Clinical Evaluation of Deep Learning-based Segmentation Model 
 

2.2.1 Materials and Methods 
A retrospective dataset from 62 patients with breast cancer who received breast-conservation 
surgery and RT between 2016 and 2019 at Yonsei Cancer Center (Seoul, South Korea) were 
included in this study. Each patient’s data included plan CT scans as well as manual ground truth 
contour delineated by a single experienced radiation oncologist following the ESTRO guidelines. 
The list of contours included the clinical target volumes and lymph nodes (e.g. axillary, internal 
mammary and supraclavicular) as well as the OARs (lungs, esophagus, spinal cord and thyroid) 
including the heart substructures (atria, ventricles and right coronary artery (RCA) and left anterior 
descending artery (LAD)).  
 
In this study, we developed a 3D fully convolutional DenseNet (FCDN) segmentation model (Fig 
3). The FCDN architecture is made up of dense blocks that resemble the residual blocks in a U-Net 
architecture. Following the convolution layer, the transition down layers consist of BN, RELU, 1 × 
1 convolution, dropout (p = 0.2), and a 2 × 2 max pooling operation. The skip connection 
components represent the concatenation of the feature maps from the down-sampling path with 
those in the up-sampling path, thereby ensuring a high-resolution output. Finally, the transition up 
(TU) layers consist of 3 × 3 deconvolutions with a stride of 2 to progressively recover spatial 
resolution. The model was trained for 200 epochs using 35 patients for training and 13 patients for 
validation.  
 
For baseline comparison, we used two commercial atlas based ABAS systems, Mirada’s Workflow 
Box (Mirada Medical, UK) and MIM Maestro (MIM Software, USA), to automatically segment 
target structures. The atlas libaries were made using the same training data as for DLBAS. In 
MIM, the first step in building an atlas was to assign a randomly selected reference or “template” 
subject. The remaining subjects were registered to the template one by one, along with the expert 
contours. Although MIM offers a tool to edit the registration alignment, in order to obtain a non-
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biased auto-segmentation and keep the experimental settings as consistent as possible, we did not 
intervene during registration and segmentation. The final step was the segmentation process itself. 
In MIM, under the “Atlas Segment” tool, we selected the contours and ran the segmentation with 
the following default settings: Number of Match = 1, Mirroring Enabled and Multicontour 
finalisation method = Majority Vote. Next, because a single atlas segmentation was selected, the 
algorithm automatically searched for the atlas subject that best matched the input CT. Then, expert 
contours of the atlas subject were deformed, registered, and transferred to the input CT, based on 
intensity and a freeform cubic spline interpolation 32.  
 
In Mirada, a workflow that linked the atlas created by the user and the segmentation operation was 
created that simply required selecting the input CT and assigning it to the workflow in a single 
click. As it functions like a black box, it is not possible to change settings in WFB. Also, unlike 
MIM, WFB does not require the assignment of template patients or any further user intervention. 
The construction of the library simply involved selecting CT scans and their corresponding 
structures. Once every subject was added, the atlas files were uploaded to the WFB server. 
 

 
Fig 3. The architecture of the proposed DL segmentation model 

 
The auto-segmentation was quantitatively assessed with 14 test patients using the Dice Similarity 
Coefficient (DSC) defined as 2 * |A ∩ B| / (|A| + |B|) and 95% Hausdorff Distance (HD95) defined 
as H(A,B) = max{h(A,B), h(B,A)} where A and B are two different point sets. In this study, the 
manual contours created by a single expert radiation oncologist served as the ground truth, with 
which the ABAS and FCDN contours were compared. 
 
A pairwise t-test was conducted to determine if there was a statistically significant difference 
between the results from the different software packages. Since there are three segmentation 
methods to compare, we adopted Bonferroni correction to address the multiple-comparison 
correction 33 with n = 3 and the alpha value adjusted to 0.0167 (0.05/3). A p-value of less than 
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0.0167 was determined to be a rejection of the null hypothesis and therefore a statistically 
significant result. 
 
 

 
Fig 4. Examples of a) CTV, b) OAR, and c) heart segmentation results of DLBAS based on FCDN 

and ABAS by MIM and Mirada compared against ground-truth manual contours 

 

2.2.2 Results 
Fig 4 shows segmentation examples from DLBAS and ABAS. In terms of quantiataive accuracy, 
among 14 CTV structures, DLBAS achieved the highest average DSCs in 11, with significant 
differences in left and right AXL3 and IMN. HD95 comparisons indicate that DLBAS had smaller 
surface discrepancies across most CTVs, except for the SCL nodes (Fig. 5A).  
 
ABAS and DLBAS performed similarly for OARs (Fig. 5B), with Mirada’s ABAS achieving the 
highest DSC and lowest HD95 for the lungs and spinal cord, showing significant differences in 
lung segmentation. DLBAS exhibited larger inter-subject variations in the left lung and spinal cord 
(Fig. 5B) but outperformed for the thyroid and esophagus, with significant differences in 
esophagus segmentation against MIM’s ABAS.  
 
For heart structures, DLBAS had the highest DSC in five of seven structures, with significantly 
better results for the heart and right ventricle. HD95 comparisons further confirmed DLBAS's 
superiority with lower surface distances and smaller inter-subject variations (Fig. 5C). Artery 
segmentation (RCA and LAD) was suboptimal across all methods, with Mirada’s ABAS failing to 
contour RCA in most cases. 
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Fig 5. Box-plots of Dice Similarity Coefficients (DSC) and 95% Hausdorff Distance (HD95) in the 

a) CTVs, b) OARs, and c) Heart structures obtained from Mirada, MIM, and DLBAS based on 
FCDN using the manual contours as reference. 

b) 

c) 

a) 
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2.3. The Role of Automated Segmentation Models in Multi-center Study 

2.3.1 Materials and Methods 
This study utilized two retrospective datasets from left-sided breast cancer patients: Case 1 was a 
patient data with T1cN1M0 (1.5 cm, triple-negative, grade 3) post-breast-conserving surgery, and 
Case 2 was a patient data with T3N1M0 (9.5 cm, luminal A type, grade 2) post-mastectomy with 
implant-based reconstruction. These cases, along with CT and MRI scans and clinical information 
for radiation therapy, were distributed to 31 institutions across South Korea for analysis by 
participating investigators.  
 
The study was conducted in two phases: In Phase 1, participants were asked to contour from 
scratch without the assistance of auto-segmentation (Fig 6). The European Society for Radiation 
and Oncology consensus guideline 34,35 was suggested to aid the contouring of CTVs (CTV 
axillary levels 1, 2, and 3 [CTVn_L1, 2, 3], intramammary node [CTVn_IMN], supraclavicular 
node [CTVn_SCL or CTVn_L4], and CTV [CTVp_breast]); however, clinical discretion was 
allowed based on their experience and knowledge. The planning target volume (PTV) was 
generated using a non-isotropic geometrical expansion based on the participants’ institutional 
policy. OARs included the heart, contralateral breast (CLB), thyroid, esophagus, spinal cord, left 
and right lungs (Lung R, L), and left anterior descending artery (LAD). 
 
Auto-contour sets containing target CTVs and OARs were generated on the test cases (i.e., Cases 1 
and 2) using a previously published in-house DL model that has been used in clinics since 2020 36. 
The DL model used in this study had previously been tested on both internal and external cohorts 
of breast cancer patients, demonstrating robust performance in left-sided, right-sided, and bilateral 
breast cancer. The model was chosen because of the limited availability of contour tools that 
encompass all the CTVs used in this study. Six months after phase 1, the same participants took 
part in phase 2. In Phase 2, participants were instructed to use auto-contour sets, but were given 
flexibility to deviate from them if they disagreed with their quality or found them uncomfortable to 
use. Phase 1 focused on measuring participants' manual contouring, while Phase 2 assessed 
changes in the final segmentation after auto-segmentation was applied. 
 
 

 
Fig 6. Overall Study Design. Abbreviations: CT = computed tomography; mos = months; AI = 

artificial intelligence. 
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Contour discrepancies were measured using DSC, surface DSC, and HD, comparing all observer 
pairs and the consensus contour. A 3D heatmap visually confirmed the adjustments, with each 
point on the participant’s surface compared to the reference surface. Adjustments were represented 
by a color map, ranging from red (maximum outward expansion of 10 mm) to blue (maximum 
inward shrinkage of 10 mm). For qualitative evaluation, a questionnaire was sent to all observers 
in the study with the following questions: "How much time did it take to complete the contours for 
each phase?" (Options: "<30 min," "30-60 min," ">1 h"); "How would you rate the auto-contour 
quality?" (5-point scale: 1 = not usable, 5 = no edits needed); "Do you think auto-contouring will 
help reduce IOV in the future?" (5-point scale: 1 = strongly disagree, 5 = strongly agree); and 
"How much auto-contour did you use in Phase 2?" (5-point scale: 1 = not at all, 5 = very much). 
 
We included both two-dimensional (2D) and three-dimensional (3D) heat maps to visualize 
interobserver agreement and areas of manual edits with respect to the edited auto-contour 
(reference contour). A radiation oncologist with 9 years of experience edited the auto-contour sets, 
and an independent panel of three radiation oncologists it as a reference. The 2D heatmap shows 
variations among observers, with values ranging from 0 to 31 (Supplementary Fig. 3). The areas 
with the greatest and least overlap are indicated in red and blue, respectively. A three-dimensional 
heatmap was created to show the average adjustment of the participants projected on the reference 
shape of each OAR. The nearest point on the participant's 3D surface was determined using 
reference 3D surface. Subsequently, we determined whether the point was outside or inside the 
closed reference surface. Depending on the degree of adjustment, each point was represented by a 
colour map ranging from red (i.e., maximum outward expansion of 10 mm) to blue (i.e., maximum 
inward shrinkage of 10 mm). 
 
 

2.3.2 Results 
A total of 31 and 30 institutions participated in phases 1 and 2, respectively. Participants contoured 
15 structures in two cases, resulting in 930 and 870 paired comparisons per structure. Phase 2 
showed improved IOV and better alignment with the consensus contour (Table 1). Surface DSC 
was lower than DSC for CTVs but higher for smaller structures like the thyroid and LAD. HD 
decreased across all structures, with LAD DSC improving from 0.44 to 0.61. CTVs showed 
greater IOV than OARs, except for the LAD. The DL model closely matched the consensus but 
had lower similarity for structures like the LAD (DSC 0.19 vs. consensus 0.50) and spinal cord 
(DSC 0.66 vs. consensus 0.76). 
 
Phase 2 demonstrated stronger interobserver agreement than Phase 1, as indicated by smaller blue 
regions in the CTVs (Fig. 7). The percentage of high-agreement areas in the CTV breast increased 
from 8.7% to 16.2% in case 1 and from 9.9% to 25.0% in case 2. Similar trends were observed in 
CTVn_L2 and CTVn_SCL (Fig 7). In case 2, fewer observers included the central portion of the 
breast implant in Phase 2 compared to Phase 1. While OARs also showed improvement, the 
changes were less pronounced (Supplementary Fig. 6). 
 
Three-dimensional heatmaps revealed fewer user contour edits in Phase 2, with reduced red and 
blue regions indicating outward and inward modifications (Fig. 8). Contours in Phase 2 showed 
closer alignment with the reference, particularly in CTVn_L1 and CTVn_IMN. In Phase 1, 
physicians more often extended CTVn_L1 toward the skin, but this was significantly reduced in 
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Phase 2. Heatmaps also showed greater variation in CTVn_L2 and CTVp_breast starting points in 
Phase 1.  
 
 

 
Fig 7. CT with contour variation heatmaps overlaid for Cases 1 and 2 in Phases 1 and 2. (A) 

CTVp_breast, (B) CTVn_ IMN, (C) CTVn_L1, (D) CTVn_SCL. Abbreviations: CT = computed 
tomography; CTVp_breast = clinical target volume; CTVn_IMN = intramammary node; CTV 
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Table 1. Quantitative evaluation through interobserver comparison (a) and with reference to 
consensus contour (b). Abbreviations: P1=Phase 1, P2=Phase 2, DSC = dice similarity coefficient; 
SD = standard deviation; HD = Hausdorff distance; CTVn_L1 = CTV axillary level 1; CTVn_L2 = 
CTV axillary level 2; CTVn_L3 = CTV axillary level 3; CTVn_IMN = intramammary node; 
CTVn_SCL = supraclavicular node; CTVp_breast = clinical target volume; CLB = contralateral 
breast; Lung R = right lung; Lung L = left lung; LAD = left anterior descending artery 

 (a) Interobserver Comparison (b) Comparison to consensus contour 
 

DSC  
(± SD) 

Surface 
DSC (± SD) 

HD  
(± SD) 

DSC  
(± SD) 

Surface 
DSC  

(± SD) 

HD  
(± SD) 

 
P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

CTVn_L1 0.58 
± 

0.13 

0.67 
± 

0.22 

0.43 
± 

0.14 

0.55 
± 

0.25 

42.96 
± 

29.29 

31.65 
± 

33.63 

0.64 
± 

0.12 

0.73 
± 

0.17 

0.44 
± 

0.14 

0.58 
± 

0.18 

27.93 
± 

18.27 

19.89 
± 

23.64 
CTVn_L2 0.51 

± 
0.17 

0.70 
± 

0.25 

0.44 
± 

0.16 

0.64 
± 

0.25 

46.22 
± 

35.59 

24.83 
± 

24.20 

0.52 
± 

0.20 

0.65 
± 

0.21 

0.46 
± 

0.19 

0.60 
± 

0.20 

56.12 
± 

32.07 

36.45 
± 

27.58 
CTVn_L3 0.47 

± 
0.14 

0.55 
± 

0.23 

0.45 
± 

0.14 

0.54 
± 

0.23 

41.47 
± 

38.70 

28.72 
± 

28.12 

0.49 
± 

0.18 

0.61 
± 

0.20 

0.47 
± 

0.18 

0.60 
± 

0.21 

35.56 
± 

30.95 

21.31 
± 

23.80 
CTVn_IMN 0.52 

± 
0.13 

0.61 
± 

0.16 

0.65 
± 

0.16 

0.72 
± 

0.16 

35.46 
± 

29.96 

18.78 
± 

19.67 

0.49 
± 

0.15 

0.64 
± 

0.15 

0.59 
± 

0.19 

0.74 
± 

0.19 

31.74 
± 

27.27 

13.84 
± 

15.66 
CTVn_SCL 0.51 

± 
0.14 

0.62 
± 

0.20 

0.40 
± 

0.14 

0.52 
± 

0.21 

48.26 
± 

32.26 

38.47 
± 

34.94 

0.30 
± 

0.14 

0.32 
± 

0.13 

0.29 
± 

0.11 

0.34 
± 

0.10 

96.30 
± 

38.43 

105.48 
± 

42.84 
CTVp_breast 0.75 

± 
0.12 

0.80 
± 

0.13 

0.59 
± 

0.16 

0.72 
± 

0.20 

22.52 
± 

16.91 

16.01 
± 

20.22 

0.73 
± 

0.13 

0.81 
± 

0.14 

0.64 
± 

0.16 

0.79 
± 

0.18 

18.02 
± 

11.95 

11.99 
± 

17.85 
Heart 0.90 

± 
0.05 

0.95 
± 

0.03 

0.68 
± 

0.14 

0.82 
± 

0.12 

16.36 
± 

12.21 

8.38 
± 

6.06 

0.92 
± 

0.05 

0.95 
± 

0.02 

0.73 
± 

0.16 

0.84 
± 

0.11 

12.36 
± 

8.84 

7.21 ± 
4.54 

Contralateral breast 0.81 
± 

0.06 

0.89 
± 

0.10 

0.61 
± 

0.17 

0.79 
± 

0.21 

21.70 
± 

15.67 

15.22 
± 

25.78 

0.84 
± 

0.06 

0.92 
± 

0.08 

0.67 
± 

0.19 

0.87 
± 

0.18 

15.57 
± 

11.16 

9.17 ± 
20.11 

Thyroid 0.75 
± 

0.12 

0.79 
± 

0.12 

0.86 
± 

0.11 

0.89 
± 

0.11 

9.72 ± 
15.83 

7.03 
± 

15.28 

0.79 
± 

0.10 

0.82 
± 

0.08 

0.90 
± 

0.09 

0.92 
± 

0.07 

8.10 
± 

12.29 

5.47 ± 
10.98 

Esophagus 0.77 
± 

0.06 

0.81 
± 

0.07 

0.89 
± 

0.07 

0.91 
± 

0.06 

31.62 
± 

59.29 

8.52 
± 

17.51 

0.81 
± 

0.05 

0.83 
± 

0.04 

0.92 
± 

0.05 

0.94 
± 

0.04 

15.70 
± 

39.07 

5.18 ± 
10.86 

Spinal cord 0.68 
± 

0.12 

0.79 
± 

0.14 

0.80 
± 

0.13 

0.89 
± 

0.11 

112.88 
± 

111.66 

33.93 
± 

64.35 

0.76 
± 

0.09 

0.82 
± 

0.07 

0.87 
± 

0.09 

0.94 
± 

0.10 

65.09 
± 

86.21 

18.27 
± 

44.42 
Lung R 0.97 

± 
0.01 

0.98 
± 

0.01 

0.95 
± 

0.03 

0.97 
± 

0.03 

3.86 ± 
2.50 

2.56 
± 

1.80 

0.97 
± 

0.01 

0.98 
± 

0.01 

0.96 
± 

0.02 

0.97 
± 

0.02 

2.76 
± 

1.18 

1.81 ± 
0.86 

Lung L 0.87 
± 

0.01 

0.98 
± 

0.02 

0.95 
± 

0.03 

0.97 
± 

0.03 

3.63 ± 
1.98 

2.35 
± 

1.50 

0.97 
± 

0.01 

0.98 
± 

0.01 

0.96 
± 

0.02 

0.97 
± 

0.01 

2.86 
± 

0.84 

2.15 ± 
0.80 

LAD 0.44 
± 

0.21 

0.61 
± 

0.18 

0.71 
± 

0.21 

0.80 
± 

0.15 

52.14 
± 

59.74 

14.08 
± 

15.30 

0.50 
± 

0.16 

0.59 
± 

0.01 

0.77 
± 

0.14 

0.81 
± 

0.10 

39.03 
± 

51.87 

12.96 
± 

13.48 
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In Phase 1, most participants took 30–60 minutes to complete contours, while in Phase 2, over half 
finished in under 30 minutes (Fig. 9A). For target structures, minor edits were most common 
(53.2%), followed by major edits (36.2%), mostly acceptable (6.4%), and not usable (4.3%) 
(Fig.9B). Observers were generally satisfied with auto-contours for OARs, though none rated them 
as perfect. AI-generated contours were positively correlated with the contour assessment score (r = 
0.88) and future usefulness score (r = 0.82) (Fig. 9C). 
 
 

 
Fig 8. A three-dimensional projection of average adjustments for Phases 1 and 2 compared to the 
reference contour. Adjustments are on the scale of -10mm to 10mm where positive indicates an 

outward adjustment. 
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Fig 9. (A) Time comparison, (B) Subjective evaluation, (C) Left: Auto-contour usage vs. 
evaluation scores (Cases 1 & 2); Right: Auto-contour usage vs. future applicability scores 
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2.4. Discussion and Conclusion 
   In this chapter, we examined the impact of deep learning-based auto-segmentation (DLBAS) 
on both routine clinical workflows and multi-center RTQA. To the best of our knowledge, our 
studies were one of the first attempts to report on the use of DLBAS in breast cancer radiation 
therapy planning that supports the integration of DLBAS in radiation oncology.  
 
In the first part, we demonstrated the efficacy of DLBAS by evaluating its performance across 
various structures (CTVs, OARs, and heart substructures) in a direct comparison with commercial 
ABAS solutions. While ABAS showed acceptable performance, DLBAS provided more robust 
and reliable segmentation with results closely aligned to the ground truth. Our results highlight 
three key findings for DLBAS. First, DLBAS effectively learns the characteristics of complex and 
low-contrast anatomy, making it ideal for CTV delineation, where expert knowledge is often 
crucial. In contrast, ABAS, based on landmark detection, has limitations in this regard. Second, 
DLBAS showed significantly smaller contouring differences with the ground-truth (measured in 
millimeters by HD95), underscoring its clinical impact. HD95 is a more reliable metric than DSC, 
as it is less influenced by contour volume size and better reflects the accuracy of contour outlines. 
We believe DLBAS could reduce contouring time, particularly for CTVs and heart substructures. 
Third, DLBAS demonstrated superior robustness on non-contrast CT samples, with smaller DSC 
discrepancies compared to ABAS, indicating that DLBAS is less reliant on input type and more 
adaptable to diverse clinical protocols. 
 
DLBAS shows great potential in overcoming challenges in radiation therapy planning, particularly 
in addressing the consistency issues of manual contouring across institutions and large-scale 
studies. Variations in target volume delineation, as seen in clinical trials, can result in safety 
concerns and treatment toxicity. For example, a study in South Korea found significant 
heterogeneity in breast IMRT plans across institutions. By generating consistent contours, DLBAS 
could mitigate these issues. However, implementing DLBAS requires initial investments in model 
development, patient data collection, and expert labeling. Once established, DLBAS can greatly 
reduce the time spent on repetitive contouring tasks, freeing up resources for other clinical 
activities. 
 
Our study also demonstrated a significant reduction in IOV in OARs and various CTVs through 
targeted interventions. In particular, we assessed IOV in contouring CTVs and OARs and showed 
that DLBAS improved inter-observer variations across structures, increasing the average DSC 
from 0.69 to 0.77. Auto-segmentation saved time and provided a quality benchmark but raised 
concerns about generalizability, manual corrections, and user acceptance. A key aspect of our 
approach was the local assessment of contour editing, combined with the classification of 
observers' contouring preferences and styles. By aligning participants' contours with auto-contour 
reference shapes in both 2D and 3D, we identified common anatomical regions where adjustments 
were frequently made. Additionally, cluster analysis based on the volume of different CTVs 
allowed us to group participants according to their contouring styles. This insight is valuable for 
providing feedback on unacceptable protocol deviations and can aid local investigators in refining 
the contouring process for enrolled patients. 
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In conclusion, our studies have successfully demonstrated the feasibility of incorporating DLBAS 
solutions into the RT planning workflow. We assessed the performance of DLBAS in comparison 
to conventional contouring methods, and our findings clearly highlight its superiority in terms of 
accuracy, efficiency, and consistency. By leveraging deep learning algorithms, DLBAS not only 
enhances the precision of contour delineation but also streamlines the RT planning process, 
offering a significant advantage over traditional manual approaches. Furthermore, our 
comprehensive evaluation of the impact of DLBAS on interobserver variability across multiple 
institutions reveals that the adoption of deep learning-based auto-contouring technology leads to a 
substantial improvement in contour agreement. This improvement was observed both qualitatively 
and quantitatively for critical structures such as OARs and CTVs. By reducing interobserver 
variability, DLBAS not only enhances the reliability of RT plans but also ensures more consistent 
and personalized treatment planning, paving the way for more accurate and effective radiation 
therapy in clinical practice.  
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3. Clinical Evaluation of Breathing Management Techniques 

for Toxicity Reduction 
 

3.1. Background 
   Radiation therapy (RT) is a critical component in breast cancer treatment. However, it can 
expose the heart to radiation, increasing the risk of cardiac diseases. Minimizing cardiac doses 
without compromising therapeutic benefits is a priority in breast cancer RT. Deep inspiration 
breath-hold (DIBH) is the standard technique for cardiac sparing in left-sided breast cancer, as it 
increases the distance between the heart and the radiation field 37. However, DIBH requires 
additional time and resources and may introduce intrafraction organ motion uncertainties 38.  
 
Recently, continuous positive airway pressure (CPAP), originally used for sleep apnea, has shown 
potential in reducing lung tumor motion during RT 39. Studies on CPAP in three-dimensional 
conformal RT (3D CRT) for left-sided breast cancer have demonstrated reduced cardiac radiation 
exposure by allowing a more caudal heart displacement 40,41. A recent prospective study further 
confirmed CPAP’s feasibility for motion management and its dosimetric benefits.  
 
However, unresolved challenges remain, limiting its clinical adoption as a standard cardiac-sparing 
technique in breast cancer RT. Therefore, the goal of this study was to determine the inter- and 
intrafractional reproducibility of using CPAP as a breath-hold managing tool for volumetric 
modulated arc therapy (VMAT) for left-sided breast cancer. We also investigated the feasibility of 
CPAP as a heart sparing technique in more than 200 consecutive patients with left-sided breast 
cancer who underwent adjuvant RT between June 2020 and January 2021. 
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3.2. Materials and Methods    

3.2.1 Study design and patient characteristics    

This retrospective study was approved by the institutional review board of Yonsei Cancer Center 
(2020-4417-001). The need for written informed consent was waived owing to the retrospective 
nature of the study. To explore the potential of CPAP from various aspects, the study was 
conducted to assess 3 main factors: (1) interfractional reproducibility, (2) intrafractional 
reproducibility, and (3) real-world application. The overall study design and data set used for each 
part are displayed in Table 2.  
 
Table 2. Overview of data sets used in the study; Abbreviations: 4D CT = 4-dimensional computed 
tomography; BC = breast cancer; CBCT = cone beam computed tomography; FB = free-breathing; 
LC = lung cancer; pCT = planning computed tomography; RWD = real-world data set. 
 

Study name 

 
Dataset1 (N=20): 

BC, pCT, and CBCT 
 

Dataset 2 (N=20): 
LC and 4D CT 

Dataset 3 (N=237): 
BC and RWD 

 
Interfractional 
reproducibility 

 

✓   

 
Dosimetric and volumetric 
comparison with FB-based 

plans 
 

✓   

 
Intrafractional 
reproducibility 

 

 ✓  

 
Evaluation of continous 
positive airway pressure 

implementation into routine 
practice 

 

  ✓ 
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3.2.2 Assessment of interfractional reproducibility 

The first part of this study evaluated the interfractional reproducibility of continuous CPAP in 
increasing the distance between the heart and the planning target volume (PTV) for left-sided 
breast cancer patients undergoing VMAT. Data from 20 patients were analyzed using CT and daily 
cone beam CT (CBCT) across 15 treatment fractions. Initial simulations were conducted with free 
breathing (FB) and CPAP, with CPAP pressure starting at 12 cmH₂O and later increased to 15 
cmH₂O to enhance effectiveness.  
 
Heart position reproducibility was assessed using the minimum heart distance (MinHD), defined 
as the shortest perpendicular distance between the heart and the PTV along a virtual posterior field 
edge (Fig. 10). MinHD measurements were taken from planning CT (pCT) and daily CBCT 
images, with MinHD error calculated as the difference between the two. The PTV was contoured 
according to ESTRO guidelines, and findings aimed to determine the consistency of CPAP’s heart-
sparing effects throughout treatment. 
 

 
Fig 10. Schematic of MinHD (blue arrow) measuring the distance from heart to PTV (green). The 

line is perpendicular to the virtual field edge (yellow dotted), posteriorly tangent to the PTV. 

 
3.2.3 Dosimetric and volumetric comparisons with FB 

We then compared CPAP-based and FB-based VMAT plans to assess CPAP’s heart-sparing 
capability. Experienced dosimetrists created new FB-based plans using the same dosimetric 
criteria as the original CPAP-based plans. Cardiac substructures, including the left anterior 
descending artery (LAD), left atrium, and left ventricle, were segmented using auto-contouring 
software (Aview; Coreline Soft, Seoul, South Korea). Plans were generated in RayStation (version 
5; RaySearch Laboratories, Stockholm, Sweden), with 30% covering only the left breast, 25% as 
simultaneous integrated boost plans, 30% including regional node irradiation, and 15% targeting 
the supraclavicular node, internal mammary lymph node (IMN), and whole breast. In over 90% of 
cases, the prescribed dose was approximately 40.05 Gy for 95% of the PTV, delivered using two 
beams with start and stop angles of 300° to 170° and 170° to 300°, respectively.  
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The dosimetric metrics included the mean heart dose (MHD), heart volumes receiving 1, 2.5, 5, 
and 10 Gy (V1, V2.5, V5, V10), mean lung dose, and lung volumes receiving 5 to 40 Gy (V5–
V40). Additional measures for cardiac substructures included LAD maximum dose (Dmax) and 
mean dose (Dmean) and V5 for the left ventricle and left atrium. Dose differences between CPAP 
and FB-based plans were analyzed using a two-tailed t-test with 95% significance. 
 
 

3.2.4 Assessment of intrafractional reproducibility 

Next, we assessed CPAP reproducibility during treatment by analyzing 4D CT scans from 20 
female lung cancer patients who underwent external RT, as these scans are not routinely performed 
for left-sided breast cancer patients. Intrafractional PTV motion was measured using mutual 
information-based rigid image registration with Insight ToolKit, comparing the 0% phase 
(reference) to 10%-90% phases. Breast target movement was analyzed in the craniocaudal (CC), 
anteroposterior (AP), and mediolateral (ML) directions, while diaphragm motion in the CC 
direction was manually measured for each patient. 

 

3.2.4 Assessment of feasibility of CPAP in routine practice 

We investigated the feasibility of using CPAP in routine clinical practice using data set 3. This data 
set included 237 patients with left-sided breast cancer who underwent adjuvant RT between June 
2020 and January 2021, excluding the patients in data set 1. The number of patients who 
completed CPAP-based treatment and the reasons for exclusion were retrospectively identified. 
The patients who received CPAP-based VMAT were divided into 2 subgroups based on whether or 
not they received IMN irradiation (IMNI), and the dosimetric parameters (MHD, V1, V2.5, V5, 
and V10) were examined. 
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3.3. Results 

3.3.1 Interfractional reproducibility 

Starting with the inter-fractional reproducibility, Fig 11 shows box plots of the minimum heart 
distance (MinHD) from planning CT (MinHDpCT, asterisks) and daily CBCTs (MinHDCBCT, 
box plots), with blue and orange boxes representing high and low pressure groups, respectively. 
The difference between MinHDpCT and the median MinHD from 15 daily CBCTs was under 1 
cm, indicating reproducible heart sparing, and pressure type did not affect MinHD. 
 
 

 
Fig 11. Box plots of MinHD: MinHDpCT (baseline CT) shown as asterisks; MinHDCBCT (daily 

CBCTs) as box plots. Blue and orange indicate high and low pressure groups, respectively. 
Abbreviations: CBCT = cone beam computed tomography; CT = computed tomography; MinHD 

= minimum heart distance 

In terms of intrafraction motion, Fig 12 shows mean intrafraction breast motion: 2.5 ± 2.0 mm in 
the craniocaudal (CC), 1.8 ± 1.4 mm in the anteroposterior (AP), and 0.5 ± 0.5 mm in the ML 
directions (Fig 12). The greatest motion and interpatient variation occurred in the CC direction, 
with outliers at 8 mm (CC) and 6 mm (AP) for patient 16. Diaphragm motion ranged from 8 to 24 
mm, with no clear correlation to PTV motion amplitude. 
 
 

3.3.2 Dosimetric and volumetric comparison 
The mean dose of the whole heart was significantly smaller for the CPAP plan than for the FB plan 
in both the IMNI and no IMNI groups (Table 3). The heart V1, V2.5, and V5 were also 
significantly smaller in the CPAP-based plan, whereas there was no significant reduction in V10.  
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No significant differences in the mean lung dose were found between CPAP and FB. Further, the 
average lung volumes receiving 5 to 20 Gy (ie, V5 to V20) were comparable between FB and 
CPAP. As for the cardiac substructures, the maximum doses of the LAD, left ventricle V5, and 
mean dose of the left ventricle were significantly reduced in CPAP. 
 
When comparing CPAP-based plans to FB-based plans, CPAP resulted in slightly smaller heart 
volumes but significantly larger lung volumes. Additionally, lung expansion increased, on average, 
1.7 times less in the low-pressure group (P1-10) compared to the high-pressure group (P11-20). 
 
 

3.3.3 Intrafractional reproducibility 
The mean intrafraction breast motion for the total cohort was 2.5 ± 2.0, 1.8 ± 1.4, and 0.5 ± 0.5 
mm in the CC, AP, and ML directions, respectively (Fig 12). The greatest movement was 
observed in the CC direction, which also had the greatest interpatient variations. Although most 
patients had motion <5 mm, there were outliers in the CC and AP directions at 8 and 6 mm, 
respectively, for patient 16 of the lung patient cohort. For the diaphragm, relatively large motions 
ranging from 8 to 24 mm were observed. There was no clear correlation between the motion 
amplitude of PTV and diaphragm motion. For instance, although P01 and P16 both had small 
diaphragm motions, 1 had small PTV motion amplitude, whereas the other had a large value. 
 

 
Fig 12. Comparison of the intrafraction motion amplitudes between the breast PTV and lung 

diaphragm. Compared with the diaphragm, the movements in the CC, AP, and ML directions were 
relatively small, implying that CPAP managed to keep the breast motion minimal despite the large 

movement of the diaphragm. Dots indicate the datapoints that exceed 1.5 times the interquartile 
range. Abbreviations: AP = anteroposterior; CC = craniocaudal; CPAP = continuous positive 

airway pressure; ML = mediolateral; PTV = planning target volume. 
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Table 3. Comparison of average OAR volumes and dosimetric parameters between the FB- and 
CPAP-based VMAT plans. 

 IMNI No IMNI 
 FB CPAP p-value FB CPAP p-value 
Heart       
Volume 
(cc) 

517.8 513.6 0.8 497.7 477.9 0.1 

Dmean 
(Gy) 

2.6 2.0 < 0.01 1.6 1.3 < 0.01 

V1 (%) 90.3 82.2 < 0.01 66.8 53.8 < 0.01 
V2.5 (%) 34.1 20.7 < 0.01 13.1 7.5 < 0.01 
V5 (%) 8.4 3.8 < 0.05 2.0 1.2 < 0.05 
V10 (%) 1.7 0.5 0.1 0.1 0.1 0.6 
Ipsilateral 
lung  

      

Volume 
(cc) 

1049.5 1560.0 < 0.01 1153.4 1709.6 < 0.01 

Dmean 
(Gy) 

6.9 6.5 0.1 4.8 4.6 0.2 

V5 (%) 35.9 34.0 0.1 25.0 24.3 0.5 
V10 (%) 21.9 21.0 0.2 14.8 13.9 0.2 
V20 (%) 10.1 9.8 0.6 6.0 5.4 0.1 
LAD       
Dmax (Gy) 8.5 6.0 < 0.01 10.1 5.7 < 0.05 
Left 
atrium 

      

Volume 
(cc) 

54.9 49.8 < 0.05 52.2 44.3 < 0.05 

Dmean 
(Gy) 

1.5 1.5 0.6 0.9 0.8 0.4 

V5 (%) 0.6 0.4 0.7 0 0 - 
Left 
ventricle 

      

Volume 
(cc) 

141.1 127.6 < 0.05 130.3 116.5 < 0.05 

Dmean 
(Gy) 

2.1 1.7 < 0.01 1.7 1.2 < 0.01 

V5 (%) 1.4 0.3 < 0.05 0.8 0.0 0.1 
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3.3.4 Feasibility of CPAP in routine practice 
The CPAP-based RT was successfully acclimated in 221 of the 237 patients (93%). The use of 
CPAP was not evaluated in 7 patients owing to low compliance (n = 5) and old age (n = 2). CPAP 
was not used in 8 patients because 2D fluoroscopy (n = 3) or 3D-CT/planned dose distributions (n 
= 5) showed no benefit. Only 1 patient failed to tolerate breathing with CPAP. Among the patients 
for which CPAP was used, 116 patients were treated with IMNI. The mean dose, V1, V2.5, V5, 
and V10 of the heart in the 221 patients were 1.6 ± 0.7 Gy, 62.5 ± 32.7%, 14.8 ± 14.7%, 2.6 ± 
4.0%, and 0.4 ± 0.9%, respectively. All dosimetric parameters were higher in the IMNI group than 
in the no IMNI group (Fig 13). The median MHDs of the IMNI and no IMNI groups were 1.90 
and 0.8 Gy, respectively. 
 

 

 

Fig 13. Dose summary of the 221 patients who underwent CPAP according to the IMNI group. 
Although there are differences depending on the presence of IMN, the overall median MHD was 
observed to be less than 2 Gy, which is comparable to the MHD of data set 1, confirming the 
practicality of CPAP across a large cohort. The difference between the IMN group and the no IMN 
group was the highest for V1, which then decreased gradually as the dose threshold increased (ie, 
V2.5, V5.0, V10). Dots indicate the datapoints that exceed 1.5 times the interquartile range. 
Abbreviations: CPAP = continuous positive airway pressure; IMNI = internal mammary lymph node 
irradiation; MHD = mean heart dose.  
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3.4. Discussion and Conclusion 
This study demonstrated that CPAP has good intra- and intersession reproducibility and is a 
feasible heart-sparing technique during RT in patients with breast cancer who will undergo DIBH. 
To the best of our knowledge, this is the first study to evaluate the reproducibility and the largest 
study to evaluate the heart-sparing capability of CPAP-based VMAT for left-sided breast cancer 
treatment. 
 
The efficacy of breath management techniques is greatly reliant on their reproducibility. The 
measures for evaluating positional reproducibility for DIBH have been extensively reported 42–46. 
Comsa et al45 reported a maximum heart shift of 6.2 mm with respect to the chest wall using 
CBCT images. Another study found a median interfraction heart shift of 1, 0, and 1 mm in the CC, 
AP, and ML, respectively46. Our results (average MinHD error of 2 mm) are comparable to those 
reported for DIBH, confirming CPAP's ability to keep the heart position fairly consistent. 
 
The findings provide instrumental evidence supporting the clinical effectiveness of CPAP for heart 
sparing in left-sided breast RT. The subcentimeter variations of the heart position observed in this 
study indicate that the reduced heart dose from CPAP is consistently maintained during the 
treatment. In addition, the wide range of CPAP pressure (7-20 cmH2O) in previous studies 
underlines the need to establish the optimal CPAP 39–41,47–49. In our study, the stability of the 
breathing pattern did not significantly differ according to the CPAP (≥15 cmH2O vs <15 
cmH2O). This indicates that the guiding principle of “as high as achievable” does not increase the 
motion amplitude and position instability, although our study did not test whether these similar 
findings on reproducibility would be observed at <12 cmH2O. 
 
The CPAP-based plans generated more favorable dosimetric outcomes than FB for dose/volume 
parameters across all structures investigated. As radiation exposure to cardiac substructures is 
correlated with subsequent cardiac morbidity, our findings that CPAP reduces the dose to the 
whole heart and the substructures have important clinical implications. However, the clinical 
relevance of these differences is yet to be elucidated. In previous literature, the effect of CPAP on 
target volume coverage and doses to organ-at-risks was investigated in 3D-CRT using partial wide 
tangents, VMAT, and proton beam therapy in conventional or hypofractionated regimens50. 
Compared with corresponding FB conditions, the MHD was lower in every technique in CPAP, 
especially when combined with 3D-CRT, where 50% reduction in the MHD was observed. This is 
comparable to the findings by Allen et al,40 who showed that the MHD was decreased from 3.0 Gy 
in FB to 1.6 Gy in CPAP with 3D-CRT. The absolute benefit of CPAP in the present study is 
smaller than in previous reports, and this could be because of the already reduced MHD from 
VMAT. 
 
The intrafractional motion for CPAP is yet to be thoroughly evaluated, although there have been a 
few studies focusing on DIBH. Another study investigated intrafraction tumor motion in early-
stage breast cancer using a fiducial marker in FB and reported movements of 1.0 ± 0.9, 1.8 ± 1.5, 
and 1.3 ± 1.2 mm in the CC, AP, and ML directions, respectively51. Our study had comparably 
small motions (2.5 ± 2.0, 1.8 ± 1.4, 0.5 ± 0.5 mm in the CC, AP, and ML directions, respectively). 
The lung diaphragm moved about 17.6 ± 6.2 mm on average during the same 4D CT, indicating 
that increased airway pressure by CPAP does not increase the breast motion, although it may 
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increase the lung diaphragm motion. Our study had an outlier patient with a large upper chest 
movement regardless of CPAP use (6.5 and 8.3 mm in the AP and CC directions; Video E1). 
Therefore, possible CPAP-related increases in breast motion should be assessed in advance in 
every patient. 
 
We achieved a high completion rate of CPAP at 93% in its real-world application in our 
institution. This is substantially higher than what has been reported for DIBH by Rice et al, 52 in 
which approximately 43% of 272 patients included in the study were unable to complete DIBH 
treatment owing to having no obvious advantage, inability to demonstrate good breath-hold, and 
anxiety. Unlike DIBH, CPAP is less dependent on the patients’ ability to hold breath; thus, it is 
more applicable to a wider range of patients and has greater benefits for future clinical 
implementation. Our outcomes further confirmed the dosimetric advantages of using CPAP. The 
MHDs for the 216 patients who did and did not undergo IMNI (data set 3) were 2.0 ± 0.5 Gy and 
1.1 ± 0.7 Gy, respectively, comparable to the results from data set 1 (2.0 ± 0.5 Gy and 1.3 ± 0.4 
Gy). Furthermore, CPAP may have an advantage over DIBH with respect to treatment time 
because of high duty cycle in CPAP-based RT. A detailed comparison between DIBH and CPAP 
should be conducted in a future study. 
 
The following study limitations should be addressed in future studies. First, this study incorporated 
3 different types of data sets (data sets 1, 2, and 3), rather than a single common data set. Although 
the reason this was done was to investigate all possible aspects of CPAP within the limits of using 
retrospective data, a follow-up study prospectively preparing a common data set may be useful to 
obtain more in-depth evidence of CPAP applications in breast RT. Second, this study did not 
include the dosimetric comparison of interfraction CBCT data to further confirm the 
reproducibility of CPAP with respect to safety. Further studies should investigate the dosimetric 
changes across different treatment settings. Lastly, our MinHD measurement can be deemed 
subjective and prone to reproducibility issues, because a slight shift of the positioning could result 
in a different measurement. We believe that the reproducibility can be further improved if the 
volume-wise distance can be measured between the heart contour and the PTV contour, instead of 
a 2D-based approach. Unfortunately, this could not be done in the current study due to the 
unavailability of contours on individual CBCT scans. In future studies, approaches such as deep 
learning-based automatic segmentation could be implemented to generate high-quality contours of 
the heart and PTV on CBCTs to enable 3D minimum heart distance measurement. 
 
In conclusion, this study demonstrates that CPAP is a reproducible and effective heart-sparing 
technique for left-sided breast cancer radiation therapy, with comparable reproducibility to DIBH. 
CPAP significantly reduces radiation exposure to cardiac structures, offering favorable dosimetric 
outcomes over free-breathing and contributing to improved heart protection during treatment. With 
a high completion rate of 93% in real-world clinical practice, CPAP presents a more accessible 
alternative to DIBH, particularly for patients who struggle with breath-holding. These findings 
support the potential of CPAP for broader clinical adoption, though further studies comparing 
CPAP and DIBH in terms of treatment time and long-term clinical outcomes are needed. 
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4. Multi-modal Toxicity Prediction Model using a Large 

Language Model and Image-Based Techniques 

 
4.1. Background 

   Esophageal cancer (EC) is the sixth leading cause of cancer-related mortality worldwide, with 
a five-year survival rate of approximately 20% across all stages 53. Radiation therapy (RT) is one 
of the treatment modalities for EC, often combined with chemotherapy, which has been shown to 
improve survival compared to surgery alone 54. Radiation-induced acute esophagitis (AE) is one of 
the common complications occurring in patients with EC who receive RT. The symptoms of AE 
include difficulty swallowing and pain, which may, in turn, significantly impact patients' quality of 
life during and after treatment. The risk of AE has been reported to increase with higher radiation 
doses and concurrent chemotherapy 55. Given the significant impact of AE on patients' quality of 
life, accurately predicting its occurrence during radiation therapy is essential for effective 
management and intervention. 
 
Previous efforts have been made to predict AE, although most studies have focused on its 
occurrence in non-small cell lung cancer (NSCLC). Conventionally, normal tissue complication 
probability (NTCP) models have been developed for AE prediction 9,56–58 focusing on dosimetric 
and clinical variables, with common predictors being mean esophageal dose and concurrent 
chemotherapy. Similarly, machine learning models have been employed to capture more complex 
representations of patient data, leveraging a broader range of predictors, including dose volume 
histogram (DVH)-derived parameters and patient-specific characteristics 59,60. However, a recent 
study evaluating 35 clinical and dosimetric variables, including conventional metrics like 
esophageal mean dose and V20–V60, found no reliable predictors for AE 61. To overcome these 
limitations, imaging-based approaches have been explored, including radiomics, dosiomics, and 
deep learning (DL) models 62–64. The most recent study in esophageal cancer, combining 
radiomics, dosiomics, and DL in a hybrid approach64. 
 
Prior studies have explored esophagitis prediction using either imaging data or clinical variables, 
but none have investigated the potential of integrating both modalities. Imaging data capture rich 
anatomical and pathological information, whereas clinical variables provide essential context 
about patient characteristics and treatment factors. A multimodal approach that combines these 
information may enhance predictive performance. Recent advances in large language models 
(LLMs) have opened new opportunities for multimodal learning by effectively integrating 
structured text and visual data, showing promising results in tasks such as medical image 
segmentation 25 and survival prediction 26. However, the added complexity of such models may 
pose challenges in clinical settings, where there is an emphasis on the need for clinical models to 
be simple and reproducible. 
 
In this study, we aimed to develop a robust multimodal model for predicting AE in patients with 
EC by integrating imaging features and clinical data. To address the trade-off between 
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performance and model complexity, we developed a multimodal prediction model based on 
context-aware 3D Swin transformer model that leverages LLM with multi-modal alignment. The 
goal was to assess whether these multimodal approaches offer improved predictive performance 
over image-only models. Specifically, we sought to answer two key questions: (1) What is the 
most effective strategy for combining image-based and clinical information in a multimodal 
prediction framework? and (2) How does the predictive performance of such models vary across 
different demographic cohorts? 
 

 

4.2. Materials and Methods 

4.2.1 Data characteristics 
This study included two independent datasets: an internal dataset from Memorial Sloan Kettering 
Cancer Center (MSKCC) and an external test dataset from Gangnam Severance Hospital. The 
internal dataset was retrospectively collected and comprised of 217 patients with esophageal 
cancer who previously underwent RT treatment at MSKCC between 2009 and 2022. The dataset 
was further divided into training (N=197) and internal test cohorts (N=20 for internal test) using a 
stratified random split. All patients received intensity-modulated radiation therapy (IMRT) or 
volumetric modulated arc therapy (VMAT) with concurrent chemotherapy. The external test set 
consisted of 20 esophageal cancer patients treated with Tomotherapy at Gangnam Severance 
Hospital in 2024. AE was labeled as a binary outcome based on the presence or absence of grade 
≥2 toxicity, according to the CTCAE grade system 65. 
  
The data included in this study was imaging data as well as clinical data. The imaging data 
included planning CT scans, dose distributions, and pre-treatment gross tumor volume (GTV) 
contours. The baseline clincal data was also collected from the electronic medical records from 
each institution by radiation oncologists. Patient characteristics are summarized in Table 2. To 
evaluate potential differences between the training and test cohorts, we performed statistical 
analyses using appropriate tests based on data type. Specifically, we applied independent t-tests for 
normally distributed continuous variables, Mann-Whitney U tests for non-normally distributed 
continuous variables, and Fisher’s Exact or Chi-Square tests for categorical variables, where p-
value <0.05 was considered a threshold for statistical significance. 
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Table 4. Patient Characteristics. P-values were calculated using (a) t-test, (b) Mann-Whitney U, (c) 
Fisher’s Exact (<5 count), and (d) Chi-Square test. 

  Train/Val 
(N=197) 

Internal 
Test 

(N=20) 

External 
Test 

(N=20) 

Training 
vs test p-

value 

Training vs 
external 
test p-
value 

Test vs 
external 
test p-
value 

Age 66.11 ± 
10.99 

65.05 ± 
10.23 

65.05 ± 
11.05 0.66 a 0.68 a 0.99 a 

Subsite       0.64 d 0.56 d 0.64 d 

Lower 161 17 9       

Middle 26 2 8       

Upper 10 1 3       

Esophagitis 
Status             

Positive 94 11 12       

Negative 103 9 8       

Smoking       1.00 d 0.09 d 0.26 d 

Smoker (current 
and previous) 135 14 9       

Non-smoker 62 6 11       

Stage       0.18 d 0.21 d 0.18 d 

1 10 - 2       

2 53 3 3       

3 126 4 11       

4 8 13 4       

Sex       0.26 c 0.42 d 0.13 c 
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Female 45 2 7       

Male 152 18 13       

Diabetes       0.76 c 1.00 c 0.70 c 

Positive 34 4 3       

Negative 163 16 17       

Pre-existing 
heart disease       0.75 c 0.05 c 0.05 c 

Positive 32 4 0       

Negative 165 16 20       

Concurrent 
Chemo       1.00 c 0.0001 c 0.11 c 

True 197 20 16       

False - - 4       

RT Intent       0.18 d 0.12 d 0.64 d 

Preoperative 124 9 8       

Definitive 73 11 8       

Others  - -  4       

Dose delivered 
(cGy) 

4964.16 ± 
233.36 

4903.50 
± 400.07 

5237.62 
± 552.29 0.89 b 0.94 b 0.92 b 

Histology       1.00 d <0.001 c <0.001 c 

Adenocarcinoma 145 15 -       

Squamous cell 
carcinoma 52 5 19       

Others - - 1       
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  4.2.2 Clinical feature selection 
To identify the most relevant clinical variables as predictors for AE, we utilized a multivariable 
logistic regression model with Least Absolute Shrinkage and Selection Operator (LASSO) (Fig 13). 
The following clinical features were included: age, stage, smoking, delivered dose, histology, 
diabetes, preexisting heart disease, radiotherapy intent, Karnofsky Performance Scale, tumor 
location as well as the induction chemotherapy status. Among these features, the continuous clinical 
variables were scaled using the Standard Scaler, and categorical variables were one-hot encoded 
before normalization to ensure compatibility with the regression model. LASSO penalizes the 
regression coefficients of the variables, allowing for the selection of variables with non-zero 
coefficients [7]. To enhance model robustness, this procedure was repeated across 1,000 bootstrap 
samples, each utilizing an 80/20 random train-test split. Variables with non-zero coefficients were 
retained, and those selected in more than 50% of the bootstrap iterations were included in the final 
model. Finally, the clinical features that were selected in over 50% of the bootstrap iterations were 
selected for inclusion for the final model training and testing.  
 
 

 
 

Fig 14. Overview of Feature Selection using Least Absolute Shrinkage and Selection Operator 

 
 
   4.2.3 Input homogeneity testing using t-SNE 
To evaluate the similarity of the input data used in this study, including CT, dose maps, clinical text, 
we used an input data visualiztion technique called t-Distributed Stochastic Neighbor embedding (t-
SNE). t-SNE is a nonlinear dimension reduction technique that can represent high dimensional data 
into a new location in a lower dimensional data 66. To investigate potential data inhomogeneity 
between the training and testing cohorts (internal and external), which could influence model 
performance, we compared the distributions of CT images, dose maps, and clinical text between the 
training and internal test sets, as well as between the training and external test sets. 
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   4.2.4 Prediction model framework 
Our prediction framework consists of three key components: (1) an image encoder, (2) a text encoder, 
and (3) an attention-based multimodal alignment module (Fig 15). The image inputs are 3D CT or 
dose, and the text input is the patient’s clinical note that consists of an instruction and a query of the 
patient characteristics. Starting with the image encoder, we fine-tuned a Swin transformer 67, which 
was pre-trained with self-supervised learning on 3,643 CT images of various cancer types (head and 
neck, kidney, and lung cancers) and COVID-19 68. The architecture utilizes the Swin-S model, a 
variant of the Swin base model, with the number of channels in the hidden layer of the first stage set 
to 96. The model consists of four stages with layer configurations of {2, 2, 18, 2} and a total of 50 
million parameters. The embedding size is 768, the window size is 4x4x4, and the patch size is 2. 
For the text encoder, we utilized a frozen LLM2Vec encoder with the LLM model (Meta-Llama-3-
8B-Instruct) 69,70. LLM2Vec, pre-trained with masked next token prediction and unsupervised 
contrastive learning on English Wikipedia [20], adds bidirectional attention to decoder-only LLMs, 
enabling full-context aware text embedding. Lastly, vision and text features were aligned using the 
Segment Anything Model's two-way transformer module 71. 
 
 

 
Fig 15. Overview of the 3D multimodal esophagitis prediction framework: (1) Swin Transformer 

image encoder, (2) LLM2Vec language encoder with frozen LLaMA 3-8B, and (3) cross-attention-
based multimodal alignment. 
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   4.2.5 Training details 
The models were trained on an NVIDIA RTX A100 80GB GPU. Each approach was compared 
against its vision-only baseline model. Training was done using 10-fold cross-validation, and the 
model with the highest validation accuracy was locked and used for testing. The model was fine-
tuned using the MONAI library. A 3D patch with dimensions of 128x128x128 was extracted 
around the GTV during the data loading process. To ensure sufficient context around the tumor, a 
margin of 70 voxels was added outside the tumor boundary for CT images, and a margin of 50 
voxels was used for dose data in the x, y, and z directions. For the combined CT+dose model, we 
used a common margin of 50. Image intensity values were scaled between -1000 and 1000 
Hounsfield Units for CT and between 0 and 60 Gy for dose. The model utilized cross-entropy loss 
with the Adam optimizer, using a learning rate of 1e-5 for image only model and 1e-4 for 
image+LLM model. 
 

   4.2.6 Model evaluation 
To evaluate model performance, we used the area under the curve (AUC), specificity (TP/(TP+FN)), 
and sensitivity (TN/(TN+FP)), where classification outcomes were defined as true positives (TP), 
false negatives (FN), true negatives (TN), and false positives (FP). The optimal classification 
threshold for specificity and senstivitiy calculation was established by maximizing Youden’s index 
in the internal validation. The best model was selected based on the highest overall performance 
metrics (AUC, specificity, and sensitivity) observed across all 10 folds of the validation set. The 
checkpoint corresponding to the highest AUC was then used for subsequent analysis on both the 
internal and external test sets. Furthermore, to better understand the model’s decision-making 
process, we applied Gradient-weighted Class Activation Mapping (Grad-CAM) to our models which 
highlighted the regions of the input that contribute most to the model’s prediction.  
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   4.2.7 Ablation experiments 
 
Our study uses multiple inputs including CT, dose and clinical text and the way of combining these 
are diverse. Therefore we conducted different approahces and experiments to come up with the 
best way for our data and our task. To gain a deeper understanding of the model's strategies, and to 
assess the impact of each hyperparameter, the following subanalysis was conducted: 
 
(1) Image-Text concatenation strategies: To evaluate the effectiveness of our proposed multi-modal 
alignment approach, we compared it with a conventional strategy where image and textual features 
are simply concatenated prior to the classification layer, followed by a fully connected layer for 
final prediction72. We conducted this comparison using the internal test set to determine whether 
the cross-attention mechanism leads to improved performance over the naive concatenation 
method. Both methods use the text features produced by the LLM2Vec text encoder. 
 
(2) CT-Dose concatenation stratigies: Our dataset includes spatially aligned CT and dose 
distribution images from the same patient. To combine these inputs, we explored several strategies, 
ranging from simple to more complex. First, we used basic concatenation (Figure 16a), where CT 
and dose features from the transformer blocks are flattened and directly concatenated. Next, we 
applied bi-directional cross-attention, generating two sets of features: CT-to-dose and dose-to-CT 
(Figure 16b). We then tested two variants comparing simple concatenation versus adding an MLP 
after concatenation (Figure 16c). Finally, we evaluated whether summing the cross-attended 
features instead of flattening and concatenating improved performance (Figure 16d). 
 
(3) Effect of margin size on model performance: We compared test accuracy using two different 
margin sizes, 20 and 50 voxels, to evaluate whether focusing the model on a smaller, more 
localized region around the tumor is more beneficial than providing a broader, more global field of 
view. This analysis was motivated in part by differences in dose distribution patterns, as 
tomotherapy scans typically exhibit more refined dose gradients compared to IMRT scans (Fig 
16). We assessed the impact of these margin sizes on both internal and external test performance to 
determine which provided more informative input for the model. 
 
(4) Prompt variation with and without histology: The primary difference in clinical information 
between the training and external cohorts lies in histology. Korean patients, who make up the 
external cohort, more commonly present with squamous cell carcinoma, whereas adenocarcinoma 
is more prevalent among U.S. patients in the training cohort. To assess whether this discrepancy 
impacts model performance, we tested the effect of removing histology information from the text 
prompt on the external test set. 
 
(5) Impact of training size on model performance: A key challenge in developing deep learning 
models for clinical applications is limited data availability. Ideally, models should maintain robust 
performance even with smaller datasets. To assess whether incorporating clinical text enhances 
model accuracy under data constraints, we randomly subsampled the training set to 10%, 20%, and 
50% of its original size and evaluated performance on the internal test set. 
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(a) Simple concatenation 
 

 
 

(b) Cross attention - concatenation 

 
 

(c) 
 

Cross attention- concatenation – MLP 
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(d) Cross attention – summation 
 

 
 
Fig 16: Comparison of multi-modal image input concatenation methods. (a) simple concatenation 
strategy, (b), (c), (d) combination using cross attention between CT and dose (CT-to-dose, dose-to-

CT). Abbreviations: SwinT: swin transformer. MLP: multi layer perceptron 

 
 
 
 

 
 

Fig 17. Visual comparison of dose maps of the training (IMRT) and external test (Tomotherapy). 
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4.3. Results 

4.3.1 Feature selection 
In the current data cohort, 13 clinical features were collected and subjected to a LASSO-based 
feature selection pipeline. Variables that were selected in ≥50% of the bootstrap iterations 
included, in descending order of selection frequency, squamous cell histology, delivered radiation 
dose, smoking status, clinical stage III or higher, age, and diabetes. Among these, squamous cell 
histology, delivered dose, smoking status, and stage III or higher were selected in 100% of the 
iterations, demonstrating exceptionally strong and consistent associations with the outcome of 
interest within this cohort. In contrast, age and diabetes were selected in a slightly lower 
proportion of bootstrap samples but still surpassed the inclusion threshold. The final set of selected 
features was retained for subsequent analyses and served as the clinical input for the multimodal 
analysis performed in this study. These features were incorporated into the modeling framework 
alongside imaging and dosimetric data to comprehensively evaluate their combined predictive 
value (Fig. 18). 
 

 
Fig 18: LASSO regression feature selection results, sorted by selection percentage  
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A comparative analysis of clinical characteristics between the internal (MSKCC) and external 
(Yonsei) cohorts revealed several key differences, as shown in Fig. 19. Notably, the distributions of 
smoking status, cancer stage, and histology varied between the two cohorts. The MSKCC cohort 
had a higher proportion of smokers, while the Yonsei cohort included more patients diagnosed with 
stage IV disease. The most pronounced difference was observed in histology: adenocarcinoma was 
more prevalent in the MSKCC cohort, whereas squamous cell carcinoma was more common in the 
Yonsei cohort. This difference in histological distribution was statistically significant, with a p-value 
less than 0.05. 
 

 
 

Fig 19: Difference between smoking, stage and histology of the training cohort vs external test 
cohort 

 
4.3.2 t-SNE visualization  

Next, we focused on evaluating the underlying data characteristics of the three modalities included 
in this study- CT images, dose distributions, and clinical variables using t-SNE visualization. The 
t-SNE plots revealed minimal differences in data distribution between the training and internal test 
sets across all modalities, as evidenced by the similar spread and well-mixed data points (Fig. 20). 
This suggests that there is no significant domain shift between the internal training and test 
datasets. In contrast, a greater variance was observed when comparing the training data with the 
external test set collected from an external institution. The t-SNE plots for all three modalities 
demonstrated clear differences, with the external test data forming tight, distinct clusters that 
showed minimal overlap with the training data. This effect was especially pronounced in the CT 
and clinical variable plots, where the external cohort clustered in separate regions, indicating 
notable differences in the underlying data distributions. These findings suggest that the external 
dataset has distinct characteristics compared to the internal training set, which may have 
implications for model generalizability. 
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Fig 20: t-SNE plots illustrating the data distribution across the training set, internal test set, and 

external test set for each modality. 
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4.3.3 Quantitative evaluations  
Table 5 summarizes the average performance metrics (AUC, specificity, and sensitivity) across 
10-fold cross validation for all image only models versus their corresponding image + text models 
leveraging LLM and multi-modal alignment. In the internal validation, the LLM only model 
achieved an AUC of 0.69. Starting with the image only models, the AUC was the highest for 
CT+Dose model (AUC=0.77), followed by CT model (AUC=0.74) and Dose model (AUC=0.64). 
Overall, adding clinical information through LLM resulted in a performance increase of 0.01, 0.06 
and 0.02 AUC for CT, Dose and CT+Dose models, respectively, The highest performance was 
observed for the model combining CT, Dose and Text, with an AUC of 0.78. Combining all three 
modalities had the highest SEN and SPE overall.  
 
On the internal test set, the LLM-only model showed poor performance (AUC=0.53) (Table 6). 
The CT and CT+Text models performed similarly, while adding text slightly reduced the Dose 
model’s performance (AUC dropped from 0.69 to 0.66). In contrast, the CT+Dose+Text model 
achieved the highest AUC of 0.80, showing an AUC improvement of 0.03 over CT+Dose. On the 
external test set, the LLM-only model again performed poorly (AUC=0.33). The CT-only model 
had the highest AUC (0.72), while CT+Text and the Dose models (with or without text) showed 
lower performance (AUCs of 0.32 and 0.38).  
 
Table 5. Comparison of AUC, accuracy, specificity, and sensitivity for AE prediction across 10-fold 
cross validation. Arrows indicate changes relative to the image-only model (▲ for an increase, ▼ 
for a decrease). The highest values are highlighted in bold. 

CT Dose Text AUC SEN SPE 

  
✓ 0.69 ± 0.10   0.60 ± 0.18 0.77 ± 0.16 

✓   0.74 ± 0.10 0.69 ± 0.20 0.72 ± 0.08 

✓ 
 

✓ 0.76 ± 0.07 0.74 ± 0.19 0.81 ± 0.14 
   

▲0.02 ▲0.05 ▲0.09 

 ✓  0.64 ± 0.09 0.44 ± 0.22 0.80 ± 0.18 

 ✓ ✓ 0.70 ± 0.07 0.65 ± 0.16 0.77 ± 0.19 

   ▲0.06 ▲0.21 ▼0.03 

✓ ✓  0.77 ± 0.07 0.80 ± 0.14 0.75 ± 0.17 

✓ ✓ ✓ 0.78 ± 0.10 0.82 ± 0.13 0.74 ± 0.17 
   

▲0.01 ▲0.02 ▼0.01 
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Table 6. Comparison of AUC, accuracy, specificity, and sensitivity for AE prediction across for 
internal and external test sets. Arrows indicate changes relative to the image-only model (▲ for an 
increase, ▼ for a decrease). The highest values are highlighted in bold. 

   Internal Test External Test 

CT Dose Text AUC SEN SPE AUC SEN SPE 

  
✓ 0.53 0.54 0.60 0.33 0.92 0.00 

✓   0.74 0.64 0.67 0.72 0.66 0.63 

✓ 
 

✓ 0.74 0.64 0.67 0.60 0.08 0.88 
   

- - - ▼0.12 ▼0.58 ▲0.25 

 ✓  0.69 0.67 0.54 0.32 0.60 0.00 

 ✓ ✓ 0.66 0.63 0.67 0.38 0.60 0.40 

   ▼0.03 ▼0.04 ▲0.07 ▲0.06 - ▲0.40 

✓ ✓  0.77 0.73 0.67 0.75 1.00 0.25 

✓ ✓ ✓ 0.80 0.64 0.67 0.63 0.17 0.88 
   

▲0.03 ▼0.09 - ▼0.05 ▼0.43 ▲0.25 

 
 
 

4.3.4 Ablation experiments 
Image-Text concatenation strategies: We first compared interactive alignment and simple 
concatenation strategies to evaluate the effectiveness of our proposed multi-modal alignment 
approach using cross-attention (Table 7). The textual features were extracted using the LLaMA-
LLM2Vec encoder. For input modalities, we evaluated two combinations: CT+Text and 
CT+Dose+Text. Using simple concatenation followed by a fully connected layer, the AUC for 
CT+Text was 0.60, while the addition of dose information resulted in a decreased AUC of 0.54. In 
contrast, our proposed method incorporating a LLM with multi-modal alignment via cross-
attention demonstrated improved performance, achieving an AUC of 0.74 for CT+Text and 0.80 
for CT+Dose+Text. 
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Table 7. Comparison of model performance of two image+text concatenation strategies 1) simple 
concatenation followed by fully connected (fc) layer, 2) the proposed multi-modal alignment using 
cross attention between image and text. The performance was testing using the internal test set. 

 CT Dose Text AUC SEN SPE 

Simple concatenation + fc ✓  ✓ 0.60 0.72 0.67 

✓ ✓ ✓ 0.54 0.54 0.44 

Proposed: LLM + multi-
alignment 

✓  ✓ 0.74 0.64 0.67 

✓ ✓ ✓ 0.80 0.64 0.67 

 
 
Effect of margin size on model performance: Next, we compared models using smaller (20 
voxels) vs. larger (50 voxels) in x,y and z around the GTV (Table 6) while training the model 
(Table 9). The larger margin, which covers a broader field of view including the whole thorax, 
performed better, with internal test AUCs of 0.72 vs. 0.64. The same pattern was observed in the 
external test set, with AUCs of 0.68 vs 0.57 for magins 50 and 20, respectively, with more 
balanced SEN and SPE. However, we observed a general decline in performance on the external 
test set compared to the internal test results. 
 
 
Table 8. Comparison of using smaller margin vs bigger margin for CT-dose combined model 

    Internal Test External Test 

Margin CT Dose Text AUC SEN SPE AUC SEN SPE 

20 ✓ ✓  0.64 0.64 0.56 0.57 0.70 0.38 

50 ✓ ✓  0.72 0.82 0.56 0.68 0.60 0.63 
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CT-Dose concatenation stratigies: Compared to the simple concatenation strategy, all cross-
attention-based approaches demonstrated higher AUC values (Table 8). The best performance was 
observed when feature concatenation was applied immediately after the cross-attention module 
(Table 8b). Adding an MLP layer did not lead to any improvement. The summation-based 
aggregation method (Table 8d) also yielded a relatively high AUC, but its sensitivity and 
specificity were lower than those of methods (a–c). Among all approaches, the cross-attention 
method with concatenation achieved the highest specificity (0.67). 
 

Table 9: Comparison of CT+dose concatenation strategies on internal test set 

 CT Dose Text AUC SEN SPE 

(a) Simple concatenation ✓ ✓  0.72 0.82 0.56 

(b) Cross attention - 
concatenation 

✓ ✓  0.77 0.73 0.67 

(c) Cross attention- 
concatenation – MLP 

✓ ✓  0.73 0.82 0.67 

(d) Cross attention – 
summation 

✓ ✓  0.75 0.64 0.56 

 
 
Prompt variation with and without histology: To account for differences between the training 
and external cohorts, we evaluated the effect of removing histology information from the text 
prompts (Table 10). On the internal test set, including histology led to a slight improvement in 
AUC (0.74 vs. 0.72), along with modest gains in sensitivity and specificity (0.64 and 0.67, 
respectively). On the external test set, the inclusion of histology similarly resulted in only a 
minimal AUC increase, with sensitivity and specificity remaining suboptimal regardless. Overall, 
the presence or absence of histology in the prompt had limited impact on performance 
 

Table 10. Comparison of prompt with and without histology information 

    Internal Test External Test 

 CT Dose Text AUC SEN SPE AUC SEN SPE 

With ✓  ✓ 0.74 0.64 0.67 0.60 0.08 0.88 

Without ✓  ✓ 0.72 0.45 0.67 0.61 0.92 0.13 
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Impact of training size on model performance: Finally, we assessed how training size affects 
internal test AUC by comparing the performance of CT-only and CT+LLM models (Fig 22). Both 
models reached performance saturation with as little as 50% of the training data, suggesting that 
additional data beyond this point offers minimal gains. However, at reduced training sizes (20% 
and 10%), the CT+LLM model consistently outperformed the CT-only model, highlighting the 
added value of integrating clinical features via LLM in low-data settings. The AUC at 10% 
training size was slightly higher than at 20%, which we attribute to random variability, as subsets 
were selected randomly. 
 

 
 

Fig 21. Effect of training size on internal test performance with data points at 50%, 20%, and 10% 
of training data and its associated AUC. 
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4.3.5 Grad-CAM visualization  
Figure 21 shows Grad-CAM visualizations from three representative patients, overlaid on their CT 
images and dose distributions. In these heatmaps, red indicates areas of high model focus, while 
blue represents low focus. The visualizations reveal distinct attention patterns for the two input 
modalities: the CT-based model predominantly attends to the GTV, outlined in yellow, suggesting 
that morphological features within the tumor region are important for prediction. In contrast, the 
dose-based model places greater emphasis on high-dose regions or hotspots, indicating a possible 
link between predicted toxicity and localized radiation exposure. Despite these general trends, 
attention patterns varied across patients, reflecting the complex and individualized nature of model 
interpretation. These differences highlight the complementary value of CT and dose inputs and 
underscore the need for interpretability tools to better understand model behavior in clinical 
contexts. 
 
 

(a) 

 
 

(b) 

 
 

Fig 22: Grad-CAM visualizations of the image-based models for three representative 
patients: (a) CT-based model and (b) dose-based model. Heatmaps illustrate regions of 

model attention, with red indicating high focus and blue indicating low focus. The yellow 
contour outlines the gross tumor volume (GTV). 
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4.4. Discussion and Conclusion 
 
In this study, we developed a multimodal prediction framework to estimate the risk of RT-induced 
acute esophagitis by integrating pre-RT imaging and clinical text data. To maximize 
representational capacity of the models, we used a pretrained transformer-based model for 
processing imaging inputs and an LLM-based text embedding model to represent relevant 
information from clinical notes. To the best of our knowledge, this is the first application of an 
LLM for aiding toxicity prediction for patients with esophageal cancer. Among the evaluated 
models, the CT + Dose + LLM model achieved the best performance, yielding AUCs of 0.78 on 
internal validation and 0.80 on internal testing, both outperforming image-only baselines and 
highlighting the added value of multi-modal input and clinical context in predictive modeling. 
 
Previous work on acute esophagitis prediction has predominantly focused on patients with lung 
cancer. The methods can be divided into three, which are NTCP models, machine learning, and 
radiomics. Starting with the NTCP models, these models use simple logistic regression with clinical 
and dosimetric variables, Huang et al. achieved an AUC of 0.78 using the mean esophageal dose 
and concurrent chemotherapy as variables56. Similarly, Chen et al. reported a cross validation AUC 
of 0.79 using a multivariable logistic regression58. These models, while interpretable and clinically 
intuitive, are constrained by their reliance on a small number of hand-selected features. Machine 
learning approaches, in contrast, utilises a broader set of input variables. Luna et al. (2017) reported 
an AUC of 0.62 using a machine learning framework60; however, a subsequent study by the same 
group in 2020, which included a larger cohort, failed to identify consistent predictors of esophagitis 
and yielded lower AUCs ranging from 0.46 to 0.5661. These findings highlight the limitation of 
traditional clinical and dosimetric features on building robust predictive models. Lastly, radiomics-
based models have recently gained interest, leveraging high-dimensional imaging features to 
enhance predictive performance compared to the previous methods63,64,72. Existing studies employed 
either radiomics alone or in combination with other modalities. The performance of our proposed 
model is comparable to these radiomics benchmarks, which report AUCs in the range of 0.74 to 
0.8264,73. 
 
Our study provided a comprehensive comparison of predictive models developed using different 
input modalities, highlighting their relative strengths. Among the single modality models (CT 
only, dose only, and text only), the CT-based model demonstrated the highest performance (test 
internal AUC=0.74), followed by the dose-based model (internal test AUC=0.69), with the text-
based model performing the lowest (internal test AUC=0.53). These findings suggest that not all 
modalities contribute equally to prediction accuracy, and imaging features from CT appear to be 
the most informative in this context. Furthermore, when applied to external test dataset with a 
completely different demographic (i.e. Korean cohort), our CT-based model had an AUC of 0.72, 
meaning that the CT model is more generalizable, whereas other modalities failed to generalize. 
Our CT-based model outperformed those reported in previous studies. For example, one study 
reported a test AUC of 0.691 for their best CT-based deep learning model64. One possible reason 
for the improved performance in our work may be the choice of model architecture and the use of 
a pretrained image encoder. Specifically, we employed a Swin Transformer model pretrained on a 
large-scale medical imaging dataset, which likely enabled the model to extract richer and more 
relevant features compared to non-pretrained CNN-based models. This approach proved effective 
even with our relatively small training cohort. However, their dose-based model achieved a higher 
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internal test AUC of 0.76, compared to 0.69 in our dose-only model. This difference may be 
attributed to the variation in input design; Xie et al. used a mask that covered the entire esophagus, 
whereas our model focused only on the region surrounding the GTV. 
 
Through extensive ablation studies, we demonstrated the critical role of concatenation and cross-
attention strategies in multimodal modeling. Our framework incorporated a diverse range of 
modality combinations, including image-to-image pairings such as CT and dose distributions, as 
well as image-to-text integrations combining imaging with clinical information. We found that 
incorporating cross-attention mechanisms improved model performance compared to simple 
concatenation. The cross-attention allowed the model to effectively align and integrate 
complementary features within and across modalities, dynamically weighing their contributions. 
This was particularly beneficial not only for image-to-text fusion but also for image-to-image 
combinations, where capturing complex inter-modal relationships is essential. Without attention-
based alignment, the model’s ability to fully utilize the rich information from each modality was 
limited, restricting predictive accuracy and the overall effectiveness of multimodal fusion. 
 
In addition to the performance improvement observed with the inclusion of the LLM compared to 
the image-only model, another advantage of using the LLM is its reduced dependency on dataset 
size. Our study also explored the impact of training dataset size on deep learning model 
performance in medical imaging. We found that performance gains plateaued at approximately 
50% of the training data, suggesting that adding more data beyond this point yields minimal 
benefits. More notably, the LLM enhanced performance even with smaller datasets (10-20%) than 
the image-only model, indicating that the LLM provides valuable contextual information that 
compensates for the limited imaging data. Given the challenges associated with healthcare data 
collection, optimizing model performance with limited data is highly advantageous, which may 
streamline the model development and enable broader applications. 
 
Understanding data distribution is as important as developing sophisticated models, especially 
ones involving multi-modal input. A rich and diverse representation is essential to ensure model 
robustness and generalization, especially when working with multimodal inputs. While integrating 
text-based clinical information improved performance on internal datasets, the model’s 
effectiveness declined on external datasets. This drop is likely due to substantial differences in 
dose distributions and underlying clinical characteristics between the training and external test 
data, emphasizing the need for more robust data representations to better accommodate such 
variations. 
 
This study has several limitations. First, the dataset used was relatively small, with limited 
variability in clinical language prompts. While our findings provide early evidence supporting the 
feasibility of using LLMs for classification tasks in radiation oncology, more extensive text 
ablation experiments are necessary to better understand the contribution of clinical context. 
Additionally, the current model does not address the issue of domain shift, as LLMs are not 
inherently robust to variations across cohorts. Thus, future studies should include larger and more 
diverse datasets to improve model generalization. To this end, we plan to expand our training data 
with both internal and external sources, enhancing representation and reducing bias. In parallel, we 
will explore subset training strategies to identify the minimal data requirements needed for stable 
performance, with the goal of reducing computational and annotation burdens. Another limitation 
lies in the lack of interpretability: we did not assess the individual contributions of each clinical 
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variable provided to the LLM. Understanding the relative importance of these variables could 
improve transparency and user confidence in AI-driven predictions. Future work will also focus on 
optimizing the integration of LLMs into radiation therapy workflows, including the development 
of automated tools for data summarization, prompt engineering, and streamlined clinical data 
curation.  
 
In conclusion, we developed a novel multimodal framework for predicting acute esophagitis that, 
to our knowledge, is the first to integrate large language models with vision-based architectures for 
this purpose. Our study highlights not only the promising potential of combining these modalities 
but also identifies critical areas for further refinement, including data diversity, model architecture, 
and hyperparameter optimization. Although our initial results are encouraging, more work remains 
to enhance the model’s generalizability and predictive accuracy across varied and heterogeneous 
patient cohorts. Going forward, our goal is to evolve this framework into a robust, interpretable, 
and clinically applicable tool capable of providing reliable pre-treatment toxicity risk assessments 
for patients undergoing thoracic radiotherapy, thereby supporting personalized treatment planning 
and improving patient outcomes. 

  



５２ 

 

5. Conclusion and Future Work 
 
The current study aimed to determine innovative imaging and AI technologies to enhance RT 
workflow across multiple stages and improve patient-specific prediction accuracy, aiming to 
develop a reliable AI-based framework for predicting RT-induced toxicity. Our key aims included 
the following: 
 

1. To develop a deep learning-based auto-segmentation model and assess its clinical 
feasibility for radiotherapy. 

2. To clinically evaluate a novel breath-hold technique and compare its effectiveness with 
conventional methods. 

3. To develop a multimodal model for predicting adverse events by integrating imaging 
features and clinical data using deep learning and LLMs. 

 
In Chapter 2, we proposed a deep learning–based automated segmentation framework to 
streamline treatment planning and reduce interobserver variability in multi-center RTQA. 
Compared to manual contours and conventional atlas-based segmentation (ABAS), the DLBAS 
method demonstrated greater consistency and robustness across most CTVs and normal organs. 
Our study was among the first to highlight DLBAS’s potential in supporting a key step in the RT 
workflow, offering a more accurate and time-saving tool for structure definition that benefits 
downstream planning. 
 
Beyond routine clinical use, we validated the tool’s feasibility in a multi-center trial setting. User 
surveys confirmed both quantitative and qualitative improvements in segmentation consistency, 
time efficiency, and interobserver agreement. These enhancements support not only treatment 
quality and efficiency but also RT education and quality assurance. The improved consistency in 
defining target volumes and organs-at-risk suggests that deep learning models like DLBAS may 
help reduce protocol deviations in clinical trials. 
In chapter 3, we implemented a novel techniques to improve simulation imaging and delivery 
accuracy by addressing motion-related artifacts and patient variability 
 
In Chapter 3, we investigated the clinical feasibility of using CPAP to reduce motion artifacts 
caused by breathing, aiming to improve patient compliance and reduce toxicity compared to the 
conventional breath-hold technique (DIBH). Our study showed that CPAP provides sufficient 
heart-sparing, with sub-centimeter variation across treatment fractions and reproducible 
positioning in VMAT for left-sided breast cancer, along with a high compliance rate. These 
findings support CPAP as a practical and effective option for routine use in left-sided breast cancer 
radiation therapy. Clinically, this has two key implications: first, more reliable breath management 
during pre-treatment imaging enables the acquisition of a more consistent planning CT; second, 
using the same breath-hold technique during treatment helps ensure that the planned dose is 
delivered more accurately. 
 
Finally, in Chapter 4, we developed multi-modal predictive models that integrate imaging and 
clinical data to support personalized, risk-adaptive decision-making. By extensively testing input 



５３ 

 

combinations and employing innovative modeling strategies, we proposed a multi-modal 
framework that leverages the full range of pre-treatment information. Notably, incorporating 
clinical data through an LLM enhanced the performance of image-based models by providing rich 
contextual representation. This approach not only improves patient monitoring but also helps 
address data-dependency challenges by introducing an additional, complementary modality. 
 
Future work will focus on expanding the toxicity prediction framework beyond esophagitis to 
other thoracic toxicities, such as radiation pneumonitis, cardiac toxicity, and fibrosis. Broadening 
the application across different cancer types will enhance clinical relevance. Further, improving 
the robustness and interpretability of large language model–based predictors through domain-
specific fine-tuning will be essential for clinical integration. Exploring adaptive treatment 
strategies based on early toxicity risk, such as dynamic replanning, also presents a promising 
direction.  
 
In conclusion, this thesis lays the foundation for the development of AI-driven tools that can 
improve the safety, precision, and personalization of radiation therapy. By addressing critical 
points in both the planning and delivery stages, our methods contribute to a more efficient RT 
workflow and hold significant potential to improve patient outcomes by enhancing the 
management of RT-induced toxicity. This work not only advances the technological integration of 
AI in clinical oncology but also sets the stage for more personalized, adaptive treatment strategies 
that could benefit a wide range of patients undergoing radiation therapy.  
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Abstract in Korean 

방사선 치료 독성 예측을 위한 대규모 언어 및 영상 기반 통합 

모델 

 

방사선 치료(RT)는 항암화학요법 및 수술과 더불어 흉부암 환자에게 중요한 

치료 방식이다. RT는 종양을 정밀하게 표적하는 것을 목표로 하지만, 인접한 정상 

조직이 상당한 방사선량을 받을 수 있으며, 그 결과 식도염, 심장 독성, 폐렴 등 

방사선 유발 독성이 발생할 수 있다. 이러한 독성은 환자의 삶의 질에 악영향을 줄 

수 있으며, 장기 생존 환자의 수가 증가함에 따라 치료 관련 독성을 줄이는 것이 

방사선 치료 계획의 핵심 과제로 부각되고 있다. 

이러한 독성 관리는 방사선 치료 계획의 여러 단계에서 고려될 수 있다. 시뮬레이션 

단계에서는 치료 계획의 기반이 되는 CT 영상이 획득된다. 그러나 호흡으로 인한 

움직임은 영상에 아티팩트를 유발하고, 계획된 선량과 실제 전달된 선량 간의 차이를 

초래할 수 있다. 이를 줄이기 위해 숨참기 기법이 활용되지만, 기존의 표준 방식은 

환자가 오랜 시간 숨을 참아야 하므로 일부 환자에게 부담이 된다. 치료 계획 

단계에서는 위험 장기(OAR) 및 종양의 정확한 윤곽선 구획이 필수적이나, 여전히 

주요 도전 과제로 남아 있다. 수동으로 수행되는 윤곽선 구획은 많은 시간이 

소요되고 관찰자 간 편차가 커 임상 워크플로우의 병목으로 작용할 수 있다. 

마지막으로, 치료 계획과 실제 치료 사이의 기간에는 환자 맞춤형 독성 예측 모델을 

도입함으로써 임상의가 잠재적인 부작용을 보다 잘 예측하고 대응할 수 있는 

의사결정 지원이 가능하다. 그러나 방사선 치료에 대한 환자의 반응이 개별적으로 

다르기 때문에 예측 모델을 구축하는 데 어려움이 존재한다. 

따라서 본 논문의 목적은 방사선 치료로 유발되는 독성 관리와 관련된 주요 문제를 

해결하기 위한 새로운 방법을 개발하는 데 있다. 본 논문은 세 개의 장으로 구성되며, 

각 장은 방사선 치료 과정 내 독성 관리를 향상시키기 위한 독립적인 연구 성과를 

제시한다. 첫 번째 장에서는 지속적 양압 호흡법(CPAP)이라는 새로운 숨참기 기법의 

임상 적용을 다룬다. 해당 기법은 방사선 치료를 받은 유방암 환자를 대상으로 

적용되었으며, 기존의 자유호흡 및 깊은 흡기 숨참기 방식과 기하학적, 선량학적으로 

비교 분석되었다. 

두 번째 장에서는 딥러닝 기반의 자동 분할 알고리즘이 방사선 치료 계획을 

효율화하는 도구로서의 역할을 탐색한다. 본 알고리즘은 유방암 환자의 후향적 

데이터를 기반으로 적용되었으며, 생성된 분할 결과의 기하학적 정확도를 평가하였다. 

또한 기존의 아틀라스 기반 분할 방식과 비교하여 정확성과 효율성의 향상 정도를 

분석하였다. 



６２ 

 

마지막 장에서는 식도암 환자에서 방사선 치료로 유발되는 식도염을 예측하는 다중 

모달 예측 모델의 개발을 다룬다. 본 장에서는 영상 정보와 임상 정보를 통합하는 

새로운 접근 방식을 도입하였다. 의료 영상으로부터 특징을 추출하기 위해 

사전학습된 이미지 인코더를 사용하였으며, 임상 정보는 대형 언어 모델을 통해 

반영하였다. 이는 기존의 영상 기반 예측 모델에서 벗어나 다중 모달 기반의 통합 

예측 모델을 제안하는 것으로, 식도염 예측의 정확도와 임상적 활용 가능성을 

높이고자 한다. 해당 프레임워크는 환자 맞춤 치료를 위한 보다 포괄적인 도구로 

기능할 수 있다. 

_______________________________________________________________________________ 

핵심되는 말 : 딥러닝, 대규모 언어 모델, 멀티모달, 예측모델 


