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ABSTRACT

High-throughput Functional Screening of ATM Gene with Saturation
Genome Editing Using Prime Editing

ATM, a large gene with 63 exons, plays a critical role in the DNA damage response, and its loss-of-
function increases cancer risk and affects the prognosis of cancer patients. However, interpreting the
functional impact of ATM variants remains challenging, because most are variants of uncertain
significance (VUSs). Here, we used prime editing and deep learning to assess the functions of all
27,513 possible single nucleotide variants (SNVs) in ATM. By leveraging haploidization and
olaparib, a PARP inhibitor, we experimentally evaluated 23,092 SNVs, thereby identifying critical
residues. Using cancer genetics data and UK Biobank data, we found that our results are useful for
estimating both cancer risk and prognosis. We also developed a deep learning model, DeepATM,
which predicted the functional effects of the remaining 4,421 SNVs with unprecedentedly high
accuracy. This complete evaluation of ATM variants supports precision medicine and provides a

framework for addressing VUSs in other genes.

Key words : VUS, prime editing, functional screening, saturation genome editing
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1. INTRODUCTION

1.1. The hurdles of clinical genetics

The rapid advancement of massively parallel sequencing technologies has revolutionized genetic
diagnosis for hereditary diseases and cancers, significantly influencing clinical practice. However,
a major challenge remains: the growing number of variants of uncertain significance (VUSs), which
complicates genetic interpretation. Among different variant types, missense mutations are
particularly difficult to assess functionally without direct experimental validation, unlike
synonymous, nonsense, and indel variants. Additionally, the number of observed variants in a gene
tends to increase with gene length, making large genes like ATM and BRCAI1/2 especially
challenging to interpret at a saturation level [1]. Notably, ATM variants have frequently been
classified inconsistently across different clinical laboratories [2].

1.2. Significance of ATM gene

The ATM (Ataxia-telangiectasia mutated) gene encodes a key regulator of the DNA damage
response and serves as a tumor suppressor, ensuring cellular stability under stress conditions [3].
Biallelic loss-of-function in ATM result in ataxia-telangiectasia (MIM# 208900), a recessive
disorder characterized by progressive cerebellar ataxia, immune dysfunction, insulin resistance,
infertility, increased sensitivity to ionizing radiation, and a heightened risk of malignancies [4, 5].
Furthermore, heterozygous pathogenic 4 TM variants have been linked to an increased risk of various
cancers, including breast, colorectal, pancreatic, and prostate cancers [6-10]. As a result, ATM is
included in most hereditary cancer gene panels. The NCCN Clinical Practice Guidelines in
Oncology (NCCN Guidelines®) advise genetic panel testing that includes ATM  for individuals at
high risk, along with regular cancer screenings for carriers of pathogenic ATM variants [11].
Consequently, global research efforts are focused on clarifying ATM’s role in cancer and
standardizing variant classification [12-14]. Despite these initiatives, interpreting ATM variants
remains a significant challenge.

In addition to its role in cancer predisposition, ATM is an important target for cancer therapies,
with loss of function serving as a biomarker for treatment selection. For instance, olaparib, a poly
ADP-ribose polymerase (PARP) inhibitor, is approved for metastatic castration-resistant prostate
cancer patients with loss-of-function mutations in homologous recombination repair genes,
including ATM [15-17]. Therefore, systematically assessing the functional consequences of all
possible single nucleotide variants (SNVs) in ATM could improve treatment strategies for affected
patients. Additionally, prognosis varies among cancer patients with 47M loss-of-function mutations
depending on cancer type—those with breast and hematologic malignancies generally have worse
outcomes, whereas bladder cancer patients may experience better prognoses [18-20]. Thus,
comprehensive functional evaluation of 47M variants would be highly valuable for predicting
cancer risk, diagnosing ataxia-telangiectasia, informing cancer treatment strategies, and estimating
patient prognosis.

1.3. Content and significance of this study



In this study, we employed prime editing [21] and deep learning to systematically analyze the
functional impact of ATM variants across the entire coding sequence, spanning 62 exons. Using
prime editing, we generated and analyzed 23,092 ATM SNVs, covering 84% of the 27,513
theoretically possible SNVs. Our findings revealed that ATM haploidization—caused by a large
deletion in one allele—along with the selective pressure of olaparib to deplete cells harboring loss-
of-function ATM variants in the remaining allele, significantly improved signal-to-noise ratios in
high-throughput functional assessments. Furthermore, we identified a specific region in ATM that is
particularly intolerant to missense mutations, located within the kinase domain responsible for
interactions with p53. Most notably, by reevaluating previously published clinical datasets,
including UK Biobank (UKB) data, using our functional findings, we demonstrated that our variant
assessments enhance predictions of cancer risk and patient prognosis. Additionally, we developed
DeepATM, a deep learning model that predicts A TM variant functionality with exceptional accuracy.
By integrating DeepATM with our experimental data, we determined the functional effects of all
27,513 potential ATM SNVs. This comprehensive approach not only provides critical insights into
ATM but also offers a scalable framework for evaluating variants in other genes, further advancing
precision medicine for individuals with A TM mutations.



2. MATERIALS AND METHODS

2.1. General cell culture conditions

HEK293T (ATCC) cells and all HCT116-derived cell lines were maintained in high-glucose DMEM
(Sigma-Aldrich, D6429) supplemented with 10% fetal bovine serum (RDT) and 1%
penicillin/streptomycin (Gibco) at 37°C in a 5% CO, atmosphere. Antibiotics were excluded during
transfection. Cells were passaged every three to four days.

2.2. Generation of the ATM-haploid HCT116 cell line

To create ATM-haploid cells, wild-type HCT116 cells were plated at a density of 4 x 10° cells in a
100-mm dish 24 hours before transfection. The transfection utilized PEI Prime™ linear
polyethylenimine (Sigma-Aldrich) with a plasmid cocktail that included a SpCas9-encoding plasmid
(pPRGEN-Cas9-CMV/T7-Puro-RFP; sourced from ToolGen, Republic of Korea), and two sgRNA-
encoding plasmids (pRG2; Addgene #104174) targeting approximately 30 bp upstream of ATM exon
1 and 80 bp downstream of ATM exon 63. Additionally, a single-stranded oligodeoxynucleotide
(ssODN; synthesized by Bionics, Republic of Korea) was included to facilitate the formation of
large deletions spanning 146,380 bp. The standard transfection protocol involved mixing 60 pL of
PEI with 500 pL of Opti-MEM (Gibco) and combining this with 20 pg of the DNA mixture in a
3.5:1:1 mass ratio for SpCas9, sgRNA1, and sgRNA2, respectively, in another 500 uL of Opti-MEM,
resulting in a final volume of 1 mL. After a 15-minute incubation at room temperature, the mixture
was added to the HCT116 cells. The sequences for sgRNA targets, with the PAM shown in
parentheses, and the ssODN were:

Large deletion sgRNAT1 (5’-ATM): 5’-AGGGCGGGGAGGACGACGA(GGQG)

Large deletion sgRNA2 (3’-ATM): 5’-AAGGAGAAAGCAGTGAGCA(AGG)

ssODN:

5’-TTCCGTCCTCAGACTTGGAGGGGCGGGGATGAGGAGGGCGGGGAGGACGA
GCAAGGCAGGCATAGTCTGCCTATATAAAGCTCCCAATCTGAGGAGGATA-3’

Following transfection, fresh culture medium was provided after 24 hours, and puromycin (1
pg/mL, Gibco) was added at 48 hours for selection, which continued for two days. After selection,
cells were cultured in puromycin-free medium for expansion. Between days 7 and 10 post-
transfection, single cells were sorted by flow cytometry into 96-well plates. After two weeks,
individual clones were expanded in duplicate, one set for growth and the other for PCR verification
of the large deletion. Genomic DNA (gDNA) was extracted using a lysis buffer (50 mM Tris-HCI,
1 mM EDTA, 0.05% SDS, 0.2 mg/mL Proteinase K from Enzynomics, Republic of Korea) at 56°C
for 1 hour, followed by enzyme inactivation at 80°C for 15 minutes. Clones with ATM deletions
were identified by PCR using primers flanking the cut sites (FP1 and RP3 in Figure 3A; Table 1),
resulting in a ~300 bp product in the presence of the deletion. PCR conditions were: 95°C for 3
minutes; 35 cycles of 95°C for 30 seconds, 58°C for 30 seconds, and 72°C for 30 seconds; with a
final extension at 72°C for 3 minutes. PCR products were analyzed on a 2% agarose gel. Clones
with one copy of ATM deleted and lacking the ¢.3380C>T variant in the other copy were confirmed
by sequencing exon 23. Final validation of 47M-haploid clones involved deep sequencing of four
regions: (i) the newly formed deletion junction, (ii) the upstream sgRNA1 region, (iii) the



downstream sgRNA?2 region, and (iv) the ¢.3380 region in ATM. The PCR amplification conditions
for these regions matched those described above, with annealing at 54°C for regions (ii), (iii), and

(iv).

2.3. Generation of ATM-knockout HCT116 cell lines

The ATM semi-KO HCT116 cell line was created using a transfection protocol similar to that used
for generating ATM-haploid cells. Wild-type HCT116 cells were transfected with a plasmid
encoding SpCas9 and two sgRNA-expressing plasmids in a 3.5:1:1 mass ratio. One of the sgRNA
plasmids contained a standard 20 bp guide RNA designed to target the ¢.3380T allele, introducing a
frameshift mutation in that allele. The second plasmid carried a truncated 15 bp catalytically inactive
dead-guide RNA (dgRNA), specifically targeting the ¢.3380C allele, preventing its modification by
SpCas9.

To create the ATM-haploid-KO cell line, ATM-haploid HCT116 cells were transfected using
the same approach. A plasmid encoding SpCas9 and an sgRNA-expressing plasmid were co-
transfected in a 3.5:1 mass ratio. The sgRNA targeted the ¢.3380C allele to introduce a frameshift
mutation. Following transfection, deep sequencing was used to validate the modifications in both
cell lines.

ATM-c.3380C-dgRNA: 5’-CTTGAAAGCTCAGGA(AGG)
ATM-c.3380T-sgRNA: 5’~-CATACTTGAAAGTTCAGGA(AGG)
ATM-c.3380C-sgRNA: 5’-CATACTTGAAAGCTCAGGA(AGG)

2.4. Generation of prime editor-expressing cell lines

To introduce PE2max into ATM semi-KO and ATM-haploid HCT116 cells, lentiviral particles
containing pLenti-PE2max-P2A-BSD (Addgene #191102) were produced using the standard PEI
transfection protocol. Lentivirus was generated by co-transfecting HEK293T cells in four 150-mm
culture dishes with psPAX2 (Addgene #12260), pMD2.G (Addgene #12259), and pLenti-PE2max
at a mass ratio of 3:1:4. The culture medium was refreshed 24 hours after transfection. After 72
hours post-transfection, the viral supernatant was collected, filtered through a 0.45 um bottle-top
filter, and concentrated using Vivaspin Turbo 15 (Sartorius) to obtain approximately 2 mL of
lentiviral concentrate (Lenti-Conc). A small fraction (2 mL) of the initial supernatant was set aside
for titration (Lenti-Titer).

For transduction, cells were plated at a density of 5 x 10° cells per well in a 6-well plate 24
hours prior to infection. Lentiviral particles (Lenti-Conc, 2 mL) and various volumes of Lenti-Titer
(50-1,000 uL) were combined with polybrene (Sigma-Aldrich) in a total of 4 mL of medium,
maintaining a final polybrene concentration of 8 pg/mL. Following a 24-hour incubation, the
medium was replaced with fresh culture medium, and selection with 8 pg/mL blasticidin (Invivogen)
was initiated 48 hours after transduction. Cells were maintained under selection for at least two
weeks, with passaging every three to four days. The lentiviral titer was determined after confirming
that all control cells (subjected to blasticidin selection without transduction) had died. To further
enhance prime editing efficiency, transduction and selection were repeated in cells that had already
integrated the PE2max cassettes.



2.5. Construction of plasmids expressing sgRNAs

The pRG2 vector was digested with Bsal-HF®v2 (NEB) for four hours and subsequently purified
following electrophoresis on a 2% agarose gel. The gel-extracted DNA fragment was isolated using
the MEGAquick-Spin Total Fragment DNA Purification Kit (iNtRON, Republic of Korea).
Oliogonucleotides containing spacer sequences (5’-G+N19 or N15) with Bsal overhangs were
designed (synthesized by Bionics, Republic of Korea). These oligonucleotide strands were
phosphorylated using T4 Polynucleotide Kinase (Enzynomics) according to the manufacturer’s
instructions. The prepared linearized vector was then ligated with the inserts using T4 DNA Ligase
(NEB) following the manufacturer’s protocol.

2.6. Preparation of epegRNA libraries and electroporation

To perform saturation editing of all ATM exonic coding sequences—including splicing regions
within 5 bp of exon-intron boundaries—epegRNA libraries were generated in eight subsets, each
covering 5 to 10 exons. The pooled oligonucleotides required for library construction were
synthesized using array synthesis (Twist Bioscience). The synthesized oligonucleotides, ranging
from 268 to 276 bp in length depending on exon size, incorporated the following elements in
common:

- A 17 bp homology sequence at the 3’ terminus of the human U6 promoter.

- A 19 bp guide RNA (gRNA) sequence with a ‘G’ at the 5” end.

- An optimized SpCas9 sgRNA scaffold for enhanced performance.

- A reverse transcriptase template (RTT) and primer binding site (PBS) designed for precise genome
editing.

- An 8 bp linker sequence generated using pegLIT tools to enhance prime editing.

- A 37 bp tevopreQ1 sequence followed by a 6 bp poly-T sequence.

- An 18 bp barcode with a random buffer sequence to equalize the overall oligonucleotide length.

- A 19 bp sequence for exon-specific amplification within the subset library.

For each subset, 4.8 ng of oligonucleotides were amplified via PCR using Q5 High-Fidelity
DNA Polymerase (NEB). A common forward primer containing a 38 bp human U6 promoter
overhang and a 17 bp homology sequence was used, along with a reverse primer that included the
19 bp exon-specific sequence and a 37 bp 3’ overhang sequence (Table 2). Each exon library was
amplified across six PCR reactions (50 puL per reaction) containing 800 pg of template DNA, 25
pmol of each primer, and 1 uL of Q5 polymerase. The PCR cycling conditions were as follows:

- Initial denaturation: 98°C for 3 minutes
- 17 cycles of:

98°C for 30 seconds

61°C for 30 seconds

72°C for 2 minutes
- Final extension: 72°C for 3 minutes

The PCR products were purified, and correctly sized amplicons were extracted using 2%
agarose gel electrophoresis. Meanwhile, pLenti-gRNA-Puro (Addgene #84752) was digested with
BsmBI (Enzynomics) at 55°C for 6 hours, followed by purification via gel electrophoresis.

To assemble the epegRNA libraries, the amplified oligonucleotide pool was combined with the
linearized pLenti-gRNA-Puro plasmid using NEBuilder® HiFi DNA Assembly Master Mix (NEB).
The assembled constructs were concentrated through isopropanol precipitation with GlycoBlue™



Coprecipitant (Invitrogen) and subsequently electroporated into EC100 electrocompetent cells
(Lucigen) using a MicroPulser (Bio-Rad). After a one-hour recovery in SOC medium (Welgene),
transformed cells were plated on Luria-Bertani agar square plates (Dulbecco) supplemented with 75
pg/mL carbenicillin (Sigma-Aldrich) and incubated for 12 to 16 hours. Plasmid DNA was extracted
from the resulting bacterial colonies using the Nucleobond Xtra Midi EF Kit (Macherey-Nagel).

2.7. Lentivirus production of epegRNA libraries

HEK293T cells were plated in 150-mm culture dishes at a density of 10 x 10° cells per dish. After
incubating for 18 to 24 hours, transfection was carried out following our standard PEI protocol. In
brief, 15 pg of psPAX2, 5 pg of pMD2.G, and 20 ug of plasmids containing the exon-specific
libraries were combined with 120 pL of PEI in a total volume of 2 mL Opti-MEM. Following a 15-
minute incubation, the mixture was added to the cells. Between 20 and 24 hours post-transfection,
the culture medium was replaced with 30 mL of fresh, antibiotic-free medium. The lentivirus-
containing supernatant was then collected 72 hours after transfection. To remove cellular debris, the
supernatant was centrifuged at approximately 350 g for 3 minutes, passed through a 0.45-um
Sartolab RF 50 PES vacuum filter (Sartorius), and stored in aliquots at -80°C.

2.8. Lentiviral transduction

A modified colony formation titration assay was used to measure the titer of lentivirus aliquots for
each exon-specific library. To ensure that each cell incorporated only a single copy of the epegRNA
cassette into its genome, lentivirus transduction was carried out at a multiplicity of infection (MOI)
below 1, allowing for a single intended edit per cell. PE2max-expressing cells were plated in
multiple 150-mm culture dishes at a density of 4 x 10 cells per dish, 24 hours prior to transduction.
Lentivirus aliquots were diluted in a series of concentrations and treated with polybrene (Sigma-
Aldrich) at 8 pg/mL before being added to the PE2max-expressing cells. The culture medium was
replaced 24 hours post-transduction, and selection of transduced cells began 48 hours later using
puromycin at a concentration of 1 pg/mL. The experiment included both positive controls (PEmax-
expressing HCT116 cells not transduced with epegRNA libraries and untreated with puromycin) and
negative controls (puromycin-treated cells without transduction). Once all negative control cells had
died, the appropriate volume of lentivirus aliquot needed to maintain an MOI below 1 was
determined by calculating the percentage of viable cells compared to the total cell count in the mock-
treated group.

2.9. High-throughput functional assay for ATM variants

Each exon-specific library was transduced and analyzed through separate experiments, with each
experiment targeting a single exon of the ATM gene using a distinct library of epegRNAs. In total,
we performed 62 independent experiments, each focusing on one exon of ATM. For the pooled
experiments, we plated 1.6 x 107 to 2.4 x 107 cells in several 150-mm culture dishes at a density of
4 x 10° cells per dish to ensure adequate coverage of the library (typically more than 5,000 x the
size of each library). Forty-eight hours post-transduction, the cells were cultured for an additional
11 days in the presence of 1 pg/mL puromycin to allow for prime editing. On the 13th day after
transduction (day 0), half of the cell population was harvested for gDNA extraction, while the
remaining cells were reseeded and divided into two groups: one treated with 800 nM olaparib and



the other with DMSO as a control. Equal amounts of olaparib (Selleckchem) and DMSO (Sigma-
Aldrich) were applied to each plate. After an additional 10 days of culture, all remaining cells were
harvested for gDNA extraction. Olaparib was dissolved in DMSO and stored in aliquots at -80°C.
Additionally, non-transduced cells were cultured, collected, and used as unedited samples to control
for PCR or sequencing errors for each exon.

2.10. Genomic DNA extraction and deep sequencing

Genomic DNA was extracted using the Wizard® Genomic DNA Purification Kit (Promega),
following the instructions provided by the manufacturer. The gDNA was then amplified through two
rounds of PCR. In the first round, 80 to 160 pg of purified gDNA (providing over 5,000x coverage
of each library, assuming 6.6 pg of gDNA per 10° cells) was amplified using exon-specific primers
with PrimeSTAR® GXL polymerase (Takara Bio) (Table 3). For each exon, the PCR conditions,
including the annealing temperature and cycle number, were optimized within the ranges of 52 to
60°C and 29 to 30 cycles. The PCR reactions, with a total volume of 50 puL, contained 25 pmol of
each primer and 4 pug of gDNA, and were cycled as follows: an initial denaturation at 98°C for 3
minutes; 29-30 cycles of 98°C for 30 seconds, 52-60°C for 30 seconds, and 68°C for 1 minute;
followed by a final extension at 68°C for 3 minutes. After amplification, the PCR products were
pooled and purified using the QIAquick PCR Purification Kit (Qiagen) according to the
manufacturer’s protocol. The amplicons were then purified using 2% agarose gel electrophoresis
and gel extraction. For the indexing PCR, 40 to 60 ng of purified PCR product from the first round
was used with Pfu polymerase (Solgent) and Illumina indexing primers, following the cycling
conditions: 95°C for 3 minutes; 8 cycles of 95°C for 30 seconds, 57°C for 30 seconds, and 72°C for
1 minute; followed by a final extension at 72°C for 3 minutes. The products from the second PCR
round were also purified with the same kit. Finally, the amplicons were sequenced on a NovaSeq
6000 (Illumina).

2.11. Design of the epegRNA libraries

Using the human reference genome (hg38) and whole exome sequencing data from 47M-haploid
cells, we developed libraries designed to introduce all possible single nucleotide variants (SNVs)
within the ATM coding region. Additionally, we included a synonymous substitution near the target
editing site to help distinguish between PCR/sequencing errors and true SNV edits. To create highly
efficient saturation prime editing libraries, we employed the DeepPrime-FT model, which predicts
the efficiency of PE2max combined with epegRNA and an optimized scaffold in HEK293T cells, to
calculate DeepPrime scores for potential epegRNAs that could induce SNVs. The length of the RTT
was limited to 40 bp, while the PBS length was restricted to 17 bp. For regions with rare target NGG
PAM sites, we chose NGA or NAG PAMs instead, taking advantage of the prime editor's ability to
recognize non-canonical PAMs. To ensure precise editing at the intended site, we excluded
epegRNAs with a right homology arm (RHA) shorter than 4 bp. We selected the three top-scoring
epegRNAs for each SNV edit, ensuring that at least two spacers were included. For SNV edits with
fewer than three epegRNAs linked to an NGG PAM, the highest-scoring epegRNAs targeting NGA
or NAG PAMs were used to achieve three epegRNAs.

The position for the additional synonymous substitution edit was determined based on the
following criteria: (i) it must be located in a different codon than the intended edit, (ii) preference
was given to substitutions within exonic regions, excluding areas within 2 nucleotides of the exon



boundary or within 5 nucleotides of the exon-intron or intron-exon junctions, as these could affect
splicing, (iii) substitutions that disrupt the PAM sequence (GG) were prioritized, (iv) when PAM
disruption was not feasible, substitutions in the left homology arm closest to the PAM site were
favored, and (v) priority was given to substitutions in the RHA nearest to the intended edit.

2.12. Individual functional evaluation of single variants

The epegRNA sequences with the highest DeepPrime scores were designed to induce SNVs that
produce the intended edit, without introducing any concurrent synonymous mutations. These
sequences consisted of three annealed components: (i) a spacer sequence with overhangs for cloning,
(ii) an optimized SpCas9 sgRNA scaffold sequence with overhangs, and (iii) an annealed epegRNA
RTT-PBS with poly-T sequences and overhangs. The annealed sequence was then cloned into a
BsmBI-linearized pLenti-crRNA-Puro vector.

ATM-haploid cells were transduced with lentivirus carrying the epegRNA sequences. Two days
after transduction, the medium was replaced with fresh puromycin-containing medium, and the cells
were cultured for an additional seven days to allow for editing. The transduced cells were seeded
into 6-well plates at a density of 2.0 x 10° cells per well, with each well treated with either DMSO
or olaparib at a concentration of 800 nM, similar to the conditions used in the high-throughput assay.
Cells were incubated until they reached 80% confluence. Genomic DNA was collected for deep
sequencing at two or more time points during cell passaging, and the relative fold change of the
SNVs was calculated by comparing the data to Day 0.

2.13. High-throughput functional assay for BRCA1 variants

The epegRNA libraries targeting BRCA1 exons 4 and 19, as outlined in a prior study [22], were
employed in the experiments. All procedures, including preparations and assays conducted in the
ATM-haploid cell line, were carried out using the same approach as for the ATM exons.

2.14. Off-target effect analysis

DNA sequences at both the on-target and possible off-target locations were analyzed using deep
sequencing in two clones with non-functional variants. These variants were created using the
epegRNAs utilized in the high-throughput functional assessments of the SNVs. To locate potential
off-target sites for the epegRNAs, we used Cas-OFFinder [23], allowing for up to two mismatches
or one mismatch combined with either an insertion or deletion in the guide sequence relative to the
target sequence. gDNA was amplified with custom primers specific to the potential off-target sites
(Table 4), followed by deep sequencing.

2.15. Western blots

To evaluate ATM protein expression and the phosphorylation levels of ATM and CHK?2, 4 million
cells were plated in 100-mm dishes. The next day, the cells were treated with 3 uM etoposide
(Selleckchem) for 1 hour, then immediately collected using scrapers. Protein extraction was
performed using PRO-PREP™ Protein Extraction Solution (iNtRON) with added phosphatase
inhibitors (1 mM Na3VO4 and 1 mM NaF), and protein concentration was determined using the



Bio-Rad Protein Assay Dye Reagent Concentrate (Bio-Rad). A total of 20 pg of protein was loaded
into each well of a 6-13% PAGE gel for electrophoresis. After electrophoresis, proteins were
transferred to a nitrocellulose membrane (Cytiva). The membrane was cut into strips, each targeting
a specific protein. To block non-specific binding, membranes were incubated for 1 hour with 3%
bovine serum albumin (GenDEPOT) in Tris-buffered saline with 0.1% Tween-20 (TBS-T). The
membranes were incubated overnight at 4°C with the primary antibody (diluted 1:1,000 in the
blocking solution), followed by washing and a 1-hour incubation at room temperature with the
peroxidase-conjugated secondary antibody (diluted 1:2,000 in 0.1% TBS-T). The target protein
bands were detected using an ECL detection system (Cytiva) and imaged with the Amersham Imager
600 (Cytiva). Image processing was done with ImageJ software, version 1.53 h (National Institutes
of Health).

2.16. Raw sequencing data filtering and analysis

To identify SNVs in deep sequencing data from cells transduced with libraries targeting exon 2
through exon 63, an SNV reference sequence sheet was created. This reference sheet, based on the
NM _000051.4 transcript, was derived from the coding sequence and included 5 nucleotides of
adjacent intronic sequence. The sheet contained only the intended SNV and the additional
synonymous variant, with no mismatches. Processed reads from exon-targeted deep sequencing
were aligned to these SNV reference sequences, and read counts were recorded when the reads
perfectly matched the SNV reference sequence. Reads from unedited wild-type cells were also
recorded if they perfectly matched the reference transcript sequence.

To differentiate true prime-edited reads from errors introduced during sequencing or library
preparation, we calculated the odds ratio (OR) and P-value using Fisher’s exact test, comparing
sequencing reads from Day 0 (D0) with those from unedited cells, as follows:

OR =
(SNV read count at DO + 1)/(Wild — type read count at DO + 1)

(SNV read count in unedited cells + 1)/(Wild — type read count in unedited cells + 1)

For each exon library experiment, true-edited reads were identified based on an OR of = 3
and a false discovery rate (FDR) of < 0.05, with multiple testing correction performed using the
Benjamini-Hochberg method.

2.17. Calculation of the function score

We calculated the log,-fold change (LFC) for each SNV by comparing allele frequencies at Day 10
(D10) with those at Day 0 (DO0). Given that editing efficiency can vary depending on sequence
context and positional biases, leading to variable editing from DO through D10, we standardized the
LFC of each SNV using the LFCs of synonymous SNVs, which were assumed to have a neutral
LFC due to their lack of amino acid changes. The regressed LFC for synonymous SNVs at each
position within an exon was obtained through LOWESS (Locally Weighted Scatterplot Smoothing)
regression. LFC standardization involved subtracting the regressed LFC of synonymous SNVs at
each position and dividing by the interquartile range of the synonymous SNV LFCs within each
exon. This process allowed for the generation of function scores, enabling direct comparisons
between exons.

After standardization, we calculated the weighted average of the standardized LFC for each



SNV across different co-occurring synonymous mutations (internal replicates), accounting for
statistical confidence and sequencing read depth.

Weighted LFC =
Y. allele frequency at DO X LFC of each (SNV+additional synonymous mutation)

Y. allele frequency of each (SNV+additional synonymous mutation) at DO

The function score was calculated by averaging the weighted LFCs across biological replicates.
To determine the function score for a specific amino acid substitution, we averaged the function
scores of all SNVs that induce the same amino acid change.

Variants were classified into three functional categories: ‘Non-functional’, ‘Intermediate’ (both
categories also referred to as depleting variants), and ‘Functional’ (variants with stable frequency).
The cutoff values for each category were set at -1.360 (the 5th percentile of the function score for
synonymous variants) and -0.912 (Youden’s index used for classifying nonsense vs. synonymous
variants).

To support real-world variant interpretation, we included a column in the final datasheet
(https://github.com/Labmed-Lee/Lee et al) indicating the confidence level of an SNV's functional
classification based on its frequency at D0. The confidence levels are defined as follows: high (SNV
frequency at DO = 0.001%), medium-high (0.0001% — 0.001%), and medium (< 0.0001%).
Variants with a medium confidence level may require additional context, such as family history or
de novo status, for more accurate interpretation.

2.18. Visualization of protein structure

To visualize the function scores in relation to protein structure, we calculated the average function
scores of missense SNVs at each residue and mapped these scores to the ATM protein structure
(PDB: 80XO, 7SID) using PyMol v2.5.5.

2.19. ClinVar database and population sequencing data analysis

ATM variant entries with at least a one-star rating in ClinVar [24] were downloaded on 9 April 2024.
Variants classified as ‘pathogenic/likely pathogenic’ were labeled as ‘likely pathogenic,” while those
classified as ‘benign/likely benign’ were labeled as ‘likely benign.’ Variants not reported in ClinVar
were labeled as ‘uncertain significance.’

Tumor sequencing data from the AACR GENIE Cohort v16.0 [25] was obtained through
cBioPortal on 21 September 2024. To calculate the odds ratio of variant occurrence in tumors, allele
counts from gnomAD v.3.1.2 (non-cancer population data) were used as the control set [26].

2.20. Comparisons between computational predictions and function

scores

Computational prediction scores (SIFT, REVEL, CADD, ESMI1b, EVE, AlphaMissense) were
obtained from dbNSFP v.4.8 [27, 28]. The BoostDM score was calculated using the ‘Prostate
Adenocarcinoma’ model [29]. For score comparisons, only variants for which all metrics and
function scores were available were included.
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2.21. Survival analysis

Genomic and clinical data from patients with chronic lymphocytic leukemia and bladder cancer
were obtained through cBioPortal [30, 31]. Participants were grouped according to the functional
classifications of their ATM variants. Kaplan-Meier survival curves were generated using the R
packages 'survminer' and 'survival'. Log-rank tests were conducted to compare survival curves for
patients with different ATM carrier statuses.

2.22. UKB data analysis

Whole-exome sequencing data from 424,909 participants were stored as population-level VCF files
aligned to GRCh38 and accessed via the UKB research analysis platform. We identified participants
with variants in the ATM coding region, including 5 nucleotides adjacent to exon-intron junctions,
excluding those with indel variants. Participants were categorized into three groups (non-functional,
intermediate, and functional) based on the function score or eDA score. The intact ATM group was
defined as the absence of ATM variants in this region.

To investigate the relationship between cancer susceptibility phenotypes and ATM variants, we
performed Cox multivariate regression, adjusting for sex and baseline age, and generated Kaplan-
Meier survival curves. Cancer diagnosis information was retrieved from cancer registry data. The
time from enrollment to cancer diagnosis was simplified into years, and participants’ ages at the time
of diagnosis were used to analyze the lifelong risk of cancer incidence.

Phenotypic variables, with corresponding ICD10 codes, included: all cancers combined; breast
cancer (C50); oropharyngeal (C00-C14); esophago-gastric (C14-C15); small intestine (C17);
colorectal (C18-C20); anal (C21); pancreato-biliary (C24-C25); bronchopulmonary (C34);
melanoma (C43); other malignancy of skin (C44); cervix (C53); utero-ovarian (C54-C56); prostate
(C61); testicular (C62); uretero-renal (C64-C66); bladder (C67); brain (C71); thyroid (C73);
Hodgkin’s disease (C81); Non-Hodgkin lymphoma (C82-C85); plasma cell neoplasm (C90);
lymphoid leukemia (C91); myeloid leukemia (C92); melanoma in situ (D03); carcinoma in situ,
breast (D05); benign neoplasm (D10-D36).

For regression models incorporating computational scores (AlphaMissense, CADD, REVEL,
and EVE) and our function or eDA scores, we adjusted for age at enrollment and sex. Given the
different output ranges of the computational tools, we normalized the values to the range [0,1] using
the ‘rescale’ function in R.

2.23. Deep learning dataset and feature engineering

To predict the functional effects of unevaluated SNVs, we developed DeepATM, a deep learning
model trained on experimentally determined function scores of ATM variants from this study, along
with mutation information and 16 scores derived from various tools, including SIFT [32], FATHMM
[33], MutationTaster [34], LRT [35], DANN [36], PolyPhen-2 HVAR [37], PROVEAN [38],
REVEL [39], CADD [40], phyloP100, GERP [41], ESM1b [42], EVE [43], AlphaMissense [44],
BoostDM [29], and SpliceAl [45]. These features were used as additional inputs for model training
and evaluation.

The test dataset consisted of all missense variants classified as pathogenic, likely pathogenic,
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benign, or likely benign with a one-star rating or higher in ClinVar (n = 116), irrespective of whether
they had been experimentally evaluated. The training dataset was constructed by excluding all
evaluated variants that shared amino acid positions with the test set. The remainder of the training
data included evaluated missense (n = 16,275), synonymous (n = 4,395), and nonsense variants (n
=1,183). Mutations at stop codon positions were excluded.

The pathogenicity target variable was transformed using an arcsinh transformation (y = sinh"
I(function score + 0.912)/2) to reduce skewness in the function score distribution. This
transformation was applied to improve model stability and predictive performance during training.

2.24. Model architecture

DeepATM, a Transformer-based regression model, was composed of the following components:

- Amino acid embedding: The amino acid sequence encoded by the ATM gene was represented using
a 64-dimensional embedding vector for each amino acid. The embeddings were initialized randomly,
and the model processed the sequence in a continuous vector space.

- Domain embedding: An additional embedding layer encoded domain annotations for each amino
acid in the sequence. Domains and their positions were annotated as shown below:

Domain Start position (a.a) End position (a.a)
TAN 1 166

FAT 1940 2566

PI3/4 Kinase 2686 2998

FATC 3024 3056

- Coordinate embedding: To incorporate structural information of the ATM protein, a multi-layer
perceptron (MLP) processed the 3D coordinates of the alpha-carbon atoms. Coordinates were
obtained from AlphaFold 3 to avoid gaps caused by missing residues in experimentally determined
structures [46]. The output from the MLP was integrated with the amino acid and domain
embeddings.

- Transformer encoder: The combined embeddings were passed through two Transformer encoder
layers, each consisting of § attention heads. This structure was designed to capture long-range
interactions and dependencies between amino acids in the sequence.

- Fully connected layers: The Transformer output at the mutation location was concatenated with the
16 precomputed scores to provide the model with additional functional information. This
concatenated vector was passed through a fully connected network with 128 hidden units and ReLU
activation, followed by a single output neuron to predict the pathogenicity score.

2.25. Model training

The model was trained using the AdamW optimizer with an initial learning rate of 1e-3 and a weight
decay of 107 to prevent overfitting. A cosine annealing schedule with periodic restarts was employed
to adjust the learning rate dynamically, with the initial cycle length set to 10 epochs. After each
restart, the learning rate was reduced by 20%, and the cycle length was doubled, helping the model
escape local minima. The model was trained for a maximum of 150 epochs, with early stopping
triggered if the validation loss did not improve for 20 consecutive epochs.

Training data were dynamically sampled in each batch with a batch size of 20, consisting of
90% missense variants, 5% synonymous variants, and 5% nonsense variants. The mean squared
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error was used as the primary loss function. Automatic mixed precision was implemented to
accelerate training and reduce memory usage by utilizing both 16-bit and 32-bit precision. Gradient
clipping was applied to stabilize training by limiting the magnitude of gradients and preventing
gradient explosion.

2.26. Performance evaluation

The model’s performance was evaluated using 5-fold cross-validation. In each evaluation, the
training and validation sets were randomly split. The predictions made by the model were compared
to the actual function scores, and performance was assessed using Spearman’s correlation and
Pearson’s correlation.

During training, model checkpoints were saved whenever the validation loss improved. The
best-performing models from all five cross-validations were ensembled to provide final predictions
for the unevaluated variants.

The ensemble model’s ability to classify variants was assessed by calculating the area under
the receiver operating characteristic curve (auROC). This analysis was performed on two groups:
the first consisting of variants with a ClinVar one-star or higher status (n = 116), and the second
group with at least a two-star ClinVar status (n = 68). DeepATM’s auROC was compared against
other pathogenicity prediction tools, including AlphaMissense, ESM1b, phyloP, and PROVEAN.
Performance was evaluated based on 1,000 bootstrap resampling of the test set.

2.27. Predicting the effects of unevaluated A7TM variants

DeepATM was used to predict the effects of 4,421 unevaluated SNVs in the ATM gene. To generate
eDA scores, raw prediction values for 23,092 SNVs were aligned to their function scores using a
rank-based approach. The relationship between the eDA scores and the function scores was modeled
using generalized additive regression. eDA scores for the 4,421 unevaluated SNVs were then derived
from this model. Based on the eDA scores and predefined function score cutoffs, the predicted SNVs
were classified into pathogenic, intermediate, or benign categories.

2.28. Statistical analysis

Basic statistical analysis was performed in R (v4.2.1) using RStudio. All tests were two-sided. Exact
P-values were calculated using the ‘pnorm’ function in R, and multiple testing correction was applied
using the ‘p.adjust’ function.
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Name (referred to as) Direction  Sequence

ATM_3' downstream RP (RP3) reverse GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGATGCAGCATTATCAGACTG
ATM_3'_downstream_FP (FP3) forward ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAATGTATTACTTTACTGTTACCTG
ATM_c3380_NGS_L1 (RP2) reverse GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGCAAGCATATGATAACAGCAAA
ATM_c3380_NGS_U1 (FP2) forward ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGAAAGCACTTCCTTTGAAGC
ATM_5' upstream_RP (RP1) reverse GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTGCCCCAAAACATTCGG
ATM_5'_upstream_FP (FP1) forward ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAATCGCTTCCGCCAGAG

Table 1. Sequences of primers used for screening ATM-haploid cells
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Table 2. Sequences of primers used for molecular cloning

Name (referred to as)  Direction Sequence

Oligo_Amp_RP12 reverse GAGTAAGCTGACCGCTGAAGTACAAGTGGTAGAGTAGAGCCTCGTCGGCATACGGT
Oligo_Amp_RP11 reverse GAGTAAGCTGACCGCTGAAGTACAAGTGGTAGAGTAGCGATCCATCGCGCGCTCTT

Oligo_Amp_RP10 reverse GAGTAAGCTGACCGCTGAAGTACAAGTGGTAGAGTAGTATTGTGCAGGCACGCCCG
Oligo_ Amp_RP9 reverse GAGTAAGCTGACCGCTGAAGTACAAGTGGTAGAGTAGTGCGTGGCGCAATAGGTGG
Oligo Amp RPS reverse GAGTAAGCTGACCGCTGAAGTACAAGTGGTAGAGTAGTGGCGAGCTCAATGTGCCG
Oligo Amp_RP7 reverse GAGTAAGCTGACCGCTGAAGTACAAGTGGTAGAGTAGTGAACTGCGCGCCTAGCAC
Oligo Amp_RP6 reverse GAGTAAGCTGACCGCTGAAGTACAAGTGGTAGAGTAGTAGGCGCATGCCCTCGTCT

Oligo_Amp_RP5 reverse GAGTAAGCTGACCGCTGAAGTACAAGTGGTAGAGTAGTCCACTTATGCCGCGCCAC

Oligo_Amp_RP4 reverse GAGTAAGCTGACCGCTGAAGTACAAGTGGTAGAGTAGACACTACCGCGTGCAGTGC
Oligo_Amp_RP3 reverse GAGTAAGCTGACCGCTGAAGTACAAGTGGTAGAGTAGACCCACCATGCGCGAACAG
Oligo_Amp_RP2 reverse GAGTAAGCTGACCGCTGAAGTACAAGTGGTAGAGTAGCGGCAGTAACGCCCTTGCA
Oligo Amp_RPI reverse GAGTAAGCTGACCGCTGAAGTACAAGTGGTAGAGTAGTTGCGGGCCTGCACTAGGA
Oligo Amp_FP1 forward TTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACC
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Table 3. Sequences of primers used for PCR amplification of endogenous sites

Name Binding Combined (NGS adaptor + binding)

ATM ex 02 NGS FI CACCTCTTTCTCTCTATATATGC ACACTCTTTCCCTACACGACGCTCTTCCGATCTACACCTCTTTCTCTCTATATATGC
ATM ex 02 NGS RI GGGTTACTAATCACACTTATTTC GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGGTTACTAATCACACTTATTTC
ATM ex 03 NGS Fl GAAATAAGTGTGATTAGTAACCC ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGAAATAAGTGTGATTAGTAACCC
ATM ex 03 NGS R1 GAAGCAAAGATAAATGTTAAGAC GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGAAGCAAAGATAAATGTTAAGAC
ATM ex 04 NGS Fl AAGTATTCAACGAGTTTCTGAA ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAAGTATTCAACGAGTTTCTGAA
ATM ex 04 NGS RI AAACTCACGCGACAGTAATC GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAAACTCACGCGACAGTAATC
ATM ex 05 NGS FI CCAAGTGTCTTATTTTTGTTCA ACACTCTTTCCCTACACGACGCTCTTCCGATCTACCAAGTGTCTTATTTTTGTTCA
ATM ex 05 NGS RI GTGAAGTTTCATTTCATGAGGA GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTGAAGTTTCATTTCATGAGGA
ATM ex 06 NGS Fl GTGCAGTTTTAAAATCCTTTTTC ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTGCAGTTTTAAAATCCTTTTTC
ATM ex 06 NGS Rl CTGAGTCTAAAACATGGTCTTG GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGAGTCTAAAACATGGTCTTG
ATM ex 07 NGS Fl GTTATACCCAGTTGAGCTTG ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTTATACCCAGTTGAGCTTG

ATM ex 07 NGS RI CTTCTATGTTTGAATGAAGAAGC GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTTCTATGTTTGAATGAAGAAGC
ATM ex 08 NGS FI GGAGCTAGCAGTGTAAACAG ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGAGCTAGCAGTGTAAACAG
ATM ex 08 NGS Rl AACAGGAAATTTCTAAATGTGAC GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAACAGGAAATTTCTAAATGTGAC
ATM ex 09 NGS Fl AACAACAGCGAAACTCTGG ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAACAACAGCGAAACTCTGG

ATM ex 09 NGS Rl CAAGAGATTAAAATGACACTGAA GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAAGAGATTAAAATGACACTGAA
ATM ex 10 NGS Fl CCTTTTAGTTTGTTAATGTGATGG ACACTCTTTCCCTACACGACGCTCTTCCGATCTACCTTTTAGTITGTTAATGTGATGG
ATM ex 10 NGS RI CTGTGTGTGTTTATCTGTAAGTC GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTGTGTGTTTATCTGTAAGTC
ATM ex 11 NGS Fl GTCTTTGCCCCTCCAATAG ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTCTTTGCCCCTCCAATAG

ATM ex_11 NGS RI AATAAGTGGAGAGAGCCTGA GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAATAAGTGGAGAGAGCCTGA
ATM ex 12 NGS Fl AGAAGTCAAGATTTATAGCTAAAC ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGAAGTCAAGATTTATAGCTAAAC
ATM ex 12 NGS Rl CCCAGCTAAAATTATCATCTTTG GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCCAGCTAAAATTATCATCTTTG
ATM ex_13 NGS Fl GCTAATACATATAAGGCAAAGC ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCTAATACATATAAGGCAAAGC
ATM ex_13 NGS RI CCTAACAGTTTACCAAAGTTGA GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCTAACAGTTTACCAAAGTTGA
ATM ex_14 NGS Fl ATGTATGTAGAATTTGTTCTTACA ACACTCTTTCCCTACACGACGCTCTTCCGATCTAATGTATGTAGAATTTGTTCTTACA
ATM ex_14 NGS RI CATTCAAATTTATCCGAAACTTTA GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCATTCAAATTTATCCGAAACTTTA
ATM ex_15 NGS_F2 GTCCAAGATCAAAGTACACTG ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTCCAAGATCAAAGTACACTG
ATM ex 15 NGS R2 GTGACAGAGAAAGATCCTATC GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTGACAGAGAAAGATCCTATC
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ATM ex 16 NGS F1

AGAAAACACTGTCTGCCAA

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGAAAACACTGTCTGCCAA

ATM ex_16 NGS RI

GCTATATGTTGTGAGATGCATC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCTATATGTTGTGAGATGCATC

ATM ex 17 NGS Fl

AAGCCATCTTGAACATCTTTG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAAGCCATCTTGAACATCTTTG

ATM ex 17 NGS Rl

GCCTCTTATACTGCCAAATCA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCCTCTTATACTGCCAAATCA

ATM ex_18 NGS F1

GCCCTTCTCTTAGTGTTAATG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCCCTTCTCTTAGTGTTAATG

ATM ex_18 NGS RI

TCAGATAAAATCCAAGAGCTTC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCAGATAAAATCCAAGAGCTTC

ATM ex 19 NGS FI

AATGATTTGTGGATAAACCTGA

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAATGATTTGTGGATAAACCTGA

ATM ex_19 NGS RI

CAACTTTATAAGCTTAACAGAACA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAACTTTATAAGCTTAACAGAACA

ATM ex 20 NGS Fl

TGTTCTGTTAAGCTTATAAAGTTG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTATGTTCTGTTAAGCTTATAAAGTTG

ATM ex 20 NGS RI

GATACAAAACTTGCATTCGTATC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGATACAAAACTTGCATTCGTATC

ATM ex 21 NGS F2

ACTTACAATAACCTTTCAGTGAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACTTACAATAACCTTTCAGTGAG

ATM ex 21 NGS R2

CTGTGGTTAAATATGAAATAGAGAA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTGGTTAAATATGAAATAGAGAA

ATM ex 22 NGS FI

GCAGTCTTTGTTTGTTAATGAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCAGTCTTTGTTTGTTAATGAG

ATM ex 22 NGS Rl

TGTAAGACATTCTACTGCCAT

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGTAAGACATTCTACTGCCAT

ATM ex 23 NGS Fl

GTTCTGGAATATGCTTTGGAA

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTTCTGGAATATGCTTTGGAA

ATM ex 23 NGS RI

AGCAAGCATATGATAACAGC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGCAAGCATATGATAACAGC

ATM ex 24 NGS Fl

GGGATTTTATAATTGATTGTTAAAC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGGATTTTATAATTGATTGTTAAAC

ATM ex 24 NGS Rl

CTAAGGAAGCTTCTAATAAAATAC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTAAGGAAGCTTCTAATAAAATAC

ATM ex 25 NGS FI

TTCATTTTTCTTAACACATTGAC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTATTCATTTTTCTTAACACATTGAC

ATM ex 25 NGS Rl

GGGACTTGCTAAGTATTGTTAAC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGGACTTGCTAAGTATTGTTAAC

ATM ex 26 NGS Fl

GTATGATACTTTAATGCTGATGG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTATGATACTTTAATGCTGATGG

ATM ex 26 _NGS RI

GGTTATATCTCATATCATTCAGGG

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGTTATATCTCATATCATTCAGGG

ATM ex 27 NGS Fl

GAGCTGTCTTGACGTTCAC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGAGCTGTCTTGACGTTCAC

ATM ex 27 NGS RI1

AATTGAAATAGACATTGAAGGTG

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAATTGAAATAGACATTGAAGGTG

ATM ex 28 NGS FI

CATTTTGGAAGTTCACTGGTC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTACATTTTGGAAGTTCACTGGTC

ATM ex 28 NGS Rl

TTAGCTAAAAAAGAAGGAATGTTC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTAGCTAAAAAAGAAGGAATGTTC

ATM ex 29 NGS F1

GCCGAGTATCTAATTAAACAAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCCGAGTATCTAATTAAACAAG

ATM ex 29 NGS RI

AAGACTGCTTATATATTGGTCT

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAAGACTGCTTATATATTGGTCT
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_Name

Binding

Combined (NGS adaptor + binding)

ATM ex 30 NGS F1

AACTTACTGGTTGTTGTTG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAACTTACTGGTTGTTGTTG

ATM ex 30 NGS RI

CAAATCCTTCTAACAATACTTTA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAAATCCTTCTAACAATACTTTA

ATM ex 31 NGS Fl

GGCTTACTTTAAAATTATTTCTCTC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGCTTACTTTAAAATTATTTCTCTC

ATM ex 31 NGS RlI

TTGAAAAGTACTACTATGTTCTCTA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTGAAAAGTACTACTATGTTCTCTA

ATM ex 32 NGS F1

AACCAATACGTGTTAAAAGC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAACCAATACGTGTTAAAAGC

ATM ex 32 NGS RI

CAGGTAGAAATAGCCCATG

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAGGTAGAAATAGCCCATG

ATM ex 33 NGS FI

GTGTTGTCTTCATGCTAGTTTA

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTGTTGTCTTCATGCTAGTTTA

ATM ex 33 NGS Rl

CTATATGTGATCCGCAGTTG

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTATATGTGATCCGCAGTTG

ATM ex 34 NGS Fl

ATGATCTCTTACCTATGACTCTA

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAATGATCTCTTACCTATGACTCTA

ATM ex 34 NGS RI

CTCCATGAATGTCATATTGAGA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTCCATGAATGTCATATTGAGA

ATM ex 35 NGS Fl

GTGGAGGTTAACATTCATCAAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTGGAGGTTAACATTCATCAAG

ATM ex 35 NGS Rl

GACCCACAGCAAACAGAAC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGACCCACAGCAAACAGAAC

ATM ex 36 _NGS FI

GGTACAATGATTTCCACTTCTC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGTACAATGATTTCCACTTCTC

ATM ex 36 NGS Rl

CAGGTCATAAACAAGGAATTATATC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAGGTCATAAACAAGGAATTATATC

ATM ex 37 NGS Fl

ACTCATTTTTACTCAAACTATTGG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACTCATTTTTACTCAAACTATTGG

ATM_ex_37 NGS RI

CTTTCTCTAGAACTGAGTTTACA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTTTCTCTAGAACTGAGTTTACA

ATM ex 38 NGS F2

GGAAGAAGGTGTGTAAGCAA

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGAAGAAGGTGTGTAAGCAA

ATM ex 38 NGS Rl

CAGCCGATAGTTAACAAGTTAC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAGCCGATAGTTAACAAGTTAC

ATM_ex 39 NGS FI

ACATGCTTTTATTTTGATATTGAAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACATGCTTTTATTTTGATATTGAAG

ATM ex 39 NGS Rl

CCTTATTGAGACAATGCCAAC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCTTATTGAGACAATGCCAAC

ATM ex 40 NGS Fl

GAGCTTCCAAATAGTATGTTCTC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGAGCTTCCAAATAGTATGTTCTC

ATM ex 40 NGS RI

GCATCTGTACAGTGTCTATAAC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCATCTGTACAGTGTCTATAAC

ATM ex 41 NGS Fl

AGAGTTGGGAGTTACATATTGG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGAGTTGGGAGTTACATATTGG

ATM ex 41 NGS Rl

ACACATAACTCCTTCATAAACAG

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACACATAACTCCTTCATAAACAG

ATM ex 42 NGS FI

CTGTTTATGAAGGAGTTATGTGT

ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGTTTATGAAGGAGTTATGTGT

ATM ex 42 NGS RI

GGCTGTGTAAATATCCACCAA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGCTGTGTAAATATCCACCAA

ATM ex 43 NGS F1

CTGGTTTTCTGTTGATATCTTTG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGGTTTTCTGTTGATATCTTTG

ATM ex 43 NGS RI

GAATGAGGAGAGAGGCAAAA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGAATGAGGAGAGAGGCAAAA
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ATM_ex_44 NGS_

ATACATGTATATCTTAGGGTTCTG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAATACATGTATATCTTAGGGTTCTG

ATM ex_44 NGS_

CTTCATCAATGCAAATCCTTAC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTTCATCAATGCAAATCCTTAC

ATM ex 45 NGS_

GCAAAGCCTATGATGAGAAC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCAAAGCCTATGATGAGAAC

ATM_ex 45 NGS_

GCTGCACTTTAGGATAACAA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCTGCACTTTAGGATAACAA

ATM ex_46 NGS_

CATTTCTCTTGCTTACATGAAC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTACATTTCTCTTGCTTACATGAAC

ATM ex_46 NGS_

AGGAAAGTCAAGAGGTAAGATG

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGAAAGTCAAGAGGTAAGATG

ATM ex 47 NGS

ATGGTAGTAGTATCAGTAGTAAAAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAATGGTAGTAGTATCAGTAGTAAAAG

ATM ex 47 NGS_

CAGTAAAACACTAATCCAGCC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAGTAAAACACTAATCCAGCC

ATM ex 48 NGS_

GTTGGGTACAGTCATGGTAA

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTTGGGTACAGTCATGGTAA

ATM ex 48 NGS

GCTTTGGAAATATATTGATCTTGA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCTTTGGAAATATATTGATCTTGA

ATM ex 49 NGS_

CCTTAATTTGAGTGATTCTTTAGA

ACACTCTTTCCCTACACGACGCTCTTCCGATCTACCTTAATTTGAGTGATTCTTTAGA

ATM ex 49 NGS_

GCCGACCTTTAGAGCTCAA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCCGACCTTTAGAGCTCAA

ATM ex 50 NGS

GTTCATGGCTTTTGTGTTTTAC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTTCATGGCTTTTGTGTTTTAC

ATM ex 50 NGS_

CACAGGGTAGAATATTGGGC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCACAGGGTAGAATATTGGGC

ATM ex 51 NGS_

GCTTAGATGTGAGAATATTTGAAA

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCTTAGATGTGAGAATATTTGAAA

ATM ex 51 NGS

GTATTTCCATTTCTTAGAGGGA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTATTTCCATTTCTTAGAGGGA

ATM ex 52 NGS_

GTTAAGCAAAATGAAAAATATGGATTA

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTTAAGCAAAATGAAAAATATGGATTA

ATM ex 52 NGS_

AAAGACTGAATATCACACTTCTA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAAAGACTGAATATCACACTTCTA

ATM_ex_53_NGS

CTCTGAGAAGTTTAAATGTTGGG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTCTGAGAAGTTTAAATGTTGGG

ATM ex 53 NGS_

CTACAGAGAGTAACACAGCAAG

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTACAGAGAGTAACACAGCAAG

ATM ex 54 NGS_

GACCTTCAATGCTGTTCCTC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGACCTTCAATGCTGTTCCTC

ATM ex 54 NGS

GGTTGAAACATATGAAATTTGCC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGTTGAAACATATGAAATTTGCC

ATM ex 55 NGS_

GTGCAAATAGTGTATCTGACCTA

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTGCAAATAGTGTATCTGACCTA

ATM ex 55 NGS

TTCATCACTAAAACTCTAAGGGCT

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTCATCACTAAAACTCTAAGGGCT

ATM_ex_56_NGS

AACTGTACTTGTTTATTCATGCT

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAACTGTACTTGTTTATTCATGCT

ATM ex 56 NGS

CCCAACCAAATGGCATCTTTTA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCCAACCAAATGGCATCTTTTA

ATM ex 57 NGS

ATCAAATGCTCTTTAATGGCC

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAATCAAATGCTCTTTAATGGCC

ATM_ex_57 _NGS

AGCCATTAAATAATCTTACAATAACC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGCCATTAAATAATCTTACAATAACC
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_Name Binding Combined (NGS adaptor + binding)
ATM ex 58 NGS FI GTGTATATTAGTTTAATTGAACACAA  ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTGTATATTAGTTTAATTGAACACAA
ATM ex 58 NGS RI AAACAACAAAGTGCTCAATCTAC GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAAACAACAAAGTGCTCAATCTAC
ATM ex 59 NGS FI ACTTAAAGATTATACCAAGTCAGTG _ ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACTTAAAGATTATACCAAGTCAGTG
ATM ex 59 NGS RI GTAGGCAAACAACATTCCATG GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTAGGCAAACAACATTCCATG
ATM ex 60 NGS Fl GTAAATTAGCTGTCAAACCTCC ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTAAATTAGCTGTCAAACCTCC
ATM ex 60 NGS RI GCCCAGCCCATGTAATTTTG GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCCCAGCCCATGTAATTTTG
ATM ex 61 NGS Fl GCTCAGCATACTACACATGA ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCTCAGCATACTACACATGA
ATM ex 61 NGS RI GTGACTTCCTGATGAGATACAC GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTGACTTCCTGATGAGATACAC
ATM ex 62 NGS Fl GGTTCTACTGTTTCTAAGTATGTG ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGTTCTACTGTTTCTAAGTATGTG
ATM ex 62 NGS RI GTGAACAGTTTAAAGGCCTTG GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTGAACAGTTTAAAGGCCTTG
ATM ex 63 NGS Fl CAAGGCCTTTAAACTGTTCAC ACACTCTTTCCCTACACGACGCTCTTCCGATCTACAAGGCCTTTAAACTGTTCAC
ATM ex 63 NGS R1 TTCTAAAGGCTGAATGAAAGGG GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTCTAAAGGCTGAATGAAAGGG

BRCAI1 ex 4 NGS Fl

GGCTCTTAAGGGCAGTTGTGAG

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGCTCTTAAGGGCAGTTGTGAG

BRCAI1 ex 4 NGS RI1

CTTTTTCCTACTGTGGTTGCTTCC

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTTTTTCCTACTGTGGTTGCTTCC

BRCA1 ex 19 NGS F1

CTGCTCCACTTCCATTGAAGGA

ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGCTCCACTTCCATTGAAGGA

BRCAI1 ex 19 NGS R1

GTGGAATACAGAGTGGTGGGG

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTGGAATACAGAGTGGTGGGG
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Table 4. Sequences of primers used for off-target analysis

Name NGS_Adaptor Binding Combined

K331E_  ACACTCTTTCCCTAC  TTCCTCAAATG ACACTCTTTCCCTACACGACGCTCTTC

off 1 F ACGACGCTCTTCCGA ATTCAGAATTT CGATCTATTCCTCAAATGATTCAGAAT

1 TCTA C TTC

K331E  GTGACTGGAGTTCAG ATGACATAATAT GTGACTGGAGTTCAGACGTGTGCTCT

off 1 R  ACGTGTGCTCTTCCG AGCACCTAGCA TCCGATCTATGACATAATATAGCACCT

1 ATCT AGCA

K331E  ACACTCTTTCCCTAC AGATGAAGGT ACACTCTTTCCCTACACGACGCTCTTC

off 2 F ACGACGCTCTTCCGA CGATCTAAGATGAAGGTGAGGCTGAC
— = GAGGCTGACA

1 TCTA A

0K§321E§ igg?g?gg?gggg g C? GTGTGTTTCGG GTGACTGGAGTTCAGACGTGTGCTCT

1 ATCT GGAATGG TCCGATCTGTGTGTTTCGGGGAATGG

K331E  ACACTCTTTCCCTAC AGTTTTGGATT ACACTCTTTCCCTACACGACGCTCTTC

off 3 F ACGACGCTCTTCCGA AACTTGAATAC CGATCTAAGTTTTGGATTAACTTGAAT

1 TCTA ATT ACATT

K331E_  GTGACTGGAGTTCAG TTGCAATGGAC GTGACTGGAGTTCAGACGTGTGCTCT

off 3 R ACGTGTGCTCTTCCG  AGATATGTACT TCCGATCTTTGCAATGGACAGATATGT

1 ATCT T ACTT

K331E_  ACACTCTTTCCCTAC TACATGCTAAG ACACTCTTTCCCTACACGACGCTCTTC

off 4 F ACGACGCTCTTCCGA CGATCTATACATGCTAAGTCCCTCAAG

1 TCTA TCCCTCAAGG G

K331E  GTGACTGGAGTTCAG TTTTCCTCAAG GTGACTGGAGTTCAGACGTGTGCTCT

off 4 R ACGTGTGCTCTTCCG TGAACAAATAC TCCGATCTTTTTCCTCAAGTGAACAA

1 ATCT ATG ATACATG

L969P  ACACTCTTTCCCTAC ATAGGAGAGC ACACTCTTTCCCTACACGACGCTCTTC

off 1 F ACGACGCTCTTCCGA CGATCTAATAGGAGAGCACTTTGGGT

L~ TeTa ACTTTGGGTT T

L969P  GTGACTGGAGTTCAG CAAACAAAGC GTGACTGGAGTTCAGACGTGTGCTCT

off 1 R ACGTGTGCTCTTCCG CTGATGAGATA TCCGATCTCAAACAAAGCCTGATGAG

1 ATCT AT ATAAT
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3. RESULTS

3.1. Cell line generation for the functional evaluation of ATM variants

The ATM gene consists of 63 exons, with its coding region extending from exon 2 to exon 63. It
encodes a full-length protein comprising 3,056 amino acids, which includes three recognized
functional domains (Figure 1A). Importantly, both pathogenic variants and variants of uncertain
significance (VUSs) are dispersed across the entire coding sequence (Figure 1B). The absence of
distinct hotspot regions makes it more challenging to assess the functional impact of these variants.

A 2 10 20 30 40 50 60 63
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i @ e

B N ClinVar annotation: [l Benign/Likely benign (B/LB) | VUS [l Pathogenic/Likely pathogenic (P/LP)
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Figure 1. The structure of the ATM gene and the distribution of variants. (A) The structure of
the ATM gene. Exons 2-63 encode the 3,056 amino acid-long 4TM protein. Gray boxes represent
exons; numbers indicating the exon positions are intermittently shown above the boxes. Three
functional regions, which include TAN (Tell/4ATM N-terminal motif), the FAT (FRAP-ATM-TRRAP)
domain, and the kinase domain, are shown. (B) Variants in the coding exons in 47M. Numbers
indicating exon positions are shown on the x-axis. The number of variants (top) and the fraction of
pathogenic or likely pathogenic (P/LP) variants among the total number of variants reported in
ClinVar (bottom) are shown.

To systematically analyze all possible SNVs in ATM using a high-throughput approach, we
aimed to utilize a diploid cell line, as it provides a more physiologically relevant model compared
to nearly haploid or triploid cells, such as HAP1 or HEK293T cells, respectively. For this reason,

22



we selected the HCT116 cell line based on several criteria: (i) it is a nearly diploid cancer cell line,
(i1) it harbors wild-type ATM along with at least one functional copy of BRCA1, BRCA2, and TP53,
(ii1) it demonstrates relatively high prime editing efficiency, and (iv) its proliferation or survival is
compromised by ATM loss, particularly in the presence of PARP inhibitors [47-49]. Additionally,
HCT116 cells lack functional MLH1 [50], which is anticipated to enhance prime editing efficiency
[51].

Whole-exome sequencing of HCT116 cells confirmed the presence of two ATM copies: one
wild-type and the other carrying an SNV (c.3380C>T) (Figure 2). Since BRCA2-haploid cells
facilitated the more sensitive detection of hypomorphic variants in BRCA2 screening compared to
BRCA2-diploid cells [52], we applied a similar approach for ATM variant screening. We established
an ATM-haploid HCT116 clone by deleting the entire ATM gene copy (~146,000 bp) containing the
¢.3380C>T SNV using SpCas9 and two single-guide RNAs (sgRNAs) (Figure 3A)

To delete the entire copy of the ATM gene (~146,000 bp) containing the SNV (¢.3380C>T), we
transfected plasmids encoding SpCas9 and two single-guide RNAs (sgRNAs) targeting the regions
~30 bp upstream of the 5’ transcriptional start site and ~80 bp downstream of the 3’ transcriptional
end site (Figure 3A). The transfected cell pool was sorted using flow cytometry into single cells,
which were then expanded in culture (Figure 3B). Agarose gel electrophoresis and Sanger
sequencing of PCR amplicons from these 200 single-cell-derived clones for the new junction
sequence revealed that 14 clones (7%) had both an ATM gene-containing allele and an allele with
the intended large deletion (representative images for five or four clones with the large deletion are
shown in Figures 4A and 4B, respectively), suggesting they were ATM-haploid cells. Using PCR
amplification of the region containing ¢.3380 and subsequent Sanger sequencing, we identified a
clone that had both a large deletion that removed ¢.3380C>T (clone 4 in Figure 4A) and the wild-
type ATM gene with only a single base pair insertion downstream of the 3° UTR (Figure 4A and
4B), suggesting this clone contained a single copy of intact ATM. Thus, we chose this A7M-haploid
clone for subsequent studies.
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Figure 2. Integrative genomics viewer image of whole exome sequencing results from HCT116
cells. HCT116 cells contain the ¢.3380C>T mutation in one of the two ATM alleles.
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Figure 3. Cell line generation strategy for ATM-haploid HCT116 cells. (A)
Haploidization of the ATM-coding region in HCT116 cells. A large deletion in the ATM allele
containing ¢.3380C>T was induced using Cas9 and two sgRNAs. PCR primers used for the analyses
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are shown (FP, forward primer; RP, reverse primer). (B) Cells transfected with plasmids encoding
SpCas9 and two sgRNAs were sorted into single cells using flow cytometry. PCR was performed
using the lysates of each single cell-derived clone. Positive clones identified using gel
electrophoresis were further validated using Sanger and deep sequencing.
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Figure 4. Conﬁrmatlon of hap101dlzat10n of ATM for ATM-haploid HCT116 cells. (A)
Sanger sequencing results from four representative clones (clones 1, 2, 3, and the 4TM-haploid clone,
clone 4). The protospacer sequences that bind to the sgRNA guide sequences are shown. The deleted
region is shown. (B) Sanger sequencing results from the two sgRNA binding sites in the ATM-
haploid cells (clone 4).

3.2. ATM haploidization can increase the accuracy of variant evaluation

Previous studies have demonstrated that cells lacking A7M exhibit reduced proliferation and survival
compared to ATM-proficient cells [49, 53, 54]. To verify that ATM-deficient cells become depleted
when cultured alongside A7M-intact cells, we generated ATM-deficient cells using the ATM-haploid
cells (clone 4, Figure 4A). By employing Cas9 nucleases, we introduced a frameshift mutation
(c.3383dup) in ATM, resulting in the creation of an 4A7M-haploid-knockout (KO) clone (Figure SA).
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Co-culturing these ATM-haploid-KO cells with ATM-haploid cells revealed a decline in the relative
fraction of ATM-haploid-KO cells over time (Figure 6), indicating that 4A7M-deficient cells are
selectively depleted in the presence of 4ATM-proficient cells.

ATM-haploid KO with ¢.3383dup in the wild-type allele Semi-knockout cell line, ¢.3383dup in the mutant (¢.3380C>T) allele
c.3380 c.3383
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Figure 5. Sequence confirmation for ATM-haploid-KO and semi-KO HCT116 cells.
(A) Sanger sequencing results showing the ¢.3383dup mutation in the A7M-haploid-KO cells. (B)
Integrative genomics viewer image of sequencing reads from A7M-semi-KO cells. The ¢.3380 and
¢.3383 sites are indicated by the green and red arrows, respectively. This image reveals that the ATM-
semi-KO cells have the ¢.3380C>T and c¢.3383dup mutations in a single allele in cis, whereas the
other allele has neither of the mutations. I, insertion

Relative fraction
a

G 0 3 6 9 12
Days after mixed culture with
ATM-haploid cells

Figure 6. Relative fraction of ATM-haploid-KO cells after growth in a mixed culture with
ATM-haploid cells. The A7M-haploid-KO cells contain a single copy of ATM, which has a
frameshift mutation (c.3383dup). Error bars indicate standard errors. The number of independent
culture n = 4.
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Given this depletion of ATM-deficient cells in competition with ATM-intact cells, we
hypothesized that ATM variant functionality could be assessed using cells containing one wild-type
ATM allele and another with a KO mutation. To generate these semi-KO cells, we created a clone
with the frameshift variant (c.3383dup) on the allele carrying the existing SNV (c.3380C>T),
referred to as the semi-KO clone, using Cas9 and a single-guide RNA (sgRNA) targeting this site
(Methods; Figure 5B).

To introduce a comprehensive set of SNVs into ATM semi-KO and ATM-haploid cells, we
selected exons 55 and 56 as representative regions. We aimed to generate all possible SNVs within
these exons and the adjacent intron regions (within 5 bp of exon boundaries) by constructing two
engineered prime editing guide RNA (epegRNA) libraries—one per exon [55]. Using DeepPrime-
FT, a deep-learning model optimized for predicting pegRNA efficiency [56], we designed a total of
2,396 epegRNAs: 1,350 for exon 55 (151 bp x 3 SNV/bp x 2-3 epegRNAs/SNV) and 1,046 for exon
56 (127 bp x 3 SNV/bp x 2-3 epegRNAs/SNV).

For accurate functional assessments, we directly sequenced the prime-edited regions using
PEER-seq (Prime Editing and Endogenous Region sequencing) rather than relying solely on
epegRNA abundance-based analysis [22]. Each epegRNA was designed to introduce one
synonymous mutation in addition to the intended SNV, ensuring precise identification of the target
mutation in sequencing reads [22, 57-60]. Synonymous mutations were intentionally placed outside
exon-intron junctions to avoid disrupting splicing. Additionally, we incorporated internal replicates
for the same intended edit by designing epegRNAs with varying synonymous edits.

Each of the two libraries was introduced into PE2max-expressing ATM-haploid and ATM semi-
KO cells via lentiviral delivery at day-13 (D-13), and cells were cultured for 13 days to facilitate
prime editing (Figure 7). The prime-edited cells were then divided and maintained under two
conditions: DMSO (control) vs. olaparib for 10 days. Olaparib promotes depletion of ATM-deficient
cells [49, 53, 54]. Deep sequencing was used to determine SNV frequencies, and the log,-fold
change (LFC) of each SNV frequency at day 10 (D10) relative to day 0 (D0) was standardized based
on synonymous SNVs (Methods). These standardized LFCs (sLFCs) were used to assess SNV
functional effects.

13 days culture PARP D10
with puromycin  inhibitor (== =

Deep Sequencing

.

PEmax-expressing
HCT116 cells

D10

Figure 7. High-throughput functional evaluation of ATM variants. ATM variant-containing
cells were generated by transducing epegRNA libraries into PEmax-expressing HCT116 cells. After
13 days of prime editing, the cell libraries were treated with a PARP inhibitor (olaparib) or solvent
control (DMSO) for 10 days. Frequencies of variant-containing cells at day 0 (DO, 13 days after the
transduction of epegRNAs) and day 10 (D10) were determined using deep sequencing.
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To validate this approach, we compared sLFCs of 32 nonsense SNVs introduced via prime
editing, as ATM-deficient cells carrying nonsense mutations were expected to be depleted. In
DMSO-treated cells, the median sLFCs for ATM nonsense variants in A7M-haploid and ATM semi-
KO cells were -2.1 and -0.71, respectively, while in olaparib-treated cells, the values were -3.1 and
-1.1 (Figure 8). Notably, in DMSO-treated ATM semi-KO cells, the sLFCs of seven nonsense
variants exceeded zero, indicating a relatively low signal-to-noise ratio. Conversely, in olaparib-
treated ATM-haploid cells, the sSLFCs of all 32 nonsense variants were below -1.5, reflecting a higher
signal-to-noise ratio.

These findings suggest: (i) ATM-haploid cells provide more accurate functional evaluations
than ATM semi-KO cells, and (ii) the addition of olaparib enhances the signal-to-noise ratio in
functional assessments of 4TM variants. Based on these observations, we proceeded with ATM-
haploid cells in the presence of olaparib for further functional evaluations of ATM variants.

rr'[[-rf'rr'rr'ffrrr[f"lrrf!“r-
TR T

B ATM-haploid
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Figure 8. Comparison of standardized log2-fold changes of nonsense SNVs in ATM-haploid
and ATM-semi-KO cells. Standardized log2-fold changes (sLFCs) in ATM-haploid cells (red),
which contain only a single copy of wild-type ATM, and in ATM-semi-KO cells (blue), which contain
both a single copy of wild-type ATM and another gene copy containing the c¢.3383dup frameshift
mutation, that also contain the indicated mutations in exons 55 and 56, in the presence or absence
of olaparib. The means of sLFCs in two replicates are shown for simplicity. DMSO represents the
solvent control for olaparib. The x-axis shows a total of 32 nonsense mutations.

3.3. Olaparib increases the accuracy of functional evaluation of ATM
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variants

To investigate the functional impact of all potential SNVs in ATM-haploid cells, we generated 62
distinct lentiviral libraries, each targeting a specific exon, containing epegRNAs. We then evaluated
the effects of these SNVs both with and without olaparib treatment. The sLFCs of cells containing
variants at day 10 (D10) were determined relative to day 0 (DO), which was 13 days post-
transduction with the lentiviral epegRNA libraries (Figure 7). Our analysis revealed a stronger
correlation between biological replicates in the olaparib-treated condition (Pearson correlation
coefficient r = 0.76) compared to the DMSO-treated condition (r = 0.52) (Figure 9A), indicating a
higher signal-to-noise ratio in the olaparib-treated group. The correlation between sLFCs from the
DMSO- and olaparib-treated groups was 0.73 (Figure 9B).
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Figure 9. Correlation of standardized log2-fold changes between replicates. (A) Correlation
between sLFCs of replicates in the solvent control (DMSO) (left) or olaparib (right) groups. (B)
Correlation between sLFCs of the solvent control (DMSO) and olaparib groups. The Pearson
correlation coefficient (r) is shown.

To assess the accuracy and sensitivity of the analyses under both DMSO and olaparib
conditions, we conducted receiver operating characteristic (ROC) curve analyses. We assumed that
1,141 nonsense SNVs would disrupt ATM function, leading to reduced sLFCs, while 4,837
synonymous variants would preserve A7M function. The area under the curve (AUC) was higher in
the olaparib-treated group (0.95) compared to the DMSO-treated group (0.89) (DeLong’s test, P =
3.6 x 10%*) (Figure 10A). Based on Youden’s J statistic, the optimal sLFC thresholds for
distinguishing nonsense and synonymous variants were -0.912 (sensitivity = 93.0%, specificity =
91.4%) in the olaparib group and -0.745 (sensitivity = 81.2%, specificity = 89.3%) in the DMSO
group.

We further performed ROC analyses using 1,603 variants previously classified in ClinVar,
including 440 pathogenic or likely pathogenic (P/LP) variants and 1,163 benign or likely benign
(B/LB) variants from multiple submitters. The AUC values for the olaparib and DMSO groups were
0.94 and 0.88, respectively (Figure 10A). When we restricted the analysis to 17 variants (11 P/LP
and 6 B/LB) that excluded nonsense variants and were annotated by an expert panel, the AUCs were
1.00 for the olaparib group and 0.97 for the DMSO group (Figure 10B).
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Figure 10. Receiver-operating-characteristic (ROC) curves for sSLFCs of SNVs. (A) The left
panel shows ROC curves for discriminating nonsense (n = 1,141) vs. synonymous variants (n =
4,837). Exons 63 and 62 were excluded from the analysis due to the possibility of mutations in these
exons escaping nonsense-mediated decay. The right panel shows ROC curves for discriminating
pathogenic/likely pathogenic (P/LP) (n = 440) vs. benign/likely benign (B/LB) variants (n = 1,163)
annotated by ClinVar database. Area under the curve (AUC) values are shown. (B) ROC curves for
discriminating 17 variants that do not include nonsense variants and that were classified by an expert
panel (6 B/LB + 11 P/LP) in DMSO- and olaparib-treated conditions. Olaparib (blue) or the solvent
control (DMSO, red).

Next, we examined the sLFC distributions across different variant types in both the olaparib
and DMSO conditions. Nonsense and splice site variants, which are commonly associated with loss
of ATM function, were significantly depleted compared to synonymous variants, with the effect
being more pronounced in the olaparib group (Figure 11). These findings confirm that olaparib
treatment enhances the signal-to-noise ratio in functional evaluations. As a result, we proceeded with
functional assessments using olaparib-treated cells and designated the SLFCs from this group as
"function scores" (Methods).
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Figure 11. Kernel density estimation plots of SNV sLFCs. For each variant category, the number
and percentage of SNVs with adjusted LFC values lower than cutoffs, representing Youden’s indices
(-0.745 and -0.912 in the solvent control (DMSO, red) and olaparib (blue) groups, respectively), are
shown. The cutoffs are shown in blue (olaparib) or red (DMSO) dashed lines. The dark gray line
represents SLFC = 0.

Each SNV was introduced by 2-3 epegRNAs, with each epegRNA incorporating a distinct
synonymous mutation. We compared function scores among internal replicates and observed strong
correlations (r = 0.61-0.69, mean = 0.65, Figure 12). Among the 18,651 amino acid substitutions
analyzed, 2,012, 1,069, and 97 were encoded by two, three, or four distinct SNVs, respectively. A
strong correlation (r = 0.64) was observed between function scores of SNV pairs that resulted in the
same amino acid substitution (Figure 13). To ensure accuracy, we used the mean function scores
across replicates from different experimentalists for further analyses. Additionally, only 0.16% of
sequencing reads containing both the intended edits and synonymous edits included indels (Figure
14), and these rare cases were excluded from subsequent analyses (Methods).
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Figure 12. Correlations between sLFCs of replicates in the olaparib-treated group. (A)
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Correlation between the sLFCs of two different synonymous indicator mutations, designated as
internal replicates 1 and 2, for the same intended SNVs. (B-D) Correlation between the sLFCs of
three different synonymous indicator mutations, designated as internal replicates 1, 2, and 3, for the
same intended SNVs. Pearson’s correlation coefficients (r) are shown.
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Figure 13. Correlation between the SLFCs of different SNVs encoding the same amino acid
variants. The Pearson’s correlation coefficient (r) is shown.
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Figure 14. Proportions of reads containing indels (shown in red) with or without targeted SNVs.

To determine whether our method could be applied to other cancer predisposition genes, we
conducted a similar screening in exons 4 and 19 of BRCA1. Nonsense and canonical splice site
variants were significantly depleted relative to synonymous variants (Figure 15). ROC analyses
comparing nonsense and synonymous SNVs showed that the AUC in the olaparib-treated group
(0.91) was higher than in the DMSO-treated group (0.84) (DeLong’s test, P = 0.017) (left panel,
Figure 16). When analyzing 77 ClinVar-annotated variants (53 P/LP and 24 B/LB), the AUCs for
the olaparib and DMSO groups were 0.94 and 0.82, respectively (middle panel, Figure 16).
Furthermore, when focusing solely on 32 missense variants (30 P/LP and 2 B/LB), the AUCs were
0.98 for the olaparib group and 0.85 for the DMSO group (right panel, Figure 16). These findings
suggest that our approach is applicable to evaluating BRCA1 variants as well.
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Figure 15. Distribution of function scores for different categories of BRCA1 variants. ‘Intron’
refers to mutations positioned -5, -4, and -3 bp from intron-exon junctions and +3, +4, and +5 bp
from exon-intron junctions, whereas ‘splice acceptors and donors’ (splice AD) refers to mutations
positioned -2, -1, +1, and +2 bp from intron-exon and exon-intron junctions. Boxes represent the
25th, 50th, and 75th percentiles, and whiskers show the 10th and 90th percentiles.
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Figure 16. ROC curves for sLFCs of BRCA1 SNVs. The left panel shows ROC curves for
discriminating nonsense (n = 27) vs. synonymous variants (n = 98). The middle panel shows ROC
curves for discriminating pathogenic/likely pathogenic (P/LP) (n = 53) vs. benign/likely benign
(B/LB) variants (n = 24) as annotated by the ClinVar database. The right panel shows ROC curves
for discriminating 32 missense variants (30 P/LP + 2 B/LB) in DMSO- and olaparib-treated
conditions. Area under the curve (AUC) values are shown. Olaparib (blue) or the solvent control
(DMSO, red).

3.4. Function scores of 24,534 ATM variants

We experimentally determined function scores for 24,534 SNVs and categorized them into three
groups: ‘non-functional’ (function score < -1.360), ‘intermediate’ (-1.360 < function score < -
0.912), and ‘functional’ (function score = -0.912). These cutoffs were established using the 5th
percentile of synonymous variant function scores and Youden’s index (-0.912) (Methods). Variants
falling into the non-functional or intermediate categories were collectively referred to as “depleting
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variants.”

To further validate our large-scale functional assessments, we selected six non-functional
missense variants that had previously been classified as variants of uncertain significance (VUSs).
When these variants were introduced into cells and co-cultured with wild-type cells, a depletion of
variant-containing cells was observed, with four out of six showing a more pronounced depletion in
the presence of olaparib (Figure 17). Additionally, we examined two functional variants (R337C
and R337H), which had conflicting pathogenicity reports, alongside one non-functional (L969P)
and two functional (S1981C and C2991G) variants [24], all of which were initially classified as
VUSs. The results of these experiments were consistent with our high-throughput functional
assessments (Figure 18).
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Figure 17. Comparison of non-functional SNVs’ function scores with individual evaluation
results. Relative fraction of variant-containing cells after culturing them with wild-type cells in the
absence (blue) or presence (red) of olaparib. DMSO is the solvent control. Statistical significance in
comparision with DO (paired t-test) is shown. ns, statistically not significant (P > 0.05).
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Figure 18. Comparison of functional and non-functional SNVs’ function scores with individual
evaluation results. Relative fraction of variant-containing cells after culturing them with wild-type
cells in the absence (blue) or presence (red) of olaparib. DMSO is the solvent control. Statistical
significance in comparision with DO (paired t-test) is shown. ns, statistically not significant (P >
0.05).

Western blot analysis demonstrated that two non-functional variants (c.991A>G (K331E) and
¢.2906T>C (L969P)), previously considered VUSs, exhibited significant reductions or near-
complete loss of ATM signaling. This was evident from decreased phosphorylation of ATM and
CHK2 following etoposide treatment, a DNA-damaging agent (Figure 19A). Furthermore, deep
sequencing of potential off-target sites in cells carrying these two non-functional variants showed
no detectable off-target effects (Figure 19B). While prime editing has a low probability of off-target
modifications [21, 56, 61], we cannot entirely exclude the possibility of unobserved or unassessed
off-target effects, particularly for other variants.
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Figure 19. Western blot and off-target evaluation of two non-functional variant clones. (A)
Western blotting to examine the total ATM, phosphorylated ATM (p-ATM), and phosphorylated
CHK2 (p-CHK?2) protein levels in ATM-haploid clones containing newly identified non-functional
variants (K331E or L969P). Arrows indicate the molecular weights of the indicated proteins.
GAPDH was used as a loading control. (B) Off-target effects. DNA sequences at the on- and
potential off-target sites were evaluated using deep sequencing in two clones containing non-
functional variants, which were generated with the epegRNAs used for the high-throughput
functional evaluations of the SNVs. The numbers at the top represent positions in the protospacer
(1-19) and protospacer adjacent motif (NGG PAM, 20-22, gray). Base pair mismatches between the
on- and off-target sites are highlighted in orange. Deep sequencing of target DNA sequences was
performed to examine the frequencies of wild-type sequences, sequences containing intended edits,
sequences containing indels, and other sequences.

We also compared our experimentally derived function scores with predictions from various
computational tools, including CADD [40], REVEL [39], SIFT [32], PROVEAN [38], GERP [41],
AlphaMissense [44], EVE [42], and BoostDM [29]. Among these, AlphaMissense and CADD
showed the strongest correlations with our function scores, though the correlations remained modest
(r = -0.47 and -0.45, respectively) (Figure 20). This underscores the necessity of experimental
validation, as has been similarly observed for BRCA1 and BRCA2 variants [58, 62, 63].
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Figure 20. Correlations between experimentally measured function scores and functional
effects predicted by previously developed computational models for missense SNVs. The
functional classifications of variants in the ClinVar data are shown using different colored dots.
Pearson correlation coefficients (r) are shown.

PhyloP, an in silico tool that predicts conservation scores at the nucleotide level, exhibited a
strong correlation between the average PhyloP score per exon and the proportion of non-functional
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variants within that exon (r = 0.76, P = 8.4 x 107%). This suggests that regions under stronger
evolutionary constraint are less tolerant to amino acid changes (Figure 21A). Additionally, the
BLOSUM substitution matrix, which predicts the likelihood of one amino acid replacing another
[64], indicated that functional SNVs generally had higher BLOSUM scores than non-functional ones
(Figure 21B). A weak but significant positive correlation was observed between BLOSUM scores
and function scores (r = 0.22, P=1.2 x 102* 3) (Figure 21C).
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Figure 21. Correlation between the conservation scores and function scores. (A) Proportions of
non-functional variants among missense variants in each exon are plotted versus the average PhyloP
score for each exon. (B) Violin plots showing the distribution of BLOSUMG62 scores for each of our
functional classifications. (C) Correlation between the BLOSUMG62 scores and the function scores.
A trend line based on a linear regression is shown. The color of each dot was determined by the
number of neighboring dots (that is, dots within a distance that is 1.5 times the default radius of the
dot).

Function scores were generally low for nonsense and splice site variants, whereas missense
variants showed a wider range of functional effects (Figure 22A). When classified by variant type,
88% of nonsense variants, 79% of splice site variants, 30% of intronic variants, and 20% of missense
variants were identified as non-functional (Figure 22B). These findings align with previously
published results for BAP1, VHL, and DDX3X [57, 60, 64, 65]
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Figure 22. Distribution of function scores and proportions of SNV classification for the
categories of variants. (A) Distribution of function scores for different categories of variants.
‘Intron’ refers to mutations positioned -5, -4, and -3 bp from intron-exon junctions and +3, +4, and
+5 bp from exon-intron junctions, whereas ‘splice acceptors and donors’ (splice AD) refers to
mutations positioned -2, -1, +1, and +2 bp from intron-exon and exon-intron junctions. Boxes
represent the 25th, 50th, and 75th percentiles, and whiskers show the 10th and 90th percentiles. (B)
Proportions of non-functional, intermediate, and functional SNVs for the indicated categories of
variants. splice AD, splice acceptors and donors.

We further analyzed the impact of different amino acid substitutions on function scores. Among
150 possible amino acid substitution types, those involving tryptophan (W>G, W>C, W>R, W>S,
and W>L) frequently resulted in non-functional variants (Figure 23A). Similarly, substitutions such
as V>D, L>P, R>P, Y>D, and L>R often led to non-functional effects, consistent with prior studies
indicating that L>P, L>R, and R>P substitutions are frequently associated with phenotypic changes
[66]. Grouping amino acids into categories based on polarity and charge—nonpolar, polar uncharged,
positively charged, and negatively charged—we found that substitutions from nonpolar to charged
amino acids most commonly led to reduced function scores (Figure 23B).
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Figure 23. Proportions of functional categories for each amino acid substitution and
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functional and intermediate SNV for each type of amino acid substitution shown on the x-axis. (B)
Effect of the type of amino acid substitution on function score distributions. Subsets of types of
amino acid changes without statistically significant differences between them (P > 0.05, analysis of
variance (ANOVA) followed by Tukey’s post hoc test) in the function scores are indicated with a, b,
and c. NU, non-polar uncharged; NC, negative-charged; PC, positive-charged; PU, polar uncharged.

Examining function scores in relation to the observed frequency of SNVs at day 0, we found
that nonsense variants with higher starting frequencies tended to show greater reductions in function
scores (Figure 24A). ROC analysis further revealed that the reliability of functional assessments
decreased when SNV frequencies were below 0.001% (Figure 24B and 24D). Based on SNV
frequency at day 0, we classified functional evaluation confidence levels into three categories: high
confidence (68% of functionally assessed missense SNVs, SNV frequency > 0.001%), medium-high
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confidence (29% of missense SNVs, SNV frequency between 0.0001% and 0.001%), and medium
confidence (2.8% of missense SNVs, SNV frequency < 0.0001%) (Figure 24C).
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Figure 24. Distributions and functional classification accuracies of function scores for different
ranges of variant frequencies at day 0 (D0). (A) Distribution of function scores for nonsense and
synonymous SNVs for different ranges of SNV frequencies at D0O. (B) ROC curves for different
ranges of SNV frequencies at day 0 for discriminating nonsense vs. synonymous variants. (C)
Distribution of function scores for missense variants for different ranges of SNV frequencies at DO.
The proportion of variant numbers in each range of SNV frequencies among all missense SNVs that
were functionally evaluated and classified is shown in parenthesis on the x-axis. Boxes represent the
25th, 50th, and 75th percentiles, and whiskers show the 10th and 90th percentiles. (D) ROC curves
for different ranges of SNV frequencies for discriminating pathogenic/likely pathogenic (P/LP) vs.
benign/likely benign (B/LB) ClinVar variants with > one-star status (the number of variants n = 116).
AUC values are shown.

3.5. Effect of the variant position on ATM function scores

We proposed that our functional assessments could help identify key regions essential for ATM
protein function. To explore this, we analyzed function scores of SNVs across the entire coding
sequence (Figure 25A). Most synonymous variants within exons had neutral function scores,
although a few, particularly those located near exon-intron boundaries, showed lower scores.
Nonsense variants were consistently depleted across exons, including in the penultimate and final
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exons. Since nonsense mutations occurring in the last exon or within the last 50 nucleotides of the
penultimate exon can sometimes bypass nonsense-mediated decay [67], the depletion of these
variants in such regions suggests that these exons play a significant role in A7M function.
Additionally, variants located at splicing donor and acceptor sites were largely depleted (Figure
25B).

500 250 0
A Density
5 o
’ E
oo |
<
-10 :
&
-20
o
g 5
a0
c
Ke]
B -10
c
>
. -20
5 ! =
0 SIS SRR ) YN A A 3 L e et LA bt chy
PSPt T B PR s et R -
-10 § - e 3 i %
= (]
-20
0 2500 5000 7500 9171
Coding sequence position Catalytic loop I Activation loop
(8601-8625) (8664-8733)
B
[ :
g o EREs Bdi i FAS
an r i % :
c . 37 =~ .
S : “ : : i3
3 Py i
C
Z -10
2 5 10 15 20 25 30 35 40 45 50 55 60 63
Exon-intron junction [ intron [ Splice acceptor/donor

Figure 25. Effect of variant position on ATM function scores. (A) Function score map for SNVs
across exons 2 to 63, categorized by variant type. Exons are separated by vertical dashed lines. The
numbers of variants are indicated using dot colors. The color of each dot was determined by the
number of neighboring dots (that is, dots within a distance that is 1.5 times the default radius of the
dot). (B) Function score map for intronic and splice acceptor and donor variants. Vertical dashed
lines indicate the exons (exons 2 to 63) located between consecutive introns.

For missense SNVs, the most significant depletion was observed in exons 57 to 60 (coding
positions 8,269 to 8,786), where the mean function scores were -2.1 for exon 57, -2.1 for exon 58, -
3.6 for exon 59, and -5.5 for exon 60. More than half of the missense SN'Vs within this region were
classified as non-functional, compared to only 18% of missense SNVs in other exons (Figure 26),
indicating that this region is critical for ATM activity. This segment corresponds to the highly
conserved kinase domain (exons 55 to 63) [68], which is crucial for ATM's function in the DNA
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damage response, particularly its kinase activity [69].
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Figure 26. Proportions of depleting missense SNVs per exon. The black line represents the
average PhyloP score for each exon, with the values on the right y-axis.

We further mapped the susceptibility of ATM amino acid residues to missense mutations
(Figure 27). The activation loop (residues 2888 to 2911) and catalytic loop (residues 2867 to 2875)
within the kinase domain, which are essential for substrate recognition and phosphorylation, were
especially sensitive to missense alterations [70]. For instance, missense SNVs at residues D2870
and H2872, which interact with p53 at S15, had function scores ranging from -5.7 to -8.6 and -5.6
to -7.0, respectively, while all synonymous variants at these positions remained neutral. Similarly,
residues involved in critical interactions with p53, such as T2902 (hydrogen bonding with Q16),
L2900 (hydrophobic interaction), and F3049 (hydrophobic interaction), exhibited notably negative
function scores, with mean values of -3.9, -9.4, and -3.1, respectively. These findings suggest that
these regions are essential for ATM activity. Conversely, only 3.3% (13/396) of missense variants in
exon 17, which contains many VUSs, were classified as non-functional, implying that this exon may
be less crucial for ATM function. In conclusion, our functional analyses effectively pinpointed
regions that are critical for ATM protein activity.
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Figure 27. Mapping of intolerance to missense SNVs on the three-dimensional ATM structure.
The average function score of missense SNVs at each amino acid position is shown on a color
spectrum from yellow to blue (ranging from a minimum of -5 to a maximum of 1). In this dimeric
representation of ATM, one of the two monomers is shown as a transparent secondary structure, for
simplicity. In the magnified view of the boxed region, the red sticks, blue dot, and green sticks
represent a p53 peptide, a magnesium ion, and ANP (phosphoaminophosphonic acid-adenylate ester,
a synthetic analog of ATP), respectively. Amino acid residues encoded in exons 59 and 60 are
depicted as sticks.
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3.6. Clinical relevance of ATM function scores

We investigated the clinical relevance of our functional scores by examining their ability to
differentiate variants classified as pathogenic/likely pathogenic (P/LP) and benign/likely benign
(B/LB) in ClinVar. Our scores effectively distinguished these variant categories (Figure 28A).
Additionally, we assessed our scores for splice site variants in relation to the ACMG/AMP
interpretation criteria established by the ClinGen Hereditary Breast, Ovarian, and Pancreatic Cancer
Expert Committee [14]. We observed a pattern in functional scores following PVS1 classification,
ranging from PVSI1 (indicating the strongest evidence of pathogenicity) to PVSI1-strong, PVS1-
supporting, and PVS1 N/A (Figure 29), demonstrating alignment between our scores and existing
clinical classifications.
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Figure 28. Clinical correlation between the ClinVar and GnomAD database and function
scores. (A) Kernel density estimation plots of function scores for SNVs reported in ClinVar as P/LP
(pathogenic or likely pathogenic) (n = 848), or B/LB (benign or likely benign) (n = 2,289). The
cutoff for depleting variants, -0.912, is indicated with the dashed vertical line. (B) Function scores
plotted against allele frequencies of SNVs in the general population (gnomAD v.4.1). ClinVar
classifications are shown using different colored dots. Four variants most frequently observed in
tumor samples and a variant with a strong association with breast cancer (c.7271T>G) are shown
with arrows
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Figure 29. Box plots showing function scores of splice acceptor and donor SNVs. The functional
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categories suggested by the ACMG guideline are shown on the x-axis. PVS1, Pathogenic very strong
evidence; N/A, not applicable. The expected function of ATM decreases in the order of PVS1 N/A
> PVS1-Supporting > PVS1-Strong > PVS1.

Individuals with biallelic pathogenic ATM variants develop ataxia-telangiectasia, a hereditary
condition, while heterozygous carriers face an elevated risk of developing cancers such as breast,
ovarian, and pancreatic cancer [2, 71-74]. Based on this, we hypothesized that non-functional
variants would be less frequent in the general population. A comparison of variant frequencies from
the gnomAD v4.1 dataset (n = 807,162) [26] with different function scores revealed that SNVs with
low function scores were rare, whereas those with neutral scores were more prevalent, as expected
(Figure 28B). Notably, SNVs with a population allele frequency exceeding 0.05% (classified as
benign according to ACMG’s BS1 criterion) had an average function score of -0.012, significantly
higher than the -0.80 average score observed for variants with frequencies below 0.05% (P =
1.1x 10°%) [14].

ATM mutations have been implicated in increased cancer risk, particularly for breast cancer [6,
9, 10, 75]. To evaluate whether our functional analysis could predict cancer susceptibility, we
assessed cumulative cancer incidence using UKB data. Among 424,909 participants without a prior
cancer diagnosis, 2,427 individuals carried 382 non-functional SNVs, 15,557 had 122 intermediate
SNVs, and 107,625 possessed 1,612 functional SNVs, all of which were functionally assessed in
this study. Participants were categorized based on their ATM SNVs, with those carrying multiple
variants assigned to the most functionally disruptive category. Individuals with non-functional
variants exhibited a significantly increased cancer incidence (P = 8.0 x 10-¥) compared to those with
intact ATM (Figure 30, left). The intermediate SNV group also demonstrated a slightly elevated
cancer incidence relative to the intact group (P = 0.005), whereas the functional variant group
showed no significant difference from the intact group. These trends remained consistent when the
analysis was restricted to missense SNVs (Figure 30, right). Importantly, 91% (245/268) of the non-
functional missense SNVs identified in this cohort were previously unreported or classified as
variants of uncertain significance (VUS), underscoring the novel contributions of this study in
refining ATM functional assessments.
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Figure 30. Cumulative cancer incidence in UKB participants (n = 424,909) with different
functional categories of ATM variants. The left panel includes participants with all SNV mutation
types, and the right panel includes only participants with missense SNVs and intact ATM. P-values
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are shown for each group in comparison with the intact ATM group.
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Figure 31. Hazard ratios of cancer incidence for various computational scores and the function
score. Black bars represent 95% confidence intervals. AM score, AlphaMissense score.

We further investigated cancer hazard ratios (HRs) based on function scores using Cox
proportional hazards regression, adjusting for age and sex. Among all variables, age had the highest
HR (6.7), followed by function score (HR, 1.9), while other predictors such as sex (HR, 1.3) and
computational models (EVE, 1.2; AlphaMissense, 1.2; REVEL, 1.3; CADD, 1.4) had comparatively
lower HRs (Figure 31). To evaluate lifelong cancer risk across different functional groups, we
analyzed the age at first cancer diagnosis. Cancer onset occurred significantly earlier in the non-
functional group compared to the intact group, whereas the functional group showed no significant
difference from the intact group (Figure 32). When focusing on breast cancer among female
participants, the non-functional group exhibited a markedly higher cumulative cancer incidence for
this cancer type (Figure 33A and 33B), consistent with previous studies linking 47M mutations to
elevated breast cancer risk [6, 9, 75]. These findings indicate that our ATM function scores may
serve as a useful predictor of cancer risk in individuals carrying ATM variants.
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Figure 32. Lifelong cancer incidence in UK Biobank participants with different functional
categories of ATM variants determined using the function score. The left panel includes
participants with all SNV mutation types, and the right panel includes only participants with
missense SNVs and intact ATM. P-values are shown for each group in comparison with the intact
ATM group. Classifications of ATM SNVs based on function scores are indicated with different
colors (intact, green; functional, yellow; intermediate, blue; non-functional, red)
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Figure 33. Cumulative incidence of breast cancer in UK Biobank female participants with
different functional categories. (A) Cumulative breast cancer incidence in female UK Biobank
participants with different functional categories of ATM variants determined using the function score.
The left panel includes participants with all SNV mutation types, and the right panel includes only
participants with missense SNVs and intact ATM. (B) Lifelong breast cancer incidence in female
UK Biobank participants with different functional categories of 4TM variants determined using the
function score. The left panel includes participants with all SNV mutation types, and the right panel
includes only participants with missense SNVs and intact ATM. The P-value is shown for the non-
functional group in comparison with the intact ATM group.

We further assessed the clinical implications of function scores using data from two cohort
studies that examined germline ATM variants in relation to breast cancer susceptibility (6,796 cases
and 3,388 controls) [76, 77], supplemented with gnomAD data as additional controls (Data not
shown). Focusing on 159 missense variants classified as VUSs (out of 276 total variants), we
examined breast cancer odds ratios (ORs) based on function scores. Individuals with non-functional
and intermediate variants had ORs of 4.0 (P = 2.2x 10755, n = 44) and 2.0 (P = 0.010, n = 12),
respectively (Figure 34). By comparison, ORs based on classifications from AlphaMissense, CADD,
and REVEL were either statistically insignificant or only marginal. Among them, variants with
AlphaMissense scores exceeding 0.56 (n = 38) showed the highest OR (1.6, P = 0.002), but this
result was less robust. The stronger association between non-functional variants and breast cancer
risk, as determined by our functional approach, further supports the clinical utility of our scoring
method in assessing cancer risk among ATM variant carriers.

Total of 159 missense variants
AlphaMissense score 0.56-0.34 (n = 18)] —e—
CADD score > 25 (n =53) -e—
REVEL score > 0.75(n = 24)] —e—
REVEL score 0.75-0.5 (n = 33) ——

AlphaMissense score > 0.56 (n = 38) ——
Intermediate SNV by function score (n = 12) —_—
Non-functional SNV by function score (n = 44) —_——
1 2 3 4 5
QOdds ratio

Figure 34. Associations between functional subsets of missense variants and their occurrence
as germline variants in breast cancer patients. Pathogenic variant subsets were determined using
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the known cutoff values of computational scores calculated using AlphaMissense, REVEL, and
CADD, or using our function scores. Odds ratios were calculated by comparing the occurrence of
each pathogenic variant subset in tumor samples to that of the benign variant subset. Black bars
represent 95% confidence intervals.

To investigate the correlation between function scores and cancer genomics, we analyzed tumor
sequencing data from the AACR GENIE Cohort v16.0 (Genomics Evidence Neoplasia Information
Exchange; hereafter referred to as GENIE) [25], which comprises data from 184,988 cancer patients.
Among the 5,343 ATM SNVs identified in the GENIE dataset, 4,338 were functionally assessed in
this study. Of the 938 variants classified as ‘Oncogenic’ or ‘Likely oncogenic’ according to OncoKB,
724 (77%) were non-functional (Figure 35A). Furthermore, 29% (984/3,392) of variants labeled as
‘Uncertain’ by OncoKB were also classified as non-functional in our analysis, suggesting that a
substantial fraction of variants with uncertain oncogenic potential may, in fact, be pathogenic. Four
variants frequently observed in cancer samples (c.1009C>T [R337C], ¢.1010G>A [R337H],
¢.9023G>A [R3008H], and c¢.748C>T [R250*]) have been primarily classified as oncogenic due to
their high prevalence in cancer cases (Figure 35B) [25]. However, our experimental data indicate
that R337C and R337H exhibit neutral function (scores: -0.65 and 0.33, respectively) and are rare
in the general population (0.017% and 0.007%, respectively) (Figure 28B), suggesting that their
current oncogenic classification should be reevaluated. Conversely, R3008H and R250* were found
to be non-functional, aligning with their ClinVar pathogenic classifications. Additionally, the
¢.7271T>G (V2424G) variant, associated with a 69% breast cancer risk [78], was also determined
to be non-functional in our analysis.
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Figure 35. Distribution of function scores in GENIE database. (A) Kernel density estimate plots
of function scores for SNVs (n = 4,338) found in tumor sequencing data, classified by the OncoKB
database. The cutoff for depleting variants, -0.912, is indicated with the dashed vertical line. (B)
Function scores of SN'Vs plotted against the number of observations in tumor samples. Four variants
most frequently observed observed in tumor samples and a variant with a strong association with
breast cancer (¢.7271T>G) are shown with arrows.

Given that pathogenic variants in ATM have been implicated in an increased susceptibility to
multiple cancer types, including breast and pancreatic cancer [7, 79], we investigated the association
between ATM missense SNVs and cancer. We assessed their frequency in tumor and non-cancer
populations. Specifically, we classified missense SNVs based on their functional impact using our
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system and compared their distribution between cancer cases (n = 7,611) derived from the GENIE
tumor sequencing dataset and non-cancer controls (n = 74,023) from gnomAD v3.1.2. ORs were
computed for each SNV based on its frequency in cases and controls. The analysis revealed a strong
association between non-functional SNVs (n = 1,069) and pan-cancer occurrence (OR = 6.2, P =
1.0 x 10°!"1), while intermediate variants (n = 268) exhibited a weaker yet statistically significant
association (OR = 1.2, P = 0.012) (Figure 36A). It is important to note that elevated pan-cancer
occurrence denotes an overall increased frequency across all cancer types rather than a uniformly
high prevalence within individual cancer types. Furthermore, the ORs of non-functional variants
classified by AlphaMissense, CADD, and REVEL were notably lower than those identified as non-
functional through our experimental assessments. Among these, variants with AlphaMissense scores
exceeding 0.56 (the threshold corresponding to 90% precision, n = 1,007) demonstrated the highest
OR (3.8). Given that the ORs of predicted non-functional variants are contingent on the chosen score
thresholds, we systematically varied cutoff values to examine their influence. The results indicated
that function scores derived from our system yielded higher ORs than those based on alternative
methods such as AlphaMissense (Figure 36B), suggesting that function-based classification may
provide clinically relevant insights into the cancer-associated risk of ATM variants.
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Figure 36. Associations between functional subsets of missense variants and their occurrence
in tumor samples. (A) Pathogenic variant subsets were determined using the known cutoff values
of computational scores determined by AlphaMissense, REVEL, and CADD, or using our function
scores. Odds ratios were calculated by comparing the occurrence of each pathogenic variant subset
in tumor samples to that of the benign variant subset. Black bars represent 95% confidence intervals.
(B) Odds ratios plotted across varying proportions of non-functional SNVs. The variation in the
proportions of non-functional SN'Vs was induced by changing cutoff values for each scoring system.
The dashed lines represent the proportions of non-functional SNVs at 20% and 30%, which
correspond to the proportions of non-functional missense SNVs in our dataset and the GENIE tumor
sequencing data, respectively.

ATM mutations have also been associated with poorer prognosis in chronic lymphocytic
leukemia (CLL) [18, 80, 81] but with improved outcomes in bladder cancer [20, 82]. In CLL patients
[83] with non-functional or intermediate A7M variants (n = 60), survival outcomes were
significantly worse than in those with intact ATM (n = 829) (Figure 37). To assess the prognostic
impact of 4ATM missense variants, we conducted an analysis excluding patients with premature
truncation variants (nonsense, frameshift, or splice site acceptor/donor). Among patients harboring
only missense variants, those with depleting missense variants (n = 36) exhibited significantly
reduced failure-free survival compared to other missense variant carriers (32 vs. 61 months, P=3.7
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x 10™*) (Figure 38).

To further investigate this relationship, we analyzed genomic data from 623 patients with stage
II-IV bladder cancer [84-89] obtained from cBioPortal [30, 31]. Patients with depleting ATM
variants (n = 34) demonstrated significantly longer overall survival than those with intact ATM (n =
557) (77 vs. 22 months, P = 0.044). Additionally, although progression-free survival was longer in
the depleting ATM group, the difference did not reach statistical significance (P = 0.118). Patients
carrying functionally intact ATM variants (n = 32) had overall and progression-free survival
comparable to those in the intact ATM group (Figure 38).

These findings, together with the analysis of patients with chronic lymphocytic leukemia (CLL),
support the utility of our functional classification in predicting the clinical prognosis of cancer
patients harboring ATM variants.
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Figure 37. Prognosis of cancer patients with different functional categories of ATM variants.
Patients with chronic lymphocytic leukemia (CLL, the number of patients, n = 900) and those with
stage III or I'V bladder cancer (n = 623) were categorized into three groups based on the functional
classes of their somatic variants: depleting (non-functional + intermediate) variants, functional
variants, and wild-type ATM. Survival analysis was conducted using the Kaplan-Meier estimator. P-
values of survival comparisons between the intact ATM group and functional (blue) or depleting
groups (red) are shown. FFS, failure-free survival; OS, overall survival; PFS, progression-free
survival.
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Figure 38. Prognosis of cancer patients with different functional categories of ATM missense
variants. Patients with chronic lymphocytic leukemia (CLL, the number of patients, n = 874)
harboring missense variants were categorized into three groups based on the functional classes of
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their somatic variants: depleting (non-functional + intermediate) variants, functional variants, and
wild-type ATM. Survival analysis was conducted using the Kaplan-Meier estimator. P-values of
survival comparisons between the intact ATM group and functional (blue) or depleting groups (red)
are shown. FFS, failure-free survival; OS, overall survival; PFS, progression-free survival.

3.7. Deep learning-based prediction of the functional effects of ATM

variants

Out of the 27,513 potential SNVs within the ATM coding sequence, 4,421 could not be analyzed due
to insufficient prime editing, particularly in AT-rich regions lacking the NGG PAM motif (Figure
39A and 39B). To address this, we proposed that the function scores for these 4,421 SNVs could be
computationally estimated using experimentally determined scores from the remaining 23,092
SNVs. For this purpose, we applied a transformer-based deep learning model that incorporated
variant positions, classifications, the AlphaFold 3-derived ATM protein structure [46], and scores
from existing models such as AlphaMissense (Figure 40, Mecthods). The model was assessed using
116 variants functionally categorized as P/LP or B/LB in ClinVar. After filtering out variants that
influenced the same amino acid sites as those in the test dataset, we retained 16,275 missense, 1,183
nonsense, and 4,395 synonymous variants for model training (Methods). The model, named
DeepATM, was validated through five-fold cross-validation, yielding a median Pearson correlation
coefficient of 0.65. Excluding structural data from AlphaFold 3 led to a slight reduction in the
median Pearson correlation coefficient to 0.61 (P = 0.032, Figure 41A), suggesting that including
ATM structural information enhances functional effect predictions. Using random forest instead of
deep learning for missense variants alone, the median Pearson correlation coefficients for DeepATM
with and without structural data, and random forest, were 0.61, 0.57, and 0.55, respectively (Figure
41B).
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Figure 39. Sequence compositions of cancer-related genes. (A) Percentages of A and T
nucleotides within the coding sequences of the hereditary cancer-associated genes shown on the x-
axis. The mean percentage of A and T nucleotides for 19,284 human genes is 47%, the value that is
indicated with the dashed horizontal line. (B) Percentages of 3-bp sequences that are canonical PAM
sequences (NGG or CCN) within the coding sequences of the hereditary cancer-associated genes
shown on the x-axis. The mean percentage of such sequences for 19,284 human genes is 12%, the
value that is indicated using the dashed horizontal line. Four genes, whose variants were functionally
evaluated in a high-throughput manner, are indicated using light red bars.
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Figure 40. Schematic representation of DeepATM.
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Figure 41. Results of five-fold cross-validation for machine learning models. (A) Pearson’s
correlation coefficients in five-fold cross-validation for DeepATM and the same transformer-based
model trained without protein structural information. (B) Pearson’s correlation coefficients for
missense variants in five-fold cross-validations for DeepATM, the same transformer-based model
trained without protein structural information, and the random forest model. Statistical significance

by Wilcoxon’s test with Bonferroni correction is shown
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DeepATM scores were transformed into experimentalized DeepATM scores (eDA scores) via
a rank-based adjustment and regression, aligning their distribution with function scores (Methods,
Figure 42A). The eDA scores for both the 23,092 and 4,421 SNVs exhibited comparable
distributions (Figure 42A), and a strong correlation was observed between eDA scores and function
scores (r = 0.70, Figure 42B).
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Figure 42. Relationships between the eDA scores and function scores. (A) Distribution of the
function and eDA scores of the 23,092 experimentally evaluated SNVs, and of the eDA scores for
4,421 unevaluated SNVs. The distributions of function and eDA scores for the 23,092 SNVs were
almost identical. (B) Correlations between the eDA and function scores for 23,092 SNVs. The cutoff
values (-1.360 and -0.912) used for functional classification of SNVs are shown with dashed lines.

These scores effectively differentiated P/LP variants from B/LB variants (Figure 43). ROC
analysis using 116 ClinVar-classified missense variants as the test dataset demonstrated that
DeepATM had the highest AUC (0.95) among evaluated models (Figure 44A), with AlphaMissense
ranking next at an AUC of 0.91. Under a stricter classification criterion (ClinVar two-star or higher),
the test dataset was reduced to 68 variants, resulting in DeepATM achieving an AUC of 0.99, which
significantly surpassed AlphaMissense (0.94, DeLong’s test, P=0.034) (Figure 44B). For the 4,421
previously unassessed variants, using 240 variants with a ClinVar classification of at least two stars
and 455 variants with at least one-star classification, the AUCs were 1.00 and 0.99, respectively
(Figure 45), demonstrating DeepATM’s high predictive accuracy.
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Figure 43. Kernel density estimation plots of eDA scores for unevaluated SNVs reported in
ClinVar as P/LP (pathogenic or likely pathogenic) (n = 220), or B/LB (benign or likely benign)
(n = 343). The cutoff for depleting variants, -0.912, is indicated with the dashed vertical line.
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Figure 44. ROC curves for computationally calculated function scores. (A) ROC curves of 116
SNVs in the test set that have been functionally classified as either pathogenic/likely pathogenic or
benign/likely benign in ClinVar with = one-star status. (B) ROC curves of 68 SNVs in the test set
that have been functionally classified as either pathogenic/likely pathogenic or benign/likely benign
in ClinVar with = 2-star status.

A PLPvs. BILB (22star) B P/LP vs. B/LB (2 1-star)
1.0 1.07
30.8- 0.8
£ >
206 S06-
5 @
0 0.4 $ 0.4
)
0.2 0.24
0.0- AUC =1.00 0.0, AUC =0.99

10 08 06 04 02 00 45 o8 06 04 02 00
Specificity Specificity

Figure 45. ROC curves for eDA-based functional classification. (A) ROC curves for eDA-based
functional classification of 240 SNV in the unevaluated set with ClinVar classifications with = 2-
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star status. (B) ROC curves for eDA-based functional classification of 455 SNVs in the unevaluated
set with ClinVar classifications with = one-star status. Area under the curve (AUC) values are
shown.

Similar to function scores, variants with low eDA scores tended to have lower allele frequencies,
while those with high eDA scores were more frequent (Figure 46A). In UK Biobank data, 425 of
the 4,426 SN'Vs without function scores but with eDA scores were identified. Individuals carrying
non-functional eDA scores had significantly increased cancer incidence (P = 7.5x10#) compared to
those with intact ATM (Figure 46B, left). A similar trend was observed for missense variants (Figure
46B, right), and individuals with non-functional eDA scores exhibited a significantly higher lifelong
cancer risk (Figure 47A). Cumulative breast cancer risk during follow-up and overall lifetime risk
were also significantly elevated in this group (Figure 47B and 47C). These findings indicate that
eDA scores can be used to predict cancer susceptibility in individuals with 4TM variants.
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Figure 46. Analyses of clinical databases for unevaluated SNVs using eDA scores. (A) eDA
scores plotted against allele frequencies of SNVs in the general population (gnomAD v.4.1 and UK
Biobank). ClinVar classifications are shown using different colored dots. (B) Cumulative cancer
incidence in UKB participants (n = 323,897) with different functional categories of 4TM variants
determined using the eDA score. Experimentally unevaluated variants only were analyzed. The left
panel includes participants with all types of SNVs, and the right panel includes only participants
with missense SNVs and intact ATM. P-values are shown for each group in comparison with the
intact ATM group.
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Figure 47. Cumulative cancer incidence in UK Biobank with different functional categories of
ATM variants determined using the eDA scores. (A) Lifelong cancer incidence, the left panel
includes participants with all types of unevaluated SNVs, and the right panel includes only
participants with unevaluated missense SNVs and intact ATM.

(B) Cumulative breast cancer incidence in female UK Biobank participants, the left panel includes
participants with all types of unevaluated SNVs, and the right panel includes only participants with
unevaluated missense SNVs and intact ATM.

(C) Lifelong breast cancer incidence in female UK Biobank participants, the left panel includes
participants with all types of unevaluated SNVs, and the right panel includes only participants with
unevaluated missense SNVs and intact ATM. The P-value is shown for the non-functional group in
comparison with the intact ATM group. (intact, green; functional, yellow; intermediate, blue; non-
functional, red)

In the GENIE dataset, 698 missense variants that had not been experimentally assessed were
classified as non-functional based on their eDA scores. These variants showed an increased odds
ratio (OR = 52, P = 1.1x107%) for cancer occurrence compared to variants classified as non-
functional by other models, such as AlphaMissense (Figure 48A). Furthermore, odds ratios for non-
functional variants across different eDA score thresholds were consistently higher than those
observed with previous models (Figure 48B), underscoring the clinical utility of eDA scores in
evaluating the cancer relevance of 4ATM variants.
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Figure 48. Associations between functional subsets of unevaluated missense variants and their
occurrence in tumor samples. (A) Pathogenic variant subsets were determined using the known
cutoff values of computational scores calculated by AlphaMissense, REVEL, and CADD, or using
our function scores. Odds ratios were calculated by comparing the occurrence of each pathogenic
variant subset in tumor samples to that of the benign variant subset. Black bars represent 95%
confidence intervals. (B) Odds ratios plotted across varying proportions of non-functional SNVs.
The variation in the proportions of non-functional SNVs was induced by changing cutoff values for
each scoring system. The dashed lines represent the proportions of non-functional SNVs at 20% and
30%, which correspond to the proportions of non-functional missense SNVs in our dataset and the
GENIE tumor sequencing data, respectively.

3.8. Complete functional classification of all 27,513 possible ATM SNVs

In total, we generated 23,092 function scores and 4,421 eDA scores, covering all 27,513 possible
ATM SNVs across 62 protein-coding exons. When multiple SNVs resulted in the same single amino
acid variant (SAAV) in ATM, we derived a representative function or eDA score by averaging the
individual scores from those SNVs. These consolidated scores are reported for SAAVs within
residues 2,712 to 3,056, including the kinase domain, as illustrated in Figure 49. Among non-
functional SNVs, 24% were nonsense mutations, while 16% were missense mutations occurring in
the kinase domain. In the GENIE dataset, these proportions were 11% and 28%, respectively, while
in the bladder cancer patient database, they were 16% and 36%. In the CLL patient database,
nonsense mutations comprised 12% and missense mutations 56% of non-functional SNVs.

We further reassessed the clinical significance of the function and eDA scores for all 27,513
SNVs. The combined scores effectively distinguished B/LB variants from P/LP variants (Figure
50A). The frequencies of deleterious A7M variants in both the general population and cancer
samples, along with the odds ratios (ORs) for deleterious variants in cancer samples relative to
controls, closely matched those calculated using the 23,092 function scores (Figure S0B-F). The
ability to predict cancer patient prognoses—such as worse outcomes for patients with deleterious
ATM variants in CLL and improved outcomes in bladder cancer—showed slight enhancements
(Figure 50G), likely due to the expanded patient sample size.

Additionally, we assessed cancer risk using UKB data and the combined scores. Individuals
carrying non-functional ATM variants exhibited an increased risk for both total and breast cancers
compared to those with functional ATM (Figures 51A-E). When analyzing hazard ratios (HRs)
across different cancer types, breast cancer (HR = 1.5) and prostate cancer (HR = 1.4) demonstrated
the highest HRs among individuals with non-functional 47M variants (Figure 51F). These findings
align with prior studies indicating elevated risks for breast and prostate cancers in individuals with
ATM variants [8, 10]. Collectively, our results suggest that these combined scores can serve as useful
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predictors of cancer prognosis and risk in individuals carrying ATM SNVs.

o -Eo-r>awE| - - o - o s« -a> o >[afo)> 5% 8
e ofg[F o ]ex (S o S5l-8 |5 H 4 FooEe | b EEEEER @
o M ol clo<or |Y « O « o o sBEode<- |7 AEE
Bl [ w w x[a]T] —
< B
By < o - wl+]q]
g > > o <[a[g]
Dl 0 L =] >|<] (=3
FoLF<z= m «fa w > x[¥] ]
ofJoo>o0zi® 0 o o 2[5}
—LZI-0a>k b > [T]o . Y - w3
° i <[glFo<oo> | o 4 > o o[} °
o = L BERle- 12 - S 3 oflazwa S
o S «[o[[alo]« o - ] > ~ alf<>uw ©
= x x c -Fs>-0
= o ] w>o
5
EXOFNIZX ey uw <] [ -—zoxoon
Flz-<ar o 2 w 'w. o
uf-|><ococ0uwx m [ M z[Zlxor>0z = o a
FESok<0X [H] - < e[f|gex =0 = kY =
ZOr-ZI>X0 |- > xhlejozrx -w o] ©
. —x-o| | >[+ o o o » = m
ofJ«-roeai (3 ool |=]F x « 3 3 a 3 mB ] ©
“ao>aw o [ o o of: & B o Il (<]
L_USILFW z/[g] - Q LH. _N
FE-X0OF<& <[a] T -] w
Y 2 Zue=>0a
z[xp]-T0z+d o[3] > &
CHWRYSCG e o 2 z[z]o]x]o]- -2z
=T LT u . = >« = -
ofg[Joz~wex < Fa-<zok I oldel w0z |
w[-5>>0u0 s afgJ<rzxan o< 3
>EEe-oe> | o o <] o zozoz-oe¥ | B ofpox<>oo |7
ofel= Ioe]u]= o (2 2 g w g -u>-o-zoo (2E SQouou->
ofgf[~ezxuwo ¥ o & z & wfluoo<xo> Z.M oz zoonER
S|xjx|> -+ 2 - FF-<0n0Z
>[olfde +>= o wflo<u>o00¥| fe WCCE
1<) I >u-o0<s>
<[gcor>0< - o<ooz>Tuw>| [
oS[E[z[<]e]u]> o ~ E_UKGDEVOX m TETPlSA
olff [Fele w0 >00La-<> B of[Efolize o 5] ©Q©VxOO>E
| X la]z]e <+ % >lojuj< - 4> ﬂ w GOEADH
ale>0a s o[- Plee]w o = = ofz]x 04 uwl|xo<o>uwo °
ofz[<Hz[>ujoa | Foro-ox<k | -H ¢« | Je o P4 >o0zwa<> ]
of[zl>0<zua (¥ S g Rkl o 8 - = o[ ed5< 0 °
efoforeoax | o B of DEEE & > b l=lo- z uE
or>000<n Wv - Hm.lVL Ao LMPMV.
x|Z] = o uf+ >0 <|-|ajol< o> Kﬂﬂm TQR
>|<] o [ Y ) x| |ulz]-|e x o - -
SRR s - H -EEN->= 3 wl- I« oEisies
olelzlel I Jve = Z[o[o]z]w > aT< Q.ﬁKHL
e[fo-xorg |, o ~HE ° ol=ao | o z-x o LPR:Lvr o
gloj-=x03ze T ° by > o< > 4 > 8 |- |oe -~ >
- o~ o~ N o~ ~ N - o




Figure 49. Heatmap showing the functional effects of variants in the kinase domain. Letters
within the boxes indicate the amino acid substitutions that have been generated at each position in
the reference sequence, which is shown at the top of each segment. Asterisks represent stop codons,
and boxes outlined in black indicate non-functional variants. The numbers at the bottom of the
heatmap indicate the positions in the amino acid sequence. Functional domains are shown below the
amino acid positions. The color spectrum, from red to blue, represents the average function or eDA

scores for the single amino acid variants.
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Figure 50. Clinical relevance of combined scores. (A) Kernel density estimation plots of combined
scores (function scores for evaluated SNVs and eDA scores for unevaluated SNVs) for all SNVs in
the coding sequence reported in ClinVar as P/LP (pathogenic or likely pathogenic) (n = 690), or
B/LB (benign or likely benign) (n = 2,560). The cutoff for depleting variants, -0.912, is indicated
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with the dashed vertical line. (B) Combined scores plotted against allele frequencies of SNVs in the
general population (gnomAD v.4.1). ClinVar classifications are shown using different colored dots.
(C) Kernel density estimate plots of combined scores for all SNVs in the coding sequence (n=5,250)
found in tumor sequencing data, classified by the OncoKB database. The cutoff for depleting
variants, -0.912, is indicated with the dashed vertical line. (D) Combined scores of SNVs plotted
against the number of observations in tumor samples. Four variants most frequently observed
observed in tumor samples and a variant with a strong association with breast cancer (c.7271T>G)
are shown with arrows. (E) Associations between functional subsets of missense variants and their
occurrence in tumor samples. Pathogenic variant subsets were determined using the known cutoff
values of computational scores calculated by AlphaMissense, REVEL, and CADD, or using our
combined scores. Odds ratios were calculated by comparing the occurrence of each pathogenic
variant subset in tumor samples to that of the benign variant subset. Black bars represent 95%
confidence intervals. (F) Odds ratios plotted across varying proportions of non-functional SNVs.
The variation in the proportions of non-functional SNVs was induced by changing cutoff values for
each scoring system. The dashed lines represent the proportions of non-functional SNVs at 20% and
30%, which correspond to the proportions of non-functional missense SNVs in our dataset and the
GENIE tumor sequencing data, respectively. (G) Prognosis of cancer patients with different
functional categories of ATM variants. Patients with chronic lymphocytic leukemia (CLL, the
number of patients, n = 906) and those with stage III or IV bladder cancer (n = 639) were categorized
into three groups based on the functional classes of their somatic variants: depleting (non-functional
+ intermediate) variants, functional variants, and wild-type ATM. Survival analysis was conducted
using the Kaplan-Meier estimator. P-values of survival comparisons between the intact ATM group
and functional (blue) or depleting groups (red) are shown. FFS, failure-free survival; OS, overall
survival; PFS, progression-free survival.
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Figure 51. Cancer risks determined using combined scores for all 27,513 possible ATM SNVs
based on UKB data. (A) Cumulative cancer incidence in UKB participants (n = 458,524) with
different functional categories of A7M variants determined using the combined score. The left panel
includes participants with all types of SNV mutations, the middle panel includes only participants
with missense SNVs and intact ATM, and the right panel includes only participants with VUSs and
intact ATM. The numbers of participants are shown below. P-values are shown for each group in
comparison with the intact ATM group. (B) Hazard ratios of cancer incidence for various
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computational scores and the combined score. Black bars represent 95% confidence intervals. AM,
AlphaMissense. (C) Lifelong cancer incidence in UKB participants with different functional
categories of ATM variants determined using the combined score. The left panel includes participants
with all types of SN'Vs, and the right panel includes only participants with missense SNVs and intact
ATM. P-values are shown for non-functional (red) and intermediate groups (blue) in comparison
with the intact ATM group. (D) Cumulative breast cancer incidence in female UKB participants with
different functional categories of A7M variants determined using the combined score. The left panel
includes participants with all types of SNVs, and the right panel includes only participants with
missense SNVs and intact ATM. The P-value is shown for the non-functional group in comparison
with the intact ATM group. (E) Lifelong breast cancer incidence in female UKB participants with
different functional categories of ATM variants determined using the combined score. The left panel
includes participants with all types of SNVs, and the right panel includes only participants with
missense SNVs and intact ATM. The P-value is shown for the non-functional group in comparison
with the intact ATM group. (F) Hazard ratio of developing various types of cancer in participants
with ATM variants in each functional category. SNVs were categorized functionally based on the
combined score. Hazard ratios were adjusted for the effects of sex and age. Each type of cancer is
defined with a set of ICD-10 codes (Methods). Vertical bars represent 95% confidence intervals.
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4. DISCUSSION

In our study, we assessed cell fitness in the presence of the PARP inhibitor olaparib. Because PARP
is responsible for repairing single-strand breaks (SSBs), its inhibition leads to the accumulation of
SSBs, which eventually convert into double-strand breaks (DSBs), increasing the burden on the
cell’s DSB repair pathway [90, 91]. ATM plays a key role in activating DSB repair pathways, such
as homologous recombination, and the failure in DSB repair can result in excessive DNA damage,
leading to genomic instability, and, in most cases, subsequent cell death [3, 92]. Thus, ATM variants
depleted in the presence of olaparib are likely impaired in DSB repair. Furthermore, given that 4 TM-
directed DSB repair is mainly mediated by the interaction of ATM with NBS1, a member of the
MRN (MRE11-RAD50-NBS1) complex, and the kinase activity of ATM, ATM variants depleted in
the presence of olaparib are likely to exhibit disruptions in the interaction with NBS1 or impaired
kinase activity. In addition, ATM phosphorylates Chk2 and p53, leading to cell cycle arrest and the
inhibition of uncontrolled cell proliferation [93]. Therefore, ATM variants depleted in the presence
of olaparib are also likely impaired in cell cycle regulation and the maintenance of genomic stability,
possibly increasing cancer risk.

Independent of DNA damage, ATM can be directly activated via oxidation by reactive oxygen
species (ROS) [94]. This ROS-directed ATM activation promotes the clearance of toxic protein
aggregates [95, 96] and regulates ROS homeostasis [3, 97, 98]. It is unclear whether the ATM
function measured in our study can be extrapolated to these functions of 47M that are independent
of the DNA damage response (DDR). Interestingly, R3047X, an ATM variant that has intact DDR
activity, but impaired ROS homeostasis regulation [94, 99], was classified as non-functional in our
study, suggesting that such extrapolation might be possible. However, further research is necessary
to draw a more generalized conclusion on this issue.

The importance of ATM autophosphorylation in the mechanism of ATM activation has been
debated for decades. Surprisingly, most amino acid substitutions at one of the well-known (the
number of substitutions n = 24) and potential autophosphorylation sites (n = 12) (well-known: S367,
S1893, S1981, and S2996, potential: T1885 and C2991) [3] showed no depleting effects, with an
average function score of -0.20 and 0.48, respectively; two exceptions did exhibit such effects
(S1893L and S2996T). Two previous studies suggested that, in response to radiation exposure, ATM
variants with mutations in one of the autophosphorylation sites (e.g., S367A, S1893A, and S1981A)
retained, albeit slightly reduced, protein kinase activity and exhibited autophosphorylation at other
autophosphorylation sites (e.g., phosphorylation at S1893 in S1981A-mutant cells) [100, 101]. Other
studies even proposed that the primary activation mechanism of ATM is not its autophosphorylation,
but its interaction with the MRN (Mrel1-Rad50-Nbs1) complex [102-104]. Based on these results,
a single missense mutation at one of the autophosphorylation sites may not completely inactivate
ATM, due, perhaps, to possible autophosphorylation at other sites. Further research is needed to
draw a solid conclusion on this issue.

Five missense variants with discordant ClinVar interpretations as LB or B were classified as
non-functional in this study. After a thorough manual review of the evidence and reclassification
using ClinGen guidelines [14], we determined that none met the exact criteria for LB or B. As a
result, these variants were reclassified as either VUS or LP (Table 5). Furthermore, we observed
significant differences in SpliceAl scores synonymous variants between our classifications
suggesting that the function score is also reliable for synonymous variant classifications (Figure 52).
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Two clinical trials failed to establish a solid correlation between deleterious 47M mutations
and PARP inhibitor responses [17, 105]. If clinical trials were conducted again using the functional
classification results provided in our study, it might be possible to draw a more solid conclusion
about the correlation between the functional status of A7M and the response to PARP inhibitors.
Furthermore, our data could also be utilized for planning other clinical trials relevant to ATM
mutations.

We used a single cell line, which aligns with other representative studies for the functional
evaluation of all possible SNVs across entire coding sequences [57, 59, 60]. We cannot rule out the
possibility that the functional evaluation results could vary depending on the cell type and genetic
background. Although prime editing rarely induces off-target effects [21, 56, 61], we cannot
completely rule out the possibility that some functional effects associated with SNVs could be, at
least partly, attributable to potential off-target effects, which we did not assess in a high-throughput
manner. We used a single readout of cell survival and proliferation in the presence of olaparib for
the functional evaluation of ATM variants. While we cannot rule out the possibility that the
functional evaluation results might differ if a different readout were used, or that variants classified
as non-functional might retain some functionality in other processes, our current results align with
clinical data. We experimentally evaluated 84% of all possible SNVs. The inability to reach 100%
of them is mainly attributable to AT-rich regions that lack the canonical NGG PAM. However, using
deep learning, we accurately evaluated the remaining 4,421 variants, which also showed clinical
usefulness. We envision that this approach can be expanded to other genes to address the issue of
VUSs, enabling precision medicine.
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Figure 52. Splice Al score distribution of variants. Left panel shows the splice Al score
distribution of synonymous variants for functional classifications, and the right panel shows the
splice Al score distributions for intronic variant types.
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Table 5. Manual review of discordant variants and reclassification

HGVSc HGVSp Type CADD REVEL AM SpliceAl GnomAD ClinVar Score Confidence Star Evidence Final
c987A>G R329R Syn NA NA NA 0 0 LB -1.878 High 2 BP7, PM2, PS3 LP
¢.1062C>T H354H Syn NA NA NA 0.04 0 LB 1,592 High 2 BP7, PM2, PS3 LP
c4551T>C LISI7L Syn NA NA NA 0.01 0 LB -1.425 High 2 BP7, PM2, PS3 LP
.4890C>T DI630D  Syn NA NA NA 032 0 LB -3.408 High vUS BP7, PM2, PS3 LP
¢.5013T>A VI67IV  Syn NA NA NA 035 0 LB -1.431 High 1 BP7, PM2, PS3 LP
¢.5016A>G G1672G Syn NA NA NA 0.25 0 LB 2.205 High 1 BP7, PM2, PS3 LP
¢.5016A>T GI672G  Syn NA NA NA 0.5 0 LB 4773 High 1 BP7, PM2, PS3 LP
¢.5019C>T S16738 Syn NA NA NA 0.18 0 LB -3.396 High 2 BP7, PM2, PS3 LP
¢5262G>A  KI754K  Syn NA NA NA 0 0 LB -1.873 High 2 BP7, PM2, PS3 LP
.6066T>G G2022G Syn NA NA NA 0.28 0 LB 2.176 High 1 BP7, PM2, PS3 LP
.6663G>A E2221E Syn NA NA NA 0.04 6.84E-07 LB -1.583 High 2 BP7, _uzwmwm%goas@ vUS
¢.7081C>T L2361L Syn NA NA NA 0 0 LB -1.404 High 2 BP7, PM2, PS3 LP
.8148T>C V2716V Syn NA NA NA 0 0 LB -1.568 High 1 BP7, PM2, PS3 LP
.8700T>C L2900L Syn NA NA NA 0 0 LB 1673 High 1 BP7, PM2, PS3 LP
.8844T>C 129481 Syn NA NA NA 0.07 1.86E-06 LB -1.483 High 2 BP7, _uwameoa:@ vUS
¢.9096G>A V3032V Syn NA NA NA 0 0 LB 3.964 High 2 BP7, PM2, PS3 LP
¢319T>C CI07R Miss 225 0.16 0.299 0 6.84E-07 LB -1.906 Medium-high 1 BP4, _Uszww%o:_.sm_ vUS
.569T>A 1190K Miss 25.8 0376 0.934 0.05 0 B 2.58 Medium-high 1 PM2, PS3 LP
.1462T>A W488R  Miss 25.8 0.65 0.89 0.04 0 LB 2.553 Computational 1 PM2 vUS
€.5306C>A TI769K  Miss 229 0.433 0.18 0.29 0 LB 2.163 Medium-high 1 BP4, PM2, PS3 LP
¢5693G>A  RIS9SQ  Miss 19.9 0.125 0.075 0.14 0.0001407 B/LB 3.911 Medium-high 2 BP4, PS3 vUS
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S. CONCLUSION

In this study, we used prime editing and deep learning for the functional evaluation of 100% of the
27,513 possible ATM SNVs across all 62 protein-coding exons. We envision that the approach used
in this study can be expanded for the evaluation of other ATM functions that cannot be assessed by
measuring cell fitness in the presence of olaparib as well as for the complete functional evaluation
of variants in other genes, including those with AT-rich regions in which NGG PAMs are rare. We
have experimentally evaluated 62 exons and 23,092 variants in this study, making our analysis larger
in scale than other saturation genome editing studies that have analyzed the complete coding
sequences of RAD5I1C (9 exons and 9,188 evaluated variants) [59], BAPI (17 exons and 18,108
variants) [60], VHL (3 exons and 2,268 variants) [57], and DDX3X (17 exons and 12,776 variants)
[65].

Our functional evaluation results provide clinically useful information, in that they can estimate
cancer risk (or identify individuals at high-risk for cancer) and predict the prognosis of cancer
patients, which is unprecedented. We envision that our results could be applied to guide the use of
PARP inhibitors in cancer patients with 4 7M mutations, although solid conclusions about this issue
would require further clinical studies. In addition, our results could be used to diagnose A-T.
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