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ABSTRACT 

 

Development of artificial intelligence algorithm for screening colorectal 

cancer lesions in routine abdominopelvic CT without bowel 

preparation 
 

Background: Unlike CT colonography, routine abdominopelvic CT (APCT) is performed without 

bowel preparation, which can lead to the occasional oversight of unsuspected colorectal cancer 

(CRC).  

Objective: To develop an AI-based algorithm to detect CRC in contrast-enhanced APCT acquired 

without bowel preparation. 

Methods: 2,662 patients with CRC who underwent APCT before treatment between January 2010 

and December 2014 were enrolled to train the AI model. The model was retrospectively tested 

with internal and external datasets. Both testing datasets comprised APCTs from consecutive 

patients with or without CRC who underwent CT and colonoscopy within two months at two 

independent tertiary hospitals between January and June 2018. For reference standard annotation, 

an expert radiologist labeled bounding boxes enclosing colorectal cancer in each CT axial slice, 

referencing colonoscopic reports. For CRC detection, a contemporary transformer-based object 

detection network, i.e., DEtection with TRansformer (DETR), was adapted and trained. The 

alternative free-response receiver operating characteristic (AFROC) was used to evaluate the 

performance of the AI algorithm, which was then compared to that of two expert radiologists. 

Results: In the internal 841-patient (mean age, 58 years; 92 patients with 93 CT-detectable CRCs) 

testing dataset, the area under the AFROC curve (AUAFROC) was 0.867. Sensitivity and 

specificity were 79.6% (74/93; per-lesion) and 91.2% (683/749; per-patient), respectively, at the 

point of maximal Youden index. In the external 442-patient (57 years; 26 patients with 26 CT-

detectable CRCs) testing dataset, AUAFROC was 0.808. Sensitivity and specificity were 80.8% 

(21/26; per-lesion) and 90.9% (378/416; per-patient), respectively. Two expert radiologists showed 

sensitivities (73.1% [19/26] vs. 80.8% [21/26]) and specificities (98.3% [409/416] vs. 98.6% 

[410/416]) similar to each other. When compared to the AI, the sensitivities were similar (p = 

0.743 and 1.0, respectively), but the specificities were higher for the human readers (p < 0.001, 

both). 
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Conclusion: This study demonstrated the potential feasibility of an AI-based algorithm for 

detecting CRC in unprepared APCT. 

Clinical Impact: By assisting radiologists in detecting cancer in patients not clinically suspected 

of having CRC, the model can improve outcomes, especially in settings with a shortage of expert 

radiologists. 

 

                                                                                

Key Words: Colorectal Neoplasms; Artificial Intelligence; Deep Learning; DEtection with 

TRansformer (DETR); Computed Tomography; Automatic Detection.



１ 

 

1. INTRODUCTION 

 

1.1. Colorectal Cancer and Routine Abdominopelvic CT 

Colorectal cancer (CRC) is the third most common malignancy and the second most deadly 

cancer, with an estimated 1.9 million cases and 0.9 million deaths worldwide in 20201. The U.S. 

Preventive Services Task Force recommends that adults aged 45–75 be screened for CRC by 

either optical colonoscopy or computed tomography (CT) colonography2. The sensitivity and 

specificity of CT colonography for detecting CRC larger than 1 cm were reported as 82–92% 

and 83–86%, respectively3. 

The major difference in scanning protocols between CT colonography and routine abdominopelvic 

CT (APCT) is whether the bowel is prepared with a cathartic agent and then insufflated. Some 

authors argued that routine unprepared APCT was also reasonably accurate in detecting CRC 

with the pooled sensitivity, specificity, and accuracy of 72.4%, 83.6%, and 80.3%, respectively4. 

However, their results were not indicative of real-world performance in that the readers were 

instructed to rate all colonic segments, which is often omitted during the routine CT 

interpretation process. Another study reported an overall sensitivity of 74.5% for detecting CRC 

on routine APCT. However, the sensitivity decreased to 65% for tumors measuring 2–3 cm and 

further dropped to 50% for tumors smaller than 2 cm5. To summarize, although routine APCT 

can detect and diagnose CRC to some extent, its diagnostic accuracy inevitably falls short of that 

of CT colonography, particularly when lesions are small. 

Meanwhile, the reason radiologists miss CRCs on routine APCT is not always attributable to 

inherent limitations of the scanning protocol. According to one study, the CRC detection rate in 

routine APCT decreased further in a community hospital setting with general radiologists, with a 

reported sensitivity of approximately 66%6. Upon re-examination of these initially missed cases, 

59% were detected in retrospect, increasing the sensitivity to 86%6. This result implies that a 

number of CRCs are likely being missed even when cancers are actually detectable in routine 

APCT. Two major factors may explain this phenomenon. First, the participating radiologists 

were general radiologists rather than gastrointestinal imaging specialists. Second, the radiologists 

may not have thoroughly examined the large bowel, as the clinical indications for the CT 
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examinations in that study were not specifically related to CRC screening or detection. In this 

regard, some authors have insisted that searching for unsuspected CRC should be included in the 

routine APCT interpretation process regardless of the original purpose of the CT scan4. 

However, the number of expert radiologists is limited, and the continuous increase in workload, 

along with eventual burnout, further exacerbates the two aforementioned factors7-9.  

Artificial intelligence (AI) could potentially be used to complement human readers in automating 

the detection of CRC on routine APCT, reducing the frequency of missed cancers. Indeed, 

routine abdominopelvic CT has become established as one of the most commonly used imaging 

tests for a wide spectrum of clinical settings, resulting in accumulation of a massive amount of 

data for possible model creation10,11. The widespread clinical use of routine APCT highlights the 

potential large impact of an AI tool for CRC detection on these examinations in contrast with 

tools tuned specifically for evaluation of dedicated CT colonography examinations12. 

The purpose of our study was to develop an AI-based algorithm to automatically detect CRC in 

routine APCT scanned without bowel preparation, regardless of the reason that APCT was 

originally performed.  

 

1.2. Object Detection Models: Historical Perspectives and Current Trends 

Object detection is a fundamental computer vision task that involves identifying and localizing 

objects within images. Over the past two decades, object detection models have undergone a 

remarkable evolution, transitioning from early hand-crafted feature detectors to modern deep 

learning-based approaches. This evolution has been driven by key technological breakthroughs 

that improved detection accuracy and speed, enabling wide-ranging applications—from 

autonomous driving to medical imaging—where reliable object detection is critical. In the 

medical AI domain, these advances empower systems to detect anatomical structures or lesions 

in complex images with growing precision.  

 

1.2.1. Early Era: Hand-Crafted Features and Limitations 

The earliest object detectors relied on hand-crafted features and simple classifiers. A notable 

example is the Histogram of Oriented Gradients (HOG) descriptor introduced by Dalal and 

Triggs in 200513. HOG features encodes local shape information (edge orientations) on a dense 
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grid, which improved invariance to illumination and slight deformations, leading to substantial 

gains in tasks like pedestrian detection. Building on such features, Felzenszwalb et al. developed 

the Deformable Part-Based Model (DPM) around 200814. DPM represented objects as a 

collection of parts (e.g., a car modeled by its wheels, windows, etc.), allowing some deformation, 

and used an ensemble of part detectors (a “mixture of star models”) for robust detection. DPM 

achieved state-of-the-art (SOTA) results and won multiple PASCAL Visual Object Classes 

(VOC) detection challenges (2007–2009), epitomizing the power of the pre-deep learning 

paradigm. However, by 2010 these methods began to plateau in performance. Despite 

incremental improvements (e.g., better hard-negative mining and bounding-box refinement in 

DPM variants), detection accuracy on challenging benchmarks stagnated in the 30–50% mean 

Average Precision (mAP) range. The limitations stemmed from the reliance on fixed features 

and exhaustive sliding-window search, which struggled with object variations and were 

computationally intensive. A new approach was needed to break this ceiling.  

 

1.2.2. The Deep Learning Revolution: R-CNN and Two-Stage Detectors 

The resurgence of neural networks in 2012 (exemplified by the success of AlexNet on ImageNet 

benchmark) hinted that Convolutional Neural Networks (CNNs) could learn richer features for 

detection15,16. Indeed, 2014 marked a turning point with the introduction of Region-CNN (R-

CNN) by Girshick et al.17. R-CNN was a breakthrough model that brought deep learning to 

object detection: it generated region proposals using selective search, then extracted a CNN 

feature vector for each proposed region, and finally classified each region with a linear Suppor 

Vector Machine (SVM). This two-step approach (proposal then classification) yielded a massive 

jump in accuracy – for example, raising mAP on PASCAL VOC from ~33.7% (DPM) to 58.5%. 

Despite its accuracy, R-CNN had clear drawbacks: the need to run a deep CNN on ~2000 

proposals per image made it extremely slow (approximately 14 seconds per image even with 

GPU acceleration). Researchers quickly sought improvements to streamline this process. One 

improvement was Spatial Pyramid Pooling Network (SPP-Net) by He et al. in 2014, which 

introduced a spatial pyramid pooling layer to the CNN18. SPP-Net allowed feature extraction 

from arbitrarily sized regions in a single pass, avoiding repeated CNN computations for each 

proposal. This sped up detection considerably by computing convolutional features once per 
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image and pooling them for each region. Building on this idea, Girshick proposed Fast R-CNN 

in 2015, which further unified and accelerated the pipeline19. Fast R-CNN enabled end-to-end 

training of the detector by incorporating a Region of Interest (RoI) pooling layer on shared 

convolutional feature maps. This integration boosted accuracy (mAP ~70% on VOC2007, up 

from 58.5% with R-CNN) while running orders of magnitude faster. The next milestone was 

Faster R-CNN developed by Ren et al. in late 201520. Faster R-CNN solved the last major 

bottleneck by introducing the Region Proposal Network (RPN), a small CNN that generates 

object proposals inside the network, replacing external proposal methods. By sharing 

convolutional features between the RPN and the detector head, Faster R-CNN achieved near 

real-time performance (e.g., 5–17 frames per second depending on the backbone) without 

sacrificing accuracy. This two-stage “proposal + refinement” framework became the de facto 

standard for high-accuracy detection, as it efficiently balances precision and speed. Faster R-

CNN and its variants (e.g., R-FCN [Region-based Fully Convolutional Networks], Mask R-

CNN) dominated benchmarks by achieving high mAP while being faster and more trainable than 

earlier methods21,22. 

 

1.2.3. One-Stage Detectors: YOLO and SSD – Emphasis on Speed 

While two-stage detectors optimized accuracy, an alternative family of one-stage detectors 

emerged to maximize speed. The pioneer in this category was You Only Look Once (YOLO), 

introduced by Redmon et al. in 2015–201623. YOLO formulates object detection as a single 

regression problem, feeding the entire image through a CNN that directly predicts bounding box 

coordinates and class probabilities in one evaluation. By eliminating the region proposal step, 

YOLO achieved unprecedented speed – the original YOLO could run at 45 frames per second 

(FPS), and a simplified version reached up to 155 FPS. This real-time performance came with a 

trade-off in localization accuracy and difficulty detecting small objects, as early YOLO versions 

were less precise than contemporary two-stage methods. Nonetheless, the paradigm shift was 

significant: object detection became feasible in time-critical applications. In the medical context, 

such real-time detection can be valuable (for instance, during surgery or live analysis of 

ultrasound/video endoscopy), provided accuracy meets acceptable levels. Following YOLO, the 

Single Shot MultiBox Detector (SSD) by Liu et al. in 2016 extended the one-stage idea with 
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improved accuracy24. SSD introduced multi-scale feature maps and anchor boxes of various sizes 

ratios in a single network pass, allowing it to detect objects of different scales more effectively. 

By making predictions on multiple convolutional layers, each responsible for detecting objects 

within a certain size range, SSD significantly improved small object detection compared to 

YOLO, while still operating quickly (e.g., 59 FPS with mAP around 46–48% on Common 

Objects in COntext [COCO] dataset)25. These one-stage detectors democratized object detection, 

making it more accessible for widespread use. Subsequent versions of YOLO (v2, v3, and 

beyond) steadily closed the accuracy gap while retaining high speed, incorporating ideas like 

multi-scale predictions and better backbone networks. By the late 2010s, one-stage and two-

stage detectors each offered compelling trade-offs, and the field began focusing on combining 

their strengths. 

 

1.2.4. Further Advancements: Multiscale Detection and Anchor-Free 

Models 

To further enhance detection performance, researchers addressed remaining challenges such as 

multi-scale detection and class imbalance. One influential development was the Feature Pyramid 

Network (FPN) by Lin et al. (2017), which created a top-down architecture to merge high-level 

semantic information with low-level spatial detail across multiple scales26. FPN became a 

common backbone component for both two-stage and one-stage detectors, bolstering their ability 

to detect small, subtle objects – a capability highly relevant for medical images (e.g., detecting 

tiny lesions). Around the same time, Lin et al. also introduced RetinaNet (2017), an one-stage 

detector that bridged the accuracy gap with two-stage models by addressing class imbalance in 

training27. RetinaNet’s key contribution was the focal loss, a modified loss function that down-

weights easy negatives and focuses training on hard examples. This innovation allowed one-

stage detectors to achieve comparable accuracy to two-stage detectors on challenging datasets 

(RetinaNet reached ~59% mAP on COCO dataset), without sacrificing much speed. The idea of 

focusing on rare positive examples and difficult cases is particularly pertinent to medical AI, 

where positive findings (e.g., tumors) may be sparse in a sea of normal images. 

Another trend was the move towards anchor-free detectors to simplify the detection pipeline. 

Traditional detectors (both two-stage and one-stage detectors) rely on predefined anchor boxes – 
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a set of default rectangles of various sizes/aspects – as reference points for predictions. Tuning 

these anchor settings can be tedious and may not generalize well to unusual object shapes. 

Anchor-free approaches sidestep this by detecting objects via keypoints. CornerNet (Law and 

Deng, 2018) was an early example that predicted the top-left and bottom-right corner points of 

bounding boxes and paired them to form detections28. It demonstrated that anchor boxes were 

not the only way, achieving competitive results (~57.8% mAP on COCO) without anchors. 

CenterNet (Zhou et al., 2019) further simplified this concept by predicting object centers on a 

heatmap and regressing to object size, essentially treating objects as single points29. By 

eliminating the anchor generation and Non-Maximum Suppression (NMS) steps, CenterNet 

provided a fully end-to-end pipeline that was both elegant and effective (reaching ~61% mAP on 

COCO). The success of anchor-free detectors suggested that with strong feature representations, 

explicit anchoring of boxes was optional. This is encouraging for medical imaging, where 

defining appropriate anchors for irregular anatomy or lesions can be challenging – letting the 

network learn to pinpoint objects directly could be advantageous.  

 

1.2.5. Advent of Transformer Architecture 

Most recently, transformer-based models have pushed object detection into a new era. 

Transformers, which excel at modeling long-range dependencies via self-attention, were 

introduced to vision tasks after their triumph in natural language processing. In 2020, Carion et 

al. proposed DEtection with TRansformer (DETR), the first fully end-to-end transformer-based 

object detector30. DETR treats object detection as a direct set prediction problem: it uses a 

transformer encoder-decoder architecture to globally reason over image features and outputs a 

set of object bounding boxes without needing hand-crafted components like anchor boxes or 

post-processing with NMS. This novel design proved that competitive detection performance can 

be achieved with a much simpler training pipeline, albeit with longer training times required for 

convergence. Follow-up work such as Deformable DETR introduced multi-scale attention 

mechanisms to improve convergence and performance31. Additionally, modern 

CNN/Transformer hybrid backbones (e.g., Swin Transformer by Liu et al. 2021) have further 

improved detection accuracy on benchmarks, indicating the continuing evolution of the field32. 
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2. MATERIALS AND METHODS (EXPERIMENT #1) 

 

2.1. Construction of the Training Dataset 

Among patients histologically diagnosed with CRC, those who had APCT performed before 

treatment at a tertiary hospital (Severance Hospital) between January 2010 and December 2014 

were retrospectively identified. The exclusion criteria are as follows: 1) APCT was performed 

without intravenous contrast injection, 2) surgical history of colonic resection, and 3) history of 

endoscopic mucosal resection (or submucosal dissection) of the colon or rectum. The original 

purpose of the APCT scans—whether they were performed for CRC diagnosis and staging or for 

reasons unrelated to CRC—was not considered. A total of 2,662 patients (1566 male, 1096 

female; mean age, 63±12 years) with 419,059 axial CT slices of portal venous phase were 

identified. Among them, CRCs were shown in 31,364 axial slices.  

 

2.2. Construction of the Internal Testing Dataset 

We identified consecutive patients at the same tertiary hospital (Severance Hospital) who 

underwent both APCT and colonoscopy within an interval of less than 2 months between 

January and June in 2018. The exclusion criteria were as follows: 1) APCT was performed 

without intravenous contrast injection, 2) the colonoscopic result was incomplete for reasons 

including poor bowel preparation or failed scope passage until terminal ileum, 3) presence of 

malignant lesion on colonoscopy that was not confirmed as primary colorectal adenocarcinoma, 

4) surgical history of colonic resection, and 5) history of endoscopic mucosal resection (or 

submucosal dissection) of the colon or rectum.  

The diagnosis of CRC was determined based on the colonoscopy and pathology reports. Patients 

were then divided into two groups to test the model’s performance: those with CT-detectable 

CRC and those without, including cases where CRC was either not diagnosed or diagnosed but 

not detectable on CT. The location of the cancer was determined based on its most distal end, 

and its largest axial diameter was measured on CT. The morphology of the cancer was 

determined based on colonoscopic findings. It was considered polypoid when the height of the 

mass was over 50% of its lateral diameter. Otherwise, the mass was regarded as annular, and it 
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was further divided based on whether the circumferential extent exceeded 50% of the bowel 

lumen. 

 

2.3. Determination of the Reference Standard for CRC 

A gastrointestinal expert radiologist with 8 years of experience labeled reference standard 

bounding boxes, enclosing and fitting the CRC as closely as possible in each axial CT slice 

where CRC was shown, referencing colonoscopic and/or surgical reports. When the tumor and 

metastatic lymph nodes were conglomerated and thus inseparable, they were labeled together. 

MIPAV (Medical Image Processing, Analysis, and Visualization, NIH, Bethesda, MD, USA) 

was used for bounding box labeling.  

 

2.4. Development of the Initial Prototype Model Using the Hourglass 

Network 

The hourglass network is a deep convolutional architecture featuring a symmetric encoder-decoder 

design that excels in capturing multi-scale features, making it widely used in medical AI for 

tasks such as image segmentation and anatomical landmark detection. The CT axial images were 

fed into the hourglass network as input without any preprocessing. The model was trained to 

place bounding boxes in areas suspected of CRC. Not all images from the training dataset were 

used; to address class imbalance, only a randomly selected subset of negative slices (without 

tumors) was included, ensuring approximate 1:1 ratio of positive to negative slices. The loss 

function was experimentally set to utilize mean squared error. To enhance model sensitivity, the 

loss function for tumor cases was scaled by a factor of two.  

The performance of the trained model was evaluated using the internal testing dataset. The overlap 

between the model-generated bounding boxes and the reference standard boxes was evaluated on 

a per-slice basis. The Dice Similarity Coefficient (DSC), precision, sensitivity, and specificity 

were calculated.  
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3. RESULTS (EXPERIMENT #1) 

 

3.1. Internal Testing Dataset 

A total of 841 patients were enrolled in the internal testing dataset. Among them, 99 patients were 

histologically diagnosed with primary CRC, three of whom had two synchronous CRCs. Among 

the total of 102 CRCs, the expert radiologist failed to detect nine cancers from eight patients on 

APCT even after referencing the colonoscopic reports. The clinical and imaging characteristics 

of the internal testing dataset are summarized in Table 1. 
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Table 1. Clinical and imaging characteristics of the internal testing dataset  
Internal testing dataset 

Age (y)* 58 ± 15 

Male : Female 458 : 383 

Patients with primary colorectal cancer 99/841 (12) 

Number of colorectal cancers 102 

Detectable on APCT 93/102 (91) 

Undetectable on APCT 9/102 (9) 

Patients with CT-detectable colorectal cancer 92/841 (11) 

Cancer location, based on the most distal end 
 

Ascending colon 22/102 (21) 

Hepatic flexure colon 13/102 (13) 

Transverse colon 8/102 (8) 

Splenic flexure colon 1/102 (1) 

Descending colon 5/102 (5) 

Sigmoid colon 18/102 (18) 

Rectum 28/102 (27) 

Anus 7/102 (7) 

Cancer size at CT (cm)† 3.6 (2.7–4.5) 

Same or smaller than 2 cm 8/93 (9) 

Larger than 2 cm 85/93 (91) 

Cancer morphology at CT 
 

Polypoid 3/93 (3) 

Annular, < 50% of bowel lumen 21/93 (23) 

Annular, > 50% of bowel lumen 69/93 (74) 

Clinical T staging on CT  

cT1 0/93 (0) 

cT2 17/93 (18) 

cT3 68/93 (73) 

cT4a 5/93 (5) 

cT4b 3/93 (3) 

Suspicious regional lymphnode metastasis on CT 71/99 (72) 

Presence of distant metastasis 9/99 (9) 

Unless otherwise noted, data are numbers of patients or lesions, with percentages in parentheses. 
*Data are mean ± standard deviation. 
†Data are medians, with the interquartile range in parentheses. 
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Detailed information on the nine undetectable cancers is summarized in Table 2. A majority of 

these undetectable cases were either polypoid or small in size with a circumferential tumor 

extent of less than 50% of bowel lumen.  

 

Table 2. Summary of CT-undetectable cancers in the internal testing dataset 

Dataset Sex/Age Location Cancer morphology* Size (cm) 

Internal M/58 Transverse colon Polypoid 5.1 

Internal M/67 Anus Annular, < 50% 2.0 

Internal M/65 Rectum Annular, < 50% 2.0 

Internal F/58 Sigmoid colon Polypoid 3.7 

Internal M/65 Descending colon Annular, < 50% 2.0 

Internal M/74 Sigmoid colon Annular, > 50% 3.0 

Internal F/73 Rectum Annular, < 50% 1.7 

Internal F/73 Sigmoid colon Annular, < 50% 1.5 

Internal M/52 Rectum Annular, < 50% 2.7 

*The morphology of the cancer was determined based on colonoscopic findings. It was determined 

as polypoid when the height of the mass was over 50% of its lateral diameter. Otherwise, the mass 

was regarded as annular, and it was further divided based on whether the circumferential extent 

exceeded 50% of the bowel lumen. 

 

3.2. Performance of the Initial Prototype Model Using the Hourglass 

Network 

The performance of the AI model is summarized in Table 3. Althrough specificity was very high 

(over 0.9), DSC, precision, and sensitivity all fell below 0.7, with particularly lower performance 

on tumor slices compared to non-tumor slices. This consistent pattern in the metrics suggests that 

the model has not yet achieved sufficient sensitivity in detecting CRC. 

 

Table 3. Slice-based performance of the hourglass network 

 All slices Tumor slices Non-tumor slices 

DSC 0.6437 0.5527 0.7346 

Precision 0.6565 0.5783 0.7346 

Sensitivity 0.6926 0.6120 0.7731 

Specificity 0.9883 0.9905 0.9860 

DSC, dice similarity coefficient.  
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4. MATERIALS AND METHODS (EXPERIMENT #2) 

 

4.1. Combination of Two Contrary Networks: DETR and Hourglass 

To overcome the low sensitivity of the hourglass network, we devised a two-step strategy: first, a 

high-sensitivity model selects regions with even a slight possibility of CRC, and then only these 

selected regions are fed into the high-precision model. DETR is a cutting-edge deep learning 

method for object detection tasks that combines the power of transformers with object detection 

algorithms, achieving SOTA performance in the ImageNet benchmark16,30. DETR combines the 

power of transformers and object detection algorithms to perform object detection tasks. 

Traditionally, object detection systems relied on CNNs as the primary architecture. However, 

transformers, which have been highly successful in natural language processing tasks, have 

shown promise in computer vision tasks as well. The basic idea behind DETR is to leverage the 

attention mechanisms of transformers to capture global contextual information and model 

relationships between different objects in an image. This is in contrast to CNNs, which primarily 

focus on local features within the image. Transformers excel in modeling long-range 

dependencies and capturing global relationships, making them suitable for object detection tasks 

where understanding the context is crucial. Additionally, transformers enable end-to-end 

training, eliminating the need for intermediate steps like region proposal networks or anchor 

generation.  

We tuned the DETR model to prioritize high sensitivity, while the hourglass model was tuned to 

favor high precision. The DETR model generated up to four bounding boxes per CT axial image, 

each with a probability score, to indicate regions suspected of CRC. Overlapping boxes had their 

scores summed, and only regions with a final score of 0.8 or higher were selected. A new larger 

box was then created to encompass the selected boxes, cropped, and used as input for the 

hourglass network. 

The performance of the DETR–hourglass model was evaluated using the internal testing dataset 

on a per-slice basis. The performance of each model was also evaluated separately without 

combining them. Since the comparison was based on bounding box areas rather than pixel-level 

segmentation, Intersection over Union (IoU) was calculated instead of DSC.  
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5. RESULTS (EXPERIMENT #2) 

 

5.1. Performance of the DETR–Hourglass Model 

Table 4 summarizes the performance of the tested models. As intended, the DETR–hourglass 

model achieved the best performance across all metrics, including IoU, sensitivity, and precision. 

However, we noticed that the performance difference between our combined model and the 

DETR-only model was minimal. This suggests that attaching the hourglass model to DETR 

provided little to no performance gain.  

 

Table 4. Slice-based performance of the DETR–hourglass model 

 IoU Sensitivity Precision 

Hourglass 0.43 0.54 0.56 

DETR 0.55 0.66 0.67 

DETR–Hourglass 0.56 0.67 0.68 

Iou, intersection over union. 
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6. MATERIALS AND METHODS (EXPERIMENT #3) 

 

6.1. Optimization of the DETR-only Model 

We decided to build a new model using only DETR, without the hourglass model, and proceed 

with its optimization. We pretrained the model weights on the COCO dataset25. The number of 

predicted boxes was experimentally set to five per axial slice (q = 5), and only the box with the 

highest probability score of cancer presence was chosen in each axial slice. ResNet101 was used 

as a backbone network, and the dilated convolution method was used. The number of epochs 

was 20.  

To optimize model performance and address class imbalance simultaneously, we adjusted the ratio 

of positive to negative slices from 1:1 to 2:1. To achieve this, we randomly selected 17,576 axial 

slices without a labeled reference standard box. We ensured that the number of slices extracted 

from each patient was as equal as possible to minimize intra-patient dependence. In total, 48,940 

axial slices were used as the final training dataset. 

 

6.2. Construction of the External Testing Dataset 

We identified consecutive patients at another external tertiary hospital (Severance Hospital) who 

underwent both APCT and colonoscopy within an interval of less than 2 months between 

January and June in 2018. The same exclusion criteria used for constructing the internal testing 

dataset were applied. Clinical and imaging information were analyzed and recorded in the same 

manner as when constructing the internal testing dataset.  

 

6.3. Improvement of the Model Performance Evaluation Method 

 

6.3.1. Use of DSC Instead of IoU 

We decided to use DSC instead of IoU for performance evaluation due to the following reasons. 

First, IoU is relatively sensitive to the errors in small boxes. Since a few pixel errors in 

predicting small boxes can result in low scores of IoU33, IoU might be no longer a suitable 
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metric to detect small lesions in our study. In order to mitigate this issue, DSC can be a good 

alternative with a large weight for overlapped area between predicted box and reference standard 

box34. Second, we are focused on assessing per-lesion performance of our model. While IoU 

tends to emphasize the prediction accuracy for large lesions, DSC is adequate for detecting 

lesions with different scales. Third, our task is closer to z-directional segmentation rather than 

3D bounding box prediction. Since we annotated bounding box for each axial slice, the whole 

volumetric labels can be seen as coarse segmentation masks in coronal or sagittal views. In 

medical image analysis as well as classical computer vision, DSC is a widely-used metric to 

measure the segmentation performance35.  
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6.3.2. Grouping of AI-predicted bounding boxes 

To more accurately evaluate the AI model's performance, we improved the assessment method by 

shifting from slice-level evaluation to lesion-level evaluation. When the AI-predicted bounding 

boxes were contiguously present through multiple axial slices and the inner areas of those boxes 

were overlapped at least partially, those boxes were considered to belong to the same lesion 

(Figure 1). The arithmetic sum of predicted probability scores of bounding boxes belonging to 

the same lesion was regarded as the overall probability score corresponding to the lesion. We 

defined the average DSC as the sum of DSCs of AI-predicted bounding boxes divided by the 

number of total CT slices with respect to each lesion. An average DSC greater than 0.3 was 

regarded as true positive. 

 

 

Figure 1. Example of AI grouping multiple bounding boxes into a single lesion. The AI-

predicted bounding boxes are shown in green, while the red boxes indicate the reference standard 

boxes. 

DSC, dice similarity coefficient. 
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6.3.3. Human Reader Study 

Human reader study was done using the external testing dataset. Two gastrointestinal expert 

radiologists with 5 and 10 years of experience, respectively, were requested to independently 

detect CRC on the external testing dataset. They were not provided any further information 

regarding the dataset, including the prevalence of CRC patients. No additional CT images, such 

as other dynamic phases or coronal/sagittal planes, were provided. The expert radiologist who 

had labeled the reference standard bounding boxes determined whether the reviewers correctly 

localized CRC by referencing ground-truth images. 

 

6.3.4. Statistical Analysis 

Statistical analyses were performed using R, version 4.2.2 (R Foundation for Statistical 

Computing). The Student’s t test was used for age, and a Mann-Whitney U test was used for 

cancer size at CT. Fisher’s exact test was used for categorical variables. For the per-patient 

analysis, receiver operating characteristic (ROC) analysis was performed. To integrate the per-

patient and per-lesion analyses, alternative free-response ROC (AFROC) was performed. To 

evaluate the localization performance of the model, localization ROC (LROC) analysis was 

additionally performed
36

. The cutoff for AI-predicted probability score was determined based on 

maximal Youden index calculated from the AFROC curve on the internal testing dataset. The 

determined cutoff was used for the external testing as well. P < .05 was considered to indicate 

statistical significance.  

Both false-negative lesions (reference standard lesions without any AI-predicted bounding box) 

and true-negative patients (patients with neither reference standard nor AI-predicted bounding 

box) were regarded with an overall probability score of zero in the alternative free-response 

receiver operating characteristic (AFROC) analysis. In localization receiver operating 

characteristic (LROC) analysis, false-negative lesions were ignored from the analysis. Delong’s 

method was used to estimate the 95% confidence internal (CI) for area under the receiver 

operating characteristic (AUROC) and area under the AFROC (AUAFROC). Bootstrapping was 

performed with 1,000 resampling iterations to estimate the 95% CI for area under the LROC 

(AULROC).  
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7. RESULTS (EXPERIMENT #3) 

 

7.1. Summary of the All Three Datasets 

An overall overview of the training, internal and external testing datasets is summarized in Figure 

2. The internal testing dataset was used unchanged as constructed in Experiment #1. 

 

 

Figure 2. An overall overview of the training, internal and external testing datasets 

CRC, colorectal cancer. 

 

A total of 442 patients were enrolled in the external testing dataset. Among them, 29 patients were 

histologically diagnosed with primary CRC. Each of the 29 cancer patients was found to have a 

single lesion upon undergoing colonoscopy. The clinical and imaging characteristics of the 

internal and external testing datasets are summarized and compared in Table 5. 
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Table 5. Clinical and imaging characteristics of the internal and external testing sets  
Internal testing set External testing set P 

Age (y)* 58 ± 15 57 ± 15 .33 

Sex 
  

.44 

M 458 251 
 

F 383 191 
 

Patients with primary colorectal cancer 99/841 (12) 29/442 (7) .003 

Number of colorectal cancers 102 29 
 

Detectable on APCT 93/102 (91) 26/29 (90) 
 

Undetectable on APCT 9/102 (9) 3/29 (10) 
 

Patients with CT-detectable colorectal cancer 92/841 (11) 26/442 (6) .003 

Cancer location, based on the most distal end 
  

.46 

Ascending colon 22/102 (21) 5/29 (17) 
 

Hepatic flexure colon 13/102 (13) 2/29 (7) 
 

Transverse colon 8/102 (8) 2/29 (7) 
 

Splenic flexure colon 1/102 (1) 1/29 (3) 
 

Descending colon 5/102 (5) 0/29 (0) 
 

Sigmoid colon 18/102 (18) 9/29 (31) 
 

Rectum 28/102 (27) 10/29 (35) 
 

Anus 7/102 (7) 0/29 (0) 
 

Cancer size at CT (cm)† 3.6 (2.7–4.5) 3.2 (2.7–3.9) .42 

Same or smaller than 2 cm 8/93 (9) 2/26 (8) 
 

Larger than 2 cm 85/93 (91) 24/26 (92) 
 

Cancer morphology at CT 
  

.30 

Polypoid 3/93 (3) 2/26 (8) 
 

Annular, < 50% of bowel lumen 21/93 (23) 8/26 (31) 
 

Annular, > 50% of bowel lumen 69/93 (74) 16/26 (61) 
 

Clinical T staging on CT    

cT1 0/93 (0) 5/26 (19)  

cT2 17/93 (18) 7/26 (27)  

cT3 68/93 (73) 11/26 (42)  

cT4a 5/93 (5) 0/26 (0)  

cT4b 3/93 (3) 3/26 (12)  

Suspicious regional LN metastasis on CT 71/99 (72) 13/29 (45)  

Presence of distant metastasis 9/99 (9) 8/29 (28)  

Unless otherwise noted, data are numbers of patients or lesions, with percentages in parentheses. 
*Data are mean ± standard deviation. 
†Data are medians, with the interquartile range in parentheses. 
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The expert radiologist failed to detect three cancers on APCT in the external testing dataset. 

Detailed information on those three patients is summarized in Table 6. Two of them had 

polypoid cancers and the remaining patient had small-sized cancer with circumferential tumor 

extent less than 50% of bowel lumen.  

 

Table 6. Summary of CT-undetectable cancers in the external testing dataset 

Dataset Sex/Age Location Cancer morphology* 
Size 

(cm) 

External M/59 Sigmoid colon Polypoid 2.2 

External F/59 Ascending colon Polypoid 2.3 

External M/72 Rectum Annular, < 50% 1.5 

*The morphology of the cancer was determined based on colonoscopic findings. It was determined 

as polypoid when the height of the mass was over 50% of its lateral diameter. Otherwise, the mass 

was regarded as annular, and it was further divided based on whether the circumferential extent 

exceeded 50% of the bowel lumen. 
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7.2. Internal and External Testing 

The ROC curves (Figure 3a) and AFROC curves (Figure 3b) were drawn by varying the cutoff for 

AI-predicted probability score. Regarding the internal testing dataset, when the cutoff for AI-

predicted probability score was set to 3.321, Youden index reached its maximum value on the 

AFROC curve with a per-lesion sensitivity and per-patient specificity of 75.3% (70/93) and 

95.1% (712/749), respectively. When the same cutoff was applied to the external testing dataset, 

sensitivity and specificity were 76.9% (20/26) and 71.2% (296/416), respectively. On LROC 

analysis, AULROC was calculated as 0.886 (95% CI: 0.829, 0.926) and 0.801 (95% CI: 0.681, 

0.876) for the internal and external testing datasets, respectively.  

 

 

Figure 3. ROC and AFROC analyses (Experiment #3). (a) ROC curves based on the 

colonoscopic results of internal (black) and external (dark green) testing datasets are shown. 

AUROC were 0.891 and 0.770 for internal and external testing datasets, respectively. (b) AFROC 

curves based on the CT-based reference standard box of internal (black) and external (dark green) 

testing datasets are shown. AUAFROC were 0.840 and 0.741 for internal and external testing 

datasets, respectively. When the cutoff for AI-predicted probability score was set to 3.321, Youden 

index reached its maximum value on the AFROC curve of internal testing dataset with a per-lesion 

sensitivity and per-patient specificity of 75.3% and 95.1%, respectively. When the same cutoff 

value was applied to the external testing dataset, per-lesion sensitivity was 76.9% and per-patient 

specificity was 71.2%. 

ROC, receiver operating characteristics; AUROC, area under the ROC; AFROC, alternative free-

response ROC; AUAFROC, area under the AFROC. 
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The results of the per-lesion analysis using the cutoff of 3.321 are summarized in Table 7. The AI 

model showed a sensitivity of 75.3% (70/93) and 76.9% (20/26) for the internal and external 

testing datasets, respectively.  

 

Table 7. Per-lesion analyses (Experiment #3)  
Internal testing External testing P Value 

True positive 70 20  

False negative 23 6  

Sensitivity* 75.3% 76.9% .87 

False positive 44 179  

Number of false positive 

lesions per patient 

  
 

0 801/841 (95.3) 312/442 (70.6)  

1 37/841 (4.4) 91/442 (20.6)  

2 2/841 (0.2) 30/442 (6.8)  

3 1/841 (0.1) 8/442 (1.8)  

4 0/841 (0.0) 1/442 (0.2)  

Unless otherwise noted, data are numbers of lesions, with percentages in parentheses. 
*Sensitivity = True positive / (True positive + False negative) 
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The model falsely detected 44 lesions in 40 patients and 179 lesions in 130 patients in the internal 

and external testing datasets, respectively. The detailed locations of false positive lesions are 

summarized in Table 8.  

 

Table 8. Detailed locations of false positive lesions (Experiment #3)  
Internal testing dataset External testing dataset 

Large bowel 25/44 (56.8) 111/179 (62.0) 

Ascending colon 14/25 (56.0) 41/111 (36.9) 

Hepatic flexure colon 2/25 (8.0) 4/111 (3.6) 

Transverse colon 0/25 (0.0) 1/111 (0.9) 

Splenic flexure colon 0/25 (0.0) 2/111 (1.8) 

Descending colon 0/25 (0.0) 0/111 (0.0) 

Sigmoid colon 2/25 (8.0) 23/111 (20.7) 

Rectum 7/25 (28.0) 39/111 (35.1) 

Anus 0/25 (0.0) 1/111 (0.9) 

Stomach 1/44 (2.3) 20/179 (11.2) 

Small bowel 10/44 (22.7) 30/179 (16.8) 

Uterus 4/44 (9.1) 11/179 (6.1) 

Ovary 0/44 (0.0) 1/179 (0.6) 

Omentum 0/44 (0.0) 2/179 (1.1) 

Kidney 0/44 (0.0) 2/179 (1.1) 

Liver 1/44 (2.3) 1/179 (0.6) 

Gallbladder 0/44 (0.0) 1/179 (0.6) 

Unspecified location 3/44 (6.8) 0/179 (0.0) 

Data are numbers of lesions, with percentages in parentheses. 
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7.3. Human Reader Study 

The results of two expert radiologists are summarized in Table 9. Both readers showed similar 

sensitivities and specificities to each other (sensitivity: 73.1% [19/26] vs. 80.8% [21/26], p = .51; 

specificity: 98.3% [409/416] vs. 98.6% [410/416], p = .73). When compared to the performance 

of the AI model, both radiologists showed comparable sensitivity (p = .75 and .73, respectively) 

but significantly higher specificity (p < .001, both).  

 

Table 9. Performance comparison between radiologists and AI (Experiment #3)  
Reader #1 

(5 years of 

experience) 

Reader #2 

(10 years of 

experience) 

AI 

(cutoff value: 

>3.321) 

P‡ P § P∥ 

Per-patient analysis      

True positive 19 21 20    

False negative 7 5 6    

Sensitivity* 73.1% 80.8% 76.9% .51 .75 .73 

False positive 7 6 120    

True negative 409 410 296    

Specificity† 98.3% 98.6% 71.2% .73 < .001 < .001 

Per-lesion analysis      

True positive 19 21 20    

False negative 7 5 6    

Sensitivity* 73.1% 80.8% 76.9% .51 .75 .73 

False positive 7 6 179    

Unless otherwise noted, data are numbers of lesions. 
*Sensitivity = True positive / (True positive + False negative) 
†Specificity = True negative / (True negative + False positive) 
‡Compared between reader #1 and #2. 
§Compared between reader #1 and AI. 
∥Compared between reader #2 and AI. 

 
It was highly encouraging that sensitivity improved to a level where it showed no significant 

difference compared to human expert readers. However, as a trade-off, the increased number of 

false positives led to lower specificity, which remains a challenge to be addressed. 
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8. MATERIALS AND METHODS (EXPERIMENT #4) 

 

8.1. Advancement of Model Architecture: Combination of Two DETR 

Networks and the TotalSegmentator 

We explored ways to reduce the number of false positives and noted that, in Experiment #3, 

approximately 40% of false-positive lesions were located in organs other than the large bowel. 

Therefore, we refined the model by incorporating a colorectal mask and discarding predictions 

where the DETR-generated bounding box had no overlap with it. 

We cascaded two DETR models for end-to-end training and bounding box prediction, as shown in 

Figure 4. The first DETR model estimated the coarse bounding box on the original APCT 

images. We also used prior delineation information to focus on the colorectal area, employing 

3D Slicer (version 5.6.0)37 with the TotalSegmentator tool (version dcfa716b), an AI model that 

automatically segments 104 anatomical structures from CT images38. If there was an overlapping 

region between the first DETR-estimated box and the colorectal mask, a new rectangle box was 

generated to encompass both boxes. The longer side of this new box was increased by 60 pixels, 

and then the shorter side was extended to the same length, converting the box into a larger 

square. The image inside this larger square box was cropped and interpolated to a resolution of 

512 x 512 pixels (the original CT resolution). Then, the second DETR model predicted the fine 

bounding box on this new input. If the first DETR model did not predict any box, or if there was 

no overlap between the predicted box and the colorectal mask, a new rectangle box was created 

to encompass only the colorectal mask. The subsequent steps were carried out in the same 

manner as previously described: the box size was increased to form a larger square, the image 

within was cropped and interpolated, and then it was used as input for the second DETR model. 

After recalculating the coordinates of the second DETR-predicted box from the cropped image 

to the original CT slice, the overlap with the reference standard box was evaluated. 

Hyperparameters were unchanged from the previous DETR-only model used in Experiment #3, 

except that the number of epochs was increased from 20 to 30. 
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Figure 4. Final Architecture of Our AI model 

In our framework, we cascaded two DETR models to learn and predict the bounding box enclosing 

CRC in axial CT images in an end-to-end fashion. The first DETR model estimated the coarse 

bounding box (blue) on the original APCT images. We also used prior delineation information to 

focus on the colorectal area, employing 3D Slicer (version 5.6.0) with the TotalSegmentator tool 

(version dcfa716b). If there was an overlapping region between the DETR-estimated box (blue) and 

the colorectal mask (green), a new rectangle box was generated to encompass both boxes. The longer 

side of this new box was increased by 60 pixels, and then the shorter side was extended to the same 

length, converting the box into a larger square (cyan). The image inside this larger square box was 

cropped and interpolated to a resolution of 512 x 512 pixels (the original CT resolution). Finally, the 

second DETR model predicted the fine bounding box (yellow) on this new input. After recalculating 

the coordinates of the second DETR-predicted box (yellow) from the cropped image to the original 

CT slice, the overlap with the ground truth box (red) was evaluated. 

CRC, colorectal cancer; DETR, DEtection with TRansformer 

 

 

8.2. Update of the Model Performance Evaluation Method 

When the AI-predicted bounding boxes were contiguously present across multiple contiguous axial 

slices, the previous approach of considering them as a single lesion was maintained. However, 

we decided to no longer use quantitative metrics such as DSC or IoU to assess the degree of 

overlap with the reference standard. Instead, we adopted a binary evaluation method that simply 

determines whether overlap is present or not. This decision was based on previous experiments, 

which revealed that even when the degree of overlap with the reference standard box was not 
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high, the model still accurately identified and marked the lesions in most cases. Therefore, a 

lesion containing any number of AI-predicted boxes that overlap with the reference standard 

boxes was considered a true positive detection. The previous approach of considering the 

arithmetic sum of predicted scores of bounding boxes belonging to the same lesion as the overall 

score of that lesion was maintained. Representative CT slices with the labeled reference standard 

and the final predicted bounding boxes are shown in Figure 5. 

Regarding the statistical analysis method, we decided not to perform the ROC and LROC analyses 

previously conducted in Experiment #3; instead, we chose to perform only the AFROC analysis. 

This decision was made because the AFROC analysis alone was considered sufficient to evaluate 

per-patient and per-lesion aspects, as well as localization performance. 
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Figure 5. Representative images of reference standard (red) and AI-predicted (yellow) boxes. 

(a, b) Examples of true positive detections are shown. (c, d) Examples of false negative detections 

are shown. AI failed to propose a bounding box over the reference standard lesion. (e, f) Examples 

of false positive detections are shown. AI incorrectly proposed bounding boxes at the area where 

reference standard box was absent.  



２９ 

 

9. RESULTS (EXPERIMENT #4) 

 

9.1. Internal and External Testing 

The AFROC curves (Figure 6) were drawn by varying the cutoff for the AI-predicted score. The 

AUAFROC was 0.867 (95% CI: 0.809, 0.924) and was 0.808 (95% CI: 0.661, 0.955) in the 

internal and external testing datasets, respectively. Regarding the internal testing dataset, when 

the cutoff for AI-predicted score was set to 3.9996, Youden index reached its maximum value on 

the AFROC curve with a per-lesion sensitivity and per-patient specificity of 79.6% (74/93) and 

91.2% (683/749), respectively. When the same cutoff was applied to the external testing dataset, 

sensitivity and specificity were 80.8% (21/26) and 90.9% (378/416), respectively.  

 

 

Figure 6. AFROC analysis of the final AI model (Experiment #4). 
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The results of the per-lesion analysis using the cutoff of 3.9996 are summarized in Table 10. The 

AI model showed a sensitivity of 79.6% (74/93) and 80.8% (21/26) for the internal and external 

testing datasets, respectively. Regarding the false positives, the model falsely detected 84 lesions 

in 70 patients and 52 lesions in 40 patients in the internal and external testing datasets, 

respectively.  

 

Table 10. Per-lesion analyses (Experiment #4)  
Internal testing External testing 

True positive 74 21 

False negative 19 5 

Sensitivity* 79.6% 80.8% 

False positive 84 52 

Number of false positive 

lesions per patient 

  

0 771/841 (91.7) 402/442 (91.0) 

1 60/841 (7.1) 32/442 (7.2) 

2 7/841 (0.8) 6/442 (1.4) 

3 2/841 (0.2) 0/442 (0.0) 

4 1/841 (0.1) 2/442 (0.5) 

Unless otherwise noted, data are numbers of lesions, with percentages in parentheses. 
*Sensitivity = True positive / (True positive + False negative) 
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9.2. Performance Comparison between Two Human Readers and the AI 

Model 

Although the specificity of our AI model improved up to 90.9%, yet it still did not reach the 

performance level of human readers (Table 11). Regarding sensitivity, the AI model continued to 

show performance comparable to or better than that of human readers.  

 

Table 11. Performance comparison between radiologists and AI (Experiment #4)  
Reader #1 

(5 years of 

experience) 

Reader #2 

(10 years of 

experience) 

AI 

(cutoff value: 

>3.9996) 

P‡ P § P∥ 

Per-lesion analysis      

True positive 19 21 21    

False negative 7 5 5    

Sensitivity* 73.1% 80.8% 80.8% 0.743 0.743 1.0 

False positive 7 6 52    

Per-patient analysis 
 

    

False positive 7 6 38    

True negative 409 410 378    

Specificity† 98.3% 98.6% 90.9% 1.0 <0.001 <0.001 

Unless otherwise noted, data are numbers of lesions. 
*Sensitivity = True positive / (True positive + False negative) 
†Specificity = True negative / (True negative + False positive) 
‡Compared between reader #1 and #2. 
§Compared between reader #1 and AI. 
∥Compared between reader #2 and AI. 
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Table 12 summarizes information on the nine CRCs missed by at least one of the two readers, 

including three CRCs missed by both readers. AI correctly detected five of these nine CRCs, 

including one of the three CRCs missed by both readers. Figures 7 and 8 show examples of 

CRCs missed by both readers and by the AI model; Figures 9 and 10 show examples of CRC 

missed by at least one reader but detected by the AI model. 

 

Table 12. Cancers missed by at least one of the two expert radiologists 

Reader #1 

(5 years of 

experience) 

Reader #2 

(10 years of 

experience) 

AI 

(cutoff 

value: 

>3.9996) 

Location 
Cancer 

morphology 

Size 

(cm) 

X X X 
Transverse 

colon 

Annular, 

< 50% 
2.8 

X X X Rectum 
Annular, 

< 50% 
1.8 

X O X Sigmoid colon 
Annular, 

> 50% 
4.0 

X O X Sigmoid colon 
Annular, 

< 50% 
2.9 

X X O Sigmoid colon 
Annular, 

> 50% 
2.7 

X O O 
Hepatic 

flexure colon 

Annular, 

> 50% 
2.8 

X O O Rectum 
Annular, 

> 50% 
3.2 

O X O Rectum 
Annular, 

< 50% 
2.8 

O X O Rectum 
Annular, 

< 50% 
3.2 
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Figure 7. Example of a CRC case missed by both readers and the AI model. This is an axial 

image from routine abdominopelvic CT examination in 71-year-old patient from external test set 

with histologically confirmed CRC involving transverse colon (box). Lesion measured 2.8 cm and 

had annular (not exceeding 50% of bowel lumen) morphology. Lesion was missed by both readers 

and by AI model. 

CRC, colorectal cancer. 
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Figure 8. Example of a CRC case missed by both readers and the AI model. This is an axial 

image from routine abdominopelvic CT examination in 61-year-old patient from external test set 

with histologically confirmed CRC involving rectum (box). Lesion measured 1.8 cm and had 

annular (not exceeding 50% of bowel lumen) morphology. Lesion was missed by both readers and 

by AI model. 

CRC, colorectal cancer. 
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Figure 9. Example of a CRC case missed by at least one reader but detected by the AI model. 

This is an axial image from routine abdominopelvic CT examination in 57-year-old patient from 

external test set with histologically confirmed CRC involving sigmoid colon (red box). Lesion 

measured 2.7 cm and had annular (exceeding 50% of bowel lumen) morphology. Lesion was missed 

by both readers but detected by AI model (yellow box).  

CRC, colorectal cancer. 
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Figure 10. Example of a CRC case missed by at least one reader but detected by the AI model. 

This is an axial image from routine abdominopelvic CT examination in 76-year-old patient from 

external test set with histologically confirmed CRC involving hepatic flexure (box). Lesion 

measured 2.8 cm and had annular (exceeding 50% of bowel lumen) morphology. Lesion was 

detected by one of two readers and by AI model.  

CRC, colorectal cancer. 
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9.3. Subgroup Analysis 

Subgroup analyses of internal and external testing datasets were performed according to the size, 

morphology, and location of the cancer based on CT (Table 13). Per-lesion sensitivity was higher 

when diagnosing the annular cancers involving more than 50% of the bowel lumen than those 

involving less than 50%. Regarding the location of the cancer, the model showed the lowest 

sensitivity to transverse colon cancer.  

 

 

Table 13. Subgroup analyses of the internal testing and external testing datasets  
Internal testing dataset External testing dataset 

 
Sensitivity* Sensitivity* 

All CT-detectable cancers 79.6% (74/93) 80.8% (21/26) 

Cancer size at CT (cm) 
 

 

Same or smaller than 2 cm 50.0% (4/8) 0.0% (0/2) 

Larger than 2 cm 82.4% (70/85) 87.5% (21/24) 

Cancer morphology at CT 
 

 

Polypoid, or annular (<50%) 58.3% (14/24) 60.0% (6/10) 

Annular (>50%) 87.0% (60/69) 93.8% (15/16) 

Cancer location, based on the 

most distal end 

 
 

Ascending colon 86.4% (19/22) 100.0% (4/4) 

Hepatic flexure colon 84.6% (11/13) 100.0% (2/2) 

Transverse colon 28.6% (2/7) 50.0% (1/2) 

Splenic flexure colon 100.0% (1/1) 100.0% (1/1) 

Descending colon 80.0% (4/5) n/a (0/0) 

Sigmoid colon 71.4% (10/14) 62.5% (5/8) 

Rectum 92.0% (23/25) 88.9% (8/9) 

Anus 66.7% (4/6) n/a (0/0) 

*Sensitivity = True positive / (True positive + False negative) 
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10. DISCUSSION 

Unanticipated CRCs can easily be missed on routine APCT scans performed without bowel 

preparation. This issue can be particularly problematic when the primary purpose of the scans is 

unrelated to CRC screening or when interpretations are performed by general radiologists rather 

than gastrointestinal imaging specialists. Our final AI model demonstrated the potential for the 

automatic detection of CRC, achieving AUAFROC over 0.8 in both internal and external testing 

datasets. The sensitivity of the AI model, at approximately 80%, was comparable to that of 

human expert radiologists; however, its specificity was still lower, at around 90% compared to 

98%. 

Regarding the computer-aided detection of CRC, the majority of previous works focused on either 

optical colonoscopy videos or CT colonography images39,40. The objectives of those previous 

studies using CT colonography were mostly to detect or characterize the polyps, not the cancer 

itself41. Because the detection rate of CRC may be lower in routine APCT than that of CT 

colonography, there have been unmet needs for the development of computer-aided 

cancer-detection algorithms based on routine APCT4,6,42. Furthermore, routine APCTs generally 

outnumber CT colonography exams because 1) they do not require any special scanning protocol 

such as bowel preparation or gaseous distension, and 2) they are more frequently performed for 

various clinical purposes, not limited to CRC screening. In this context, routine APCT has the 

advantage of providing large volumes of data required to train deep-learning-based AI models. 

Furthermore, AI models trained on routine APCT have considerably broader applicability 

compared to those based on CT colonography. 

Recently, a few studies have started to explore AI models for detecting CRC using routine APCT 

scans performed without bowel preparation. Among these, two studies assessed the model’s 

performance exclusively in patients with confirmed CRC, without evaluating its efficacy in 

patients without CRC43,44. As a result, the model's real-world performance remains unclear. The 

other two papers by Yao et al. validated their model performance using a real-world dataset but 

classified all patients without detectable CRC on CT as normal, introducing a significant 

limitation45,46. A key advantage of AI is its potential to identify CRC cases that radiologists might 

overlook. Consequently, the patients classified as normal in these studies may have included 

those with undiagnosed CRC that were missed by radiologists. In our study, we addressed this 
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limitation by including only patients who underwent colonoscopy within two months of their CT 

scan and classified as normal only those whose colonoscopy results showed no evidence of 

CRC. This approach allowed for more precise patient categorization and a more accurate 

performance evaluation. 

Our AI model demonstrated good performance in detecting CRC, as the AUAFROC was 0.867 

and 0.808 on internal and external testing sets, respectively. Furthermore, the sensitivity of our 

model, at approximately 80%, was comparable to that of the human expert radiologists. The 

human readers involved in this study were not simply instructed to interpret the CT scans; they 

were specifically directed to look for CRC. Consequently, the readers likely concentrated more 

on the large bowel while reviewing the images than they would in routine real-world practice, 

which might have resulted in their improved sensitivity. Considering this, the sensitivity of our 

AI model appears to be quite sufficient for real-world CT interpretation sessions.  

In approximately 91% of patients in both testing datasets, there were no false positive lesions. This 

result is better than that of previous studies regarding CT colonography, which reported two or 

more false positive lesions per patient47,48. One possible explanation for the lower false positivity 

of our model may lie in our lesion-based approach, which aggregates multiple bounding boxes as 

a single lesion unit. As we arithmetically added the scores of each slice to calculate the final 

score for that lesion, the lesions that consisted of a high number of slices were weighted more 

than the lesions with a small number of slices. We speculate that the underlying mechanism for 

this approach reflects the way human radiologists determine between pseudo-lesions and true 

lesions — true lesions usually show their presence consistently across multiple slices. The two-

step approach using the colorectal mask obtained through the TotalSegmentator, also possibly 

contributed to reducing false positives. If the first DETR model suggested a bounding box on 

organs other than the large bowel, it was discarded before the second DETR model because it 

failed to overlap with the colorectal mask.  

The performance of our AI model was better for annular cancers with circumferential tumor extent 

exceeding 50% of the bowel lumen, achieving per-lesion sensitivities of 87.0% and 93.8% in the 

internal and external testing datasets, respectively. Our results are consistent with previous 

studies that found that longer circumferential tumor extent was associated with more advanced 

TNM stages and was thus easier to detect49,50. Conversely, for small CRCs measuring 2 cm or 
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less, both our AI model and expert readers demonstrated low sensitivities of 50% or less. This is 

consistent with previous reports, indicating that there are inherent limitations to improving 

detection sensitivity for such small CRCs using routine CT alone5. Regarding the location of the 

cancer, our model showed the worst performance when the cancer was located in the transverse 

colon. Although the exact reason that our AI model showed the worst performance in such a 

location is not clear, one possible explanation is that axial slices of the transverse colon appear 

rather cylindrical, whereas those of the other colonic parts look circular. In this regard, we 

speculate that the performance of our model could be improved if sagittal images, where the 

transverse colon appears circular, were also considered. Investigation of such different views 

remains as a topic of our future research. 

Our research has several limitations. First, the AI model was trained and tested retrospectively. 

The model’s ability to reduce missed cancers in a prospective real-world setting was not 

evaluated. Second, patients who did not undergo both CT and colonoscopy within a 2-month 

interval were excluded from the testing dataset, which constitutes a selection bias. However, we 

believe it is the only retrospective design that allows for constructing the accurate reference 

standard for non-cancer patients. Third, the impact of false-positive AI results, even if 

uncommon, was not evaluated. Prospective cost-effectiveness analysis is needed to determine 

whether the benefits outweigh the costs associated with false positive suggestions. Fourth, 

coronal/sagittal CT images were not used in this study, which might have further improved the 

performance of the human readers and the AI. Fifth, this study evaluated performance for 

detection of only CT-visible CRCs, classifying patients with nonvisible CRCs as negative by the 

reference standard. This approach is expected to have reduced the prevalence in the study sample 

of lesions that may be particularly difficult to detect. Finally, the analysis focused only on CRCs 

and did not consider detection of adenomas or other precancerous lesions. Thus, while the 

explored approach may help reduce the frequency with which CT-visible cancers are missed, it 

does not represent an opportunistic screening method for CRC or a substitute for CRC screening 

tests. 

In conclusion, our study demonstrated the potential utility of an AI model for detecting CRC on 

routine APCT examinations, performed without bowel preparation for reasons unrelated to CRC 

detection and staging.  
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Abstract in Korean 

 

장처치 없는 일반 복부골반CT에서 직대장암 발견을 위한 

인공지능 알고리듬의 개발 

 

연구배경: CT colonography와 달리 일반 복부골반CT는 장 정결 없이 촬영되기 

때문에, 임상적으로 의심하지 않았던 직대장암은 종종 놓쳐지곤 한다. 

연구목적: 장 정결 없이 시행된 조영증강 복부골반CT 영상에서 직대장암을 자동 

탐지할 수 있는 인공지능 기반 알고리즘을 개발하고자 한다. 

연구방법: 2010년 1월부터 2014년 12월까지 치료 시작 전에 복부골반CT를 

시행받았던 직대장암 환자 2,662명을 대상으로 인공지능 모델을 학습시켰다. 개발된 

모델의 성능은 내부 및 외부 데이터셋을 이용하여 후향적으로 검증하였다. 두 검증 

데이터셋 모두 2018년 1월부터 6월 사이, 각각의 3차 병원에서 2개월 이내에 CT와 

대장내시경 둘 다를 시행받았던 모든 환자들의 CT 영상으로 구성되었고, 따라서 

직대장암 환자와 정상 환자가 모두 포함되었다. 표준 참조(reference standard)를 

위한 병변 표지는, 소화기영상의학 세부전공 전문의가 대장내시경 결과지를 

참고해가며 병변이 포함되어 있는 모든 CT 축상 단면 각각에서 직대장암을 최대한 

정확히 감싸도록 네모 표시를 하는 식으로 구성하였다. 직대장암 탐지를 위한 

인공지능 모델로는 transformer 기반 최신 객체 탐지 네트워크인 DETR(DEtection 

with TRansformer)을 이용하였다. 모델 성능은 Alternative free-response 

receiver operating characteristic(AFROC) 분석을 이용하여 평가하였고, 두 명의 

소화기영상의학 세부전공 전문의의 성능과도 비교하였다. 

결과: 내부 검증 데이터셋은 총 841명(평균 연령 58세)의 환자로 구성되었으며, 이 

중 92명의 환자에서 93개의 CT에서 발견 가능한 직대장암 병변이 존재하였다. 

AFROC 곡선하면적(AUAFROC)은 0.867이었다. 최대 Youden index 지점에서 

민감도(병변별)는 79.6%(74/93), 특이도(환자별)는 91.2%(683/749)였다. 외부 

검증 데이터셋은 총 442명의 환자(평균 연령 57세)로 구성되었으며, 이 중 26명의 

환자에서 26개의 CT로 탐지 가능한 직대장암 병변이 있었다. 이 데이터셋에서 

AUAFROC는 0.808이었으며, 민감도(병변별)는 80.8%(21/26), 특이도(환자별)는 

90.9%(378/416)였다. 두 명의 영상의학 전문의의 민감도는 각각 73.1%(19/26) 및 

80.8%(21/26)였으며, 특이도는 각각 98.3%(409/416) 및 98.6%(410/416)로 서로 

유사하였다. 인공지능 모델의 성능과 전문의들의 성능을 비교하였을 때, 민감도는 

유의한 차이를 보이지 않았으나(각각 p = 0.743 및 1.0), 특이도는 전문의들의 
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성능이 인공지능 보다 유의하게 높았다(두 전문의 모두 p < 0.001). 

결론: 본 연구는 장 정결 없이 시행된 일반 복부골반CT에서 직대장암을 자동 탐지할 

수 있는 인공지능 모델의 임상 적용 가능성을 보여주었다. 

임상적 의의: 본 인공지능 모델은 임상적으로 직대장암이 의심되지 않았던 환자들에 

대한 영상의학과 의사의 판독 업무를 보조하는 식으로 활용될 수 있다. 이는 특히 

소화기영상의학 세부전공 전문의 인력이 부족한 의료 기관에서 더욱 유용할 것으로 

기대된다.  

 

_______________________________________________________________________________ 

핵심되는 말: 직대장암; 인공지능; 심층학습; DETR; CT; 자동 탐지. 
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