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ABSTRACT

Development of artificial intelligence algorithm for screening colorectal
cancer lesions in routine abdominopelvic CT without bowel
preparation

Background: Unlike CT colonography, routine abdominopelvic CT (APCT) is performed without
bowel preparation, which can lead to the occasional oversight of unsuspected colorectal cancer
(CRO).

Objective: To develop an Al-based algorithm to detect CRC in contrast-enhanced APCT acquired
without bowel preparation.

Methods: 2,662 patients with CRC who underwent APCT before treatment between January 2010
and December 2014 were enrolled to train the Al model. The model was retrospectively tested
with internal and external datasets. Both testing datasets comprised APCTs from consecutive
patients with or without CRC who underwent CT and colonoscopy within two months at two
independent tertiary hospitals between January and June 2018. For reference standard annotation,
an expert radiologist labeled bounding boxes enclosing colorectal cancer in each CT axial slice,
referencing colonoscopic reports. For CRC detection, a contemporary transformer-based object
detection network, i.e., DEtection with TRansformer (DETR), was adapted and trained. The
alternative free-response receiver operating characteristic (AFROC) was used to evaluate the
performance of the Al algorithm, which was then compared to that of two expert radiologists.
Results: In the internal 841-patient (mean age, 58 years; 92 patients with 93 CT-detectable CRCs)
testing dataset, the area under the AFROC curve (AUAFROC) was 0.867. Sensitivity and
specificity were 79.6% (74/93; per-lesion) and 91.2% (683/749; per-patient), respectively, at the
point of maximal Youden index. In the external 442-patient (57 years; 26 patients with 26 CT-
detectable CRCs) testing dataset, AUAFROC was 0.808. Sensitivity and specificity were 80.8%
(21/26; per-lesion) and 90.9% (378/416; per-patient), respectively. Two expert radiologists showed
sensitivities (73.1% [19/26] vs. 80.8% [21/26]) and specificities (98.3% [409/416] vs. 98.6%
[410/416]) similar to each other. When compared to the Al, the sensitivities were similar (p =
0.743 and 1.0, respectively), but the specificities were higher for the human readers (p <0.001,
both).



Conclusion: This study demonstrated the potential feasibility of an Al-based algorithm for
detecting CRC in unprepared APCT.

Clinical Impact: By assisting radiologists in detecting cancer in patients not clinically suspected
of having CRC, the model can improve outcomes, especially in settings with a shortage of expert

radiologists.

Key Words: Colorectal Neoplasms; Artificial Intelligence; Deep Learning; DEtection with
TRansformer (DETR); Computed Tomography; Automatic Detection.

Vi



1. INTRODUCTION

1.1. Colorectal Cancer and Routine Abdominopelvic CT

Colorectal cancer (CRC) is the third most common malignancy and the second most deadly
cancer, with an estimated 1.9 million cases and 0.9 million deaths worldwide in 2020'. The U.S.
Preventive Services Task Force recommends that adults aged 45—75 be screened for CRC by
either optical colonoscopy or computed tomography (CT) colonography?. The sensitivity and
specificity of CT colonography for detecting CRC larger than 1 cm were reported as 82—92%
and 83-86%, respectively?.

The major difference in scanning protocols between CT colonography and routine abdominopelvic
CT (APCT) is whether the bowel is prepared with a cathartic agent and then insufflated. Some
authors argued that routine unprepared APCT was also reasonably accurate in detecting CRC
with the pooled sensitivity, specificity, and accuracy of 72.4%, 83.6%, and 80.3%, respectively*.
However, their results were not indicative of real-world performance in that the readers were
instructed to rate all colonic segments, which is often omitted during the routine CT
interpretation process. Another study reported an overall sensitivity of 74.5% for detecting CRC
on routine APCT. However, the sensitivity decreased to 65% for tumors measuring 2—3 cm and
further dropped to 50% for tumors smaller than 2 cm®. To summarize, although routine APCT
can detect and diagnose CRC to some extent, its diagnostic accuracy inevitably falls short of that
of CT colonography, particularly when lesions are small.

Meanwhile, the reason radiologists miss CRCs on routine APCT is not always attributable to
inherent limitations of the scanning protocol. According to one study, the CRC detection rate in
routine APCT decreased further in a community hospital setting with general radiologists, with a
reported sensitivity of approximately 66%?°. Upon re-examination of these initially missed cases,
59% were detected in retrospect, increasing the sensitivity to 86%9. This result implies that a
number of CRCs are likely being missed even when cancers are actually detectable in routine
APCT. Two major factors may explain this phenomenon. First, the participating radiologists
were general radiologists rather than gastrointestinal imaging specialists. Second, the radiologists

may not have thoroughly examined the large bowel, as the clinical indications for the CT



examinations in that study were not specifically related to CRC screening or detection. In this
regard, some authors have insisted that searching for unsuspected CRC should be included in the
routine APCT interpretation process regardless of the original purpose of the CT scan®.
However, the number of expert radiologists is limited, and the continuous increase in workload,
along with eventual burnout, further exacerbates the two aforementioned factors™.

Artificial intelligence (AI) could potentially be used to complement human readers in automating
the detection of CRC on routine APCT, reducing the frequency of missed cancers. Indeed,
routine abdominopelvic CT has become established as one of the most commonly used imaging
tests for a wide spectrum of clinical settings, resulting in accumulation of a massive amount of
data for possible model creation'®!!. The widespread clinical use of routine APCT highlights the
potential large impact of an Al tool for CRC detection on these examinations in contrast with
tools tuned specifically for evaluation of dedicated CT colonography examinations'?.

The purpose of our study was to develop an Al-based algorithm to automatically detect CRC in
routine APCT scanned without bowel preparation, regardless of the reason that APCT was

originally performed.

1.2. Object Detection Models: Historical Perspectives and Current Trends
Object detection is a fundamental computer vision task that involves identifying and localizing
objects within images. Over the past two decades, object detection models have undergone a
remarkable evolution, transitioning from early hand-crafted feature detectors to modern deep
learning-based approaches. This evolution has been driven by key technological breakthroughs
that improved detection accuracy and speed, enabling wide-ranging applications—from
autonomous driving to medical imaging—where reliable object detection is critical. In the
medical Al domain, these advances empower systems to detect anatomical structures or lesions

in complex images with growing precision.

1.2.1. Early Era: Hand-Crafted Features and Limitations
The earliest object detectors relied on hand-crafted features and simple classifiers. A notable
example is the Histogram of Oriented Gradients (HOG) descriptor introduced by Dalal and

Triggs in 2005'3. HOG features encodes local shape information (edge orientations) on a dense



grid, which improved invariance to illumination and slight deformations, leading to substantial
gains in tasks like pedestrian detection. Building on such features, Felzenszwalb et al. developed
the Deformable Part-Based Model (DPM) around 2008'4. DPM represented objects as a
collection of parts (e.g., a car modeled by its wheels, windows, etc.), allowing some deformation,
and used an ensemble of part detectors (a “mixture of star models™) for robust detection. DPM
achieved state-of-the-art (SOTA) results and won multiple PASCAL Visual Object Classes
(VOC) detection challenges (2007-2009), epitomizing the power of the pre-deep learning
paradigm. However, by 2010 these methods began to plateau in performance. Despite
incremental improvements (e.g., better hard-negative mining and bounding-box refinement in
DPM variants), detection accuracy on challenging benchmarks stagnated in the 30-50% mean
Average Precision (mAP) range. The limitations stemmed from the reliance on fixed features
and exhaustive sliding-window search, which struggled with object variations and were

computationally intensive. A new approach was needed to break this ceiling.

1.2.2. The Deep Learning Revolution: R-CNN and Two-Stage Detectors
The resurgence of neural networks in 2012 (exemplified by the success of AlexNet on ImageNet
benchmark) hinted that Convolutional Neural Networks (CNNs) could learn richer features for
detection'>'®, Indeed, 2014 marked a turning point with the introduction of Region-CNN (R-
CNN) by Girshick et al.'”. R-CNN was a breakthrough model that brought deep learning to
object detection: it generated region proposals using selective search, then extracted a CNN
feature vector for each proposed region, and finally classified each region with a linear Suppor
Vector Machine (SVM). This two-step approach (proposal then classification) yielded a massive
jump in accuracy — for example, raising mAP on PASCAL VOC from ~33.7% (DPM) to 58.5%.
Despite its accuracy, R-CNN had clear drawbacks: the need to run a deep CNN on ~2000
proposals per image made it extremely slow (approximately 14 seconds per image even with
GPU acceleration). Researchers quickly sought improvements to streamline this process. One
improvement was Spatial Pyramid Pooling Network (SPP-Net) by He et al. in 2014, which
introduced a spatial pyramid pooling layer to the CNN'®. SPP-Net allowed feature extraction
from arbitrarily sized regions in a single pass, avoiding repeated CNN computations for each

proposal. This sped up detection considerably by computing convolutional features once per



image and pooling them for each region. Building on this idea, Girshick proposed Fast R-CNN
in 2015, which further unified and accelerated the pipeline!’. Fast R-CNN enabled end-to-end
training of the detector by incorporating a Region of Interest (Rol) pooling layer on shared
convolutional feature maps. This integration boosted accuracy (mAP ~70% on VOC2007, up
from 58.5% with R-CNN) while running orders of magnitude faster. The next milestone was
Faster R-CNN developed by Ren et al. in late 20152°. Faster R-CNN solved the last major
bottleneck by introducing the Region Proposal Network (RPN), a small CNN that generates
object proposals inside the network, replacing external proposal methods. By sharing
convolutional features between the RPN and the detector head, Faster R-CNN achieved near
real-time performance (e.g., 5—17 frames per second depending on the backbone) without
sacrificing accuracy. This two-stage “proposal + refinement” framework became the de facto
standard for high-accuracy detection, as it efficiently balances precision and speed. Faster R-
CNN and its variants (e.g., R-FCN [Region-based Fully Convolutional Networks], Mask R-
CNN) dominated benchmarks by achieving high mAP while being faster and more trainable than

earlier methods?"2.

1.2.3. One-Stage Detectors: YOLO and SSD — Emphasis on Speed

While two-stage detectors optimized accuracy, an alternative family of one-stage detectors
emerged to maximize speed. The pioneer in this category was You Only Look Once (YOLO),
introduced by Redmon et al. in 2015-2016%3. YOLO formulates object detection as a single
regression problem, feeding the entire image through a CNN that directly predicts bounding box
coordinates and class probabilities in one evaluation. By eliminating the region proposal step,
YOLO achieved unprecedented speed — the original YOLO could run at 45 frames per second
(FPS), and a simplified version reached up to 155 FPS. This real-time performance came with a
trade-off in localization accuracy and difficulty detecting small objects, as early YOLO versions
were less precise than contemporary two-stage methods. Nonetheless, the paradigm shift was
significant: object detection became feasible in time-critical applications. In the medical context,
such real-time detection can be valuable (for instance, during surgery or live analysis of
ultrasound/video endoscopy), provided accuracy meets acceptable levels. Following YOLO, the

Single Shot MultiBox Detector (SSD) by Liu et al. in 2016 extended the one-stage idea with



improved accuracy?*. SSD introduced multi-scale feature maps and anchor boxes of various sizes
ratios in a single network pass, allowing it to detect objects of different scales more effectively.
By making predictions on multiple convolutional layers, each responsible for detecting objects
within a certain size range, SSD significantly improved small object detection compared to
YOLO, while still operating quickly (e.g., 59 FPS with mAP around 46-48% on Common
Objects in COntext [COCO] dataset)?*. These one-stage detectors democratized object detection,
making it more accessible for widespread use. Subsequent versions of YOLO (v2, v3, and
beyond) steadily closed the accuracy gap while retaining high speed, incorporating ideas like
multi-scale predictions and better backbone networks. By the late 2010s, one-stage and two-
stage detectors each offered compelling trade-offs, and the field began focusing on combining

their strengths.

1.2.4. Further Advancements: Multiscale Detection and Anchor-Free

Models

To further enhance detection performance, researchers addressed remaining challenges such as
multi-scale detection and class imbalance. One influential development was the Feature Pyramid
Network (FPN) by Lin et al. (2017), which created a top-down architecture to merge high-level
semantic information with low-level spatial detail across multiple scales?®. FPN became a
common backbone component for both two-stage and one-stage detectors, bolstering their ability
to detect small, subtle objects — a capability highly relevant for medical images (e.g., detecting
tiny lesions). Around the same time, Lin et al. also introduced RetinaNet (2017), an one-stage
detector that bridged the accuracy gap with two-stage models by addressing class imbalance in
training?’. RetinaNet’s key contribution was the focal loss, a modified loss function that down-
weights easy negatives and focuses training on hard examples. This innovation allowed one-
stage detectors to achieve comparable accuracy to two-stage detectors on challenging datasets
(RetinaNet reached ~59% mAP on COCO dataset), without sacrificing much speed. The idea of
focusing on rare positive examples and difficult cases is particularly pertinent to medical Al,
where positive findings (e.g., tumors) may be sparse in a sea of normal images.

Another trend was the move towards anchor-free detectors to simplify the detection pipeline.

Traditional detectors (both two-stage and one-stage detectors) rely on predefined anchor boxes —



a set of default rectangles of various sizes/aspects — as reference points for predictions. Tuning
these anchor settings can be tedious and may not generalize well to unusual object shapes.
Anchor-free approaches sidestep this by detecting objects via keypoints. CornerNet (Law and
Deng, 2018) was an early example that predicted the top-left and bottom-right corner points of
bounding boxes and paired them to form detections?®. It demonstrated that anchor boxes were
not the only way, achieving competitive results (~57.8% mAP on COCO) without anchors.
CenterNet (Zhou et al., 2019) further simplified this concept by predicting object centers on a
heatmap and regressing to object size, essentially treating objects as single points®. By
eliminating the anchor generation and Non-Maximum Suppression (NMS) steps, CenterNet
provided a fully end-to-end pipeline that was both elegant and effective (reaching ~61% mAP on
COCO). The success of anchor-free detectors suggested that with strong feature representations,
explicit anchoring of boxes was optional. This is encouraging for medical imaging, where
defining appropriate anchors for irregular anatomy or lesions can be challenging — letting the

network learn to pinpoint objects directly could be advantageous.

1.2.5. Advent of Transformer Architecture

Most recently, transformer-based models have pushed object detection into a new era.
Transformers, which excel at modeling long-range dependencies via self-attention, were
introduced to vision tasks after their triumph in natural language processing. In 2020, Carion et
al. proposed DEtection with TRansformer (DETR), the first fully end-to-end transformer-based
object detector’®. DETR treats object detection as a direct set prediction problem: it uses a
transformer encoder-decoder architecture to globally reason over image features and outputs a
set of object bounding boxes without needing hand-crafted components like anchor boxes or
post-processing with NMS. This novel design proved that competitive detection performance can
be achieved with a much simpler training pipeline, albeit with longer training times required for
convergence. Follow-up work such as Deformable DETR introduced multi-scale attention
mechanisms to improve convergence and performance’!. Additionally, modern
CNN/Transformer hybrid backbones (e.g., Swin Transformer by Liu et al. 2021) have further

improved detection accuracy on benchmarks, indicating the continuing evolution of the field32.



2. MATERIALS AND METHODS (EXPERIMENT #1)

2.1. Construction of the Training Dataset

Among patients histologically diagnosed with CRC, those who had APCT performed before
treatment at a tertiary hospital (Severance Hospital) between January 2010 and December 2014
were retrospectively identified. The exclusion criteria are as follows: 1) APCT was performed
without intravenous contrast injection, 2) surgical history of colonic resection, and 3) history of
endoscopic mucosal resection (or submucosal dissection) of the colon or rectum. The original
purpose of the APCT scans—whether they were performed for CRC diagnosis and staging or for
reasons unrelated to CRC—was not considered. A total of 2,662 patients (1566 male, 1096
female; mean age, 6312 years) with 419,059 axial CT slices of portal venous phase were

identified. Among them, CRCs were shown in 31,364 axial slices.

2.2. Construction of the Internal Testing Dataset

We identified consecutive patients at the same tertiary hospital (Severance Hospital) who
underwent both APCT and colonoscopy within an interval of less than 2 months between
January and June in 2018. The exclusion criteria were as follows: 1) APCT was performed
without intravenous contrast injection, 2) the colonoscopic result was incomplete for reasons
including poor bowel preparation or failed scope passage until terminal ileum, 3) presence of
malignant lesion on colonoscopy that was not confirmed as primary colorectal adenocarcinoma,
4) surgical history of colonic resection, and 5) history of endoscopic mucosal resection (or
submucosal dissection) of the colon or rectum.

The diagnosis of CRC was determined based on the colonoscopy and pathology reports. Patients
were then divided into two groups to test the model’s performance: those with CT-detectable
CRC and those without, including cases where CRC was either not diagnosed or diagnosed but
not detectable on CT. The location of the cancer was determined based on its most distal end,
and its largest axial diameter was measured on CT. The morphology of the cancer was
determined based on colonoscopic findings. It was considered polypoid when the height of the

mass was over 50% of its lateral diameter. Otherwise, the mass was regarded as annular, and it



was further divided based on whether the circumferential extent exceeded 50% of the bowel

lumen.

2.3. Determination of the Reference Standard for CRC

A gastrointestinal expert radiologist with 8 years of experience labeled reference standard
bounding boxes, enclosing and fitting the CRC as closely as possible in each axial CT slice
where CRC was shown, referencing colonoscopic and/or surgical reports. When the tumor and
metastatic lymph nodes were conglomerated and thus inseparable, they were labeled together.
MIPAV (Medical Image Processing, Analysis, and Visualization, NIH, Bethesda, MD, USA)

was used for bounding box labeling.

2.4. Development of the Initial Prototype Model Using the Hourglass
Network

The hourglass network is a deep convolutional architecture featuring a symmetric encoder-decoder
design that excels in capturing multi-scale features, making it widely used in medical Al for
tasks such as image segmentation and anatomical landmark detection. The CT axial images were
fed into the hourglass network as input without any preprocessing. The model was trained to
place bounding boxes in areas suspected of CRC. Not all images from the training dataset were
used; to address class imbalance, only a randomly selected subset of negative slices (without
tumors) was included, ensuring approximate 1:1 ratio of positive to negative slices. The loss
function was experimentally set to utilize mean squared error. To enhance model sensitivity, the
loss function for tumor cases was scaled by a factor of two.

The performance of the trained model was evaluated using the internal testing dataset. The overlap
between the model-generated bounding boxes and the reference standard boxes was evaluated on
a per-slice basis. The Dice Similarity Coefficient (DSC), precision, sensitivity, and specificity

were calculated.



3. RESULTS (EXPERIMENT #1)

3.1. Internal Testing Dataset

A total of 841 patients were enrolled in the internal testing dataset. Among them, 99 patients were
histologically diagnosed with primary CRC, three of whom had two synchronous CRCs. Among
the total of 102 CRCs, the expert radiologist failed to detect nine cancers from eight patients on
APCT even after referencing the colonoscopic reports. The clinical and imaging characteristics

of the internal testing dataset are summarized in Table 1.



Table 1. Clinical and imaging characteristics of the internal testing dataset

Internal testing dataset

Age (y)' 58+ 15
Male : Female 458 : 383
Patients with primary colorectal cancer 99/841 (12)
Number of colorectal cancers 102
Detectable on APCT 93/102 (91)
Undetectable on APCT 9/102 (9)

Patients with CT-detectable colorectal cancer

92/841 (11)

Cancer location, based on the most distal end

Ascending colon 22/102 (21)
Hepatic flexure colon 13/102 (13)
Transverse colon 8/102 (8)
Splenic flexure colon 1/102 (1)
Descending colon 5/102 (5)
Sigmoid colon 18/102 (18)
Rectum 28/102 (27)
Anus 7/102 (7)
Cancer size at CT (cm)f 3.6 (2.7-4.5)
Same or smaller than 2 cm 8/93 (9)
Larger than 2 cm 85/93 (91)
Cancer morphology at CT
Polypoid 3/93 (3)
Annular, < 50% of bowel lumen 21/93 (23)
Annular, > 50% of bowel lumen 69/93 (74)
Clinical T staging on CT
cT1 0/93 (0)
cT2 17/93 (18)
cT3 68/93 (73)
cT4a 5/93 (5)
cT4b 3/93 (3)
Suspicious regional lymphnode metastasis on CT 71/99 (72)
Presence of distant metastasis 9/99 (9)

Unless otherwise noted, data are numbers of patients or lesions, with percentages in parentheses.
*Data are mean =+ standard deviation.
"Data are medians, with the interquartile range in parentheses.
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Detailed information on the nine undetectable cancers is summarized in Table 2. A majority of
these undetectable cases were either polypoid or small in size with a circumferential tumor

extent of less than 50% of bowel lumen.

Table 2. Summary of CT-undetectable cancers in the internal testing dataset

Dataset Sex/Age Location Cancer morphology” Size (cm)
Internal M/58 Transverse colon Polypoid 5.1
Internal M/67 Anus Annular, < 50% 2.0
Internal M/65 Rectum Annular, < 50% 2.0
Internal F/58 Sigmoid colon Polypoid 3.7
Internal M/65 Descending colon Annular, <50% 2.0
Internal M/74 Sigmoid colon Annular, > 50% 3.0
Internal F/73 Rectum Annular, < 50% 1.7
Internal F/73 Sigmoid colon Annular, < 50% 1.5
Internal M/52 Rectum Annular, < 50% 2.7

"The morphology of the cancer was determined based on colonoscopic findings. It was determined
as polypoid when the height of the mass was over 50% of its lateral diameter. Otherwise, the mass
was regarded as annular, and it was further divided based on whether the circumferential extent
exceeded 50% of the bowel lumen.

3.2. Performance of the Initial Prototype Model Using the Hourglass
Network

The performance of the Al model is summarized in Table 3. Althrough specificity was very high
(over 0.9), DSC, precision, and sensitivity all fell below 0.7, with particularly lower performance
on tumor slices compared to non-tumor slices. This consistent pattern in the metrics suggests that

the model has not yet achieved sufficient sensitivity in detecting CRC.

Table 3. Slice-based performance of the hourglass network

All slices Tumor slices Non-tumor slices
DSC 0.6437 0.5527 0.7346
Precision 0.6565 0.5783 0.7346
Sensitivity 0.6926 0.6120 0.7731
Specificity 0.9883 0.9905 0.9860

DSC, dice similarity coefficient.
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4. MATERIALS AND METHODS (EXPERIMENT #2)

4.1. Combination of Two Contrary Networks: DETR and Hourglass

To overcome the low sensitivity of the hourglass network, we devised a two-step strategy: first, a
high-sensitivity model selects regions with even a slight possibility of CRC, and then only these
selected regions are fed into the high-precision model. DETR is a cutting-edge deep learning
method for object detection tasks that combines the power of transformers with object detection
algorithms, achieving SOTA performance in the ImageNet benchmark'®3’. DETR combines the
power of transformers and object detection algorithms to perform object detection tasks.
Traditionally, object detection systems relied on CNNs as the primary architecture. However,
transformers, which have been highly successful in natural language processing tasks, have
shown promise in computer vision tasks as well. The basic idea behind DETR is to leverage the
attention mechanisms of transformers to capture global contextual information and model
relationships between different objects in an image. This is in contrast to CNNs, which primarily
focus on local features within the image. Transformers excel in modeling long-range
dependencies and capturing global relationships, making them suitable for object detection tasks
where understanding the context is crucial. Additionally, transformers enable end-to-end
training, eliminating the need for intermediate steps like region proposal networks or anchor
generation.

We tuned the DETR model to prioritize high sensitivity, while the hourglass model was tuned to
favor high precision. The DETR model generated up to four bounding boxes per CT axial image,
each with a probability score, to indicate regions suspected of CRC. Overlapping boxes had their
scores summed, and only regions with a final score of 0.8 or higher were selected. A new larger
box was then created to encompass the selected boxes, cropped, and used as input for the
hourglass network.

The performance of the DETR-hourglass model was evaluated using the internal testing dataset
on a per-slice basis. The performance of each model was also evaluated separately without
combining them. Since the comparison was based on bounding box areas rather than pixel-level

segmentation, Intersection over Union (IoU) was calculated instead of DSC.
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5. RESULTS (EXPERIMENT #2)

5.1. Performance of the DETR—Hourglass Model

Table 4 summarizes the performance of the tested models. As intended, the DETR-hourglass
model achieved the best performance across all metrics, including IoU, sensitivity, and precision.
However, we noticed that the performance difference between our combined model and the
DETR-only model was minimal. This suggests that attaching the hourglass model to DETR

provided little to no performance gain.

Table 4. Slice-based performance of the DETR—hourglass model

IoU Sensitivity Precision
Hourglass 0.43 0.54 0.56
DETR 0.55 0.66 0.67
DETR-Hourglass 0.56 0.67 0.68

lou, intersection over union.
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6. MATERIALS AND METHODS (EXPERIMENT #3)

6.1. Optimization of the DETR-only Model

We decided to build a new model using only DETR, without the hourglass model, and proceed

t23. The number of

with its optimization. We pretrained the model weights on the COCO datase
predicted boxes was experimentally set to five per axial slice (q = 5), and only the box with the
highest probability score of cancer presence was chosen in each axial slice. ResNet101 was used
as a backbone network, and the dilated convolution method was used. The number of epochs
was 20.

To optimize model performance and address class imbalance simultaneously, we adjusted the ratio
of positive to negative slices from 1:1 to 2:1. To achieve this, we randomly selected 17,576 axial
slices without a labeled reference standard box. We ensured that the number of slices extracted

from each patient was as equal as possible to minimize intra-patient dependence. In total, 48,940

axial slices were used as the final training dataset.

6.2. Construction of the External Testing Dataset
We identified consecutive patients at another external tertiary hospital (Severance Hospital) who
underwent both APCT and colonoscopy within an interval of less than 2 months between
January and June in 2018. The same exclusion criteria used for constructing the internal testing
dataset were applied. Clinical and imaging information were analyzed and recorded in the same

manner as when constructing the internal testing dataset.

6.3. Improvement of the Model Performance Evaluation Method

6.3.1. Use of DSC Instead of IoU

We decided to use DSC instead of IoU for performance evaluation due to the following reasons.
First, IoU is relatively sensitive to the errors in small boxes. Since a few pixel errors in

predicting small boxes can result in low scores of loU?, IoU might be no longer a suitable
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metric to detect small lesions in our study. In order to mitigate this issue, DSC can be a good
alternative with a large weight for overlapped area between predicted box and reference standard
box*. Second, we are focused on assessing per-lesion performance of our model. While IoU
tends to emphasize the prediction accuracy for large lesions, DSC is adequate for detecting
lesions with different scales. Third, our task is closer to z-directional segmentation rather than
3D bounding box prediction. Since we annotated bounding box for each axial slice, the whole
volumetric labels can be seen as coarse segmentation masks in coronal or sagittal views. In
medical image analysis as well as classical computer vision, DSC is a widely-used metric to

measure the segmentation performance’.
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6.3.2. Grouping of Al-predicted bounding boxes

To more accurately evaluate the AI model's performance, we improved the assessment method by
shifting from slice-level evaluation to lesion-level evaluation. When the Al-predicted bounding
boxes were contiguously present through multiple axial slices and the inner areas of those boxes
were overlapped at least partially, those boxes were considered to belong to the same lesion
(Figure 1). The arithmetic sum of predicted probability scores of bounding boxes belonging to
the same lesion was regarded as the overall probability score corresponding to the lesion. We
defined the average DSC as the sum of DSCs of Al-predicted bounding boxes divided by the
number of total CT slices with respect to each lesion. An average DSC greater than 0.3 was

regarded as true positive.

[Coordinates of Ground truth]

[Left upper] [Right lower]

(224 336) (249 367)

Regarg,

2 v % ed as one singy 1.

sy i - fr//m‘m:m/ww/ e sesion
Sum o probab;y;

{ (211 334) (248 374) " Average e g g 104

stices: 7

(209 333) (246 390)
(208 340) (246 390)
(207 333) (250 390)
(209 333) (251 388)
(206 333) (251 394)
(207 335) (254 395)
(206 343) (253 392)

(206 346) (255 380)

Figure 1. Example of Al grouping multiple bounding boxes into a single lesion. The Al-
predicted bounding boxes are shown in green, while the red boxes indicate the reference standard
boxes.

DSC, dice similarity coefficient.
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6.3.3. Human Reader Study

Human reader study was done using the external testing dataset. Two gastrointestinal expert
radiologists with 5 and 10 years of experience, respectively, were requested to independently
detect CRC on the external testing dataset. They were not provided any further information
regarding the dataset, including the prevalence of CRC patients. No additional CT images, such
as other dynamic phases or coronal/sagittal planes, were provided. The expert radiologist who
had labeled the reference standard bounding boxes determined whether the reviewers correctly

localized CRC by referencing ground-truth images.

6.3.4. Statistical Analysis

Statistical analyses were performed using R, version 4.2.2 (R Foundation for Statistical
Computing). The Student’s t test was used for age, and a Mann-Whitney U test was used for
cancer size at CT. Fisher’s exact test was used for categorical variables. For the per-patient
analysis, receiver operating characteristic (ROC) analysis was performed. To integrate the per-
patient and per-lesion analyses, alternative free-response ROC (AFROC) was performed. To
evaluate the localization performance of the model, localization ROC (LROC) analysis was
additionally perforrned36. The cutoff for Al-predicted probability score was determined based on
maximal Youden index calculated from the AFROC curve on the internal testing dataset. The
determined cutoff was used for the external testing as well. P < .05 was considered to indicate
statistical significance.

Both false-negative lesions (reference standard lesions without any Al-predicted bounding box)
and true-negative patients (patients with neither reference standard nor Al-predicted bounding
box) were regarded with an overall probability score of zero in the alternative free-response
receiver operating characteristic (AFROC) analysis. In localization receiver operating
characteristic (LROC) analysis, false-negative lesions were ignored from the analysis. Delong’s
method was used to estimate the 95% confidence internal (CI) for area under the receiver
operating characteristic (AUROC) and area under the AFROC (AUAFROC). Bootstrapping was
performed with 1,000 resampling iterations to estimate the 95% CI for area under the LROC
(AULROC).
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7. RESULTS (EXPERIMENT #3)

7.1. Summary of the All Three Datasets

An overall overview of the training, internal and external testing datasets is summarized in Figure

2. The internal testing dataset was used unchanged as constructed in Experiment #1.

[Training dataset]

2662 patients from Severance hospital
- histologically diagnosed with primary CRC

415,059 total slices
48,940 slices used for model training
(31,364 slices showing CRC)
(17.575 randomly selected slices not showing CRC)

enhanced AP CT within less than 2-month interval
- between January 2018 and June 2018

8 s 2662
- underwent routine contrast-enhanced AP CT L [P »
before treatment P )
- between January 2010 and December 2014

(No exclusions)

[Internal test dataset]
1944 consecutive patients from Severance hospital
- underwent colonoscopy and routine contrast- 841 /

» :
patients

Patients without
CRC
(n=742)

(Exclusion)

CT performed without IV contrast media (n=250)

Incomplete colonoscopy (n=104)
Prior colonic resection (n=538)

Prior EMR/ESD of the colon or rectum (n=205)

Colorectal malignancy other than primary adenocarcinoma (n=6)

[External test dataset]

Patients with
CRC
(n=99:; with 102 cancers)

CRC not visible on CT
(n = 8; with 9 cancers)

CRC visible on CT
(n=92: with 93 cancers)

787 consecutive patients from Gangnam Severance
hospital

- underwent colonoscopy and routine contrast-
enhanced AP CT within less than 2-month interval
- between January 2018 and June 2018

442
patients

\

Patients without
CRC
(n=413)

(Exclusion)

CT performed without IV contrast media (n=41)

Incomplete colonoscopy (n=73)
Prior colonic resection (n=157)

Prior EMR/ESD of the colon or rectum (n=71)

Colorectal malignancy other than primary adenocarcinoma (n-3)

Patients with
CRC
(n=29: with 29 cancers)

CRC not visible on CT
(n = 3; with 3 cancers)

CRC visible on CT
(n = 26; with 26 cancers)

Figure 2. An overall overview of the training, internal and external testing datasets

CRC, colorectal cancer:

A total of 442 patients were enrolled in the external testing dataset. Among them, 29 patients were

histologically diagnosed with primary CRC. Each of the 29 cancer patients was found to have a

single lesion upon undergoing colonoscopy. The clinical and imaging characteristics of the

internal and external testing datasets are summarized and compared in Table 5.
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Table S. Clinical and imaging characteristics of the internal and external testing sets

Internal testing set External testing set P
Age (y)’ 58+ 15 57415 33
Sex 44
M 458 251
F 383 191
Patients with primary colorectal cancer 99/841 (12) 29/442 (7) .003
Number of colorectal cancers 102 29
Detectable on APCT 93/102 (91) 26/29 (90)
Undetectable on APCT 9/102 (9) 3/29 (10)
Patients with CT-detectable colorectal cancer 92/841 (11) 26/442 (6) .003
Cancer location, based on the most distal end 46
Ascending colon 22/102 (21) 529 (17)
Hepatic flexure colon 13/102 (13) 2/29 (7)
Transverse colon 8/102 (8) 2/29 (7)
Splenic flexure colon 1/102 (1) 1/29 (3)
Descending colon 5/102 (5) 0/29 (0)
Sigmoid colon 18/102 (18) 9/29 (31)
Rectum 28/102 (27) 10/29 (35)
Anus 7/102 (7) 0/29 (0)
Cancer size at CT (cm)' 3.6 (2.7-4.5) 3.2(2.7-3.9) 42
Same or smaller than 2 cm 8/93 (9) 2/26 (8)
Larger than 2 cm 85/93 (91) 24/26 (92)
Cancer morphology at CT .30
Polypoid 3/93 (3) 2/26 (8)
Annular, < 50% of bowel lumen 21/93 (23) 8/26 (31)
Annular, > 50% of bowel lumen 69/93 (74) 16/26 (61)
Clinical T staging on CT
cTl 0/93 (0) 5/26 (19)
cT2 17/93 (18) 7/26 (27)
cT3 68/93 (73) 11/26 (42)
cT4a 5/93 (5) 0/26 (0)
cT4b 3/93 (3) 3/26 (12)
Suspicious regional LN metastasis on CT 71/99 (72) 13/29 (45)
Presence of distant metastasis 9/99 (9) 8/29 (28)

Unless otherwise noted, data are numbers of patients or lesions, with percentages in parentheses.

*Data are mean + standard deviation.

"Data are medians, with the interquartile range in parentheses.
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The expert radiologist failed to detect three cancers on APCT in the external testing dataset.
Detailed information on those three patients is summarized in Table 6. Two of them had

polypoid cancers and the remaining patient had small-sized cancer with circumferential tumor

extent less than 50% of bowel lumen.

Table 6. Summary of CT-undetectable cancers in the external testing dataset

Dataset Sex/Age Location Cancer morphology” Size
(cm)
External M/59 Sigmoid colon Polypoid 2.2
External F/59 Ascending colon Polypoid 23
External M/72 Rectum Annular, < 50% 1.5

"The morphology of the cancer was determined based on colonoscopic findings. It was determined
as polypoid when the height of the mass was over 50% of its lateral diameter. Otherwise, the mass

was regarded as annular, and it was further divided based on whether the circumferential extent
exceeded 50% of the bowel lumen.

20



7.2. Internal and External Testing

The ROC curves (Figure 3a) and AFROC curves (Figure 3b) were drawn by varying the cutoff for
Al-predicted probability score. Regarding the internal testing dataset, when the cutoff for Al-
predicted probability score was set to 3.321, Youden index reached its maximum value on the
AFROC curve with a per-lesion sensitivity and per-patient specificity of 75.3% (70/93) and
95.1% (712/749), respectively. When the same cutoff was applied to the external testing dataset,
sensitivity and specificity were 76.9% (20/26) and 71.2% (296/416), respectively. On LROC
analysis, AULROC was calculated as 0.886 (95% CI: 0.829, 0.926) and 0.801 (95% CI: 0.681,

0.876) for the internal and external testing datasets, respectively.

(a) (b)
o | o |
AUROC: 0.891 AUAFROC: 0.840
@ @
o 7 o 7 § .
i AUAFROC: 0.741
- AUROC: 0.770
) =
5 ) Cutoff for Al-predicted probability: 3.321
% 2 5 = Per-lesion sensitivity: 76.9%
IQ TI- | Per-patient specificify: 71.2%
Y )
s S
2= 2 |
z e e
= =
= z y
S o Pomt of maximal Youden index
N~ A o i Cutoff for Al-predicted probability: 3.321
° < Per-lesion sensitivity: 75.3%
Per-patient specificity: 95.1%
—— Intemal testing —— Intemal testing
o | External testing o | External testing
o o
T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
1 - Specificity (per-patient) 1 - Specificity (per-patient)

Figure 3. ROC and AFROC analyses (Experiment #3). (a) ROC curves based on the
colonoscopic results of internal (black) and external (dark green) testing datasets are shown.
AUROC were 0.891 and 0.770 for internal and external testing datasets, respectively. (b) AFROC
curves based on the CT-based reference standard box of internal (black) and external (dark green)
testing datasets are shown. AUAFROC were 0.840 and 0.741 for internal and external testing
datasets, respectively. When the cutoff for Al-predicted probability score was set to 3.321, Youden
index reached its maximum value on the AFROC curve of internal testing dataset with a per-lesion
sensitivity and per-patient specificity of 75.3% and 95.1%, respectively. When the same cutoff
value was applied to the external testing dataset, per-lesion sensitivity was 76.9% and per-patient
specificity was 71.2%.

ROC, receiver operating characteristics; AUROC, area under the ROC; AFROC, alternative free-
response ROC; AUAFROC, area under the AFROC.
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The results of the per-lesion analysis using the cutoff of 3.321 are summarized in Table 7. The Al
model showed a sensitivity of 75.3% (70/93) and 76.9% (20/26) for the internal and external

testing datasets, respectively.

Table 7. Per-lesion analyses (Experiment #3)

Internal testing External testing P Value

True positive 70 20
False negative 23 6
Sensitivity” 75.3% 76.9% .87
False positive 44 179
Number of false positive
lesions per patient

0 801/841 (95.3) 312/442 (70.6)

1 37/841 (4.4) 91/442 (20.6)

2 2/841(0.2) 30/442 (6.8)

3 1/841 (0.1) 8/442 (1.8)

4 0/841 (0.0) 1/442 (0.2)

Unless otherwise noted, data are numbers of lesions, with percentages in parentheses.
*Sensitivity = True positive / (True positive + False negative)
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The model falsely detected 44 lesions in 40 patients and 179 lesions in 130 patients in the internal

and external testing datasets, respectively. The detailed locations of false positive lesions are

summarized in Table 8.

Table 8. Detailed locations of false positive lesions (Experiment #3)

Internal testing dataset

External testing dataset

Large bowel 25/44 (56.8) 111/179 (62.0)
Ascending colon 14/25 (56.0) 41/111 (36.9)
Hepatic flexure colon 2/25 (8.0) 4/111 (3.6)
Transverse colon 0/25 (0.0) 1/111 (0.9)
Splenic flexure colon 0/25 (0.0) 2/111 (1.8)
Descending colon 0/25 (0.0) 0/111 (0.0)
Sigmoid colon 2/25 (8.0) 23/111 (20.7)
Rectum 7/25 (28.0) 39/111 (35.1)
Anus 0/25 (0.0) 1/111 (0.9)

Stomach 1/44 (2.3) 20/179 (11.2)

Small bowel 10/44 (22.7) 30/179 (16.8)

Uterus 4/44 (9.1) 11/179 (6.1)

Ovary 0/44 (0.0) 1/179 (0.6)

Omentum 0/44 (0.0) 2/179 (1.1)

Kidney 0/44 (0.0) 2/179 (1.1)

Liver 1/44 (2.3) 1/179 (0.6)

Gallbladder 0/44 (0.0) 1/179 (0.6)

Unspecified location 3/44 (6.8) 0/179 (0.0)

Data are numbers of lesions, with percentages in parentheses.
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7.3. Human Reader Study

The results of two expert radiologists are summarized in Table 9. Both readers showed similar
sensitivities and specificities to each other (sensitivity: 73.1% [19/26] vs. 80.8% [21/26], p = .51;
specificity: 98.3% [409/416] vs. 98.6% [410/416], p = .73). When compared to the performance
of the Al model, both radiologists showed comparable sensitivity (p =.75 and .73, respectively)
but significantly higher specificity (p <.001, both).

Table 9. Performance comparison between radiologists and AI (Experiment #3)

Reader #1 Reader #2 Al
(Syearsof (10 years of (cutoff value: P: P3 p'
experience) experience) >3.321)
Per-patient analysis
True positive 19 21 20
False negative 7 5 6
Sensitivity” 73.1% 80.8% 76.9% 51 5 73
False positive 7 6 120
True negative 409 410 296
Specificity 98.3% 98.6% 71.2% 73 <.001 <.001
Per-lesion analysis
True positive 19 21 20
False negative 7 5 6
Sensitivity” 73.1% 80.8% 76.9% 51 5 73
False positive 7 6 179

Unless otherwise noted, data are numbers of lesions.
*Sensitivity = True positive / (True positive + False negative)
TSpecificity = True negative / (True negative + False positive)
{Compared between reader #1 and #2.

SCompared between reader #1 and Al

ICompared between reader #2 and Al.

It was highly encouraging that sensitivity improved to a level where it showed no significant
difference compared to human expert readers. However, as a trade-off, the increased number of

false positives led to lower specificity, which remains a challenge to be addressed.
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8. MATERIALS AND METHODS (EXPERIMENT #4)

8.1. Advancement of Model Architecture: Combination of Two DETR

Networks and the TotalSegmentator

We explored ways to reduce the number of false positives and noted that, in Experiment #3,
approximately 40% of false-positive lesions were located in organs other than the large bowel.
Therefore, we refined the model by incorporating a colorectal mask and discarding predictions
where the DETR-generated bounding box had no overlap with it.

We cascaded two DETR models for end-to-end training and bounding box prediction, as shown in
Figure 4. The first DETR model estimated the coarse bounding box on the original APCT
images. We also used prior delineation information to focus on the colorectal area, employing
3D Slicer (version 5.6.0)*7 with the TotalSegmentator tool (version defa716b), an Al model that
automatically segments 104 anatomical structures from CT images®. If there was an overlapping
region between the first DETR-estimated box and the colorectal mask, a new rectangle box was
generated to encompass both boxes. The longer side of this new box was increased by 60 pixels,
and then the shorter side was extended to the same length, converting the box into a larger
square. The image inside this larger square box was cropped and interpolated to a resolution of
512 x 512 pixels (the original CT resolution). Then, the second DETR model predicted the fine
bounding box on this new input. If the first DETR model did not predict any box, or if there was
no overlap between the predicted box and the colorectal mask, a new rectangle box was created
to encompass only the colorectal mask. The subsequent steps were carried out in the same
manner as previously described: the box size was increased to form a larger square, the image
within was cropped and interpolated, and then it was used as input for the second DETR model.
After recalculating the coordinates of the second DETR-predicted box from the cropped image
to the original CT slice, the overlap with the reference standard box was evaluated.
Hyperparameters were unchanged from the previous DETR-only model used in Experiment #3,

except that the number of epochs was increased from 20 to 30.
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Generation of a new box (cyan):
1) Encompassing the two boxes
2) Enlarged, and then cropped

«
I*tinput (512 x 512) ™\ /
e ) “ TotalSegmentator '—*-

Colorectal mask (green)

i DETR 2

Comparison with ground truth (red) 2" pounding box prediction (ycllow) 2 input (512 x 512)

Figure 4. Final Architecture of Our AI model

In our framework, we cascaded two DETR models to learn and predict the bounding box enclosing
CRC in axial CT images in an end-to-end fashion. The first DETR model estimated the coarse
bounding box (blue) on the original APCT images. We also used prior delineation information to
focus on the colorectal area, employing 3D Slicer (version 5.6.0) with the TotalSegmentator tool
(version dcfa716b). If there was an overlapping region between the DETR -estimated box (blue) and
the colorectal mask (green), a new rectangle box was generated to encompass both boxes. The longer
side of this new box was increased by 60 pixels, and then the shorter side was extended to the same
length, converting the box into a larger square (cyan). The image inside this larger square box was
cropped and interpolated to a resolution of 512 x 512 pixels (the original CT resolution). Finally, the
second DETR model predicted the fine bounding box (yellow) on this new input. After recalculating
the coordinates of the second DETR-predicted box (yellow) from the cropped image to the original
CT slice, the overlap with the ground truth box (red) was evaluated.

CRC, colorectal cancer; DETR, DEtection with TRansformer

8.2. Update of the Model Performance Evaluation Method

When the Al-predicted bounding boxes were contiguously present across multiple contiguous axial
slices, the previous approach of considering them as a single lesion was maintained. However,
we decided to no longer use quantitative metrics such as DSC or IoU to assess the degree of
overlap with the reference standard. Instead, we adopted a binary evaluation method that simply
determines whether overlap is present or not. This decision was based on previous experiments,

which revealed that even when the degree of overlap with the reference standard box was not
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high, the model still accurately identified and marked the lesions in most cases. Therefore, a
lesion containing any number of Al-predicted boxes that overlap with the reference standard
boxes was considered a true positive detection. The previous approach of considering the
arithmetic sum of predicted scores of bounding boxes belonging to the same lesion as the overall
score of that lesion was maintained. Representative CT slices with the labeled reference standard
and the final predicted bounding boxes are shown in Figure 5.

Regarding the statistical analysis method, we decided not to perform the ROC and LROC analyses
previously conducted in Experiment #3; instead, we chose to perform only the AFROC analysis.
This decision was made because the AFROC analysis alone was considered sufficient to evaluate

per-patient and per-lesion aspects, as well as localization performance.
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Figure 5. Representative images of reference standard (red) and Al-predicted (yellow) boxes.
(a, b) Examples of true positive detections are shown. (c, d) Examples of false negative detections
are shown. Al failed to propose a bounding box over the reference standard lesion. (e, f) Examples
of false positive detections are shown. Al incorrectly proposed bounding boxes at the area where
reference standard box was absent.
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9. RESULTS (EXPERIMENT #4)

9.1. Internal and External Testing

The AFROC curves (Figure 6) were drawn by varying the cutoff for the Al-predicted score. The
AUAFROC was 0.867 (95% CI: 0.809, 0.924) and was 0.808 (95% CI: 0.661, 0.955) in the
internal and external testing datasets, respectively. Regarding the internal testing dataset, when
the cutoff for Al-predicted score was set to 3.9996, Youden index reached its maximum value on
the AFROC curve with a per-lesion sensitivity and per-patient specificity of 79.6% (74/93) and
91.2% (683/749), respectively. When the same cutoff was applied to the external testing dataset,
sensitivity and specificity were 80.8% (21/26) and 90.9% (378/416), respectively.
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g \\ Per-lesion sensitivity: 80.8%
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B 1 \ \
:‘E « N
z Point of maximal Youden index
g Cutoff for Al-predicted score:|3.9996

g - Per-lesion sensitivity: 79.6%
Per-patient specificity: 91.2%

— Internal testing
—— External testing
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Figure 6. AFROC analysis of the final AI model (Experiment #4).
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The results of the per-lesion analysis using the cutoff of 3.9996 are summarized in Table 10. The
Al model showed a sensitivity of 79.6% (74/93) and 80.8% (21/26) for the internal and external
testing datasets, respectively. Regarding the false positives, the model falsely detected 84 lesions
in 70 patients and 52 lesions in 40 patients in the internal and external testing datasets,

respectively.

Table 10. Per-lesion analyses (Experiment #4)

Internal testing External testing
True positive 74 21
False negative 19 5
Sensitivity” 79.6% 80.8%
False positive 84 52
Number of false positive
lesions per patient
0 771/841 (91.7) 402/442 (91.0)
1 60/841 (7.1) 32/442 (7.2)
2 7/841 (0.8) 6/442 (1.4)
3 2/841 (0.2) 0/442 (0.0)
4 1/841 (0.1) 2/442 (0.5)

Unless otherwise noted, data are numbers of lesions, with percentages in parentheses.
*Sensitivity = True positive / (True positive + False negative)
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9.2. Performance Comparison between Two Human Readers and the Al

Model

Although the specificity of our Al model improved up to 90.9%, yet it still did not reach the

performance level of human readers (Table 11). Regarding sensitivity, the Al model continued to

show performance comparable to or better than that of human readers.

Table 11. Performance comparison between radiologists and AI (Experiment #4)

Reader #1 Reader #2 Al
(Syearsof (10 years of (cutoff value: P P3 p'
experience) experience) >3.9996)
Per-lesion analysis
True positive 19 21 21
False negative 7 5 5
Sensitivity” 73.1% 80.8% 80.8% 0.743  0.743 1.0
False positive 7 6 52
Per-patient analysis
False positive 7 6 38
True negative 409 410 378
Specificity 98.3% 98.6% 90.9% 1.0 <0.001 <0.001

Unless otherwise noted, data are numbers of lesions.
*Sensitivity = True positive / (True positive + False negative)
fSpecificity = True negative / (True negative + False positive)
{Compared between reader #1 and #2.

SCompared between reader #1 and Al

ICompared between reader #2 and Al.
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Table 12 summarizes information on the nine CRCs missed by at least one of the two readers,
including three CRCs missed by both readers. Al correctly detected five of these nine CRCs,
including one of the three CRCs missed by both readers. Figures 7 and 8 show examples of
CRCs missed by both readers and by the Al model; Figures 9 and 10 show examples of CRC
missed by at least one reader but detected by the Al model.

Table 12. Cancers missed by at least one of the two expert radiologists

Reader #1 Reader #2 Al .
(cutoff . Cancer Size
(Syears of (10 years of Location
. . value: morphology (cm)
experience)  experience) >3.9996)
Transverse Annular,
X X X colon <50% 28
Annular,
X X X Rectum < 50% 1.8
. . Annular,
X 0] X Sigmoid colon > 50% 4.0
. . Annular,
X @) X Sigmoid colon <50% 2.9
. . Annular,
X X 0] Sigmoid colon = 50% 2.7
Hepatic Annular,
X o © flexure colon > 50% 2.8
Annular,
X (@) 0] Rectum = 50% 3.2
Annular,
(0] X 0] Rectum < 50% 2.8
Annular,
(0] X 0] Rectum < 50% 3.2
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Figure 7. Example of a CRC case missed by both readers and the AI model. This is an axial
image from routine abdominopelvic CT examination in 71-year-old patient from external test set
with histologically confirmed CRC involving transverse colon (box). Lesion measured 2.8 cm and
had annular (not exceeding 50% of bowel lumen) morphology. Lesion was missed by both readers
and by Al model.

CRC, colorectal cancer.
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o )
Figure 8. Example of a CRC case missed by both readers and the AI model. This is an axial

image from routine abdominopelvic CT examination in 61-year-old patient from external test set
with histologically confirmed CRC involving rectum (box). Lesion measured 1.8 cm and had
annular (not exceeding 50% of bowel lumen) morphology. Lesion was missed by both readers and
by Al model.

CRC, colorectal cancer:

34



Figure 9. Example of a CRC case missed by at least one reader but detected by the AI model.
This is an axial image from routine abdominopelvic CT examination in 57-year-old patient from
external test set with histologically confirmed CRC involving sigmoid colon (red box). Lesion
measured 2.7 cm and had annular (exceeding 50% of bowel lumen) morphology. Lesion was missed
by both readers but detected by Al model (yellow box).

CRC, colorectal cancer:
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Figure 10. Example of a CRC case missed by at least one reader but detected by the AI model.
This is an axial image from routine abdominopelvic CT examination in 76-year-old patient from
external test set with histologically confirmed CRC involving hepatic flexure (box). Lesion
measured 2.8 cm and had annular (exceeding 50% of bowel lumen) morphology. Lesion was
detected by one of two readers and by Al model.

CRC, colorectal cancer.
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9.3. Subgroup Analysis
Subgroup analyses of internal and external testing datasets were performed according to the size,
morphology, and location of the cancer based on CT (Table 13). Per-lesion sensitivity was higher
when diagnosing the annular cancers involving more than 50% of the bowel lumen than those
involving less than 50%. Regarding the location of the cancer, the model showed the lowest

sensitivity to transverse colon cancer.

Table 13. Subgroup analyses of the internal testing and external testing datasets

Internal testing dataset External testing dataset
Sensitivity” Sensitivity”
All CT-detectable cancers 79.6% (74/93) 80.8% (21/26)
Cancer size at CT (cm)
Same or smaller than 2 cm 50.0% (4/8) 0.0% (0/2)
Larger than 2 cm 82.4% (70/85) 87.5% (21/24)
Cancer morphology at CT
Polypoid, or annular (<50%) 58.3% (14/24) 60.0% (6/10)
Annular (>50%) 87.0% (60/69) 93.8% (15/16)
Cancer location, based on the
most distal end
Ascending colon 86.4% (19/22) 100.0% (4/4)
Hepatic flexure colon 84.6% (11/13) 100.0% (2/2)
Transverse colon 28.6% (2/7) 50.0% (1/2)
Splenic flexure colon 100.0% (1/1) 100.0% (1/1)
Descending colon 80.0% (4/5) n/a (0/0)
Sigmoid colon 71.4% (10/14) 62.5% (5/8)
Rectum 92.0% (23/25) 88.9% (8/9)
Anus 66.7% (4/6) n/a (0/0)

*Sensitivity = True positive / (True positive + False negative)
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10. DISCUSSION

Unanticipated CRCs can easily be missed on routine APCT scans performed without bowel
preparation. This issue can be particularly problematic when the primary purpose of the scans is
unrelated to CRC screening or when interpretations are performed by general radiologists rather
than gastrointestinal imaging specialists. Our final Al model demonstrated the potential for the
automatic detection of CRC, achieving AUAFROC over 0.8 in both internal and external testing
datasets. The sensitivity of the Al model, at approximately 80%, was comparable to that of
human expert radiologists; however, its specificity was still lower, at around 90% compared to
98%.

Regarding the computer-aided detection of CRC, the majority of previous works focused on either
optical colonoscopy videos or CT colonography images***’. The objectives of those previous
studies using CT colonography were mostly to detect or characterize the polyps, not the cancer
itself*!. Because the detection rate of CRC may be lower in routine APCT than that of CT
colonography, there have been unmet needs for the development of computer-aided
cancer-detection algorithms based on routine APCT*%*2, Furthermore, routine APCTs generally
outnumber CT colonography exams because 1) they do not require any special scanning protocol
such as bowel preparation or gaseous distension, and 2) they are more frequently performed for
various clinical purposes, not limited to CRC screening. In this context, routine APCT has the
advantage of providing large volumes of data required to train deep-learning-based Al models.
Furthermore, Al models trained on routine APCT have considerably broader applicability
compared to those based on CT colonography.

Recently, a few studies have started to explore Al models for detecting CRC using routine APCT
scans performed without bowel preparation. Among these, two studies assessed the model’s
performance exclusively in patients with confirmed CRC, without evaluating its efficacy in
patients without CRC***, As a result, the model's real-world performance remains unclear. The
other two papers by Yao et al. validated their model performance using a real-world dataset but
classified all patients without detectable CRC on CT as normal, introducing a significant
limitation*>4%, A key advantage of Al is its potential to identify CRC cases that radiologists might
overlook. Consequently, the patients classified as normal in these studies may have included

those with undiagnosed CRC that were missed by radiologists. In our study, we addressed this
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limitation by including only patients who underwent colonoscopy within two months of their CT
scan and classified as normal only those whose colonoscopy results showed no evidence of
CRC. This approach allowed for more precise patient categorization and a more accurate
performance evaluation.

Our Al model demonstrated good performance in detecting CRC, as the AUAFROC was 0.867
and 0.808 on internal and external testing sets, respectively. Furthermore, the sensitivity of our
model, at approximately 80%, was comparable to that of the human expert radiologists. The
human readers involved in this study were not simply instructed to interpret the CT scans; they
were specifically directed to look for CRC. Consequently, the readers likely concentrated more
on the large bowel while reviewing the images than they would in routine real-world practice,
which might have resulted in their improved sensitivity. Considering this, the sensitivity of our
Al model appears to be quite sufficient for real-world CT interpretation sessions.

In approximately 91% of patients in both testing datasets, there were no false positive lesions. This
result is better than that of previous studies regarding CT colonography, which reported two or
more false positive lesions per patient*’*¥, One possible explanation for the lower false positivity
of our model may lie in our lesion-based approach, which aggregates multiple bounding boxes as
a single lesion unit. As we arithmetically added the scores of each slice to calculate the final
score for that lesion, the lesions that consisted of a high number of slices were weighted more
than the lesions with a small number of slices. We speculate that the underlying mechanism for
this approach reflects the way human radiologists determine between pseudo-lesions and true
lesions — true lesions usually show their presence consistently across multiple slices. The two-
step approach using the colorectal mask obtained through the TotalSegmentator, also possibly
contributed to reducing false positives. If the first DETR model suggested a bounding box on
organs other than the large bowel, it was discarded before the second DETR model because it
failed to overlap with the colorectal mask.

The performance of our Al model was better for annular cancers with circumferential tumor extent
exceeding 50% of the bowel lumen, achieving per-lesion sensitivities of 8§7.0% and 93.8% in the
internal and external testing datasets, respectively. Our results are consistent with previous
studies that found that longer circumferential tumor extent was associated with more advanced

TNM stages and was thus easier to detect**°. Conversely, for small CRCs measuring 2 cm or
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less, both our Al model and expert readers demonstrated low sensitivities of 50% or less. This is
consistent with previous reports, indicating that there are inherent limitations to improving
detection sensitivity for such small CRCs using routine CT alone®. Regarding the location of the
cancer, our model showed the worst performance when the cancer was located in the transverse
colon. Although the exact reason that our AI model showed the worst performance in such a
location is not clear, one possible explanation is that axial slices of the transverse colon appear
rather cylindrical, whereas those of the other colonic parts look circular. In this regard, we
speculate that the performance of our model could be improved if sagittal images, where the
transverse colon appears circular, were also considered. Investigation of such different views
remains as a topic of our future research.

Our research has several limitations. First, the Al model was trained and tested retrospectively.
The model’s ability to reduce missed cancers in a prospective real-world setting was not
evaluated. Second, patients who did not undergo both CT and colonoscopy within a 2-month
interval were excluded from the testing dataset, which constitutes a selection bias. However, we
believe it is the only retrospective design that allows for constructing the accurate reference
standard for non-cancer patients. Third, the impact of false-positive Al results, even if
uncommon, was not evaluated. Prospective cost-effectiveness analysis is needed to determine
whether the benefits outweigh the costs associated with false positive suggestions. Fourth,
coronal/sagittal CT images were not used in this study, which might have further improved the
performance of the human readers and the Al. Fifth, this study evaluated performance for
detection of only CT-visible CRCs, classifying patients with nonvisible CRCs as negative by the
reference standard. This approach is expected to have reduced the prevalence in the study sample
of lesions that may be particularly difficult to detect. Finally, the analysis focused only on CRCs
and did not consider detection of adenomas or other precancerous lesions. Thus, while the
explored approach may help reduce the frequency with which CT-visible cancers are missed, it
does not represent an opportunistic screening method for CRC or a substitute for CRC screening
tests.

In conclusion, our study demonstrated the potential utility of an AI model for detecting CRC on
routine APCT examinations, performed without bowel preparation for reasons unrelated to CRC

detection and staging.
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