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ABSTRACT

The effect of glycolytic enzyme expression and thyroiditis on the

aggressiveness of papillary thyroid carcinoma

Background: Glycolytic enzymes have been extensively studied in various cancer types, revealing
their aggressive characteristics and roles in tumor progression. However, it remains unclear whether
glycolytic enzyme expression and peritumoral enzyme activity correlate with the behavior of
papillary thyroid carcinoma (PTC). This study aimed to determine whether the expression of
glycolytic enzymes is associated with aggressiveness—such as lymph node metastasis (LNM) and
extrathyroidal extension (ETE)—in the presence or absence of chronic lymphocytic thyroiditis
(CLD).

Methods: The expression of hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), pyruvate
kinase isoform M2 (PKM2), glucose transporter 1 (GLUT1), and monocarboxylate transporter 4
(MCT4) was examined in 233 PTC tissue specimens by immunohistochemistry. We evaluated
whether the expression of these glycolytic enzymes correlates with LNM, ETE, and recurrence rate,
both with and without CLT. Disease-free survival was compared after 1:3 propensity score matching
based on by age, sex, tumor size, ETE, multifocality, and cervical LNM. In addition, we analyzed
the correlation between glycolytic enzyme mRNA expression and clinicopathological characteristics
in PTC using The Cancer Genome Atlas (TCGA).

Results: All glycolytic enzymes and transporter proteins were significantly overexpressed in PTC
compared with normal tissue. There was a linear correlation among all glycolytic enzymes and
transporter proteins, except for HK2. PKM?2 expression was most highly correlated with the others.
High PKM2 expression was significantly linked to increased recurrence risk in patients without CLT
(HR 1.76, 95% confidence interval (CI) 1.01-3.06, p=0.046), but this association was not observed
in those with CLT. Univariate and multivariate analyses showed that PKM2 mRNA expression and
T staging were significantly correlated with LNM in TCGA data.

Conclusion: Overexpression of glycolytic enzymes such as LDHA, PKM2, and GLUTL1 is
associated with PTC. Interestingly, CLT is associated with greater local invasiveness (gross ETE)
yet paradoxically lower recurrence. LDHA expression was lower in the presence of CLT, whereas
PKM2 remained consistently associated with a higher recurrence rate in the absence of CLT. Based
on TCGA data, PKM2 mRNA expression may serve as a promising biomarker for predicting LNM
in PTC. Notably, patients with CLT exhibited better prognostic outcomes, even with elevated PKM?2
expression, suggesting a potential protective role of CLT in modulating disease progression. Among
the glycolytic enzymes examined, PKM2 may serve as a valuable biomarker for identifying patients
at higher risk of recurrence.




Key words : glycolytic enzyme, Warburg effect, thyroid cancer, metabolic reprogramming, lymph
node metastasis, chronic lymphocytic thyroiditis
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1. Introduction

Papillary thyroid carcinoma (PTC) generally has a favorable prognosis; however, approximately
40-90% of cases demonstrate metastatic potential, particularly involving the lymph nodes!. One
major factor contributing to a poorer prognosis in PTC is the presence of the BRAFY6%°E mutation,
which has been associated with increased lymph node metastasis (LNM), recurrence, and cancer-
related mortality>*. Although testing for the BRAFY®%E mutation aids in diagnosis, its value as an
independent prognostic marker remains inconsistent, especially in populations with a high
mutation prevalence, such as the Korean population®>7. The BRAFV8%E mutation is frequently
observed in papillary thyroid carcinoma (PTC), particularly in Western populations, with
prevalence rates between 48% and 79%°%1°. While its prognostic significance remains debated,
studies consistently show an association with older age, advanced tumor stage, and higher
recurrence risk when combined with other high-risk features. Notably, BRAFV5%F mutation alone
is not an independent predictor of recurrence, but its co-occurrence with TERT promoter mutations
significantly worsens prognosis, correlating with immune suppression and poor outcomes®. Some
cohorts also report lower 5-year survival rates in BRAF-positive cases (67.5% vs. 82.1%)°.
Therefore, BRAFY8%E mutation status should be interpreted in the context of additional
clinicopathologic and molecular features, rather than used as a sole prognostic marker®®. Additional
markers are therefore needed to more reliably predict aggressiveness in PTC.

Recent research has highlighted the role of key glycolytic enzymes, including pyruvate kinase
isoform M2 (PKM2) and lactate dehydrogenase A (LDHA), in tumor metabolism. These enzymes
support cancer cell proliferation through enhanced glucose uptake and lactate production, even
under aerobic conditions—a phenomenon known as the Warburg effect®'-26, They are frequently
overexpressed in aggressive malignancies, including PTC, and have been linked to increased
invasiveness and unfavorable clinical outcomes*”!8, In particular, PKM2 has been shown to be
highly expressed in cancer-associated fibroblasts within the tumor microenvironment, thereby
driving glucose uptake and lactic acid production. These metabolic changes promote cellular
movement and invasiveness'®%,

Lactate accumulation in the tumor microenvironment, primarily facilitated by monocarboxylate
transporter 4 (MCT4), leads to extracellular acidification that supports tumor growth, invasion, and
immune evasion?#?%, High levels of LDHA, often associated with the BRAFV6%E mutation, further
enhance aggressiveness in PTC by promoting aerobic glycolysis. Preliminary studies have
demonstrated that LDHA expression correlates with BRAFV8%°E mutational status, suggesting its
potential as a prognostic biomarker 2627,

In studies comparing recurrence rates and survival outcomes based on glycolytic enzyme
expression across different thyroid cancer types, findings have indicated significant associations
between enzyme overexpression and poor prognosis?2. In medullary thyroid carcinoma (MTC),
HK2 and MCT4 protein overexpression has been linked to lower survival rates. In poorly
differentiated thyroid carcinoma (PDTC), MCT4 and glucose transporter 1 (GLUT1) protein
overexpression have been associated with reduced survival rates. These findings suggest that the
glycolytic shift may contribute to tumor aggressiveness and poor clinical outcomes beyond PTC?%,



In an anaplastic thyroid carcinoma (ATC) cell line study, MCT4 inhibition was reported to suppress
ATC growth?®. Another ATC cell line study found that PKM2 plays a role in enhancing metastasis
and promoting aerobic glycolysis®.

In one study, a significant increase in glycolytic enzymes such as GLUT1, HK2, PKM2, and
LDHA was observed in thyroid inflammation compared to the normal control group, which was
associated with an increased extracellular acidification rate and oxygen consumption rate. These
findings suggest that thyroid inflammation may play a significant role in shaping the peritumoral
microenvironment®!,

In a previous study, we examined whether glycolysis was increased in PTC by comparing
glycolytic enzyme expression in cancerous versus matched normal thyroid tissues using
immunohistochemistry (IHC). Patients with chronic lymphocytic thyroiditis (CLT) were excluded
from that prior work. We subsequently compared glycolytic enzyme expression according to
BRAFV60E mutational status. We found that LDHA levels were significantly higher in the
BRAFV820E mytation group, whereas PKM2 and GLUT1 levels did not differ significantly between
the BRAFV82E _mutated and BRAF wild-type groups. Additionally, we investigated whether the
BRAFV80E mytation upregulates LDHA expression via activation of the mitogen-activated protein
kinase signaling pathway in human thyroid cell lines, as well as whether inhibiting BRAF reduces
LDHA expression in these cell lines. Furthermore, we indirectly confirmed that high LDHA
MRNA expression is associated with PTC aggressiveness using data from The Cancer Genome
Atlas (TCGA\) thyroid cancer database 2.

The present study investigates the correlation between the expression of glycolytic enzymes,
including LDHA, PKM2, hexokinase 2(HK2), GLUT1 and MCT4, and features of PTC
aggressiveness such as lymph node metastasis and extrathyroidal extension according to the
presence or absence of CLT. Our goal is to improve prognostic accuracy and inform clinical
decision-making for patients with PTC.



2. Materials and methods

2.1. Patients

From January 2013 to December 2016, a total of 233 patients who underwent thyroid surgery and
were preoperatively diagnosed with PTC by fine needle aspiration at Yonsei University Severance
Hospital were enrolled. Inclusion and exclusion criteria were applied to ensure that only patients
with available pathological results were included. All samples were obtained as formalin-fixed,
paraffin-embedded tissue blocks.

Inclusion criteria:
1)20<age<70
2) Papillary thyroid carcinoma (tumor size > 1 cm)

Exclusion criteria:

1) Age <20 or age > 70

2) Papillary thyroid microcarcinoma (tumor size < 1 cm)
3) Follicular, medullary, or anaplastic carcinoma

4) Distant metastasis

5) Insufficient histopathological results

6) History of radiation exposure

2.2. Propensity score matching process

Propensity score matching was used to create comparable groups of patients with and without
recurrence, matching them in a 1:3 ratio based on age, sex, tumor size, extrathyroidal extension
(ETE), multifocality, and cervical LN metastasis (LNM). Patients with similar propensity scores—
representing comparable probabilities of recurrence—were matched to ensure balanced distributions
of these six baseline covariates between the groups. After matching, seven patients were excluded
due to a lack of formalin-fixed, paraffin-embedded tissue blocks.

2.3. Preparation of tissue microarray

A 2-mm-diameter tissue microarray (TMA) apparatus (Tissue Microarray Set, Labro, Seoul,
Korea) was used. Paraffin blocks containing vertically embedded thyroid tissue were carefully
punched to obtain 2-mm-diameter, 5-mm-long paraffin cores. These cores, each containing
representative tumor or normal thyroid tissue from a single patient, were embedded into a new
paraffin block approximately 5-10 mm thick. A limitation of the Tissue Microarray (TMA) method
is the potential heterogeneity in the distribution of thyroiditis, which may not be consistently
captured during core sampling. To mitigate this issue, a pathologist carefully reviewed
representative pathology slides to ensure that both tumor and peritumoral normal tissue were
accurately represented in the selection process. The pre-manufactured plastic TMA cassette (2-mm
lumen-sized TMA cassette, Labro, Seoul, Korea) contained thirty 2-mm-diameter sockets. Spacing



between transplanted tissues was maintained at 0.5 mm, allowing up to 30 tissue sections on a single
slide.

If a tissue core was not properly aligned in the paraffin block, the angle of the block was adjusted.
After placing the paraffin cores into the cassette, it was immersed in molten paraffin (at
approximately 65°C) within a metal mold designed for the TMA cassette. The mold was then placed
on a hot plate for 5 minutes, allowing the paraffin tissue columns and the molten paraffin to fuse.
Next, the mold was placed on a cold plate to solidify, creating a stable TMA block (Fig. 1).
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Fig. 1. Immunohistochemistry (IHC) staining on Tissue microarray (TMA) including 15 paired
cancer and normal tissue on a single slide. a)H&E stain, b)LDHA, ¢)PKM2, d)HK?2, ¢)GLUTI,
HMCT4



2.4. Immunohistochemistry(IHC) staining

Paraffin-embedded tissue specimens were cut into 4-pm-thick sections. IHC staining was
performed using a Discovery XT autoimmunostainer (750-701, Ventana, Tucson, AZ, USA) with
monoclonal or polyclonal antibodies against GLUT1 (Dilution 1:100; Catalog No.: RM0063,
Medaysis, USA), PKM2 (Dilution 1:100; Catalog No.: AF5234, Affinity, USA), LDHA (Dilution
1:400; Catalog No.: DF6280; Affinity, USA), hexokinase 2 (HK2; Dilution 1:1000; Catalog No.:
BF0283, Affinity, USA), and MCT4 (SLC16A4; Dilution 1:100; Catalog No.: DF7145, Affinity,
USA) according to the manufacturer’s instructions.

IHC results were assessed by an expert using an immunoreactive score (IRS) derived by
multiplying the intensity of staining (I) (0-3 points: absent, weak, moderate, and strong, respectively)
by the percentage of positively stained tumor cells (P) (0—4 points: 0%, 1-10%, 11-49%, 50-80%,
and 80—100%, respectively). The final IRS (H = P x I) was evaluated as low (0—4 points), moderate
(68 points), or high (9—12 points). For risk factor analysis, the IRS was divided into low (0—4 points)
and high (5-12 points) categories (Fig. 2).
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Fig. 2. Immunohistochemial analysis of pyruvate kinase isoform M2 (PKM2) expression in normal and
tumor tissue. a) normal thyroid tissue, b) weakly, c) intermediately, d) strongly stained papillary
thyroid carcinoma (x400)



2.5. Data from TCGA thyroid cancer database

To investigate these associations in PTC, we used the TCGA dataset. Of the initial 507 thyroid
cancer cases, we excluded patients with other malignancies or missing data on BRAF, LDHA, PKM2,
and GLUT1 expression. Publicly available mRNA sequencing data, somatic mutation data, and
clinical information from 465 patients with thyroid cancer were obtained from TCGA (version
2016 01 28; https://gdac.broadinstitute.org). Overall survival, disease-free survival, disease-
specific survival, and progression-free survival data were downloaded from cBioPortal (TCGA,
Firehose Legacy, and PanCancer Atlas). All data were fully anonymized prior to access. Thyroid
cancer staging was based on the 7th edition of the American Joint Committee on Cancer (AJCC)
staging system.

2.6. Primary outcomes assessment

This study examined whether glycolytic enzyme expression correlates with aggressiveness and
oncological outcomes, such as recurrence, in intermediate-risk PTC larger than 1 cm. Furthermore,
we evaluated whether glycolytic enzyme expression is associated with LNM, ETE, and recurrence
in the presence or absence of CLT, a condition characterized by pathological lymphocytic
infiltration of thyroid tissue and the presence of anti-thyroglobulin antibodies. In addition, this
study aimed to evaluate whether glycolytic enzyme expression is correlated with aggressiveness,
such as LNM and recurrence, using TCGA data.

2.7. Statistical analysis

Student’s t-test was used to assess differences in continuous variables between groups. The y? test
or Fisher’s exact test was used to compare categorical variables. Continuous variables are reported
as the mean + standard deviation with ranges, and categorical variables are expressed as percentages
and absolute numbers. Univariate and multivariate analyses were performed to identify variables
independently associated with recurrence, and odds ratios with 95% confidence intervals (Cls) were
calculated. Differences with p-value < 0.05 were considered statistically significant.

Univariate and multivariate Cox proportional hazards modeling were conducted to assess the
association between glycolytic enzyme expression and PTC aggressiveness. Hazard ratios (HRS)
with 95% Cls were calculated. Statistical analyses were performed using SPSS Statistics for
Windows, version 21.0 (IBM Corp., Armonk, NY, USA), with statistical significance defined as p-
value < 0.05.



3. RESULTS

3.1. Expression of glycolytic enzymes in human thyroid cancer tissues

We assessed the expression of glycolytic enzymes and associated transporters in tissue
microarrays, comparing normal thyroid tissue with cancerous tissue. HK2, PKM2, LDHA, and
GLUT1 were all significantly elevated in tumor tissues. Although MCT4 levels also increased, this
elevation was less pronounced than that observed for the other enzymes. These results indicate a
prominent upregulation of glycolytic pathways in thyroid cancer (Table 1).

Given the observed differences in glycolytic enzyme expression, we subsequently explored the
correlations among these enzymes to better understand their interactions within the glycolysis
pathway.

Table 1. glycolytic enzymes and transporter proteins expression level in normal and papillary thyroid
carcinoma tissues

variable normal(n=233) tumor(n=233) p-value
HK2 expression 0.001*
Low 3 0
Moderate 54 0
High 176 233
PKM2 expression 0.001*
Low 233 178
Moderate 0 46
High 0 9
LDHA expression 0.001*
Low 230 124
Moderate 3 58
High 0 51
GLUT1 expression 0.001*
Low 233 181
Moderate 0 42
High 0 10
MCT4 expression 0.008*
Low 232 221
Moderate 1 11
High 0 1

HK2, hexokinase 2 ; PKM2, pyruvate kinase isoform M2 ; LDHA, lactate dehydrogenase A; GLUT1,
glucose transporter 1; MCT4, monocarboxylate transporter 4
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3.2. Correlation between enzymes in the glycolysis pathway

LDHA maintains the Warburg effect by converting pyruvate to lactate. PKM2 regulates pyruvate
production, influences glycolytic flux, and activates the HIF-1o pathway, which in turn affects the
expression of LDHA and MCT4. MCT4 enhances the external release of lactate produced by LDHA,
thereby shaping a microenvironment conducive to cancer cell survival. Overall, increases in enzyme
levels were observed concurrently, except in the case of HK2. Among these enzymes, PKM2
displayed the strongest correlations with the others, including a particularly robust correlation with
MCT4 (r = 0.613). This suggests that pyruvate processing and lactate transport are closely linked,
underscoring the central role of PKM2 in cancer metabolism and the Warburg effect (Fig. 3).
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Fig. 3. Correlation among glycolytic enzyme expression levels in PTC

3.3. Clinical characteristics based on PKM2 expression levels

We compared the clinicopathological characteristics of PTC patients with low (# = 178) and high
(n=55) PKM2 expression. No significant differences were found between the two groups in terms
of age, sex, tumor size, ETE, multifocality, lymphovascular invasion, BRAFYE mutation or TNM
staging. Expression levels of LDHA, GLUT1, and MCT4 were significantly elevated in the high
PKM2 group (P =0.001), whereas HK2 levels showed no significant difference. However, patients
with high PKM2 expression had a significantly higher recurrence rate (36.4%) than those with low

11



PKM2 expression (21.9%) (P = 0.031). Recurrences were predominantly regional lymph node

events in both groups, and the sites of recurrence did not differ significantly (P = 0.579) (Table 2).
Thus, although PKM2 expression did not correlate with most clinicopathological factors, it was

clearly associated with an increased risk of recurrence in PTC patients.
Having established that PKM2 correlates with recurrence, we then sought to identify additional

factors contributing to direct invasion, a hallmark of aggressive thyroid cancer.

Table 2. Clinicopathological characteristics of patient with PTC according to PKM2 expression level

characteristic low (n=178) high (n=55) p-value
Age 455+ 135 434+ 144 0.338
Sex 0.682
male 57 (32.0%) 16 (29.1%)
female 121 (68%) 39 (70.9%)
Tumor size, cm 1.75+0.99 191 +1.84 0.398
Extrathyroidal extension 0.163
negative 33 (18.5%) 16 (29.1%)
minimal 117 (65.7%) 34 (61.8%)
gross 28 (15.7%) 5(9.1%)
Multifocality 0.36
negative 104 (58.4%) 38 (69.1%)
unilateral 20 (11.2%) 5(9.1%)
bilateral 54 (30.3%) 12 (21.8%)
Lymphovascular invasion 0.08
No 35 (19.7%) 17 (30.9%)
Yes 143 (80.3%) 38 (69.1%)
Thyroiditis 0.674
No 141 (79.2%) 45 (81.8%)
Yes 37 (20.8%) 10 (18.2%)
Clinical N stage 0.904
cNO 124 (69.7%) 38 (69.1%)
cNla 19 (10.7%) 5(9.1%)
cN1b 35 (19.7%) 12 (21.8%)
T stage AJCC8th 0.107
T1 119 (66.9%) 37 (67.3%)
T2 20 (11.2%) 11 (20%)
T3 24 (13.5%) 2 (3.6%)
T4 15 (8.4%) 5(9.1%)
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N stage 0.769
NO 64 (36%) 20 (36.4%)
Nla 76 (42.7%) 21 (38.2%)
N1b 38 (21.3%) 14 (25.5%)

M stage 0.947
MO 175 (98.3%) 54 (98.2%)
M1 3 (1.7%) 1 (1.8%)

BRAFYE mytation 0.54
WT 10 (11.9%) 4 (16.7%)
V600E 74 (88.1%) 20 (83.3%)

Extent of surgery 0.269
Less than total 36 (20.2%) 15 (27.3%)
Bilateral total thyroidectomy 142 (79.8%) 40 (72.7%)

Recurrence 0.031*
No 139 (78.1%) 35 (63.6%)
Yes 39 (21.9%) 20 (36.4%)

Recurrence site 0.579
Regional lymph node 36 (90%) 20 (95.2%)
Distant metastasis 4 (10%) 1 (4.8%)

HK2 expression 0.999
Low 0 0
High 178 (100%) 55 (100%)

LDHA expression 0.001*
Low 115 (64.6%) 9 (16.4%)
High 63 (35.4%) 46 (83.6%)

GLUT1 expression 0.001*
Low 157 (88.2%) 24 (43.6%)
High 21 (11.8%) 31 (56.4%)

MCT4 expression 0.001*
Low 177 (99.4%) 44 (80.0%)
High 1 (0.6%) 11 (20.0%)

HK2, hexokinase 2 ; PKM2, pyruvate kinase isoform M2 ; LDHA, lactate dehydrogenase A; GLUT1,

glucose transporter 1; MCT4, monocarboxylate transporter 4
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3.4. Expression of glycolytic enzymes in PTC with and without
Thyroiditis
We assessed the expression of glycolytic enzymes and associated transporters in tissue
microarrays, comparing cases with thyroiditis to those without thyroiditis. High LDHA expression
was more prevalent in the thyroiditis-negative group (52.7%) than in the thyroiditis-positive group
(23.4%). The expression levels of other glycolytic enzymes (HK2, PKM2, GLUT1, and MCT4) did
not show significant differences based on thyroiditis status (Table 3).

Table 3. Glycolytic enzyme and transporter expression level according to thyroiditis

variable ;]iylrggms 0 (Tnh:yi%ldltls ) p-value

HK2 expression 0.999
Low 0 0
High 186 (100%) 47 (100%)

PKM2 expression 0.674
Low 141 (75.8%) 37 (78.7%)
High 45 (24.2%) 10 (21.3%)

LDHA expression 0.001*
Low 88 (47.3%) 36 (76.6%)
High 98 (52.7%) 11 (23.4%)

GLUT1 expression 0.325
Low 147 (79.0%) 34 (72.3%)
High 39 (21.0%) 13 (27.7%)

MCT4 expression 0.132
Low 174 (93.5%) 47 (100%)
High 12 (6.5%) 0

HKZ2, hexokinase 2 ; PKM2, pyruvate kinase isoform M2 ; LDHA, lactate dehydrogenase A; GLUT1,
glucose transporter 1; MCT4, monocarboxylate transporter 4
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3.5. Risk factors for gross ETE

Older age (>55), the presence of thyroiditis, and larger tumor size were significantly associated
with an increased risk of gross ETE in both univariate and multivariate analyses. Age and thyroiditis
were particularly influential, with ORs 0f 4.73 (P <0.001) and 4.42 (P <0.001), respectively. Other
factors, including sex, BRAF Y mytation and the expression levels of LDHA, GLUT1, and PKM2,
were not significantly associated with gross ETE (Table 4).

Table 4. Risk factor for gross ETE invasion in PTC

Gross ETE univariate multivariate

variable OR 95% CI p-value  OR 95% CI p- value
Age(vs. <55) 3.34 1.52-7.33 0.003 4.73 1.96-1.41 0.001*
Male sex 1.24 0.56-2.75 0.593

Multifocality 1.57 1.04—2.35 0.031 1.47 0.95-2.27 0.085
Thyroiditis 2.54 1.12-5.75 0.026 4.42 1.74-11.23 0.002*
Tumor size 1.65 1.20-2.26 0.002 1.84 1.30-2.61 0.001*
BRAFV600E 1.21 0.14-10.48  0.863

mutation

LDHA high (vs. 1.25 0.59-2.67 0.563

low)

GLUT1  high 0.81 0.32-2.10 0.671

(vs. low)

PKM2 high (vs. 0.59 0.21-1.60 0.297

low)

LDHA, lactate dehydrogenase A; GLUT1, glucose transporter 1; PKM2, pyruvate kinase isoform
M2; MCT4, monocarboxylate transporter 4
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3.6. Risk factors for clinical lymph node metastasis

In univariate analysis, male sex, multifocality, bilateral tumors, minimal and gross ETE, and larger
tumor size were significantly associated with an increased risk of clinical LNM. In contrast,
BRAFYE mutation, multifocality, bilaterality and thyroiditis were not significant association with
LNM. Following multivariate analysis, gross ETE emerged as the most robust independent predictor
of LNM, while minimal ETE lost significance after adjusting for other factors. Elevated expression
levels of LDHA, GLUT1, PKM2, and MCT4 were also not significantly associated with LNM in
these analyses (Table 5).
Table 5. Risk factor for lymph node metastasis in PTC

LNM Univariate multivariate
variable OR 95% CI p-value  OR 95% CI p- value
Age (vs.>55) 1.94 1.04-3.60 0.036 2.33 1.19-4.56 0.013*
Male 2.37 1.27-4.44 0.007 2.53 1.30-4.92 0.006*
Multifocality 1.53 0.6-3.91 0.373
Bilateral 1.04 0.57-1.91 0.894
Thyroiditis 1.42 0.71-2.84 0.318
Gross ETE 2.60 1.39-4.89 0.003 1.129 0.39-3.27 0.824
(vs. minimal
ETE and
negative)
Tumor size 1.09 0.86-1.38 0.460
T stage
T1 1 1
T2 4.6 0.47-44.60 0.188 2.81 0.27-28.70 0.384
T3 2.07 1.05-4.07 0.036 1.93 0.96-3.88 0.064
T4 21.85  2.68-178.12 0.004 23.87 2.85-199.64 0.003*
BRAFV600E 1.03 0.32-3.32 0.965
mutation
LDHA  high 0.65 0.38-1.12 0.120 0.72 0.41-1.27 0.259
(vs. low)
GLUTI1 0.88 0.46-1.65 0.681
high(vs. low)
PKM2 0.98 0.52-1.84 0.956
high(vs. low)
MCT4 1.14 0.33-3.89 0.841

high(vs. low)
LDHA, lactate dehydrogenase A; GLUT1, glucose transporter 1; PKM2, pyruvate kinase isoform
M2; MCT4, monocarboxylate transporter 4
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3.7. Risk factors for recurrence

Both univariate and multivariate analyses identified male sex and high PKM2 expression as
significant independent predictors of recurrence. Although larger tumor size was significant in
univariate analysis, it did not maintain significance after adjustment. Other variables, including
multifocality, ETE, BRAFYE mutation and the expression of LDHA, GLUT1 and MCT4, were
not significantly associated with recurrence. High PKM2 expression (OR 2.05, P =0.036) and LNM
(OR 3.90, P =0.001) were linked to increased recurrence risk, whereas thyroiditis was associated
with a reduced recurrence risk (OR 0.40, P = 0.043) (Table 6) (Fig. 4).

Table 6. Risk factor for recurrence in PTC

Recurrence univariate multivariate
variable OR 95% CI p-value OR 95% CI p- value
Age (vs. <55) 0.80 0.39-1.65 0.551
Male 1.93 1.04-3.57 0.036 1.64 0.86-3.13 0.133
Multifocality 0.90 0.64-1.26 0.524
Thyroiditis 0.45 0.19-1.07 0.071 0.40 0.16-0.97 0.043*
Extrathyroidal
extension(ETE)

negative or 1 |
minimal

gross 1.49 0.66-3.37 0.342
Tumor size 1.65 1.01-2.70 0.046 0.96 0.75-1.24 0.764
pN1 3.63 1.72-7.63 0.001 3.90 1.83-8.31 0.001*
BRAFV600E 0.719 0.205-2.528 0.607
mutation
LDHA high (vs. 1.36 0.75-2.46 0.306
low)
GLUTI1 high (vs. 1.43 0.72-2.82 0.307
low)
PKM2 high (vs. 2.04 1.06-3.92 0.033 2.05 1.05-4.01 0.036*
low)
MCT4 high (vs. 2.21 0.67-7.25 0.191
low)

LDHA, lactate dehydrogenase A; GLUT1, glucose transporter 1; PKM2, pyruvate kinase isoform
M2; MCT4, monocarboxylate transporter 4
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Fig. 4. Cox regression analysis evaluation the disease free survival (DFS) rate according to
clinicopathological factors. a) gross ETE, b) lymph node metastasis, c) thyroiditis

Cox regression analysis of disease-free survival (DFS) based on glycolytic enzyme expression
and the presence of chronic lymphocytic thyroiditis (CLT) revealed distinct prognostic implications.
High PKM2 expression was significantly associated with an increased risk of recurrence in patients
without CLT (HR 1.76, 95% confidence interval (Cl) 1.01-3.06, P=0.046), whereas no such
association was observed in those with CLT (HR 0.20, 95% CI 0.02-2.31, P=0.197). LDHA and
GLUT1 expression had no significant impact on DFS, regardless of CLT status. These findings
suggest that PKM2 expression may be a potential prognostic marker in the absence of CLT, while
the presence of CLT may attenuate its influence on disease recurrence (Fig. 5).
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3.8. Peritumoral microenvironment and cancer recurrence in relation
to thyroiditis

Given the apparent association between thyroiditis and recurrence, we further investigated how
the peritumoral microenvironment, particularly in the presence of CLT, influenced recurrence.
In cancer tissues from patients who experienced recurrence, the IRS values of LDHA, PKM2, and
HK2 were similar regardless of CLT status. In cancer tissue from patients who did not experience
recurrence, the IRS values of LDHA were significantly lower with CLT (P =0.049), suggesting that
CLT may contribute to a metabolically reprogrammed and less aggressive tumor microenvironment.
However, among patients with recurrence, the presence of CLT was linked to higher IRS of LDHA
in peritumoral normal tissues (P =0.047) (Fig. 6).

Distribution of Metrics Across Recurrence and Thyroiditis Categories (Unfilled Violin Plot with Line Styles)
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Fig. 6. Immunoreactive score (IRS) of glycolytic enzymes in peritumoral normal and cancer
tissues accompanied by CLT in the recurrence group. PKM2, LDHA, HK2, MCT4, GLUT1
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3.9. mRNA expression of glycolytic enzymes and transporter protein

according to PTC subtype using TCGA thyroid cancer data
In PTC subtypes, significant differences in enzyme expression were observed. PKM2 and LDHA
expression were highest in the tall cell subtype, followed by the classic, others, and follicular
subtypes, with statistically significant differences among the classic, follicular, and tall cell subtypes
(P< 0.001). Similarly, for GLUT1 expression, the tall cell and classic subtypes exhibited higher
levels than the follicular subtype (P < 0.001). These findings suggest that glycolytic enzyme
overexpression is associated with more aggressive PTC subtypes, particularly the tall cell subtype

(Fig. 7).
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3.10. mRNA expression of glycolytic enzymes and transporter protein
according to BRAFV®E mutation using TCGA thyroid cancer

data

MRNA expression levels of LDHA, PKM2, and GLUT1 were significantly elevated in PTC
samples harboring the BRAFY5%E mutation compared to wild-type cases (P = 0.001 for all). High
expression of LDHA, PKM2, and GLUT1 was markedly more frequent in the BRAFV®%E mutation
group (34.1%, 34.6%, and 36.9%, respectively) than in the wild-type group (16.5%, 17.3%, and
14.5%). Conversely, low expression levels were predominant in wild-type tumors. These findings
suggest a strong association between BRAFV®E mutation and glycolytic pathway activation in
PTC, underscoring the role of metabolic reprogramming in tumor progression (Table 7).

Table 7. mRNA Expression levels of glycolytic enzymes and transporter proteins according to the
presence of BRAFYF mutation

. BRAF wild type BRAFVE myutation
Variable (n=248) P (n=217) P-value
LDHA mRNA
expression 0.001*
Low 99 (39.9%) 19 (8.8%)
Intermediate 108 (43.5%) 124 (57.1%)
High 41 (16.5%) 74 (34.1%)
PKM2 mRNA
expression 0.001*
Low 102 (41.1%) 13 (6.0%)
Intermediate 103 (41.5%) 129 (59.4%)
High 43 (17.3%) 75 (34.6%)
GLUT1 mRNA
expression 0.001*
Low 101 (40.7%) 19 (8.8%)
Intermediate 111 (44.8%) 118 (54.4%)
High 36 (14.5%) 80 (36.9%)

LDHA, lactate dehydrogenase A; PKM2, pyruvate kinase isoform M2; GLUT1, glucose transporter
1
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3.11. Clinical characteristics of patients according to PKM2 enzyme

expression levels using TCGA thyroid cancer data

The table compares clinicopathological characteristics among patients with PTC stratified by low,
moderate, and high PKM2 mRNA expression. There were no significant differences in age, sex,
tumor size, multifocality, or distant metastasis.

ETE was significantly associated with PKM2 expression, with gross extension occurring more
frequently in the high-expression group (P=0.001). Additionally, significant differences in T stage
and N stage were noted across PKM?2 expression levels; the high-expression group demonstrated a
greater proportion of advanced T stages (T3 and T4) and lymph node involvement (N1a and N1b)
(P=0.016, P=0.001).

BRAFY®E mutation, as well as LDHA and GLUT1 mRNA expression, also correlated
significantly with PKM2 expression. The high-PKM2-expression group exhibited a higher
frequency of BRAFY®E mutations and elevated LDHA and GLUT1 mRNA levels (P=0.001).
Subtype distribution varied with PKM2 expression levels, as the tall cell subtype was more common
in the high-PKM2-expression groups, whereas the follicular subtype was more common in the low-
expression group (P=0.001).

Overall, high PKM2 expression was associated with features indicative of aggressive tumor
characteristics, including LNM, BRAFV®%E mutation, and increased glycolytic enzyme and
transporter protein expression, suggesting a potential role for PKM2 in the aggressiveness and poor
prognosis of PTC (Table 8).

Table 8. Clinicopathological factors and glycolytic enzyme expression according to PKM2 mRNA
expression using TCGA thyroid cancer data

characteristic PKM2 expression P value
Low (n=115) Moderate(n=232)  High (n=118)
Age 47.2+15.8 44.2 £14.9 50.5+16.0 0.167
Sex 0.346
Male 24 (20.9 %) 62 (26.7%) 34 (28.8%)
Female 91 (79.1%) 170 (73.3%) 84 (71.2%)
Tumor size 3.02+1.77 2.77+1.54 3.03+1.65 0.270
Extrathyroidal extension 0.001
Negative 96 (83.5%) 159 (68.5%) 59 (50.0%)
Minimal 15 (13.0%) 60 (25.9%) 46 (39.0%)
Gross 0 6 (2.6%) 10 (8.5%)
Unknown 4 (3.5%) 7 (3.0%) 3 (2.5%)
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Multifocality 0.250
Negative 62 (53.9%) 116 (50.0%) 72 (61.0%)
Positive 49 (42.6%) 111 (47.8%) 45 (38.1%)
Unknown 4 (3.5%) 5 (2.2%) 1 (0.8%)
T stage (AJCC 7th) 0.016
T1 37 (32.3%) 69 (29.7%) 26 (22.0%)
T2 44 (38.3%) 79 (34.1%) 33 (28.0%)
T3 31 (27.0%) 77 (33.2%) 49 (41.5%)
T4 2 (1.7%) 7 (3.0%) 10 (8.5%)
TX 1 (0.9%) 0 0
N stage 0.001
NO 74 (64.3%) 100 (43.1%) 38 (32.2%)
Nla 19 (16.5%) 73 (31.5%) 46 (39.0%)
N1b 7 (6.1%) 37 (15.9%) 26 (22.0%)
NX 15 (13.0%) 22 (9.5%) 8 (6.8%)
Distant metastasis 0.087
MO 50 (43.9%) 137 (59.1%) 67 (56.8%)
M1 3 (2.6%) 3 (1.3%) 1 (0.8%)
Mx 61 (53.5%) 92 (39.7%) 50 (42.4%)
BRAFV60E mytation 13 (11.3%) 129 (55.6%) 75 (63.6%) 0.001
LDHA mRNA expression 0.001
Low 78 (67.8%) 35 (15.1%) 5 (4.2%)
Moderate 36 (31.3%) 149 (64.2%) 47 (39.8%)
High 1 (0.9%) 48 (20.7%) 66 (55.9%)
GLUT1 mRNA 0.001
expression
Low 71 (61.7%) 38 (16.4%) 11 (9.3%)
Moderate 41 (35.7%) 135 (58.2%) 53 (44.9%)
High 3 (2.6%) 59 (25.4%) 54 (45.8%)
Subtype of PTC 0.001
Classic 57 (49.6%) 180 (77.6%) 95 (80.5%)
Follicular subtype 56 (48.7%) 34 (14.7%) 5 (4.2%)
Tall cell subtype 0 14 (6.0%) 17 (14.4%)
Others 2 (1.7%) 4 (1.7%) 1 (0.8%)

LDHA, lactate dehydrogenase A; GLUT1, glucose transporter 1; PKM2, pyruvate kinase isoform
M2; MCT4, monocarboxylate transporter 4
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3.12. Univariate and multivariate analysis of risk factors for lymph

node metastasis using TCGA thyroid cancer data

Univariate analysis of TCGA data indicated that younger age (<55), male sex, multifocality, larger
tumor size, ETE, advanced T stage, the BRAFYE mutation, and elevated mRNA expression of
LDHA, PKM2, and GLUT1 were significantly associated with LNM. In multivariate analysis,
younger age, multifocality, advanced T stage (T3/T4), and higher PKM2 mRNA expression
remained significant. Younger patients had more than twice the risk of LNM compared to older
patients (OR 2.42, P =0.001), and PKM2 emerged as the strongest predictor (OR 6.91, P =0.001).
Although LDHA and GLUT1 were significant in univariate analysis, they did not retain significance
when adjusted for other factors, suggesting that their influence is not independent (Table 9).

Table 9. Univariate and multivariate analysis of lymph node metastasis in patient with PTC in The

Cancer Genome Atlas (TCGA) thyroid cancer data

LNM Univariate multivariate
variable OR 95% CI Pvalue OR 95% CI P value
Age<55 (vs. >55) 1.55 1.04-2.31 0.031 242 1.48-3.94 0.001
Male sex 2.37 1.27-4.44 0.007 142 0.87-2.33 0.163
Multifocality 1.46 1.01-2.12 0.046  1.62 1.09-2.42 0.017
Tumor size (cm) 1.20 1.06-1.35 0.003 1.07 0.91-1.26 0.442
Extrathyroidal extension

Negative 1 1

Minimal 2.60 1.69-3.99 0.001 1.51 0.74-3.08 0.256

Gross 11.95  2.67-53.51 0.001  0.94 0.27-3.29 0.921
T stage(AJCC 7™)

T1 1 1

T2 1.6 0.98-2.61 0.06 1.64 0.96-2.82 0.07

T3 2.93 1.80-4.77 0.001  3.16 1.83-5.46 0.001

T4 12.27  3.38-4446  0.001  30.44 6.07-152.74  0.001
BRAFVYE mytation 1.47 1.02-2.12 0.041  0.89 0.55-1.44 0.647
LDHA mRNA
expression

Low 1 1

Moderate 2.30 1.42-3.72 0.001 1.51 0.82-2.78 0.184

High 4.03 2.32-7.00 0.001 1.82 0.85-3.87 0.121
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PKM?2 mRNA

expression
Low 1 1
Moderate 3.09 1.86-5.13 0.001 345 1.88-6.31 0.001
High 5.36 3.02-9.50 0.001 691 3.37-14.17 0.001
GLUT1 mRNA
expression
Low 1 1
Moderate 222 1.40-3.54 0.001 1.24 0.70-2.19 0.466
High 2.17 1.27-3.69 0.004  0.69 0.35-1.37 0.292

LDHA, lactate dehydrogenase A; GLUT1, glucose transporter 1; PKM2, pyruvate Kinase isoform
M2; MCT4, monocarboxylate transporter 4; OR, odds ratio

These data confirm that while LDHA and GLUT1 may have some impact, PKM2 remains the

most critical independent predictor of LNM in PTC patients.

Figure 8 presents the disease-free survival curves of the two groups, demonstrating no significant
differences in disease-free survival based on LDHA, PKM2, or GLUT1 expression. However, LNM
(HR 1.86, P = 0.044) and ETE (HR 2.25, P = 0.008 for no vs. minimal ETE) were significantly
associated with reduced disease-free survival probability in Kaplan—Meier analysis.
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4. Discussion

Extensive research has demonstrated the roles of glycolytic enzymes in various cancers, linking
their overexpression to more aggressive behavior and poor outcomes 182527.32-3 pKM2 and LDHA,
for example, are frequently elevated in breast, lung, and colorectal cancers, and their inhibition is
being investigated as a therapeutic strategy to curb tumor growth and metastasis 3233373, In this
study, we aimed to clarify whether the expression of glycolytic enzymes correlates with tumor
aggressiveness—namely LNM and ETE—in the presence or absence of CLT.

Compared with normal cells, cancer cells exhibit increased glucose uptake and lactate production,
even under aerobic conditions (the Warburg effect), thereby fueling proliferation and progression
11.2539.40 Here, we found marked overexpression of glycolytic enzymes and transporters in thyroid
cancer tissues, reflecting a metabolic shift favoring enhanced glycolysis.

4.1. Metabolic reprogramming in thyroid cancer: increased glycolysis

and glutaminolysis

In thyroid cancer, the heightened glycolytic flux in tumor cells is not matched by a corresponding
increase in pyruvate oxidation. Instead, pyruvate is predominantly converted to lactate by LDHA.
Lactate and pyruvate are then transported either into mitochondria or out of the cell via MCTs. The
secreted lactate is often taken up by adjacent cancer cells, creating a feedforward loop that sustains
tumor growth. Under hypoxic conditions, glycolysis enables cancer cells to survive in poorly
vascularized areas 4?64143, This adaptation, however, leads to excessive lactate production and
reduced extracellular pH, fostering an invasive microenvironment conducive to tumor cell migration.

Beyond glycolysis, many cancer cells rely heavily on glutamine metabolism to support the TCA
cycle, thereby maintaining the biosynthesis of fatty acids and amino acids 2**°. The interplay
between glucose and glutamine metabolism allows tumor cells to thrive under metabolically
challenging conditions. PKM2, a key enzyme in glycolysis, orchestrates this process by regulating
the conversion of PEP to ATP and pyruvate. Numerous studies have linked PKM2 to increased
tumor aggressiveness 18:36:44-47,

4.2. Role of CLT and the peritumoral microenvironment in PTC

Prior studies show that elevated glycolysis in CD4+ T cells in CLT is driven by enzymes such as
GLUT1, HK2, PKM2, and LDHA. The immune response in CLT, particularly through
thyroglobulin-specific CD8+ T cells, promotes cytokine release (e.g., IL-6, IL-1p, IL-8), attracting
more lymphocytes to the thyroid gland 3+48-50, Although the prognostic implications of CLT in PTC
have been debated, it is often associated with both favorable and unfavorable outcomes 5:-°,

A previous study found that the expression of glycolytic enzymes (GLUT1, HK2, PKM2, LDHA)
was significantly elevated in thyroid inflammation compared to normal thyroid tissue. This increase
correlated with higher extracellular acidification rates and oxygen consumption rates, suggesting
that thyroid inflammation may contribute to shaping the peritumoral microenvironment 3L,
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In this study, PTC with CLT was significantly linked to higher rates of gross ETE, suggesting a
more invasive local tumor behavior. However, CLT did not emerge as a risk factor for LNM, and
patients with PTC and CLT surprisingly exhibited a lower recurrence rate 5525456, Thus, while CLT
may enhance local tumor invasion, it appears to limit metastatic potential. Inflammatory changes in
the thyroid, driven by CLT, may alter cytokine profiles and metabolic pathways, promoting local
invasion while simultaneously restraining distant dissemination.

Our data also indicate that glycolytic enzymes such as LDHA and PKM2 are more strongly

expressed in the peritumoral normal thyroid tissue of patients with CLT than in those without
thyroiditis. This finding suggests that the inflammatory milieu in CLT may drive metabolic
reprogramming. While lactate-enriched environments facilitate local invasion, the chronic
inflammatory state may also activate immune responses that constrain metastasis. This intricate
interplay likely underlies the paradoxical prognostic effects of CLT, which promotes local
invasiveness but reduces recurrence.
The fibrotic and inflammatory changes induced by CLT may also act as physical barriers, hindering
the dissemination of tumor cells and thereby lowering recurrence rates 5. Thus, the net effect of
CLT on PTC outcomes may depend on a balance between metabolic facilitation of local invasion
and immune-mediated constraints on distant spread.

4.3. PKM2 and other glycolytic enzymes in PTC prognosis

The BRAFY®E mutation is highly prevalent, but its utility as a prognostic marker for tumor
aggressiveness—including gross ETE, LNM, and recurrence—remains limited. A significant
upregulation of glycolytic enzyme mRNA expression was observed in tumors harboring BRAFV6%F
mutation. However, in multivariate analysis, only PKM2—not BRAFV%F muytation, LDHA, or
GLUT1—emerged as an independent risk factor for LNM. These findings suggest that the
overexpression of glycolytic enzymes, particularly PKM2, is more strongly associated with tumor
aggressiveness than the presence of a BRAFYF mutation. In line with this, we found that PKM2
overexpression was significantly associated with recurrence in PTC, a finding further supported by
TCGA data. This dataset also demonstrated a specific correlation between PKM2 overexpression
and LNM, reinforcing its role as a key driver of tumor progression.

Conversely, the overexpression of LDHA and GLUT1 was not significantly linked to LNM or
recurrence. Regardless of the presence of thyroiditis, most glycolytic enzymes showed no significant
difference in distribution. However, LDHA levels were notably lower in PTC with thyroiditis, and
its IRS remained consistently low in recurrent cases when thyroiditis was present. PKM2 expression
levels did not differ significantly based on CLT status; however, high PKM2 expression was a
significant predictor of recurrence only in patients without CLT. These findings suggest that PKM2
may be a more robust indicator of tumor aggressiveness and recurrence than LDHA in PTC.
Although LDHA is a critical component of glycolysis, PKM2 appears to have the strongest
association with recurrence in PTC?,

While thyroid cancer generally carries a favorable prognosis, PKM2 overexpression emerged as
a key predictor of recurrence, underscoring the potential importance of incorporating glycolytic
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enzyme profiles into long-term risk stratification.

Although several studies have investigated glycolytic enzyme expression and its link to thyroid
cancer malignancy, few have evaluated its relationship with thyroid inflammation. In this study, we
confirmed that glycolytic enzyme expression was elevated in malignant tissue, while LDHA
expression was notably reduced in the presence of CLT. In contrast, PKIM2 expression remained
consistently associated with recurrence in patient without CLT. Interestingly, in cases with CLT, the
prognosis tended to be better—even when PKM2 expression levels were comparable.

Unlike studies based on animal models or cell lines, this research utilized histological tissue
samples from actual patients. To enhance the clinical relevance of the findings, protein-level analysis
via immunohistochemistry was conducted, allowing for a more comprehensive evaluation of the
influence of thyroiditis on tumor aggressiveness.

4.4. Limitations

This study had several limitations. First, although TCGA data reflect mMRNA expression levels
and our study evaluates protein expression via IHC, we did not directly correlate the two. As protein
abundance can be influenced by post-transcriptional and post-translational modifications, it may not
consistently mirror mRNA expression. This inherent difference between mRNA and protein
expression should be acknowledged as a limitation.

Second, we did not establish standardized cutoff values for PKM2, LDHA, and GLUT1
expression, which may limit the interpretability and clinical applicability of our findings.
Additionally, TCGA data did not provide information on CLT, precluding analysis of its influence
on LNM and ETE in that dataset. Further investigation is warranted to elucidate the role of CLT in
shaping the tumor microenvironment and influencing PTC outcomes. Despite these limitations,
PKM2 emerged as a promising prognostic marker for PTC recurrence, supporting its potential utility
in future risk stratification strategies.
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5. Conclusion

Overexpression of glycolytic enzymes such as LDHA, PKM2, and GLUT1 is associated with
PTC. Interestingly, CLT is associated with greater local invasiveness (gross ETE) yet paradoxically
lower recurrence. LDHA expression was lower in the presence of CLT, whereas PKM2 remained
consistently associated with a higher recurrence rate in the absence of CLT. Based on TCGA data,
PKM2 mRNA expression may serve as a promising biomarker for predicting LNM in PTC. Notably,
patients with CLT exhibited better prognostic outcomes, even with elevated PKM2 expression,
suggesting a potential protective role of CLT in modulating disease progression. Among the
glycolytic enzymes examined, PKM2 may serve as a valuable biomarker for identifying patients at
higher risk of recurrence.
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