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ABSTRACT 

 

Artificial Intelligence-Enhanced Analysis of Echocardiography-Based 

Radiomic Features for Myocardial Hypertrophy Detection and 

Etiology Differentiation 

 

 
 

While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles 

with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial 

intelligence (AI) algorithm using echocardiography-based radiomics. This algorithm is designed 

to detect LVH and differentiate its common etiologies, such as hypertrophic cardiomyopathy 

(HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HHD), based on 

echocardiographic images.  

The developmental datasets were sourced from diverse medical centers (867 subjects), while an 

independent external validation set was obtained from a single tertiary medical center (619 

subjects). Utilizing radiomic feature analysis on four fundamental echocardiographic views, 

conventional and harmonization-driven myocardial textures were extracted. Myocardial 

geographic features, such as myocardial shape and thickness, were also utilized as key variables. 

The classification algorithm was developed, and the contribution of each variable was evaluated 

by Shapley Additive Explanations. 

In internal validation, the classification model reliably detected LVH with an area under the 

curve (AUC) of 1.00 (95% confidence interval [CI], 1.00–1.00). The model demonstrated strong 

performance in differentiating etiologies, achieving AUCs of 0.97 (95% CI, 0.94–0.99) for HCM, 

0.95 (95% CI, 0.90–0.99) for CA, and 0.86 (95% CI, 0.78–0.93) for HHD. In external validation, 

these results were consistent, with AUCs of 0.96 (95% CI, 0.92–0.98) for HCM, 0.89 (95% CI, 

0.83–0.93) for CA, and 0.86 (95% CI, 0.81–0.91) for HHD. Notably, harmonization-driven 

textures played a key role in differentiating HCM, while conventional textures and myocardial 

thickness were influential in differentiating CA and HHD. 
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This study confirms that AI-enhanced echocardiography-based radiomics effectively identifies 

LVH and its etiologies, highlighting the potential of AI-driven texture and geographic analysis 

in LVH evaluation. 

                                                                                

Key words : Echocardiography-based radiomics, artificial intelligence, left ventricular hypertrophy 
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1. INTRODUCTION 

 
Left ventricular hypertrophy (LVH) is commonly observed in clinical settings, often signaling a 

range of cardiovascular diseases and thus substantially impacting morbidity and mortality.1-3 

LVH is typically identified through imaging studies, with echocardiography being the most 

commonly employed non-invasive modality. While echocardiography provides essential data on 

left ventricular (LV) mass, wall thickness, and cardiac function, it alone may not precisely 

pinpoint the etiological factor of LVH, which is crucial for specific treatment plans and outcome 

prediction.4,5 Because the morphological and functional characteristics of LVH observed on 

echocardiography are substantially influenced by specific diseases and depend on the stage of 

disease, it could become a similar pattern. Additionally, the subjective nature and variability in 

echocardiographic interpretation necessitate advanced techniques like magnetic resonance 

imaging or endomyocardial biopsy for deeper etiological insights.6 

Artificial intelligence (AI) technology has rapidly evolved, introducing a range of sophisticated 

methods for analyzing images. Echocardiography, which provides dynamic, high-resolution 

images of the heart, represents a valuable data source ripe for advanced computational analysis. 

In response to previous challenges, there has been a significant shift towards utilizing AI to assist 

in the echocardiographic analysis and categorization of LVH etiology. 7,8 Deep learning (DL), a 

subset of AI, has been at the forefront of this revolution. It employs neural networks, particularly 

convolutional neural networks (CNNs), to automatically learn and identify patterns within large 

datasets without the need for explicit feature extraction by human operators. In the context of 

echocardiography, DL models have demonstrated the potential to automate tasks such as 

segmentation, measurement of cardiac structures, and even the differentiation of various LVH 

etiologies. However, DL-based methods, while seemingly accurate in differentiating LVH 

etiologies, often fail to disclose which specific echocardiographic features are used for this 

differentiation, leaving a significant gap in our understanding and application of AI.9-11 

Additionally, many of these studies lacked external validation or showed significantly reduced 

performance when evaluated using external datasets. 

To overcome the interpretability and validation challenges associated with DL, radiomics has 

emerged as a complementary approach. Radiomics involves the extraction of a large number of 
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quantitative features from medical images, which capture a wide array of characteristics such as 

texture, shape, and intensity.12 These features can reveal subtle patterns that are not easily 

discernible by the human eye but may correlate strongly with underlying pathological processes. 

In echocardiography, radiomics provides a powerful tool for dissecting the complex myocardial 

textures and patterns associated with various LVH etiologies. By quantifying these features, 

radiomics allows for a more granular analysis that can enhance diagnostic precision beyond what 

conventional imaging and even deep learning alone can achieve. 

Addressing these challenges, the current study leveraged echocardiography-based radiomics to 

develop a sophisticated algorithm that not only diagnoses LVH but also differentiates its various 

etiologies, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and 

hypertensive heart disease (HHD). We also examined which features play crucial roles in 

diagnosing each condition through Shapley Additive Explanations (SHAP) analysis. Importantly, 

we employ a novel harmonization technique for vendor-independent analysis of myocardial 

texture features from echocardiographic images, enabling more accurate assessments and 

enhancing the clinical applicability of our algorithm. 
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2. METHODS 

 
2.1. Study Dataset 

 
This study utilized extensive echocardiography datasets from multiple Korean medical centers, 

collected through a collaboration among four sources: (1) the Open AI Dataset Project (AI-Hub) 

by the Ministry of Science and ICT, South Korea,13 (2) Korea National Standard Cardiovascular 

Database and Reference,14 (3) Seoul National University and Bundang Hospital LVH registry,9 

and (4) Echocardiographic Characteristics for Diagnosis of Infiltrative Cardiomyopathy 

(ACREDIT) registry (NCT 05108168). From this consolidated dataset, echocardiographic data 

for patients with normal, HCM, CA, and HHD conditions were extracted. The detailed clinical 

inclusion criteria for each clinical condition are provided in Table 1.  

To facilitate the development and validation of our algorithm, we organized the datasets 

according to hospital origin. We constructed the developmental dataset from a variety of 

hospitals, specifically excluding Seoul National University Bundang Hospital (SNUBH). We 

evaluated 2,285 subjects from Severance Hospital, Seoul National University Hospital, 

Soonchunhyang University Bucheon Hospital, and other hospitals for eligibility, with 1,171 

subjects fulfilling the clinical inclusion criteria (Fig. 1). To evaluate our algorithm's 

generalization capability, we prepared an independent external validation set from SNUBH, 

where 1,410 patients were evaluated for eligibility, and 713 met the clinical inclusion criteria 

(Fig. 1).  

This study complied with the ethical guidelines of the Declaration of Helsinki and was approved 

by each institution's Institutional Review Board (IRB). Due to the study's retrospective design 

and the minimal impact on subjects, the IRB waived the need for informed consent. Additionally, 

the research was carried out following the Proposed Requirements for Machine Learning 

Evaluation in Cardiovascular Imaging.15 
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Table 1. Clinical Inclusion and Exclusion Criteria 

Conditions Definition* 

Normal (1) no clinical history of cardiovascular disease or diabetes; (2) normal 

blood pressure (≤130/80 mmHg); (3) body mass index ≤30 kg/m2; (4) 

normal sinus rhythm at 50–85 beats/min without conduction abnormalities; 

(5) normal LV wall thickness and LV wall motion; (6) normal left atrial size 

(left atrial volume index <27 mL/m2 using the biplane method of discs) or 

left atrial dimension <40 mm; (7) no mitral valve prolapse; and (8) no more 

than trivial valve regurgitation 

HCM (1) end-diastolic LVWT max ≥15 mm on echocardiography, (2) definite 

evidence of HCM on cardiac magnetic resonance (CMR) or a typical gene 

mutation on genetic analysis, and (3) absence of abnormal loading 

conditions that could sufficiently explain the LVH 

CA (1) definite evidence of amyloid involvement either through on 

endomyocardial biopsy (Congo-Red positive and amyloid P positive on 

immunohistochemistry) or by demonstrating amyloidosis on extra-cardiac 

biopsy with cardiac involvement supported by CMR or pyrophosphate 

scans, and (2) end-diastolic LVWTmax ≥12 mm 

HHD (1) history of hypertension; (2) left ventricular (LV) mass index [LVMI] 

>115 g/m2 in men, LVMI >95 g/m2 in women; (3) end-diastolic maximal 

LV wall thickness (LVWTmax) ≥12 mm; (4) Regression of LVH after 

appropriate blood pressure control; and (5) exclusion of other causes of LVH 

(such as HCM, infiltrative cardiomyopathy, metabolic cardiomyopathy, 

etc.) 
*Patients must meet all the following criteria 

Abbreviations: CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HHD, 

hypertensive heart disease 
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Fig. 1. Flow Chart of Data Preparation Process: Developmental and External Validation 

Dataset 

Abbreviations: ACREDIT, Echocardiographic Characteristics for Diagnosis of Infiltrative 

Cardiomyopathy registry; AI, artificial intelligence; LVH, left ventricular hypertrophy. 
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2.2. Data Preparation 

 
In this study, our algorithm was designed to extract and analyze myocardial features from images 

of the end-diastolic (ED) and end-systolic (ES) phases within the four fundamental views of 

echocardiography: parasternal long-axis (PLAX), parasternal short-axis at mid-level (PSAX), 

apical 4-chamber (A4Ch), and apical 2-chamber (A2Ch). To achieve this, we initially employed 

our previously developed AI-based echocardiographic automatic analysis system (Sonix Health, 

Ontact Health, Korea) to select the necessary views and identify the ED and ES images within 

those views.16 The deep learning (DL)-based segmentation algorithm has been detailed in our 

previous research, highlighting its robust performance in the LV cavity, myocardium, and left 

atrial cavity segmentation.17,18 This system utilizes a 3-dimensional (2D + time) convolutional 

neural network (CNN) trained through semi-supervised learning, combining supervised learning 

based on expert-annotated ground truth with unsupervised learning for motion estimation via a 

spatial transformer network.19 This combined approach enabled the model to capture and 

interpret essential cardiac motion patterns accurately. The proposed algorithm is highly robust 

to image quality, through echo-specific data augmentation,20 such as haze and shadow artifacts, 

as well as a variety of general data augmentation techniques.  

The segmentation model was specifically trained and optimized for multiple echocardiographic 

views, including the apical 4-, 2-, and 3-chamber views (A4C, A2C, and A3C), parasternal long-

axis view (PLAX), and the parasternal short-axis view (PSAX). Each echocardiographic view 

required a distinct model component to accommodate the unique anatomical and imaging 

characteristics of the view, even though the overall network architecture remained consistent 

across views. By processing these various views, our DL-based segmentation algorithm delivers 

highly accurate segmentation results, ensuring clinical reliability and robust performance across 

diverse imaging conditions. As a result, it can provide detailed and clinically relevant 

segmentation of cardiac structures, which is critical for extracting radiomic features. The 

system’s comprehensive architecture is shown in Fig. 2. Representative cases of successful 

segmentation included in this study and failed segmentations excluded from the study are 

provided in Fig. 3 and 4.  

After the initial processing, cases missing any of the four fundamental views, poor image quality 

leading to inaccurate ED/ES phase detection, and those with failed segmentation were excluded 
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(Fig. 1). The study's developmental dataset included 867 cases across various conditions: 276 

with HCM, 168 with CA, 135 with HHD, and 288 normal subjects. The data were split 8:2 for 

training and testing to ensure homogeneity, with 704 for training and 163 for internal validation. 

Similarly, the external validation set included 619 patients: 46 with HCM, 66 with CA, 93 with 

HHD, and 414 normal subjects. The process was validated by experienced cardiologists.  
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Fig. 2. Architecture of AI-based Left Ventricular Myocardium Segmentation System. The 

figure depicts the architecture of the AI-based segmentation system, illustrating the flow from the 

input of various echocardiographic views (including the apical views, PLAX, and PSAX) to the 

segmentation output for each view. This design allows the system to produce precise delineations 

of the left ventricular myocardium across different echocardiographic views, accommodating each 

view's unique features and imaging characteristics.  



９ 

 

Fig. 3. Representative Case of Segmentation. The images capture the ED and ES phases, 

demonstrating the system’s precision in delineating the LV myocardium across cardiac phases.
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Fig. 4. Representative Cases of Inclusion and Exclusion Cases. In our study, we utilized the AI-

based system we developed to perform automatic segmentation and extract radiomics features 

from the segmented LV myocardium. The upper cases represent successful segmentation instances, 

whereas the lower cases show instances where segmentation failed and were thus excluded. From 

the upper cases, it can be observed that segmentation was successful even with relatively poor 

image quality. Conversely, the lower cases illustrate that segmentation failed in situations where 

the image quality was inferior, making it difficult even for human experts to perform segmentation 

or where the LV myocardium extended beyond the image boundaries.  
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2.3. Myocardial Feature Extraction 

 
We delved into quantitative features by extracting texture and geographic features from each 

segmented LV myocardium, employing the well-established open-source Python package 

Pyradiomics.21 For a clearer understanding and effective management of the diverse features, 

we organized them into the four following categories (Fig. 5).  

 

2.3.1. Conventional Texture Features (F1) and Harmonization-driven Texture Fearutres (F2) 

 

For conventional texture features (F1), we extracted the 91 core features consist of 18 

first-order statistical features, 22 co-occurrence matrices, 16 gray-level run length 

matrices, 16 gray-level size zone matrices, 14 gray-level dependence matrices, and 5 

texture features based on neighboring gray-level difference matrices. And we extracted 

additional set of 91 features from 16 conventional filtered images. Consequently, we 

defined a set of 1,547 features as the conventional texture feature set. Next, we 

additionally applied a novel harmonization technique developed by our team to derive 

harmonization-driven texture features (F2). We filtered the echocardiography image with 

2D convolution kernels in the first layer of fine-tuning ConvNext-V2 network,22 and 

extracted 91 core feature sets from the filtered image.This technique was designed to 

reduce vendor-specific speckle pattern variability in LV myocardium.23  

 

2.3.2. Geographic Features (Myocardial Shape [F3] and Thickness [F4]) 

 

We also included geographic features, myocardial shape (F3) and thickness (F4). We 

extracted 13 shape features, which were supported by Pyradiomics Package, at four 

fundamental views, producing 52 shape features. Furthermore, considering that LVH is 

typically diagnosed by measuring the thickness of the left ventricular wall, we included 

myocardial thickness as an input for the machine-learning model. We measured six 

myocardial thicknesses in the following segments: apical lateral wall, apical septum, mid-

inferior septum, mid-anterior lateral wall, basal anterior-lateral wall, and basal inferior 

septum, and the myocardial thickness at both the ED and ES phases. We used the average 



１２ 

 

thickness values for each segment if measurements were available from both A2Ch and 

A4Ch. In addition, we measured three 2-dimensional diameters in the PLAX view: LV 

septum, LV cavity, and LV posterior wall. Thus, we extracted 61 myocardial geographic 

features for each cardiac phase.  

 

2.3.3. Percent Change ([%Δ]) Between Phases and Total Packages of Myocardial Features 

 

We initially extracted 1,638 texture features (1,547 conventional and 91 harmonization-

driven features) from each view. The features were extracted from four fundamental 

views, resulting in 6,552 features (1,547 features × 4 views). This feature set was 

extracted in both end-diastolic (ED) and end-systolic (ES) phases, resulting in 13,104 

features (6,552 features × 2 phases). And, the total number of geographic features from 

each phase was 122 (61 features × 2 phases).  

To maximize the performance, we computed the variation in the extracted features. All 

features were derived from both the ED and ES phases, and the percentage change for 

each feature was calculated using the formula (ES-ED)/ED. This percent change 

calculation approach is based on the premise that heart muscle movements vary across 

different diseases, and such a calculation could numerically represent these variations. 

This method enabled us to utilize features to capture specific changes that occur 

throughout the cardiac cycle. Therefore, we calculated the percentage changes for the 

6,552 texture features and 61 geographic features between the ED and ES phases. 

 

Consequently, the final conventional and harmonization-driven texture feature set consisted 

of 19,656 features (13,104 texture features and 6,552 percent changes). Likewise, for texture 

feature extraction, there were 183 geographic features (122 geographic features and 61 

percent changes). In total, we utilized 19,839 features for LVH detection and etiology 

differentiation modeling. 
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Fig. 5. Automated Process of Echocardiographic Feature-Extraction for Developing the 

Classification Model. The automated software first detected end-diastolic and end-systolic phases 

and then segmented LV myocardium from four distinct echocardiographic views. In extracting 

texture features, both conventional text features and newly developed harmonization-driven 

texture features were obtained using advanced filters. Geographic features encapsulating 

myocardial shape and thickness were also extracted. Upon combining data across all views and 

phases, a total of 19,839 features were extracted and utilized to develop the classification model.  

Abbreviations: DL, deep-learning; ED, end-diastole; ES, end-systole; LV, left ventricular.
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2.4. Feature Selection and Classification Modeling 

 
2.4.1. Feature Selection 

 

We selected features with a strong impact on classification targets, encompassing the features 

of conventional and harmonization-driven textures, shapes, thickness features, and feature 

change rates. Four binary classification models were built: 1) LVH versus normal, 2) HCM 

versus (CA and HHD), 3) CA versus (HCM and HHD), and 4) HHD versus (HCM and CA). 

By utilizing these four classification models hierarchically, we can distinguish between four 

classes: normal, HCM, CA, and HHD (Fig. 6A). Once classified as LVH, the patient could 

be further classified as HCM, CA, or HHD, and if all three classification models classified 

the patient as negative, the patient was designated as "Others." 

 Features selection was performed using the Boruta and XGBoost algorithms.24 The Boruta 

algorithm was used to select the top-ranked features associated with targets.25 The importance 

ranking for each variable was calculated with the Boruta algorithm, and the top-ranked 

features, rank 1, were selected as candidates for modeling. The XGBoost algorithm, which 

combines multiple weak classifiers to assemble a single robust classifier, was used to select 

the essential features and machine-learning modeling.26 XGBoost ranks features by "gain" 

which represents the fractional contribution of each feature to the model based on the total 

gain of the splits of that feature. We excluded features with no information gain.  

After feature selection, we trained the classification models using the LightGBM algorithm,27 

a widely used gradient-boosting decision-tree learning algorithm. To optimize the 

performance of our model, we conducted a grid search for hyperparameters. The optimal 

parameters that yielded the best results for the internal validation dataset were used. The grid 

search included tuning key parameters, such as n_estimators, learning_rate, max_depth, 

num_leaves, and boosting_type, to find the optimal combination. To overcome the class 

imbalance problem, we employed the synthetic minority oversampling technique.28  

Table 2 summarizes the number of features selected in the four trained models and specific 

features used in each classification model are as below (Table 3).  
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Abbreviations: CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HHD, hypertensive 

heart disease; LVH, left ventricular hypertrophy. 
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Table 2. Selected Features in the Four Classification Models 

  Total F1 %∆F1 F2 %∆F2 F3 %∆F3 F4 %∆F4 

LVH 70 14 9 24 6 6 4 7 0 

HCM 82 28 28 13 5 0 0 7 1 

CA 83 46 13 7 9 1 2 4 1 

HHD 6 2 0 0 0 2 0 2 0 

Abbreviation: CA, cardiac amyloidosis; F1, conventional texture; F2, harmonization-driven texture; 

F3, myocardial shape; F4, myocardial thickness; %Δ, percent change between end-diastole and 

end-systole; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; LVH, left 

ventricular hypertrophy 
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Table 3.1 Echocardiography-Based Radiomic Features used in LVH differentiation 

 Radiomic Features 

Conventional 

texture feature 

(F1), and %ΔF1 

A2CH_ED_wavelet-HHL_ngtdm_Strength, wavelet-LHL_gldm_ 

SmallDependenceLowGrayLevelEmphasis 

A4CH_ED_wavelet-HLL_glrlm_RunLengthNonUniformityNormalized 

A4CH_ES_wavelet-LHL_firstorder_Mean, wavelet-LLL_glszm_ 

LargeAreaLowGrayLevelEmphasis 

A4CH_rate_wavelet-HLL_glrlm_GrayLevelNonUniformity, wavelet-

LHH_ gldm_DependenceNonUniformity, GrayLevelNon Uniformity, 

glszm_SmallAreaEmphasis 

PSAX_ED_glcm_Imc2, wavelet-HLL_glrlm_ 

RunLengthNonUniformityNormalized 

PSAX_ES_wavelet-HLH_gldm_LargeDependenceEmphasis 

Gabor_A2CH_ES_firstorder_Skewness, rate_glszm_SizeZoneNon 

Uniformity, PLAX_ED_glrlm_LowGrayLevelRunEmphasis 

LoG_PLAX_ES_glcm_Imc2, PSAX_rate_firstorder_Mean, A4CH_ED_ 

firstorder_Skewness, firstorder_Median, ES_firstorder_Kurtosis, 

PSAX_rate_firstorder_Mean, Uniformity, glrlm_LongRun Emphasis 

Harmonization-

driven texture 

features (F2), 

and %ΔF2 

A2CH_ED_firstorder_TotalEnergy, glrlm_RunLengthNon Uniformity, 

glszm_SmallAreaEmphasis, ES_glrlm_RunEntropy, 

RunLengthNonUniformityNormalized, 

rate_glrlm_GrayLevelNonUniformity, ngtdm_Strength 

A4CH_ED_firstorder_TotalEnergy, Entropy, glcm_Correlation, 

glrlm_RunLengthNonUniformity, RunLengthNonUniformity, 

ES_glrlm_RunLengthNonUniformity, glszm_ZoneEntropy, 

rate_gldm_LargeDependenceEmphasis, glszm_ZonePercentage 

PLAX_ES_firstorder_TotalEnergy, glszm_GrayLevelNonUniformity, 

LowGrayLevelZoneEmphasis, ngtdm_Coarseness, 

rate_glrlm_GrayLevelNonUniformity, ED_firstorder_TotalEnergy, 

glrlm_RunEntropy, RunLengthNonUniformity 
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PSAX_ES_firstorder_TotalEnergy, Entropy, glrlm_RunEntropy, 

RunLengthNonUniformity, RunLengthNonUniformityNormalized, 

rate_gldm_GrayLevelNonUniformity 

Myocardial 

shape (F3), 

and %ΔF3 

A2CH_rate_Maximum3Ddiameter 

A4CH_ED_Maximum2DdiameterColumn, Maximum2DdiameterRow, 

Sphericity, rate_Maximum3Ddiameter 

PLAX_ED_SurfaceVolumeRatio 

PLAX_ES_MeshVolume, SurfaceVolumeRatio, rate_Sphericity, 

Maximum2DDiameterSlice 

Myocardial 

thickness (F4), 

and %ΔF4 

ED_baseL, baseR, midL, ES_apexR, ES_baseL, PLAX_ IVSd, LVPWd 

Abbreviation: A2CH, apical 2-chamber; A4CH, apical 4-chamber; ED, end-diastole; ES, end-

systole; IVSd, diastolic interventricular septum; LVH, left ventricular hypertrophy; LVPWd, 

diastolic left ventricular posterior wall; PLAX, parasternal long-axis, PSAX, parasternal short-axis 

at mid-level 

 

Table 3.2 Echocardiography-Based Radiomic Features used in HCM differentiation 

 Radiomic Features 

Conventional 

texture feature 

(F1), and %ΔF1 

A2CH_ED_glszm_LargeAreaHighGrayLevelEmphasis, ES_wavelet-

LLH_ngtdm_Busyness, rate_glrlm_GrayLevelNonUniformity, 

glszm_LargeAreaHighGrayLevelEmphasis 

A4CH_ED_wavelet-HHH_gldm_GrayLevelNonUniformity, wavelet-

LLH_gldm_LargeDependenceHighGrayLevelEmphasis, ES_wavelet-

HLH_glszm_SizeZoneNonUniformity, SizeZoneNonUniformity 

Normalized, wavelet-HLL_gldm_LargeDependenceEmphasis, 

rate_wavelet-HLH_glszm_LowGrayLevelZoneEmphasis, wavelet-

LHL_glrlm_ GrayLevelVariance, wavelet-LLL_firstorder_Maximum 

PLAX_ED_wavelet-HLL_glrlm_RunLengthNonUniformityNormalized, 

wavelet-LHH_firstorder_Skewness, wavelet-LHL_firstorder_Kurtosis, 

ES_wavelet-HLL_glrlm_RunLengthNonUniformityNormalized, 
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rate_glcm_DifferenceVariance, Id, glrlm_GrayLevelNonUniformity 

Normalized, wavelet-HHL_firstorder_Skewness, wavelet-LHL_glcm_ 

MaximumProbability, wavelet-LLL_glszm_LargeAreaHighGrayLevel 

Emphasis, SizeZoneNonUniformityNormalized 

PSAX_ED_wavelet-HHH_glszm_HighGrayLevelZoneEmphasis, 

LowGrayLevelZoneEmphasis, ES_wavelet-HHH_gldm_Dependence 

Variance, glrlm_ShortRunEmphasis, ngtdm_Contrast, wavelet-

HLH_gldm_DependenceEntropy, rate_wavelet-HLH_gldm_ 

LargeDependenceEmphasis, wavelet-HLL_gldm_LowGrayLevelEmphasis 

Gabor_A2CH_ED_firstorder_TotalEnergy, 

ES_gldm_GrayLevelNonUniformity, A4CH_ES_glcm_ClusterShade, 

PLAX_rate_ngtdm_Busyness, PSAX_rate_glszm_LargeAreaHighGray 

LevelEmphasis, A2CH_rate_glrlm_ShortRunLowGrayLevelEmphasis, 

ngtdm_Contrast, A4CH_rate_firstorder_RobustMeanAbsoluteDeviation, 

PLAX_ES_glszm_GrayLevelNonUniformityNormalized, 

PSAX_rate_firstorder_Range, PSAX_rate_glcm_Imc1, A4CH_rate_glcm_ 

Imc1, glcm_JointEntropy, A4CH_ED_firstorder_Skewness, 

ES_firstorder_Maximum, glcm_ClusterShade, 

PLAX_rate_ngtdm_Busyness 

LoG_PLAX_rate_glrlm_LowGrayLevelRunEmphasis, 

A4CH_ES_firstorder_Minimum, PLAX_ED_gldm_ 

SmallDependenceLowGrayLevelEmphasis, A2CH_rate_ngtdm_ 

Complexity, PSAX_ES_glcm_Correlation, A4CH_ED_firstorder_ 

RobustMeanAbsoluteDeviation, A4CH_rate_glrlm_ 

HighGrayLevelRunEmphasis, LowGrayLevelRunEmphasis 

Harmonization-

driven texture 

features (F2), 

and %ΔF2 

A2CH_ED_firstorder_TotalEnergy, ES_glszm_SmallAreaEmphasis 

A4CH_ED_firstorder_TotalEnergy, Entropy, ES_glrlm_RunEntropy, 

rate_glrlm_GrayLevelNonUniformity, RunLengthNonUniformity 

Normalized, glszm_LowGrayLevelZoneEmphasis 

PLAX_ED_glrlm_RunEntropy, ES_glrlm_RunEntropy, 

rate_glrlm_ShortRunEmphasis 
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PSAX_ED_glrlm_RunEntropy, RunLengthNonUniformity, 

RunLengthNonUniformity, RunEntropy, RunLengthNonUniformity 

Normalized, ES_glszm_HighGrayLevelZoneEmphasis, rate_glcm_Idn 

Myocardial 

shape (F3), 

and %ΔF3 

- 

Myocardial 

thickness (F4), 

and %ΔF4 

ED_apexL, midL, ES_apexL, apexR, rate_baseL, PLAX_IVSs, LVIDs, 

LVPWd 

Abbreviation: A2CH, apical 2-chamber; A4CH, apical 4-chamber; ED, end-diastole; ES, end-

systole; HCM, hypertrophic cardiomyopathy; IVSs, systolic interventricular septum; LVIDs, 

systolic left ventricular internal dimension; LVPWd, diastolic left ventricular posterior wall; 

PLAX, parasternal long-axis, PSAX, parasternal short-axis at mid-level 

 

 

Table 3.3 Echocardiography-Based Radiomic Features used in CA differentiation 

 Radiomic Features 

Conventional 

texture feature 

(F1), and %ΔF1 

A2CH_ED_wavelet-HLH_glrlm_ShortRunHighGrayLevelEmphasis, 

ES_wavelet-HHH_glcm_SumSquares, wavelet-

LHH_glcm_Autocorrelation, glszm_GrayLevelVariance, wavelet-

LLH_glcm_Autocorrelation, 

rate_glrlm_LongRunHighGrayLevelEmphasis, wavelet-

LLH_glrlm_RunLengthNonUniformity 

A4CH_ED_wavelet-HHH_firstorder_Uniformity, glcm_SumSquares, 

gldm_GrayLevelVariance, wavelet-LHL_firstorder_Mean, glcm_ 

JointAverage, ES_wavelet-HLH_glrlm_LongRunHighGrayLevel 

Emphasis, wavelet-LHH_glcm_JointAverage, wavelet-

LHL_firstorder_Mean, glcm_ Autocorrelation, JointAverage, 

rate_firstorder_Kurtosis, glrlm_RunEntropy  

A4CH_rate_wavelet-LLL_firstorder_Kurtosis 



２１ 

 

Gabor_A2CH_ES_glszm_LowGrayLevelZoneEmphasis, 

PSAX_ED_gldm_ SmallDependenceLowGrayLevelEmphasis, 

glszm_SmallAreaLowGray LevelEmphasis, 

A2CH_ED_glszm_SizeZoneNonUniformity, A4CH_ES_ 

glrlm_RunVariance, rate_firstorder_InterquartileRange, PLAX_ES_gldm_ 

DependenceVariance, PSAX_ES_glrlm_LowGrayLevelRunEmphasis, 

A2CH_ED_glcm_JointEnergy, A4CH_ES_glszm_SmallAreaLowGray 

LevelEmphasis, rate_glcm_JointEntropy, PLAX_rate_firstorder_Skewness, 

PSAX_ES_gldm_SmallDependenceLowGrayLevelEmphasis 

LoG_A2CH_ES_glrlm_LongRunHighGrayLevelEmphasis, 

A4CH_ES_glcm_JointAverage, rate_glszm_LowGrayLevelZoneEmphasis, 

PLAX_rate_firstorder_InterquartileRange, Uniformity, A4CH_ES_glcm_ 

Autocorrelation, ClusterShade, JointAverage, gldm_HighGrayLevel 

Emphasis, PLAX_rate_firstorder_90Percentile, A4CH_ED_firstorder_ 

Median, ES_glcm_Autocorrelation, 

PSAX_ED_glszm_SmallAreaHighGray LevelEmphasis, 

A4CH_ED_firstorder_Median, gldm_LargeDependence 

HighGrayLevelEmphasis, ES_glcm_Autocorrelation, glcm_JointAverage, 

gldm_HighGrayLevelEmphasis, 

LargeDependenceHighGrayLevelEmphasis 

PLAX_ED_glrlm_LongRunEmphasis, wavelet-

HLH_glszm_GrayLevelNon Uniformity, wavelet-

HLL_glrlm_RunLengthNonUniformity, ES_wavelet-

LHH_glcm_Autocorrelation, wavelet-LHL_glcm_Autocorrelation 

PSAX_ES_wavelet-LHL_glcm_JointAverage, rate_wavelet-

HHH_firstorder_Entropy 

Harmonization-

driven texture 

features (F2), 

and %ΔF2 

A2CH_ED_firstorder_TotalEnergy, Entropy, Mean 

A4CH_ED_firstorder_TotalEnergy, Entropy, Mean, ES_glcm_JointEnergy, 

rate_firstorder_Kurtosis, MeanAbsoluteDeviation, RobustMeanAbsolute 

Deviation, RootMeanSquared, glcm_JointEnergy, 
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glrlm_GrayLevelNonUniformity, glszm_GrayLevelNonUniformity, 

ngtdm_Coarseness 

PLAX_rate_gldm_LargeDependenceHighGrayLevelEmphasis 

Myocardial 

shape (F3), 

and %ΔF3 

A4CH_rate_MajorAxisLength 

PLAX_ED_MajorAxisLength, rate_Sphericity 

Myocardial 

thickness (F4), 

and %ΔF4 

ED_apexR, ES_apexR, rate_baseL, PLAX_LVIDd, LVPWd 

Abbreviation: A2CH, apical 2-chamber; A4CH, apical 4-chamber; CA, cardiac amyloidosis; ED, 

end-diastole; ES, end-systole; LVIDd, diastolic left ventricular internal dimension LVPWd, 

diastolic left ventricular posterior wall; PLAX, parasternal long-axis, PSAX, parasternal short-axis 

at mid-level 

 

 

Table 3.4 Echocardiography-Based Radiomic Features used in HHD differentiation 

 Radiomic Features 

Conventional texture 

feature (F1), and %ΔF1 

Gabor_A4CH_ED_glcm_Idn 

LoG_A2CH_rate_glrlm_GrayLevelNonUniformity 

Harmonization-driven 

texture features (F2), 

and %ΔF2 

- 

Myocardial shape  

(F3), and %ΔF3 

A4CH_ED_Sphericity 

PLAX_ES_MajorAxisLength 

Myocardial thickness (F4), 

and %ΔF4 
PLAX_LVIDd, LVIDs 

Abbreviation: A2CH, apical 2-chamber; A4CH, apical 4-chamber; ED, end-diastole; ES, end-

systole; HHD, hypertensive heart disease; LVIDd, diastolic left ventricular internal dimension 

LVIDs, systolic left ventricular internal dimension; PLAX, parasternal long-axis 
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2.4.2. LVH Classification and Disease Discrimination Logic 

 

Upon model detection of LVH from given subjects, our study imprints dedicated models to 

further classify and differentiate among three etiological conditions: HCM, CA, or HHD (Fig. 

5A). Because the three classification models were not trained together, we could not derive 

the relative probabilities for HCM, CA, and HHD. Therefore, we applied the following logic 

to determine the classification results based on the results of the three models. The output 

probability values are binarized using the AUC threshold calculated by the Youden index.29 

When LVH was classified, there were eight possible scenarios because three binary 

classification models were applied (Table 4). If an LVH subject exhibits one of these three 

conditions exclusively, that condition is definitively classified as the etiology of LVH. For 

LVH subjects exhibiting two or more conditions, the model prioritizes the diagnosis 

associated with the highest probability, thereby assigning the most likely etiological 

classification. Furthermore, if the model could not select any of the three etiologies, it was 

categorized as "Others.” 

 

When LVH is detected without a positive indication for any of the specified three etiologies, 

the subject is categorized into an "Others" group. While it might seem natural to always make 

one of the three choices given that three diseases were used in modeling, echocardiography 

images alone may not always provide a precise diagnosis because of the nature of the disease. 

However, disease labeling is based on a combination of various types of clinical information, 

which may be difficult to discern from images alone. We believe that this ambiguity can be 

classified as "Others," demonstrating the scalability of our classification model. This 

designation suggests the presence of an alternative or unspecified LVH etiology not covered 

by the primary classifications of HCM, CA, or HHD.  

 

2.4.3. Cardiac Cycle-Based Probability Mapping to Patient-Level Probability 

 

We extracted features from the PLAX, PSAX, A4Ch, and A2Ch views. The data comprised 

videos of either 1 or 2 cardiac cycles. Our training data incorporated features synchronized 

across cardiac cycles from the four views. However, classification performance evaluation 
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must be performed at the patient level. Therefore, the probability values extracted per cardiac 

cycle must be converted into patient-level probabilities. Recent research has proposed the use 

of radiomics to build lesion-based models, suggesting transforming them into patient-level 

scores using an area under the curve (AUC) threshold.30 We applied this technique to map 

the probabilities of diseases generated at the cardiac cycle level to the patient level.  

The function transforms the probabilities per cycle within a patient by using the AUC 

threshold to determine the relative probability. It divides the probabilities into positive and 

negative based on a comparison of their magnitudes. Subsequently, the average is computed 

by adding an optimal threshold. This process maps patient-level probability from cycle-level 

probability.  
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Table 4. LVH disease decision-mapping logic 

LVH HCM CA HHD Final Decision Mapping Logic 

0    Normal 

1 1 0 0 HCM 

1 0 1 0 CA 

1 0 0 1 HHD 

1 1 0 1 Maximal probability between HCM vs. HHD 

1 1 1 0 Maximal probability between HCM vs. CA 

1 0 1 1 Maximal probability between CA vs. HHD 

1 1 1 1 Maximal probability among HCM vs. CA vs. HHD 

1 0 0 0 Others 

Abbreviation: CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HHD, hypertensive 

heart disease; LVH, left ventricular hypertrophy 
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2.5. Statistical Analysis 

 
Categorical variables are presented as absolute counts and percentages, and continuous variables 

are expressed as means ± standard deviation or medians [interquartile range], as appropriate. 

Differences between categorical variables were analyzed using the chi-squared test or Fisher's 

exact test, as appropriate, while differences between continuous variables were assessed using 

the Student's t-test. For multiple comparisons, data were analyzed using one-way analysis of 

variance (ANOVA) or the Kruskal–Wallis method. Bonferroni correction was applied to reduce 

the possibility of Type I errors in multiple comparisons. The diagnostic performance was 

evaluated with the area under curve (AUC) sensitivity, specificity, and F1-score metrics. We 

employed Shapley Additive Explanations (SHAP) to gain insights into the predictions of 

machine learning (ML) models.31 SHAP, a model-agnostic technique rooted in cooperative game 

theory that explains the influence of individual features and their values on the model's output. 

SHAP values were calculated by comparing the model predictions with and without the presence 

of features. In binary classification problems, a higher SHAP value indicates a higher probability 

of a positive class, whereas a lower SHAP value indicates a higher probability of a negative class. 

The importance of a feature was calculated by summing the absolute SHAP values of the features 

across all samples. For visualization with SHAP value, we selected one texture feature and 

extracted its feature map using Pyradiomics and extrated the SHAP values for each feature across 

all the validation data and normalized these values to calculate the relative SHAP values. The 

SHAP values of the selected features in each pixel, indicated by the feature map, were visualized 

on a color scale from green to orange (Fig. 6). A two-tailed p-value <0.05 was considered 

statistically significant. All analyses were performed using SAS version 9.4 (SAS Institute Inc., 

Cary, NC, USA) and R 3.3.0 (R Development Core Team, 2016). 
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Fig. 7. Representative Cases of Feature Visuallization of Relative SHAP Values. Harmonized 

Gray Level Run Length Matrix—Run Entropy is a major feature in differentiating HCM etiology. 

The case presented on the left is a non-HCM case. The middle and right images show HCM. 

Because the model differentiates etiology by using multiple features in combination, the degree of 

the SHAP value of the feature may vary depending on the data. 

Abbreviation: HCM, hypertrophic cardiomyopathy; SHAP, Shapley Additive Explanations. 
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3. RESULTS 

 
3.1. Study Population 

 
The developmental dataset comprised 867 patients (mean age, 52.0±17.9 years; 60.3% male). In 

this group, LVH was observed in 67.6% of the training set and 63.2% of the internal validation 

set, with no significant difference in the prevalence of LVH (P=0.323) or its etiologies (P=0.572) 

(Table 5). Age, proportion of men, body mass index also similar between both groups. The 

external validation set consisted of 619 patients (mean age, 51.3±14.6; 48.6% male) and showed 

a significantly lower proportion of men and LVH than the internal validation dataset (48.6% vs. 

60.7%; P=0.008, 33.1% vs. 63.2%; P <0.001, respectively). In this cohort, HCM accounted for 

fewer cases (22.4% vs. 51.5%; P <0.001), while HHD was more common (45.4% vs. 20.4%; P 

<0.001). Comprehensive demographics and echocardiographic characteristics are provided in 

Table 6 and the subtype of HCM and CA are in Table 7. 

 

3.2. LVH Detection 
 

From the 19,839 features extracted for ML classification, 70 key features were utilized to detect 

LVH, achieving an AUC of 1.00 (95% confidence interval [CI], 1.00–1.00) in the internal 

validation (Fig. 7A). Similarly, the algorithm maintained an AUC of 1.00 (95% CI, 0.99-1.00) 

in the external validation in identifying LVH (Fig. 7B). 

 

In the internal and external validation sets, patients identified as having LVH by the model 

showed smaller LV dimensions, thicker LV walls, and worsened LV diastolic function compared 

to normal subjects (Table 8). Notably, some normal subjects were misclassified as "Others" (1 

in the internal and 6 in the external validation sets), having higher LV mass index (89.0 [82.8–

102.8] vs. 74.1 [65.5–84.6] g/m2, P=0.002) and lower e' velocity (7.6 [6.9–9.0] vs. 10.4 [9.0–

12.0] cm/s, P=0.006) than correctly classified as normal (Table 9). 
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Table 5. Baseline Characteristics of the Study Cohorts 

 Developmental Set 
External 

Validation P-valuea P-valueb  Training 
Internal 

Validation 

 (n=704) (n=163) (n=619) 

Age, years 52.1 ± 18.0 51.2 ± 17.3 51.3 ± 14.6 0.543 0.939 

Men, n (%) 424 (60.2%) 99 (60.7%) 301 (48.6%) 0.975 0.008 

BMI, kg/m2 23.8 ± 4.9 23.5 ± 3.8 23.9 ± 3.4 0.479 0.153 

LVH, n (%) 476 (67.6%) 103 (63.2%) 205 (33.1%) 0.323 <0.001 

  HCM, n (%) 223 (46.8%) 53 (51.5%) 46 (22.4%) 

0.572 <0.001   CA, n (%) 139 (29.2%) 29 (28.2%) 66 (32.2%) 

  HHD, n (%) 114 (23.9%) 21 (20.4%) 93 (45.4%) 

Values are presented as mean ± SD or number (percentage). 
a P-values were obtained using Student' s t-test or chi-squared analysis, comparing all patients 

across the training and internal validation sets. 
b P-values were obtained using Student' s t-test or chi-squared analysis, comparing internal and 

external validation sets. 

Abbreviation: BMI, body mass index; CA, cardiac amyloidosis; HCM, hypertrophic 

cardiomyopathy; HHD, hypertensive heart disease; LVH, left ventricular hypertrophy 
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Table 6.1 Detailed demographics and echocardiographic characteristics of the Study Cohorts 

 Training Internal Validation 

 
Total 

(n = 704) 

Normal 

(n = 228) 

LVH 

(n = 476) 

Total 

(n = 163) 

Normal 

(n = 60) 

LVH 

(n = 103) 

Clinical Parameters 

Age, years 52.1 ± 18.0 35.4 ± 12.5 60.2 ± 14.3 51.2 ± 17.3 36.9 ± 12.3 59.5 ± 14.0 

Men, n (%) 424 (60.2%) 101 (44.3%) 323 (67.9%) 99 (60.7%) 29 (48.3%) 70 (68.0%) 

Height, cm 165.1 ±10.0 166.4 ± 8.3 164.5 ± 10.6 165.6 ± 8.8 166.4 ± 8.9 165.0 ± 8.8 

Weight, kg 65.1 ± 13.5 61.5 ± 10.9 66.9 ± 14.2 64.9 ± 14.9 61.1 ± 10.8 67.1 ± 15.4 

BMI, kg/m2 23.8 ± 4.9 22.1 ± 2.8 24.7 ± 5.4 23.5 ± 3.8 21.9 ± 2.6 24.4 ± 4.1 

BSA, m2 1.7 ± 0.2 1.7 ± 0.2 1.7 ± 0.2 1.7 ± 0.2 1.7 ± 0.2 1.7 ± 0.2 

SBP, mmHg 121.9 ± 19.8 116.8 ± 11.1 124.3 ± 22.3 120.3 ± 17.7 116.9 ± 12.0 122.3 ± 20.1 

DBP, mmHg 74.4 ± 13.1 72.1 ± 9.6 75.5 ± 14.4 73.9 ± 12.4 72.5 ± 9.9 74.7 ± 13.6 

Hypertension 264 (37.5%) 0 (0.0%) 264 (55.5%) 50 (30.7%) 0 (0.0%) 50 (48.5%) 

Diabetes 91 (12.9%) 0 (0.0%) 91 (19.1%) 16 (9.8%) 0 (0.0%) 16 (15.5%) 

Atrial 

fibrillation 
55 (7.8%) 0 (0.0%) 55 (11.6%) 8 (4.9%) 0 (0.0%) 8 (10.4%) 

Coronary artery 

disease 
76 (10.8%) 0 (0.0%) 76 (16.0%) 10 (6.1%) 0 (0.0%) 10 (9.7%) 

Chronic kidney 

disease 
62 (8.8%) 0 (0.0%) 62 (17.0%) 11 (6.7%) 0 (0.0%) 11 (10.6%) 

LVH Etiology 

HCM 

CA 

HHD 

  

 

223 (31.7%) 

139 (19.7%) 

114 (16.2%) 

  

 

53 (32.5%) 

29 (17.8%) 

21 (12.9%) 

Echocardiographic parameter 

LVIDd, mm 42.1 ± 15.0 47.7 ± 3.8 39.4 ± 17.4 42.5 ± 14.8 47.9 ± 3.6 39.4 ± 17.8 

LVIDs, mm 28.2 ± 10.4 31.2 ± 3.4 26.7 ± 12.2 28.1 ± 10.7 31.1 ± 2.9 26.4 ± 13.0 

IVS, mm 11.0 ± 5.5 8.0 ± 1.1 12.5 ± 6.1 10.7 ± 3.9 8.1 ± 1.2 12.3 ± 5.9 

LVPW, mm 9.4 ± 3.8 8.1 ± 1.0 10.0 ± 4.6 9.0 ± 3.7 8.1 ± 1.2 9.6 ± 4.5 

LVEF, % 62.8 ±10.0 66.6 ± 4.9 60.9 ± 11.3 63.9 ± 10.0 67.3 ± 4.5 61.9 ± 11.7 
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LVMI, g/m2 125.9 ± 51.2 76.1 ± 14.8 149.9 ± 44.8 119.0 ± 43.0 77.2 ± 14.9 143.6 ± 34.1 

RWT 0.5 ± 0.1 0.3 ± 0.0 0.5 ± 0.1 0.4 ± 0.1 0.3 ± 0.1 0.5 ± 0.1 

LA volume 

index, mL/m2 
39.6 ± 18.1 25.4 ± 5.3 46.4 ± 18.1 37.2 ± 16.1 25.2 ± 4.8 44.4 ± 16.2 

E velocity, cm/s 76.6 ± 21.6 79.4 ± 14.5 74.8 ± 25.0 72.2 ± 20.8 78.3 ± 15.6 67.4 ± 23.1 

A velocity, cm/s 58.3 ± 21.2 48.7 ± 10.5 65.3 ± 24.1 54.0 ± 17.8 48.4 ± 10.1 58.6 ± 21.2 

e' velocity, cm/s 7.2 ± 3.8 11.4 ± 2.0 4.6 ± 1.8 7.5 ± 3.8 11.3 ± 2.0 4.5 ± 1.4 

E/e' 14.3 ± 9.3 7.1 ± 1.5 17.8 ± 9.5 13.0 ± 8.1 7.0 ± 1.3 16.5 ± 8.4 

RVSP, mmHg 28.4 ± 10.7 22.5 ± 3.8 31.8 ± 11.7 27.6 ± 9.3 22.9 ± 3.3 30.7 ± 10.7 

 

Table 6.2 Detailed demographics and echocardiographic characteristics of the Study Cohorts 

 External Validation 
P-

value*  
Total 

(n = 619) 

Normal 

(n = 414) 

LVH 

(n = 205) 

Clinical Parameters  

Age, years 51.3 ± 14.6 47.4 ± 12.0 59.1 ± 16.3 0.609 

Men, n (%) 301 (48.6%) 184 (44.4%) 117 (57.1%) <0.001 

Height, cm 165.0 ± 9.3 165.2 ± 8.7 164.7 ± 10.5 0.829 

Weight, kg 65.6 ± 12.8 64.1 ± 10.7 68.7 ± 15.8 0.735 

BMI, kg/m2 23.9 ± 3.4 23.4 ± 2.6 25.1 ± 4.4 0.491 

BSA, m2 1.7 ± 0.2 1.7 ± 0.2 1.8 ± 0.2 0.808 

SBP, mmHg 127.6 ± 21.5 122.3 ± 13.5 138.9 ± 29.6 <0.001 

DBP, mmHg 76.7 ± 14.9 73.8 ± 8.6 83.1 ± 22.0 0.004 

Hypertension 113 (18.3%) 0 (0.0%) 113 (55.1%) <0.001 

Diabetes 39 (6.3%) 0 (0.0%) 39 (19.0%) <0.001 

Atrial fibrillation 17 (2.7%) 0 (0.0%) 17 (8.3%) 0.001 

Coronary artery disease 7 (1.1%) 0 (0.0%) 7 (3.4%) <0.001 

Chronic kidney disease 12 (1.9%) 0 (0.0%) 12 (5.9%) <0.001 

Etiology of LVH 

HCM 

CA 

 

 
 

 

46 (7.4%) 

66 (10.7%) 

<0.001 
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HHD 93 (15.0%) 

Echocardiographic parameter 

LVIDd, mm 46.0 ± 5.0 46.0 ± 3.8 45.9 ± 6.9 <0.001 

LVIDs, mm 30.0 ± 5.1 29.5 ± 3.7 30.9 ± 7.0 <0.001 

IVS, mm 10.7 ± 3.3 8.6 ± 1.2 15.1 ± 3.7 0.529 

LVPW, mm 9.9 ± 2.8 8.4 ± 1.1 13.0 ± 2.6 0.004 

LVEF, % 61.9 ± 6.9 63.6 ± 4.0 58.3 ± 9.6 0.021 

LVMI, g/m2 100.0 ± 43.0 75.0 ± 13.3 150.8 ± 37.4 <0.001 

RWT 0.4 ± 0.1 0.4 ± 0.0 0.6 ± 0.1 0.002 

LA volume index, mL/m2 35.5 ± 15.4 28.6 ± 5.3 49.6 ± 19.1 <0.001 

E velocity, cm/s 76.5 ± 19.6 75.9 ± 16.0 77.7 ± 25.7 0.068 

A velocity, cm/s 62.3 ± 19.0 58.1 ± 13.6 71.9 ± 25.2 <0.001 

e' velocity, cm/s 8.6 ± 3.3 10.3 ± 2.3 5.0 ± 1.9 <0.001 

E/e' 11.0 ± 8.2 7.6 ± 1.8 18.2 ± 11.2 <0.001 

RVSP, mmHg 26.9 ± 8.1 24.3 ± 4.3 32.6 ± 11.0 0.032 

Values are presented as mean ± SD or numbers (percentages). 

* P-values were obtained through analysis of variance (ANOVA) or chi-square analysis, 

comparing all patients across the training, validation, and external validation cohorts. 

Abbreviations: BMI, body mass index; BSA, body surface area; CA, cardiac amyloidosis; DBP, 

diastolic blood pressure; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; 

IVS, interventricular septum; LA, left atrial; LVEF, left ventricular ejection fraction; LVH, left 

ventricular hypertrophy; LVIDd, diastolic left ventricular internal dimension; LVIDs, systolic left 

ventricular internal dimension; LVMI, left ventricular mass index; LVPW, left ventricular posterior 

wall; RVSP, right ventricular systolic pressure; RWT, relative wall thickness; SBP, systolic blood 

pressure. 

 

 

 

  



３３ 

 

Table 7. Subtype of HCM and CA of the study cohort 

 Developmental Set 
External 

Test 

P-

valuea 

P-

valueb 
 

Total Training 
Internal 

Validation  

HCM (n=276) (n=223) (n=53) (n=46)   

 Apical, n (%) 35 (12.7%) 25 (12.7%) 10 (18.9%) 3 (6.5%) 

0.250 <0.001 
 Septal, n (%) 145 (52.5%) 117 (52.5%) 28 (52.8%) 10 (21.7%) 

 Mixed or  

diffuse, n (%) 
96 (34.8%) 81 (36.3%) 15 (28.3%) 33 (71.7%) 

CA (n=168) (n=139) (n=29) (n=66)   

 AL, n (%) 142 (84.5%) 115 (82.7%) 27 (93.1%) 59 (89.4%) 

0.353 0.159  ATTR, n (%) 17 (10.1%) 16 (11.5%) 1 (3.4%) 7 (10.6%) 

 AA, n (%) 9 (5.4%) 8 (5.8%) 1 (3.4%) - 

Values are presented as number (percentage). 
a P-values were obtained using chi-squared analysis, comparing patients across the training and 

internal validation sets. 
b P-values were obtained using chi-squared analysis, comparing developmental and external test 

sets. 

Abbreviation: AA, amyloid A; AL, amyloid light-chain; ATTR, amyloid transthyretin; CA, 

cardiac amyloidosis; HCM, hypertrophic cardiomyopathy 
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Fig. 8. Performance of the ML Classification Model in Differentiating the Etiology of LVH. 

The AUC illustrates the diagnostic performance of the ML classification model for the detection of 

LVH and for the differentiation of HCM, CA, and HHD from other causes of LVH in both (A) the 

internal validation cohort and (B) the external validation cohort. 

Abbreviations: AUC, area under the curve; CA, cardiac amyloidosis; CI, confidence interval; 

HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; LVH, left ventricular 

hypertrophy 
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Table 8.1 Group-Based Patient Baseline Characteristics as Classified by the Integrated ML 

Model Across the Validation Sets 

 Normal 

(n = 469) 

LVH 

(n = 313) 
P-value 

Clinical Parameters 

Age, years 46.1 ± 12.6 59.1 ± 15.5 <0.001 

Men, n (%) 208 (44.3%) 1922(61.3%) <0.001 

Height, cm 165.3 ± 8.8 164.9 ± 9.9 0.476 

Weight, kg 63.7 ± 10.8 68.1 ± 15.5 <0.001 

BMI, kg/m2 23.2 ± 2.7 24.9 ± 4.3 <0.001 

BSA, m2 1.7 ± 0.2 1.8 ± 0.2 0.001 

SBP, mmHg 121.6 ± 13.4 133.0 ± 27.7 <0.001 

DBP, mmHg 73.6 ± 8.7 80.2 ± 19.8 <0.001 

Hypertension 0 (0.0%) 163 (52.1%) <0.001 

Diabetes 1 (0.2%) 54 (17.3%) <0.001 

Atrial fibrillation 0 (0.0%) 25 (8.0%) <0.001 

Coronary artery disease 0 (0.0%) 17 (5.4%) <0.001 

Chronic kidney disease 0 (0.0%) 23 (7.3%) <0.001 

Echocardiographic Parameters 

LVIDd, mm 46.2 ± 4.3 43.9 ± 11.7 0.001 

LVIDs, mm 29.7 ± 3.9 29.4 ± 9.4 0.625 

IVS, mm 8.5 ± 1.2 14.1 ± 4.7 <0.001 

LVPW, mm 8.3 ± 1.1 11.9 ± 3.7 <0.001 

LVEF, % 64.0 ± 4.3 59.7 ± 10.4 <0.001 

LVMI, g/m2 75.4 ± 14.5 147.0 ± 37.1 <0.001 

RWT 0.4 ± 0.1 0.5 ± 0.1 <0.001 

LA volume index, mL/m2 28.2 ± 5.6 47.4 ± 18.4 <0.001 

E velocity, cm/s 76.3 ± 16.0 74.7 ± 25.2 0.349 

A velocity, cm/s 56.8 ± 13.7 67.9 ± 24.6 <0.001 

e' velocity, cm/s 10.5 ± 2.3 4.9 ± 1.9 <0.001 

E/e' 7.5 ± 1.7 17.4 ± 10.4 <0.001 
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RVSP, mmHg 24.1 ± 4.1 31.7 ± 10.9 <0.001 

 

Table 8.2 Group-Based Patient Baseline Characteristics as Classified by the Integrated ML 

Model Across the Validation Sets 

 HCM 

(n = 94) 

CA 

(n = 87) 

HHD 

(n = 97) 

P-

value* 

Clinical Parameters  

Age, years 58.6 ± 14.0‡ 67.6 ± 13.3‡ 52.2 ± 15.2‡ <0.001 

Men, n (%) 47 (50.0%)† 47 (54.0%)† 76 (78.4%)‡ <0.001 

Height, cm 164.4 ± 10.7† 164.4 ± 10.7† 167.9 ± 8.1‡ <0.001 

Weight, kg 69.3 ± 13.0† 59.5 ± 13.1‡ 74.2 ± 15.8† <0.001 

BMI, kg/m2 25.6 ± 4.0† 22.7 ± 3.2‡ 26.2 ± 4.6† <0.001 

BSA, m2 1.8 ± 0.2‡ 1.6 ± 0.2‡ 1.9 ± 0.2‡ <0.001 

SBP, mmHg 127.6 ± 22.3‡ 118.5 ± 22.9‡ 149.6 ± 26.6‡ <0.001 

DBP, mmHg 74.7 ± 13.9† 72.7 ± 15.1† 90.0 ± 13.9‡ <0.001 

Hypertension 31 (33.0%)† 33 (37.9%)† 77 (79.4%)‡ <0.001 

Diabetes 13 (13.8%) 13 (14.9%) 18 (18.6%) 0.878 

Atrial fibrillation 6 (6.4%) 13 (14.9%)† 2 (2.1%)† 0.003 

Coronary artery disease 5 (5.3%) 4 (4.6%) 5 (5.2%) 0.918 

Chronic kidney disease 3 (3.2%) 11 (12.6%) 7 (7.2%) 0.072 

Echocardiographic Parameters 

LVIDd, mm 40.7 ± 14.1† 42.2 ± 9.9† 48.4 ± 10.3‡ <0.001 

LVIDs, mm 24.4 ± 8.9‡ 30.7 ± 9.2† 33.4 ± 8.9† <0.001 

IVS, mm 15.8 ± 6.5‡ 13.6 ± 3.4† 13.2 ± 3.4† <0.001 

LVPW, mm 10.1 ± 4.0‡ 13.1 ± 3.3† 12.4 ± 3.0† <0.001 

LVEF, % 66.4 ± 7.6‡ 54.1 ± 11.0† 57.2 ± 9.5† <0.001 

LVMI, g/m2 153.4 ± 34.4 145.2 ± 42.3 149.4 ± 33.9 0.331 

RWT 0.5 ± 0.1† 0.6 ± 0.2‡ 0.5 ± 0.1† <0.001 

LA volume index, mL/m2 49.4 ± 19.7† 53.6 ± 17.0† 42.6 ± 16.9‡ <0.001 

E velocity, cm/s 65.3 ± 19.8† 89.5 ± 26.3‡ 71.0 ± 24.0† <0.001 

A velocity, cm/s 65.0 ± 22.1† 60.3 ± 28.6† 75.2 ± 20.8‡ <0.001 
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e' velocity, cm/s 4.5 ± 1.4† 4.0 ± 1.5† 5.8 ± 1.9‡ <0.001 

E/e' 15.6 ± 7.8‡ 24.9 ± 12.4‡ 12.9 ± 4.8‡ <0.001 

RVSP, mmHg 29.6 ± 8.4† 37.6 ± 12.4‡ 28.8 ± 9.6† <0.001 

Values are presented as mean ± SD or numbers (percentages). 
* P-values were obtained through analysis of variance (ANOVA) or chi-square analysis, comparing 

multiple groups. 
†Statistically different from the other two groups. ‡Statistically different from both other groups after 

Bonferroni correction. 

Abbreviations: BMI, body mass index; BSA, body surface area; CA, cardiac amyloidosis; DBP, 

diastolic blood pressure; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; 

IVS, interventricular septum; LA, left atrial; LVEF, left ventricular ejection fraction; LVH, left 

ventricular hypertrophy; LVIDd, diastolic left ventricular internal dimension; LVIDs, systolic left 

ventricular internal dimension; LVMI, left ventricular mass index; LVPW, left ventricular 

posterior wall; ML, machine-learning; RVSP, right ventricular systolic pressure; RWT, relative 

wall thickness; SBP, systolic blood pressure. 
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Table 9. Comparison Between Correctly Classified Subjects to Those Misclassified as 

"Others" in the Normal Group 

 
Normal 

(n = 467) 

Others 

(n = 7) 
P-value 

Clinical Parameters 

Age, years 47.0 [37.0 – 55.0] 52.1 [49.2 – 60.3] 0.128 

Men, n (%) 207 (44.3%) 6 (85.7%) 0.071 

Height, cm 164.0 [159.1 – 172.0] 168.0 [166.0 – 171.8] 0.250 

Weight, kg 63.0 [56.0 – 71.0] 70.5 [67.0 – 77.5] 0.050 

BMI, kg/m2 23.2 [21.2 – 25.2] 24.8 [23.8 – 25.4] 0.120 

BSA, m2 1.7 [1.6 – 1.8] 1.8 [1.8 – 2.0] 0.061 

SBP, mmHg 121.0 [112.0 – 129.0] 137.0 [111.0 – 138.0] 0.321 

DBP, mmHg 74.0 [68.0 – 79.0] 80.0 [73.5 – 86.0] 0.134 

Hypertension 0 (0.0%) 0 (0.0%)  

Diabetes 0 (0.0%) 0 (0.0%)  

Atrial fibrillation 0 (0.0%) 0 (0.0%)  

Coronary artery disease 0 (0.0%) 0 (0.0%)  

Chronic kidney disease 0 (0.0%) 0 (0.0%)  

Echocardiographic Parameter 

LVIDd, mm 46.0 [44.0 – 49.0] 49.0 [46.0 – 51.0] 0.206 

LVIDs, mm 30.0 [27.0 – 32.0] 28.0 [26.5 – 31.0] 0.390 

IVS, mm 8.0 [8.0 – 9.0] 10.0 [9.0 – 11.0] 0.002 

LVPW, mm 8.0 [8.0 – 9.0] 10.0 [9.0 – 10.0] 0.001 

LVEF, % 64.0 [61.0 – 66.9] 65.0 [60.4 – 69.1] 0.768 

LVMI, g/m2 74.1 [65.5 – 84.6] 89.0 [82.8 – 102.8] 0.002 

RWT 0.4 [0.3 – 0.4] 0.4 [0.4 – 0.4] 0.022 

LA volume index, mL/m2 28.1 [24.3 – 31.7] 31.6 [27.0 – 33.0] 0.216 

E velocity, cm/s 75.0 [65.0 – 86.0] 72.0 [61.0 – 75.0] 0.298 

A velocity, cm/s 56.0 [46.0 – 66.0] 64.0 [57.5 – 68.0] 0.113 

e' velocity, cm/s 10.4 [9.0 – 12.0] 7.6 [6.9 – 9.0] 0.006 

E/e' 7.2 [6.3 – 8.4] 8.4 [7.0 – 10.4] 0.159 
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RVSP, mmHg 24.0 [21.0 – 26.2] 22.7 [21.0 – 24.4] 0.377 

Values are presented as mean ± SD, medians [interquartile ranges], or numbers (percentages). 

Abbreviations: BMI, body mass index; BSA, body surface area; CA, cardiac amyloidosis; DBP, 

diastolic blood pressure; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; 

IVS, interventricular septum; LA, left atrial; LVEF, left ventricular ejection fraction; LVIDd, 

diastolic left ventricular internal dimension; LVIDs, systolic left ventricular internal dimension; 

LVMI, left ventricular mass index; LVPW, left ventricular posterior wall; RVSP, right ventricular 

systolic pressure; RWT, relative wall thickness; SBP, systolic blood pressure.   
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3.3. LVH Etiology Differentiation 

 
To differentiate LVH etiology, our ML model utilized selected features for each condition: 82 

for HCM, 83 for CA, and six for HHD. In the internal validation set, the model predicted HCM 

with an AUC of 0.97 (95% CI, 0.94–0.99). For CA and HHD, AUCs were 0.95 (0.90–0.99) and 

0.86 (0.78–0.93), respectively (Table 10). ROC curves are provided in Fig. 8A. The external 

validation set showed consistent performance with comparable AUCs of 0.96 (0.92–0.98) for 

HCM, 0.89 (0.83–0.93) for CA, and 0.86 (0.81–0.91) for HHD (Fig. 8B). The overall accuracy 

of the multi-class classification reached 89.0% in the internal validation set and 92.4% in the 

external validation set (Fig. 6B and C). 

When comparing the clinical and echocardiographic parameters across groups classified by our 

model as HCM, CA, and HHD, no significant differences in LV mass index were observed 

(Table 8). Subjects predicted as HCM had smaller LV dimensions and the highest LV ejection 

fraction (LVEF), whereas those predicted as CA displayed the lowest LVEF and the worst LV 

diastolic function. Altogether, 28 LVH patients were misclassified into "Others" across both 

validation sets (four and two patients with HCM, three and six with CA, and three and 10 with 

HHD in the internal and external validation sets, respectively). Patients with misclassified HCM 

exhibited higher diastolic blood pressure and lower LVEF compared to those correctly classified 

(Table 11). For CA, misclassified patients more often had diabetes mellitus and higher LVEF 

(Table 12). In the case of HHD, misclassified patients showed smaller LV cavities and higher 

LVEF (Table 13).  
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Table 10. Diagnostic Performance of Echocardiographic Feature Model for Distinguishing 

LVH Etiology in Internal and External Validation Datasets 

 Sensitivity Specificity F1 PPV NPV 

Internal validation 

LVH 0.98 0.99 0.98 0.98 0.99 

HCM 0.87  1.00  0.93  1.00  0.94  

CA 0.83  0.99 0.87  0.92  0.96  

HHD 0.76  0.97  0.78  0.80  0.97  

External validation 

LVH 0.98 1.00 0.99 1.00 0.97 

HCM 0.89  0.99  0.87  0.85  0.99  

CA 0.80  0.97  0.84  0.87  0.98  

HHD 0.75  0.99  0.82  0.91  0.96  

Abbreviation: CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HHD, hypertensive 

heart disease; LVH, left ventricular hypertrophy; NPV, negative predictive value; PPV, positive 

predictive value. 
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Table 11. Comparison Between Correctly Classified Subjects to Those Misclassified as 

"Others" in the HCM Group 

 HCM  

 
Classified Correctly 

(n = 87) 

Others 

(n = 6) 
P-value 

Clinical Parameters 

Age, years 60.2 [49.0 – 68.0] 53.8 [45.3 – 57.0] 0.274 

Men, n (%) 40 (46.0%) 3 (50.0%) >0.999 

Height, cm 165.0 [158.0 – 172.0] 167.5 [163.0 – 171.0] 0.439 

Weight, kg 69.0 [60.5 – 77.5] 70.8 [61.0 – 76.0] 0.839 

BMI, kg/m2 24.9 [23.0 – 27.5] 24.5 [22.7 – 27.4] 0.667 

BSA, m2 1.8 [1.6 – 1.9] 1.8 [1.7 – 1.9] 0.845 

SBP, mmHg 126.0 [113.0 – 138.0] 134.0 [132.0 – 148.0] 0.222 

DBP, mmHg 74.0 [66.0 – 81.5] 86.0 [85.0 – 91.0] 0.034 

Hypertension 29 (33.3%) 5 (83.3%) 0.106 

Diabetes 12 (13.8%) 0 (0.0%) 0.618 

Atrial fibrillation 6 (6.9%) 1 (16.7%) >0.999 

Coronary artery disease 5 (5.7%) 0 (0.0%) >0.999 

Chronic kidney disease 3 (3.4%) 0 (0.0%) >0.999 

Echocardiographic parameter 

LVIDd, mm 45.0 [40.0 – 48.0] 49.0 [37.0 – 50.0] 0.462 

LVIDs, mm 26.0 [22.0 – 29.1] 30.5 [25.0 – 35.0] 0.199 

IVS, mm 16.0 [14.0 – 20.0] 15.5 [9.0 – 20.0] 0.451 

LVPW, mm 10.0 [9.0 – 12.0] 8.5 [6.0 – 11.0] 0.302 

LVEF, % 67.6 [63.8 – 70.8] 61.2 [61.0 – 63.0] 0.013 

LVMI, g/m2 156.1 [127.4 – 171.6] 126.8 [119.8 – 150.5] 0.076 

RWT 0.5 [0.4 – 0.5] 0.4 [0.3 – 0.4] 0.171 

LA volume index, mL/m2 46.0 [36.7 – 57.7] 40.1 [31.2 – 46.1] 0.252 

E velocity, cm/s 60.5 [50.1 – 77.0] 40.1 [31.2 – 46.1] 0.954 

A velocity, cm/s 57.0 [48.0 – 78.7] 57.9 [44.0 – 70.0] 0.418 

e' velocity, cm/s 4.4 [3.5 – 5.3] 4.9 [4.3 – 5.1] 0.293 
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E/e' 13.8 [10.4 – 19.8] 14.4 [9.0 – 15.0] 0.579 

RVSP, mmHg 29.4 [23.9 – 34.0] 27.0 [25.6 – 28.0] 0.921 

Values are presented as medians [interquartile ranges] or numbers (percentages). 

Abbreviations: BMI, body mass index; BSA, body surface area; CA, cardiac amyloidosis; DBP, 

diastolic blood pressure; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; 

IVS, interventricular septum; LA, left atrial; LVEF, left ventricular ejection fraction; LVIDd, 

diastolic left ventricular internal dimension; LVIDs, systolic left ventricular internal dimension; 

LVMI, left ventricular mass index; LVPW, left ventricular posterior wall; RVSP, right ventricular 

systolic pressure; RWT, relative wall thickness; SBP, systolic blood pressure.   
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Table 12. Comparison Between Correctly Classified Subjects to Those Misclassified as 

"Others" in the CA Group 

 CA  

 
Classified Correctly 

(n = 77) 

Others 

(n = 9) 
P-value 

Clinical Parameters 

Age, years 70.2 [65.0 – 77.9] 76.0 [57.0 – 81.0] 0.489 

Men, n (%) 39 (50.6%) 6 (66.7%) 0.528 

Height, cm 162.0 [152.0 – 167.3] 157.0 [154.4 – 162.9] 0.621 

Weight, kg 58.0 [49.0 – 65.2] 56.0 [50.2 – 72.0] 0.860 

BMI, kg/m2 22.0 [20.3 – 24.7] 23.8 [22.3 – 25.6] 0.323 

BSA, m2 1.6 [1.5 – 1.7] 1.5 [1.4 – 1.8] 0.983 

SBP, mmHg 113.0 [100.5 – 127.0] 115.0 [11.0 – 117.0] 0.921 

DBP, mmHg 69.0 [63.5 – 75.5] 70.0 [61.0 – 71.0] 0.442 

Hypertension 24 (31.2%) 4 (44.4%) 0.625 

Diabetes 13 (16.9%) 5 (55.6%) 0.019 

Atrial fibrillation 12 (15.6%) 2 (22.2%) 0.950 

Coronary artery disease 4 (5.2%) 2 (22.2%) 0.215 

Chronic kidney disease 10 (13.0%) 2 (22.2%) 0.781 

Echocardiographic parameter 

LVIDd, mm 42.0 [39.0 – 45.0] 39.0 [36.0 – 43.0] 0.210 

LVIDs, mm 29.0 [26.0 – 34.0] 28.0 [21.0 – 30.0] 0.167 

IVS, mm 14.0 [12.0 – 16.0] 15.0 [13.0 – 16.0] 0.239 

LVPW, mm 12.2 [11.0 – 15.2] 15.0 [12.0 – 16.0] 0.279 

LVEF, % 56.8 [49.8 – 61.1] 60.2 [58.3 – 64.0] 0.046 

LVMI, g/m2 134.3 [106.9 – 161.0] 147.2 [117.0 – 167.4] 0.892 

RWT 0.6 [0.5 – 0.7] 0.7 [0.6 – 0.8] 0.070 

LA volume index, mL/m2 51.5 [43.8 – 59.8] 45.6 [36.5 – 47.2] 0.122 

E velocity, cm/s 90.0 [70.0 – 110.5] 81.2 [74.0 – 97.0] 0.623 

A velocity, cm/s 59.0 [36.0 – 79.0] 70.9 [38.0 – 84.0] 0.675 

e' velocity, cm/s 3.8 [3.0 – 4.5] 3.5 [2.5 – 4.0] 0.264 
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E/e' 23.1 [17.9 – 30.7] 21.8 [19.3 – 27.1] 0.959 

RVSP, mmHg 36.4 [30.0 – 47.4] 34.2 [29.0 – 42.1] 0.506 

Values are presented as medians [interquartile ranges] or numbers (percentages). 

Abbreviations: BMI, body mass index; BSA, body surface area; CA, cardiac amyloidosis; DBP, 

diastolic blood pressure; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; 

IVS, interventricular septum; LA, left atrial; LVEF, left ventricular ejection fraction; LVIDd, 

diastolic left ventricular internal dimension; LVIDs, systolic left ventricular internal dimension; 

LVMI, left ventricular mass index; LVPW, left ventricular posterior wall; RVSP, right ventricular 

systolic pressure; RWT, relative wall thickness; SBP, systolic blood pressure. 
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Table 13. Comparison Between Correctly Classified Subjects to Those Misclassified as 

"Others" in the HHD Group 

 HHD  

 
Classified Correctly 

(n = 86) 

Others 

(n = 13) 
P-value 

Clinical Parameters 

Age, years 47.7 [40.0 – 58.0] 49.0 [45.0 – 57.0] 0.354 

Men, n (%) 69 (80.2%) 10 (76.9%) >0.999 

Height, cm 170.0 [165.0 – 173.0] 170.0 [167.0 – 177.0] 0.705 

Weight, kg 75.2 [64.0 – 85.3] 70.0 [66.3 – 89.0] 0.740 

BMI, kg/m2 26.0 [22.8 – 29.2] 25.1 [23.2 – 28.4] 0.569 

BSA, m2 1.9 ± 0.2 1.9 ± 0.3 0.933 

SBP, mmHg 154.1 ± 24.7 160.0 ± 33.1 0.466 

DBP, mmHg 90.0 [79.5 – 105.5] 102.5 [87.5 – 116.5] 0.168 

Hypertension 74 (86.0%) 13 (100.0%) 0.327 

Diabetes 17 (19.8%) 5 (38.5%) 0.249 

Atrial fibrillation 1 (1.2%) 1 (7.7%) 0.616 

Coronary artery disease 5 (5.8%) 1 (7.7%) >0.999 

Chronic kidney disease 6 (7.0%) 0 (0.0%) 0.720 

Echocardiographic parameter 

LVIDd, mm 50.0 [47.0 – 54.0] 47.0 [45.0 – 49.0] 0.034 

LVIDs, mm 35.0 [30.3 – 39.3] 30.0 [27.0 – 33.4] 0.044 

IVS, mm 13.0 [12.0 – 15.0] 13.4 [13.0 – 15.0] 0.165 

LVPW, mm 12.1 [12.0 – 14.0] 13.0 [12.0 – 14.0] 0.348 

LVEF, % 58.0 [51.5 – 63.3] 62.4 [60.5 – 68.0] 0.013 

LVMI, g/m2 145.1 [125.6 – 171.6] 137.4 [126.6 – 144.4] 0.359 

RWT 0.5 [0.5 – 0.5] 0.6 [0.5 – 0.6] 0.057 

LA volume index, mL/m2 37.5 [31.2 – 49.1] 37.9 [32.8 – 47.0] 0.950 

E velocity, cm/s 65.0 [52.0 – 84.0] 58.5 [49.5 – 80.5] 0.446 

A velocity, cm/s 76.8 ± 20.7 89.2 ± 23.0 0.070 

e' velocity, cm/s 5.6 [4.6 – 6.7] 5.3 [3.0 – 6.8] 0.310 
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E/e' 11.1 [9.7 – 15.1] 11.9 [10.0 – 16.7] 0.495 

RVSP, mmHg 26.2 [22.6 – 32.5] 25.3 [18.3 – 30.5] 0.452 

Values are presented as the mean ± SD, median [interquartile range], or numbers (percentages). 

Abbreviations: BMI, body mass index; BSA, body surface area; CA, cardiac amyloidosis; DBP, 

diastolic blood pressure; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; 

IVS, interventricular septum; LA, left atrial; LVEF, left ventricular ejection fraction; LVIDd, 

diastolic left ventricular internal dimension; LVIDs, systolic left ventricular internal dimension; 

LVMI, left ventricular mass index; LVPW, left ventricular posterior wall; RVSP, right ventricular 

systolic pressure; RWT, relative wall thickness; SBP, systolic blood pressure.   
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3.4. Model Performances Comparing with Conventional Echocardiography 

 
We evaluated the performance of various classification models, including two types of logistic 

regression; one using conventional echocardiographic parameters (LV ejection fraction, LV 

mass index, left atrial volume index, and E/e’) and another using radiomic features. Among these, 

the LightGBM model demonstrated the best overall performance in distinguishing LVH etiology 

and was selected as the final model for the study. When compared with conventional 

echocardiographic parameters (Table 13), the final model demonstrated superior sensitivity (0.89 

vs. 0.80 for HCM, 0.80 vs. 0.80 for CA, and 0.75 vs. 0.33 for HHD) and F1-score (0.87 vs. 0.57 

for HCM, 0.84 vs. 0.72 for CA, and 0.82 vs. 0.50 for HHD). 

 

3.5. Model Interpretation by SHAP Analysis in Assessing LVH 

 
We analyzed SHAP values to identify key features influencing each classification model (Fig. 

9). In distinguishing LVH from total subjects, harmonization-driven textures (F2), myocardial 

thickness (F4), and myocardial shape (F3) were pivotal. The total energy feature, derived via 

harmonization filtering and representing the sum of signal intensity across the myocardial area, 

emerged as the most critical factor in differentiating LVH. Key features for identifying HCM 

included harmonization-driven textures (F2), myocardial thickness (F4), and conventional 

textures (F1). Notably, run entropy from a gray-level run length matrix (GLRLM) after 

harmonization filtering was pivotal, quantifying uncertainty in matrix distribution to highlight 

texture heterogeneity. In detecting CA, our analysis identified conventional textures (F1), 

myocardial thickness (F4), and percent changes in myocardial thickness ([%Δ] F3) and 

harmonization-driven textures ([%Δ] F2) as key factors. Run Length Non-Uniformity with 

GLRLM stood out, measuring homogeneity across myocardial run lengths, with a lower value 

indicating greater homogeneity. Lastly, myocardial thickness (F4) and shape (F3) emerged as 

key determinants for HHD differentiation. The most crucial texture feature for HHD identified 

was the inverse difference normalized with the Gray Level Co-occurrence Matrix (GLCM), 

which measures the local homogeneity of the myocardial area. The comprehensive SHAP value 

analysis is summarized in Fig. 10.  



４９ 

 

We also analyzed SHAP values in cases misclassified as "Others" to understand the reasons for 

misclassification. By mapping the sum of SHAP values for texture features (F1 and F2) onto the 

myocardium, we found that properly classified cases exhibited considerably high SHAP values 

(Fig. 8), in contrast to the notably low SHAP values in misclassified "Others" cases (Fig. 10). 

This variance in myocardial texture features could have influenced the model's decision, 

indicating that these cases were divergent from their actual condition. 
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Table 14. Performance Comparison of Conventional and Radiomics-Based ML Model in the 

External Test Datasets 

 Sensitivity Specificity F1-score PPV NPV 

LVH  

Logistic Regression       

LVMI+LVEF 0.97 1.00 0.98 1.00 0.98 

LVMI+LVEF+LAVI 0.97  1.00  0.98  1.00  0.98  

LVMI+LVEF+LAVI+E/e’ 1.00  1.00  1.00  1.00  1.00  

Radiomics Features 0.98 1.00 0.99 1.00 0.99 

LightGBM       

Radiomics Features 0.98 0.99 0.98 0.98 0.99 

HCM 

Logistic Regression       

LVMI+LVEF 0.81 0.86 0.78 0.74 0.91 

LVMI+LVEF+LAVI 0.77  0.86  0.75  0.73  0.89  

LVMI+LVEF+LAVI+E/e’ 0.74  0.93  0.78  0.83  0.88  

Radiomics Features 0.75 0.98 0.84 0.95 0.89 

LightGBM       

Radiomics Features 0.87  1.00  0.93  1.00  0.94  

CA  

Logistic Regression       

LVMI+LVEF 0.76 0.88 0.66 0.58 0.94 

LVMI+LVEF+LAVI 0.79  0.85  0.64  0.54  0.95  

LVMI+LVEF+LAVI+E/e’ 0.76  0.99  0.83  0.92  0.95  

Radiomics Features 0.83 0.97 0.84 0.86 0.96 

LightGBM       

Radiomics Features 0.83  0.99 0.87  0.92  0.96  

HHD 

Logistic Regression       

LVMI+LVEF 0.10 0.99 0.17 0.67 0.88 

LVMI+LVEF+LAVI 0.14  0.99  0.24  0.75  0.89  
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LVMI+LVEF+LAVI+E/e’ 0.43  0.92  0.43  0.43  0.92  

Radiomics Features 0.67 0.95 0.67 0.67 0.95 

LightGBM       

Radiomics Features 0.76  0.97  0.78  0.80  0.97  

Abbreviation; CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HHD, hypertensive 

heart disease; LAVI, left atrial volume index; LVEF, left ventricular ejection fraction; LVH, left 

ventricular hypertrophy; LVMI, left ventricular mass index; NPV, negative predictive value; PPV, 

positive predictive value.
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Fig. 9. Insights from SHAP Values and Feature Contribution in Classification Models. We 

employed SHAP values to the influence of features on the predictions made by classification 

models. Higher absolute SHAP values indicate a greater impact of belonging to the positive or 



５３ 

 

negative class. We performed the analysis through the whole classification process (A to D). The 

left panels depict feature contributions across the various integrated classification models. The 

right panels display representative mappings of the top-ranked features from both conventional 

(F1) and harmonization-driven (F2) texture analyses for each classified group, visualizing the 

differential impact of these features in the models. 

Abbreviations: CA, cardiac amyloidosis; GLCM, Gray Level Co-occurrence Matrix; GLRLM, run 

entropy derived from a gray-level run length matrix; HCM, hypertrophic cardiomyopathy; HHD, 

hypertensive heart disease; LVH, left ventricular hypertrophy; SHAP, Shapley Additive 

Explanations. 
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Abbreviations: CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HHD, hypertensive 

heart disease; LVH, left ventricular hypertrophy; SHAP, Shapley Additive exPlanations. 
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Abbreviations: A4Ch, apical four-chamber view; CA, cardiac amyloidosis; GLCM, gray level co-

occurrence matrix; GLRLM, run entropy derived from a gray-level run-length matrix; ED, end-

diastole; ES, end-systole; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; 

LVH, left ventricular hypertrophy; SHAP, Shapley Additive exPlanations; PSAX, parasternal short 

axis view 

 

 

  



５６ 

 

4. DISCUSSION 

 
This study explored the effectiveness of utilizing echocardiography-based radiomics features 

analyzed through ML models to enhance LVH diagnosis and differentiate its etiologies. Our 

approach, which integrates advanced myocardial texture analysis and geographic attributes, was 

thoroughly validated internally and externally, showcasing robust performance. Furthermore, 

enhanced by SHAP analyses, our approach also offered clinical interpretability. These findings 

underscore the potential clinical relevance and adaptability of our methods for practical clinical 

application in real-world settings.  

Echocardiography is the most widely used noninvasive tool among cardiovascular imaging 

modalities, utilizing not only the measurements of various structural and functional parameters 

but also the visual assessment of morphology. Given the wide range of cardiovascular diseases 

which often overlap morphologies across the various etiologies, the echocardiographic 

assessment inevitably conveys obscure conclusions with subjective interpretations. LVH, a 

common cardiovascular condition, has various etiologies. HHD results from increased 

afterload,32 HCM has genetic roots and may requir specific management for the complications 

(i.e., sudden cardiac death, heart failure, arrhythmia, etc),33,34 and CA is the result from 

progressive deposition of amyloid in the extracellular matrix due to hematologic malignancy 

(light-chain CA) typically shows grave prognosis or other genetic and idiopathic causes 

(transthyretin CA) requiring specific therapy.35,36 Despite different etiologies, morphologic 

similarities and the lack of pathognomonic findings often challenge accurate diagnosis by visual 

assessments and conventional echocardiographic evaluation. Indeed, the accuracy of human 

experts in differentiating the etiologies of LVH ranges from 50% to 80%.9,10 This necessitates 

further diagnostics such as cardiac magnetic resonance, nuclear scintigraphy, genetic testing, and 

myocardial biopsy to overcome the limitations of conventional echocardiography.6  

To improve the diagnostic process and minimize unnecessary tests, researchers have employed 

DL in echocardiography to detect subtle differences in LVH etiologies that are not apparent 

through conventional methods.9-11 Given the reliance on subjective judgment by 

echocardiographic specialists,4,6 the ability of DL to process a broader spectrum of data, 

including subtle characteristics missed by humans, positions it as potentially superior for LVH 
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detection and differential diagnosis. For instance, Yu et al. developed a semi-automatic 

diagnostic network based on deep learning algorithms to detect LVH and differentiate between 

different etiologies of LVH.10 They use the still images of PLAX and A4Ch view and manually 

demarked LV myocardium for the ground truth of the segmentation network. And, Duffy et al. 

showed the reliability of quantifying LV dimension and wall thickness and predicting the cause 

of LVH using a deep learning algorithm trained by A4Ch view of echocardiogram videos.11 The 

externally validated algorithm showed 0.89 of AUC in HCM and 0.83 in CA patients. Notably, 

Hwang et al. reported that DL-based differentiation of LVH etiology was superior to human 

expertise, achieving an overall accuracy of 92.3% compared to 80%, underscoring the potential 

benefits of DL in improving diagnostic accuracy.9 They used a high-performance algorithm that 

was constructed using a hybrid CNN-long short-term memory model. However, previous efforts 

in applying DL encountered remarkable limitations, including the lack of multi-center cohorts 

and external validation.9-11 Additionally, the critical need for interpretability, essential for 

securing clinical trust and facilitating wider adoption, remains largely unaddressed.  

In this study, we aimed to enhance diagnostic accuracy and provide significant insight by 

employing echocardiography-based radiomics features. Besides DL algorithm, radiomic feature 

analysis offers an advantage in interpretability and allows for integrating various statistical 

models based on the extracted features. Instead of directly inputting echocardiographic images 

into a DL model, we applied AI technology for automated segmentation of the LV myocardium, 

extracting and analyzing a broad array of features. This approach allowed for an in-depth 

examination of myocardial texture and geographic features. Specifically, myocardial shape (F3) 

and thickness (F4) were identified as important factors in diagnosing and differentiating LVH. 

Myocardial thickness (F4) proved crucial across all the processes of etiologic diagnosis, while 

the percent change in myocardial shape ([%Δ] F3) played a significant role in differentiating CA 

(Fig. 8). 

In the evaluation of LVH, assessing myocardial texture is an aspect that echocardiography has 

long attempted to characterize because of its potential value. Bhandari et al. and Pinamonti et al. 

tried to myocardial exture analysis in 3-D echocardiography in 1980s.37, 38 Similar with our study, 

there were recent studies that used echocardiography-based radiomic feature analysis to classify 

the various LVH etiologies.39,40 Particularly, texture analysis has shown promise in detecting LV 

remodeling and differentiating transthyretic CA from other cardiomyopathy.41,42 Despite the 
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historical challenges in quantifying myocardial texture changes, which often reduce diagnostic 

reproducibility, we address this issue by employing an AI-driven approach to automatically 

segment the LV myocardium, extract, and analyze texture features. Importantly, our method 

incorporated both conventional (F1) and novel harmonization-driven (F2) texture features, the 

latter designed to reduce variability across different imaging settings and vendors.23 In our 

classification model, both texture features were pivotal: the harmonization-driven texture 

features (F2) were crucial for detecting LVH and differentiating HCM, while conventional 

texture features (F1) significantly helped in differentiating CA. Although geographic features 

played an essential role in identifying HHD, conventional texture features (F1) also extensively 

aided in its differentiation (Fig. 8).  

This approach effectively quantifies and evaluates the impact of specific myocardial features on 

the detection and differentiation of LVH. By identifying which echocardiography-based 

radiomics features are pivotal in differentiating various cardiac conditions, our classification 

model gains credibility and provides deeper insights into the diagnostic process. Furthermore, 

the model’s scalability allows it to classify unknown conditions beyond the current diagnostic 

scope by placing atypical cases into the "Others" category. This method enhances diagnostic 

safety by preventing disease misclassification. Intriguingly, as SHAP values have highlighted, 

divergent texture features in misclassified cases suggest the possibility of uncovering 

unrecognized pathophysiologies. 

 

4.1. Limitations 

 
This study has some limitations. First, although the training data set was multi-center-driven and 

the model was externally validated, it was predominantly based on data sourced from Korean 

patient cohorts. This could introduce ethnic biases and suggest a need for further validation 

across diverse demographic populations. Extending the model to include a broader range of 

conditions and testing it in various settings with different equipment standards will be essential 

to enhance its applicability and reliability. Second, our study focused on patients with advanced 

LVH due to HCM, CA, and HHD, which may introduce bias. Since these are cases of pathologic 

LVH, not only does the myocardial thickness increase, but myocardial remodeling and fibrosis 

also occur. Therefore, myocardial texture features could play a more significant role in 
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distinguishing LVH in the model. Previous studies have shown that radiomic features outperform 

the LV mass index in predicting LV remodeling, which supports this notion.41 As a result, the 

model we developed may have limitations when applied to subclinical LVH or physiologic LVH 

cases (such as athlete's heart). Further studies will be necessary to validate and improve the 

model's capabilities for these groups. Third, our cohort did not include the rare causes of LVH, 

such as Fabry disease, Danon syndrome, PRKAG2 syndrome, and sarcoidosis due to their low 

prevalence, which complicates achieving adequate training levels. Although we incorporated an 

"Others" category for features not typical of the trained disease groups, further validation is 

required to determine how the model performs when presented with untrained disease categories. 

Lastly, while we have demonstrated the robustness of our model by applying it to an independent 

external validation set with different compositions, we acknowledge the significant challenges 

of lacking prospective testing and evaluation of model efficacy during actual clinical practice.43 

Plans are underway to conduct prospective studies to address this gap. 

 



６０ 

 

5. CONCLUSIONS 

 
In this study, we developed an AI-based classification model that utilizes echocardiography-

based radiomics to enhance the diagnosis and differentiation of LVH. The model, which was 

developed using data from multi-institutional cohorts and validated externally, demonstrates 

promising results in applying radiomic analysis to real-world clinical settings. However, its 

application has been primarily within a specific demographic, highlighting the need for broader 

testing across diverse populations to ensure its efficacy and generalizability in varied clinical 

settings. 
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were extracted and used to develop classification models for detecting LVH and differentiating its 

etiologies. The performance of these models was subsequently evaluated through internal and 

external validation datasets. 

Abbreviations: CA, cardiac amyloidosis; ED, end-diastole; ES, end-systole; HCM, hypertrophic 

cardiomyopathy; HHD, hypertensive heart disease; LV, left ventricular; LVH, left ventricular 

hypertrophy. 
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인공지능을 활용한 심초음파 기반 방사선 영상 (Radiomics) 특징 

분석을 통한 심근 비대 감지 및 병인 구별 

 

심초음파검사는 좌심실비대(LVH) 검출에 핵심적이지만, 원인 감별에는 어려움이 

있다. LVH 평가를 향상시키기 위해, 우리는 심초음파 기반 방사선체학을 이용한 

인공지능(AI) 알고리즘 개발을 목표로 했다. 이 알고리즘은 심초음파 영상을 

바탕으로 LVH 를 검출하고 비대성심근병증(HCM), 심장 아밀로이드증(CA), 

고혈압성심질환(HHD) 등 주요 원인들을 감별하도록 설계되었다. 

 

개발 데이터셋은 다양한 의료센터에서 수집되었고(867명), 독립적인 외부 검증셋은 

단일 3차 의료센터에서 확보되었다(619명). 4가지 기본 심초음파 영상에 대한 

방사선체학적 특징 분석을 통해 기존 방식과 조화화 기반 심근 질감을 추출했다. 

심근 모양과 두께 같은 심근 지리학적 특징도 주요 변수로 활용되었다. 분류 

알고리즘을 개발하고, 각 변수의 기여도는 섀플리 가법 설명으로 평가했다. 

 

내부 검증에서 분류 모델은 곡선하면적(AUC) 1.00 (95% 신뢰구간 [CI], 1.00–

1.00)으로 LVH를 신뢰성 있게 검출했다. 원인 감별에서도 강력한 성능을 보여, 

HCM은 AUC 0.97 (95% CI, 0.94–0.99), CA는 0.95 (95% CI, 0.90–0.99), HHD는 

0.86 (95% CI, 0.78–0.93)을 달성했다. 외부 검증에서도 이러한 결과가 일관되게 

나타나, HCM은 AUC 0.96 (95% CI, 0.92–0.98), CA는 0.89 (95% CI, 0.83–0.93), 

HHD는 0.86 (95% CI, 0.81–0.91)을 기록했다. 특히 조화화 기반 질감은 HCM 

감별에서 핵심적 역할을 했으며, 기존 질감과 심근 두께는 CA와 HHD 감별에 영향을 

미쳤다. 

 

이 연구는 AI가 강화된 심초음파 기반 방사선체학이 LVH와 그 원인들을 효과적으로 

식별함을 확인하며, LVH 평가에서 AI 기반 질감 및 지리학적 분석의 잠재력을 

부각시킨다. 
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핵심되는 말 : 심초음파 기반 방사선체학, 인공지능, 심근비대 


