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ABSTRACT

Artificial Intelligence-Enhanced Analysis of Echocardiography-Based
Radiomic Features for Myocardial Hypertrophy Detection and
Etiology Differentiation

While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles
with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial
intelligence (Al) algorithm using echocardiography-based radiomics. This algorithm is designed
to detect LVH and differentiate its common etiologies, such as hypertrophic cardiomyopathy
(HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HHD), based on
echocardiographic images.

The developmental datasets were sourced from diverse medical centers (867 subjects), while an
independent external validation set was obtained from a single tertiary medical center (619
subjects). Utilizing radiomic feature analysis on four fundamental echocardiographic views,
conventional and harmonization-driven myocardial textures were extracted. Myocardial
geographic features, such as myocardial shape and thickness, were also utilized as key variables.
The classification algorithm was developed, and the contribution of each variable was evaluated
by Shapley Additive Explanations.

In internal validation, the classification model reliably detected LVH with an area under the
curve (AUC) of 1.00 (95% confidence interval [CI], 1.00-1.00). The model demonstrated strong
performance in differentiating etiologies, achieving AUCs of 0.97 (95% CI, 0.94-0.99) for HCM,
0.95 (95% CI, 0.90-0.99) for CA, and 0.86 (95% CI, 0.78—0.93) for HHD. In external validation,
these results were consistent, with AUCs of 0.96 (95% CI, 0.92—0.98) for HCM, 0.89 (95% CI,
0.83-0.93) for CA, and 0.86 (95% CI, 0.81-0.91) for HHD. Notably, harmonization-driven
textures played a key role in differentiating HCM, while conventional textures and myocardial

thickness were influential in differentiating CA and HHD.



This study confirms that Al-enhanced echocardiography-based radiomics effectively identifies
LVH and its etiologies, highlighting the potential of Al-driven texture and geographic analysis

in LVH evaluation.

Key words : Echocardiography-based radiomics, artificial intelligence, left ventricular hypertrophy



1. INTRODUCTION

Left ventricular hypertrophy (LVH) is commonly observed in clinical settings, often signaling a
range of cardiovascular diseases and thus substantially impacting morbidity and mortality.'-
LVH is typically identified through imaging studies, with echocardiography being the most
commonly employed non-invasive modality. While echocardiography provides essential data on
left ventricular (LV) mass, wall thickness, and cardiac function, it alone may not precisely
pinpoint the etiological factor of LVH, which is crucial for specific treatment plans and outcome
prediction.*> Because the morphological and functional characteristics of LVH observed on
echocardiography are substantially influenced by specific diseases and depend on the stage of
disease, it could become a similar pattern. Additionally, the subjective nature and variability in
echocardiographic interpretation necessitate advanced techniques like magnetic resonance
imaging or endomyocardial biopsy for deeper etiological insights.®

Artificial intelligence (AI) technology has rapidly evolved, introducing a range of sophisticated
methods for analyzing images. Echocardiography, which provides dynamic, high-resolution
images of the heart, represents a valuable data source ripe for advanced computational analysis.
In response to previous challenges, there has been a significant shift towards utilizing Al to assist
in the echocardiographic analysis and categorization of LVH etiology. ® Deep learning (DL), a
subset of Al has been at the forefront of this revolution. It employs neural networks, particularly
convolutional neural networks (CNNs), to automatically learn and identify patterns within large
datasets without the need for explicit feature extraction by human operators. In the context of
echocardiography, DL models have demonstrated the potential to automate tasks such as
segmentation, measurement of cardiac structures, and even the differentiation of various LVH
etiologies. However, DL-based methods, while seemingly accurate in differentiating LVH
etiologies, often fail to disclose which specific echocardiographic features are used for this
differentiation, leaving a significant gap in our understanding and application of AL’
Additionally, many of these studies lacked external validation or showed significantly reduced
performance when evaluated using external datasets.

To overcome the interpretability and validation challenges associated with DL, radiomics has

emerged as a complementary approach. Radiomics involves the extraction of a large number of



quantitative features from medical images, which capture a wide array of characteristics such as
texture, shape, and intensity.'> These features can reveal subtle patterns that are not easily
discernible by the human eye but may correlate strongly with underlying pathological processes.
In echocardiography, radiomics provides a powerful tool for dissecting the complex myocardial
textures and patterns associated with various LVH etiologies. By quantifying these features,
radiomics allows for a more granular analysis that can enhance diagnostic precision beyond what
conventional imaging and even deep learning alone can achieve.

Addressing these challenges, the current study leveraged echocardiography-based radiomics to
develop a sophisticated algorithm that not only diagnoses LVH but also differentiates its various
etiologies, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and
hypertensive heart disease (HHD). We also examined which features play crucial roles in
diagnosing each condition through Shapley Additive Explanations (SHAP) analysis. Importantly,
we employ a novel harmonization technique for vendor-independent analysis of myocardial
texture features from echocardiographic images, enabling more accurate assessments and

enhancing the clinical applicability of our algorithm.



2. METHODS

2.1. Study Dataset

This study utilized extensive echocardiography datasets from multiple Korean medical centers,
collected through a collaboration among four sources: (1) the Open Al Dataset Project (AI-Hub)
by the Ministry of Science and ICT, South Korea,'* (2) Korea National Standard Cardiovascular
Database and Reference,'* (3) Seoul National University and Bundang Hospital LVH registry,’
and (4) Echocardiographic Characteristics for Diagnosis of Infiltrative Cardiomyopathy
(ACREDIT) registry (NCT 05108168). From this consolidated dataset, echocardiographic data
for patients with normal, HCM, CA, and HHD conditions were extracted. The detailed clinical
inclusion criteria for each clinical condition are provided in Table 1.

To facilitate the development and validation of our algorithm, we organized the datasets
according to hospital origin. We constructed the developmental dataset from a variety of
hospitals, specifically excluding Seoul National University Bundang Hospital (SNUBH). We
evaluated 2,285 subjects from Severance Hospital, Seoul National University Hospital,
Soonchunhyang University Bucheon Hospital, and other hospitals for eligibility, with 1,171
subjects fulfilling the clinical inclusion criteria (Fig. 1). To evaluate our algorithm's
generalization capability, we prepared an independent external validation set from SNUBH,
where 1,410 patients were evaluated for eligibility, and 713 met the clinical inclusion criteria
(Fig. 1).

This study complied with the ethical guidelines of the Declaration of Helsinki and was approved
by each institution's Institutional Review Board (IRB). Due to the study's retrospective design
and the minimal impact on subjects, the IRB waived the need for informed consent. Additionally,
the research was carried out following the Proposed Requirements for Machine Learning

Evaluation in Cardiovascular Imaging.'>



Table 1. Clinical Inclusion and Exclusion Criteria

Conditions

Definition”

Normal

HCM

CA

HHD

(1) no clinical history of cardiovascular disease or diabetes; (2) normal
blood pressure (<130/80 mmHg); (3) body mass index <30 kg/m2; (4)
normal sinus rhythm at 50-85 beats/min without conduction abnormalities;
(5) normal LV wall thickness and LV wall motion; (6) normal left atrial size
(left atrial volume index <27 mL/m2 using the biplane method of discs) or
left atrial dimension <40 mm; (7) no mitral valve prolapse; and (8) no more
than trivial valve regurgitation

(1) end-diastolic LVWT max >15 mm on echocardiography, (2) definite
evidence of HCM on cardiac magnetic resonance (CMR) or a typical gene
mutation on genetic analysis, and (3) absence of abnormal loading
conditions that could sufficiently explain the LVH

(1) definite evidence of amyloid involvement either through on
endomyocardial biopsy (Congo-Red positive and amyloid P positive on
immunohistochemistry) or by demonstrating amyloidosis on extra-cardiac
biopsy with cardiac involvement supported by CMR or pyrophosphate
scans, and (2) end-diastolic LVWTmax >12 mm

(1) history of hypertension; (2) left ventricular (LV) mass index [LVMI]
>115 g/m2 in men, LVMI >95 g/m2 in women; (3) end-diastolic maximal
LV wall thickness (LVWTmax) >12 mm; (4) Regression of LVH after
appropriate blood pressure control; and (5) exclusion of other causes of LVH
(such as HCM, infiltrative cardiomyopathy, metabolic cardiomyopathy,
etc.)

“Patients must meet all the following criteria

Abbreviations:

CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HHD,

hypertensive heart disease



Four distinct multi-center cohorts
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Fig. 1. Flow Chart of Data Preparation Process: Developmental and External Validation

Dataset
Abbreviations: ACREDIT, Echocardiographic Characteristics for Diagnosis of Infiltrative

Cardiomyopathy registry; Al, artificial intelligence; LVH, left ventricular hypertrophy.



2.2. Data Preparation

In this study, our algorithm was designed to extract and analyze myocardial features from images
of the end-diastolic (ED) and end-systolic (ES) phases within the four fundamental views of
echocardiography: parasternal long-axis (PLAX), parasternal short-axis at mid-level (PSAX),
apical 4-chamber (A4Ch), and apical 2-chamber (A2Ch). To achieve this, we initially employed
our previously developed Al-based echocardiographic automatic analysis system (Sonix Health,
Ontact Health, Korea) to select the necessary views and identify the ED and ES images within
those views.!® The deep learning (DL)-based segmentation algorithm has been detailed in our
previous research, highlighting its robust performance in the LV cavity, myocardium, and left
atrial cavity segmentation.!”!® This system utilizes a 3-dimensional (2D + time) convolutional
neural network (CNN) trained through semi-supervised learning, combining supervised learning
based on expert-annotated ground truth with unsupervised learning for motion estimation via a
spatial transformer network.!” This combined approach enabled the model to capture and
interpret essential cardiac motion patterns accurately. The proposed algorithm is highly robust
to image quality, through echo-specific data augmentation,?” such as haze and shadow artifacts,
as well as a variety of general data augmentation techniques.

The segmentation model was specifically trained and optimized for multiple echocardiographic
views, including the apical 4-, 2-, and 3-chamber views (A4C, A2C, and A3C), parasternal long-
axis view (PLAX), and the parasternal short-axis view (PSAX). Each echocardiographic view
required a distinct model component to accommodate the unique anatomical and imaging
characteristics of the view, even though the overall network architecture remained consistent
across views. By processing these various views, our DL-based segmentation algorithm delivers
highly accurate segmentation results, ensuring clinical reliability and robust performance across
diverse imaging conditions. As a result, it can provide detailed and clinically relevant
segmentation of cardiac structures, which is critical for extracting radiomic features. The
system’s comprehensive architecture is shown in Fig. 2. Representative cases of successful
segmentation included in this study and failed segmentations excluded from the study are
provided in Fig. 3 and 4.

After the initial processing, cases missing any of the four fundamental views, poor image quality

leading to inaccurate ED/ES phase detection, and those with failed segmentation were excluded



(Fig. 1). The study's developmental dataset included 867 cases across various conditions: 276
with HCM, 168 with CA, 135 with HHD, and 288 normal subjects. The data were split 8:2 for
training and testing to ensure homogeneity, with 704 for training and 163 for internal validation.
Similarly, the external validation set included 619 patients: 46 with HCM, 66 with CA, 93 with

HHD, and 414 normal subjects. The process was validated by experienced cardiologists.
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Fig. 2. Architecture of Al-based Left Ventricular Myocardium Segmentation System. The
figure depicts the architecture of the Al-based segmentation system, illustrating the flow from the
input of various echocardiographic views (including the apical views, PLAX, and PSAX) to the
segmentation output for each view. This design allows the system to produce precise delineations
of the left ventricular myocardium across different echocardiographic views, accommodating each

view's unique features and imaging characteristics.
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Fig. 3. Representative Case of Segmentation. The images capture the ED and ES phases,

demonstrating the system’s precision in delineating the LV myocardium across cardiac phases.



Segmentation
success

Segmentation
failure

Fig. 4. Representative Cases of Inclusion and Exclusion Cases. In our study, we utilized the Al-
based system we developed to perform automatic segmentation and extract radiomics features
from the segmented LV myocardium. The upper cases represent successful segmentation instances,
whereas the lower cases show instances where segmentation failed and were thus excluded. From
the upper cases, it can be observed that segmentation was successful even with relatively poor
image quality. Conversely, the lower cases illustrate that segmentation failed in situations where
the image quality was inferior, making it difficult even for human experts to perform segmentation

or where the LV myocardium extended beyond the image boundaries.
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2.3. Myocardial Feature Extraction

We delved into quantitative features by extracting texture and geographic features from each
segmented LV myocardium, employing the well-established open-source Python package
Pyradiomics.?! For a clearer understanding and effective management of the diverse features,

we organized them into the four following categories (Fig. 5).
2.3.1. Conventional Texture Features (F1) and Harmonization-driven Texture Fearutres (F2)

For conventional texture features (F1), we extracted the 91 core features consist of 18
first-order statistical features, 22 co-occurrence matrices, 16 gray-level run length
matrices, 16 gray-level size zone matrices, 14 gray-level dependence matrices, and 5
texture features based on neighboring gray-level difference matrices. And we extracted
additional set of 91 features from 16 conventional filtered images. Consequently, we
defined a set of 1,547 features as the conventional texture feature set. Next, we
additionally applied a novel harmonization technique developed by our team to derive
harmonization-driven texture features (F2). We filtered the echocardiography image with
2D convolution kernels in the first layer of fine-tuning ConvNext-V2 network,?? and
extracted 91 core feature sets from the filtered image.This technique was designed to

reduce vendor-specific speckle pattern variability in LV myocardium.?
2.3.2. Geographic Features (Myocardial Shape [F3] and Thickness [F4])

We also included geographic features, myocardial shape (F3) and thickness (F4). We
extracted 13 shape features, which were supported by Pyradiomics Package, at four
fundamental views, producing 52 shape features. Furthermore, considering that LVH is
typically diagnosed by measuring the thickness of the left ventricular wall, we included
myocardial thickness as an input for the machine-learning model. We measured six
myocardial thicknesses in the following segments: apical lateral wall, apical septum, mid-
inferior septum, mid-anterior lateral wall, basal anterior-lateral wall, and basal inferior

septum, and the myocardial thickness at both the ED and ES phases. We used the average

11



thickness values for each segment if measurements were available from both A2Ch and
A4Ch. In addition, we measured three 2-dimensional diameters in the PLAX view: LV
septum, LV cavity, and LV posterior wall. Thus, we extracted 61 myocardial geographic

features for each cardiac phase.

2.3.3. Percent Change ([%A]) Between Phases and Total Packages of Myocardial Features

We initially extracted 1,638 texture features (1,547 conventional and 91 harmonization-
driven features) from each view. The features were extracted from four fundamental
views, resulting in 6,552 features (1,547 features x 4 views). This feature set was
extracted in both end-diastolic (ED) and end-systolic (ES) phases, resulting in 13,104
features (6,552 features x 2 phases). And, the total number of geographic features from
each phase was 122 (61 features x 2 phases).

To maximize the performance, we computed the variation in the extracted features. All
features were derived from both the ED and ES phases, and the percentage change for
each feature was calculated using the formula (ES-ED)/ED. This percent change
calculation approach is based on the premise that heart muscle movements vary across
different diseases, and such a calculation could numerically represent these variations.
This method enabled us to utilize features to capture specific changes that occur
throughout the cardiac cycle. Therefore, we calculated the percentage changes for the

6,552 texture features and 61 geographic features between the ED and ES phases.

Consequently, the final conventional and harmonization-driven texture feature set consisted
of 19,656 features (13,104 texture features and 6,552 percent changes). Likewise, for texture
feature extraction, there were 183 geographic features (122 geographic features and 61
percent changes). In total, we utilized 19,839 features for LVH detection and etiology

differentiation modeling.
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Fig. 5. Automated Process of Echocardiographic Feature-Extraction for Developing the
Classification Model. The automated software first detected end-diastolic and end-systolic phases
and then segmented LV myocardium from four distinct echocardiographic views. In extracting
texture features, both conventional text features and newly developed harmonization-driven
texture features were obtained using advanced filters. Geographic features encapsulating
myocardial shape and thickness were also extracted. Upon combining data across all views and
phases, a total of 19,839 features were extracted and utilized to develop the classification model.

Abbreviations: DL, deep-learning; ED, end-diastole; ES, end-systole; LV, left ventricular.
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2.4. Feature Selection and Classification Modeling

2.4.1. Feature Selection

We selected features with a strong impact on classification targets, encompassing the features
of conventional and harmonization-driven textures, shapes, thickness features, and feature
change rates. Four binary classification models were built: 1) LVH versus normal, 2) HCM
versus (CA and HHD), 3) CA versus (HCM and HHD), and 4) HHD versus (HCM and CA).
By utilizing these four classification models hierarchically, we can distinguish between four
classes: normal, HCM, CA, and HHD (Fig. 6A). Once classified as LVH, the patient could
be further classified as HCM, CA, or HHD, and if all three classification models classified
the patient as negative, the patient was designated as "Others."

Features selection was performed using the Boruta and XGBoost algorithms.?* The Boruta
algorithm was used to select the top-ranked features associated with targets.2* The importance
ranking for each variable was calculated with the Boruta algorithm, and the top-ranked
features, rank 1, were selected as candidates for modeling. The XGBoost algorithm, which
combines multiple weak classifiers to assemble a single robust classifier, was used to select
the essential features and machine-learning modeling.?® XGBoost ranks features by "gain"
which represents the fractional contribution of each feature to the model based on the total
gain of the splits of that feature. We excluded features with no information gain.

After feature selection, we trained the classification models using the LightGBM algorithm,?’
a widely used gradient-boosting decision-tree learning algorithm. To optimize the
performance of our model, we conducted a grid search for hyperparameters. The optimal
parameters that yielded the best results for the internal validation dataset were used. The grid
search included tuning key parameters, such as n_estimators, learning rate, max_depth,
num_leaves, and boosting type, to find the optimal combination. To overcome the class
imbalance problem, we employed the synthetic minority oversampling technique.?®

Table 2 summarizes the number of features selected in the four trained models and specific

features used in each classification model are as below (Table 3).
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(A) Step 1. LVH detection Step 2. Etiology differentiation

Subject

(B) Internal validation set

T
E 0 0 0
[=]
z
=
g (i) 0 0 3
=
g 1 0 24 1
£
x 0 0 2 16
Normal  HCM CA HHD
Predicted

Others

*If not differentiated by three etiologies

(C) External validation set

g
£ 0 0 0 8
z
o3 0 4 0 3 2
I
2
-
s 0 3 53 &4 6
2
1 4 8 70 10

Naormal HCM CA HHD  Others

Predicted

Abbreviations: CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HHD, hypertensive

heart disease; LVH, left ventricular hypertrophy.
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Table 2. Selected Features in the Four Classification Models
Total F1 %AF1 F2 %AF2 F3 %AF3 F4 %AF4

LVH 70 14 9 24 6 6 4 7 0
HCM 82 28 28 13 5 0 0 7 1
CA 83 46 13 7 9 1 2 4 1
HHD 6 2 0 0 0 2 0 2 0

Abbreviation: CA, cardiac amyloidosis; F1, conventional texture; F2, harmonization-driven texture;
F3, myocardial shape; F4, myocardial thickness; %A, percent change between end-diastole and
end-systole; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; LVH, left

ventricular hypertrophy
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Table 3.1 Echocardiography-Based Radiomic Features used in LVH differentiation

Radiomic Features

Conventional
texture feature

(F1), and %AF1

A2CH_ED wavelet-HHL ngtdm_Strength, wavelet-LHL gldm
SmallDependenceLowGrayLevelEmphasis

A4CH_ED wavelet-HLL glrlm RunLengthNonUniformityNormalized
A4CH_ES wavelet-LHL _firstorder Mean, wavelet-LLL glszm
LargeAreaLowGrayLevelEmphasis

AACH rate wavelet-HLL glrlm GrayLevelNonUniformity, wavelet-
LHH gldm DependenceNonUniformity, GrayLevelNon Uniformity,
glszm SmallAreaEmphasis

PSAX ED glem Imec2, wavelet-HLL glrlm
RunLengthNonUniformityNormalized

PSAX ES wavelet-HLH gldm LargeDependenceEmphasis

Gabor_ A2CH_ES firstorder Skewness, rate_glszm SizeZoneNon
Uniformity, PLAX ED glrlm LowGrayLevelRunEmphasis

LoG PLAX ES glem Imc2, PSAX rate firstorder Mean, A4CH ED
firstorder Skewness, firstorder Median, ES _firstorder Kurtosis,

PSAX rate firstorder Mean, Uniformity, glrlm LongRun Emphasis

Harmonization-
driven texture
features (F2),
and %AF2

A2CH_ED firstorder TotalEnergy, glrlm RunLengthNon Uniformity,
glszm_SmallAreaEmphasis, ES glrlm RunEntropy,
RunLengthNonUniformityNormalized,

rate_glrlm GrayLevelNonUniformity, ngtdm_Strength

A4CH_ED firstorder TotalEnergy, Entropy, glem_Correlation,
glrlm RunLengthNonUniformity, RunLengthNonUniformity,

ES glrlm RunLengthNonUniformity, glszm ZoneEntropy,
rate_gldm LargeDependenceEmphasis, glszm ZonePercentage
PLAX ES firstorder TotalEnergy, glszm GrayLevelNonUniformity,
LowGrayLevelZoneEmphasis, ngtdm_Coarseness,

rate_glrlm GrayLevelNonUniformity, ED_firstorder TotalEnergy,
glrlm_RunEntropy, RunLengthNonUniformity
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PSAX ES firstorder TotalEnergy, Entropy, glrlm RunEntropy,
RunLengthNonUniformity, RunLengthNonUniformityNormalized,
rate_gldm GrayLevelNonUniformity

A2CH rate Maximum3Ddiameter
A4CH_ED_ Maximum2DdiameterColumn, Maximum2DdiameterRow,

Myocardial
Sphericity, rate. Maximum3Ddiameter
shape (F3),
PLAX ED_SurfaceVolumeRatio
and %AF3
PLAX ES MeshVolume, SurfaceVolumeRatio, rate_Sphericity,
Maximum2DDiameterSlice
Myocardial

thickness (F4), ED baseL, baseR, midL, ES apexR, ES baselL, PLAX IVSd, LVPWd
and %AF4

Abbreviation: A2CH, apical 2-chamber; A4CH, apical 4-chamber; ED, end-diastole; ES, end-
systole; IVSd, diastolic interventricular septum; LVH, left ventricular hypertrophy; LVPWd,
diastolic left ventricular posterior wall; PLAX, parasternal long-axis, PSAX, parasternal short-axis

at mid-level

Table 3.2 Echocardiography-Based Radiomic Features used in HCM differentiation

Radiomic Features

A2CH _ED glszm LargeAreaHighGrayLevelEmphasis, ES wavelet-

LLH ngtdm Busyness, rate_glrlm GrayLevelNonUniformity,

glszm_LargeAreaHighGrayLevelEmphasis

A4CH_ED wavelet-HHH gldm GrayLevelNonUniformity, wavelet-

LLH gldm LargeDependenceHighGrayLevelEmphasis, ES wavelet-
Conventional ) ) ) ) ) )

HLH glszm SizeZoneNonUniformity, SizeZoneNonUniformity
texture feature

Normalized, wavelet-HLL gldm LargeDependenceEmphasis,
(F1), and %AF1

rate_ wavelet-HLH glszm LowGrayLevelZoneEmphasis, wavelet-

LHL glrlm GrayLevelVariance, wavelet-LLL _firstorder Maximum
PLAX ED wavelet-HLL glrlm RunLengthNonUniformityNormalized,
wavelet-LHH_firstorder Skewness, wavelet-LHL _firstorder Kurtosis,

ES wavelet-HLL glrlm RunLengthNonUniformityNormalized,
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rate_glecm_DifferenceVariance, Id, glrlm GrayLevelNonUniformity
Normalized, wavelet-HHL _firstorder Skewness, wavelet-LHL glecm
MaximumProbability, wavelet-LLL glszm LargeAreaHighGrayLevel
Emphasis, SizeZoneNonUniformityNormalized

PSAX ED wavelet-HHH glszm HighGrayLevelZoneEmphasis,
LowGrayLevelZoneEmphasis, ES wavelet-HHH_gldm Dependence
Variance, glrlm_ShortRunEmphasis, ngtdm_Contrast, wavelet-

HLH gldm DependenceEntropy, rate wavelet-HLH gldm
LargeDependenceEmphasis, wavelet-HLL gldm LowGrayLevelEmphasis
Gabor A2CH_ED firstorder TotalEnergy,

ES gldm GrayLevelNonUniformity, A4CH_ES glcm ClusterShade,
PLAX rate ngtdm Busyness, PSAX rate glszm LargeAreaHighGray
LevelEmphasis, A2CH_rate glrlm ShortRunLowGrayLevelEmphasis,
ngtdm_Contrast, A4CH_rate firstorder RobustMeanAbsoluteDeviation,
PLAX ES glszm GrayLevelNonUniformityNormalized,

PSAX rate firstorder Range, PSAX rate glem Imcl, A4CH rate glem
Imcl, glem JointEntropy, A4CH_ED firstorder Skewness,

ES firstorder Maximum, glem ClusterShade,

PLAX rate ngtdm Busyness

LoG PLAX rate glrlm LowGrayLevelRunEmphasis,

A4CH_ES firstorder Minimum, PLAX ED gldm
SmallDependenceLowGrayLevelEmphasis, A2CH_rate ngtdm
Complexity, PSAX ES glem Correlation, A4CH_ED firstorder
RobustMeanAbsoluteDeviation, A4CH_rate glrlm

HighGrayLevelRunEmphasis, LowGrayLevelRunEmphasis

A2CH_ED firstorder TotalEnergy, ES glszm SmallAreaEmphasis
Harmonization- A4CH _ED firstorder TotalEnergy, Entropy, ES glrlm RunEntropy,

driven texture rate_glrlm GrayLevelNonUniformity, RunLengthNonUniformity
features (F2), Normalized, glszm LowGrayLevelZoneEmphasis
and %AF2 PLAX ED_glrlm RunEntropy, ES glrlm RunEntropy,

rate_glrlm ShortRunEmphasis
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PSAX ED glrlm RunEntropy, RunLengthNonUniformity,
RunLengthNonUniformity, RunEntropy, RunLengthNonUniformity
Normalized, ES glszm HighGrayLevelZoneEmphasis, rate _glem Idn

Myocardial
shape (F3), -
and %AF3

Myocardial
thickness (F4),
and %AF4

ED apexL, midL, ES apexL, apexR, rate_baseL, PLAX IVSs, LVIDs,
LVPWd

Abbreviation: A2CH, apical 2-chamber; A4CH, apical 4-chamber; ED, end-diastole; ES, end-
systole; HCM, hypertrophic cardiomyopathy; IVSs, systolic interventricular septum; LVIDs,
systolic left ventricular internal dimension; LVPWd, diastolic left ventricular posterior wall;

PLAX, parasternal long-axis, PSAX, parasternal short-axis at mid-level

Table 3.3 Echocardiography-Based Radiomic Features used in CA differentiation

Radiomic Features

A2CH _ED wavelet-HLH glrlm ShortRunHighGrayLevelEmphasis,
ES wavelet-HHH glcm SumSquares, wavelet-
LHH glem Autocorrelation, glszm GrayLevelVariance, wavelet-
LLH glecm Autocorrelation,
rate_glrlm LongRunHighGrayLevelEmphasis, wavelet-
Conventional LLH glrlm RunLengthNonUniformity
texture feature A4CH_ED wavelet-HHH_firstorder Uniformity, glem SumSquares,
(F1), and %AF1  gldm GrayLevelVariance, wavelet-LHL _firstorder Mean, glcm
JointAverage, ES wavelet-HLH glrlm LongRunHighGrayLevel
Emphasis, wavelet-LHH glcm JointAverage, wavelet-
LHL firstorder Mean, glem Autocorrelation, JointAverage,
rate_firstorder Kurtosis, glrlm RunEntropy
A4CH_rate_wavelet-LLL firstorder Kurtosis
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Gabor A2CH_ES glszm LowGrayLevelZoneEmphasis,
PSAX ED gldm SmallDependenceLowGrayLevelEmphasis,

glszm SmallArealLowGray LevelEmphasis,

A2CH_ED glszm_SizeZoneNonUniformity, A4CH_ES

glrlm RunVariance, rate firstorder InterquartileRange, PLAX ES gldm
DependenceVariance, PSAX ES glrlm LowGrayLevelRunEmphasis,
A2CH_ED glem JointEnergy, A4CH_ES glszm SmallAreaLowGray
LevelEmphasis, rate_glem JointEntropy, PLAX rate firstorder Skewness,
PSAX ES gldm SmallDependenceLowGrayLevelEmphasis
LoG_A2CH_ES glrlm LongRunHighGrayLevelEmphasis,

A4CH_ES glem JointAverage, rate glszm LowGrayLevelZoneEmphasis,
PLAX rate firstorder InterquartileRange, Uniformity, A4CH ES glecm
Autocorrelation, ClusterShade, JointAverage, gldm HighGrayLevel
Emphasis, PLAX rate firstorder 90Percentile, A4CH_ED firstorder
Median, ES glem Autocorrelation,

PSAX ED glszm SmallAreaHighGray LevelEmphasis,

A4CH_ED firstorder Median, gldm LargeDependence
HighGrayLevelEmphasis, ES glem Autocorrelation, glem JointAverage,
gldm HighGrayLevelEmphasis,
LargeDependenceHighGrayLevelEmphasis

PLAX ED glrlm LongRunEmphasis, wavelet-

HLH_glszm GrayLevelNon Uniformity, wavelet-

HLL glrlm RunLengthNonUniformity, ES wavelet-

LHH glem Autocorrelation, wavelet-LHL glem Autocorrelation

PSAX ES wavelet-LHL glcm JointAverage, rate_wavelet-
HHH_firstorder Entropy

Harmonization-
driven texture
features (F2),
and %AF2

A2CH_ED firstorder TotalEnergy, Entropy, Mean
A4CH_ED firstorder TotalEnergy, Entropy, Mean, ES glem JointEnergy,
rate_firstorder Kurtosis, MeanAbsoluteDeviation, RobustMeanAbsolute

Deviation, RootMeanSquared, glem_JointEnergy,
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glrlm_GrayLevelNonUniformity, glszm GrayLevelNonUniformity,
ngtdm_Coarseness

PLAX rate gldm LargeDependenceHighGrayLevelEmphasis

Myocardial
A4CH_rateMajorAxisLength
shape (F3),
PLAX ED_ MajorAxisLength, rate Sphericity
and %AF3
Myocardial

thickness (F4), ED apexR, ES apexR, rate_baseL, PLAX LVIDd, LVPWd
and %AF4

Abbreviation: A2CH, apical 2-chamber; A4CH, apical 4-chamber; CA, cardiac amyloidosis; ED,
end-diastole; ES, end-systole; LVIDd, diastolic left ventricular internal dimension LVPWd,
diastolic left ventricular posterior wall; PLAX, parasternal long-axis, PSAX, parasternal short-axis

at mid-level

Table 3.4 Echocardiography-Based Radiomic Features used in HHD differentiation

Radiomic Features

Conventional texture Gabor A4CH_ED glem Idn
feature (F1), and %AF1 LoG_A2CH rate glrlm GrayLevelNonUniformity
Harmonization-driven

texture features (F2), -

and %AF2
Myocardial shape A4CH_ED Sphericity
(F3), and %AF3 PLAX ES MajorAxisLength
Myocardial thickness (F4),
PLAX LVIDd, LVIDs
and %AF4 -

Abbreviation: A2CH, apical 2-chamber; A4CH, apical 4-chamber; ED, end-diastole; ES, end-
systole; HHD, hypertensive heart disease; LVIDd, diastolic left ventricular internal dimension

LVIDs, systolic left ventricular internal dimension; PLAX, parasternal long-axis
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2.4.2. LVH Classification and Disease Discrimination Logic

Upon model detection of LVH from given subjects, our study imprints dedicated models to
further classify and differentiate among three etiological conditions: HCM, CA, or HHD (Fig.
5A). Because the three classification models were not trained together, we could not derive
the relative probabilities for HCM, CA, and HHD. Therefore, we applied the following logic
to determine the classification results based on the results of the three models. The output
probability values are binarized using the AUC threshold calculated by the Youden index.?
When LVH was classified, there were eight possible scenarios because three binary
classification models were applied (Table 4). If an LVH subject exhibits one of these three
conditions exclusively, that condition is definitively classified as the etiology of LVH. For
LVH subjects exhibiting two or more conditions, the model prioritizes the diagnosis
associated with the highest probability, thereby assigning the most likely etiological
classification. Furthermore, if the model could not select any of the three etiologies, it was

categorized as "Others.”

When LVH is detected without a positive indication for any of the specified three etiologies,
the subject is categorized into an "Others" group. While it might seem natural to always make
one of the three choices given that three diseases were used in modeling, echocardiography
images alone may not always provide a precise diagnosis because of the nature of the disease.
However, disease labeling is based on a combination of various types of clinical information,
which may be difficult to discern from images alone. We believe that this ambiguity can be
classified as "Others," demonstrating the scalability of our classification model. This
designation suggests the presence of an alternative or unspecified LVH etiology not covered

by the primary classifications of HCM, CA, or HHD.
2.4.3. Cardiac Cycle-Based Probability Mapping to Patient-Level Probability
We extracted features from the PLAX, PSAX, A4Ch, and A2Ch views. The data comprised

videos of either 1 or 2 cardiac cycles. Our training data incorporated features synchronized

across cardiac cycles from the four views. However, classification performance evaluation
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must be performed at the patient level. Therefore, the probability values extracted per cardiac
cycle must be converted into patient-level probabilities. Recent research has proposed the use
of radiomics to build lesion-based models, suggesting transforming them into patient-level
scores using an area under the curve (AUC) threshold.>* We applied this technique to map
the probabilities of diseases generated at the cardiac cycle level to the patient level.

The function transforms the probabilities per cycle within a patient by using the AUC
threshold to determine the relative probability. It divides the probabilities into positive and
negative based on a comparison of their magnitudes. Subsequently, the average is computed
by adding an optimal threshold. This process maps patient-level probability from cycle-level

probability.
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Table 4. LVH disease decision-mapping logic

LVH HCM CA HHD Final Decision Mapping Logic

0 Normal

1 1 0 0 HCM

1 0 1 0 CA

1 0 0 1 HHD

1 1 0 1 Maximal probability between HCM vs. HHD

1 1 1 0 Maximal probability between HCM vs. CA

1 0 1 1 Maximal probability between CA vs. HHD

1 1 1 1 Maximal probability among HCM vs. CA vs. HHD
1 0 0 0 Others

Abbreviation: CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HHD, hypertensive

heart disease; LVH, left ventricular hypertrophy
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2.5. Statistical Analysis

Categorical variables are presented as absolute counts and percentages, and continuous variables
are expressed as means + standard deviation or medians [interquartile range], as appropriate.
Differences between categorical variables were analyzed using the chi-squared test or Fisher's
exact test, as appropriate, while differences between continuous variables were assessed using
the Student's t-test. For multiple comparisons, data were analyzed using one-way analysis of
variance (ANOVA) or the Kruskal-Wallis method. Bonferroni correction was applied to reduce
the possibility of Type I errors in multiple comparisons. The diagnostic performance was
evaluated with the area under curve (AUC) sensitivity, specificity, and F1-score metrics. We
employed Shapley Additive Explanations (SHAP) to gain insights into the predictions of
machine learning (ML) models.?! SHAP, a model-agnostic technique rooted in cooperative game
theory that explains the influence of individual features and their values on the model's output.
SHAP values were calculated by comparing the model predictions with and without the presence
of features. In binary classification problems, a higher SHAP value indicates a higher probability
of'a positive class, whereas a lower SHAP value indicates a higher probability of a negative class.
The importance of a feature was calculated by summing the absolute SHAP values of the features
across all samples. For visualization with SHAP value, we selected one texture feature and
extracted its feature map using Pyradiomics and extrated the SHAP values for each feature across
all the validation data and normalized these values to calculate the relative SHAP values. The
SHAP values of the selected features in each pixel, indicated by the feature map, were visualized
on a color scale from green to orange (Fig. 6). A two-tailed p-value <0.05 was considered
statistically significant. All analyses were performed using SAS version 9.4 (SAS Institute Inc.,

Cary, NC, USA) and R 3.3.0 (R Development Core Team, 2016).
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Harmonized Gray Level Run Length Matrix - Run Entropy

Low == High
Relative SHAP values

Fig. 7. Representative Cases of Feature Visuallization of Relative SHAP Values. Harmonized
Gray Level Run Length Matrix—Run Entropy is a major feature in differentiating HCM etiology.
The case presented on the left is a non-HCM case. The middle and right images show HCM.
Because the model differentiates etiology by using multiple features in combination, the degree of
the SHAP value of the feature may vary depending on the data.

Abbreviation: HCM, hypertrophic cardiomyopathy; SHAP, Shapley Additive Explanations.
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3. RESULTS

3.1. Study Population

The developmental dataset comprised 867 patients (mean age, 52.0+£17.9 years; 60.3% male). In
this group, LVH was observed in 67.6% of the training set and 63.2% of the internal validation
set, with no significant difference in the prevalence of LVH (P=0.323) or its etiologies (P=0.572)
(Table 5). Age, proportion of men, body mass index also similar between both groups. The
external validation set consisted of 619 patients (mean age, 51.3+14.6; 48.6% male) and showed
a significantly lower proportion of men and LVH than the internal validation dataset (48.6% vs.
60.7%; P=0.008, 33.1% vs. 63.2%; P <0.001, respectively). In this cohort, HCM accounted for
fewer cases (22.4% vs. 51.5%; P <0.001), while HHD was more common (45.4% vs. 20.4%; P
<0.001). Comprehensive demographics and echocardiographic characteristics are provided in

Table 6 and the subtype of HCM and CA are in Table 7.

3.2. LVH Detection

From the 19,839 features extracted for ML classification, 70 key features were utilized to detect
LVH, achieving an AUC of 1.00 (95% confidence interval [CI], 1.00-1.00) in the internal
validation (Fig. 7A). Similarly, the algorithm maintained an AUC of 1.00 (95% CI, 0.99-1.00)
in the external validation in identifying LVH (Fig. 7B).

In the internal and external validation sets, patients identified as having LVH by the model
showed smaller LV dimensions, thicker LV walls, and worsened LV diastolic function compared
to normal subjects (Table 8). Notably, some normal subjects were misclassified as "Others" (1
in the internal and 6 in the external validation sets), having higher LV mass index (89.0 [82.8—
102.8] vs. 74.1 [65.5-84.6] g/m2, P=0.002) and lower ¢' velocity (7.6 [6.9-9.0] vs. 10.4 [9.0—
12.0] em/s, P=0.006) than correctly classified as normal (Table 9).
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Table 5. Baseline Characteristics of the Study Cohorts

Developmental Set

External
Internal e
Training Validation P-value*  P-value®
Validation
(n=704) (n=163) (n=619)
Age, years 52.1+18.0 512+17.3 51.3+£14.6 0.543 0.939
Men, n (%) 424 (60.2%) 99 (60.7%) 301 (48.6%) 0.975 0.008
BMI, kg/m2 23.8+4.9 23.5+3.8 239+34 0.479 0.153
LVH, n (%) 476 (67.6%) 103 (63.2%) 205 (33.1%) 0.323 <0.001
HCM, n (%) 223 (46.8%) 53 (51.5%) 46 (22.4%)
CA, n (%) 139 (29.2%) 29 (28.2%) 66 (32.2%) 0.572 <0.001

HHD, n (%) 114 (23.9%)

21 (20.4%)

93 (45.4%)

Values are presented as mean + SD or number (percentage).

2 P-values were obtained using Student' s t-test or chi-squared analysis, comparing all patients

across the training and internal validation sets.

b P-values were obtained using Student' s t-test or chi-squared analysis, comparing internal and

external validation sets.

Abbreviation: BMI, body mass index; CA, cardiac amyloidosis; HCM, hypertrophic
cardiomyopathy; HHD, hypertensive heart disease; LVH, left ventricular hypertrophy
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Table 6.1 Detailed demographics and echocardiographic characteristics of the Study Cohorts

Training Internal Validation
Total Normal LVH Total Normal LVH
m=704) (m=228) (m=476) (m=163) (@m=60) (n=103)

Clinical Parameters
Age, years 521180 354+125 602+143 512+173 369+123 595+14.0
Men, n (%) 424 (60.2%) 101 (44.3%) 323 (67.9%) 99 (60.7%) 29 (48.3%) 70 (68.0%)

Height, cm 165.1£10.0 166.4+83 1645+10.6 165.6+88 1664+89 165.0%8.8
Weight, kg 651+135 615109 669+142 649+149 61.1+108 67.1+154
BMI, kg/m? 23.8+49 221+28 247+54 235+38 219+26 244+41
BSA, m? 1.7+£02  1.7+02 1.7£02 17+£02 1.7+£02 17402

SBP, mmHg 121.9+19.8 116.8 £ 11.1 1243 +22.3 120.3+17.7 116.9+12.0 122.3 +20.1
DBP, mmHg 744 +£13.1 72.1+96 755+144 739+124 725+£99 747+13.6
Hypertension 264 (37.5%) 0(0.0%) 264 (55.5%) 50 (30.7%) 0 (0.0%) 50 (48.5%)
Diabetes 91 (12.9%) 0(0.0%) 91(19.1%) 16(9.8%)  0(0.0%) 16 (15.5%)
Atrial

55(7.8%)  0(0.0%) 55(11.6%) 8(4.9%)  0(0.0%) 8 (10.4%)
fibrillation
Coronary artery
i 76 (10.8%) 0(0.0%) 76 (16.0%) 10 (6.1%)  0(0.0%) 10 (9.7%)
isease

Chronic kidney
62(8.8%) 0(0.0%) 62(17.0%) 11(6.7%)  0(0.0%) 11 (10.6%)

disease

LVH Etiology
HCM 223 (31.7%) 53 (32.5%)
CA 139 (19.7%) 29 (17.8%)
HHD 114 (16.2%) 21 (12.9%)

Echocardiographic parameter

LVIDd, mm 421+150 47.7+38 394+174 425+148 479+36 394+1738

LVIDs, mm 282+104 312+34 267+122 281+107 31.1+£29 264+13.0
IVS, mm 11.0£55 8.0+1.1 125+6.1 10.7+39 81+12 123+59
LVPW, mm 9.4+38 8.1+1.0 10.0+4.6 9.0+3.7 8.1+1.2 9.6+45

LVEF, % 62.8+10.0 66.6+49 609+113 639+100 673+45 619+11.7
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LVMI, g/m2 1259+51.2 76.1+14.8 149.9+44.8 119.0+43.0 77.2+14.9 143.6 +34.1
RWT 0.5+0.1 0.3+0.0 0.5+0.1 0.4+0.1 0.3+0.1 0.5+0.1
LA volume

index, mL/m? 39.6+18.1 254+53 464+18.1 372+16.1 252+48 444+16.2
E velocity, cm/s 76.6£21.6 79.4+14.5 7484250 7224208 783+156 67.4+23.1
A velocity, cm/s 583 +21.2 487+10.5 653+24.1 540+17.8 484+10.1 58.6+21.2
e' velocity,cm/s  7.2+38 114+£20 4.6+1.8 75+38 113+2.0 45+14
E/e' 143+93 71+15 178+95 13.0+81 7.0+£13 165+84

RVSP, mmHg 284+10.7 225+38 31.8+11.7 27.6+9.3 229+33 30.7+10.7

Table 6.2 Detailed demographics and echocardiographic characteristics of the Study Cohorts

External Validation

Total Normal LVH r .
value
(n=619) (n=414) (n=205)
Clinical Parameters
Age, years 51.3+14.6 474+12.0 59.1+16.3 0.609
Men, n (%) 301 (48.6%) 184 (44.4%)  117(57.1%)  <0.001
Height, cm 165.0£9.3 165.2 £8.7 164.7 +£10.5 0.829
Weight, kg 65.6+12.8 64.1 £10.7 68.7+15.8 0.735
BMI, kg/m? 23.9+3.4 23.4+2.6 25.1+4.4 0.491
BSA, m? 1.7+02 1.7+02 1.8+0.2 0.808
SBP, mmHg 127.6 £21.5 122.3+13.5 138.9+29.6 <0.001
DBP, mmHg 76.7 +14.9 73.8 £8.6 83.1+22.0 0.004
Hypertension 113 (18.3%) 0 (0.0%) 113 (55.1%) <0.001
Diabetes 39 (6.3%) 0 (0.0%) 39(19.0%)  <0.001
Atrial fibrillation 17 (2.7%) 0 (0.0%) 17 (8.3%) 0.001
Coronary artery disease 7 (1.1%) 0 (0.0%) 7 (3.4%) <0.001
Chronic kidney disease 12 (1.9%) 0 (0.0%) 12 (5.9%) <0.001
Etiology of LVH
HCM 46 (7.4%) <0.001
CA 66 (10.7%)
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HHD

93 (15.0%)

Echocardiographic parameter
LVIDd, mm

LVIDs, mm

IVS, mm

LVPW, mm

LVEF, %

LVMI, g/m?

RWT

LA volume index, mL/m?
E velocity, cm/s

A velocity, cm/s

e' velocity, cm/s

E/e'

RVSP, mmHg

46.0£5.0
30.0+5.1
10.7+£3.3
9.9+28
61.9+6.9
100.0 £43.0
04+0.1
3551154
76.5+19.6
62.3+19.0
8.6+3.3
11.0+8.2
269 +8.1

46.0 £3.8
29.5+£3.7
8.6+1.2
84+1.1
63.6+4.0
75.0+13.3
0.4+0.0
28.6+£5.3
75.9+16.0
58.1+13.6
10.3+£2.3
7.6+1.8
243+43

459+6.9
309+£7.0
15.1+£3.7
13.0+2.6
58.3+£9.6
150.8 +37.4
0.6 0.1
49.6 £19.1
77.7+£25.7
71.9+£252
50+19
182+11.2
326 +11.0

<0.001
<0.001
0.529
0.004
0.021
<0.001
0.002
<0.001
0.068
<0.001
<0.001
<0.001
0.032

Values are presented as mean + SD or numbers (percentages).

* P-values were obtained through analysis of variance (ANOVA) or chi-square analysis,

comparing all patients across the training, validation, and external validation cohorts.

Abbreviations: BMI, body mass index; BSA, body surface area; CA, cardiac amyloidosis; DBP,
diastolic blood pressure; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease;
IVS, interventricular septum; LA, left atrial; LVEF, left ventricular ejection fraction; LVH, left
ventricular hypertrophy; LVIDd, diastolic left ventricular internal dimension; LVIDs, systolic left
ventricular internal dimension; LVMI, left ventricular mass index; LVPW, left ventricular posterior

wall; RVSP, right ventricular systolic pressure; RWT, relative wall thickness; SBP, systolic blood

pressure.
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Table 7. Subtype of HCM and CA of the study cohort

Developmental Set

External P- P-
Internal b
Total Training Test value* value
Validation
HCM (n=276) (n=223) (n=53) (n=46)
Apical, n (%) 35 (12.7%) 25 (12.7%) 10 (18.9%) 3 (6.5%)
Septal, n (% 145 (52.5% 117 (52.5% 28 (52.8% 10 (21.7%
ptal, n (%) (52.5%) (52.5%) (52.8%) 10QLT%) )56 <0001
Mixed or
96 (34.8%) 81 (36.3%) 15(28.3%) 33 (71.7%)
diffuse, n (%)
CA (n=168) (n=139) (n=29) (n=66)
AL, n (%) 142 (84.5%) 115(82.7%) 27(93.1%) 59 (89.4%)
ATTR,n (%) 17 (10.1%) 16 (11.5%) 1 (3.4%) 7 (10.6%) 0353  0.159
AA, n (%) 9 (5.4%) 8 (5.8%) 1 (3.4%) -

Values are presented as number (percentage).

2 P-values were obtained using chi-squared analysis, comparing patients across the training and

internal validation sets.

b P-values were obtained using chi-squared analysis, comparing developmental and external test

sets.

Abbreviation: AA, amyloid A; AL, amyloid light-chain; ATTR, amyloid transthyretin; CA,

cardiac amyloidosis; HCM, hypertrophic cardiomyopathy
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Fig. 8. Performance of the ML Classification Model in Differentiating the Etiology of LVH.

The AUC illustrates the diagnostic performance of the ML classification model for the detection of
LVH and for the differentiation of HCM, CA, and HHD from other causes of LVH in both (A) the

internal validation cohort and (B) the external validation cohort.

Abbreviations: AUC, area under the curve; CA, cardiac amyloidosis; CI, confidence interval;

HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; LVH, left ventricular

hypertrophy
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Table 8.1 Group-Based Patient Baseline Characteristics as Classified by the Integrated ML
Model Across the Validation Sets

Normal LVH

(n = 469) (n=313) P-value
Clinical Parameters
Age, years 46.1 £ 12.6 59.1+15.5 <0.001
Men, n (%) 208 (44.3%) 1922(61.3%) <0.001
Height, cm 165.3 + 8.8 164.9+9.9 0.476
Weight, kg 63.7+10.8 68.1+15.5 <0.001
BMI, kg/m? 232+2.7 249+43 <0.001
BSA, m? 1.7£0.2 1.8+£0.2 0.001
SBP, mmHg 121.6+13.4 133.0+£27.7 <0.001
DBP, mmHg 73.6 £ 8.7 80.2+19.8 <0.001
Hypertension 0 (0.0%) 163 (52.1%) <0.001
Diabetes 1 (0.2%) 54 (17.3%) <0.001
Atrial fibrillation 0 (0.0%) 25 (8.0%) <0.001
Coronary artery disease 0 (0.0%) 17 (5.4%) <0.001
Chronic kidney disease 0 (0.0%) 23 (7.3%) <0.001
Echocardiographic Parameters
LVIDd, mm 46.2+43 43.9+11.7 0.001
LVIDs, mm 29.7+39 294+94 0.625
IVS, mm 85+1.2 14.1+4.7 <0.001
LVPW, mm 83x1.1 11.9+3.7 <0.001
LVEF, % 64.0+4.3 59.7+104 <0.001
LVMI, g/m? 754 £ 14.5 147.0 +37.1 <0.001
RWT 0.4+0.1 0.5+0.1 <0.001
LA volume index, mL/m? 28.2+5.6 47.4+18.4 <0.001
E velocity, cm/s 76.3 £16.0 74.7+£25.2 0.349
A velocity, cm/s 56.8+13.7 67.9+24.6 <0.001
e' velocity, cm/s 10.5+2.3 49+1.9 <0.001
E/e' 7.5+1.7 17.4+104 <0.001
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RVSP, mmHg 24.1+4.1 31.7+10.9 <0.001

Table 8.2 Group-Based Patient Baseline Characteristics as Classified by the Integrated ML
Model Across the Validation Sets

HCM CA HHD P-

(n =94) (n=87) (n=97) value”
Clinical Parameters
Age, years 58.6 + 14.0¢ 67.6+ 13.3¢ 52.2+15.2¢ <0.001
Men, n (%) 47 (50.0%)" 47 (54.0%)" 76 (78.4%)* <0.001
Height, cm 164.4£10.7 164.4+10.7" 167.9 8.1} <0.001
Weight, kg 69.3 +13.07 59.5+13.1* 742 +15.8" <0.001
BMI, kg/m? 25.6 + 4.0 22.7+3.2% 26.2 £ 4.6 <0.001
BSA, m? 1.8 +£0.2¢ 1.6 +0.2¢ 1.9 +£0.2¢ <0.001
SBP, mmHg 127.6 £22.3% 118.5 +22.9¢ 149.6 £26.6!  <0.001
DBP, mmHg 74.7 £13.97 72.7+15.1F 90.0 + 13.9¢ <0.001
Hypertension 31 (33.0%)" 33 (37.9%)1 77 (79.4%)* <0.001
Diabetes 13 (13.8%) 13 (14.9%) 18 (18.6%) 0.878
Atrial fibrillation 6 (6.4%) 13 (14.9%)" 2 (2.1%)" 0.003
Coronary artery disease 5(5.3%) 4 (4.6%) 5(5.2%) 0.918
Chronic kidney disease 3 (3.2%) 11 (12.6%) 7 (7.2%) 0.072
Echocardiographic Parameters
LVIDd, mm 40.7 + 1411 42.2+997 48.4+10.3% <0.001
LVIDs, mm 24.4+89% 30.7 £9.2F 33.4+8.9f <0.001
IVS, mm 15.8+6.5¢ 13.6 £ 3.41 13.2+34F <0.001
LVPW, mm 10.1 £ 4.0t 13.1 £3.3F 12.4+3.0° <0.001
LVEF, % 66.4 + 7.6 54.1+11.0f 57.2+£9.5F <0.001
LVMI, g/m? 153.4+34.4 1452 +423 149.4+33.9 0.331
RWT 0.5+0.17 0.6 +0.2¢ 0.5+0.17 <0.001
LA volume index, mL/m? 49.4 +19.7 53.6 £ 17.07 42.6 +£16.9 <0.001
E velocity, cm/s 65.3+19.8F 89.5 +26.3% 71.0 = 24.0F <0.001
A velocity, cm/s 65.0+22.1F 60.3 +£28.6" 75.2 +20.8* <0.001
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e' velocity, cm/s 4.5+ 1.47 4.0+ 1.5 58+1.9% <0.001
E/e' 15.6 +7.8% 249 +12.4% 12.9 + 4.8} <0.001
RVSP, mmHg 29.6 + 8.47 37.6+12.4% 28.8 £ 9.6 <0.001

Values are presented as mean + SD or numbers (percentages).

* P-values were obtained through analysis of variance (ANOVA) or chi-square analysis, comparing

multiple groups.

fStatistically different from the other two groups. *Statistically different from both other groups after

Bonferroni correction.
Abbreviations: BMI, body mass index; BSA, body surface area; CA, cardiac amyloidosis; DBP,
diastolic blood pressure; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease;
IVS, interventricular septum; LA, left atrial; LVEF, left ventricular ejection fraction; LVH, left
ventricular hypertrophy; LVIDd, diastolic left ventricular internal dimension; LVIDs, systolic left
ventricular internal dimension; LVMI, left ventricular mass index; LVPW, left ventricular
posterior wall; ML, machine-learning; RVSP, right ventricular systolic pressure; RWT, relative

wall thickness; SBP, systolic blood pressure.
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Table 9. Comparison Between Correctly Classified Subjects to Those Misclassified as

"Others" in the Normal Group

Normal Others
P-value

(n=467) m=7)
Clinical Parameters
Age, years 47.0 [37.0 - 55.0] 52.1[49.2 — 60.3] 0.128
Men, n (%) 207 (44.3%) 6 (85.7%) 0.071
Height, cm 164.0 [159.1 — 172.0] 168.0 [166.0 — 171.8] 0.250
Weight, kg 63.0 [56.0 —71.0] 70.5[67.0 —77.5] 0.050
BMI, kg/m? 23.2[21.2-25.2] 24.8 [23.8 —25.4] 0.120
BSA, m? 1.7[1.6 - 1.8] 1.8[1.8-2.0] 0.061
SBP, mmHg 121.0 [112.0 — 129.0] 137.0 [111.0 — 138.0] 0.321
DBP, mmHg 74.0 [68.0 —79.0] 80.0 [73.5 — 86.0] 0.134
Hypertension 0 (0.0%) 0 (0.0%)
Diabetes 0 (0.0%) 0 (0.0%)
Atrial fibrillation 0 (0.0%) 0 (0.0%)
Coronary artery disease 0 (0.0%) 0 (0.0%)
Chronic kidney disease 0 (0.0%) 0 (0.0%)
Echocardiographic Parameter
LVIDd, mm 46.0 [44.0 — 49.0] 49.0 [46.0 — 51.0] 0.206
LVIDs, mm 30.0 [27.0 —32.0] 28.0 [26.5-31.0] 0.390
IVS, mm 8.0 [8.0-19.0] 10.0 [9.0 - 11.0] 0.002
LVPW, mm 8.0 [8.0-19.0] 10.0 [9.0 — 10.0] 0.001
LVEF, % 64.0 [61.0 — 66.9] 65.0 [60.4 —69.1] 0.768
LVMI, g/m? 74.1[65.5 — 84.6] 89.0[82.8 —102.8] 0.002
RWT 0.410.3-0.4] 0.4[0.4-0.4] 0.022
LA volume index, mL/m? 28.1[24.3-31.7] 31.6 [27.0 —33.0] 0.216
E velocity, cm/s 75.0 [65.0 — 86.0] 72.0 [61.0 —75.0] 0.298
A velocity, cm/s 56.0 [46.0 — 66.0] 64.0 [57.5 - 68.0] 0.113
e' velocity, cm/s 10.4 [9.0 — 12.0] 7.6 [6.9-9.0] 0.006
E/e' 7.2[6.3 —8.4] 8.4[7.0-10.4] 0.159
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RVSP, mmHg 24.0[21.0 - 26.2] 22.7[21.0 - 24.4] 0.377

Values are presented as mean + SD, medians [interquartile ranges], or numbers (percentages).
Abbreviations: BMI, body mass index; BSA, body surface area; CA, cardiac amyloidosis; DBP,
diastolic blood pressure; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease;
IVS, interventricular septum; LA, left atrial; LVEF, left ventricular ejection fraction; LVIDd,
diastolic left ventricular internal dimension; LVIDs, systolic left ventricular internal dimension;
LVMLI, left ventricular mass index; LVPW, left ventricular posterior wall; RVSP, right ventricular

systolic pressure; RWT, relative wall thickness; SBP, systolic blood pressure.
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3.3. LVH Etiology Differentiation

To differentiate LVH etiology, our ML model utilized selected features for each condition: 82
for HCM, 83 for CA, and six for HHD. In the internal validation set, the model predicted HCM
with an AUC 0f 0.97 (95% CI, 0.94-0.99). For CA and HHD, AUCs were 0.95 (0.90-0.99) and
0.86 (0.78-0.93), respectively (Table 10). ROC curves are provided in Fig. 8A. The external
validation set showed consistent performance with comparable AUCs of 0.96 (0.92-0.98) for
HCM, 0.89 (0.83-0.93) for CA, and 0.86 (0.81-0.91) for HHD (Fig. 8B). The overall accuracy
of the multi-class classification reached 89.0% in the internal validation set and 92.4% in the
external validation set (Fig. 6B and C).

When comparing the clinical and echocardiographic parameters across groups classified by our
model as HCM, CA, and HHD, no significant differences in LV mass index were observed
(Table 8). Subjects predicted as HCM had smaller LV dimensions and the highest LV ejection
fraction (LVEF), whereas those predicted as CA displayed the lowest LVEF and the worst LV
diastolic function. Altogether, 28 LVH patients were misclassified into "Others" across both
validation sets (four and two patients with HCM, three and six with CA, and three and 10 with
HHD in the internal and external validation sets, respectively). Patients with misclassified HCM
exhibited higher diastolic blood pressure and lower LVEF compared to those correctly classified
(Table 11). For CA, misclassified patients more often had diabetes mellitus and higher LVEF
(Table 12). In the case of HHD, misclassified patients showed smaller LV cavities and higher
LVEF (Table 13).
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Table 10. Diagnostic Performance of Echocardiographic Feature Model for Distinguishing

LVH Etiology in Internal and External Validation Datasets

Sensitivity Specificity F1 PPV NPV
Internal validation
LVH 0.98 0.99 0.98 0.98 0.99
HCM 0.87 1.00 0.93 1.00 0.94
CA 0.83 0.99 0.87 0.92 0.96
HHD 0.76 0.97 0.78 0.80 0.97
External validation
LVH 0.98 1.00 0.99 1.00 0.97
HCM 0.89 0.99 0.87 0.85 0.99
CA 0.80 0.97 0.84 0.87 0.98
HHD 0.75 0.99 0.82 0.91 0.96

Abbreviation: CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HHD, hypertensive
heart disease; LVH, left ventricular hypertrophy; NPV, negative predictive value; PPV, positive

predictive value.
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Table 11. Comparison Between Correctly Classified Subjects to Those Misclassified as

"Others" in the HCM Group

Classified Correctly Others
P-value
n=87) n=6)

Clinical Parameters
Age, years 60.2 [49.0 — 68.0] 53.8 [45.3 -57.0] 0.274
Men, n (%) 40 (46.0%) 3 (50.0%) >0.999
Height, cm 165.0 [158.0 — 172.0] 167.5[163.0 - 171.0] 0.439
Weight, kg 69.0 [60.5 —77.5] 70.8 [61.0 — 76.0] 0.839
BMI, kg/m? 24.9[23.0 - 27.5] 24.5[22.7-27.4] 0.667
BSA, m? 1.8[1.6-1.9] 1.8[1.7-1.9] 0.845
SBP, mmHg 126.0 [113.0 — 138.0] 134.0 [132.0 — 148.0] 0.222
DBP, mmHg 74.0 [66.0 — 81.5] 86.0[85.0 —91.0] 0.034
Hypertension 29 (33.3%) 5 (83.3%) 0.106
Diabetes 12 (13.8%) 0 (0.0%) 0.618
Atrial fibrillation 6 (6.9%) 1 (16.7%) >0.999
Coronary artery disease 5(5.7%) 0 (0.0%) >0.999
Chronic kidney disease 3 (3.4%) 0 (0.0%) >0.999
Echocardiographic parameter
LVIDd, mm 45.0 [40.0 — 48.0] 49.0 [37.0 - 50.0] 0.462
LVIDs, mm 26.0 [22.0 —29.1] 30.5[25.0 —35.0] 0.199
IVS, mm 16.0 [14.0 —20.0] 15.5[9.0 - 20.0] 0.451
LVPW, mm 10.0[9.0 — 12.0] 8.5[6.0-11.0] 0.302
LVEF, % 67.6 [63.8 —70.8] 61.2[61.0 —63.0] 0.013
LVMI, g/m? 156.1[127.4—-171.6] 126.8 [119.8 — 150.5] 0.076
RWT 0.510.4-0.5] 0.4[0.3-0.4] 0.171
LA volume index, mL/m? 46.0 [36.7 - 57.7] 40.1 [31.2-46.1] 0.252
E velocity, cm/s 60.5 [50.1 —77.0] 40.1 [31.2-46.1] 0.954
A velocity, cm/s 57.0 [48.0 — 78.7] 57.9 [44.0 — 70.0] 0.418
e' velocity, cm/s 4.4[3.5-53] 4943 -5.1] 0.293

4 2



E/e’ 13.8[10.4 — 19.8] 14.4[9.0 — 15.0] 0.579
RVSP, mmHg 29.4[23.9 - 34.0] 27.0 [25.6 - 28.0] 0.921

Values are presented as medians [interquartile ranges] or numbers (percentages).

Abbreviations: BMI, body mass index; BSA, body surface area; CA, cardiac amyloidosis; DBP,
diastolic blood pressure; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease;
IVS, interventricular septum; LA, left atrial; LVEF, left ventricular ejection fraction; LVIDd,
diastolic left ventricular internal dimension; LVIDs, systolic left ventricular internal dimension;
LVMI, left ventricular mass index; LVPW, left ventricular posterior wall; RVSP, right ventricular

systolic pressure; RWT, relative wall thickness; SBP, systolic blood pressure.
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Table 12. Comparison Between Correctly Classified Subjects to Those Misclassified as
"Others" in the CA Group

CA
Classified Correctly Others
P-value
m=77) n=9)

Clinical Parameters

Age, years 70.2 [65.0 —77.9] 76.0 [57.0 — 81.0] 0.489
Men, n (%) 39 (50.6%) 6 (66.7%) 0.528
Height, cm 162.0 [152.0 — 167.3] 157.0 [154.4 - 162.9] 0.621
Weight, kg 58.0[49.0 — 65.2] 56.0 [50.2 — 72.0] 0.860
BMI, kg/m? 22.0[20.3 -24.7] 23.8 [22.3 —25.6] 0.323
BSA, m? 1.6 [1.5-1.7] 1.5[1.4-1.8] 0.983
SBP, mmHg 113.0 [100.5 - 127.0] 115.0 [11.0-117.0] 0.921
DBP, mmHg 69.0 [63.5—-75.5] 70.0 [61.0 —71.0] 0.442
Hypertension 24 (31.2%) 4 (44.4%) 0.625
Diabetes 13 (16.9%) 5 (55.6%) 0.019
Atrial fibrillation 12 (15.6%) 2 (22.2%) 0.950
Coronary artery disease 4 (5.2%) 2 (22.2%) 0.215
Chronic kidney disease 10 (13.0%) 2 (22.2%) 0.781
Echocardiographic parameter

LVIDd, mm 42.0[39.0 —45.0] 39.0 [36.0 —43.0] 0.210
LVIDs, mm 29.0[26.0 — 34.0] 28.0[21.0 —30.0] 0.167
IVS, mm 14.0[12.0 - 16.0] 15.0 [13.0 - 16.0] 0.239
LVPW, mm 12.2[11.0-15.2] 15.0 [12.0 - 16.0] 0.279
LVEF, % 56.8 [49.8 —61.1] 60.2 [58.3 — 64.0] 0.046
LVMI, g/m? 134.3[106.9 — 161.0] 147.2 [117.0 - 167.4] 0.892
RWT 0.6 [0.5-0.7] 0.7 0.6 -0.8] 0.070
LA volume index, mL/m? 51.5[43.8-59.8] 45.6 [36.5 -47.2] 0.122
E velocity, cm/s 90.0 [70.0 — 110.5] 81.2[74.0 - 97.0] 0.623
A velocity, cm/s 59.0[36.0 —79.0] 70.9 [38.0 — 84.0] 0.675
e' velocity, cm/s 3.8[3.0-4.5] 3.5[2.5-4.0] 0.264
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E/e' 23.1[17.9-30.7] 21.8[19.3 -27.1] 0.959
RVSP, mmHg 36.4[30.0-47.4] 34.2[29.0 -42.1] 0.506

Values are presented as medians [interquartile ranges] or numbers (percentages).

Abbreviations: BMI, body mass index; BSA, body surface area; CA, cardiac amyloidosis; DBP,
diastolic blood pressure; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease;
IVS, interventricular septum; LA, left atrial; LVEF, left ventricular ejection fraction; LVIDd,
diastolic left ventricular internal dimension; LVIDs, systolic left ventricular internal dimension;
LVMI, left ventricular mass index; LVPW, left ventricular posterior wall; RVSP, right ventricular

systolic pressure; RWT, relative wall thickness; SBP, systolic blood pressure.
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Table 13. Comparison Between Correctly Classified Subjects to Those Misclassified as
"Others" in the HHD Group

HHD
Classified Correctly Others
P-value
(n=86) (n=13)

Clinical Parameters
Age, years 47.7 [40.0 — 58.0] 49.0 [45.0 — 57.0] 0.354
Men, n (%) 69 (80.2%) 10 (76.9%) >0.999
Height, cm 170.0 [165.0 — 173.0] 170.0 [167.0 — 177.0] 0.705
Weight, kg 75.2 [64.0 — 85.3] 70.0 [66.3 — 89.0] 0.740
BMI, kg/m? 26.0 [22.8 —29.2] 25.1[23.2 -28.4] 0.569
BSA, m? 1.9+£0.2 1.9+0.3 0.933
SBP, mmHg 154.1 £24.7 160.0 + 33.1 0.466
DBP, mmHg 90.0 [79.5 —105.5] 102.5 [87.5-116.5] 0.168
Hypertension 74 (86.0%) 13 (100.0%) 0.327
Diabetes 17 (19.8%) 5(38.5%) 0.249
Atrial fibrillation 1 (1.2%) 1 (7.7%) 0.616
Coronary artery disease 5 (5.8%) 1 (7.7%) >0.999
Chronic kidney disease 6 (7.0%) 0 (0.0%) 0.720
Echocardiographic parameter
LVIDd, mm 50.0 [47.0 — 54.0] 47.0 [45.0 - 49.0] 0.034
LVIDs, mm 35.0[30.3 —39.3] 30.0 [27.0 — 33.4] 0.044
IVS, mm 13.0[12.0 - 15.0] 13.4[13.0 - 15.0] 0.165
LVPW, mm 12.1[12.0 - 14.0] 13.0 [12.0 — 14.0] 0.348
LVEF, % 58.0 [51.5-63.3] 62.4[60.5 — 68.0] 0.013
LVMI, g/m? 145.1 [125.6 — 171.6] 137.4[126.6 — 144.4] 0.359
RWT 0.510.5-0.5] 0.6 [0.5-0.6] 0.057
LA volume index, mL/m? 37.5[31.2-49.1] 37.9[32.8-47.0] 0.950
E velocity, cm/s 65.0 [52.0 — 84.0] 58.5[49.5 - 80.5] 0.446
A velocity, cm/s 76.8 +20.7 89.2+23.0 0.070
e' velocity, cm/s 5.6 [4.6 —6.7] 5.3[3.0-6.8] 0.310
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E/e' 11.1[9.7-15.1] 11.9[10.0-16.7] 0.495
RVSP, mmHg 26.2 [22.6 —32.5] 25.3[18.3-30.5] 0.452

Values are presented as the mean + SD, median [interquartile range], or numbers (percentages).
Abbreviations: BMI, body mass index; BSA, body surface area; CA, cardiac amyloidosis; DBP,
diastolic blood pressure; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease;
IVS, interventricular septum; LA, left atrial; LVEF, left ventricular ejection fraction; LVIDd,
diastolic left ventricular internal dimension; LVIDs, systolic left ventricular internal dimension;
LVMI, left ventricular mass index; LVPW, left ventricular posterior wall; RVSP, right ventricular

systolic pressure; RWT, relative wall thickness; SBP, systolic blood pressure.
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3.4. Model Performances Comparing with Conventional Echocardiography

We evaluated the performance of various classification models, including two types of logistic
regression; one using conventional echocardiographic parameters (LV ejection fraction, LV
mass index, left atrial volume index, and E/e’) and another using radiomic features. Among these,
the LightGBM model demonstrated the best overall performance in distinguishing LVH etiology
and was selected as the final model for the study. When compared with conventional
echocardiographic parameters (Table 13), the final model demonstrated superior sensitivity (0.89
vs. 0.80 for HCM, 0.80 vs. 0.80 for CA, and 0.75 vs. 0.33 for HHD) and F1-score (0.87 vs. 0.57
for HCM, 0.84 vs. 0.72 for CA, and 0.82 vs. 0.50 for HHD).

3.5. Model Interpretation by SHAP Analysis in Assessing LVH

We analyzed SHAP values to identify key features influencing each classification model (Fig.
9). In distinguishing LVH from total subjects, harmonization-driven textures (F2), myocardial
thickness (F4), and myocardial shape (F3) were pivotal. The total energy feature, derived via
harmonization filtering and representing the sum of signal intensity across the myocardial area,
emerged as the most critical factor in differentiating LVH. Key features for identifying HCM
included harmonization-driven textures (F2), myocardial thickness (F4), and conventional
textures (F1). Notably, run entropy from a gray-level run length matrix (GLRLM) after
harmonization filtering was pivotal, quantifying uncertainty in matrix distribution to highlight
texture heterogeneity. In detecting CA, our analysis identified conventional textures (F1),
myocardial thickness (F4), and percent changes in myocardial thickness ([%A] F3) and
harmonization-driven textures ([%A] F2) as key factors. Run Length Non-Uniformity with
GLRLM stood out, measuring homogeneity across myocardial run lengths, with a lower value
indicating greater homogeneity. Lastly, myocardial thickness (F4) and shape (F3) emerged as
key determinants for HHD differentiation. The most crucial texture feature for HHD identified
was the inverse difference normalized with the Gray Level Co-occurrence Matrix (GLCM),
which measures the local homogeneity of the myocardial area. The comprehensive SHAP value

analysis is summarized in Fig. 10.
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We also analyzed SHAP values in cases misclassified as "Others" to understand the reasons for
misclassification. By mapping the sum of SHAP values for texture features (F1 and F2) onto the
myocardium, we found that properly classified cases exhibited considerably high SHAP values
(Fig. 8), in contrast to the notably low SHAP values in misclassified "Others" cases (Fig. 10).
This variance in myocardial texture features could have influenced the model's decision,

indicating that these cases were divergent from their actual condition.
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Table 14. Performance Comparison of Conventional and Radiomics-Based ML Model in the

External Test Datasets

Sensitivity Specificity F1-score PPV NPV
LVH
Logistic Regression
LVMI+LVEF 0.97 1.00 0.98 1.00 0.98
LVMI+LVEF+LAVI 0.97 1.00 0.98 1.00 0.98
LVMI+LVEF+LAVI+E/e’ 1.00 1.00 1.00 1.00 1.00
Radiomics Features 0.98 1.00 0.99 1.00 0.99
LightGBM
Radiomics Features 0.98 0.99 0.98 0.98 0.99
HCM
Logistic Regression
LVMI+LVEF 0.81 0.86 0.78 0.74 0.91
LVMI+LVEF+LAVI 0.77 0.86 0.75 0.73 0.89
LVMI+LVEF+LAVI+E/e’ 0.74 0.93 0.78 0.83 0.88
Radiomics Features 0.75 0.98 0.84 0.95 0.89
LightGBM
Radiomics Features 0.87 1.00 0.93 1.00 0.94
CA
Logistic Regression
LVMI+LVEF 0.76 0.88 0.66 0.58 0.94
LVMI+LVEF+LAVI 0.79 0.85 0.64 0.54 0.95
LVMI+LVEF+LAVI+E/e’ 0.76 0.99 0.83 0.92 0.95
Radiomics Features 0.83 0.97 0.84 0.86 0.96
LightGBM
Radiomics Features 0.83 0.99 0.87 0.92 0.96
HHD
Logistic Regression
LVMI+LVEF 0.10 0.99 0.17 0.67 0.88
LVMI+LVEF+LAVI 0.14 0.99 0.24 0.75 0.89

50



LVMI+LVEF+LAVI+E/e’ 0.43 0.92 0.43 0.43 0.92

Radiomics Features 0.67 0.95 0.67 0.67 0.95
LightGBM
Radiomics Features 0.76 0.97 0.78 0.80 0.97

Abbreviation; CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HHD, hypertensive
heart disease; LAVI, left atrial volume index; LVEF, left ventricular ejection fraction; LVH, left
ventricular hypertrophy; LVMI, left ventricular mass index; NPV, negative predictive value; PPV,

positive predictive value.
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SHAP values The top ranked feature
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Fig. 9. Insights from SHAP Values and Feature Contribution in Classification Models. We
employed SHAP values to the influence of features on the predictions made by classification

models. Higher absolute SHAP values indicate a greater impact of belonging to the positive or
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negative class. We performed the analysis through the whole classification process (A to D). The
left panels depict feature contributions across the various integrated classification models. The
right panels display representative mappings of the top-ranked features from both conventional
(F1) and harmonization-driven (F2) texture analyses for each classified group, visualizing the
differential impact of these features in the models.

Abbreviations: CA, cardiac amyloidosis; GLCM, Gray Level Co-occurrence Matrix; GLRLM, run
entropy derived from a gray-level run length matrix; HCM, hypertrophic cardiomyopathy; HHD,
hypertensive heart disease; LVH, left ventricular hypertrophy; SHAP, Shapley Additive

Explanations.
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Abbreviations: CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; HHD, hypertensive
heart disease; LVH, left ventricular hypertrophy; SHAP, Shapley Additive exPlanations.
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(A) LVH (B)HCM
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(C)CA (D) HHD
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Abbreviations: A4Ch, apical four-chamber view; CA, cardiac amyloidosis; GLCM, gray level co-
occurrence matrix; GLRLM, run entropy derived from a gray-level run-length matrix; ED, end-
diastole; ES, end-systole; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease;
LVH, left ventricular hypertrophy; SHAP, Shapley Additive exPlanations; PSAX, parasternal short

axis view
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4. DISCUSSION

This study explored the effectiveness of utilizing echocardiography-based radiomics features
analyzed through ML models to enhance LVH diagnosis and differentiate its etiologies. Our
approach, which integrates advanced myocardial texture analysis and geographic attributes, was
thoroughly validated internally and externally, showcasing robust performance. Furthermore,
enhanced by SHAP analyses, our approach also offered clinical interpretability. These findings
underscore the potential clinical relevance and adaptability of our methods for practical clinical
application in real-world settings.

Echocardiography is the most widely used noninvasive tool among cardiovascular imaging
modalities, utilizing not only the measurements of various structural and functional parameters
but also the visual assessment of morphology. Given the wide range of cardiovascular diseases
which often overlap morphologies across the various etiologies, the echocardiographic
assessment inevitably conveys obscure conclusions with subjective interpretations. LVH, a
common cardiovascular condition, has various etiologies. HHD results from increased
afterload,** HCM has genetic roots and may requir specific management for the complications
(i.e., sudden cardiac death, heart failure, arrhythmia, etc),’>** and CA is the result from
progressive deposition of amyloid in the extracellular matrix due to hematologic malignancy
(light-chain CA) typically shows grave prognosis or other genetic and idiopathic causes
(transthyretin CA) requiring specific therapy.>>*® Despite different etiologies, morphologic
similarities and the lack of pathognomonic findings often challenge accurate diagnosis by visual
assessments and conventional echocardiographic evaluation. Indeed, the accuracy of human
experts in differentiating the etiologies of LVH ranges from 50% to 80%.>!° This necessitates
further diagnostics such as cardiac magnetic resonance, nuclear scintigraphy, genetic testing, and
myocardial biopsy to overcome the limitations of conventional echocardiography.®

To improve the diagnostic process and minimize unnecessary tests, researchers have employed
DL in echocardiography to detect subtle differences in LVH etiologies that are not apparent
through conventional methods.”!! Given the reliance on subjective judgment by
echocardiographic specialists,*® the ability of DL to process a broader spectrum of data,

including subtle characteristics missed by humans, positions it as potentially superior for LVH
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detection and differential diagnosis. For instance, Yu et al. developed a semi-automatic
diagnostic network based on deep learning algorithms to detect LVH and differentiate between
different etiologies of LVH.!® They use the still images of PLAX and A4Ch view and manually
demarked LV myocardium for the ground truth of the segmentation network. And, Duffy et al.
showed the reliability of quantifying LV dimension and wall thickness and predicting the cause
of LVH using a deep learning algorithm trained by A4Ch view of echocardiogram videos.!! The
externally validated algorithm showed 0.89 of AUC in HCM and 0.83 in CA patients. Notably,
Hwang et al. reported that DL-based differentiation of LVH etiology was superior to human
expertise, achieving an overall accuracy of 92.3% compared to 80%, underscoring the potential
benefits of DL in improving diagnostic accuracy.’ They used a high-performance algorithm that
was constructed using a hybrid CNN-long short-term memory model. However, previous efforts
in applying DL encountered remarkable limitations, including the lack of multi-center cohorts
and external validation.”!" Additionally, the critical need for interpretability, essential for
securing clinical trust and facilitating wider adoption, remains largely unaddressed.

In this study, we aimed to enhance diagnostic accuracy and provide significant insight by
employing echocardiography-based radiomics features. Besides DL algorithm, radiomic feature
analysis offers an advantage in interpretability and allows for integrating various statistical
models based on the extracted features. Instead of directly inputting echocardiographic images
into a DL model, we applied Al technology for automated segmentation of the LV myocardium,
extracting and analyzing a broad array of features. This approach allowed for an in-depth
examination of myocardial texture and geographic features. Specifically, myocardial shape (F3)
and thickness (F4) were identified as important factors in diagnosing and differentiating LVH.
Myocardial thickness (F4) proved crucial across all the processes of etiologic diagnosis, while
the percent change in myocardial shape ([%A] F3) played a significant role in differentiating CA
(Fig. 8).

In the evaluation of LVH, assessing myocardial texture is an aspect that echocardiography has
long attempted to characterize because of its potential value. Bhandari et al. and Pinamonti et al.
tried to myocardial exture analysis in 3-D echocardiography in 1980s.3”-38 Similar with our study,
there were recent studies that used echocardiography-based radiomic feature analysis to classify
the various LVH etiologies.*>* Particularly, texture analysis has shown promise in detecting LV

remodeling and differentiating transthyretic CA from other cardiomyopathy.**> Despite the
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historical challenges in quantifying myocardial texture changes, which often reduce diagnostic
reproducibility, we address this issue by employing an Al-driven approach to automatically
segment the LV myocardium, extract, and analyze texture features. Importantly, our method
incorporated both conventional (F1) and novel harmonization-driven (F2) texture features, the
latter designed to reduce variability across different imaging settings and vendors.?* In our
classification model, both texture features were pivotal: the harmonization-driven texture
features (F2) were crucial for detecting LVH and differentiating HCM, while conventional
texture features (F1) significantly helped in differentiating CA. Although geographic features
played an essential role in identifying HHD, conventional texture features (F1) also extensively
aided in its differentiation (Fig. 8).

This approach effectively quantifies and evaluates the impact of specific myocardial features on
the detection and differentiation of LVH. By identifying which echocardiography-based
radiomics features are pivotal in differentiating various cardiac conditions, our classification
model gains credibility and provides deeper insights into the diagnostic process. Furthermore,
the model’s scalability allows it to classify unknown conditions beyond the current diagnostic
scope by placing atypical cases into the "Others" category. This method enhances diagnostic
safety by preventing disease misclassification. Intriguingly, as SHAP values have highlighted,
divergent texture features in misclassified cases suggest the possibility of uncovering

unrecognized pathophysiologies.

4.1. Limitations

This study has some limitations. First, although the training data set was multi-center-driven and
the model was externally validated, it was predominantly based on data sourced from Korean
patient cohorts. This could introduce ethnic biases and suggest a need for further validation
across diverse demographic populations. Extending the model to include a broader range of
conditions and testing it in various settings with different equipment standards will be essential
to enhance its applicability and reliability. Second, our study focused on patients with advanced
LVH due to HCM, CA, and HHD, which may introduce bias. Since these are cases of pathologic
LVH, not only does the myocardial thickness increase, but myocardial remodeling and fibrosis

also occur. Therefore, myocardial texture features could play a more significant role in
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distinguishing LVH in the model. Previous studies have shown that radiomic features outperform
the LV mass index in predicting LV remodeling, which supports this notion.*! As a result, the
model we developed may have limitations when applied to subclinical LVH or physiologic LVH
cases (such as athlete's heart). Further studies will be necessary to validate and improve the
model's capabilities for these groups. Third, our cohort did not include the rare causes of LVH,
such as Fabry disease, Danon syndrome, PRKAG2 syndrome, and sarcoidosis due to their low
prevalence, which complicates achieving adequate training levels. Although we incorporated an
"Others" category for features not typical of the trained disease groups, further validation is
required to determine how the model performs when presented with untrained disease categories.
Lastly, while we have demonstrated the robustness of our model by applying it to an independent
external validation set with different compositions, we acknowledge the significant challenges
of lacking prospective testing and evaluation of model efficacy during actual clinical practice.*’

Plans are underway to conduct prospective studies to address this gap.
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5. CONCLUSIONS

In this study, we developed an Al-based classification model that utilizes echocardiography-
based radiomics to enhance the diagnosis and differentiation of LVH. The model, which was
developed using data from multi-institutional cohorts and validated externally, demonstrates
promising results in applying radiomic analysis to real-world clinical settings. However, its
application has been primarily within a specific demographic, highlighting the need for broader
testing across diverse populations to ensure its efficacy and generalizability in varied clinical

settings.
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were extracted and used to develop classification models for detecting LVH and differentiating its
etiologies. The performance of these models was subsequently evaluated through internal and
external validation datasets.

Abbreviations: CA, cardiac amyloidosis; ED, end-diastole; ES, end-systole; HCM, hypertrophic
cardiomyopathy; HHD, hypertensive heart disease; LV, left ventricular; LVH, left ventricular
hypertrophy.
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