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ABSTRACT

Prediction of Acute Graft Rejection after Liver Transplantation by
Single Cell RNA Sequencing Analysis Using Peripheral Blood
Mononuclear Cell

Liver transplantation remains a definitive therapy for end-stage liver disease; however,
acute allograft rejection occurs in 15-30% of recipients. Early prediction is limited by the
incomplete characterization of subclinical immune alterations, and diagnosis still depends on
invasive histological biopsies. Single-cell RNA sequencing and T cell receptor (TCR) repertoire
analysis of peripheral blood mononuclear cells (PBMCs) from matched liver transplant recipients
before and after surgery revealed molecular signatures associated with acute rejection (AR). Patients
who later developed AR exhibited distinct pre-operative immune states, including inflamed natural
killer (NK) cells, clonally expanded effector memory CD8 T cells, and altered monocyte subsets.
Following transplantation, these immune cells underwent rejection-specific reprogramming
characterized by persistent pro-inflammatory activity and an enrichment of virus-specific CD8 T
cells, despite immunosuppression. Five genes—CCL3, GZMK, MX1, RETN, and ATF3—were
consistently upregulated in both pre- and post-operative AR samples. Among them, CCL3, GZMK,
and MX1 were independently validated using a public large-scale liver biopsy dataset, confirming
their roles in leukocyte recruitment, cytotoxicity, and antiviral response. RETN and ATF3were
enriched in rejection-associated monocytes and functionally annotated as a secreted ligand and an
activated transcription factor, respectively. These persistent gene signatures demonstrated strong
predictive performance (AUC = 0.90) for AR. These findings provide a foundation for non-invasive
risk stratification and early diagnosis of acute rejection, and highlight potential targets for
personalized immunomodulatory therapy in liver transplantation.

Key words : Liver transplantation, Acute rejection, Single-cell RNA sequencing, Peripheral blood
mononuclear cells
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1. INTRODUCTION

Liver transplantation (LT) is the only effective treatment for patients with end-stage liver
disease. Significant advances in surgical techniques and immunosuppressive therapies have
markedly improved survival rates of transplant recipients'. Despite the liver's relative immune
privilege compared to other transplanted organs, acute rejection occurs in approximately 15-30% of
cases, representing a major complication that significantly impacts allograft survival??. Therefore,
early detection and timely intervention for acute rejection are critical for optimizing transplant
outcomes.

Histopathological assessment of liver biopsy specimens, interpreted through the rejection
activity index (RAI), has traditionally been considered the gold standard for diagnosing acute
rejection*. However, RAI scores do not consistently correlate with clinical deterioration of graft
function>, and this invasive procedure carries significant risks, particularly bleeding complications
during the early post-transplant period’. These limitations underscore the need for complementary
diagnostic approaches®.

Elucidating the cellular and molecular alterations in the recipient's peripheral immune
compartment is essential for identifying non-invasive early predictors of acute allograft rejection.
However, comprehensive studies examining both pre- and post-transplant immunological
phenotypes in patients who develop rejection remain limited®'2. Here, we identified predictive
molecular signatures of acute allograft rejection through integrated single-cell RNA sequencing and
T cell receptor (TCR) repertoire analysis on paired peripheral blood mononuclear cell (PBMC)
samples collected from the same patients before and after transplantation.

2. MATERIALS AND METHODS

2.1 Experimental model and subject details

We performed case-control matched analyses using data from patients who underwent LT
between May 2020 and December 2022 at Severance Hospital, Korea. The Inclusion criteria were
adult patients (=18 years) undergoing first-time liver transplantation. Exclusion criteria included
multi-organ transplantation. PBMCs were prospectively collected at five time points: pre-LT, 1 week,
2 weeks, 1 month, and 2 months post-LT.

Acute rejection was defined by biopsy-proven rejection or clinical diagnosis. For six patients whose
PBMCs were available within 3 days before acute rejection, control patients without rejection were
matched at corresponding time points of acute rejection in a 1:1 manner. Patient matching was
performed manually based on clinical variables previously reported in the literature associated with



rejection. The variables were prioritized as follows: autoimmune hepatitis, retransplantation, ABO
incompatibility, unrelated donor, donor age, and lymphocyte cross-matching. Each patient group
was matched accordingly to ensure comparability and control for confounding factors. If multiple
controls were available after matching the above variables, the following variables were considered:
age, sex, HCC, pretransplant MELD, and BMI. A total of 24 samples from the 12 matched patients
(6 AR, 6 NR) were analyzed, comprising 12 pre- and 12 post-operative samples.

The study was approved by the Institutional Ethics Committee (4-2016-0323), and all participants
provided written informed consent. All patient clinical characteristics are shown in Table S1.

2.2 Method details

2.2.1 PBMC Isolation

PBMCs were isolated from whole blood using HISTOPAQUE-1077 (Sigma-Aldrich, St.
Louis, MO) density gradient centrifugation. Briefly, blood was diluted 1:1 with phosphate-buffered
saline (PBS; Gibco, Waltham, MA), layered over HISTOPAQUE, and centrifuged at 400 x g for 30
minutes at room temperature. Following centrifugation, the plasma layer was gently removed with
a transfer pipet, and the PBMC layer at the interface was carefully transferred into a new conical
tube. The PBMCs were subsequently washed twice with 40 mL of cold 2% fetal bovine serum (FBS)
in PBS and centrifuged at 300 x g for 10 minutes at 4°C. Finally, the cells were cryopreserved using
CELLBANKER 2 (Zenoaq Resource, Fukushima, Japan). Cryopreserved PBMCs were partially
thawed rapidly at 37°C prior to use in analyses. The cells were carefully mixed with a washing
medium (RPMI-1640 [Gibco] containing 20% FBS) in a dropwise manner to minimize osmotic
shock. The volume was then adjusted to 10 mL with washing medium, and the cells were centrifuged
at 300 x g for 10 minutes at room temperature. After centrifugation, the cell pellet was resuspended
in 10 mL of washing medium, followed by cell counting. The cells were subsequently centrifuged
again, and the resulting pellet was used for downstream analyses.

2.2.2 Bulk RNA sequencing and analysis

Thawed PBMCs were lysed in TRIzol reagent for RNA extraction and subsequent library
preparation. RNA purification, cDNA library preparation, and sequencing were performed by
Macrogen using the Illumina NovaSeq 6000 system. The raw FASTQ files were first processed by
trimming reads using Trimmomatic (v0.39)!3, followed by alignment to the GRCh38 human
reference genome (Ensembl release 98) with STAR (version 2)!* and GENCODE v32 annotations.
Gene-level read counts were generated using HTSeq-count (v0.11.2) with GENCODE v32
comprehensive annotations, including chromosomes, patches, haplotypes, and scaffolds. HTSeq-
count was run in 'intersection-nonempty' mode, accounting for strand-specific information, with



'gene_id' as the feature ID and 'gene_name' as an additional attribute'®. Differential gene expression
analysis was performed using DESeq2'¢. For donor-specific variant references required for sample
demultiplexing, aligned BAM files were processed according to the GATK 'SNP Calling from RNA -
seq Data' pipeline!”.

2.2.3 10x Genomics and single cell sequencing

For the first sequencing set, pre- and post-operative samples were tagged by 1 pg
BioLegend TotalSeq-C hashtag antibodies (C0251 and C0252, respectively) after Fc blocking by
Human TruStain FcX (BioLegend, San Diego, CA). Cells were washed and suspended in 0.04%
bovine serum albumin (BSA; Invitrogen, Waltham, MA) PBS solution. After the filtration through
a 70 pm Flowmi cell strainer (Bel-Art SP, Wayne, NJ), samples were pooled and loaded on a
Chromium X controller (10X Genomics , Pleasanton, CA). For the second set of sequencing, pre-
and post-operative samples were separately loaded on GEM wells. For each set of experiments,
approximately 70,000 cells per well were loaded into two wells of a Chromium Next GEM Chip K
(10x Genomics). Sequencing libraries were generated using 10x Chromium Single Cell VDJ & 5'
Gene Expression library and Gel Bead kits (10x Genomics) according to the manufacturer's protocol
CG000330 Rev F. To produce hashtag antibody libraries, 0.2 pg of TotalSeq-C additive primer
(Integrated DNA Technologies, Coralville, IA) was spiked in at the cDNA amplification step. Small
size-selected amplified cDNA samples were used as templates for i7 indexing. Sequencing for Gene
Expression, VDJ, and HTO libraries was performed on an [llumina NovaSeq 6000 system (Illumina,
San Diego, CA).

2.2.4 Raw data processing

RNA and VDI read alignment was performed using 10x Genomics Cell Ranger v7.1.0
with the 'multi' pipeline. Gene expression reads were aligned to the GRCh38 human reference
genome (Ensembl release 98, 10x Genomics GRCh38-2020-A). For V(D)J analysis, reads were
aligned to the GRCh38 human reference genome with alternative contigs and Ensembl V(D)J
annotations (Ensembl release 98). We employed the CellBender algorithm for cell identification and
count correction to mitigate background noise and enhance data quality'®.

2.2.5 Genetic variant-based donor demultiplexing

Donor IDs within the same sequencing pool were demultiplexed using Souporcell'?,
utilizing genetic variant references derived from bulk RNA sequencing data of each patient. The
demultiplexing process was performed using the Demuxafy pipeline®”. The GRCh38 human
reference genome (10x Genomics, 2020-A) was used as the reference sequence. A custom VCF file
containing filtered minor allele frequency (MAF) > 10% variants was used for known genotypes.



The demultiplexing was performed on cell barcodes identified by CellBender, using the aligned
BAM files from Cell Ranger output.

2.2.6 Quality control

To ensure the integrity of the cells used in downstream analysis, damaged or obsolete cells
and genes were initially removed. Quality control was then applied by excluding cells that did not
meet the following criteria: mitochondrial gene content < 20%; total UMI counts between 600 and
20,000 for the first dataset and between 1,000 and 20,000 for the second dataset; gene counts per
cell between 400 and 5,000 for the first dataset and between 500 and 5,000 for the second dataset;
hemoglobin gene content < 0.4%; and ribosomal gene content > 6%. Additionally, genes expressed
in fewer than ten cells were filtered out to further refine the data.

2.2.7 Sample assignment through a hashtag

Hashtag reads were quantified as antibody expression using Cell Ranger. Sample
assignment was performed on quality-controlled cell barcodes using the HTODemux 2! from the
Seurat v4.3.0%2. HTODemux was run with the following parameters: initialization with 3 clusters, a
positive quantile threshold of 0.9, and the 'Clara' k-means clustering algorithm. The positive quantile
threshold was adjusted to identify approximately 20-25% of cells as doublets, accounting for the
intentional cell overloading during sample preparation. The random seed was set for reproducibility.

2.2.8 Preprocessing and multiplet removal

Following the normalization of cell counts by the median total counts, the data were log-
transformed. Prior to multiplet removal, batch correction, and preliminary annotation were
performed using scVI?* and scANVI?*, For this purpose, data from two QC-filtered sets were merged,
and 3,161 highly variable genes (HVGs) common to the reference dataset (dbGaP:
phs002315.v1.p1?%) were selected using the 'highly variable genes' function from the Scanpy
v1.9.3%, specifically employing the 'seurat v3' flavor. The model was initialized using scVI, with
general model training conducted for 300 epochs. Individual sample IDs were used as batch keys
for highly variable gene (HVG) selection and model setup. Subsequently, reference training with
scANVI was carried out for 40 epochs, using 100 samples per label. Query data training was
performed with 500 max epochs. Thirty latent space dimensions generated from this process were
used to compute neighbors based on Euclidean distance. Leiden clustering with a resolution of 3.0
was then applied to the data. Among the 71 clusters identified, those with DoubletDetection®® and
Scrublet?’ scores exceeding 0.25 and 50, respectively, or predicted as doublets through the label
transfer, were removed as potential doublets. These thresholds were determined after confirming
actual doublet status through hashtag assignment and by validating the co-expression of markers
from different cell types within each cluster. The final set of cells underwent reprocessing to ensure



optimal downstream analysis. After the gene filtering, the top 2,000 HVGs were identified using the
Seurat v3 method implemented in Scanpy Log-normalized counts were scaled to unit variance and
zero mean, with a maximum value cap of 10.0. Principal Component Analysis (PCA) was performed
on the scaled counts of HVGs. The Harmony algorithm was applied to the PCA results to correct
batch effects, using the batch ID as the key for integration. A neighborhood graph was constructed
using cosine distance in the Harmony-corrected latent space. Finally, Uniform Manifold
Approximation and Projection (UMAP) was used for dimensional reduction and visualization of the
data in two dimensions.

2.2.9 Enrichment analysis

Cellular processes and phenotypes were identified using gene set enrichment analysis
(GSEA) through the prerank function of GSEApy?. For group comparisons in minor cell types,
genes ranked by 'rank genes groups' in Scanpy using the Wilcoxon test with Benjamini-Hochberg
correction were used as input. For major cell types, stat-ordered genes from the pseudo-bulk DEG
analysis were utilized. Over-representation analysis for functional annotation of DEGs was
conducted using gProfiler®®, with the ‘queries.enrich’ function from Scanpy. The activity of specific
gene signatures was scored as the Area Under the Curve (AUC)3. User-defined genes below a
specific percentile threshold are selected and ranked accordingly. Cumulative weights are then
calculated based on this order. The AUC is computed as the weighted sum of rank differences and
is normalized by dividing by the maximum possible AUC value.

2.2.10 Gene regulatory network analysis

SCENIC was used to reconstruct the gene regulatory network, with transcription factor
(TF) enrichment and regulatory factor activity inferred through the pySCENIC pipeline*’. A motif-
based approach was employed, utilizing specific motif and rank files to refine regulons. The
GRNBoost2 algorithm was applied for gene regulatory network inference, generating co-expression
modules from the inferred adjacency matrix>!. These modules were then pruned using the 'prune2df’
function to evaluate the significance of each regulatory interaction. Cellular enrichment of each
regulon was assessed using the AUCell algorithm, and the top regulon was identified based on the
Regulon Specificity Score (RSS).

2.2.11 T cell receptor analysis

TCR analysis was conducted using Scirpy v0.13.1? and Muon v0.1.5%. Productive TCR
chains and pairs were assessed with the 'index chains' and 'chain_qc' functions. T cell clones were
identified using the 'define clonotypes' function based on primary TCR nucleotide identity, while
clonotype clusters were determined with the 'define_clonotype clusters' function, using amino acid
alignment. Clonotype enrichment for each group was evaluated using the 'clonotype imbalance'



function. Clonotype alpha diversity was measured using the Gini index and normalized Shannon
entropy. Additionally, epitope prediction for each clonotype was performed through alignment on
VDIdb*,

2.2.12 Classification model

For the classification model to assess the discriminatory potential of rejection-associated
genes, we implemented a machine learning approach using logistic regression. Expression values
were extracted from a public large-scale liver biopsy dataset (GSE145780) and standardized using
z-score normalization. To ensure robust performance evaluation, we employed a 5-fold stratified
cross-validation approach, maintaining consistent class distribution across all folds. The model
performance was evaluated using receiver operating characteristic (ROC) curve analysis, with the
area under the curve (AUC) as the primary metric. All analyses were performed using scikit-learn
v1.3.0 in Python v3.10.13."

2.2.13 Trajectory analysis

Pseudo-time calculation and trajectory inference were performed using scFates v1.0.6%.
Initially, a target cell population was subsetted, and neighbors were defined in the harmony-corrected
latent space. A diffusion map was constructed using Scanpy's ‘tl.diffmap’ function. Based on the
specified diffusion map components, neighbor calculations, and Leiden clustering were carried out.
A Partition-based Graph Abstraction (PAGA) graph was then created using the Fruchterman-
Reingold algorithm, and the graph was visualized with Scanpy's ‘tl.draw_graph’. Trajectory trees
were constructed using the ‘tl.tree’ function from scFates with the Palantir Pseudotime Trajectories
(PPT) method. The root tip was determined based on T cell naive markers (CCR7, SELL, TCF7),
and pseudo-time was calculated. Milestones, branches, and forks were defined, and genes associated
with pseudo-time were fitted using the ‘test _association’ and ‘tl.fit” functions. Finally, differentially
expressed genes (DEGs) for each trajectory were identified using ‘tl.test fork’.

2.2.14 Cell-cell interaction analysis

Cell-cell interaction inference was performed using CellChat v1.5.0%. The anndata objects
for each group were converted into CellChat objects, and signaling genes were identified using the
‘identifyOverExpressedGenes’ function. Interaction pairs were then determined based on the
CellChatDB.human database, excluding non-protein signaling. Communication probability was
calculated using the ‘computeCommunProb’ function with the triMean method, and pathways were
inferred using the ‘computeCommunProbPathway’ function, considering only communications
involving at least 10 cells.

2.3 Quantification and statistical analysis



For differential gene expression analysis, we used Memento v0.1.0%7 with a differential
expression coefficient (de coef) threshold of 0.5 and FDR-corrected p-value threshold of 0.05 for
comparisons across groups. For four-group GSEA dot plots, top enriched pathways were selected
using Normalized Enrichment Score (NES) >0 and FDR-corrected g-value <0.1. For Pre-NR versus
Pre-AR enriched pathways dot plots, GSEA results with [NES| >0.5 and FDR-corrected g-value <0.1
were selected. For monocyte subpopulation top enriched pathway dot plots, [NES| >0.5 and FDR-
corrected g-value <0.1 were used to adjust the number of pathways shown in plots. For gProfiler
pathway visualization, we selected the top 10 or 15 pathways with g:GOSt-corrected p-value <0.01
and size <1500.

Cell type proportion in stacked bar plots within each group was not normalized. However,
group proportions within specific subsets of cells were normalized by the total cell count of each
group for that subset, enabling fair comparison between groups for subpopulations. When plotting
density plots from the immune subtype level, cells from each group were subsampled to match the
minimum cell count among groups, equalizing the total cell count in each density plot. For statistical
testing of cell proportion bar plots, we used the Wilcoxon test for paired samples (within NR or AR
groups) and Mann-Whitney test for unpaired samples (between NR and AR groups). For statistical
analysis of liver biopsy bulk RNA expression data, the Mann-Whitney test was applied.

3. Results

3.1 Comprehensive Single-Cell Profiling Reveals Dynamic Immunological
Changes Following Liver Transplantation

We collected paired pre- and post-operative PBMC samples from recipients who experienced
acute rejection (Pre-AR or Post-AR; n = 6) and those who did not (Pre-NR or Post-NR; n = 6)
(Figure 1). AR and NR cases were matched in pairs based on clinical parameters, such as age, gender,
presence of hepatocellular carcinoma (HCC), autoimmune status, ABO compatibility, and donor age.
In the AR group, post-operative samples were collected proximal to biopsy-confirmed or clinically
diagnosed rejection episodes. Corresponding post-operative samples from the NR group were
obtained at equivalent time points to enable direct comparative analysis.
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Figure 1. Schematic illustration of experimental design

We performed integrated single-cell RNA and TCR sequencing on a total of 24 samples,
yielding 56,077 high-quality PBMCs after quality control filtering. Cells were initially categorized
into eight major lineages—CD4 T cells, CD8 T cells, unconventional T cells, natural killer (NK)
cells, monocytes, dendritic cells (DCs), B cells, and hematopoietic stem and progenitor cells
(HSPCs)—based on canonical lineage marker expression (Figure 2A, S1A, and S1B). As illustrated
in Figure 2B, both AR and NR samples exhibited substantial alterations in cellular distribution on
UMAP dimensionality reduction. This transcriptional remodeling was further reflected in principal
component analysis of pseudobulk profiles from individual samples (Figure 2C), highlighting the
dramatic immunological dynamics induced following transplantation. Quantitative compositional
analysis revealed distinct shifts in major immune cell populations between groups (Figure 2D). The
NR group demonstrated a more pronounced expansion in monocyte proportions post-transplantation
compared to the AR group. Conversely, the AR group maintained consistently higher proportions of
CDS8 T cells, despite their post-transplant reduction, and uniquely exhibited increased CD4 T cell
frequencies after transplantation. Differentially expressed genes (DEGs) and subsequent gene set
enrichment analysis revealed pre-transplant enrichment of T cell activation signatures and
cytokine/chemokine networks in the Pre-AR group, while immunoglobulin-related pathways and
antigen presentation mechanisms were overrepresented in the NR group (Figure 2E and 2F). Post-
transplantation, both groups shared upregulation of blood vessel morphogenesis and apoptotic
pathways, with more robust secretory granule activity in the NR group and enhanced pro-
inflammatory cytokine responses in the AR group (Figure 2F).
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Figure 2. Comprehensive single-cell profiling in liver transplant recipients. A. UMAP
visualization of major immune cell populations. B. Density plots showing relative cell distribution
within each group using Gaussian kernel density estimation (scale 0-1). C. PCA plot of pseudobulk
expression profiles for individual samples. D. Cellular composition analysis across groups (top) and
individual samples (bottom). E. Heatmap of DEGs (de_coeff > 0.5, FDR-corrected p-value < 0.05)
in each group with normalized expression values. F. Dot plot showing top 10 enriched pathways for
each group identified by GSEA.

3.2 Pre-transplant Immune Activation Markers Associate with Rejection

We next delineated the molecular predisposition to rejection. Correlation analysis of gene
expression fold changes following transplantation revealed general consistency between AR and NR
groups (r = 0.68), but with distinct immunological signatures, as evidenced by the limited overlap
of differentially expressed genes (DEGs) between groups (Figure 3A). We identified intrinsic
transcriptional differences in the AR group before surgery, characterized by upregulation of 28 genes,
including various chemokines/cytokines and effector/activation markers such as CD69, ATF3,



GZMK, IL1B, CCL4, and CCL3 (Figure 3B and S2C), with distinct cellular sources for each
(Figure 3C).
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Figure 3. Differential gene expressions by rejection groups and immune cell types. A. Scatter
plot showing correlation of post-transplant gene expression changes in NR (x-axis) and AR (y-axis)
groups. Pearson correlation coefficient is indicated as r. B. Volcano plot displaying differential gene
expression in Pre-AR compared to Pre-NR (de_coeff > 0.5, FDR-corrected p-value < 0.05). C.
Heatmap illustrating cell type-specific expression patterns of pre-operative DEGs across major
immune cell populations.

Notably, 5 of these 28 genes with known immune-activating functions remained
consistently upregulated through the time of rejection (Figure 4A). To determine whether these
peripheral blood transcriptional changes correlated with events at the site of rejection, we examined
gene expression in liver biopsy specimens from rejection patients. This analysis confirmed the
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upregulation of CCL3, GZMK, and MX1 in the public bulk RNA-seq data of liver biopsy (Figure
4B), while the remaining genes (RETN and ATF3) may represent peripheral blood-specific
features™.
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Figure 4. Genes upregulated in the AR group. A. Venn diagram showing the intersection between
DEGs upregulated in AR in both pre- and post-operative samples. B. Expression in liver tissue
biopsy bulk RNA-seq data. Statistical significance was determined using the Mann-Whitney test
(****p <0.0001).

Additionally, a rejection classification model incorporating these genes demonstrated an
AUC of 0.90 (Figure 5), suggesting their potential utility as non-invasive biomarkers for
predicting or diagnosing acute rejection.
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Figure 5. ROC curve for rejection decision model using liver biopsy bulk RNA data
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(GSE145780)

Cell type-specific comparison between Pre-NR and Pre-AR samples revealed that the
predisposed differences in immune-related pathways were primarily derived from NK cells, T cells,
and monocytes (Figure 6). Although monocytes in the Pre-AR group exhibited diminished antigen
presentation capacity and reduced energy metabolism (oxidative phosphorylation and TCA cycle
activity; Figure 6), post-transplant antigen presentation-related genes were significantly upregulated
in the AR group, suggesting that monocyte function becomes fully activated during the rejection
process.
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Figure 6. Enriched molecular pathways in Pre-AR samples across different cell types.

3.3 NK Cell Subsets Show Distinct Inflammatory and Migratory Features in
Pre-Rejection States

Moving beyond gene marker analysis, we sought to characterize predisposed immune
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heterogeneity at the cellular subtype level. We performed in-depth analysis of NK and T cells, which
exhibited activated phenotypes in Pre-AR samples (Figure 6), by conducting detailed subtype
annotation (Figure 7A). Quantitatively, both AR and NR groups demonstrated a decrease in central
memory populations and an increase in naive populations within CD4 and CD8 T cell compartments
(Figure 7B). NK cells showed a significant increase exclusively in the NR group. To examine
qualitative differences in NK cells, we classified them into four distinct clusters based on marker
gene expression (Figure 7C).

As a shared feature induced by surgery, both groups exhibited increased proportions of
NK injury cells, characterized by elevated expression of platelet-related genes (Figure 7D and 3E).
Meanwhile, the NR group consistently maintained higher proportions of NK adaptive cells, which
are characterized by extended longevity and memory phenotype®*° (Figure 7F). In contrast, the
AR group had a higher pre-operative proportion of NK CD56bright and NK_terminal clusters.
Although NK terminal cells exhibited cytotoxicity gene scores comparable to NK adaptive cells
they displayed activated chemokine signaling and, together with NK CDS56bright cells, showed
elevated scores for inflamed NK signature, IFNy response, and migration potential (Figure 7F).
Post-operatively, the proportion of NK_CD56bright and NK _terminal cells decreased in the AR
group, yet NK stimulation via [FN-y signaling remained sustained after surgery (Figure 7F and 3G).
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Figure 7. Pre-operative T and NK cell modulation in acute rejection. A. UMAP visualization of
NK and T cell subtypes. B. Bar plots showing proportions of NK and T cell subtypes across groups.
Statistical significance was determined using Wilcoxon test for paired samples (within NR or AR)
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and Mann-Whitney test for unpaired samples (between NR and AR). C. UMAP visualization of NK
cell subpopulations. D. Density plots showing NK cell distribution across groups, with cells
subsampled to equal numbers for comparable visualization. E. Stacked bar plot showing the relative
proportions of subpopulations within NK cells. F. Gene set scores for each NK cell subpopulation.
G. Enrichment plots comparing interferon y response pathways between NR versus AR groups Pre-
(top) and post-transplantation (bottom).

3.4 CDS8 T Cell Clonal Dynamics Reveal Different Evolutionary Paths in
Rejection versus Non-Rejection

For T cells, we performed TCR analysis to investigate whether clonal expansion
contributed to graft rejection (Figure 8A). While both groups showed decreased clonality post-
transplantation, the AR group consistently maintained higher clonality compared to the NR group
(Figure 8B). Notably, examination of the top 10 clonotypes by clone size revealed that they were
almost exclusively specific to either the AR or NR group, with the majority belonging to the effector
memory CD8 T cell (CD8 TEM) compartment (Figure 8C). To determine whether these dominant
clonotypes in AR and NR groups represented distinct phenotypic populations, we analyzed their
distribution across CDS8 T cell clusters.
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Figure 8. Clonotype size distribution across NK and T cell subsets. A. UMAP plot showing
clonotype size distribution across NK and T cell subsets. B. Distribution of clonotype sizes in each
experimental group. C. Group (left) and subtype composition (right) of the top 10 clonotypes. Group
compositions were normalized by cell counts of each group.

Effector memory CD8 T cells were further subdivided into five populations based on
marker gene expression (Figure 9A, and S4C). Among these, CD8 TEM_IL7R cells, which express
progenitor-exhausted T cell (Tpex) markers such as GZMK and IL-7R, were uniformly distributed
across all groups (Figure 9B and 9C). Consistent with known Tpex characteristics, these cells
exhibited relatively low cytotoxicity and moderate expression of coinhibitory molecules (Figure
9D). Their low clonality suggests that they are a population composed of diverse, newly
differentiating clones.

{*\ Bt Pre-NR Post-NR
cD8 TEMEGZMB q’biaiTcl- = @ % >
" R TN | R
0 0

Pre-AR Post-AR

D8 TEMEKLRB]
o

i k4 % Mﬁ - FJ::» 4
T Co8 TEM_prekiR ’*@ ¥ [; ol [;

Cytotoxicity Migration Coinhibitory molecules
1.0
06 T (] [}
0.10 ¢
08 . iy o3| 44 ¢
& o4 N Ll 0.08 ! ' H
Sos $ o ‘
5 (] ! 0.2
8 '
o 04 0.06
02
01
0.2 0.04 [
‘ 1
0.0 0.0 ‘e ¢ 0.0
[ S )
i << § CD8 Naive § CD8 TCM ¥ CD8 TEM_IL7R 1 CD8 TEM_GZMB
oy ey
agfag B CD8 TEM_KLRB1 M CD8 TEM_preKIR ¥ CD8 TEM_KIR

Figure 9. CD8 T cell distribution and gene set score by clonotypes. A. UMAP visualization of
CDS8 T cell subpopulations. B. Density plots showing CD8 T cell distribution across groups, with
cells subsampled to equal numbers for comparable visualization. C. Stacked bar plot showing the
relative proportions of subpopulations within CD8 T cells. D. Gene set scores for each CD8 T cell
subpopulation.

Interestingly, nearly half of the effector memory CD8 T cells in the NR group were
classified as CD8 TEM_GZMB, characterized by expression of potent cytotoxicity genes such as
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GNLY and GZMB, and these cells constituted all top clonotypes in the NR group (Figure 9A).
However, their high inhibitory molecule score and stable proportions before and after surgery

suggest they represent pre-existing chronic memory populations in the recipients (Figure 9C and
9ID)

In contrast, the AR group exhibited markedly elevated levels of CD8 TEM_KLRBI cells
before surgery compared to other groups (Figure 9C). The protein product of KLRB1, CD161, is a
marker for T cells with tissue-homing capacity, and previous studies have reported that CD8 T cells
expressing this marker display reduced susceptibility to immune exhaustion. Consistent with these
reports, this cluster maintained high cytotoxicity comparable to CD8 TEM_ GZMB cells while
exhibiting substantially lower expression of coinhibitory molecules (Figure 9D). Similar to the
aforementioned migratory and inflamed NK cell (Figure 7E), this cluster not only exhibited the
highest migratory score among effector memory CD8 T cell clusters but also showed a dramatic
reduction following surgery (Figure 9C and 9D). The remaining two clusters were predominantly
distributed in the AR group (Figure 9B) and uniquely exhibited increased clonotype sizes and
proportions following surgery (Figure 8C and 9C).

3.5 Monocytes Display Transcriptomic Divergence and Pro-Inflammatory
Signatures in Acute Rejection

Monocytes, which play crucial roles in innate immunity and transplant responses,
represented a substantial proportion of cells in our dataset. Given their importance in antigen
presentation and inflammatory regulation during allograft rejection, we performed comprehensive
characterization of monocyte heterogeneity and functional states. Monocytes are commonly
categorized into CD14-expressing classical monocytes (CD14 Mono) and CD16-expressing non-
classical monocytes (CD16 Mono) (Figure 10A). CD14 Mono clusters were further classified into
two subpopulations: CD14 Mono IL1B and CD14 Mono RNASE2, each with distinct marker
expression profiles (Figure 10B). The remaining CD14 Mono population exhibited elevated
expression of mitochondrial and ribosomal genes. We observed conserved patterns of monocyte
dynamics in both AR and NR groups. Both showed a decrease in CD14 Mono_IL1B and an increase
in CD14 Mono RNASE?2 following transplantation (Figure 10C and 10D).
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Figure 10. Distribution of monocytes subpopulations. A. UMAP visualization of monocyte
subpopulations. B. UMAP highlighting marker gene expression across monocyte subsets. C.
Stacked bar plot showing the relative proportions of subpopulations within monocytes. D. Density
plots showing monocyte distribution across groups, with cells subsampled to equal numbers for
comparable visualization.

Interestingly, the CD14 Mono IL1B population, which was predominant before surgery,
exhibited enhanced inflammatory signaling including interferon and TNF-a pathways (Figure 11),
as well as elevated expression of genes related to monocyte differentiation and antigen-presenting
cell function compared to other populations (Figure 12). Conversely, the post-surgically expanded
Mono_RNASE?2 population was enriched for pathways associated with OXPHOS, glycolysis, ROS
response, and vascular repair and fibrosis—processes integral to post-surgical recovery (Figure 11).
This cellular transition likely reflects comprehensive effects of post-surgical monocyte
reprogramming and immunosuppressive therapy.
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Figure 11. Enriched molecular pathways in each monocyte subpopulation.
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Figure 12. Gene set scores for each monocyte subpopulation.

These findings align with previous studies reporting a post-transplant decline in monocyte
antigen-presenting capacity and differentiation potential, accompanied by increased pattern
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recognition receptor (PRR) expression and proliferation during the early recovery phase—
characteristics exhibited by the CD14 Mono RNASE2 population (Figure 12). Furthermore, this
study identified RNASE2-expressing monocytes and secreted RNASE2 as potential indicators of
immune tolerance in the post-transplant setting. Regulon activity analysis revealed that ATF3, a
transcription factor consistently upregulated in AR group (Figure 4A), was predominantly
expressed and activated in CD14 Mono_IL1B (Figure 13A and 13B). Given that ATF3 is known to
exert dual roles in either promoting or suppressing immune responses, its precise function in
inflammatory monocytes—whether it amplifies inflammation or serves as a negative feedback
regulator—requires further investigation.
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Figure 13. Transcriptional activity of ATF3 in each subpopulation of monocyte. A. Mean
expression of ATF3 by group and monocyte subpopulation. B. Transcriptional activity of ATF3 by
group and monocyte subpopulation.

3.6 Cell-Cell Interaction Networks Maintain Higher Activity in Rejection
Cases
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Figure 14. Number and strength of cell-cell interactions detected per group

To assess the overall immune cell interactions based on the previously identified
phenotypic differences, we performed cell-cell interaction (CCI) analysis. Both NR and AR groups
exhibited a reduction in the number and strength of CCls after surgery, likely as a consequence of
high-dose immunosuppressant therapy (Figure 14). However, the AR group consistently maintained
higher interaction intensity, suggesting sustained immune cell activity despite immunosuppression.
Comparison of cell type contributions to signaling networks revealed that CD8 TEM_KLRB1, CDS8
TEM_preKIR, and CD8 TEM KIR—clusters previously highlighted in the AR group—exhibited
the most pronounced differences (Figure 15), primarily driven by the enhanced activation of ICAM
and PAR, CLEC, and MHC-I signaling pathways, respectively (Figure S6A-S6C). These findings
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Figure 15. interaction strength of receptors and ligands by cell types

Additionally, we previously identified monocytes as the cellular source of RETN (resistin),
a DEG marker in the AR group (Figure 2C). Further analysis revealed CD14 Mono RNASE2 as
the main resistin-expressing population (Figure 6SD) and confirmed its involvement in cell-cell
interactions with T cells and NK cells, particularly before surgery (Figure 16). This suggests that
the functional differences within tissue recovery-associated monocyte populations, rather than
inherently pro-inflammatory CD16 Mono or CD14 Mono IL1B subsets, may serve as potential
predictors of rejection.
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Figure 16. Relative importance of the RESISTIN interaction network by each cell types in AR
group.

4. DISCUSSION

Despite the extensive application of single-cell analysis in transplantation research, most
studies have predominantly focused on post-operative samples, with limited efforts to identify
predictive markers for rejection before surgery!®!124142 In this study, we investigated the immune
landscape of acute rejection by performing comprehensive single-cell transcriptomic analysis of
PBMC s from liver transplant recipients. Using genetic multiplexing to efficiently process multiple
samples, we uniquely analyzed paired pre- and post-transplant samples from the same patients,
enabling direct comparison of immune states before and after rejection onset. Our findings reveal
distinct pre-operative immune signatures and post-operative immune reprogramming patterns that
may contribute to allograft rejection.

Pre-operatively, AR patients exhibited an activated immune profile, with increased
NK_CD56bright and NK _terminal subsets showing enhanced cytotoxicity and pro-inflammatory
signaling. Their elevated IFN-y response and migration potential suggest a predisposition to



rejection. The post-operative decline in these subsets indicates their involvement in graft-directed
immune responses, though further validation is needed to determine their fate post-transplantation.

TCR repertoire analysis highlighted distinct clonal expansion dynamics in AR patients,
who maintained higher clonality post-operatively. AR-associated clonotypes were enriched in CDS8
TEM_KLRBI1, CD8 TEM preKIR, and CD8 TEM_KIR clusters. TEM_KLRBI, predominant in
pre-AR samples, exhibited high cytotoxicity and low inhibitory molecule expression, suggesting a
migratory and persistent effector phenotype. Its branching marker, COROI1A, is crucial for
alloreactive T cell survival, with studies suggesting its inhibition could promote tolerance®. If CD8
TEM_KLRBI1 cells represent cross-reactive alloreactive T cells infiltrating the graft to trigger
rejection, CORO1A inhibition might offer a highly specific suppression strategy.

Post-transplantation, CD8 TEM_KIR emerged as the dominant subset, exhibiting strong
inflammatory signatures linked to IRF1 and TYROBP activation. This population also exhibited
virus-specificity together with CD8 TEM preKIR, an intermediate population in its phenotypic
transition. The post-transplant expansion of these populations suggests that pre-existing virus-
specific memory T cells may be non-canonically stimulated in the allograft rejection context, leading
to bystander T cell formation. Bystander T cells are known to express NK receptors such as KIR,
and their involvement in allograft rejection has been reported in heart transplantation***>. Our
findings provide a basis for investigating whether similar mechanisms occur in liver transplantation.
These results indicate that CD8 T cells in AR patients undergo a phenotypic shift from Pre- transplant
migratory effector states toward a post-transplant inflammatory and cytotoxic profile, potentially
driving rejection events.

Monocyte subtypes also demonstrate distinct transcriptomic reprogramming following
transplantation. Both AR and NR groups exhibited a shift from inflammatory CD14 Mono IL1B to
CD14 Mono RNASE2. Notably, reduced expansion of CD14 Mono RNASE2 and persistent FOS-
expressing inflammatory monocytes have been linked to acute cellular rejection in liver
transplantation, suggesting that monocyte reprogramming could serve as an indicator of graft
acceptance!!.

Cell-cell interaction analysis revealed reduced interaction strength in both groups post-
transplantation, likely due to immunosuppression. However, AR patients maintained higher
interaction intensity, reflecting sustained immune activation. Key contributors included CDS8
TEM_KLRBI1, CD8 TEM KIR, and CD8 TEM preKIR, which exhibited enhanced antigen
presentation and cytotoxic signaling. Additionally, we identified CD14 Mono RNASE2 as the
primary source of RETN, an intrahepatic cytokine associated with liver inflammation and fibrosis*°.
This suggests that immune divergence between AR and NR is not solely driven by inflammatory
monocytes (e.g., CD14 Mono_IL1B) but may also involve tissue-repairing monocyte subsets with

differential signaling properties.

Furthermore, we identified five consistently upregulated genes (CCL3, GZMK, MXI,
RETN, ATF3) in both pre- and post-operative AR samples. Three of these genes (CCL3, GZMK,
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4150_were also

MX1)—Ilinked to leukocyte recruitment, cytotoxicity, and antiviral responses
confirmed to be significantly upregulated in a public large-scale liver biopsy dataset. The remaining
genes (RETN and ATF3) were confirmed to be functionally relevant as an activated transcription
factor and secreted ligand in rejection-associated monocytes. These persistent signatures
demonstrated strong discriminatory potential (AUC=0.90), highlighting their biological relevance

throughout the transplantation process and potential utility for clinical rejection risk assessment.

While PBMC analysis provides a window into systemic immune responses rather than
directly capturing events at the graft site, identifying robust peripheral biomarkers has significant
clinical advantages. The distinct cellular subsets we identified—particularly CD8 TEM_KLRBI,
CD8 TEM KIR, and CD14 Mono RNASE2—represent promising candidates for stratifying
recipients at risk of rejection. Future studies incorporating spatial transcriptomics and graft-
infiltrating immune cell profiling will complement our findings by further delineating their precise
contributions at the graft site.

S. CONCLUSION

This study identified distinct peripheral immune signatures predictive of acute rejection
before and after liver transplantation, including persistently upregulated genes such as CCL3,
GZMK, MX1, RETN, ATF3. These findings highlight the potential of PBMC-based transcriptomic
profiling as a non-invasive tool for early rejection risk assessment and future personalized

immunotherapy.
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Figure S1. Comprehensive single-cell profiling in liver transplant recipients.

(A) Dotplot showing normalized expression of major immune cell type marker in PBMCs. (B)
UMAP plot colored by canonical marker gene expression. (C) GSEA top enriched pathways for
each group.
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Figure S2. Pre-operative transcriptional signatures of acute rejection.

(A) Venn diagram showing pre- to post-transplantation upregulated (left) or downregulated (right)
genes in NR or AR groups. (B) Top enriched pathways detected by gProfiler for genes in each
compartment of the Venn diagram shown in (A). (C) Top enriched pathways detected by gProfiler
for DEGs of each group. (D) ROC curve for rejection decision model using liver biopsy bulk RNA
data (GSE145780). (E) Volcano plot displaying differential gene expression in Post-AR compared
to Post-NR (de_coeff > 0.5, FDR-corrected p-value < 0.05). (F) Dot plot showing enriched
molecular pathways in Post-AR samples across different cell types.
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Figure S3. Pre-operative T and NK cell modulation in acute rejection.

(A) Dot plot showing T and NK subtype marker gene expression. (B) UMAP plot colored by
canonical marker gene expression. (C) Heatmap showing normalized expression of NK
subpopulation marker genes detected by DEG analysis. (D) Top pathways of each NK subpopulation
detected by gProfiler using the marker genes.
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Figure S4. Clonal dynamics and phenotypic transitions of CD8 T cells in acute rejection.

(A) TCR clonality indicated by Gini index by group. (B) Effector memory CD8 T cell subpopulation
marker gene expression shown in UMAP. (C) Heatmap showing normalized expression of effector
memory CDS8 T cell subpopulation marker genes detected by DEG analysis. (D) Top pathways of
each effector memory CD8 T cell subpopulation detected by gProfiler using the marker genes. (E)
UMAP (left) showing the predicted epitope for each CD8 T cell and stacked bar plot (right) showing
predicted epitope proportion by group and CD8 T cell subpopulation. (F) NES plot for virus-related
pathways enriched in effector memory T cells in Pre-AR group. (G) Heatmap showing relative
activities of top regulons of each group.
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Figure S6. Differences in intercellular dynamics in acute rejection.

(A-C) Differentially activated interactions in Pre-NR versus Pre-AR (top) or Post-
NR versus Post-AR (bottom) for CD8 TEM KLRBI1 (left), CD8 TEM_ KIR
(middle), and CD8 TEM_preKIR (right). (D) Mean RETN expression by group and
monocyte subpopulations.
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1=False, 2=True; 1=M, 2=F (for sex); BMI, body mass index; HCC, hepatocellular carcinoma; MELD, model for end-stage liver disease; LCM, lymphocyte
cross-matching; OP, operation; RBC, red blood celll; FFP, fresh frozen plasma; PLT, platelet; gfail, graft-failure; ast, aspartate aminotransferase; alt, alanine
aminotransferase; inr, international normalized ratio; tbil, total bilirubin; tac, tacrolimus; mmf, mycophenolate mofetil; pod, post operative day

Table S1. Clinical metadata of samples
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Abstract in Korean

SUAE R A DY 71 TR YARAANE BAE BF Lol
3 A%

7P°]’“g 7] A g g A AEHY. 29y Xﬁﬂ Tl Ak oF 15—
w74 olAH AFREgo] AT AAA 27 S Xﬂﬂaol‘ﬂ, Ak
%@C’J A AH oES D QS & AFNAE 7}0 A TRk e
%ﬂ—ﬁr Y=g N A X (peripheral blood mononuclear cells, PBMCs) & tjAto =z
TAAE RNA A@A (single—cell RNA sequencing) % TAHXE FEA (T cell
receptor, TCR) d#¥HEZ +4& FIdsgor, T4 AFHE(acute rejection,
AR) % A#d A4 EHES i EelS.

AFNEgo] WS FAEL T AFE 5olAl WY AHE Hlon, 454
AFAAS A E(NK cells), & 4% effector memory CD8 T A, ®wighy 3
ofgo]l SRR ow HEHGE. o2 F old WANEES A &2 dF wb
et om, A A5 stellA L HfolelA So]# CD8 T AME7F F-3HA
el 5 AR 5olF AlZz ol olcﬂmu

e b B |

CCL3, GZMK, MX1, RETN, ATF3 & WAl 7l Fdx4= ¢+ A% S4AFS
2} MZox] &R ow A zAES. o] F CCL3, GZMK, MX1< ojit:
T b 22 AR dHolEAAE A FAFHoEZe] HFHJoHW, #Z
WM {5 AEZEA, o]y A vk AEE 98-S £33 RETNY ATF3:=
AR Ay g oA 7z Fuly s 9 s FJARIAIR T]FAHoR
EAQAR S, ol#d FHAE ol&d FA AFHES HFERAE 53 oAF
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