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ABSTRACT 

 

Prediction of Acute Graft Rejection after Liver Transplantation by 

Single Cell RNA Sequencing Analysis Using Peripheral Blood 

Mononuclear Cell 

 

Liver transplantation remains a definitive therapy for end-stage liver disease; however, 

acute allograft rejection occurs in 15–30% of recipients. Early prediction is limited by the 

incomplete characterization of subclinical immune alterations, and diagnosis still depends on 

invasive histological biopsies. Single-cell RNA sequencing and T cell receptor (TCR) repertoire 

analysis of peripheral blood mononuclear cells (PBMCs) from matched liver transplant recipients 

before and after surgery revealed molecular signatures associated with acute rejection (AR). Patients 

who later developed AR exhibited distinct pre-operative immune states, including inflamed natural 

killer (NK) cells, clonally expanded effector memory CD8 T cells, and altered monocyte subsets. 

Following transplantation, these immune cells underwent rejection-specific reprogramming 

characterized by persistent pro-inflammatory activity and an enrichment of virus-specific CD8 T 

cells, despite immunosuppression. Five genes—CCL3, GZMK, MX1, RETN, and ATF3—were 

consistently upregulated in both pre- and post-operative AR samples. Among them, CCL3, GZMK, 

and MX1 were independently validated using a public large-scale liver biopsy dataset, confirming 

their roles in leukocyte recruitment, cytotoxicity, and antiviral response. RETN and ATF3were 

enriched in rejection-associated monocytes and functionally annotated as a secreted ligand and an 

activated transcription factor, respectively. These persistent gene signatures demonstrated strong 

predictive performance (AUC = 0.90) for AR. These findings provide a foundation for non-invasive 

risk stratification and early diagnosis of acute rejection, and highlight potential targets for 

personalized immunomodulatory therapy in liver transplantation. 

                                                                      
Key words : Liver transplantation, Acute rejection, Single-cell RNA sequencing, Peripheral blood 

mononuclear cells
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1. INTRODUCTION 

Liver transplantation (LT) is the only effective treatment for patients with end-stage liver 

disease. Significant advances in surgical techniques and immunosuppressive therapies have 

markedly improved survival rates of transplant recipients1. Despite the liver's relative immune 

privilege compared to other transplanted organs, acute rejection occurs in approximately 15-30% of 

cases, representing a major complication that significantly impacts allograft survival2,3. Therefore, 

early detection and timely intervention for acute rejection are critical for optimizing transplant 

outcomes. 

Histopathological assessment of liver biopsy specimens, interpreted through the rejection 

activity index (RAI), has traditionally been considered the gold standard for diagnosing acute 

rejection4. However, RAI scores do not consistently correlate with clinical deterioration of graft 

function5,6, and this invasive procedure carries significant risks, particularly bleeding complications 

during the early post-transplant period7. These limitations underscore the need for complementary 

diagnostic approaches8.  

 Elucidating the cellular and molecular alterations in the recipient's peripheral immune 

compartment is essential for identifying non-invasive early predictors of acute allograft rejection. 

However, comprehensive studies examining both pre- and post-transplant immunological 

phenotypes in patients who develop rejection remain limited9–12. Here, we identified predictive 

molecular signatures of acute allograft rejection through integrated single-cell RNA sequencing and 

T cell receptor (TCR) repertoire analysis on paired peripheral blood mononuclear cell (PBMC) 

samples collected from the same patients before and after transplantation. 

 

2. MATERIALS AND METHODS 

 

2.1 Experimental model and subject details 

We performed case-control matched analyses using data from patients who underwent LT 

between May 2020 and December 2022 at Severance Hospital, Korea. The Inclusion criteria were 

adult patients (≥18 years) undergoing first-time liver transplantation. Exclusion criteria included 

multi-organ transplantation. PBMCs were prospectively collected at five time points: pre-LT, 1 week, 

2 weeks, 1 month, and 2 months post-LT.  

Acute rejection was defined by biopsy-proven rejection or clinical diagnosis. For six patients whose 

PBMCs were available within 3 days before acute rejection, control patients without rejection were 

matched at corresponding time points of acute rejection in a 1:1 manner. Patient matching was 

performed manually based on clinical variables previously reported in the literature associated with 
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rejection. The variables were prioritized as follows: autoimmune hepatitis, retransplantation, ABO 

incompatibility, unrelated donor, donor age, and lymphocyte cross-matching. Each patient group 

was matched accordingly to ensure comparability and control for confounding factors. If multiple 

controls were available after matching the above variables, the following variables were considered: 

age, sex, HCC, pretransplant MELD, and BMI. A total of 24 samples from the 12 matched patients 

(6 AR, 6 NR) were analyzed, comprising 12 pre- and 12 post-operative samples. 

The study was approved by the Institutional Ethics Committee (4-2016-0323), and all participants 

provided written informed consent. All patient clinical characteristics are shown in Table S1. 

 

2.2 Method details 

2.2.1 PBMC Isolation  

PBMCs were isolated from whole blood using HISTOPAQUE-1077 (Sigma-Aldrich, St. 

Louis, MO) density gradient centrifugation. Briefly, blood was diluted 1:1 with phosphate-buffered 

saline (PBS; Gibco, Waltham, MA), layered over HISTOPAQUE, and centrifuged at 400 × g for 30 

minutes at room temperature. Following centrifugation, the plasma layer was gently removed with 

a transfer pipet, and the PBMC layer at the interface was carefully transferred into a new conical 

tube. The PBMCs were subsequently washed twice with 40 mL of cold 2% fetal bovine serum (FBS) 

in PBS and centrifuged at 300 × g for 10 minutes at 4°C. Finally, the cells were cryopreserved using 

CELLBANKER 2 (Zenoaq Resource, Fukushima, Japan). Cryopreserved PBMCs were partially 

thawed rapidly at 37°C prior to use in analyses. The cells were carefully mixed with a washing 

medium (RPMI-1640 [Gibco] containing 20% FBS) in a dropwise manner to minimize osmotic 

shock. The volume was then adjusted to 10 mL with washing medium, and the cells were centrifuged 

at 300 × g for 10 minutes at room temperature. After centrifugation, the cell pellet was resuspended 

in 10 mL of washing medium, followed by cell counting. The cells were subsequently centrifuged 

again, and the resulting pellet was used for downstream analyses. 

2.2.2 Bulk RNA sequencing and analysis 

Thawed PBMCs were lysed in TRIzol reagent for RNA extraction and subsequent library 

preparation. RNA purification, cDNA library preparation, and sequencing were performed by 

Macrogen using the Illumina NovaSeq 6000 system. The raw FASTQ files were first processed by 

trimming reads using Trimmomatic (v0.39)13, followed by alignment to the GRCh38 human 

reference genome (Ensembl release 98) with STAR (version 2)14 and GENCODE v32 annotations. 

Gene-level read counts were generated using HTSeq-count (v0.11.2) with GENCODE v32 

comprehensive annotations, including chromosomes, patches, haplotypes, and scaffolds. HTSeq-

count was run in 'intersection-nonempty' mode, accounting for strand-specific information, with 
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'gene_id' as the feature ID and 'gene_name' as an additional attribute15. Differential gene expression 

analysis was performed using DESeq216. For donor-specific variant references required for sample 

demultiplexing, aligned BAM files were processed according to the GATK 'SNP Calling from RNA-

seq Data' pipeline17. 

2.2.3 10x Genomics and single cell sequencing 

For the first sequencing set, pre- and post-operative samples were tagged by 1 μg 

BioLegend TotalSeq-C hashtag antibodies (C0251 and C0252, respectively) after Fc blocking by 

Human TruStain FcX (BioLegend, San Diego, CA). Cells were washed and suspended in 0.04% 

bovine serum albumin (BSA; Invitrogen, Waltham, MA) PBS solution. After the filtration through 

a 70 μm Flowmi cell strainer (Bel-Art SP, Wayne, NJ), samples were pooled and loaded on a 

Chromium X controller (10X Genomics , Pleasanton, CA). For the second set of sequencing, pre- 

and post-operative samples were separately loaded on GEM wells. For each set of experiments, 

approximately 70,000 cells per well were loaded into two wells of a Chromium Next GEM Chip K 

(10x Genomics). Sequencing libraries were generated using 10x Chromium Single Cell VDJ & 5' 

Gene Expression library and Gel Bead kits (10x Genomics) according to the manufacturer's protocol 

CG000330 Rev F. To produce hashtag antibody libraries, 0.2 μg of TotalSeq-C additive primer 

(Integrated DNA Technologies, Coralville, IA) was spiked in at the cDNA amplification step. Small 

size-selected amplified cDNA samples were used as templates for i7 indexing. Sequencing for Gene 

Expression, VDJ, and HTO libraries was performed on an Illumina NovaSeq 6000 system (Illumina, 

San Diego, CA). 

2.2.4 Raw data processing 

RNA and VDJ read alignment was performed using 10x Genomics Cell Ranger v7.1.0 

with the 'multi' pipeline. Gene expression reads were aligned to the GRCh38 human reference 

genome (Ensembl release 98, 10x Genomics GRCh38-2020-A). For V(D)J analysis, reads were 

aligned to the GRCh38 human reference genome with alternative contigs and Ensembl V(D)J 

annotations (Ensembl release 98). We employed the CellBender algorithm for cell identification and 

count correction to mitigate background noise and enhance data quality18.  

2.2.5 Genetic variant-based donor demultiplexing 

Donor IDs within the same sequencing pool were demultiplexed using Souporcell19, 

utilizing genetic variant references derived from bulk RNA sequencing data of each patient. The 

demultiplexing process was performed using the Demuxafy pipeline20. The GRCh38 human 

reference genome (10x Genomics, 2020-A) was used as the reference sequence. A custom VCF file 

containing filtered minor allele frequency (MAF) > 10% variants was used for known genotypes. 
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The demultiplexing was performed on cell barcodes identified by CellBender, using the aligned 

BAM files from Cell Ranger output. 

2.2.6 Quality control 

To ensure the integrity of the cells used in downstream analysis, damaged or obsolete cells 

and genes were initially removed. Quality control was then applied by excluding cells that did not 

meet the following criteria: mitochondrial gene content < 20%; total UMI counts between 600 and 

20,000 for the first dataset and between 1,000 and 20,000 for the second dataset; gene counts per 

cell between 400 and 5,000 for the first dataset and between 500 and 5,000 for the second dataset; 

hemoglobin gene content < 0.4%; and ribosomal gene content > 6%. Additionally, genes expressed 

in fewer than ten cells were filtered out to further refine the data. 

2.2.7 Sample assignment through a hashtag 

Hashtag reads were quantified as antibody expression using Cell Ranger. Sample 

assignment was performed on quality-controlled cell barcodes using the HTODemux 21 from the 

Seurat v4.3.022. HTODemux was run with the following parameters: initialization with 3 clusters, a 

positive quantile threshold of 0.9, and the 'Clara' k-means clustering algorithm. The positive quantile 

threshold was adjusted to identify approximately 20-25% of cells as doublets, accounting for the 

intentional cell overloading during sample preparation. The random seed was set for reproducibility.  

2.2.8 Preprocessing and multiplet removal 

Following the normalization of cell counts by the median total counts, the data were log-

transformed. Prior to multiplet removal, batch correction, and preliminary annotation were 

performed using scVI23 and scANVI24. For this purpose, data from two QC-filtered sets were merged, 

and 3,161 highly variable genes (HVGs) common to the reference dataset (dbGaP: 

phs002315.v1.p122) were selected using the 'highly_variable_genes' function from the Scanpy 

v1.9.325, specifically employing the 'seurat_v3' flavor. The model was initialized using scVI, with 

general model training conducted for 300 epochs. Individual sample IDs were used as batch keys 

for highly variable gene (HVG) selection and model setup. Subsequently, reference training with 

scANVI was carried out for 40 epochs, using 100 samples per label. Query data training was 

performed with 500 max epochs. Thirty latent space dimensions generated from this process were 

used to compute neighbors based on Euclidean distance. Leiden clustering with a resolution of 3.0 

was then applied to the data. Among the 71 clusters identified, those with DoubletDetection26 and 

Scrublet27 scores exceeding 0.25 and 50, respectively, or predicted as doublets through the label 

transfer, were removed as potential doublets. These thresholds were determined after confirming 

actual doublet status through hashtag assignment and by validating the co-expression of markers 

from different cell types within each cluster. The final set of cells underwent reprocessing to ensure 
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optimal downstream analysis. After the gene filtering, the top 2,000 HVGs were identified using the 

Seurat v3 method implemented in Scanpy Log-normalized counts were scaled to unit variance and 

zero mean, with a maximum value cap of 10.0. Principal Component Analysis (PCA) was performed 

on the scaled counts of HVGs. The Harmony algorithm was applied to the PCA results to correct 

batch effects, using the batch ID as the key for integration. A neighborhood graph was constructed 

using cosine distance in the Harmony-corrected latent space. Finally, Uniform Manifold 

Approximation and Projection (UMAP) was used for dimensional reduction and visualization of the 

data in two dimensions. 

2.2.9 Enrichment analysis 

Cellular processes and phenotypes were identified using gene set enrichment analysis 

(GSEA) through the prerank function of GSEApy28. For group comparisons in minor cell types, 

genes ranked by 'rank_genes_groups' in Scanpy using the Wilcoxon test with Benjamini-Hochberg 

correction were used as input. For major cell types, stat-ordered genes from the pseudo-bulk DEG 

analysis were utilized. Over-representation analysis for functional annotation of DEGs was 

conducted using gProfiler29, with the ‘queries.enrich’ function from Scanpy. The activity of specific 

gene signatures was scored as the Area Under the Curve (AUC)30. User-defined genes below a 

specific percentile threshold are selected and ranked accordingly. Cumulative weights are then 

calculated based on this order. The AUC is computed as the weighted sum of rank differences and 

is normalized by dividing by the maximum possible AUC value.  

2.2.10 Gene regulatory network analysis 

SCENIC was used to reconstruct the gene regulatory network, with transcription factor 

(TF) enrichment and regulatory factor activity inferred through the pySCENIC pipeline30. A motif-

based approach was employed, utilizing specific motif and rank files to refine regulons. The 

GRNBoost2 algorithm was applied for gene regulatory network inference, generating co-expression 

modules from the inferred adjacency matrix31. These modules were then pruned using the 'prune2df' 

function to evaluate the significance of each regulatory interaction. Cellular enrichment of each 

regulon was assessed using the AUCell algorithm, and the top regulon was identified based on the 

Regulon Specificity Score (RSS). 

2.2.11 T cell receptor analysis 

TCR analysis was conducted using Scirpy v0.13.132 and Muon v0.1.533. Productive TCR 

chains and pairs were assessed with the 'index_chains' and 'chain_qc' functions. T cell clones were 

identified using the 'define_clonotypes' function based on primary TCR nucleotide identity, while 

clonotype clusters were determined with the 'define_clonotype_clusters' function, using amino acid 

alignment. Clonotype enrichment for each group was evaluated using the 'clonotype_imbalance' 
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function. Clonotype alpha diversity was measured using the Gini index and normalized Shannon 

entropy. Additionally, epitope prediction for each clonotype was performed through alignment on 

VDJdb34. 

2.2.12 Classification model 

For the classification model to assess the discriminatory potential of rejection-associated 

genes, we implemented a machine learning approach using logistic regression. Expression values 

were extracted from a public large-scale liver biopsy dataset (GSE145780) and standardized using 

z-score normalization. To ensure robust performance evaluation, we employed a 5-fold stratified 

cross-validation approach, maintaining consistent class distribution across all folds. The model 

performance was evaluated using receiver operating characteristic (ROC) curve analysis, with the 

area under the curve (AUC) as the primary metric. All analyses were performed using scikit-learn 

v1.3.0 in Python v3.10.13.` 

2.2.13 Trajectory analysis 

Pseudo-time calculation and trajectory inference were performed using scFates v1.0.635. 

Initially, a target cell population was subsetted, and neighbors were defined in the harmony-corrected 

latent space. A diffusion map was constructed using Scanpy's ‘tl.diffmap’ function. Based on the 

specified diffusion map components, neighbor calculations, and Leiden clustering were carried out. 

A Partition-based Graph Abstraction (PAGA) graph was then created using the Fruchterman-

Reingold algorithm, and the graph was visualized with Scanpy's ‘tl.draw_graph’. Trajectory trees 

were constructed using the ‘tl.tree’ function from scFates with the Palantir Pseudotime Trajectories 

(PPT) method. The root tip was determined based on T cell naïve markers (CCR7, SELL, TCF7), 

and pseudo-time was calculated. Milestones, branches, and forks were defined, and genes associated 

with pseudo-time were fitted using the ‘test_association’ and ‘tl.fit’ functions. Finally, differentially 

expressed genes (DEGs) for each trajectory were identified using ‘tl.test_fork’. 

2.2.14 Cell-cell interaction analysis 

Cell-cell interaction inference was performed using CellChat v1.5.036. The anndata objects 

for each group were converted into CellChat objects, and signaling genes were identified using the 

‘identifyOverExpressedGenes’ function. Interaction pairs were then determined based on the 

CellChatDB.human database, excluding non-protein signaling. Communication probability was 

calculated using the ‘computeCommunProb’ function with the triMean method, and pathways were 

inferred using the ‘computeCommunProbPathway’ function, considering only communications 

involving at least 10 cells. 

2.3 Quantification and statistical analysis 
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For differential gene expression analysis, we used Memento v0.1.037 with a differential 

expression coefficient (de_coef) threshold of 0.5 and FDR-corrected p-value threshold of 0.05 for 

comparisons across groups. For four-group GSEA dot plots, top enriched pathways were selected 

using Normalized Enrichment Score (NES) >0 and FDR-corrected q-value <0.1. For Pre-NR versus 

Pre-AR enriched pathways dot plots, GSEA results with |NES| >0.5 and FDR-corrected q-value <0.1 

were selected. For monocyte subpopulation top enriched pathway dot plots, |NES| >0.5 and FDR-

corrected q-value <0.1 were used to adjust the number of pathways shown in plots. For gProfiler 

pathway visualization, we selected the top 10 or 15 pathways with g:GOSt-corrected p-value <0.01 

and size <1500. 

Cell type proportion in stacked bar plots within each group was not normalized. However, 

group proportions within specific subsets of cells were normalized by the total cell count of each 

group for that subset, enabling fair comparison between groups for subpopulations. When plotting 

density plots from the immune subtype level, cells from each group were subsampled to match the 

minimum cell count among groups, equalizing the total cell count in each density plot. For statistical 

testing of cell proportion bar plots, we used the Wilcoxon test for paired samples (within NR or AR 

groups) and Mann-Whitney test for unpaired samples (between NR and AR groups). For statistical 

analysis of liver biopsy bulk RNA expression data, the Mann-Whitney test was applied. 

 

3. Results 

3.1 Comprehensive Single-Cell Profiling Reveals Dynamic Immunological 

Changes Following Liver Transplantation 

We collected paired pre- and post-operative PBMC samples from recipients who experienced 

acute rejection (Pre-AR or Post-AR; n = 6) and those who did not (Pre-NR or Post-NR; n = 6) 

(Figure 1). AR and NR cases were matched in pairs based on clinical parameters, such as age, gender, 

presence of hepatocellular carcinoma (HCC), autoimmune status, ABO compatibility, and donor age. 

In the AR group, post-operative samples were collected proximal to biopsy-confirmed or clinically 

diagnosed rejection episodes. Corresponding post-operative samples from the NR group were 

obtained at equivalent time points to enable direct comparative analysis. 
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Figure 1. Schematic illustration of experimental design 

 

We performed integrated single-cell RNA and TCR sequencing on a total of 24 samples, 

yielding 56,077 high-quality PBMCs after quality control filtering. Cells were initially categorized 

into eight major lineages—CD4 T cells, CD8 T cells, unconventional T cells, natural killer (NK) 

cells, monocytes, dendritic cells (DCs), B cells, and hematopoietic stem and progenitor cells 

(HSPCs)—based on canonical lineage marker expression (Figure 2A, S1A, and S1B). As illustrated 

in Figure 2B, both AR and NR samples exhibited substantial alterations in cellular distribution on 

UMAP dimensionality reduction. This transcriptional remodeling was further reflected in principal 

component analysis of pseudobulk profiles from individual samples (Figure 2C), highlighting the 

dramatic immunological dynamics induced following transplantation. Quantitative compositional 

analysis revealed distinct shifts in major immune cell populations between groups (Figure 2D). The 

NR group demonstrated a more pronounced expansion in monocyte proportions post-transplantation 

compared to the AR group. Conversely, the AR group maintained consistently higher proportions of 

CD8 T cells, despite their post-transplant reduction, and uniquely exhibited increased CD4 T cell 

frequencies after transplantation. Differentially expressed genes (DEGs) and subsequent gene set 

enrichment analysis revealed pre-transplant enrichment of T cell activation signatures and 

cytokine/chemokine networks in the Pre-AR group, while immunoglobulin-related pathways and 

antigen presentation mechanisms were overrepresented in the NR group (Figure 2E and 2F). Post-

transplantation, both groups shared upregulation of blood vessel morphogenesis and apoptotic 

pathways, with more robust secretory granule activity in the NR group and enhanced pro-

inflammatory cytokine responses in the AR group (Figure 2F). 
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Figure 2. Comprehensive single-cell profiling in liver transplant recipients. A. UMAP 

visualization of major immune cell populations. B. Density plots showing relative cell distribution 

within each group using Gaussian kernel density estimation (scale 0-1). C. PCA plot of pseudobulk 

expression profiles for individual samples. D. Cellular composition analysis across groups (top) and 

individual samples (bottom). E. Heatmap of DEGs (de_coeff > 0.5, FDR-corrected p-value < 0.05) 

in each group with normalized expression values. F. Dot plot showing top 10 enriched pathways for 

each group identified by GSEA. 

 

3.2 Pre-transplant Immune Activation Markers Associate with Rejection 

We next delineated the molecular predisposition to rejection. Correlation analysis of gene 

expression fold changes following transplantation revealed general consistency between AR and NR 

groups (r = 0.68), but with distinct immunological signatures, as evidenced by the limited overlap 

of differentially expressed genes (DEGs) between groups (Figure 3A). We identified intrinsic 

transcriptional differences in the AR group before surgery, characterized by upregulation of 28 genes, 

including various chemokines/cytokines and effector/activation markers such as CD69, ATF3, 
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GZMK, IL1B, CCL4, and CCL3 (Figure 3B and S2C), with distinct cellular sources for each 

(Figure 3C).  

 

Figure 3. Differential gene expressions by rejection groups and immune cell types. A. Scatter 

plot showing correlation of post-transplant gene expression changes in NR (x-axis) and AR (y-axis) 

groups. Pearson correlation coefficient is indicated as r. B. Volcano plot displaying differential gene 

expression in Pre-AR compared to Pre-NR (de_coeff > 0.5, FDR-corrected p-value < 0.05). C. 

Heatmap illustrating cell type-specific expression patterns of pre-operative DEGs across major 

immune cell populations. 

 

Notably, 5 of these 28 genes with known immune-activating functions remained 

consistently upregulated through the time of rejection (Figure 4A). To determine whether these 

peripheral blood transcriptional changes correlated with events at the site of rejection, we examined 

gene expression in liver biopsy specimens from rejection patients. This analysis confirmed the 
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upregulation of CCL3, GZMK, and MX1 in the public bulk RNA-seq data of liver biopsy (Figure 

4B), while the remaining genes (RETN and ATF3) may represent peripheral blood-specific 

features38.  

 

 

Figure 4. Genes upregulated in the AR group. A. Venn diagram showing the intersection between 

DEGs upregulated in AR in both pre- and post-operative samples. B. Expression in liver tissue 

biopsy bulk RNA-seq data. Statistical significance was determined using the Mann-Whitney test 

(****p ≤ 0.0001).  

 

Additionally, a rejection classification model incorporating these genes demonstrated an 

AUC of 0.90 (Figure 5), suggesting their potential utility as non-invasive biomarkers for 

predicting or diagnosing acute rejection. 

 

Figure 5. ROC curve for rejection decision model using liver biopsy bulk RNA data 
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(GSE145780) 

 

Cell type-specific comparison between Pre-NR and Pre-AR samples revealed that the 

predisposed differences in immune-related pathways were primarily derived from NK cells, T cells, 

and monocytes (Figure 6). Although monocytes in the Pre-AR group exhibited diminished antigen 

presentation capacity and reduced energy metabolism (oxidative phosphorylation and TCA cycle 

activity; Figure 6), post-transplant antigen presentation-related genes were significantly upregulated 

in the AR group, suggesting that monocyte function becomes fully activated during the rejection 

process. 

 

Figure 6. Enriched molecular pathways in Pre-AR samples across different cell types. 

 

3.3 NK Cell Subsets Show Distinct Inflammatory and Migratory Features in 

Pre-Rejection States 

Moving beyond gene marker analysis, we sought to characterize predisposed immune 
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heterogeneity at the cellular subtype level. We performed in-depth analysis of NK and T cells, which 

exhibited activated phenotypes in Pre-AR samples (Figure 6), by conducting detailed subtype 

annotation (Figure 7A). Quantitatively, both AR and NR groups demonstrated a decrease in central 

memory populations and an increase in naïve populations within CD4 and CD8 T cell compartments 

(Figure 7B). NK cells showed a significant increase exclusively in the NR group. To examine 

qualitative differences in NK cells, we classified them into four distinct clusters based on marker 

gene expression (Figure 7C). 

As a shared feature induced by surgery, both groups exhibited increased proportions of 

NK_injury cells, characterized by elevated expression of platelet-related genes (Figure 7D and 3E). 

Meanwhile, the NR group consistently maintained higher proportions of NK_adaptive cells, which 

are characterized by extended longevity and memory phenotype39,40 (Figure 7F). In contrast, the 

AR group had a higher pre-operative proportion of NK_CD56bright and NK_terminal clusters. 

Although NK_terminal cells exhibited cytotoxicity gene scores comparable to NK_adaptive cells 

they displayed activated chemokine signaling and, together with NK_CD56bright cells, showed 

elevated scores for inflamed NK signature, IFNγ response, and migration potential (Figure 7F). 

Post-operatively, the proportion of NK_CD56bright and NK_terminal cells decreased in the AR 

group, yet NK stimulation via IFN-γ signaling remained sustained after surgery (Figure 7F and 3G). 

 

Figure 7. Pre-operative T and NK cell modulation in acute rejection. A. UMAP visualization of 

NK and T cell subtypes. B. Bar plots showing proportions of NK and T cell subtypes across groups. 

Statistical significance was determined using Wilcoxon test for paired samples (within NR or AR) 
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and Mann-Whitney test for unpaired samples (between NR and AR). C. UMAP visualization of NK 

cell subpopulations. D. Density plots showing NK cell distribution across groups, with cells 

subsampled to equal numbers for comparable visualization. E. Stacked bar plot showing the relative 

proportions of subpopulations within NK cells. F. Gene set scores for each NK cell subpopulation. 

G. Enrichment plots comparing interferon γ response pathways between NR versus AR groups Pre- 

(top) and post-transplantation (bottom). 

 

3.4 CD8 T Cell Clonal Dynamics Reveal Different Evolutionary Paths in 

Rejection versus Non-Rejection 

For T cells, we performed TCR analysis to investigate whether clonal expansion 

contributed to graft rejection (Figure 8A). While both groups showed decreased clonality post-

transplantation, the AR group consistently maintained higher clonality compared to the NR group 

(Figure 8B). Notably, examination of the top 10 clonotypes by clone size revealed that they were 

almost exclusively specific to either the AR or NR group, with the majority belonging to the effector 

memory CD8 T cell (CD8 TEM) compartment (Figure 8C). To determine whether these dominant 

clonotypes in AR and NR groups represented distinct phenotypic populations, we analyzed their 

distribution across CD8 T cell clusters. 
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Figure 8. Clonotype size distribution across NK and T cell subsets. A. UMAP plot showing 

clonotype size distribution across NK and T cell subsets. B. Distribution of clonotype sizes in each 

experimental group. C. Group (left) and subtype composition (right) of the top 10 clonotypes. Group 

compositions were normalized by cell counts of each group. 

Effector memory CD8 T cells were further subdivided into five populations based on 

marker gene expression (Figure 9A, and S4C). Among these, CD8 TEM_IL7R cells, which express 

progenitor-exhausted T cell (Tpex) markers such as GZMK and IL-7R, were uniformly distributed 

across all groups (Figure 9B and 9C). Consistent with known Tpex characteristics, these cells 

exhibited relatively low cytotoxicity and moderate expression of coinhibitory molecules (Figure 

9D). Their low clonality suggests that they are a population composed of diverse, newly 

differentiating clones. 

 

Figure 9. CD8 T cell distribution and gene set score by clonotypes. A. UMAP visualization of 

CD8 T cell subpopulations. B. Density plots showing CD8 T cell distribution across groups, with 

cells subsampled to equal numbers for comparable visualization. C. Stacked bar plot showing the 

relative proportions of subpopulations within CD8 T cells. D. Gene set scores for each CD8 T cell 

subpopulation. 

Interestingly, nearly half of the effector memory CD8 T cells in the NR group were 

classified as CD8 TEM_GZMB, characterized by expression of potent cytotoxicity genes such as 
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GNLY and GZMB, and these cells constituted all top clonotypes in the NR group (Figure 9A). 

However, their high inhibitory molecule score and stable proportions before and after surgery 

suggest they represent pre-existing chronic memory populations in the recipients (Figure 9C and 

9D) 

In contrast, the AR group exhibited markedly elevated levels of CD8 TEM_KLRB1 cells 

before surgery compared to other groups (Figure 9C). The protein product of KLRB1, CD161, is a 

marker for T cells with tissue-homing capacity, and previous studies have reported that CD8 T cells 

expressing this marker display reduced susceptibility to immune exhaustion. Consistent with these 

reports, this cluster maintained high cytotoxicity comparable to CD8 TEM_GZMB cells while 

exhibiting substantially lower expression of coinhibitory molecules (Figure 9D). Similar to the 

aforementioned migratory and inflamed NK cell (Figure 7E), this cluster not only exhibited the 

highest migratory score among effector memory CD8 T cell clusters but also showed a dramatic 

reduction following surgery (Figure 9C and 9D). The remaining two clusters were predominantly 

distributed in the AR group (Figure 9B) and uniquely exhibited increased clonotype sizes and 

proportions following surgery (Figure 8C and 9C).  

 

3.5 Monocytes Display Transcriptomic Divergence and Pro-Inflammatory 

Signatures in Acute Rejection 

Monocytes, which play crucial roles in innate immunity and transplant responses, 

represented a substantial proportion of cells in our dataset. Given their importance in antigen 

presentation and inflammatory regulation during allograft rejection, we performed comprehensive 

characterization of monocyte heterogeneity and functional states. Monocytes are commonly 

categorized into CD14-expressing classical monocytes (CD14 Mono) and CD16-expressing non-

classical monocytes (CD16 Mono) (Figure 10A). CD14 Mono clusters were further classified into 

two subpopulations: CD14 Mono_IL1B and CD14 Mono_RNASE2, each with distinct marker 

expression profiles (Figure 10B). The remaining CD14 Mono population exhibited elevated 

expression of mitochondrial and ribosomal genes. We observed conserved patterns of monocyte 

dynamics in both AR and NR groups. Both showed a decrease in CD14 Mono_IL1B and an increase 

in CD14 Mono_RNASE2 following transplantation (Figure 10C and 10D).  
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Figure 10. Distribution of monocytes subpopulations. A. UMAP visualization of monocyte 

subpopulations. B. UMAP highlighting marker gene expression across monocyte subsets. C. 

Stacked bar plot showing the relative proportions of subpopulations within monocytes. D. Density 

plots showing monocyte distribution across groups, with cells subsampled to equal numbers for 

comparable visualization.  

 

Interestingly, the CD14 Mono_IL1B population, which was predominant before surgery, 

exhibited enhanced inflammatory signaling including interferon and TNF-α pathways (Figure 11), 

as well as elevated expression of genes related to monocyte differentiation and antigen-presenting 

cell function compared to other populations (Figure 12). Conversely, the post-surgically expanded 

Mono_RNASE2 population was enriched for pathways associated with OXPHOS, glycolysis, ROS 

response, and vascular repair and fibrosis—processes integral to post-surgical recovery (Figure 11). 

This cellular transition likely reflects comprehensive effects of post-surgical monocyte 

reprogramming and immunosuppressive therapy.  
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Figure 11. Enriched molecular pathways in each monocyte subpopulation. 

 

Figure 12. Gene set scores for each monocyte subpopulation. 

These findings align with previous studies reporting a post-transplant decline in monocyte 

antigen-presenting capacity and differentiation potential, accompanied by increased pattern 
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recognition receptor (PRR) expression and proliferation during the early recovery phase—

characteristics exhibited by the CD14 Mono_RNASE2 population (Figure 12). Furthermore, this 

study identified RNASE2-expressing monocytes and secreted RNASE2 as potential indicators of 

immune tolerance in the post-transplant setting. Regulon activity analysis revealed that ATF3, a 

transcription factor consistently upregulated in AR group (Figure 4A), was predominantly 

expressed and activated in CD14 Mono_IL1B (Figure 13A and 13B). Given that ATF3 is known to 

exert dual roles in either promoting or suppressing immune responses, its precise function in 

inflammatory monocytes—whether it amplifies inflammation or serves as a negative feedback 

regulator—requires further investigation. 

 

Figure 13. Transcriptional activity of ATF3 in each subpopulation of monocyte. A. Mean 

expression of ATF3 by group and monocyte subpopulation. B. Transcriptional activity of ATF3 by 

group and monocyte subpopulation. 

3.6 Cell-Cell Interaction Networks Maintain Higher Activity in Rejection 

Cases 
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Figure 14. Number and strength of cell-cell interactions detected per group 

 

To assess the overall immune cell interactions based on the previously identified 

phenotypic differences, we performed cell-cell interaction (CCI) analysis. Both NR and AR groups 

exhibited a reduction in the number and strength of CCIs after surgery, likely as a consequence of 

high-dose immunosuppressant therapy (Figure 14). However, the AR group consistently maintained 

higher interaction intensity, suggesting sustained immune cell activity despite immunosuppression. 

Comparison of cell type contributions to signaling networks revealed that CD8 TEM_KLRB1, CD8 

TEM_preKIR, and CD8 TEM_KIR—clusters previously highlighted in the AR group—exhibited 

the most pronounced differences (Figure 15), primarily driven by the enhanced activation of ICAM 

and PAR, CLEC, and MHC-I signaling pathways, respectively (Figure S6A-S6C). These findings 

support the central role of these clusters in allograft rejection. 
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Figure 15. interaction strength of receptors and ligands by cell types 

 

Additionally, we previously identified monocytes as the cellular source of RETN (resistin), 

a DEG marker in the AR group (Figure 2C). Further analysis revealed CD14 Mono_RNASE2 as 

the main resistin-expressing population (Figure 6SD) and confirmed its involvement in cell-cell 

interactions with T cells and NK cells, particularly before surgery (Figure 16). This suggests that 

the functional differences within tissue recovery-associated monocyte populations, rather than 

inherently pro-inflammatory CD16 Mono or CD14 Mono_IL1B subsets, may serve as potential 

predictors of rejection. 
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Figure 16. Relative importance of the RESISTIN interaction network by each cell types in AR 

group. 

 

4. DISCUSSION 

Despite the extensive application of single-cell analysis in transplantation research, most 

studies have predominantly focused on post-operative samples, with limited efforts to identify 

predictive markers for rejection before surgery10–12,41,42. In this study, we investigated the immune 

landscape of acute rejection by performing comprehensive single-cell transcriptomic analysis of 

PBMCs from liver transplant recipients. Using genetic multiplexing to efficiently process multiple 

samples, we uniquely analyzed paired pre- and post-transplant samples from the same patients, 

enabling direct comparison of immune states before and after rejection onset. Our findings reveal 

distinct pre-operative immune signatures and post-operative immune reprogramming patterns that 

may contribute to allograft rejection. 

Pre-operatively, AR patients exhibited an activated immune profile, with increased 

NK_CD56bright and NK_terminal subsets showing enhanced cytotoxicity and pro-inflammatory 

signaling. Their elevated IFN-γ response and migration potential suggest a predisposition to 
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rejection. The post-operative decline in these subsets indicates their involvement in graft-directed 

immune responses, though further validation is needed to determine their fate post-transplantation. 

TCR repertoire analysis highlighted distinct clonal expansion dynamics in AR patients, 

who maintained higher clonality post-operatively. AR-associated clonotypes were enriched in CD8 

TEM_KLRB1, CD8 TEM_preKIR, and CD8 TEM_KIR clusters. TEM_KLRB1, predominant in 

pre-AR samples, exhibited high cytotoxicity and low inhibitory molecule expression, suggesting a 

migratory and persistent effector phenotype. Its branching marker, CORO1A, is crucial for 

alloreactive T cell survival, with studies suggesting its inhibition could promote tolerance43. If CD8 

TEM_KLRB1 cells represent cross-reactive alloreactive T cells infiltrating the graft to trigger 

rejection, CORO1A inhibition might offer a highly specific suppression strategy. 

Post-transplantation, CD8 TEM_KIR emerged as the dominant subset, exhibiting strong 

inflammatory signatures linked to IRF1 and TYROBP activation. This population also exhibited 

virus-specificity together with CD8 TEM_preKIR, an intermediate population in its phenotypic 

transition. The post-transplant expansion of these populations suggests that pre-existing virus-

specific memory T cells may be non-canonically stimulated in the allograft rejection context, leading 

to bystander T cell formation. Bystander T cells are known to express NK receptors such as KIR, 

and their involvement in allograft rejection has been reported in heart transplantation44,45. Our 

findings provide a basis for investigating whether similar mechanisms occur in liver transplantation. 

These results indicate that CD8 T cells in AR patients undergo a phenotypic shift from Pre- transplant 

migratory effector states toward a post-transplant inflammatory and cytotoxic profile, potentially 

driving rejection events. 

Monocyte subtypes also demonstrate distinct transcriptomic reprogramming following 

transplantation. Both AR and NR groups exhibited a shift from inflammatory CD14 Mono_IL1B to 

CD14 Mono_RNASE2. Notably, reduced expansion of CD14 Mono_RNASE2 and persistent FOS-

expressing inflammatory monocytes have been linked to acute cellular rejection in liver 

transplantation, suggesting that monocyte reprogramming could serve as an indicator of graft 

acceptance11. 

Cell-cell interaction analysis revealed reduced interaction strength in both groups post-

transplantation, likely due to immunosuppression. However, AR patients maintained higher 

interaction intensity, reflecting sustained immune activation. Key contributors included CD8 

TEM_KLRB1, CD8 TEM_KIR, and CD8 TEM_preKIR, which exhibited enhanced antigen 

presentation and cytotoxic signaling. Additionally, we identified CD14 Mono_RNASE2 as the 

primary source of RETN, an intrahepatic cytokine associated with liver inflammation and fibrosis46. 

This suggests that immune divergence between AR and NR is not solely driven by inflammatory 

monocytes (e.g., CD14 Mono_IL1B) but may also involve tissue-repairing monocyte subsets with 

differential signaling properties.  

Furthermore, we identified five consistently upregulated genes (CCL3, GZMK, MX1, 

RETN, ATF3) in both pre- and post-operative AR samples. Three of these genes (CCL3, GZMK, 
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MX1)—linked to leukocyte recruitment, cytotoxicity, and antiviral responses 47–50—were also 

confirmed to be significantly upregulated in a public large-scale liver biopsy dataset. The remaining 

genes (RETN and ATF3) were confirmed to be functionally relevant as an activated transcription 

factor and secreted ligand in rejection-associated monocytes. These persistent signatures 

demonstrated strong discriminatory potential (AUC=0.90), highlighting their biological relevance 

throughout the transplantation process and potential utility for clinical rejection risk assessment. 

While PBMC analysis provides a window into systemic immune responses rather than 

directly capturing events at the graft site, identifying robust peripheral biomarkers has significant 

clinical advantages. The distinct cellular subsets we identified—particularly CD8 TEM_KLRB1, 

CD8 TEM_KIR, and CD14 Mono_RNASE2—represent promising candidates for stratifying 

recipients at risk of rejection. Future studies incorporating spatial transcriptomics and graft-

infiltrating immune cell profiling will complement our findings by further delineating their precise 

contributions at the graft site. 

 

5. CONCLUSION 

This study identified distinct peripheral immune signatures predictive of acute rejection 

before and after liver transplantation, including persistently upregulated genes such as CCL3, 

GZMK, MX1, RETN, ATF3. These findings highlight the potential of PBMC-based transcriptomic 

profiling as a non-invasive tool for early rejection risk assessment and future personalized 

immunotherapy. 
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APPENDICES-1. Supplementary figures 

 
Figure S1. Comprehensive single-cell profiling in liver transplant recipients. 

(A) Dotplot showing normalized expression of major immune cell type marker in PBMCs. (B) 

UMAP plot colored by canonical marker gene expression. (C) GSEA top enriched pathways for 

each group. 
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Figure S2. Pre-operative transcriptional signatures of acute rejection. 

(A) Venn diagram showing pre- to post-transplantation upregulated (left) or downregulated (right) 

genes in NR or AR groups. (B) Top enriched pathways detected by gProfiler for genes in each 

compartment of the Venn diagram shown in (A). (C) Top enriched pathways detected by gProfiler 

for DEGs of each group. (D) ROC curve for rejection decision model using liver biopsy bulk RNA 

data (GSE145780). (E) Volcano plot displaying differential gene expression in Post-AR compared 

to Post-NR (de_coeff > 0.5, FDR-corrected p-value < 0.05). (F) Dot plot showing enriched 

molecular pathways in Post-AR samples across different cell types. 
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Figure S3. Pre-operative T and NK cell modulation in acute rejection. 

(A) Dot plot showing T and NK subtype marker gene expression. (B) UMAP plot colored by 

canonical marker gene expression. (C) Heatmap showing normalized expression of NK 

subpopulation marker genes detected by DEG analysis. (D) Top pathways of each NK subpopulation 

detected by gProfiler using the marker genes. 
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Figure S4. Clonal dynamics and phenotypic transitions of CD8 T cells in acute rejection. 

(A) TCR clonality indicated by Gini index by group. (B) Effector memory CD8 T cell subpopulation 

marker gene expression shown in UMAP. (C) Heatmap showing normalized expression of effector 

memory CD8 T cell subpopulation marker genes detected by DEG analysis. (D) Top pathways of 

each effector memory CD8 T cell subpopulation detected by gProfiler using the marker genes. (E) 

UMAP (left) showing the predicted epitope for each CD8 T cell and stacked bar plot (right) showing 

predicted epitope proportion by group and CD8 T cell subpopulation. (F) NES plot for virus-related 

pathways enriched in effector memory T cells in Pre-AR group. (G) Heatmap showing relative 

activities of top regulons of each group. 
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Figure S5. Transcriptomic divergence of monocytes in acute rejection. 

Heatmap showing normalized expression of monocyte subpopulation marker 

genes detected by DEG analysis. 
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Figure S6. Differences in intercellular dynamics in acute rejection. 

(A-C) Differentially activated interactions in Pre-NR versus Pre-AR (top) or Post-

NR versus Post-AR (bottom) for CD8 TEM_KLRB1 (left), CD8 TEM_KIR 

(middle), and CD8 TEM_preKIR (right). (D) Mean RETN expression by group and 

monocyte subpopulations. 
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1=False, 2=True; 1=M, 2=F (for sex); BMI, body mass index; HCC, hepatocellular carcinoma; MELD, model for end-stage liver disease; LCM, lymphocyte 

cross-matching; OP, operation; RBC, red blood celll; FFP, fresh frozen plasma; PLT, platelet; gfail, graft-failure; ast, aspartate aminotransferase; alt, alanine 

aminotransferase; inr, international normalized ratio; tbil, total bilirubin; tac, tacrolimus; mmf, mycophenolate mofetil; pod, post operative day 

Table S1. Clinical metadata of samples 
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Abstract in Korean 

 

 

단일세포 RNA 시퀀싱 기반 말초혈액단핵세포 분석을 통한 간이식 

후 급성 거부 반응 예측 

 

 간이식은 말기 간질환에 대한 궁극적인 치료법임. 그러나 전체 수혜자의 약 15–

30%에서 급성 이식편 거부반응이 발생함. 현재까지 조기 예측은 제한적이며, 진단은 

여전히 침습적인 조직생검에 의존하고 있음. 본 연구에서는 간이식 수혜자의 수술 

전후 말초혈액 단핵세포(peripheral blood mononuclear cells, PBMCs)를 대상으로 

단일세포 RNA 시퀀싱(single-cell RNA sequencing) 및 T세포 수용체(T cell 

receptor, TCR) 레퍼토리 분석을 수행하였으며, 급성 거부반응(acute rejection, 

AR)과 연관된 분자적 특징을 규명하였음. 

 거부반응이 발생한 환자들은 수술 전부터 특이적인 면역 상태를 보였으며, 염증성 

자연살해세포(NK cells), 클론 확장된 effector memory CD8 T 세포, 변화된 단핵구 

아형이 특징적으로 관찰되었음. 이식 후 이러한 면역세포들은 지속적인 염증 반응을 

나타내었으며, 면역억제 치료 하에서도 바이러스 특이적 CD8 T 세포가 풍부하게 

나타나는 등 거부반응 특이적 재프로그래밍이 일어났음. 

 CCL3, GZMK, MX1, RETN, ATF3 등 다섯 개 유전자는 수술 전후 급성거부반응 

환자 샘플에서 지속적으로 상향 조절되었음. 이 중 CCL3, GZMK, MX1은 대규모 

공개 간 조직 생검 데이터셋에서도 상향 조절되어있는것이 검증되었으며, 각각 

백혈구 유주, 세포독성, 항바이러스 반응과 관련된 역할을 수행함. RETN과 ATF3는 

거부반응 연관 단핵구에서 각각 분비성 리간드 및 활성화 전사인자로 기능적으로 

특징지어졌음. 이러한 유전자를 이용한 급성 거부반응의 예측모델은 우수한 예측 

성능(AUC = 0.90)을 보였음. 

 본 연구결과는 간이식 후 거부반응의 비침습적 위험도 평가 및 조기 진단의 

기반이 될 수 있음. 또한, 개인 맞춤형 면역조절 치료 전략 개발을 위한 단서도 

제시함. 

 

_______________________________________________________________________________ 

핵심되는 말 : 간이식, 급성 거부반응, 단일세포 RNA 시퀀싱, 말초혈액 단핵세포 


