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Abstract

Background and 
Aims

Truncating variants in the TTN gene (TTNtv) are the most common genetic cause of dilated cardiomyopathy (DCM) but also 
occur as incidental findings in the general population. This study investigated factors associated with the clinical manifestation 
of TTNtv.

Methods An international multicentre retrospective observational study was performed in families with TTNtv-related DCM. Shared 
frailty models were used to estimate associations of variant characteristics with lifetime risk of DCM, and logistic regression 
to estimate odds ratios (ORs) for individual-level clinical risk factor profiles (cardiac conditions, cardiovascular comorbidities, 
lifestyle) and DCM.

Results A total of 3158 subjects in 1043 families with TTNtv-related DCM were studied. TTNtv-positive subjects were 21-fold more 
likely to develop DCM [OR, 21.21; 95% confidence interval (CI), 14.80–30.39]. Disease onset was earlier in males, but was 
similar for TTNtv of different types and locations. The presence of clinical risk factors was associated with earlier DCM onset 
(OR, 3.41; 95% CI, 2.06–5.64), with a prior history of atrial fibrillation having a two-fold increased odds of DCM (OR, 2.05; 
95% CI, 1.27–3.32). The prevalence of clinical risk factors increased with age; however, the strength of the DCM association 
was greatest for young-onset (<30 years) disease (OR, 4.75; 95% CI, 2.35–9.60). Administration of beta-adrenergic receptor 
or renin-angiotensin system-blocking drugs prior to overt DCM was associated with 87% reduced odds of DCM (OR, .13; 
95% CI, .08–.23).

Conclusions Disease onset in TTNtv-associated familial DCM is dependent on individual patient context and is potentially modifiable by 
risk factor management and prophylactic therapeutic intervention.
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Structured Graphical Abstract

Truncating variants in the TTN gene (TTNtv) are the most common genetic cause of familial dilated cardiomyopathy (DCM) but the age at 
disease onset is highly variable. Is this explained by distinctive TTNtv characteristics or factors related to the individual patient 
environment? 

In families with TTNtv, the lifetime risk of DCM was high, irrespective of variant type or location. DCM was diagnosed at an earlier age in 
TTNtv-positive subjects with clinical risk factors and manifested later in those receiving pharmacological therapy pre-DCM.

Clinical manifestations of TTNtv is not solely genetically determined and is influenced by risk factors. TTNtv-positive members of families 
with DCM need ongoing cardiac screening and aggressive risk factor management. Prophylactic therapeutic intervention may be
beneficial but warrants formal evaluation. 

Key Question

Key Finding

Take Home Message

Study design DCM onset

Clinical implications

Titin-related familial DCM (N = 3158),
41 clinical centres in 12 countries

TTNtv variant and clinical information

Primary DCM penetrance analysis

Variant e�ects
(TTNtv type and location)

Clinical risk
factor analysis

Odds of DCM

Lifelong follow-up
for TTNtv positive

relatives

+
Cardiometabolic health

Identi�cation and
management of

clinical risk factors

Early treatment
may facilitate

disease prevention

Reduced Increased

Factors associated with disease onset in titin-related familial dilated cardiomyopathy and implications for management.

Keywords Dilated cardiomyopathy • Titin • Genetics • Risk factors • Prevention

Introduction
Dilated cardiomyopathy (DCM) is a highly prevalent myocardial dis
order that is associated with substantial morbidity and mortality. 
Understanding the aetiology of DCM in individual patients should facili
tate effective disease treatment and prevention. A person’s genetic 
makeup is a key determinant of susceptibility to DCM but to date, 
genotype-based approaches to clinical management have been limited.1

Truncating variants in the TTN gene (TTNtv) that encodes the giant sarco
mere protein titin are the most common genetic cause of DCM, being pre
sent in 10%–20% of sporadic cases and up to 25% of families.2,3 Potentially 
deleterious TTNtv in constitutively expressed exons occur in up to 1% of the 
general population and are often detected as incidental findings during gen
etic testing.2,3 A number of criteria have been proposed to select the subset 
of TTNtv that are most likely to have clinical significance, with key features 
being location in the titin A-band or in exons that are constitutively 
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expressed across the range of titin isoforms.2–4 However even for subjects 
with the same TTNtv, the age at DCM diagnosis can be highly variable.5,6

Elucidating factors that accelerate or delay disease manifestation holds 
promise for shifting DCM onset, potentially by decades.

Uncertainty about the prognostic implications of TTNtv has been a 
major roadblock for informed genetic counselling and family manage
ment. Given the rapidly rising number of TTNtv-positive individuals 
identified by genetic testing, resolving this question has become a clin
ical imperative. The impact of TTNtv on cardiac function is likely influ
enced by each patient’s context of background genetic factors, 
comorbidities, and lifestyle,7–9 but definitive evidence for this has 
been lacking. To start to address these issues, we assembled a unique 
international multicentre cohort to investigate factors that influence 
DCM onset in families with TTNtv-related DCM.

Methods
Study cohort
Families with DCM were identified at 41 clinical centres in 12 countries 
across North America, Europe, Australia, and South Korea over a 30-year 
period (1993–2023). Probands and relatives were clinically assessed by ex
pert teams at their referring centre, with medical history, physical examin
ation, and cardiac investigations. Probands were diagnosed with DCM if 
there was left ventricular (LV) or biventricular systolic dysfunction and dila
tation that was unexplained solely by abnormal loading conditions or coron
ary artery disease, in accordance with standard clinical practice.10,11 DCM 
was considered familial if: (i) one or more first- or second-degree relatives 
had DCM, or (ii) there was an otherwise unexplained sudden cardiac death 
in a relative at any age with an established diagnosis of DCM.10,11

Genetic testing in probands was performed from 2012 onwards subse
quent to the availability of next-generation sequencing techniques (multi- 
gene panels, exome or genome sequencing) to evaluate suites of 
cardiomyopathy-associated genes (typically 40–120 genes, including the 19 
ClinGen-curated high- and moderate-evidence DCM disease genes).12

Additional investigations to identify large copy number variants, such as com
parative genomic hybridization arrays, were not routinely performed. 
Variant pathogenicity was classified in accordance with the American 
College of Medical Genetics and Genomics (ACMG) clinical guidelines and 
subsequent working group updates tailored for DCM.13–17 For TTNtv, we 
also used a modified classification that incorporated the original ACMG cri
teria and recent ACMG recommendations for reporting secondary findings 
in TTN identified in clinical exome and genome sequencing.13,16,18 Cascade 
testing of selected variants was performed in family members.

Families were included in this study if (i) a suspected disease-causing 
TTNtv had been identified (see details below), and (ii) genetic testing had 
been offered to affected and unaffected relatives. For the purposes of 
this study, family members were classified as affected if they had evidence 
of LV ejection fraction <50% with/without LV dilatation on transthoracic 
echocardiography or cardiac magnetic resonance imaging. All participants 
provided written informed consent for clinical data collection, genetic test
ing, and sharing of coded data for research purposes. Study protocols were 
approved by the St Vincent’s Hospital and relevant institutional Human 
Research Ethics Committees.

Variant evaluation
TTN variants were annotated according to the inferred complete meta- 
transcript (NM_001267550.2). Prioritized truncating variants were non
sense variants, small frame-shifting insertions or deletions that predictably 
lead to a stop codon, and splice-altering variants at canonical splice donor 
or acceptor sites (+/− 1–2 nucleotides at 5′ and 3′ positions of introns, re
spectively). Non-canonical splice variants included intronic variants outside 
the canonical +/− 1–2 positions, coding variants located at the end or start 
of an exon and missense variants within exons that were predicted to have a 

splicing impact. Exon usage across titin isoforms was assessed using percent 
spliced-in (PSI) scores as described3 and data for normal adult ventricular tis
sue obtained from the Genotype-Tissue Expression (GTEx) portal. Variants 
were included if they were located in: (i) any exon with PSI score  > .90 [N =  
999 (95.5% of all TTNtv evaluated)], (ii) A-band or I-band exon with PSI score 
.89–.85 [N = 44 (4.2%)], or (iii) A-band or I-band exon with PSI score .84–.75 
and supportive evidence of DCM association, e.g. family segregation or pres
ence in multiple families [N = 3 (.3%)]. Included variants had a minor allele 
frequency of less than .0005 in a reference population database (gnomAD 
v4.0, accessed December 2023). Allele frequencies above this threshold level 
have been used to define benign variants.14 Previously reported cases and 
variants are denoted in Supplementary data online, Table S1.

Variant splicing analysis
Variants in canonical and non-canonical splice sites were assessed using 
SpliceAI, a commonly used bioinformatics tool to predict splice-altering ef
fects19 and SpliceVault, a newly-developed program that predicts the most 
likely outcomes of splice-site changes based on observed events in human 
RNA-sequencing databases.20 Expected outcomes were expressed as: 
out-of-frame (frameshift), in-frame, mixed (both out-of-frame and in-frame 
events likely), or no effect. Functional evaluation (mini-gene assay or RNA 
evaluation) to confirm these predictions was available for selected variants. 
Splice-site variants were annotated in accordance with recently published 
guidelines from the ClinGen Sequence Variant Interpretation Splicing 
Subgroup.17 Further details about methods used to assess TTN splice-site 
variants are provided in the Supplementary Material.

TTNtv distribution analysis
The distribution and frequency of TTNtv across the various titin domains were 
evaluated in DCM patients and in a reference population database (gnomAD 
v4.0, accessed December 2023). Given the predominant European ancestry of 
our cohort, comparisons were made with data for the subset of non-Finnish 
Europeans within gnomAD. Variant locations were defined as follows:21,22

Z-disk (start of exon 1 to the start of Ig-10 within exon 28), proximal I-band 
(Ig-10 within exon 28 to the end of exon 47), N2B unique sequence (exon 
48), mid I-band (start of exon 49 to the end of exon 224), distal I-band (start 
of exon 225 to the end of Ig-107 within exon 250), A-band (Ig-108 within exon 
251 to the end of the fibronectin 3–132 domain within exon 358), titin kinase 
(TK) domain (amino acids 33 813 to 34 136 within exon 358), and M-band (re
mainder of exon 358 following the TK domain to the end of exon 363). The 
number of TTNtv identified in each region was tallied and compared in the 
DCM and gnomAD control groups to calculate odds ratios (ORs) using 
GraphPad Prism.

Clinical risk factors
Clinical and genotype data were collected by collaborating centres. Core in
formation provided to our study for all participants included sex, proband 
vs family member status, ethnicity, age at study entry, age at DCM diagnosis, 
age at last echocardiogram, and TTN genotype. Additional clinical informa
tion was available for a subset of participants. This included cardiac history, 
cardiac investigations (echocardiogram and/or cardiac magnetic resonance 
imaging, ECG), medications (cardiovascular, anthracycline chemotherapy), 
comorbidities (obesity, hypertension, ischaemic heart disease, diabetes, thy
roid disease, chronic pulmonary disease), and lifestyle factors (alcohol con
sumption, physical activity levels, pregnancy) prior to or at the time of DCM 
diagnosis. Average weekly alcohol consumption was expressed as g/week, 
with heavy alcohol consumption defined as >140 g/week for males and 
>70 g/week for females.23 Physical activity levels were categorized into 
high, moderate, or low. High physical activity was considered as ≥2.5 h of 
high activity (running, cycling, swimming, aerobics, organized sports, tasks 
that involve digging or lifting and carrying heavy loads, etc.) or >5 h of mod
erate activity (walking briskly, slow dancing, golf, social tennis, mowing the 
lawn, vacuuming or sweeping the floor, washing windows, etc.) per week. 
Moderate physical activity was defined as ≥2.5 h of moderate or <2.5 h 
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of high activity per week. Low physical activity was defined as <2.5 h of 
moderate activity per week.24

Statistical analysis
Characteristics of study participants are presented as N (%) for categorical 
data, median [interquartile range (IQR)] for non-normally distributed con
tinuous data, or mean [standard deviation (SD)] for normally distributed 
continuous data. For analyses of DCM penetrance in TTNtv-positive and 
TTNtv-negative individuals, we used age at DCM onset for any individual di
agnosed with DCM (phenotype-positive), and censored individuals without 
DCM (phenotype-negative) at their age at the last echocardiogram (for 
TTNtv-positive) or age at study entry (for TTNtv-negative). Differences in 
the lifetime risk of DCM in TTNtv-positive and TTNtv-negative individuals 
were assessed using shared frailty survival models adjusted for sex and 
with family relatedness included as a random effect to account for 
intra-cluster correlation, then visualized with cumulative incidence plots 
generated with the Kaplan-Meier method. Among TTNtv-positive indivi
duals, we further evaluated differences in DCM penetrance by proband 
vs family member status, sex, variant type (nonsense, frameshift insertion/ 
deletion, splice-altering), type of splice site (canonical, non-canonical), splice 
consequence (out-of-frame, in-frame, mixed, no effects), and titin region 
(N2B unique sequence/distal I-band/A-band, vs. other band regions).

We conducted analyses of associations of risk factors with DCM in a subset 
of the cohort with available information on clinical risk factors, and with known 
information on sex and ethnicity. We imputed missing data using multiple im
putation by chained equations (known as MICE) with 10 imputed datasets and 
used multivariate mixed-effects logistic regression to estimate ORs and corre
sponding 95% confidence intervals (CIs) for key risk factors with DCM. Models 
were mutually adjusted for age, sex, ethnicity, past or current heavy alcohol 

use, exercise intensity, body mass index (BMI), history of hypertension, history 
of ischaemic heart disease, history of diabetes, history of pulmonary disease, 
history of thyroid disease, history of atrial fibrillation (AF), and medication 
use prior to DCM diagnosis, i.e. beta-adrenergic receptor and/or renin- 
angiotensin system (RAS) blocking drugs (including angiotensin-converting en
zyme inhibitors and angiotensin receptor blockers) as fixed effects, and family 
relatedness was included as a random effect. We further evaluated associations 
of any risk factor (including any DCM-promoting risk factor or heart failure 
comorbidity), any known DCM-promoting risk factor (AF, heavy alcohol in
take, BMI >35 kg/m2, pregnancy, anthracycline chemotherapy),25,26 any heart 
failure-associated comorbidity (diabetes, hypertension, ischaemic heart disease, 
pulmonary disease, and thyroid disease).26,27 We also evaluated associations of 
DCM-protective factors (beta-adrenergic receptor and/or RAS blockers, mod
erate or high levels of exercise) with DCM. Analyses were conducted in the 
study cohort overall and by sex and age group (<30 years, 30 to <60 years, 
≥60 years). Sensitivity analyses were undertaken using individuals with com
plete data. Statistical tests were two-sided, and a P-value  <  .05 was considered 
statistically significant. All analyses were performed using R (version 4.3.2). The 
R libraries used for multiple imputation, shared frailty survival models, and 
mixed-effects logistic regression models were mice (version 3.17.0), coxme 
(version 2.2–22), and lme4 (version 1.1–37), respectively.

Results
DCM penetrance
A total of 3158 subjects in 1043 families with TTNtv-related DCM were 
studied (see Supplementary data online, Figure S1). Of these, 3106 sub
jects in families with clinically reportable TTNtv (nonsense, frameshift, 
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Table 1 Demographic data used for analysis of penetrance in the primary cohort

Parameter All subjects (N = 3106) Probandsa (N = 966) Relatives (N = 2140)

Proband (%) 966 (31.1%)a 966 (100%) 0 (0%)

Male (%) 1711 (55.1%) 664 (68.7%) 1047 (48.9%)

DCM (%) 1625 (52.3%) 920 (95.2%) 705 (32.9%)

Age at DCM (yr; median, IQR) 48 (.11–90) 47 (.11–81) 50 (7–90)

Age at study (yr; median, IQR) 52 (.11–95) 56 (.11–90) 50 (3–95)

Ancestry (%):

– European 2991 (96.3%) 915 (94.7%) 2076 (97%)

– Other 115 (3.7%) 51 (5.3%) 64 (3%)

TTNtv-positive (% individuals) 2388 (76.9%) 966 (100%) 1422 (66.5%)

TTNtv type (% variants):

– Nonsense 1058 (44.3%) 415 (43%) 643 (45.2%)

– Frameshift 1029 (43.1%) 441 (45.7%) 588 (41.4%)

– Splice (canonical site) 301 (12.6%) 110 (11.4%) 191 (13.4%)

TTNtv location (% variants):

– Z-disk 65 (2.7%) 27 (2.8%) 38 (2.7%)

– I-band 420 (17.6%) 164 (17%) 256 (18%)

– A-band 1824 (76.4%) 740 (76.6%) 1084 (76.2%)

– M-band 79 (3.3%) 35 (3.6%) 44 (3.1%)

aProband information was only available for 966 of the 1043 families in the study. Probands in the remaining 77 families were seen outside of the centres involved in the current study and 
data were unavailable for analysis.
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or canonical splice-site change) comprised the primary cohort. The re
maining 52 subjects with non-canonical splice-site changes were evalu
ated as a separate cohort.

In the primary cohort, there were 966 TTNtv-positive probands 
(69% males) and 2140 relatives (49% males) of whom 1422 (66%) 
were TTNtv-positive and 718 (34%) were TTNtv-negative (Table 1). 

Figure 1 Distribution of DCM-associated TTNtv. TTNtv identified in families with DCM are plotted with respect to the gnomAD population database 
and their location in the inferred complete titin protein (meta-transcript NM_001267550.2): Z-disk (red), I-band (blue), A-band (green) and M-band 
(purple). TTNtv are denoted by vertical bars; consequences of splice-site variants are shown: frameshift (red), in-frame (green), mixed effects (orange). 
Differences in exon usage across the various titin isoforms are indicated by percent spliced-in (PSI) scores. TTNtv in exons with PSI scores >.75 (green) 
were included in this study

Figure 2 Association of TTNtv with DCM. Curves show the cumulative incidence of DCM over time adjusted for sex and family relatedness in 
genotype-positive (TTNtv+) and genotype-negative (TTNtv-) subjects

5246                                                                                                                                                                                            Johnson et al.



There were 705 TTNtv (294 nonsense variants, 364 frameshift inser
tions or deletions, and 47 variants in canonical splice sites) in 1043 fam
ilies; 540 variants were unique to single kindreds and 165 were 
recurrent in 2–20 families, potentially representing founder variants 
(Figure 1, Supplementary data online, Table S1). The majority (98.6% 
of primary cohort) of TTNtv-positive subjects were heterozygous for 

a single TTNtv; three subjects (.1% of primary cohort; all with DCM) 
had a second prioritized TTNtv (compound heterozygous, N = 1; phase 
unknown, N = 2). Rare pathogenic or likely pathogenic variants in an
other DCM gene were present in 30 TTNtv-positive subjects (1.3% 
of the primary cohort; 27 with DCM) and 5 TTNtv-negative subjects 
all without DCM (see Supplementary data online, Table S2). 

Figure 3 Associations of factors with DCM penetrance in TTNtv-positive subjects. Survival curves show associations of proband vs family member 
status (panel A), sex (panel B), and variant characteristics (panels C–F). The latter includes the three main types of TTNtv (nonsense, frameshift insertion/ 
deletion, and canonical splice-site change; panel C ), a comparison of splice-altering variants in canonical and non-canonical sites (panel D), predicted 
downstream consequences of splice-altering variants (out-of-frame, in-frame, mixed effects; panel E), and titin domain location (panel F )
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Additionally, nine subjects (six with DCM) from three families had a 
prioritized TTNtv and a non-canonical TTN splice variant or a missense 
TTN variant with proven functional impact.

TTNtv-positive subjects were 21-fold more likely to develop DCM 
than TTNtv-negative subjects (OR, 21.21; 95% CI; 14.80–30.39) 
(Figure 2, Supplementary data online, Table S3). Disease onset was earl
ier in TTNtv-positive probands when compared to family members 
(Figure 3A) and in males compared to females (Figure 3B); 88% 
TTNtv-positive subjects (93% males, 79% females) developed DCM 
by age 70 years (Table 2, Supplementary data online, Table S3). The 
mean age at DCM onset in subjects with a single TTNtv (47 ± 15 years) 
was not significantly different from that in subjects with a second TTNtv 
or rare variant (44 ± 19 years; P = .69). Data for DCM penetrance were 
similar when these individuals were excluded (see Supplementary data 
online, Table S4).

Associations of variant type and location
There were no significant differences in the penetrance of DCM be
tween subjects with the three main types of TTNtv, i.e. nonsense, 
frameshift insertions/deletions, and canonical splice-site changes 
(Figure 3C). Splice-altering variants can result in exon skipping, activation 
of cryptic donor/acceptor sites, or intron retention, with a variety of 
downstream outcomes that can be difficult to predict without RNA 
analysis. Using SpliceVault,20 we grouped TTN splice-site variants based 
on expected out-of-frame (frameshift), in-frame, mixed, or no effects. 
When variants with positive effects were considered, there were no 
differences in DCM penetrance associated with different splice-site lo
cations (canonical vs non-canonical; Figure 3D, Supplementary data 
online, Tables S1 and S5) or consequences (out-of-frame vs. in-frame 
vs. mixed effects; Figure 3E, Supplementary data online, Table S6).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Sex-specific probabilities and corresponding 95% confidence intervals for developing DCM at each decade of 
age in TTNtv-positive (TTNtv+) and TTNtv-negative (TTNtv−) subjects

Age (years) Males Females All subjects  
(N = 3106)

TTNtv+  
(N = 1372)

TTNtv−  
(N = 339)

Total  
(N = 1711)

TTNtv+  
(N = 1016)

TTNtv−  
(N = 379)

Total  
(N = 1395)

10 .1 (.0–.2) .0 (.0–.0) .1 (.0–.2) .5 (.1–.9) .0 (.0–.0) .4 (.0–.7) .2 (.0–.3)

20 5.0 (3.8–6.1) .0 (.0–.0) 4.0 (3.1–4.9) 2.4 (1.5–3.4) .0 (.0–.0) 1.8 (1.1–2.4) 3.0 (2.4–3.6)

30 14.8 (12.9–16.7) .6 (.0–1.5) 12.1 (10.5–13.6) 8.3 (6.5–10.0) .3 (.0–.9) 6.1 (4.8–7.4) 9.4 (8.4–10.5)

40 28.4 (25.930.9) 2.5 (.6–4.3) 23.7 (21.5–25.8) 18.9 (16.3–21.5) .7 (.0–1.6) 14.2 (12.2–16.2) 19.5 (18.0–21.0)

50 52.5 (49.6–55.3) 2.5 (.6–4.3) 44.3 (41.6–46.8) 34.8 (31.4–38.1) 1.6 (.0–3.1) 26.7 (23.9–29.3) 36.8 (34.8–38.7)

60 79.1 (76.4–81.4) 3.8 (1.2–6.4) 68.8 (66.0–71.3) 58.0 (54.0–61.7) 5.0 (1.6–8.2) 46.6 (43.0–49.9) 59.7 (57.5–61.9)

70 92.8 (90.9–94.4) 11.8 (4.8–18.3) 84.1 (81.5–86.4) 78.9 (74.9–82.3) 14.0 (6.0–21.3) 67.1 (62.9–70.8) 77.3 (75.0–79.4)

80 98.6 (97.3–99.3) 11.8 (4.8–18.3) 92.4 (89.7–94.4) 90.9 (86.4–93.9) 21.2 (8.4–32.2) 81.2 (75.6–85.5) 88.0 (85.4–90.1)

90 100 11.8 (4.8–18.3) 95.9 (91.3–98.1) 98.2 (89.9–99.7) 21.2 (8.4–32.2) 93.0 (79.8–97.6) 95.2 (89.3–97.9)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Distribution of DCM-associated TTNtv in different titin regions

Titin regiona TTNtv+  probands Prevalence Odds ratio P-value

DCM cohort  
(N = 1043 subjects)

Controlsb  

(N = 590 031 subjects)
DCM cohort (%) Controls (%) Mean Max Min

Z-disk 30 254 2.88 .04 68.8 100.9 46.9 <.001

I-band: Proximal 31 258 2.97 .04 70.0 102.2 48.0 <.001

I-band: N2Bus 71 141 6.81 .02 305.6 409.3 228.2 <.001

I-band: Mid 18 1496 1.73 .25 6.9 11.0 4.3 <.001

I-band: Distal 62 250 5.94 .04 149.1 198.3 112.1 <.001

A-band: Non-TK 782 1888 74.98 .32 933.4 1081.0 805.6 <.001

A-band: TK 13 39 1.25 .01 190.9 358.7 101.6 <.001

M-band 39 469 3.74 .08 48.8 68.1 35.0 <.001

N2Bus, N2B unique sequence; TK, titin kinase domain; TTNtv+, TTNtv-positive.
aAll TTNtv evaluated were located in constitutively expressed exons in normal adult human heart. Domain boundaries were sourced from TITINdb.21,22

bControl data were derived from non-Finnish Europeans in the gnomAD (v.4.0) population database.
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As reported previously,2,3 the majority of disease-associated TTNtv 
were situated in the titin A-band (excluding TK domain) (Figure 1, 
Table 3). Comparing the distribution of TTNtv in our DCM cohort 
with a reference control population revealed additional clusters in 
the I-band exon 48, which encodes the N2B unique sequence, and 
the distal A-band TK domain (Table 3).21,22 DCM penetrance was simi
lar for TTNtv in constitutively expressed exons across all titin domains 

(Figure 3F). Adhering to the widely used 2020 guidelines for clinical in
terpretation of TTNtv in DCM patients that prioritizes A-band var
iants,14 only 40% of our variants would be classified as pathogenic/ 
likely pathogenic. The yield of pathogenic/likely pathogenic variants rises 
to 99% if the evidence level for a truncating variant is increased to very 
strong or strong13,16 and TTNtv in all high PSI exons (A-band and 
non-A-band)18 are included (see Supplementary data online, Table S1).
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Table 4 Baseline characteristics of TTNtv-positive subjects included in the Risk Factor analysis

All subjects (N = 1441) DCM present (N = 931) DCM absent (N = 510)

Proband (%) 537 (37.3%) 503 (54%) 34 (6.7%)a

Male (%) 811 (56.3%) 596 (64%) 215 (42.2%)

DCM (%) 931 (64.6%) 931 (100%) 0 (0%)

Age at DCM diagnosis (yr; median, IQR) 49 (.4–90) 49 (.4–90) NA

Age at study (yr; median, IQR) 53 (3–91) 58 (5–91) 42 (3–87)

Ancestry (%):

– European 1360 (94.4%) 874 (93.9%) 486 (95.3%)

– Other 81 (5.6%) 57 (6.1%) 24 (4.7%)

Alcohol excess 134/1042 (12.9%) 108/681 (15.9%) 26/361 (7.2%)

Any AF (%) 320/1437 (22.2%) 276/927 (29.8%) 44/510 (8.6%)

AF at or prior to DCM diagnosis (%) 192/1437 (13.4%) 148/927 (16.0%) 44/510 (8.6%)

BMI >35 kg/m2 (%) 100/1246 (8%) 69/817 (8.5%) 31/429 (7.2%)

Chemotherapy (%) 11/1405 (.8%) 10/903 (1.1%) 1/502 (.2%)

Pregnancy (%)b 29/620 (4.7%) 29/330 (8.8%) 0/290 (0%)

Hypertension (%) 248/1378 (18%) 166/878 (18.9%) 82/500 (16.4%)

Ischaemic heart disease (%) 65/1391 (4.7%) 51/889 (5.7%) 14/502 (2.8%)

Diabetes (%) 103/1397 (7.4%) 81/892 (9.1%) 22/505 (4.4%)

Thyroid disease (%) 97/1408 (6.9%) 68/904 (7.5%) 29/504 (5.8%)

Chronic lung disease (%) 66/1238 (5.3%) 49/799 (6.1%) 17/439 (3.9%)

BB/RAS use prior to DCM diagnosis (%) 161/1332 (12.1%) 66/837 (7.9%) 95/495 (19.2%)

Exercise (mod/high) (%) 518/1021 (50.7%) 307/649 (47.3%) 211/372 (56.7%)

LVAD (%) 50 (3.5%) 50 (5.4%) 0 (0%)

Heart transplant (%) 97 (6.7%) 97 (10.4%) 0 (0%)

NSVT/VT/VF (%) 294 (20.4%) 278 (29.9%) 16 (3.1%)

ICD/CRT (%) 281 (19.5%) 271 (29.1%) 10 (2%)

Aborted cardiac arrest (%) 41 (2.8%) 36 (3.9%) 5 (1%)

Sudden cardiac death (%) 19 (1.3%) 16 (1.7%) 3 (.6%)

Conduction diseasec (%) 151 (10.5%) 138 (14.8%) 13 (2.5%)

PPMd (%) 13 (.9%) 12 (1.3%) 1 (.2%)

AF, atrial fibrillation; BB/RAS beta-adrenergic receptor and/or renin-angiotensin system-blocking drug therapy; BMI, body mass index; CRT, cardiac resynchronization therapy; ICD, 
implantable cardioverter defibrillator; LVAD, left ventricular assist device; NA, not applicable; NSVT, non-sustained ventricular tachycardia; PPM, permanent pacemaker; VF, 
ventricular fibrillation; VT, ventricular tachycardia.
aIdentified as a proband in a family with DCM following resuscitated cardiac arrest, AF diagnosis, or LV dilation with EF > 50%.
bDenominator numbers include only female participants.
cConduction disease included first/second/third-degree atrioventricular block or left/right bundle branch block.
dSeven of thirteen individuals also received an ICD or CRT subsequent to PPM implantation.
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Figure 4 Associations of clinical risk factors with DCM penetrance in TTNtv-positive subjects. Forest plots show odds ratios and corresponding 95% 
confidence intervals (CI) for DCM associated with single risk factors (panel A), or combinations of risk factors (panel B). See text for definitions of risk 
factor combinations. Odds ratios and 95% CIs were estimated across ten imputed datasets generated using multiple imputations by chained equations 
and pooled using Rubin’s Rules. BB/RAS, beta-adrenergic receptor or renin-angiotensin system-blocking drugs
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Clinical factors associated with earlier 
DCM onset
Information about comorbidities and lifestyle patterns was available for 
a subset of 1441 probands and relatives, of whom 931 (65%) had DCM 
(Table 4). There were strong associations of DCM with age, male sex, 
and the presence of cardiovascular risk factors prior to DCM diagnosis 
(Figure 4). The latter comprised factors that have been independently 
considered DCM-promoting, including heavy alcohol intake, class II/III 
obesity (BMI >35 kg/m2), pregnancy, anthracycline chemotherapy,25,26

as well as factors associated more broadly with heart failure but not 
specifically with DCM, including diabetes, hypertension, ischaemic heart 
disease, pulmonary disease, and thyroid disease (Figure 4B).26,27 These 
risk factor associations were seen in males and females (see 
Supplementary data online, Figure S2).

AF was documented in 320/1441 TTNtv-positive subjects (22%; 
Supplementary data online, Table S7). In 120/320 subjects (37%), AF 
was diagnosed after DCM. However, in 192/320 subjects (60%), AF 
was diagnosed either prior to DCM (n = 72), coincident with DCM 
(n = 76), or in the absence of DCM (n = 44). The majority of these 
192 subjects (64%) had established AF-promoting clinical risk factors 
in addition to carrying a TTNtv, including hypertension, heavy alcohol 
intake, diabetes, and sedentary lifestyle.28 Having a history of AF was as
sociated with a two-fold increased odds of DCM development (OR, 
2.05; 1.27–3.32; Figure 4A).

Clinical factors associated with later DCM 
onset
Factors that protect against disease onset in familial DCM have not pre
viously been identified. We observed a marked reduction (87%) in the 
odds of DCM (OR .13, 95% CI .08–.23) in TTNtv-positive subjects who 

had been receiving beta-adrenergic receptor or RAS-blocking drug 
therapy prior to their DCM diagnosis (Figure 4A). These drugs had 
been typically commenced for indications such as hypertension, AF, 
symptomatic ventricular ectopy, or ischaemic heart disease with esti
mated treatment duration that preceded DCM by many years (median, 
84 months; range, 1–492 months). There was a trend for regular mod
erate/high levels of exercise to have beneficial effects when compared 
to a sedentary lifestyle, especially for females (Figures 4A, 
Supplementary data online, Figure S2A).

Distinctive risk factor profiles in the young 
and old
Clinical risk factor patterns differed in subjects with young-onset (<30 
years) and older-onset (≥60 years) DCM (Figure 5, Table 5, 
Supplementary data online, Table S8). In the young-onset cases, DCM 
was diagnosed following a symptomatic presentation or as a result of 
family echocardiographic screening. The most frequently identified trig
gers were acute infection and atrial or ventricular tachyarrhythmias. In 
young males, the most common risk factors were heavy alcohol intake 
(40%), AF (28%), and class II/III obesity (20%) (Table 5). In young fe
males, the single most prevalent factor was pregnancy (58%), followed 
by class II/III obesity (25%) and thyroid disease (21%). Hypertension and 
AF were the top two risk factors in males and females diagnosed with 
DCM ≥60 years. Nineteen percent of young-onset cases and 45% of 
older-onset cases had multiple risk factors.

The prevalence of clinical risk factors increased with age, ranging 
from 28% in those with young-onset DCM to 68% in late-onset 
DCM. These risk factors were strongly associated with DCM in all 
age groups; however, the greatest odds of DCM were seen in the 
young-onset cases (OR, 4.75; 95% CI; 2.35–9.60; Figure 5). This was 
most notable for class II/III obesity, diabetes, and thyroid disease (see 

Figure 5 Comparison of risk factor prevalence in different age groups. Forest plot shows odds ratios and corresponding 95% confidence intervals of 
risk factor combinations with DCM according to age at DCM diagnosis (<30 years, 30 to <60 years, ≥60 years). Odds ratios and 95% CIs were es
timated across ten imputed datasets generated using multiple imputations by chained equations and pooled using Rubin’s Rules
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Supplementary data online, Figure S3). The negative association of 
pharmacological therapy with DCM was relatively less in subjects 
with young-onset DCM, which most likely reflects the lower frequency 
and shorter duration of treatment. For all the various risk factor asso
ciations, sensitivity analyses of individuals with complete data were con
sistent with the primary findings (see Supplementary data online, Figures 
S4–S7).

Discussion
Here, we show that TTNtv-positive members of families with DCM can 
expect to develop disease during their lifetime. However, the age of 
DCM onset is highly variable, ranging from childhood to late adult 
life. We evaluate factors that contribute to this variability and highlight 
the importance of the individual patient environment. Our findings ex
pand the spectrum of potentially deleterious TTNtv and identify clinical 
factors associated with earlier or later DCM onset. Collectively, these 
findings reveal new opportunities for DCM prevention and improved 
family management (Structured Graphical Abstract).

Clinical reporting of TTNtv focuses on nonsense, frameshift inser
tions/deletions, and canonical splice-site variants in the titin A-band,14

with variants of other types and locations often not reported or 
deemed to have uncertain significance due to insufficient evidence to 
support disease causation. This has likely led to considerable under- 
recognition of clinically relevant TTNtv. In our families, most 

DCM-associated variants occurred in the titin A-band with additional 
hotspots in the N2B unique sequence and TK domain, which have 
been implicated in sensing and responding to mechanical stress.29,30

DCM-associated TTNtv in high PSI exons outside these regions were 
relatively less frequent but had similar DCM penetrance. These data ar
gue for a review of DCM variant classification matrices with upgrading 
of TTNtv in any high PSI exon irrespective of location. Splice-altering 
variants in non-canonical sites or with in-frame effects also warrant fur
ther consideration. Inclusion of non-canonical splice-site variants has 
been proposed to increase the diagnostic yield of TTN sequencing by 
10%–20%.31 Here, we extend these findings by showing that these var
iants have similar DCM penetrance to that observed for canonical 
splice-site variants. Our data suggest that splice-site variants with in- 
frame effects can be associated with DCM. However, these results 
need to be interpreted with caution as functional consequences may 
vary with the size of the inserted or deleted segment.

Since TTNtv often occurs as incidental findings in the general popu
lation, it has been speculated that additional factors are required for dis
ease manifestation. Experimental data in human cardiomyocyte and 
zebrafish models suggest that TTNtv are sufficient to cause DCM.32,33

The individual patient context appears to be highly relevant, however, 
as a determinant of the timing of DCM onset. TTNtv-positive subjects 
are thought to be more susceptible to developing DCM in settings of 
haemodynamic stress (e.g. pregnancy)34,35 or exogenous toxins (e.g. al
cohol excess, anthracycline chemotherapy).36,37 In our study, preg
nancy was identified as a period of heightened DCM risk in young 
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Table 5 Different risk factor profiles in TTNtv-positive males and females with early- and late-onset DCM

DCM diagnosis <30 years DCM diagnosis ≥60 years

DCM-exacerbating factorsa

Males (N = 50) Females (N = 24) All (N = 74) Males (N = 103) Females (N = 53) All (N = 156)

Alcohol (40.0%) Pregnancy (58.3%) Alcohol (28.4%) AF (47.6%) Hypertension (52.8%) Hypertension (41.7%)

AF (28.0%) BMI > 35 (25.0%) AF (21.6%) Hypertension (35.9%) AF (26.4%) AF (40.4%)

BMI > 35 (20.0%) Thyroid (20.8%) BMI > 35 (21.6%) Ischaemic HD (24.3%) Chronic lung (18.9%) Ischaemic HD (19.9%)

Diabetes (14.0%) AF (8.3%) Pregnancy (18.9%) Alcohol (17.5%) Diabetes (15.1%) Diabetes (16.0%)

Hypertension (12.0%) Alcohol (4.2%) Thyroid (12.2%) Diabetes (16.5%) Thyroid (15.1%) Alcohol (14.1%)

Thyroid (8.0%) Diabetes (4.2%) Diabetes (10.8%) Chronic lung (9.7%) Ischaemic HD (11.3%) Chronic lung (12.8%)

ChemoRx (6.0%) Hypertension (8.1%) Thyroid (7.8%) Alcohol (7.5%) Thyroid (10.3%)

Chronic lung (4.0%) ChemoRx (4.1%) BMI > 35 (4.9%) BMI > 35 (1.9%) BMI > 35 (3.8%)

Ischaemic HD (2.0%) Chronic lung (2.7%) ChemoRx (1.9%) ChemoRx (.6%)

Ischaemic HD (1.4%)

DCM-protective factors

Males (N = 73) Females (N = 16) All (N = 89) Males (N = 53) Females (N = 30) All (N = 83)

Exercise (91.8%)b Exercise (93.7%)b Exercise (92.1%)b Exercise (58.5%)b BB/RAS Rx (46.7%) Exercise (53.0%)b

BB/RAS (5.5%) Both (6.3%) BB/RAS (4.5%) BB/RAS (26.4%) Exercise (43.3%)b BB/RAS (33.7%)

Both (2.7%) Both (3.4%) Both (15.1%) Both (10.0%) Both (13.3%)

AF, atrial fibrillation; BB/RAS beta-adrenergic receptor and/or renin-angiotensin system-blocking drug therapy prior to DCM diagnosis; BMI, body mass index; chemoRx, anthracycline 
chemotherapy; HD, heart disease.
a14/74 (18.9%) of the <30 years group presented with multiple risk factors (11 males and 3 females) and 70/156 (44.9%) of the ≥60 years group presented with multiple risk factors (48 
males and 22 females).
bModerate or high levels of exercise.
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females, while alcohol excess was a major factor in young males. 
Anthracycline chemotherapy exposure occurred mainly in young males 
and older females but accounted for only a small proportion of DCM 
cases.

Apart from age and male sex, AF had the strongest positive associ
ation with DCM in our families. AF is a common complication of severe 
DCM due to any cause and is likely related to atrial dilatation. Of note, 
TTNtv have been associated with early-onset and lone AF in the absence 
of discernible ventricular cardiomyopathy, raising the possibility of a pri
mary atrial cardiomyopathy and arrhythmogenic substrate.38–42 In 
keeping with this, two-thirds of our TTNtv-positive subjects who devel
oped AF were diagnosed prior to or coincident with DCM. However, 
the majority of these subjects had both a TTNtv and one or more estab
lished clinical risk factors for AF. Further, we are unable to exclude the 
potential role of additional rare or common AF-promoting genetic var
iants. These findings suggest that the aetiology of TTNtv-associated AF 
can be complex, and careful assessment of contributing factors in each 
patient is needed. Irrespective of the cause, rapid AF can accelerate 
DCM progression or trigger acute decompensation and was treated 
as a DCM-promoting factor in our analyses.

Comorbidities such as obesity, hypertension, and diabetes, are major 
contributors to the global burden of cardiovascular disease, including 
heart failure, arrhythmias, and stroke,43 but are not typically considered 
as DCM-promoting. Our data now suggest that overall cardiometabolic 
health influences disease onset in TTNtv-related DCM. As expected, the 
prevalence of comorbidities increased with age in our cohort. 
Alarmingly, however, the strongest associations with DCM were 
seen in young-onset cases. Obesity was of particular concern, with 
one in five individuals diagnosed with DCM under 30 years of age being 
classified as morbidly obese (class II/III). Obesity is most often asso
ciated with heart failure with preserved ejection fraction but can also 
promote progressive LV dilatation and DCM.44,45

The role of exercise is a contentious topic in genetic cardiomyop
athies, with varying evidence for disease-accelerating vs beneficial ef
fects according to exercise duration and intensity, cardiomyopathy 
type, symptom status, and underlying genotype.10 In our study, there 
appeared to be an inverse correlation between exercise amount and 
DCM onset. This could indicate that low levels of exercise exacerbate 
DCM risk, especially since obesity and a sedentary lifestyle are frequent
ly intertwined. Alternatively, moderate/high levels of exercise might be 
cardioprotective. A recent small study in patients with established 
TTNtv-related DCM showed that exercise training improved cardiovas
cular fitness,46 favouring the latter hypothesis. While these data collect
ively support the concept of “exercise as therapy”, the extent to which 
regular exercise might delay or prevent DCM onset remains to be de
termined. It should be noted that none of our study subjects were elite 
competitive endurance athletes, in whom impaired ventricular function 
is not uncommon.47 Further studies are needed to more closely define 
safe and effective levels of exercise as well as mechanisms of cardiopro
tective effects in TTNtv-positive individuals.

A striking finding of our study was the reduced likelihood of DCM as
sociated with use of beta-adrenergic receptor or RAS-blocking drug 
treatment prior to DCM diagnosis. To date, evidence-based guidelines 
for disease prevention in familial DCM have been lacking. Our data 
now provide a strong foundation for a randomized clinical trial to address 
this issue. We expect that pre-emptive therapy in TTNtv-positive subjects 
with subclinical cardiomyopathy (e.g. LV ejection fraction 50%–55% or 
impaired global longitudinal strain) would be beneficial.48

Several points need to be considered when interpreting our findings. 
The number of genotype-negative family members was less than the 

50:50 ratio expected in an autosomal dominant disease. This is not 
an uncommon clinical scenario where there may be physician bias to 
undertake genetic testing in affected individuals or patient reluctance 
to be tested in the absence of symptoms. Despite this imbalance, there 
was a clear positive association of TTNtv with DCM status, in keeping 
with previous reports.2,3 The relatively lower proportion of genotype- 
negative relatives did not influence any subsequent analyses as these 
were only performed in genotype-positive probands and relatives. 
The TTNtv evaluated here were all identified in kindreds with DCM 
and hence selected for disease association. Caution is needed in inter
preting non-canonical TTN splice-site changes since variants identified in 
families may be subject to selection bias and predictions based on 
in silico tools alone may overestimate the yield of clinically-significant 
findings. Factors other than TTNtv per se may contribute to the high life
time risk of DCM in TTNtv-positive family members, including shared 
genetic background or environmental exposures. These factors might 
also have contributed to the 10-fold higher prevalence of DCM in 
TTNtv-negative family members (4.45%) when compared to the popu
lation prevalence of DCM (.036%–.04%).10 Clinical risk factors for 
DCM were present in some of these TTNtv-negative cases (i.e. pheno
copies). Rare cardiomyopathy gene variants were found in five of the 
TTNtv-negative individuals, and it seems likely that additional unidenti
fied rare variants could be present that segregate independently from 
the TTNtv in families.

There is emerging evidence that polygenic risk scores for DCM 
(DCM-PRS), derived from combinations of common genetic variants, 
are relevant even in suspected monogenic diseases. In a recent familial 
DCM study, mean values for a DCM-PRS (comprised of 28 variants) 
were higher in probands and in affected relatives when compared to 
healthy controls and unaffected relatives, respectively.49 Further, two 
genome-wide association studies in DCM case-control and biobank co
horts reported enrichment of high DCM-PRS (comprised of .5–1.1 mil
lion variants) in rare variant-positive as well as rare variant-negative 
DCM cases.50,51 Additionally, phenome-wide association studies and 
Mendelian randomization identified links between DCM risk and clinical 
parameters, including body weight and hypertension.50,51 DCM-PRS 
was not assessed in our study and its potential contribution to 
TTNtv-related DCM remains to be investigated.

Limitations of our study need to be noted. Our family-based findings 
may not be directly applicable to sporadic DCM cases or TTNtv identi
fied in the general population. The observational nature of this study is a 
further limitation, and a rigorous prospective evaluation of the impact 
of clinical risk factors on DCM severity and outcomes is needed. The 
impact of ancestry on TTNtv manifestation also remains to be clarified. 
Most clinical reports of TTNtv, including this study, have been per
formed in cohorts of predominant European ancestry; TTNtv have 
shown variable association with DCM in individuals of African ances
try,52,53 and there is a paucity of data for other ancestry groups.

In familial DCM, variable penetrance and expressivity have been con
sidered to be a characteristic of the underlying gene/variant. Here we 
provide new evidence that the onset of TTNtv-related familial DCM 
is not determined solely by the TTNtv but is also closely related to 
the individual patient environment. We suggest that aggressive inter
vention to identify and treat, or avoid, disease-exacerbating clinical 
risk factors is crucial, especially in the young. Given the high lifetime 
risk of DCM, continued medical surveillance of TTNtv-positive family 
members is indicated. The frequency of follow-up should be tailored ac
cording to age, sex, and risk factor burden. Further, our data provide 
new hope that disease prevention may be possible and pave the way 
for clinical intervention trials.
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