

⑧Amivantamab Plus Lazertinib in Atypical EGFR-Mutated Advanced Non-Small Cell Lung Cancer: Results From CHRYSLIS-2

Pascale Tomasini, MD, MSc¹ ; Yongsheng Wang, MD²; Yongsheng Li, MD, PhD³; Enriqueta Felip, MD, PhD⁴ ; Lin Wu, MD⁵ ; Jiuwei Cui, MD, PhD⁶; Benjamin Besse, MD, PhD⁷ ; Alexander I. Spira, MD, PhD⁸ ; Joel W. Neal, MD, PhD⁹ ; Koichi Goto, MD, PhD¹⁰ ; Christina S. Baik, MD, MPH¹¹; Melina E. Marmarelis, MD¹² ; Eiki Ichihara, MD, PhD¹³ ; Yiping Zhang, MD¹⁴; Jong-Seok Lee, MD, PhD¹⁵; Se-Hoon Lee, MD, PhD¹⁶; James Chih-Hsin Yang, MD, PhD¹⁷ ; Sebastian Michels, MD¹⁸ ; Zacharias Anastasiou, MS¹⁹ ; Joshua C. Curtin, PhD²⁰; Xuesong Lyu, PhD²¹; Janine Mahoney, BSN, RN²⁰ ; Levon Demirdjian, PhD²²; Craig S. Meyer, MS, PhD, MPH²² ; Youyi Zhang, PhD²³; Isabelle Leconte, PhD²⁴; Patricia Lorenzini, MS²⁰; Roland E. Knoblauch, MD, PhD²⁰; Leonardo Trani, MD²⁰; Mahadi Baig, MD²³ ; Joshua M. Bauml, MD²⁰ ; and Byoung Chul Cho, MD, PhD²⁵

DOI <https://doi.org/10.1200/JCO.24-02835>

ABSTRACT

PURPOSE For patients with advanced non–small cell lung cancer (NSCLC) harboring atypical epidermal growth factor receptor (EGFR) mutations (eg, S768I, L861Q, G719X), efficacy of current treatment options is limited.

PATIENTS AND METHODS CHRYSLIS-2 Cohort C enrolled participants with NSCLC harboring atypical EGFR mutations (G719X, S768I, L861Q, etc) and ≤ 2 previous lines of therapy.

Participants were treatment-naïve or previously received first- or second-generation EGFR tyrosine kinase inhibitors. Coexisting exon 20 insertions, exon 19 deletions, or exon 21 L858R mutations were exclusionary. Participants received 1,050 mg (1,400 mg if ≥ 80 kg) intravenous amivantamab once weekly for the first 4 weeks and then once every 2 weeks plus 240 mg oral lazertinib once daily. The primary end point was investigator-assessed objective response rate (ORR).

RESULTS As of January 12, 2024, 105 participants received amivantamab-lazertinib. Most common atypical mutations were G719X (56%), L861X (26%), and S768I (23%), including single and compound mutations. In the overall population (median follow-up: 16.1 months), the ORR was 52% (95% CI, 42 to 62). The median duration of response (mDoR) was 14.1 months (95% CI, 9.5 to 26.2). The median progression-free survival (mPFS) was 11.1 months (95% CI, 7.8 to 17.8); median overall survival (mOS) was not estimable (NE; 95% CI, 22.8 to NE). Adverse events were consistent with previous studies and primarily grade 1 and 2. Among treatment-naïve participants, the ORR was 57% (95% CI, 42 to 71). The mPFS was 19.5 months (95% CI, 11.2 to NE), the mDoR was 20.7 months (95% CI, 9.9 to NE), and mOS was NE (95% CI, 26.3 to NE). Solitary or compound EGFR mutations had no major impact on ORR. The ORR in participants with P-loop and α C-helix compressing, classical-like, and T790M-like mutations was 45% (n = 38), 64% (n = 14), and 67% (n = 3), respectively.

CONCLUSION In participants with atypical EGFR-mutated advanced NSCLC, amivantamab-lazertinib demonstrated clinically meaningful antitumor activity with no new safety signals.

ACCOMPANYING CONTENT

Appendix

Data Sharing Statement

Data Supplement

Protocol

Accepted September 30, 2025

Published December 1, 2025

J Clin Oncol 44:54-65

© 2025 by American Society of Clinical Oncology

[View Online Article](#)

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License

INTRODUCTION

Non–small cell lung cancer (NSCLC) is a complex and heterogeneous disease that accounts for approximately 80%–85% of all lung cancer cases.^{1,2} Activating mutations in the epidermal growth factor receptor (EGFR) gene are commonly

observed in NSCLC, with exon 19 deletions (Ex19del) and exon 21 L858R (L858R) substitutions being the most common (85%–90%).^{2–4} Exon 20 insertions (Ex20ins) and atypical EGFR mutations each account for approximately 5%–10% of all EGFR mutations in NSCLC.^{3–8} The most common atypical mutations are G719X in exon 18, S768I in

CONTEXT

Key Objective

Does amivantamab plus lazertinib (amivantamab-lazertinib) exert clinically meaningful and durable antitumor activity in participants with advanced non–small cell lung cancer (NSCLC) harboring atypical epidermal growth factor receptor (*EGFR*) mutations?

Knowledge Generated

Amivantamab-lazertinib demonstrated durable antitumor activity in participants with atypical *EGFR*-mutated advanced NSCLC (objective response rate [ORR], 52%), including in those who were treatment-naïve (ORR, 57%) and those with previous treatment (ORR, 48%). No new safety signals were identified. At a median follow-up of 17.3 months, participants who received first-line amivantamab-lazertinib had a median progression-free survival of 19.5 months and a median response duration of 20.7 months, and median overall survival was not estimable.

Relevance (T.E. Stinchcombe)

This combination is another treatment option for patients with NSCLC harboring these rare *EGFR* mutations.*

*Relevance section written by JCO Associate Editor Thomas E. Stinchcombe, MD.

exon 20, and L861Q in exon 21, but can include others.^{9,10} These can present in patients as single or compound mutations.¹¹

Patients with atypical *EGFR*-mutated advanced NSCLC have significantly worse outcomes compared with those with common *EGFR* mutations when receiving *EGFR*-targeted therapies.¹² Consequently, overall survival (OS) is substantially shorter among patients whose tumors harbor atypical versus common mutations.¹² Patients with NSCLC harboring compound atypical *EGFR* mutations exhibit even poorer survival compared with those with single atypical mutations.^{13,14}

In a post hoc analysis of prospectively collected data from three trials including 38 patients with tumors harboring atypical *EGFR* mutations, the second-generation *EGFR*-tyrosine kinase inhibitor (TKI) afatinib demonstrated a median progression-free survival (PFS) of 10.7 months,¹⁵ resulting in afatinib’s US Food and Drug Administration (FDA) approval for first-line treatment of patients with nonresistant *EGFR* mutations (S768I, L861Q, and G719X) other than Ex19del or exon 21 L858R substitutions and European Medicines Agency (EMA) approval for *EGFR*-TKI-naïve patients with advanced/metastatic NSCLC harboring uncommon *EGFR* mutations.^{16,17} However, this study included participants with tumors harboring atypical mutations with or without compound common *EGFR* mutations (Ex19del or L858R substitutions), which could influence the benefit observed. Patients with tumors harboring atypical mutations alongside common mutations experience more favorable outcomes with *EGFR*-targeted therapies compared with those with only atypical compound mutations.^{11,18–21} While not currently indicated for this population, the third-generation *EGFR*-TKI osimertinib is used globally for

first-line treatment of patients with atypical *EGFR*-mutated advanced NSCLC.^{22–26}

Amivantamab is an *EGFR*-MET bispecific antibody that exerts antitumor activity through multiple mechanisms of action, including inhibition of ligand binding, endocytosis and degradation of receptors, and immune cell–directing activity.^{27–30} It is approved for use in several indications for patients with both common mutations and Ex20ins, alone or in combination with other agents. Lazertinib, a highly selective, CNS-penetrant, third-generation *EGFR*-TKI, has demonstrated activity in patients with atypical *EGFR*-mutated advanced NSCLC.^{31,32} In the LASER301 study, among patients harboring common *EGFR* mutations, alone or in combination with other *EGFR* mutations, lazertinib markedly improved efficacy over gefitinib for first-line treatment of *EGFR*-mutated advanced NSCLC and is approved as a monotherapy in the Republic of Korea.^{33,34} Combining these two agents results in synergistic *EGFR* inhibition, with amivantamab targeting the extracellular domains of *EGFR* and MET, thereby being unaffected by intracellular resistance mechanisms, whereas lazertinib binds to the *EGFR* receptor intracellularly.^{30,35} Amivantamab-lazertinib has shown potent clinical activity across a wide range of *EGFR* alterations.^{36–39} In the phase III MARIPOSA trial, amivantamab-lazertinib improved the median PFS by 7.1 months versus osimertinib in patients with treatment-naïve, common *EGFR*-mutated advanced NSCLC (hazard ratio [HR], 0.70 [95% CI, 0.58 to 0.85]; $P < .001$). In addition, in the protocol-specified final OS analysis of MARIPOSA (median follow-up of 37.8 months), amivantamab-lazertinib showed a statistically significant and clinically meaningful improvement in OS versus osimertinib (HR, 0.75; $P < .005$), with the median OS benefit projected to exceed 1 year.⁴⁰ Amivantamab-lazertinib is

FDA-approved as first-line treatment for patients with advanced NSCLC with EGFR Ex19del or L858R substitutions.⁴¹

In Cohort C of the CHRYSLIS-2 study (ClinicalTrials.gov Identifier: [NCT04077463](#)), we prospectively evaluated the efficacy and safety of amivantamab-lazertinib in participants with advanced NSCLC harboring atypical EGFR mutations, excluding those with compound common mutations.

PATIENTS AND METHODS

Participants

Eligible participants for CHRYSLIS-2 Cohort C were 18 years and older and had advanced or metastatic NSCLC. Participants with tumors harboring any atypical activating EGFR mutations, including but not limited to S768I, L861Q, and G719X, were eligible. Those with solitary Ex20ins or coexisting Ex20ins or Ex19del/L858R EGFR mutations were excluded. Participants had an Eastern Cooperative Oncology Group performance status (ECOG PS) score of 0-1. Participants were treatment-naïve or had received ≤ 2 previous lines of treatment with chemotherapy and/or first- or second-generation EGFR-TKIs as the most recent line of therapy; the receipt of third-generation EGFR-TKIs was exclusionary. Participants with stable, treated CNS metastases were eligible.

Study Design and Treatment

CHRYSLIS-2 is an open-label, 2-part, phase I/Ib, multi-center study of lazertinib, alone or in combination with amivantamab, in participants with advanced EGFR-mutated NSCLC (Data Supplement, Fig S1, online only). This analysis presents the results from Cohort C, which evaluated amivantamab-lazertinib in participants with tumors harboring atypical EGFR mutations. Subgroup analyses based on the line of treatment (first-line v later-line treatment with amivantamab-lazertinib) were performed. Participants in Cohort C received amivantamab-lazertinib in 28-day cycles until disease progression, unacceptable toxicity, noncompliance, withdrawal of consent, or discontinuation at the investigator discretion. Lazertinib was dosed at 240 mg orally once daily. Amivantamab was administered intravenously once every week during Cycle (C) 1 at a dose of 1,050 mg (1,400 mg for ≥ 80 kg weight), with the first dose split between 2 days (350 mg once daily on C1 Day [D] 1, and the remainder on C1D2) and then every 2 weeks in subsequent cycles.

End Points and Assessments

The primary end point was objective response rate (ORR) per RECIST v1.1, as determined by the investigator. Secondary end points included duration of response (DoR), clinical benefit rate (CBR; defined as a complete response [CR], partial response [PR], or stable disease [SD] for ≥ 11 weeks),

PFS, OS, time to treatment discontinuation, and adverse events (AEs). Biomarkers were analyzed as exploratory end points.

Disease was assessed at baseline and every 6 weeks (± 1 week) via contrast-enhanced computed tomography (CT; noncontrast CT was acceptable if contrast administration was contraindicated), magnetic resonance imaging, and other imaging/examination scans per RECIST v1.1.

AEs were recorded from consent until 30 days after the last treatment dose or start of subsequent anticancer therapy and graded according to the National Cancer Institute–Common Terminology Criteria for Adverse Events v5.0. Testing for atypical mutations, including solitary versus compound EGFR analyses, was based on local testing. Blood samples were collected at baseline for circulating tumor DNA (ctDNA) analyses and tested centrally. Next-generation sequencing of plasma ctDNA was performed and analyzed using Guardant360 (Guardant Health, Redwood City, CA), excluding participants from China.

Trial Oversight

The trial was conducted in accordance with the provisions of the Declaration of Helsinki, Good Clinical Practice guidelines (as defined by the International Council for Harmonisation), and applicable regulatory and country-/territory-specific requirements. The protocol was approved by the local institutional review boards and independent ethics committees of the participating centers. Participants provided written informed consent.

Statistical Analysis

The sample size for Cohort C was based on the null hypothesis that the ORR is $\leq 50\%$ and the alternative hypothesis that the ORR is $\geq 68\%$. With a one-sided alpha of 2.5% and a power of 90%, 92 response-evaluable participants were needed for expansion Cohort C. Assuming a nonevaluable rate of 15%, approximately 108 participants were planned to be enrolled in Cohort C.

Data were summarized using descriptive statistics. Time-to-event end points were summarized using Kaplan-Meier estimates. The medians and 95% CIs were provided. No data imputation was applied for missing safety and efficacy evaluations. All data used for this interim analysis were reported before January 12, 2024.

RESULTS

Participants

As of January 12, 2024, 105 participants received amivantamab-lazertinib in Cohort C. Among the 105 participants, 49 participants were treatment-naïve, whereas

TABLE 1. Demographic and Clinical Characteristics of Participants at Baseline

Characteristic	Overall Population (N = 105)	Treatment-Naïve Subgroup (n = 49)	Previous Treatment Subgroup (n = 56)
Age, years, median (range)	64 (30-85)	60 (30-80)	67 (32-85)
Male, No. (%)	53 (50)	27 (55)	26 (46)
Race, No. (%)			
Asian	71 (68)	28 (57)	43 (77)
White	31 (30)	19 (39)	12 (21)
Black or African American	1 (1)	1 (2)	0
Not reported	2 (2)	1 (2)	1 (2)
Brain metastases at baseline, No. (%)	33 (31) ^a	13 (27)	20 (36)
Previous therapies in the metastatic setting, No. (%)			
Treatment-naïve	49 (47)	49 (100)	0
Previous afatinib	34 (32)	0	34 (61)
Previous first-/second-generation EGFR-TKI (other than afatinib) ^b	9 (9)	0	9 (16)
Previous platinum chemotherapy	7 (7)	0	7 (13)
Previous afatinib + previous platinum chemotherapy	6 (6)	0	6 (11)
ECOG PS, No. (%)			
0	33 (31)	18 (37)	15 (27)
1	72 (69)	31 (63)	41 (73)
Type of EGFR mutation, ^c No. (%)			
Exon 18 G719X ^d	59 (56)	27 (55)	32 (57)
Exon 21 L861X ^e	27 (26)	12 (24)	15 (27)
Exon 20 S768X ^f	24 (23)	13 (27)	11 (20)
Exon 18 E709K	2 (2)	2 (4)	0
Exon 18 E709A	2 (2)	1 (2)	1 (2)
L833V	2 (2)	2 (4)	0
R776C	2 (2)	2 (4)	0
R776H	1 (1)	1 (2)	0
R831H	1 (1)	1 (2)	0
V744M	1 (1)	1 (2)	0
V769L	1 (1)	0	1 (2)
V774M	1 (1)	0	1 (2)
Other	10 (10)	5 (10)	5 (9)

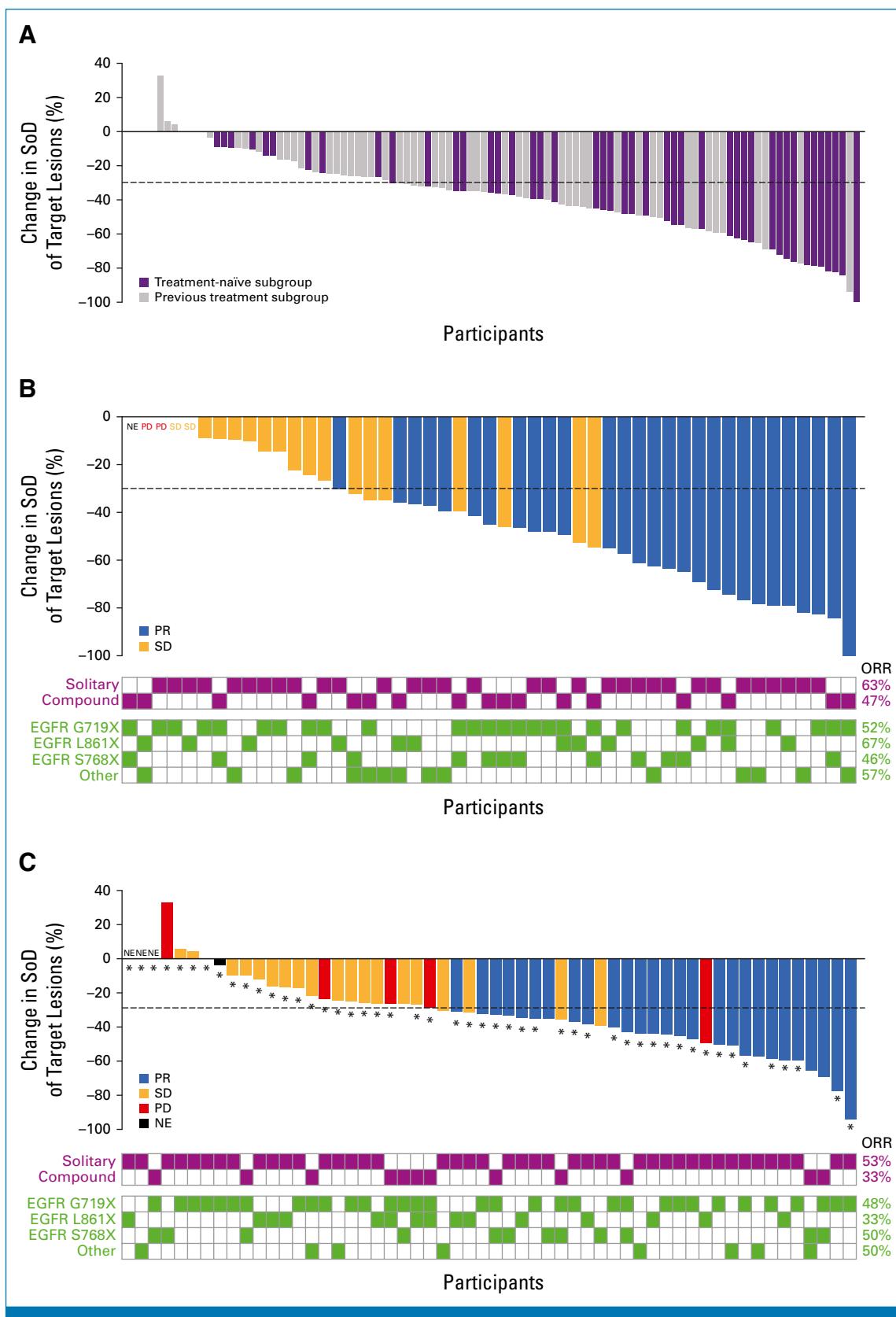
Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor.

^aBrain metastases were confirmed by imaging in 37 (35%) participants.

^bFirst-/second-generation EGFR-TKIs, other than afatinib, included gefitinib, dacomitinib, erlotinib, and icotinib.

^cParticipants may be counted in ≥ 1 category.

^dG719X included G719A, G719S, and G719C. Compound mutations were observed in 24 participants in the overall population, with 14 participants in the treatment-naïve subgroup and 10 participants in the previous treatment subgroup.


^eL861X included L861Q, L861R, and L861G. Compound mutations were observed in seven participants in the overall population, with four participants in the treatment-naïve subgroup and three participants in the previous treatment subgroup.

^fS768X included S768I and S768L. Compound mutations were observed in 18 participants in the overall population, with 11 participants in the treatment-naïve subgroup and seven participants in the previous treatment subgroup.

56 participants had received a previous treatment. The most common treatments among those who received previous therapy were EGFR-TKIs (88%).

Baseline demographic and disease characteristics are shown in Table 1. The median age was 64 years (range, 30-85);

50% was male, and 68% was Asian. The most common types of atypical EGFR mutations, including both single and compound mutations, were G719X (56%), L861X (26%), and S768X (23%); 29 (28%) participants had compound mutations. A total of 37 (35%) participants had brain/CNS metastasis confirmed by imaging at baseline.

FIG 1. Best percentage change from baseline in target lesions and ORR by mutation type. Best response in the (A) overall population, (B) treatment-naïve subgroup, and (C) previous treatment subgroup. EGFR, epidermal growth factor receptor; NE, not estimable; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease; SoD, sum of diameters.

TABLE 2. Summary of Efficacy Outcomes in Cohort C

Investigator-Assessed Response	Overall Population (N = 105)	Treatment-Naïve Subgroup (n = 49)	Previous Treatment Subgroup (n = 56)
Follow-up, months, median (range)	16.1 (0.1-31.5)	17.3 (0.1-31.5)	15.4 (0.3-30.8)
ORR, % (95% CI)	52 (42 to 62)	57 (42 to 71)	48 (35 to 62)
Best response, No. (%)			
CR	0	0	0
PR	55 (52)	28 (57)	27 (48)
SD	37 (35)	18 (37)	19 (34)
PD	8 (8)	2 (4)	6 (11)
NE/unknown	5 (5)	1 (2)	4 (7)
Median DoR, months (95% CI)	14.1 (9.5 to 26.2)	20.7 (9.9 to NE)	11.0 (4.5 to NE)
DoR \geq 6 months, No. (%) ^a	38 (69)	21 (75)	17 (63)
CBR, % (95% CI) ^b	79 (70 to 86)	84 (70 to 93)	75 (62 to 86)
Median PFS, months (95% CI)	11.1 (7.8 to 17.8)	19.5 (11.2 to NE)	7.8 (5.4 to 11.1)
Median OS, months (95% CI)	NE (22.8 to NE)	NE (26.3 to NE)	22.8 (16.9 to NE)
24-month rate, % (95% CI)	58 (43 to 70)	77 (56 to 89)	34 (12 to 58)

Abbreviations: CBR, clinical benefit rate; CR, complete response; DoR, duration of response; NE, not estimable; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease.

^aAmong responders.

^bCBR is defined as the percentage of participants achieving confirmed CR, PR, or durable SD (duration of \geq 11 weeks).

Efficacy

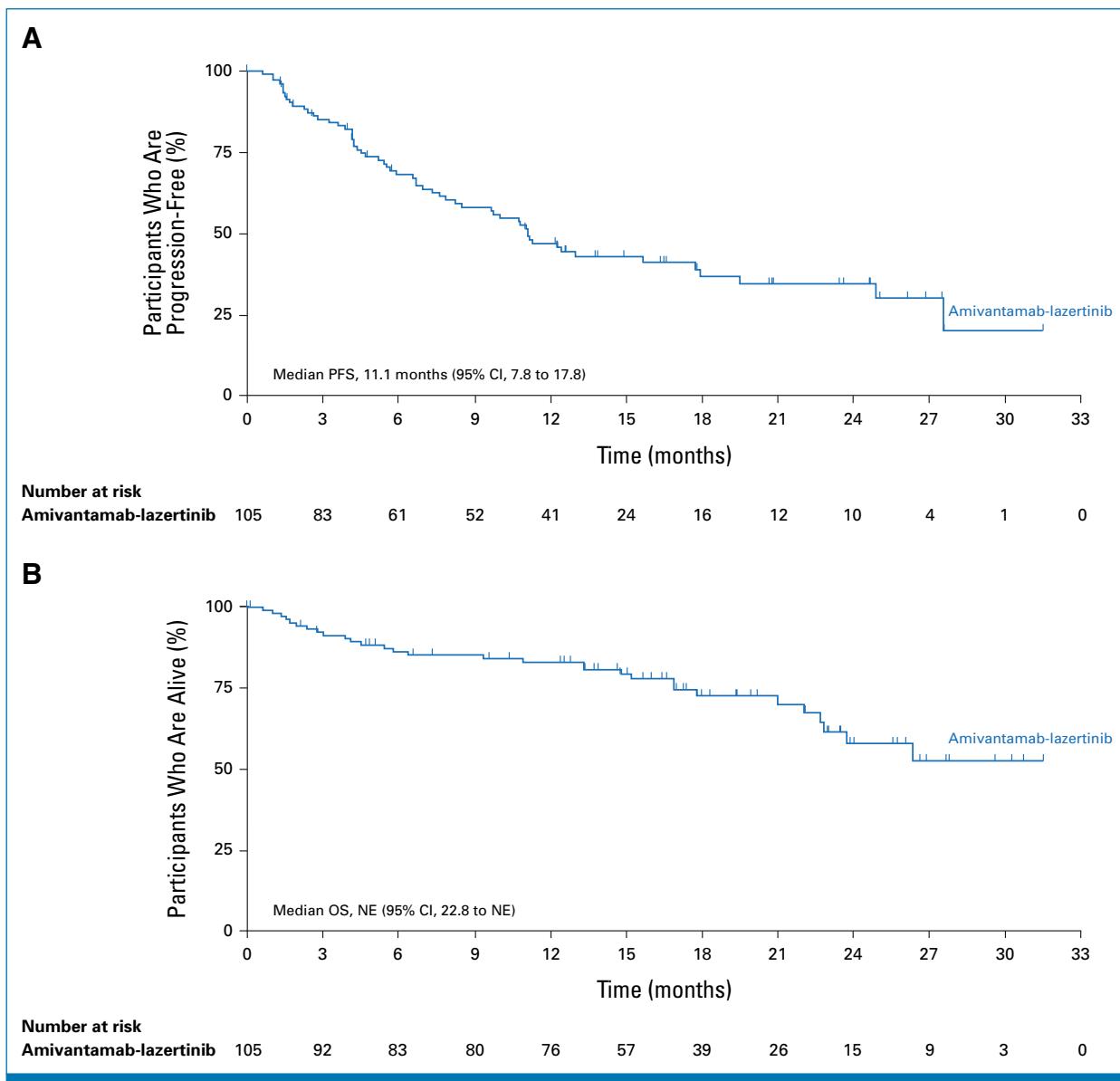
Overall Population

At a median follow-up of 16.1 months (range, 0.1-31.5), the median duration of treatment in the overall population was 11.1 months (range, 0.03-31.5). The investigator-assessed ORR was 52% (95% CI, 42 to 62). All responses observed were PRs (52%; *Fig 1* and *Table 2*). The median DoR was 14.1 months (95% CI, 9.5 to 26.2), and the CBR was 79% (95% CI, 70 to 86). The median PFS was 11.1 months (95% CI, 7.8 to 17.8; *Fig 2A*), and the median OS was not estimable (NE; 95% CI, 22.8 to NE; *Fig 2B*).

Treatment-Naïve Subgroup

At a median follow-up of 17.3 months (range, 0.1-31.5), the median duration of treatment with first-line amivantamab-lazertinib was 12.7 months (range, 0.03-31.5). The investigator-assessed ORR was 57% (95% CI, 42 to 71; *Fig 1* and *Table 2*). The median DoR was 20.7 months (95% CI, 9.9 to NE), and the CBR was 84% (95% CI, 70 to 93). The median PFS was 19.5 months (95% CI, 11.2 to NE), and median OS was NE (95% CI, 26.3 to NE), with 77% of participants still alive at 24 months. To provide context for this single-arm trial, a trial-matched real-world analysis was conducted on existing therapies from the Flatiron Health NSCLC database, which are described in the Data Supplement.

Previous Treatment Subgroup


At a median follow-up of 15.4 months (range, 0.3-30.8), the median duration of treatment with later-line amivantamab-

lazertinib was 8.9 months (range, 0.2-29.9). The investigator-assessed ORR was 48% (95% CI, 35 to 62). PR was observed in 27 (48%) participants, SD in 19 (34%) participants, and PD in six (11%) participants (*Fig 1* and *Table 2*). The median DoR was 11.0 months (95% CI, 4.5 to NE), and the CBR was 75% (95% CI, 62 to 86). The median PFS was 7.8 months (95% CI, 5.4 to 11.1), and the median OS was 22.8 months (95% CI, 16.9 to NE).

Safety

In the overall population, the safety profile of amivantamab-lazertinib was consistent with that previously reported (*Table 3*).³⁷⁻³⁹ Individual treatment-emergent AEs (TEAEs; by preferred term) most commonly reported by participants were rash (67%), paronychia (67%), hypoalbuminemia (59%), and infusion-related reactions (IRRs; 56%) and were mostly grade 1 and 2. The majority (95%) of IRRs occurred during the first infusion and were grade 1 and 2. Overall, grade \geq 3 TEAEs were reported in 73 (70%) participants. Fifty (48%) participants experienced grade \geq 3 treatment-related AEs. The most frequent grade \geq 3 treatment-related AEs reported by participants were rash (13%) and hypoalbuminemia (8%). Serious TEAEs were reported for 53 (50%) participants, 22 (21%) of which were considered related to treatment. Dose interruptions, reductions, and discontinuations of any study agent because of TEAEs were seen in 73 (70%), 52 (50%), and 29 (28%) participants, respectively. Discontinuation of all study agents because of treatment-related AEs occurred in seven (7%) participants. Death occurred in 12 (11%) participants, one (1%) of which was considered related to treatment.

Venous thromboembolism (VTE) was reported in 31 (30%) participants; most events occurred in the first 4 months of

FIG 2. PFS and OS in the overall population. Kaplan-Meier curves for (A) PFS and (b) OS for participants treated with amivantamab-lazertinib in the overall population. NE, not estimable; OS, overall survival; PFS, progression-free survival.

treatment (71% [22 of 31]). Grade 3 VTE was observed in 10 (10%) participants; no grade 4 and 5 events occurred. At baseline, 16% (17 of 105) of all participants received anti-coagulation for prophylaxis or based on the medical history of VTE. Most participants (94% [29 of 31]) were not on anticoagulation at the time of first VTE.

Exploratory Analyses

Biomarker Analysis

Among participants treated with first-line amivantamab-lazertinib and among those treated with later-line amivantamab-lazertinib, most participants had solitary EGFR mutations. Among participants treated with first-line amivantamab-lazertinib, the confirmed ORR was 63%

(95% CI, 44 to 79) for those with solitary mutations and 47% (95% CI, 23 to 72) for those with compound mutations (nominal $P = .299$). The corresponding values among those treated with later-line amivantamab-lazertinib were 52% (95% CI, 37 to 67.5) and 33% (95% CI, 10 to 65), respectively (nominal $P = .244$). The presence of solitary or compound EGFR mutations had no major impact on ORR, as indicated by the 95% CIs (Fig 1).

Of the 73 participants who had analyzable baseline ctDNA data, 65 (89%) participants had detectable ctDNA and 59 (81%) participants had any detectable pathogenic alterations. Of these participants, TP53 mutations were detected in 37 (63%) participants. The ORR was 54% (95% CI, 37 to 71) among participants with TP53 mutations and 46% (95% CI, 28 to 66) among those without TP53 mutations.

TABLE 3. Summary of TEAEs

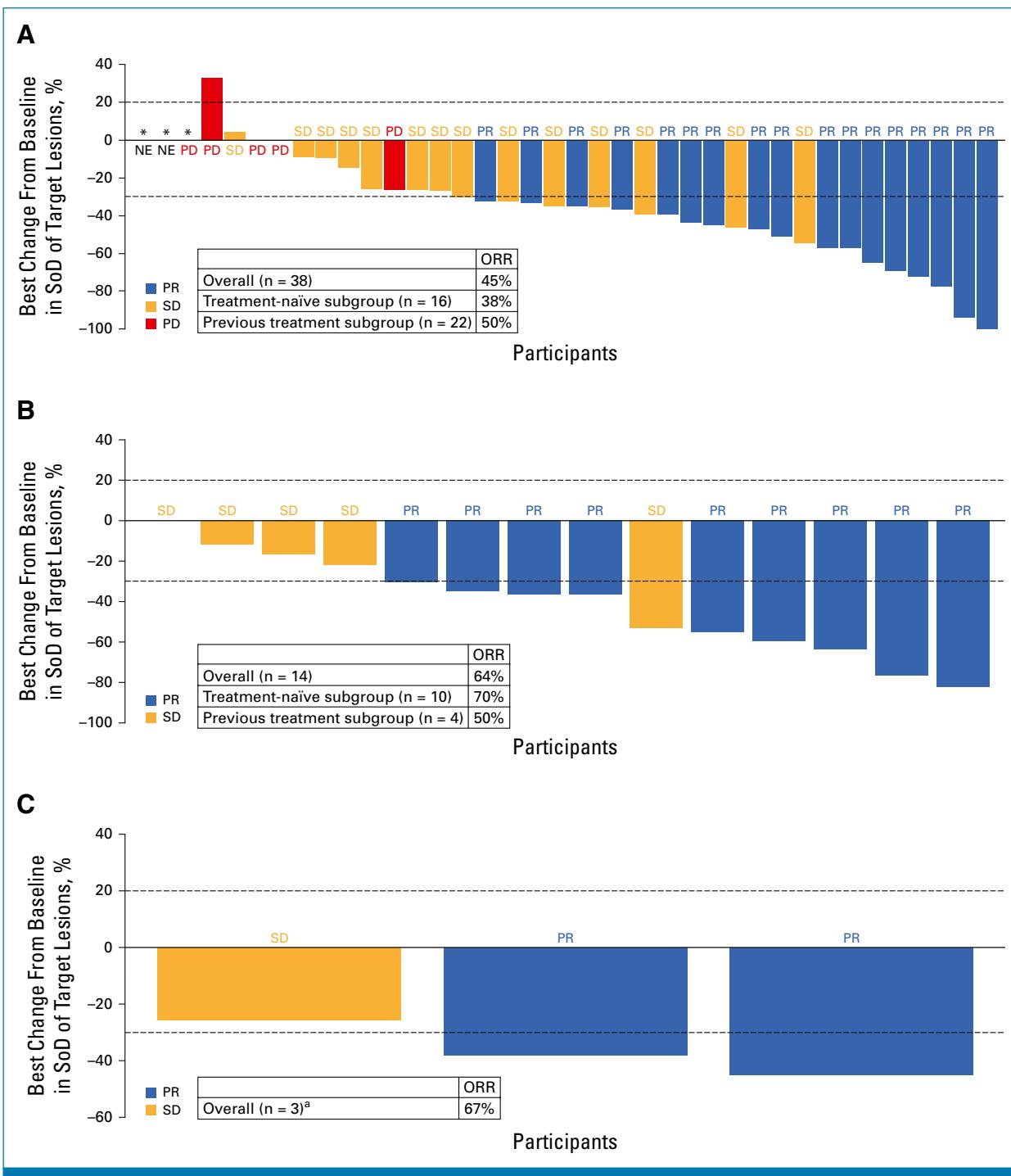
Event	N = 105, No. (%)	
TEAE ($\geq 10\%$) by Preferred Term	All Grades, No. (%)	Grade ≥ 3 , No. (%)
Any TEAE	105 (100)	
Grade ≥ 3 TEAE	73 (70)	
Serious TEAE	53 (50)	
Dose interruption of any study agent ^a	73 (70)	
Dose reduction of any study agent	52 (50)	
Discontinuation of any study agent	29 (28)	
Associated with EGFR inhibition		
Rash	70 (67)	14 (13)
Paronychia	70 (67)	5 (5)
Stomatitis	31 (30)	2 (2)
Diarrhea	24 (23)	0
Pruritus	24 (23)	0
Dermatitis acneiform	23 (22)	4 (4)
Associated with MET inhibition		
Hypoalbuminemia	62 (59)	8 (8)
Peripheral edema	38 (36)	3 (3)
Other		
IRR	59 (56)	4 (4)
ALT increased	43 (41)	2 (2)
Constipation	34 (32)	0
Hypocalcemia	33 (31)	1 (1)
AST increased	32 (30)	1 (1)
COVID-19 disease	31 (30)	2 (2)
Anemia	28 (27)	3 (3)
Decreased appetite	28 (27)	2 (2)
Nausea	27 (26)	2 (2)
Asthenia	26 (25)	7 (7)
Blood lactate dehydrogenase increased	24 (23)	7 (7)
Hypokalemia	20 (19)	4 (4)
Thrombocytopenia	19 (18)	2 (2)
Muscle spasms	19 (18)	0
Gamma-glutamyl transferase increased	18 (17)	1 (1)
Cough	18 (17)	0
Lymphopenia	17 (16)	2 (2)
Fatigue	17 (16)	0
Pulmonary embolism	16 (15)	8 (8)
Peripheral sensory neuropathy	16 (15)	0
Vomiting	16 (15)	0
Pneumonia	15 (14)	10 (10)
Dizziness	15 (14)	3 (3)
Blood creatine phosphokinase increased	15 (14)	2 (2)
Hypomagnesemia	15 (14)	0
Hypophosphatasemia	15 (14)	0
Myalgia	15 (14)	0
Paresthesia	15 (14)	0
Neutropenia	14 (13)	1 (1)

(continued in next column)

TABLE 3. Summary of TEAEs (continued)

TEAE ($\geq 10\%$) by Preferred Term	All Grades, No. (%)	Grade ≥ 3 , No. (%)
Dry skin	14 (13)	0
Hyponatremia	14 (13)	1 (1)
Dyspnea	13 (12)	6 (6)
Headache	13 (12)	0
Pyrexia	13 (12)	0
Blood creatinine increased	12 (11)	0
Hyperglycemia	12 (11)	0
Back pain	11 (11)	1 (1)
Blood alkaline phosphatase increased	11 (11)	0
Insomnia	11 (11)	0
Leukopenia	11 (11)	0

Abbreviations: AE, adverse event; EGFR, epidermal growth factor receptor; IRR, infusion-related reaction; TEAE, treatment-emergent adverse event.


^aExcludes IRRs.

Participants were further classified using the structure-based approach described by Robichaux et al.⁴² In the overall population, P-loop and α C-helix compressing (PACC) mutations were observed in 38 participants, classical-like mutations in 14 participants, and T790M-like mutations in three participants. The ORRs in these groups were 45% (95% CI, 29 to 62), 64% (95% CI, 35 to 87), and 67% (95% CI, 9 to 99), respectively (Fig 3).

DISCUSSION

In Cohort C of the CHRYSLIS-2 study, after a median follow-up of 16.1 months, amivantamab-lazertinib demonstrated clinically meaningful and durable antitumor activity in participants with atypical EGFR-mutated advanced NSCLC; OS was NE at the time of analysis. Among participants who were treatment-naïve, the ORR by investigator review was 57%, with a median PFS of 19.5 months, which is substantially longer than the <1-year PFS reported for participants receiving EGFR-TKI monotherapy.^{10,15} Participants from CHRYSLIS-2 Cohort C had a 24-month OS rate of 77%. Amivantamab-lazertinib also showed benefits among participants who received previous treatments in Cohort C, with an ORR rate of 48% and a median PFS of 7.8 months. These results suggest that amivantamab-lazertinib could be a treatment option for patients with atypical EGFR-mutated advanced NSCLC.

Afatinib, the only approved agent in this setting, demonstrated a median PFS of 10.7 months and an ORR of 71% in a post hoc analysis of data from three trials involving 38 participants with atypical EGFR mutations.¹⁵ In a prospective study of 40 participants with atypical EGFR-mutated NSCLC, osimertinib demonstrated a median PFS of 9.4 months and an ORR of 55%. Although osimertinib demonstrated an ORR

FIG 3. Best percentage change from baseline in target lesions by the location of mutations in different structural entities of *EGFR*. Best response for participants with (A) PACC mutations, (B) classical-like mutations, and (C) T790M-like mutations. EGFR, epidermal growth factor receptor; NE, not evaluable; ORR, objective response rate; PACC, P-loop and α C-helix compressing; PD, progressive disease; PR, partial response; SD, stable disease; SoD, sum of diameters.

of 86% among participants who harbored solitary L861Q mutations ($n = 7$), the ORR among those who harbored G719X solitary mutations ($n = 10$) was only 30%.¹⁰ In a retrospective, multicenter study of participants with atypical EGFR-mutated NSCLC in Germany, afatinib and osimertinib demonstrated a median PFS of 12.0 and 5.0 months,

respectively (independent of the treatment line).⁴³ However, these studies also included participants with tumors harboring atypical mutations with common compound *EGFR* mutations (Ex19del or L858R), potentially influencing the observed benefits. In another phase II study conducted in participants with tumors harboring *EGFR* mutations other

than Ex19del, L858R, T790M, and Ex20ins in Korea, osimertinib demonstrated an ORR of 50% (n = 36) and a PFS of 8.2 months.⁴⁴

Although atypical mutations vary from other common EGFR mutations and structure-based classifications suggest that a structure-function-based approach could predict drug sensitivity to targeted therapies,⁴² the sensitivity of each mutation to EGFR-TKIs is still not fully understood. Nonetheless, data from CHRYSTALIS-2 Cohort C showed that amivantamab-lazertinib is effective against all atypical mutations, including single and compound atypical mutations, irrespective of the structural implication of the mutation locus in the EGFR gene. Among all participants with PACC mutations, amivantamab-lazertinib demonstrated an ORR of 45%, regardless of previous treatment. Firmonertinib is another EGFR-TKI that has demonstrated efficacy in TKI-naïve participants with PACC mutations, with an investigator-assessed ORR of 52% for the 160 mg once daily dose and 82% for the 240 mg once daily dose. Amivantamab-lazertinib has also demonstrated efficacy irrespective of the presence of high-risk features including baseline liver metastases, TP53 mutations, and detectable baseline circulating tumor DNA.⁴⁵

The complementary mechanisms of action of amivantamab and lazertinib^{30,32} expand coverage against additional EGFR (eg, C797S) and MET (eg, amplification) TKI resistance mutations,³⁸ potentially delaying disease resistance and prolonging disease control beyond that observed with other EGFR-TKIs alone. These mechanisms may explain the improved efficacy of amivantamab-lazertinib in this setting. In addition, next-generation sequencing of ctDNA samples at baseline showed that the presence of TP53 mutations was not associated with a lower response rate with amivantamab-lazertinib.

The safety profile of amivantamab-lazertinib was consistent with previous reports, with no new safety signals.³⁷⁻³⁹ IRRs were mostly grade 1 and 2 and primarily occurred during the first infusion cycle. IRRs can be further reduced with prophylactic oral dexamethasone 8 mg twice daily plus standard prophylaxis before first intravenous amivantamab infusion.⁴⁶ VTE was reported in 30% of participants; none were grade 4 and 5, and most events occurred in the first 4 months of treatment. The majority of participants were not receiving anticoagulation at the time of first VTE. Prophylactic

anticoagulation is now recommended for the first 4 months of treatment with amivantamab-lazertinib in all ongoing trials and in the prescribing information.^{37,41,47,48} In the PALOMA-3 study, prophylactic anticoagulation was safely implemented and effective in reducing the risk for VTE. Among all participants in PALOMA-3, VTE rates for those who received prophylactic anticoagulation was 10% versus 21% for those who did not receive anticoagulation. The subcutaneous formulation of amivantamab may further reduce overall VTE rates.⁴⁷

There are some limitations in our study. This was a phase I proof-of-concept study conducted in a limited population, and ORR was not analyzed by blinded independent central review. However, the totality of the efficacy data presented, including ORR, DoR, PFS, and OS, demonstrates that amivantamab-lazertinib can be used as a clinically meaningful treatment in a patient population with very few available options. As shown in our real-world analyses (Data Supplement, Methods and Results), most participants treated with first-line physician-selected EGFR-TKI monotherapy do not receive second-line treatment. Furthermore, amivantamab-lazertinib demonstrates improved survival outcomes compared with physician-selected EGFR-TKIs, including afatinib and osimertinib, in the real-world setting after applying key trial eligibility criteria and adjusting for confounding differences. Of note, the real-world analyses may be subject to potential selection biases, variability in treatment approaches, and confounding effects of subsequent therapies. However, rigorous statistical methods were used, such as propensity score methods, to ensure that the comparative analyses were robust and reflective of true clinical scenarios. Key eligibility criteria from the trial were used to identify the target population, and an e-value analysis was performed to measure the impact of unmeasured confounding.

In conclusion, amivantamab-lazertinib demonstrated clinically meaningful and durable antitumor activity while maintaining safety in participants with atypical EGFR-mutated advanced NSCLC. To our knowledge, this is the largest, single-cohort, prospective study of atypical EGFR-mutated advanced NSCLC. Our results contribute to findings of other studies that demonstrated the efficacy and safety of amivantamab-based regimens in participants with advanced NSCLC harboring common EGFR mutations,⁴⁹ EGFR Ex20ins,⁵⁰ and now atypical EGFR mutations.

AFFILIATIONS

¹Aix Marseille University - CNRS, INSERM, CCRM; CEPHM - AP-HM Hôpital de La Timone, Marseille, France

²Division of Thoracic Tumor Multimodality Treatment, Cancer Center and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China

³Chongqing University Cancer Hospital, Chongqing, China

⁴Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain

⁵Department of Thoracic Medical Oncology, Hunan Cancer Hospital/ The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China

⁶The First Hospital of Jilin University, Changchun, China

⁷Paris-Saclay University, Institut Gustave Roussy, Villejuif, France

⁸Virginia Cancer Specialists, Fairfax, VA

⁹Stanford Cancer Institute, Stanford University, Stanford, CA
¹⁰National Cancer Center Hospital East, Kashiwa, Japan
¹¹University of Washington Fred Hutchinson Cancer Research Center, Seattle, WA
¹²Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
¹³Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
¹⁴Zhejiang Cancer Hospital, Hangzhou, China
¹⁵Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
¹⁶Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
¹⁷National Taiwan University Cancer Center, Taipei, Taiwan
¹⁸Department I for Internal Medicine, Faculty of Medicine and University Hospital Cologne, Lung Cancer Group Cologne, Center for Integrated Oncology Aachen Köln Bonn Düsseldorf, University of Cologne, Cologne, Germany
¹⁹Johnson & Johnson, Athens, Greece
²⁰Johnson & Johnson, Spring House, PA
²¹Johnson & Johnson, Shanghai, China
²²Johnson & Johnson, Brisbane, CA
²³Johnson & Johnson, Raritan, NJ
²⁴Johnson & Johnson, Allschwil, Switzerland
²⁵Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea

CORRESPONDING AUTHOR

Pascale Tomasini, MD, MSc; e-mail: pascale.tomasini@ap-hm.fr.

EQUAL CONTRIBUTION

P.T. and Y.W. contributed equally to this work.

PRIOR PRESENTATION

Presented at the ASCO Annual Meeting, Chicago, IL, May 31-June 4, 2024.

SUPPORT

Supported by Janssen Research & Development.

CLINICAL TRIAL INFORMATION

[NCT04077463](https://clinicaltrials.gov/ct2/show/NCT04077463)

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at DOI <https://doi.org/10.1200/JCO-24-02835>.

REFERENCES

1. Ganti AK, Klein AB, Cotarla I, et al: Update of incidence, prevalence, survival, and initial treatment in patients with non-small cell lung cancer in the US. *JAMA Oncol* 7:1824-1832, 2021
2. Vysé S, Huang PH: Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. *Signal Transduct Target Ther* 4:5, 2019
3. Kobayashi S, Canepa HM, Bailey AS, et al: Compound EGFR mutations and response to EGFR tyrosine kinase inhibitors. *J Thorac Oncol* 8:45-51, 2013
4. Gazdar AF: Activating and resistance mutations of EGFR in non-small-cell lung cancer: Role in clinical response to EGFR tyrosine kinase inhibitors. *Oncogene* 28:S24-S31, 2009 (suppl 1)
5. Arcila ME, Nafa K, Chafft JE, et al: EGFR exon 20 insertion mutations in lung adenocarcinomas: Prevalence, molecular heterogeneity, and clinicopathologic characteristics. *Mol Cancer Ther* 12: 220-229, 2013
6. Oxnard GR, Lo PC, Nishino M, et al: Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. *J Thorac Oncol* 8:179-184, 2013
7. Riess JW, Gandara DR, Frampton GM, et al: Diverse EGFR exon 20 insertions and co-occurring molecular alterations identified by comprehensive genomic profiling of NSCLC. *J Thorac Oncol* 13: 1560-1568, 2018
8. Pretelli G, Spagnolo CC, Ciappina G, et al: Overview on therapeutic options in uncommon EGFR mutant non-small cell lung cancer (NSCLC): New lights for an unmet medical need. *Int J Mol Sci* 24: 8878, 2023
9. John T, Taylor A, Wang H, et al: Uncommon EGFR mutations in non-small-cell lung cancer: A systematic literature review of prevalence and clinical outcomes. *Cancer Epidemiol* 76:102080, 2022

DATA SHARING STATEMENT

A data sharing statement provided by the authors is available with this article at DOI <https://doi.org/10.1200/JCO-24-02835>. The data sharing policy of Janssen Pharmaceutical Companies of Johnson & Johnson is available at <https://www.janssen.com/clinical-trials/transparency>. As noted on this site, requests for access to the study data can be submitted through the Yale Open Data Access (YODA) Project site at <http://yoda.yale.edu>.

AUTHOR CONTRIBUTIONS

Conception and design: Pascale Tomasini, Alexander I. Spira, Koichi Goto, James Chih-Hsin Yang, Sebastian Michels, Janine Mahoney, Levon Demirdjian, Craig S. Meyer, Isabelle Leconte, Roland E. Knoblauch, Leonardo Trani, Joshua M. Bauml, Byoung Chul Cho
Financial support: Alexander I. Spira

Administrative support: Alexander I. Spira, Joshua M. Bauml

Provision of study materials or patients: Yongsheng Wang, Enriqueta Felip, Lin Wu, Jiuwei Cui, Alexander I. Spira, Joel W. Neal, Koichi Goto, Christina S. Baik, Melina E. Marmarelis, Yiping Zhang, James Chih-Hsin Yang, Sebastian Michels

Collection and assembly of data: Pascale Tomasini, Yongsheng Wang, Yongsheng Li, Lin Wu, Jiuwei Cui, Benjamin Besse, Alexander I. Spira, Koichi Goto, Christina S. Baik, Eiki Ichihara, Yiping Zhang, Jong-Seok Lee, James Chih-Hsin Yang, Sebastian Michels, Janine Mahoney, Craig S. Meyer, Youyi Zhang, Isabelle Leconte, Patricia Lorenzini, Roland E. Knoblauch, Leonardo Trani, Mahadi Baig, Joshua M. Bauml, Byoung Chul Cho

Data analysis and interpretation: Pascale Tomasini, Yongsheng Wang, Yongsheng Li, Enriqueta Felip, Lin Wu, Benjamin Besse, Alexander I. Spira, Joel W. Neal, Koichi Goto, Christina S. Baik, Melina E. Marmarelis, Se-Hoon Lee, James Chih-Hsin Yang, Sebastian Michels, Zacharias Anastasiou, Joshua C. Curtin, Xuesong Lyu, Janine Mahoney, Craig S. Meyer, Youyi Zhang, Isabelle Leconte, Patricia Lorenzini, Roland E. Knoblauch, Leonardo Trani, Mahadi Baig, Joshua M. Bauml, Byoung Chul Cho

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT

We would like to thank the participants enrolled in the study and their families and caregivers, the physicians and nurses who cared for the participants, and the staff members who supported this clinical trial. Medical writing and editorial support were provided by Miranda Tradewell, PhD, and Suparna Abraham, PharmD, of Lumany Communications Inc., and were funded by Johnson & Johnson. CHRYSALIS-2 Cohort C investigators listed in Appendix Table A1 (online only).

10. Okuma Y, Kubota K, Shimokawa M, et al: First-line osimertinib for previously untreated patients with NSCLC and uncommon *EGFR* mutations: The UNICORN phase 2 nonrandomized clinical trial. *JAMA Oncol* 10:43-51, 2024
11. Attili I, Passaro A, Pisapia P, et al: Uncommon *EGFR* compound mutations in non-small cell lung cancer (NSCLC): A systematic review of available evidence. *Curr Oncol* 29:255-266, 2022
12. Patil T, Mushtaq R, Marsh S, et al: Clinicopathologic characteristics, treatment outcomes, and acquired resistance patterns of atypical *EGFR* mutations and *HER2* alterations in stage IV non-small-cell lung cancer. *Clin Lung Cancer* 21:e191-e204, 2020
13. Kim EY, Cho EN, Park HS, et al: Compound *EGFR* mutation is frequently detected with co-mutations of actionable genes and associated with poor clinical outcome in lung adenocarcinoma. *Cancer Biol Ther* 17:237-245, 2016
14. Hayashi T, Kohsaka S, Takamochi K, et al: Clinicopathological characteristics of lung adenocarcinoma with compound *EGFR* mutations. *Hum Pathol* 103:42-51, 2020
15. Yang JCH, Sequist LV, Geater SL, et al: Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon *EGFR* mutations: A combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. *Lancet Oncol* 16:830-838, 2015
16. GIOTRIF 20 mg film-coated tablets [package insert]. Ingelheim Am Rhein, Boehringer Ingelheim Pharma GmbH & Co. KG, revised 2025
17. GILOTrif® (afatinib tablets), for oral use [package insert]. Ridgefield, CT, Boehringer Ingelheim Pharmaceuticals, revised 2022
18. Lohinai Z, Hoda MA, Fabian K, et al: Distinct epidemiology and clinical consequence of classic versus rare *EGFR* mutations in lung adenocarcinoma. *J Thorac Oncol* 10:738-746, 2015
19. Wu SG, Yu CJ, Yang JC, et al: The effectiveness of afatinib in patients with lung adenocarcinoma harboring complex epidermal growth factor receptor mutation. *Ther Adv Med Oncol* 12: 1758835920946156, 2020
20. Jung HA, Park S, Sun JM, et al: Treatment and outcomes of metastatic non-small-cell lung cancer harboring uncommon *EGFR* mutations: Are they different from those with common *EGFR* mutations? *Biology* 9:326, 2020
21. Passaro A, Prelaj A, Bonanno L, et al: Activity of EGFR TKIs in Caucasian patients with NSCLC harboring potentially sensitive uncommon *EGFR* mutations. *Clin Lung Cancer* 20:e186-e194, 2019
22. Ji J, Areo JV, Piper-Vallillo A, et al: Osimertinib in NSCLC with atypical EGFR-activating mutations: A retrospective multicenter study. *JTO Clin Res Rep* 4:100459, 2023
23. Barsouk A, Elghawy O, Heidlauf A, et al: Real-world outcomes of atypical *EGFR*-mutated metastatic non-small cell lung cancer (mNSCLC) treated with osimertinib (osi) vs. afatinib or erlotinib. *Lung Cancer* 195:107926, 2024
24. Pizzutillo EG, Agostara AG, Oresti S, et al: Activity of osimertinib in non-small-cell lung Cancer with Uncommon epidermal growth factor receptor mutations: Retrospective observational multicenter study (ARTICUNO). *ESMO Open* 9:103592, 2024
25. TAGRISSO® (osimertinib) tablets, for oral use [package insert]. Wilmington, DE, AstraZeneca Pharmaceuticals, 2024
26. Borgeaud M, Parikh K, Banna GL, et al: Unveiling the landscape of uncommon *EGFR* mutations in NSCLC—A systematic review. *J Thorac Oncol* 19:973-983, 2024
27. Moores SL, Chiu ML, Bushey BS, et al: A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. *Cancer Res* 76:3942-3953, 2016
28. Vijayaramgavan S, Lipfert L, Chevalier K, et al: Amivantamab (JNJ-61186372), an Fc enhanced EGFR/cMet bispecific antibody, induces receptor downmodulation and antitumor activity by monocyte/macrophage trogocytosis. *Mol Cancer Ther* 19:2044-2056, 2020
29. Yun J, Lee SH, Kim SY, et al: Antitumor activity of amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in diverse models of *EGFR* exon 20 insertion-driven NSCLC. *Cancer Discov* 10: 1194-1209, 2020
30. Cho BC, Simi A, Sabari J, et al: Amivantamab, an epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET) bispecific antibody, designed to enable multiple mechanisms of action and broad clinical applications. *Clin Lung Cancer* 24:89-97, 2023
31. Park S, Ahn HK, Lee S, et al: MA13.11 Lazertinib for patients with NSCLC harboring uncommon *EGFR* mutations: A single-arm, phase II multi-center trial. *J Thorac Oncol* 18:S148-S149, 2023
32. Ahn MJ, Han JY, Lee KH, et al: Lazertinib in patients with *EGFR* mutation-positive advanced non-small-cell lung cancer: Results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1-2 study. *Lancet Oncol* 20:1681-1690, 2019
33. LECLAZA (lazertinib) [Republic of Korea prescribing information]. Republic of Korea, Ministry of Food and Drug Safety Republic of Korea, 2021
34. Cho BC, Ahn MJ, Kang JH, et al: Lazertinib versus gefitinib as first-line treatment in patients with *EGFR*-mutated advanced non-small-cell lung cancer (NSCLC): Results from LASER301. *J Clin Oncol* 41:4208-4217, 2023
35. Yun J, Hong MH, Kim SY, et al: YH25448, an irreversible EGFR-TKI with potent intracranial activity in *EGFR* mutant non-small cell lung cancer. *Clin Cancer Res* 25:2575-2587, 2019
36. Lee SH, Ashcraft E, Yang W, et al: Amivantamab and lazertinib in treatment-naïve *EGFR*-mutated advanced non-small-cell lung cancer (NSCLC): Long-term follow-up and ctDNA results from CHRYSLIS. *J Clin Oncol* 41:5422-5432, 2023
37. Cho BC, Lu S, Felip E, et al: Amivantamab plus lazertinib in previously untreated *EGFR*-mutated advanced NSCLC. *N Engl J Med* 391:1486-1498, 2024
38. Cho BC, Kim DW, Spira AI, et al: Amivantamab plus lazertinib in osimertinib-relapsed *EGFR*-mutant advanced non-small cell lung cancer: A phase 1 trial. *Nat Med* 29:2577-2585, 2023
39. Shu CA, Goto K, Ohe Y, et al: Amivantamab and lazertinib in patients with *EGFR*-mutant non-small cell lung (NSCLC) after progression on osimertinib and platinum-based chemotherapy: Updated results from CHRYSLIS-2. *J Clin Oncol* 40, 2022 (suppl 16; abstr 9006)
40. Yang JC-H, Kim YJ, Lee SH, et al: 40: Amivantamab plus lazertinib vs osimertinib in first-line (1L) *EGFR*-mutant (*EGFR*mut) advanced NSCLC: Final overall survival (OS) from the phase 3 MARIPOSA study. Presented at: ELCC Annual Meeting, Paris, France, March 26-29, 2025
41. RYBREVANT (amivantamab-vmjw) injection, for intravenous use [prescribing information]. Horsham, PA, Janssen Biotech, 2024
42. Robichaux JP, Le X, Vijayan RSK, et al: Structure-based classification predicts drug response in *EGFR*-mutant NSCLC. *Nature* 597:732-737, 2021
43. Janning M, Stüpitz J, Albers-Leischner C, et al: Treatment outcome of atypical *EGFR* mutations in the German National Network Genomic Medicine Lung Cancer (nNGM). *Ann Oncol* 33:602-615, 2022
44. Cho JH, Lim SH, An HJ, et al: Osimertinib for patients with non-small-cell lung cancer harboring uncommon *EGFR* mutations: A multicenter, open-label, phase II trial (KCSG-LU15-09). *J Clin Oncol* 38:488-495, 2020
45. Felip E, Cho BC, Gutiérrez V, et al: Amivantamab plus lazertinib vs osimertinib in first-line *EGFR*-mutant advanced non-small cell lung cancer (NSCLC) with biomarkers of high-risk disease: A secondary analysis from the phase 3 MARIPOSA study. *J Clin Oncol* 42:8504, 2024
46. Spira AI, Paz-Ares L, Han JY, et al: Preventing infusion-related reactions with intravenous amivantamab—results from SKIPPirr, a phase 2 study: A brief report. *J Thorac Oncol* 20:809-816, 2025
47. Leigh NB, Akamatsu H, Lim SM, et al: Subcutaneous versus intravenous amivantamab, both in combination with lazertinib, in refractory epidermal growth factor receptor-mutated non-small cell lung cancer: Primary results from the phase III PALOMA-3 study. *J Clin Oncol* 42:3593-3605, 2024
48. Girard N, Li W, Spira AI, et al: Preventing moderate to severe dermatologic adverse events in first-line *EGFR*-mutant advanced NSCLC treated with amivantamab plus lazertinib. Presented at: ELCC Annual Meeting, Paris, France, March 26-29, 2025
49. Passaro A, Wang J, Shah S, et al: Letter to the Editor regarding 'Correspondence to: Amivantamab plus chemotherapy with and without lazertinib in *EGFR*-mutant advanced NSCLC after disease progression on osimertinib: primary results from the phase III MARIPOSA-2 study' by Moik F, Riedl JM, and Ay C. *Ann Oncol* 35:328-329, 2024
50. Zhou C, Tang KJ, Cho BC, et al: Amivantamab plus chemotherapy in NSCLC with *EGFR* exon 20 insertions. *N Engl J Med* 389:2039-2051, 2023

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Amivantamab Plus Lazertinib in Atypical EGFR-Mutated Advanced Non-Small Cell Lung Cancer: Results From CHRYSLIS-2

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians ([Open Payments](#)).

Pascale Tomasini

Consulting or Advisory Role: AstraZeneca, Roche, Bristol Myers Squibb Foundation, Takeda, Amgen, Janssen, Daiichi Sankyo Europe GmbH
Travel, Accommodations, Expenses: Bristol Myers Squibb/Pfizer, AstraZeneca, Takeda, Daiichi Sankyo Europe GmbH

Enriqueta Felip

Consulting or Advisory Role: AbbVie, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Roche, Gilead Sciences, GlaxoSmithKline, Merck Sharp & Dohme, Novartis, Pfizer, Regeneron, Daiichi Sankyo Europe GmbH, ITeos Therapeutics, Johnson & Johnson/Janssen, Pierre Fabre, Turning Point Therapeutics

Speakers' Bureau: Amgen, AstraZeneca, Bristol Myers Squibb, Daiichi Sankyo, Roche, Genentech, Medical Trends, Medscape, Merck Serono, Merck Sharp & Dohme, Peirce, Pfizer, Gilead Sciences, Johnson & Johnson/Janssen, Novartis, Regeneron, Lilly

Travel, Accommodations, Expenses: AstraZeneca, Janssen, Roche
Other Relationship: GRIFOLS

Uncompensated Relationships: Member of the Scientific Advisory Committee—Hospital Universitari Parc Taulí—SEOM (Sociedad Española de Oncología Médica), President from 2021 to 2023, "ETOP IBCSG Partners" Member of the Scientific Committee, "Medical writing assistance for this abstract was provided by Nimisha H. Bhoola, PhD, of Nucleus Global, an Inizio Company, and funded by F. Hoffmann-La Roche Ltd."

Benjamin Besse

Honoraria: AbbVie (Inst), MSD (Inst), AstraZeneca (Inst), Daiichi Sankyo (Inst), Sanofi/Aventis (Inst), Bristol Myers Squibb (Inst), Lilly (Inst), OSE Immunotherapeutics (Inst), SERVIER (Inst)

Consulting or Advisory Role: F. Hoffmann LaRoche (Inst), PharmaMar (Inst), Sanofi/Aventis (Inst), AbbVie (Inst), Lilly (Inst), Ellipses Pharma (Inst), BioNTech SE (Inst), Bristol Myers Squibb (Inst), CureVac (Inst), Regeneron (Inst), Immunocore (Inst), Owkin (Inst), Beijin Avistone (Inst), Foghorn Therapeutics (Inst)

Research Funding: Genmab (Inst), PharmaMar (Inst), Enliven Therapeutics (Inst), Prelude Therapeutics (Inst), Takeda (Inst), BeiGene (Inst), OSE Immunotherapeutics (Inst), Anheart Therapeutics (Inst), AstraZeneca (Inst), Amgen (Inst), CureVac (Inst), Janssen (Inst), MSD (Inst), Sanofi (Inst), Lilly (Inst), Daiichi Sankyo Europe GmbH (Inst)

Alexander I. Spira

Leadership: Next Oncology (Inst)

Honoraria: CytomX Therapeutics, AstraZeneca/MedImmune, Merck, Takeda, Amgen, Janssen Oncology, Novartis, Bristol Myers Squibb, Bayer, Prelude Therapeutics, AbbVie, Astellas Pharma

Consulting or Advisory Role: Incyte, Amgen, Novartis, AstraZeneca/MedImmune (Inst), AstraZeneca/MedImmune (Inst), Mirati Therapeutics, Gritstone Bio, Jazz Pharmaceuticals, Merck (Inst), Bristol Myers Squibb (Inst), Takeda, Janssen Research & Development, Mersana, Blueprint Medicines (Inst), Gritstone Bio, Daiichi Sankyo/Astra

Zeneca, Regeneron, Lilly, Black Diamond Therapeutics, Sanofi, ArriVent Biopharma, Synthekine, GlaxoSmithKline, CRISPR Therapeutics, Revolution Medicines

Research Funding: Roche (Inst), AstraZeneca (Inst), Boehringer Ingelheim (Inst), Astellas Pharma (Inst), MedImmune (Inst), Novartis (Inst), Incyte (Inst), AbbVie (Inst), Ignyta (Inst), Takeda (Inst), Macrogenics (Inst), CytomX Therapeutics (Inst), LAM Therapeutics, Astex Pharmaceuticals (Inst), Bristol Myers Squibb (Inst), Loxo (Inst), Gritstone Bio (Inst), Plexxikon (Inst), Amgen (Inst), Loxo (Inst), Daiichi Sankyo (Inst), ADC Therapeutics (Inst), Janssen Oncology (Inst), ADC Therapeutics (Inst), Rubius Therapeutics (Inst), Synthekine (Inst), mersana (Inst), Blueprint Medicines (Inst), Regeneron (Inst), Alkermes (Inst), Revolution Medicines (Inst), Medikine (Inst), Synthekine (Inst), Black Diamond Therapeutics (Inst), BluPrint Oncology (Inst), nalo therapeutics (Inst), Scorpion Therapeutics (Inst), ArriVent Biopharma (Inst), Revolution Medicines (Inst), Prelude Therapeutics (Inst), Lilly (Inst)

Joel W. Neal

Stock and Other Ownership Interests: SecondLook Health

Honoraria: Research to Practice, Medscape, Projects in Knowledge, MJH Life Sciences, Medical Educator Consortium, PlatformQ/Medlive CME, IDEOlogy Health, Navya Network Inc

Consulting or Advisory Role: AstraZeneca, Genentech/Roche, Takeda, Lilly, Amgen, Iovance Biotherapeutics, Blueprint Medicines, Regeneron, Natera, Gilead Sciences, AbbVie, Summit Therapeutics, Novartis, Novocure, Janssen Oncology, Anheart Therapeutics, Bristol Myers Squibb, Nuvation Bio, Boehringer Ingelheim, Daiichi Sankyo, GlaxoSmithKline, Oxford BioTherapeutics, Taiho Pharmaceutical

Research Funding: Genentech/Roche (Inst), Merck (Inst), Novartis (Inst), Boehringer Ingelheim (Inst), Exelixis (Inst), Nektar (Inst), Takeda (Inst), Adaptimmune (Inst), GlaxoSmithKline (Inst), Janssen (Inst), Revolution Medicines, Nuvalent, Inc

Patents, Royalties, Other Intellectual Property: Up To Date—Royalties

Koichi Goto

Honoraria: Amgen, Amoy Diagnostics, AstraZeneca Japan, Bristol Myers Squibb K.K, Chugai Pharma, Daiichi Sankyo Co, Ltd, Eisai, Lilly Japan, Janssen, Merck, Novartis, Ono Pharmaceutical, Taiho Pharmaceutical, Takeda, Thermo Fisher Scientific, Sysmex, ArriVent Biopharma, Inc, Bristol Myers Squibb K.K, Boehringer Ingelheim

Consulting or Advisory Role: Lilly Japan, Amgen, Bristol Myers Squibb K.K, Daiichi Sankyo Co, Ltd, GlaxoSmithKline K.K, Haihe Biopharma Co, Ltd, Bayer HealthCare Pharmaceuticals Inc, Guardant Health Japan Corp, iTeos Therapeutics Inc, Novartis, Pharma Mar, S.A, Amplify, Inc, ArriVent Biopharma, Inc, Nippon Boehringer Ingelheim, Boehringer Ingelheim, Pfizer, Taiho Pharmaceutical

Research Funding: Medical & Biological Laboratories Co, Ltd (Inst), Kyowa Kirin Co, Ltd (Inst), Merus (Inst), Spectrum Pharmaceuticals (Inst), MSD K.K (Inst), AstraZeneca Japan (Inst), Taiho Pharmaceutical (Inst), Chugai Pharma (Inst), Boehringer Ingelheim (Inst), Ono

Pharmaceutical (Inst), Takeda (Inst), Eisai (Inst), Lilly Japan (Inst), Bristol Myers Squibb K.K (Inst), Ignyta (Inst), Janssen (Inst), Loxo (Inst), Daiichi Sankyo Co, Ltd (Inst), Turning Point Therapeutics (Inst), Novartis (Inst), Blueprint Medicines (Inst), Bayer Yakuhin (Inst), Amgen (Inst), HaiHe Biopharma Co, Ltd (Inst), Sumitomo Pharma Co, Ltd (Inst), Pfizer (Inst), CRAIF Inc (Inst), Riken Genesis Co, Ltd (Inst), AnHeart Therapeutics Inc (Inst), Guardant Health Asia, Middle East & Africa, Inc (Inst), Lunit (Inst), AbbVie Inc, (Inst), ArriVent Biopharma, Inc (Inst), AccuraGen Inc (Inst), BillionToOne, Inc (Inst), Nippon Kayaku (Inst), Nippon Kayaku (Inst)

Christina S. Baik

Consulting or Advisory Role: AstraZeneca, Pfizer, Janssen, Boehringer Ingelheim, Daiichi Sankyo/UCB Japan, Genentech/Roche, Bristol Myers Squibb Foundation, Natera, Takeda, Regeneron
Research Funding: AstraZeneca (Inst), Pfizer (Inst), Blueprint Medicines (Inst), Daiichi Sankyo (Inst), AbbVie (Inst), TP Therapeutics (Inst), Lilly (Inst), Janssen (Inst), Nuvalent, Inc (Inst), Boehringer Ingelheim (Inst), Black Diamond Therapeutics (Inst), Bristol Myers Squibb Foundation (Inst), Ellipses Pharma (Inst)

Melina E. Marmarelis

Stock and Other Ownership Interests: Merck, Johnson & Johnson
Honoraria: Janssen Oncology, Takeda
Consulting or Advisory Role: AstraZeneca, Bristol Myers Squibb/ Celgene, AstraZeneca, Janssen Oncology, Daiichi Sankyo/Astra Zeneca, Boehringer Ingelheim, NEUVOGEN, Bayer
Research Funding: Lilly (Inst), AstraZeneca (Inst), Janssen Oncology (Inst), Ikeda Oncology (Inst), Genentech (Inst), Merck (Inst)
Travel, Accommodations, Expenses: Regeneron
Open Payments Link: <https://openpaymentsdata.cms.gov/physician/856967>

Eiki Ichihara

Honoraria: AstraZeneca, Takeda, Pfizer, Novartis, Chugai Pharma, Merck, Janssen, Kyowa Kirin International, Daiichi Sankyo/UCB Japan
Research Funding: Janssen

Se-Hoon Lee

Honoraria: AstraZeneca/MedImmune, Roche, Lilly, Amgen, Yuhan, Merck Sharp & Dohme, Bristol Myers Squibb Foundation
Consulting or Advisory Role: AstraZeneca, Roche, Pfizer, Lilly, BMS/ Ono, Takeda, Janssen, IMBdx, Abion, BeiGene, Daiichi Sankyo, ImmuneOncia, Merck (German), Merck Sharp & Dohme, Novartis
Speakers' Bureau: Abion
Research Funding: AstraZeneca (Inst), Lunit (Inst), Merck Sharp & Dohme (Inst), Daiichi Sankyo

James Chih-Hsin Yang

Honoraria: Boehringer Ingelheim (Inst), Takeda (Inst), Pfizer (Inst), Amgen (Inst), AstraZeneca/MedImmune (Inst), Roche/Genentech (Inst), Daiichi Sankyo/Astra Zeneca (Inst), MSD Oncology (Inst)
Consulting or Advisory Role: AstraZeneca (Inst), Lilly (Inst), MSD Oncology (Inst), Daiichi Sankyo (Inst), Amgen (Inst), Takeda (Inst), MSD Oncology (Inst), Janssen Oncology (Inst), Daiichi Sankyo/Astra Zeneca (Inst), AbbVie (Inst), ArriVent Biopharma (Inst)
Research Funding: AstraZeneca (Inst)
Travel, Accommodations, Expenses: AstraZeneca, Dizal Pharma, Takeda

Sebastian Michels

Honoraria: AstraZeneca, Janssen Oncology, Takeda, BeiGene, Bristol Myers Squibb
Consulting or Advisory Role: AstraZeneca, Janssen Oncology, Takeda, BeiGene, Bristol Myers Squibb
Research Funding: Pfizer (Inst), Novartis (Inst), Bristol Myers Squibb (Inst)
Travel, Accommodations, Expenses: Janssen Oncology, Lilly, BeiGene, Takeda

Zacharias Anastasiou

Employment: Johnson & Johnson/Janssen
Stock and Other Ownership Interests: Johnson & Johnson/Janssen

Joshua C. Curtin

Employment: Janssen Research & Development
Stock and Other Ownership Interests: Johnson & Johnson/Janssen

Xuesong Lyu

Employment: Johnson & Johnson/Janssen
Stock and Other Ownership Interests: Johnson & Johnson/Janssen

Janine Mahoney

Employment: Johnson & Johnson/Janssen
Leadership: Johnson & Johnson/Janssen
Stock and Other Ownership Interests: Johnson & Johnson/Janssen
Research Funding: Johnson & Johnson/Janssen
Travel, Accommodations, Expenses: Johnson & Johnson/Janssen

Levon Demirdjian

Employment: Johnson & Johnson
Stock and Other Ownership Interests: Johnson & Johnson
Research Funding: Johnson & Johnson
Travel, Accommodations, Expenses: Johnson & Johnson

Craig S. Meyer

Employment: Johnson & Johnson/Janssen
Stock and Other Ownership Interests: Johnson & Johnson/Janssen

Youyi Zhang

Employment: Johnson & Johnson/Janssen
Stock and Other Ownership Interests: Johnson & Johnson/Janssen

Isabelle Leconte

Employment: Johnson & Johnson/Janssen
Stock and Other Ownership Interests: Johnson & Johnson/Janssen
Travel, Accommodations, Expenses: Johnson & Johnson/Janssen

Patricia Lorenzini

Employment: Janssen Pharmaceuticals of Johnson & Johnson

Roland E. Knoblauch

Employment: Johnson & Johnson
Stock and Other Ownership Interests: Johnson & Johnson
Research Funding: Johnson & Johnson Interventional Oncology
Travel, Accommodations, Expenses: Johnson & Johnson

Leonardo Trani

Employment: JnJ
Stock and Other Ownership Interests: JnJ

Mahadi Baig

Employment: Johnson & Johnson/Janssen
Stock and Other Ownership Interests: Johnson & Johnson/Janssen

Joshua M. Bauml

Employment: Janssen Research & Development

Stock and Other Ownership Interests: Janssen Research & Development

Byoung Chul Cho

Employment: Yonsei University Health System

Leadership: J INTS BIO

Stock and Other Ownership Interests: Theravance, Gencurix, Bridgebio, Kanaph Therapeutics, Cyrus therapeutics, Interpark Bio, J INTS BIO

Consulting or Advisory Role: AstraZeneca, Boehringer Ingelheim, Roche, Yuhan, Pfizer, Janssen, Takeda, MSD, Lilly, Novartis, CJ bioscience, BeiGene, BMS, Ono Pharmaceutical, Cyrus therapeutics,

Gilead Sciences, Amgen, Daiichi Sankyo, Regeneron, Sanofi, AnHeart Therapeutics, Seagen, Harpoon Therapeutics, GlaxoSmithKline, ArriVent Biopharma, Bridgebio, Kanaph Therapeutics, Cyrus therapeutics, Guardant Health, J INTS Bio, Therapex Co, Ltd

Research Funding: AstraZeneca, Dong-A ST, Champions Oncology, Janssen, Yuhan, MSD, GI Innovation, CJ bioscience, Cyrus Therapeutics, ImmuneOncia, Therapex, J INTS Bio, Vertical Bio AG

Patents, Royalties, Other Intellectual Property: Champions Oncology, Crown Bioscience, Imagen, PearlRiver Bio GmbH

Other Relationship: DAAN Biotherapeutics

No other potential conflicts of interest were reported.

APPENDIX**TABLE A1.** List of CHRYSTALIS-2 Cohort C Investigators

Principal Investigator	Clinical Site
Gee-Chen Chang	Chung Shan Medical University Hospital
Byoung Chul Cho	Yonsei Cancer Center
Sophie Cousin	Institut Bergonié
Jiuwei Cui	The First Bethune Hospital of Jilin University
Giuseppe Curigliano	IRCCS Istituto Europeo di Oncologia
Gianluca Del Conte	IRCCS Ospedale San Raffaele
Xiaorong Dong	Union Hospital Tongji Medical College of Huazhong University of Science and Technology
Enriqueta Felip	Vall d'Hebron Institute of Oncology (VHIO)
Pilar Garrido	University Hospital Ramón y Cajal
Nicolas Girard	Paris-Saclay University, Université de Versailles Saint-Quentin-en-Yvelines
Adriano Gravina	Istituto Nazionale Tumori Fondazione G. Pascale
Frank Griesinger	Pius-Hospital Oldenburg
Matthew Gubens	UCSF Helen Diller Comprehensive
Eric Haura	Houston Lee Moffitt Cancer Center & Research Institute
Eiki Ichihara	Okayama University Hospital
Dong-Wan Kim	Seoul National University College of Medicine and Seoul National University Hospital
Se Hyun Kim	Seoul National University Bundang Hospital
Se-Hoon Lee	Samsung Medical Center
Yongsheng Li	Chongqing University Cancer Hospital
Shun Lu	Shanghai Chest Hospital, Affiliated Chest Hospital of Shanghai Jiao Tong University School of Medicine
Melina Marmarelis	Perelman School of Medicine, University of Pennsylvania
Sebastian Michels	Uniklinik Koeln
Joel Neal	Stanford University Medical Center
Jorge Nieva	USC Norris Comprehensive Cancer Center
Luis Paz-Ares	Hospital Universitario 12 de Octubre
Niels Reinmuth	Asklepios Klinik Gauting GmbH—Asklepios Fachkliniken München-Gauting
Yuki Sato	Kobe City Medical Center General Hospital
Alexander Spira	Virginia Cancer Specialists
Meili Sun	Central Hospital of Jinan
Pascale Tomasini	Aix-Marseille University
Yongsheng Wang	West China Hospital of Sichuan University
Marcel Wiesweg	Universitaetsklinikum Essen
Lin Wu	Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University
James Chih-Hsin Yang	National Taiwan University Cancer Center
Yu Yao	The First Affiliated Hospital of Xi'an Jiaotong University
Yiping Zhang	Zhejiang Cancer Hospital
Minglei Zhuo	Beijing Cancer Hospital