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Abstract 

Hypertrophic cardiomyopathy has become a highly manageable condition due to recent therapeutic advances 
that have significantly reduced its overall mortality rate. However, sudden cardiac death continues to be a critical 
and unsolved threat, particularly in younger patients and competitive athletes. Even after recent updates to guide‑
lines on sudden cardiac death risk evaluation in hypertrophic cardiomyopathy, new clinical evidence continues 
to emerge, further enriching our understanding of risk stratification and management. In this review, we summarize 
current research findings and explore recent advances to provide insights into future directions in the treatment 
of hypertrophic cardiomyopathy.
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Introduction
Hypertrophic cardiomyopathy (HCM), a globally preva-
lent primary cardiac disease with a genetic basis, has 
become a highly manageable condition due to recent 
advances in treatment [1, 2]. Since the initial patho-
logic insights by Teare  [1, 3] and comprehensive clini-
cal descriptions by Braunwauld et  al. [4] in the early 
1960 s, great progress has been achieved in the diagnosis 
and management of HCM. Current therapeutic strate-
gies that target adverse pathways and can be tailored to 
individuals of all ages have significantly reduced annual 
HCM mortality, from 6% reported in the 1960 s to 0.5%, 
which is currently one of the lowest of all major disease-
related risks (e.g., cancer, neurological disorders, conges-
tive heart failure) [1, 5–8]. However, in adolescents and 
young adults, particularly in competitive athletes, HCM 
remains the leading cause of sudden cardiac death (SCD) 
[1, 9–12].

In the context of SCD, the implantable cardioverter-
defibrillator (ICD) plays a central role in the manage-
ment of HCM. A landmark study published in the New 
England Journal of Medicine in 2000 demonstrated that 
ventricular tachyarrhythmias were the primary cause of 
cardiac arrest in HCM patients, and that ICDs could reli-
ably detect and terminate these life-threatening arrhyth-
mias [13]. Consequently, ICD implantation has become 
a critical treatment strategy for preventing SCD in high-
risk HCM patients [13]. Before the advent of the ICD, 
high-risk patients were administered cardioactive phar-
macological agents (e.g., β-blockers and calcium channel 
blockers and antiarrhythmic agents such as amiodarone) 
for SCD prophylaxis [9].

As more patients are being diagnosed with HCM and 
as treatment strategies for HCM improve, identifying 
high-risk individuals has become more important. In this 
review, we focus on the pathophysiology, risk factors, and 
most recent advances in management strategies for SCD 
in patients with HCM.

Pathophysiology of SCD in HCM
Two mechanisms are proposed for pathogenesis of 
arrhythmic SCD in the treatment of HCM: proarrhyth-
mic structural remodeling and ion channel abnormalities 
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(Fig.  1). Structural remodeling in the form of cardiac 
hypertrophy, microvascular dysfunction, myocardial 
fibrosis, myocyte disarray, and apical aneurysm in HCM 
can also serve as a proarrhythmic substrate [14, 15]. In 
terms of cardiac hypertrophy, increased delayed after-
depolarizations (DADs) occur due to elevated cytosolic 
Ca2+ due to enhanced Ca2+ entry through L-type calcium 
channels and decreased exchange through Na+/Ca2+ 
exchanger routes. This increase in DADs has been pro-
posed as a mechanism for cardiac arrhythmias associated 
with hypertrophy in HCM [16, 17].

Microvascular dysfunction, frequently observed in 
HCM, is primarily driven by reduced arteriolar density, 
fibrosis, myocyte disarray, and elevated left ventricle (LV) 
end-diastolic pressure [18–21]. Structural abnormalities 
of small vessels in HCM have also been demonstrated 
[19]. These mechanisms, combined with inadequate 
myocardial blood flow reserve, predispose patients to 
myocardial ischemia. Ischemia then promotes abnormal 
automaticity by altering the resting membrane potential 
of the myocytes, lowering the threshold for depolariza-
tion and facilitating ventricular tachycardia (VT).

Myocardial fibrosis in HCM can be visualized by car-
diac magnetic resonance (CMR) imaging using late 
gadolinium enhancement (LGE). Myocardial scar depo-
sition can be a common reentry circuit for arrhythmic 
SCD events in HCM. Previous studies have revealed a 

significant relationship between LGE and VT on ambu-
latory monitoring [22, 23]. Additionally, a greater extent 
of myocardial fibrosis indicated by LGE leads to an 
increased risk of arrhythmic SCD events [24, 25].

Myocyte disarray, which has also been identified as a 
risk factor for ventricular arrhythmias in HCM, can be 
assessed by diffusion tensor imaging. Experimentally, 
myocardial disarray has been linked to altered transmu-
ral distribution of connexin 43, playing the role of a sub-
strate for cardiac arrhythmias in HCM [26, 27].

LV apical aneurysm represents another important sub-
strate for monomorphic VT. Rowin et  al. [15] reported 
that the annual appropriate ICD therapy rate for primary 
prevention in patients with apical aneurysm was 4.0%, 
which is approximately five times higher than in those 
without apical aneurysm. Given the higher prevalence 
of apical-dominant HCM in Asian populations, under-
standing the characteristics of this phenomenon is criti-
cal [28–30]. The junction between scar formation at the 
aneurysm rim and the adjacent myocardium consistently 
gives rise to monomorphic VT, providing a rationale for 
catheter-based ablation therapy in patients with refrac-
tory VT [15, 31].

In terms of ion channel abnormalities, lethal arrhyth-
mias can occur, even in the earlier stages of the disease, 
when structural remodeling is considerably less evident 
[32]. Preclinical in  vivo and in  vitro investigations of 

Fig. 1  Pathophysiology of sudden cardiac death (SCD) in hypertrophic cardiomyopathy. Prevention of SCD in hypertrophic cardiomyopathy 
primarily involves general measures, including recommendations on physical activity, and thorough risk factor evaluations. Selecting appropriate 
candidates for implantable cardioverter-defibrillator implantation requires careful assessment of various risk factors and, when indicated, the 5-year 
SCD risk estimation score. Additionally, clinicians must understand potential complications associated with implantable cardioverter-defibrillator 
implantation and incorporate these considerations into clinical decisions
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sarcomeric mutations have revealed a spectrum of ion 
channel derangements [33–37]. Intracellular mecha-
nisms, such as pathological changes in ion currents and 
intracellular Ca2+ homeostasis, play a role [38–41]. A 
few studies have found that altered intracellular Ca2+ 
homeostasis and increased late Na+ currents lead to an 
increased likelihood of early after-depolarizations and 
DADs, which contribute to arrhythmic events in diseased 
cardiomyocytes [17]. Recognizing this aspect, ranolazine, 
a potent and selective inhibitor of the cardiac late Na+ 
current, was administered to patients in the RESTYLE-
HCM randomized controlled trial. The ranolazine group 
experienced a reduction in the 24-h burden of premature 
ventricular complexes, but no significant effects were 
seen on exercise performance, N-terminal prohormone 
of brain natriuretic peptide (NT-proBNP) levels, diastolic 
function, or quality of life [42]. As the authors themselves 
noted, given the study’s small sample size and the weak 
association between ventricular contractions and hard 
clinical end points, these findings should be regarded as 
exploratory and hypothesis generating. Their results cast 
doubt on the pathogenic role of this current in HCM and 
warrant further investigation.

General management
Various pharmacological strategies, including the admin-
istration of prophylactic β-blockers or rhythm-modulat-
ing agents such as amiodarone, were once used to reduce 
the risk of SCD in young asymptomatic HCM patients 
[9]. These strategies are now considered part of the ICD 
era, with insufficient evidence to support their routine 
use [43].

Traditionally, patients with HCM have been advised to 
restrict exercise and avoid competitive sports. Recom-
mendations are evolving, weighing the beneficial effects 
of mild to moderate physical activity in HCM patients, 
based on data from RESET-HCM clinical trial [44]. 
Although data addressing vigorous physical activity–
related SCD are scarce, several studies have determined 
that vigorous physical activity is not associated with 
increased mortality or SCD events and may even reduce 
all-cause and cardiovascular mortality [45–48]. Lee 
et al. [49] reported that high-intensity physical activity–
related SCD events were more common among younger 
patients, highlighting the importance of an individualized 
approach when prescribing exercise for HCM patients.

Prevention of SCD in HCM primarily involves general 
measures, including recommendations on physical activ-
ity and thorough evaluations of risk factors. Selecting 
appropriate candidates for ICD requires careful assess-
ment of various risks and, when indicated, the 5-year 
SCD risk estimation score. Additionally, clinicians must 
fully understand the potential complications associated 

with ICDs and incorporate these considerations into clin-
ical decision-making.

SCD risk stratification
Numerous studies have provided evidence supporting 
the significant role of ICD in preventing SCD in HCM 
patients. However, ICD implantation can lead to com-
plications. For example, patients can experience inap-
propriate shocks, lead dysfunction, infections, bleeding, 
thrombosis, and lead-related tricuspid regurgitation [50]. 
The patient-selection criteria are important at this point, 
requiring consideration of general management strate-
gies, ICD-related complications, and risk factors for SCD 
(Fig. 2).

Two major guidelines currently address ICD implan-
tation in HCM patients: The 2024 guidelines from the 
American College of Cardiology (ACC) and American 
Heart Association (AHA) [51] and the 2023 European 
Society of Cardiology (ESC) guidelines [52]. Both guide-
lines strongly recommend that ICDs be considered for 
patients with documented cardiac arrest or hemodynam-
ically significant ventricular arrhythmias, giving a class I 
indication for secondary prevention [53–57]. However, 
guidelines differ slightly regarding recommendations for 
primary prevention.

Historically, five major risk factors are considered when 
evaluating the risk of SCD in HCM patients: a family 
history of SCD, unexplained syncope, maximal LV wall 
thickness, nonsustained VT (NSVT) on ambulatory 
monitoring, and abnormal blood pressure during exer-
cise tests. Echocardiography remains the primary imag-
ing modality used to evaluate SCD risk in HCM, although 
it can underestimate maximal LV wall thickness and miss 
apical aneurysms [15, 58–61]. Development of new tech-
nologies, CMR imaging in particular, has offered diag-
nostic options to identify these risk factors. CMR can not 
only help quantify cardiac fibrosis by LGE or T1 mapping 
values, but it can also help physicians distinguish end 
stage (ES) HCM from other types of cardiomyopathies 
through echocardiography [62]. These advances, coupled 
with a lack of multivariate analyses demonstrating an 
association between abnormal blood pressure response 
and SCD, have led to the removal of abnormal blood 
pressure response from routine risk evaluation [63, 64].

Current ACC/AHA guidelines recommend that, for 
patients with one or more major risk factors, it is reason-
able to use an estimate of the 5-year SCD risk to under-
stand the magnitude of the individual risk associated with 
ICD decisions (Fig. 3) [11, 51]. The 5-year SCD risk score, 
which is well described in the ESC guidelines, is based on 
nine factors: age, unexplained syncope, LV outflow gra-
dient, maximum LV wall thickness, left atrial diameter, 
NSVT, family history of SCD, LV systolic function, and 
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extent of myocardial scarring. An estimated 5-year risk 
less than 4% is regarded as low, while that of 6% or higher 
implies a high risk (Fig.  4) [52]. These guidelines share 
a class I indication for secondary prevention in those 
who have suffered from aborted SCD, VT, or ventricu-
lar fibrillation (VF). In addition, because the risk of SCD 
extends over many decades of life, periodic reevaluations 
of SCD risks every 1 to 2 years are recommended [51, 65, 
66]. However, given the low incidence of SCD in patients 
older than 60  years, this approach is more suitable for 
young and middle-aged individuals.

These risk stratification strategies have been validated 
by multiple studies in Korea. Lee et al. [67] evaluated the 
performance of 2020 ACC/AHA guidelines and 2014 
ESC guidelines for predicting SCD in HCM. Among 
1,416 HCM patients, SCD risk was elevated in those 
with multiple risk factors but not in those with a single 
risk factor. The AHA/ACC and ESC guidelines had simi-
lar performance, with the 5-year time-dependent areas 
under the curve showing modest statistical power (0.677 
and 0.724, respectively; P = 0.235). The ESC guidelines 
published in 2014 were validated by Choi et al. [68], who 
reported high negative predictive values and accuracy for 
predicting SCD or appropriate ICD therapy. However, 

as diagnostic techniques evolve and new parameters are 
introduced, further validation in the Korean population 
will be necessary.

Family history of sudden death from HCM
The effect of family history on SCD is based on the genetic 
nature of the disease. Relatives who exhibit the condition 
have the same genetic defect and, to some extent, share 
environmental factors. Several studies have examined the 
effects of family history as a predictor of SCD using sur-
vival analysis. Four of these studies, although they used 
different definitions of family history of SCD, found sig-
nificant associations [69–72]. The average hazard ratio of 
family history of SCD (irrespective of definition) was 1.27 
(95% confidence interval, 1.16–1.38) [10].

Definitions of family history of SCD continue to vary 
across guidelines. According to the 2023 ESC guidelines, 
family history is significant if at least one first-degree 
relative died suddenly before the age of 40  years with or 
without a diagnosis of HCM or when SCD occurred in a 
first-degree relative at any age with an established diagno-
sis of HCM [52]. In contrast, the 2024 AHA/ACC guide-
lines define a family history of SCD as a sudden death 
definitely or likely attributable to HCM in one or more 

Fig. 2  Management for prevention of sudden cardiac death (SCD) in hypertrophic cardiomyopathy. Prevention of SCD in hypertrophic 
cardiomyopathy primarily involves general measures, including recommendations on physical activity, and thorough risk factor evaluation. 
Selecting appropriate candidates for implantable cardioverter-defibrillator (ICD) implantation requires careful assessment of various risk factors and, 
when indicated, the 5-year SCD risk estimation score. Additionally, clinicians must fully understand potential complications associated with ICD 
implantation and incorporate these considerations into clinical decisions. CPET, cardiopulmonary exercise testing; ECG, electrocardiography; EF, 
ejection fraction; LGE, late gadolinium enhancement; LVGLS, left ventricular global longitudinal strain; LVH, left ventricular hypertrophy; NSVT, 
nonsustained ventricular tachycardia; TR, tricuspid regurgitation; VF, ventricular fibrillation; VT, ventricular tachycardia
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first-degree or close relative aged 50 years or younger [51]. 
Close relatives would generally be second-degree relatives; 
however, multiple SCDs in tertiary relatives should also 
be considered. Multiple cases of SCD in a family history 
appeared to be a powerful risk factor (P < 0.0001), predict-
ing frequent SCDs in childhood and adolescence [73].

Massive left ventricular hypertrophy
LV hypertrophy (LVH) is associated with an increased 
prevalence of NSVT and exercise-induced ventricular 
arrhythmias [72, 74–76]. In HCM, both the severity and 
extent of LVH assessed by transthoracic echocardiogram 
are associated with risk of SCD [52, 74, 77, 78]. A maxi-
mum wall thickness of ≥ 30  mm in any segment within 
the chamber is generally regarded as the greatest risk for 
SCD in HCM patients, although, based on clinical judg-
ment, a threshold of 28  mm may be a borderline value 
[11, 77, 79].

However, measurements from a transthoracic echocar-
diogram can be affected by observer variability and sub-
optimal imaging quality. Additionally, measuring only the 

maximum wall thickness may not adequately represent 
the full extent of myocardial hypertrophy. Under these 
circumstances, CMR serves as a robust additional diag-
nostic tool for comprehensive evaluation of LVH.

Unexplained syncope
Spirito et  al. [80] conducted a systematic investigation 
of the prognostic significance of syncope in more than 
1,500 HCM patients in 2009. Approximately 15% of the 
enrolled patients had a history of syncope, either neurally 
mediated (vasovagal) or unexplained. Neurally medi-
ated syncope was not associated with an increased risk of 
SCD. In contrast, unexplained syncope showed a relative 
risk of 1.78 (P = 0.08), which indicates borderline signifi-
cance. Nevertheless, the authors considered this associa-
tion clinically significant, given the potential mechanisms 
underlying syncope in HCM.

Patients with recent unexplained syncope within 
6  months before initial evaluation had a fivefold higher 
relative risk of SCD compared with patients without 
syncope, regardless of age. Remote episodes of syncope 

Fig. 3  Proposed algorithm for implantable cardioverter-defibrillator (ICD) implantation in hypertrophic cardiomyopathy. Both the American 
College of Cardiology/American Heart Association guidelines and the European Society of Cardiology guidelines suggest class 1 indication for ICD 
implantation in patients who have experienced aborted sudden cardiac death (SCD), ventricular tachycardia (VT), or ventricular fibrillation (VF). 
In cases of one or more risk factor for SCD, the 5-year SCD risk estimate can be considered when deciding whether to install an ICD. CMR, cardiac 
magnetic resonance imaging; EF, ejection fraction; FH, family history; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; NSVT, 
non-sustained ventricular tachycardia.
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(> 5 years before initial evaluation) showed no significant 
association in older patients.

Based on these results, current guidelines recom-
mend treating one or more episodes of unexplained 
syncope, involving acute transient loss of consciousness 
and judged by history as unlikely to be related with neu-
rally mediated syncope or left ventricular outflow tract 
obstruction as a major risk factor for SCD, particularly 
when occurring within 6 months of evaluation [51, 52].

LV apical aneurysm
LV apical aneurysms are defined as a discrete, thin-walled 
dyskinetic or akinetic segments at the most distal por-
tion of the LV and are characterized by transmural scar-
ring or LGE [15, 58]. The first descriptions of LV apical 
aneurysms in HCM suggested an association with sus-
tained monomorphic VT, a relatively rare event in HCM 
[81]. Multiple studies have demonstrated that LV apical 
aneurysms are a significant marker of increased SCD risk 
[15, 82–84]. Based on these data, the updated 2024 ACC/
AHA guidelines include an apical aneurysm as one of the 
major risk factors for SCD [51]. In contrast, the 2023 ESC 
guidelines for cardiomyopathy suggest that individual-
ized ICD decisions be based on the 5-year SCD risk score 
(HCM Risk-SCD score), rather than solely on the pres-
ence of an apical aneurysm [52].

HCM with LV systolic dysfunction
HCM with LV systolic dysfunction, also known as the 
ES of HCM, is characterized by an ejection fraction 
(EF) < 50%, often accompanied by LV remodeling due to 
diffuse myocardial scarring [85, 86]. Numerous studies 
have highlighted the elevated risk of arrhythmic SCD in 
ES-HCM, raising concerns about the use of ICDs for pri-
mary prevention [53, 85–87]. According to the data from 
the Sarcomeric Human Cardiomyopathy Registry, HCM-
LVSD affects about 8% of patients with HCM. Despite 
various natural history of HCM-LVSD, 75% of patients 
experienced adverse outcomes, including 35% experienc-
ing a death equivalent (death, heart transplantation, or 
left ventricular assist device implantation) after a median 
time of 8.4  years since the development of systolic dys-
function. [88].

With advancements and aggressive implementation of 
various therapeutic approaches, including early evalua-
tion for heart transplantation, cardiac resynchronization 
therapy, or ventricular assist devices, the annual mortal-
ity rate associated with ES-HCM has decreased from the 
previously reported 8% to 2%, about one-quarter of the 
original rate. However, according to Rowin et  al. [89], 
ES-HCM still carries tenfold greater risk of mortality 
compared with HCM with preserved EF. Additionally, 
arrhythmic sudden death events (including appropriate 
ICD therapy for ventricular tachyarrhythmias, resusci-
tated cardiac arrest, and sudden death) were five times 

Fig. 4  Flowchart for implantation of a cardioverter defibrillator in patients with hypertrophic cardiomyopathy (HCM). 2D, two-dimensional; ECG, 
electrocardiogram; ICD, implantable cardioverter defibrillator; LV, left ventricular; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac 
death; VF, ventricular fibrillation; VT, ventricular tachycardia. a)Clinical risk factors: extensive late gadolinium enhancement (> 15%) on cardiac 
magnetic resonance or LV ejection fraction < 50%.
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more frequent in ES-HCM (2.4% per Year vs. 0.5% per 
year, P = 0.006).

NSVT on ambulatory monitor
NSVT is defined as three or more consecutive ventricular 
beats at a minimum rate of 120 beats per minute, lasting 
less than 30 s, and not resulting in hemodynamic insta-
bility. NSVT is commonly documented in approximately 
20% to 35% of HCM patients, usually with 24 to 48 h of 
ambulatory electrocardiogram monitoring [90]. Asymp-
tomatic NSVT has been recognized as an SCD risk factor 
in HCM for nearly 40  years. However, discussions con-
tinue about the reliability of NSVT as a robust marker for 
individual risk assessment and selecting patients for ICDs 
for primary prevention.

NSVT becomes more frequent as cardiac hypertro-
phy progresses, which likely indicates a higher degree 
of fibrosis and myofibrillar disarray, both of which are 
important predictors of the disease’s inherent arrhythmic 
risk [91]. Greater significance is attributed to NSVT that 
occurs repeatedly (three or more episodes), lasts longer 
(at least 10 beats), and is faster (200 beats per minute or 
higher), as observed over a 24- to 48-h extended ambu-
latory electrocardiography (ECG) monitoring period [51, 
52]. Meanwhile, the value of short, single bursts of NSVT 
in predicting ICD-treated VT or VF remains uncertain 
without the presence of additional major risk factors [90].

Extensive LGE on CMR imaging
The introduction of LGE has improved risk stratifica-
tion of SCD in HCM. While LGE is widely recognized 
as an prognostic marker across all cardiomyopathies, 
the accompanying myocardial fibrosis related with CMR 
findings is considered arrhythmogenic in HCM [23]. As 
expected, a greater extent of LGE in HCM is linked to a 
higher burden of NSVT and an increased risk of SCD.

Current guidelines define extensive LGE as compris-
ing ≥ 15% of LV mass, either quantified or estimated by 
visual inspection, based on evidence indicating a doubled 
risk of SCD compared with patients injected with smaller 
amounts of LGE [24, 51]. The ESC guidelines suggest 
using extensive LGE (≥ 15%) in low- to intermediate-risk 
category patients, helping clinicians decide on use of pro-
phylactic ICD implantation [52]. However, quantifying 
LGE in HCM can be challenging due to various scarring 
patterns and image quality. The standard deviation (SD) 
threshold method, which is typically preferred in HCM, 
defines LGE using a specific number of SDs above a nor-
mal reference region.

A recent meta-analysis study by Kiaos et al. [92] evalu-
ated a single study of 5,550 patients with a median follow-
up of 5.2 years. When the more extensively studied 6-SD 
technique is used, LGE greater than 10% was the optimal 

cutoff and could effectively reclassify intermediate-risk 
patients [92]. Still, given the complexity of arrhythmo-
genic mechanisms in HCM, the amount of LGE is not 
only the problem. The pattern and location may also play 
a role, and further studies are warranted.

Beyond these commonly cited risk factors, studies and 
results on novel parameters designed to more accurately 
predict SCD risk have emerged.

New perspectives on SCD risk assessment
Left ventricular global longitudinal strain
LV global longitudinal strain (LVGLS) is more sensi-
tive than left ventricular EF in detecting LV systolic dys-
function, showing impairments in early stages of the 
disease or HCM with preserved EF. Studies have shown 
that impaired LVGLS is associated with a significantly 
increased risk of SCD events and is an independent pre-
dictor of appropriate ICD therapy [93–95]. Additionally, 
recent studies have incorporated machine learning into 
LVGLS analysis in an attempt to further refine ventricu-
lar arrhythmic risk subgroups [96].

T1 mapping and entropy on CMR in the evaluation 
of fibrosis
Entropy, a typical measure of image complexity, can be 
used to quantify tissue heterogeneity by analyzing all sig-
nal intensity values within the images. Not only LGE in 
CMR, but also extracellular volume fraction (ECV) and 
LV mean entropy derived from native T1 mapping can 
aid in detection of diffuse myocardial fibrosis and are 
independent predictors of SCD and cardiovascular dis-
ease in HCM patients [97–101]. However, T1/ECV map-
ping and entropy measurement have major differences. 
Conventional native T1 and ECV mapping derive mean 
values either from selected myocardial region of inter-
ests or by applying signal intensity thresholds. Even when 
averaged globally, both approaches may obscure regional 
heterogeneity. However, because entropy analysis incor-
porates the full distribution of voxel intensities across 
the entire LV, further studies are needed to determine 
whether entropy measurement adds incremental value 
over traditional region of interest or globally averaged 
T1/ECV metrics in detecting diffuse myocardial fibrosis 
in HCM.

Genetics
Like other types of cardiomyopathies, genetic testing has 
been widely used in HCM. Although numerous gene muta-
tions have been identified in HCM, the most frequently 
reported variants are those in the genes that express myo-
sin binding protein C (MYBPC3), β-myosin heavy chain 
(MYH7), and cardiac troponin T (TNNT2). Among these, 
TNNT2 gene mutations, which affect thin myofilament 
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proteins, are associated with less severe hypertrophy but a 
higher risk of LV systolic dysfunction. By inducing severe 
myocyte disarray, these mutations can lead to a high inci-
dence of SCD in younger patients [102–104].

According to a meta-analysis of 7,675 HCM patients, 
mutation-positive patients exhibited a higher risk of SCD 
by 5% (MYPBPC3), 11% (MYH7), and 17% (TNNT2), com-
pared with a 0.4% risk in mutation-negative patients [105]. 
However, current guidelines suggest using genetic testing 
only for screening of HCM, not for risk stratification of 
SCD in HCM. In clinical practice, decisions for prophylac-
tic ICD should not be based on genetics [51, 52].

Cardiopulmonary exercise testing
Magrì et  al. [105, 106] conducted a prospective study 
about the use of cardiopulmonary exercise tests in 
improving contemporary strategies for SCD risk stratifi-
cation. The study composite end point was SCD, aborted 
SCD, and appropriate ICD interventions. Multivariable 
analysis confirmed that the exercise ventilation (VE) to 
CO2 output (VCO2) relationship (VE/VCO2 slope) was 
clinically significant. A VE/VCO2 slope cutoff value of 31 
showed the highest accuracy in predicting the SCD end 
point within the entire HCM cohort. However, given the 
need for standardized protocols for cardiopulmonary 
exercise tests, more studies should be conducted.

ECG parameters
Various ECG parameters can serve as predictive mark-
ers for SCD in HCM. T wave amplitude, myocardial 
infarction pattern (pseudo-ST segment elevation, QRS 
duration ≥ 120 ms, low QRS voltage), and both QRS frag-
mentation in ≥ 3 territories and a heart rate–corrected 
QT duration ≥ 460  ms were associated with ventricu-
lar arrhythmias and SCD in HCM patients [107–109]. 
Ventricular repolarization parameters including interval 
between the peak and end of the electrocardiographic T 
wave (Tpe) to corrected QT interval ratio and Tpe inter-
val were also related to a higher risk of VT [110, 111].

Biomarkers
An increased level of NT-proBNP was an independent pre-
dictor of SCD in patients with HCM [112]. It was also signif-
icantly correlated with cardiac fibrosis, as detected by either 
LGE or Masson’s trichrome staining in the myocardium.

Conclusions
With advances in our understanding of HCM using diag-
nostic modalities beyond echocardiography, updates 
have been incorporated into both ACC/AHA and ESC 
guidelines. Moreover, as genetics advances and artifi-
cial intelligence evolves, clinical studies are focusing 
on improving risk stratification. However, clinicians 

must not depend solely on single aspects of the disease. 
Instead, they must employ multiple tools to evaluate the 
risk of SCD in HCM patients. Last, as current guidelines 
suggest, it is important to reevaluate a patient’s heart 
every 1 to 2 years, even in asymptomatic cases. Although 
some negative findings regarding longitudinal changes 
have been reported, the importance of regular follow-up 
remains indisputable [113].
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