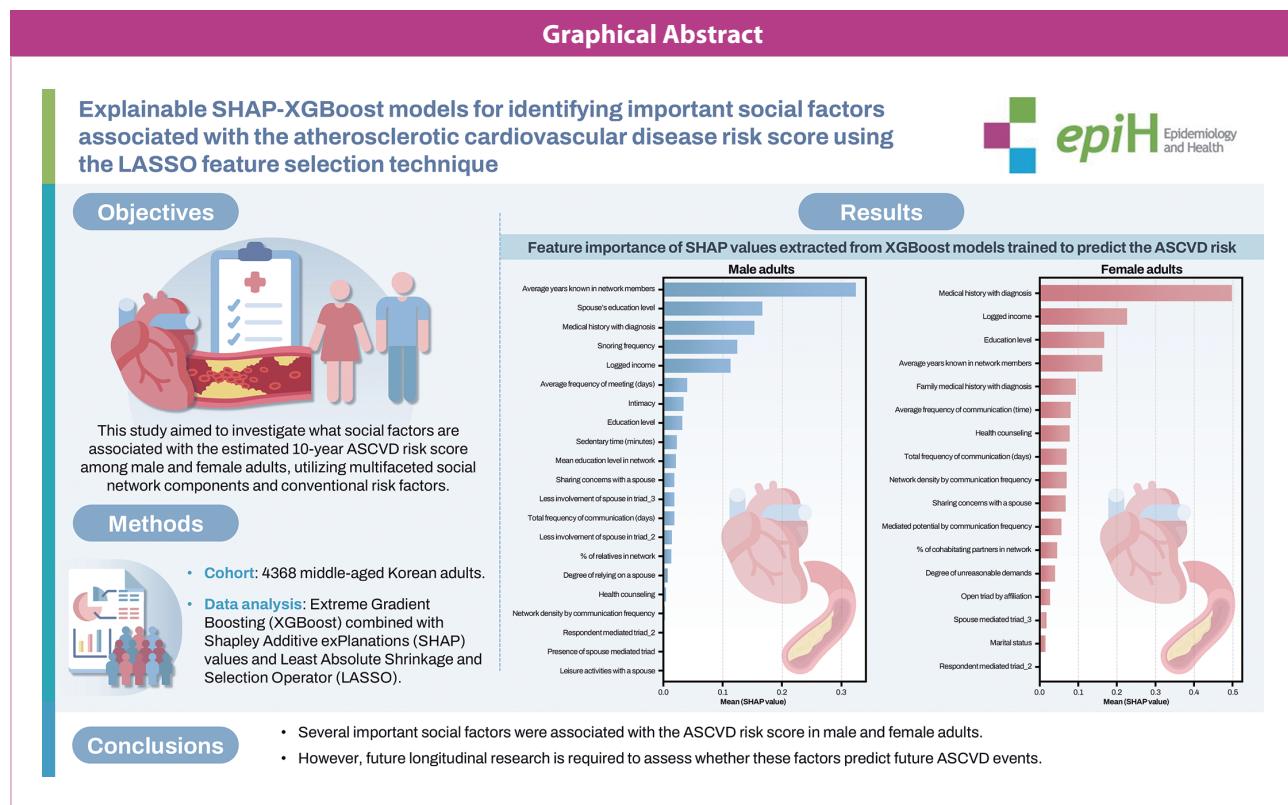


Explainable SHAP-XGBoost models for identifying important social factors associated with the atherosclerotic cardiovascular disease risk score using the LASSO feature selection technique

Jungtae Choi, Jooeon Jeon, Hyoeun An, Hyeon Chang Kim

Epidemiology and Health Volume: 47, Article ID: e2025052 | <https://doi.org/10.4178/epih.e2025052>

Graphical Abstract



Key Message:

Among 4,368 Korean adults aged 40-64 years, we identified key social factors associated with the estimated 10-year ASCVD risk score in males and females. For males, the "average years known in network members" showed the highest contribution to risk prediction, whereas for females, "medical history with diagnosis" was the most influential feature. These findings suggest that the relative importance of social and health factors in explaining ASCVD risk varies by sex.

Explainable SHAP-XGBoost models for identifying important social factors associated with the atherosclerotic cardiovascular disease risk score using the LASSO feature selection technique

Jungtae Choi^{1,2}, Jooeun Jeon³, Hyoewun An⁴, Hyeon Chang Kim^{3,5}

¹Department of Social Welfare, Sungkonghoe University, Seoul, Korea; ²Center for Intelligent Digital Therapeutic Devices, Sungkyunkwan University, Seoul, Korea; ³Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea; ⁴Department of Public Health, Yonsei University Graduate School, Seoul, Korea; ⁵Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Korea

OBJECTIVES: Extensive evidence indicates that social factors play an essential role in explaining atherosclerotic cardiovascular disease (ASCVD). This study aimed to examine which social factors are associated with the estimated 10-year ASCVD risk score among male and female adults, incorporating both multifaceted social network components and conventional risk factors.

METHODS: Using data from 4,368 middle-aged Korean adults, we explored factors most likely to explain ASCVD risk with interpretable machine learning algorithms. The ASCVD risk was determined using the 10-year ASCVD risk score, as calculated using pooled cohort equations. Social network components were assessed through the name generator module. A total of 52 variables were included in the model.

RESULTS: For male participants (area under the receiver operating characteristic curve [AUC], 0.65), the average years known for network members contributed most to ASCVD risk prediction (mean Shapley additive explanations value, 0.31), followed by spouse's education level (0.22), medical history with diagnosis (0.18), and snoring frequency (0.14). By contrast, for female participants (AUC, 0.60), medical history with diagnosis was the strongest predictor (0.47), followed by logged income (0.21), education level (0.19), and the average number of years known in network members (0.17).

CONCLUSIONS: Several important social factors were associated with the ASCVD risk score in both male and female adults. However, longitudinal research is needed to determine whether these factors predict future ASCVD events.

KEY WORDS: Atherosclerotic cardiovascular disease, Social network, Machine learning

Correspondence: Jungtae Choi

Department of Social Welfare, Sungkonghoe University, 320 Yeondong-ro, Guro-gu, Seoul 08359, Korea
 E-mail: jtchoi8290@skhu.ac.kr

Co-correspondence: Hyeon Chang Kim

Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
 E-mail: hckim@yuhs.ac

Received: Jun 21, 2025 / Accepted: Aug 28, 2025 / Published: Sep 10, 2025

This article is available from: <https://e-epih.org/>

© This is an open-access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2025, Korean Society of Epidemiology

INTRODUCTION

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of premature death worldwide [1]. In Korea, the combined mortality rate from ischemic heart disease and cerebrovascular disease rose from 103.6 per 100,000 in 2012 (52.5 and 51.1, respectively) to 115.4 in 2022 (65.8 and 49.6, respectively), according to national cause-of-death statistics [2]. Recent studies further show that the crude incidence of acute myocardial infarction and stroke increased from 2011 to 2019, followed by modest declines in 2020, highlighting the persistent cardiovascular burden [3,4]. To reduce and prevent ASCVD risk, prior research has emphasized the importance of lifestyle factors, particularly social rela-

tionships, which are critical for accessing necessary resources [5,6].

Social relationships—often conceptualized as a form of social capital enabling individuals to access benefits through networks—are a fundamental human need [5]. Empirical studies have consistently shown that social relationships are key determinants of health and longevity [7,8]. In particular, research on social networks, defined as “the web of social relationships that surround an individual” [8], has linked them to ASCVD risk. For instance, social isolation and poor-quality relationships have been associated with greater risks of myocardial infarction, atherosclerosis, autonomic dysregulation, and hypertension [9,10]. Central to these associations is social support, defined as either the perceived satisfaction from social interactions [11] or “the provision of assistance or comfort to others, typically to help them cope with biological, psychological, and social stressors” [12], which is shaped by network structures where resources are exchanged [9]. Consequently, individuals with stronger networks are more likely to access emotional, informational, and financial support, reducing stress and discouraging harmful behaviors [13]. Socioeconomic status (SES) also shapes network quality; higher income and spousal education are linked to lower ASCVD risk through healthier lifestyles and greater resource access [7,14,15].

Although prior studies have demonstrated the influence of social factors on ASCVD risk, relatively little research has investigated which specific social factors, including both social network components and health-related variables, are most important in explaining ASCVD risk among male and female adults. To evaluate the simultaneous effects of multiple factors and their relative importance, machine learning (ML) approaches can be highly useful. ML algorithms are particularly suited for addressing multicollinearity and capturing complex interactions without strict model assumptions [16,17]. Furthermore, interpretable ML methods, such as extreme gradient boosting (XGBoost) combined with Shapley additive explanations (SHAP) values, can provide clear insights into the importance of individual predictors. Accordingly, this study applies ML approaches to identify key social factors associated with ASCVD risk in male and female adults.

MATERIALS AND METHODS

Study population

This study used baseline data from the Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) cohort, which recruited participants from Seoul and surrounding areas to identify cardiovascular risk factors and develop predictive tools [18]. Eligible participants were community-dwelling Korean adults aged 30-64 years, with no recent history of cancer or cardiovascular disease (CVD), no current pregnancy, and no plans to relocate within 2 years. Between 2013 and 2018, baseline assessments were conducted at 2 research clinics: Yonsei University College of Medicine in Seoul (n=4,060) and Ajou University School of Medicine in Suwon (n=4,037).

Of the 8,097 participants enrolled, 1,210 individuals under age 40 were excluded to enable calculation of the 10-year risk of ASCVD using the pooled cohort equations (PCEs), described in the following section. An additional 2,519 participants were excluded due to missing data on explanatory variables. The final analytic sample included 4,368 participants, of whom 69% were females aged 40-64 years.

Atherosclerotic cardiovascular disease risk score

The outcome variable, ASCVD risk, was measured using PCEs, which estimate the 10-year ASCVD risk score. The American College of Cardiology (ACC) and American Heart Association (AHA) recommend PCEs as a risk calculator, providing sex-specific and race-specific estimates of 10-year absolute risks of ASCVD events, including non-fatal myocardial infarction, fatal coronary heart disease, and non-fatal or fatal stroke [19].

In this study, the ASCVD risk score was calculated using the PCE for non-Hispanic Whites [20]. Predictor variables included self-reported age, sex, race, diabetes diagnosis, current smoking status, antihypertensive medication use, total cholesterol, high-density lipoprotein cholesterol, and systolic blood pressure. We then classified individuals into risk groups according to the 2019 ACC/AHA guidelines: low risk (<5.0%), borderline risk (5.0-7.5%), intermediate risk (7.5-20.0%), and high risk (≥20.0%) [19]. For the binary outcome variable, we applied a cutoff of 5%, coding participants as low risk (0) or at risk (1).

Social network

The CMERC cohort applied a social network module known as the name generator. This instrument was originally developed for the General Social Survey in the United States to explore social dynamics related to government structures and personal connections, including equality, family, work, religion, environment, national identity, and citizenship [21]. A version adapted for the Korean context has been implemented in large-scale social surveys and has demonstrated strong validity in capturing key network properties relevant to health research [22].

Participants were asked to name their spouse (if applicable) and up to 5 individuals with whom they had discussed important matters in the past year. For each listed person, participants provided information on relationship type (e.g., spouse, parent, friend, provider) and demographics (age, sex, education, residence). They also reported relationship duration, frequency of communication (phone, text, or social media), face-to-face contact, emotional closeness, and ease of discussing health issues. Based on these responses, we constructed 42 social network variables across 4 domains: (1) network size and demographics, (2) interaction frequency and communication intensity, (3) network structure (triads, density, and mediation), and (4) spousal relationship dynamics [5,8]. A detailed description of social network, socioeconomic, and health-related variables is provided in Supplementary Material 1.

Statistical analysis

We applied the least absolute shrinkage and selection operator (LASSO) and XGBoost to identify key factors associated with ASCVD risk and used SHAP values to assess feature importance. These ML algorithms are widely applied in cardiovascular research because of their distinct strengths [16,17]; detailed mechanisms and advantages are described in the Supplementary Material 2. LASSO regression was used for preliminary variable selection, as it simultaneously performs regularization and shrinks coefficients of less relevant or correlated variables to zero. XGBoost was then used to build predictive models based on the parsimonious set of predictors identified by LASSO. This process improves accuracy and robustness, as XGBoost often outperforms traditional methods and other ML algorithms, particularly for structured data [16]. To avoid redundancy and collinearity, variables used to calculate the ASCVD risk score were excluded from the ML models.

We first applied LASSO regression to reduce model parameters, selecting the optimal penalty term (λ) via cross-validation. Following this step, we divided the data into training (80%; $n = 1,095$ for male, $n = 2,399$ for female) and test (20%; $n = 274$ for male, $n = 600$ for female) datasets, performed hyperparameter tuning for XGBoost, and selected optimal values. We then constructed sex-specific XGBoost models and evaluated them with the test datasets, calculating the area under the receiver operating characteristic curve (AUC). Within each model, we identified key factors by examining their relative importance to ASCVD risk using SHAP values, which quantify each variable's contribution to increasing or decreasing the predicted probability of risk. Important factors were reported separately for male and female and compared by sex.

For descriptive statistics, we compared socio-demographic characteristics, social network composition, comorbidities, and health-related behaviors between male and female participants. The Welch 2-sample t -test was used for continuous variables to account for unequal sample sizes, and the chi-square test was applied to categorical variables. Given consistent evidence of sex differences in social network structure and CVD [13,23], all analyses were stratified by sex. Continuous variables were mean-centered and rescaled to have comparable standard deviations. Analyses were conducted using R version 4.3.3 (R Foundation for Statistical Computing, Vienna, Austria), with statistical significance defined as p -value < 0.05 .

Ethics statement

The CMERC cohort study was approved by the Institutional Review Boards of Severance Hospital, Yonsei University Health System, Seoul, Korea (No. 4-2013-0661), and Ajou University School of Medicine, Suwon, Korea (AJIRB-BMR-SUR-13-272). Written informed consent was obtained from all participants and stored securely in locked file cabinets.

RESULTS

Socio-demographic characteristics

A total of 4,368 participants, including 1,369 male and 2,999 female, were analyzed. As shown in Supplementary Material 3, male and female differed significantly in socio-demographic characteristics, with the exception of age. Regarding education, a higher proportion of male had completed high school or higher degrees compared with female (93.71 vs. 83.36%). A similar pattern was observed for spousal education, with a larger proportion of female reporting that their spouses held at least a high school degree compared with male (92.11 vs. 90.50%). Annual income was also higher among male than among female. In addition, a greater proportion of male were currently married compared with female (99.78 vs. 98.63%).

Comorbidities and health-related behaviors

Substantial sex differences were observed in comorbidities and health-related behaviors (Supplementary Material 3). Male adults had significantly higher prevalence of comorbidities and engaged more frequently in risk behaviors such as alcohol consumption and cigarette smoking compared with female adults. In terms of ASCVD risk, a score $> 5\%$ was observed in 952 male (69.54%) and 221 female (7.37%), a difference that was statistically significant ($p < 0.001$). This contrast is illustrated in Figure 1, where the peak frequency for female is concentrated at the very low end of ASCVD risk scores, whereas male display a broader distribution across the risk spectrum, though still with a higher proportion of low-risk individuals. These findings indicate that male are more likely than female to have elevated ASCVD risk scores.

Network composition characteristics

Significant sex differences were found in 31 out of 42 social network variables. This suggests that male and female engage differently in social relationships, consistent with prior research showing that female are more likely to have confidence, form deeper bonds with network members, and maintain active connections with each member [24,25]. In Supplementary Material 3, female scored higher than male in measures such as close triads by affiliation, network density by affiliation, network density by communication frequency, total communication frequency (days), and average years known for network members. These findings indicate that female may be more likely than male to maintain close-knit inner circles of relationships [26].

Indicators of marital relationships further suggest that female engaged in more leisure activities with their spouses and relied on them more than male. This aligns with previous studies reporting that wives are more likely to disclose personal feelings and thoughts, while husbands tend to provide opinions or public-facing perspectives [27]. Thus, female appear to share more personal emotions and views with their husbands, while husbands offer feedback, fostering stronger emotional reliance within the marital bond [28].

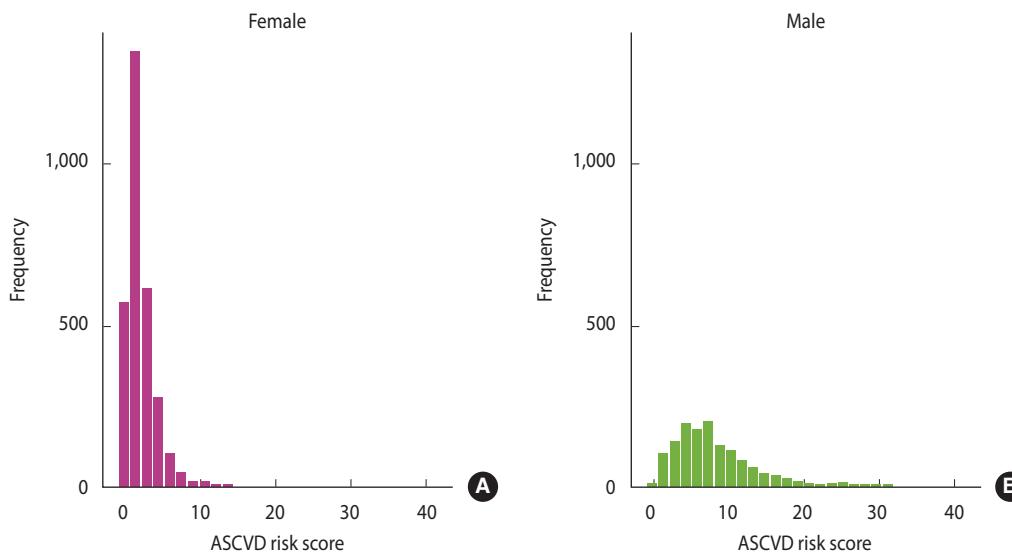


Figure 1. Distribution of atherosclerotic cardiovascular disease (ASCVD) risk score by sex. Histograms display the distribution of ASCVD risk scores among (A) female and (B) male participants. The ASCVD risk score was calculated using pooled cohort equations. The distribution for females is highly right-skewed, with most values concentrated below 5%, indicating a lower predicted risk overall. In contrast, male participants exhibit a broader distribution, with a higher proportion of individuals having risk scores above 5%.

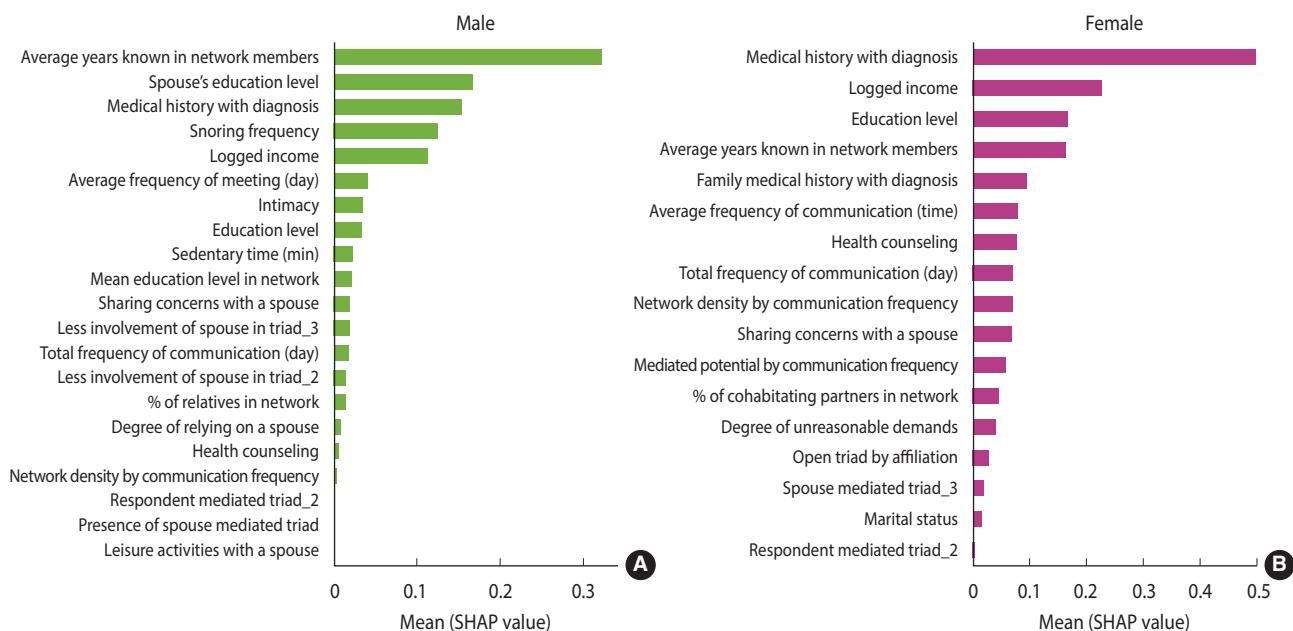


Figure 2. Feature importance of SHAP values extracted from XGBoost models trained to predict the ASCVD risk. The bar plots display the mean absolute SHAP values for each feature, representing their average contribution to the predicted ASCVD risk scores across the sample. (A) Male, and (B) female adults. Higher SHAP values indicate greater influence on model predictions. For males, the most influential predictors included average years known in network members, spouse's education level, medical history with diagnosis, and snoring frequency. For females, the most important features were medical history with diagnosis, logged income, education level, and average years known in network members. SHAP, Shapley additive explanations; XGBoost, extreme gradient boosting; ASCVD, atherosclerotic cardiovascular disease.

LASSO regression

We calculated the minimum mean squared error (MSE) following 10-fold cross-validation (Supplementary Material 4). The

penalty terms (λ) with the smallest MSE were -4.634 for male and -5.246 for female. These values were applied to the LASSO regression models to estimate coefficients for each variable. As present-

Table 1. Top 10 most important features

Importance	Male	Female
1	Average years known for network members	Medical history with diagnosis
2	Spouse's education level	Logged income
3	Medical history with diagnosis	Education level
4	Snoring frequency	Average years known for network members
5	Logged income	Family medical history with diagnosis
6	Average frequency of meeting (day)	Average frequency of communication (time)
7	Intimacy	Health counseling
8	Education level	Total frequency of communication (day)
9	Sedentary time (min)	Network density by communication frequency
10	Education level in network	Sharing concerns with a spouse

ed in Supplementary Material 5, 21 variables were selected for male and 17 for female. Using the variables retained by LASSO regression, we evaluated the relative contribution of each feature to ASCVD risk prediction in the XGBoost model.

XGBoost model

To optimize model performance, hyperparameters for the XGBoost models were tuned, with results provided in Supplementary Material 6. The lowest root MSE values were selected as tuning parameters (Supplementary Materials 7 and 8). The final XGBoost models achieved AUC values of 0.65 for male and 0.60 for female. As shown in Figure 2, SHAP values derived from the XGBoost models highlighted the most important predictors of ASCVD risk, with results summarized in Table 1. Gray cells in Table 1 indicate overlapping factors between male and female.

Figures 3 and 4 further illustrate the probability contributions of individual features to ASCVD risk predictions in male and female samples. The red lines at $y\text{-hat} = 1.00$ indicate that in some cases, the predicted probability of the positive class (1 = above 5%) reached its maximum of 100%.

DISCUSSION

Using data from a community-based cohort of middle-aged Korean adults, we investigated sex-specific features of ASCVD risk. Consistent with previous research, male exhibited higher predicted ASCVD risk scores than female. However, this does not imply that female are inherently protected. Clinical studies have shown that hormonal changes—particularly those related to polycystic ovary syndrome (PCOS) and menopause—can elevate ASCVD risk in female. PCOS, characterized by excess androgen production, contributes to ovarian dysfunction and insulin resistance, while declining estrogen levels during menopause increase susceptibility to hypertension and ASCVD [29,30]. Thus, while male displayed a higher overall risk, interpreting this as a protective effect for female is misleading, especially given the impact of age-related hormonal changes.

We found that average years known for network members, medical history, logged income, and education level were com-

mon explanatory factors for ASCVD risk in both sexes. Notably, longer average relationship duration may indirectly reflect older age—a well-established risk factor for ASCVD—and may exert stronger effects in male than in premenopausal female [31]. Alternatively, longer relationships may signify more stable and emotionally rewarding ties, enhancing access to social support, health information, and positive behavioral influence [5,6]. However, relationship length does not necessarily ensure strong social ties, as variations in tie strength can affect support over time. This finding should therefore be interpreted cautiously, and future longitudinal studies should investigate how relationship quality and dynamics evolve across the life course.

Annual income and education are established social determinants of health, with extensive evidence demonstrating an inverse association between SES and ASCVD incidence [32,33]. Higher SES is linked to healthier behaviors—including smoking cessation, regular exercise, and better adherence to medical regimens—through improved behavioral control and long-term health planning [32]. Meta-analyses further indicate that individuals with higher SES benefit from better access to financial, informational, and social resources, including stronger support networks that reduce ASCVD risk [34]. For instance, Lee et al. [33] reported that older Korean adults with lower income had poorer medication adherence due to limited support and access to care, thereby increasing their ASCVD risk. These findings underscore the importance of SES as a determinant of ASCVD in both sexes.

Among social network components, we found that a greater average frequency of meetings and communication was associated with higher ASCVD risk. This counterintuitive result suggests that frequency alone may not confer health benefits; rather, the quality of interactions may be more decisive [7]. Frequent contact may at times reinforce harmful behaviors—such as smoking, alcohol use, or misinformation—rather than promote health [8,10]. For example, individuals with obese or smoking peers are more likely to adopt similar behaviors [35]. These findings emphasize that the health impact of social networks depends more on the quality than the quantity of interactions. Future research should examine the content of resources and activities exchanged during interactions, with particular attention to differences by sex and

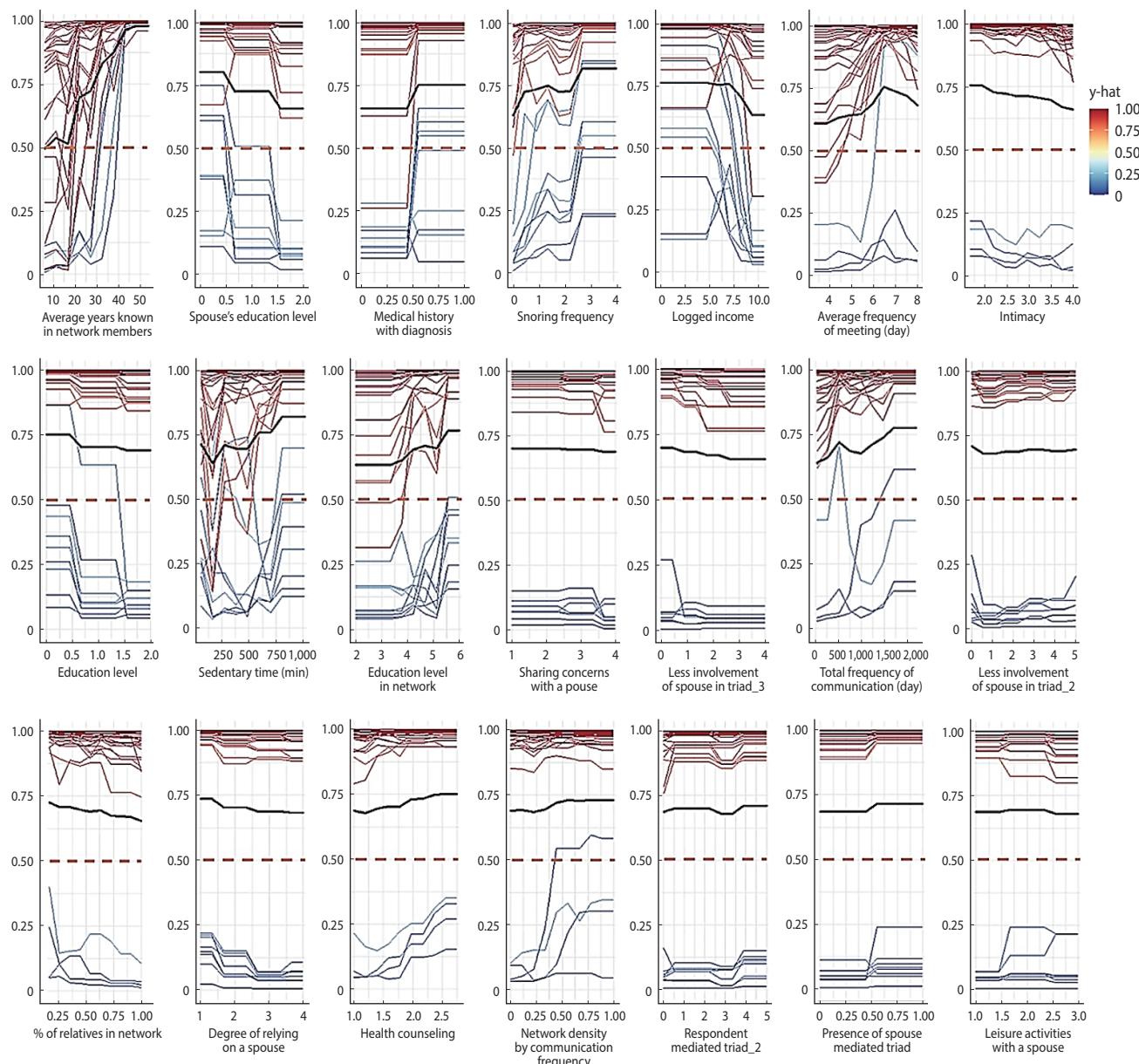


Figure 3. Probability of having the ASCVD risk among the important features in male. Each plot shows the predicted probability (y) of having elevated ASCVD risk across varying values of a given feature, as estimated by the XGBoost model. The color scale represents the predicted risk score (y -hat), ranging from low (blue) to high (red). The black line indicates the average predicted probability trend across individuals. Features are sorted by their relative importance in descending order (left to right, top to bottom), with the top-ranked variables (e.g., average years known in network members, spouse's education level, and medical history with diagnosis) shown in the upper panels. ASCVD, atherosclerotic cardiovascular disease; XGBoost, extreme gradient boosting.

education level.

Spousal education emerged as an additional important factor for male but not for female. This aligns with research involving 37,618 married Israeli couples (aged 45-69), which showed that husbands' CVD mortality was more strongly linked to wives' education than to their own, while husbands' education had little effect on wives' outcomes [13]. Similarly, a Dutch study found higher coronary mortality among male with less-educated wives [36],

and comparable findings have been reported elsewhere [13,37]. In contrast, a United States-based study reported opposite results, suggesting that husbands' education was more important for wives' self-rated health, while wives' education had no significant effect [38]. Such discrepancies may reflect changing household roles and cultural variations in how education influences health within families.

Snoring frequency was the fourth most important ASCVD risk

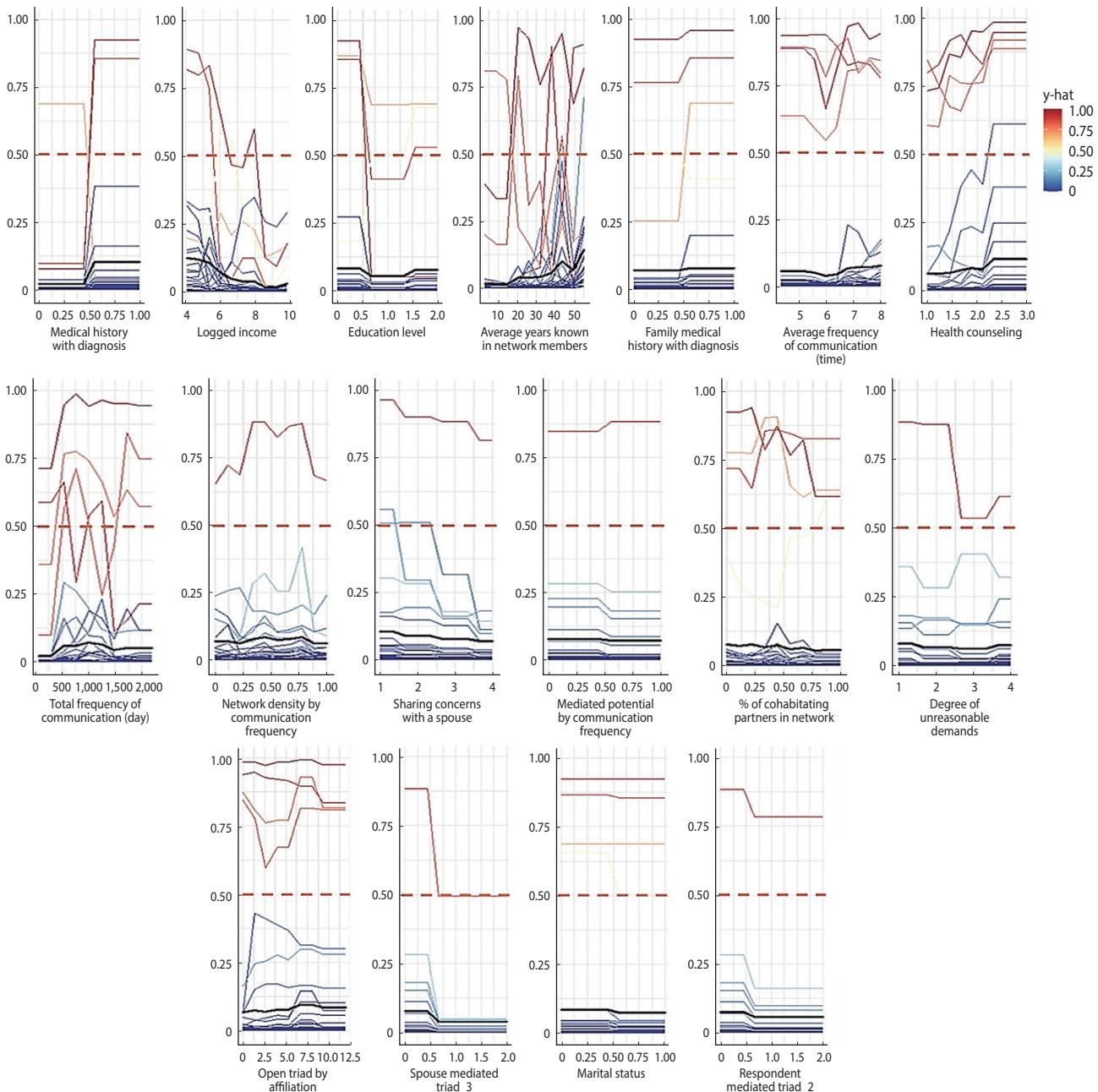


Figure 4. Probability of having the ASCVD risk among the important features in female. Each plot shows the predicted probability (y) of having elevated ASCVD risk across varying values of a given feature, as estimated by the XGBoost model. The color scale represents the predicted risk score (y -hat), ranging from low (blue) to high (red). The black line indicates the average predicted probability trend across individuals. Features are sorted by their relative importance in descending order (left to right, top to bottom), with the top-ranked variables (e.g., average years known in network members, spouse's education level, and medical history with diagnosis) shown in the upper panels. ASCVD, atherosclerotic cardiovascular disease; XGBoost, extreme gradient boosting.

factor among male. Prior studies have found higher morbidity and mortality from ASCVD among male snorers [39,40]. Snoring, as a manifestation of sleep-disordered breathing, can reduce sleep quality and disrupt normal physiological function, thereby increasing ASCVD risk [39]. Habitual snorers also face greater

risks of hypertension, coronary heart disease, and diabetes [40]. In this regard, snoring represents an important modifiable risk factor for ASCVD in male, suggesting that pharmacological interventions and lifestyle modifications may be beneficial in lowering risk.

Among female, sharing concerns with a spouse was identified as an important feature associated with ASCVD risk. Prior research has shown that spousal presence is linked to reduced ASCVD risk, likely due to the strong social, emotional, economic, and legal ties inherent in marital relationships [41]. Sharing concerns may foster emotional support and resource exchange, thereby enhancing well-being. Female lacking such support face higher risks of both fatal and non-fatal cardiovascular outcomes [42]. This form of spousal communication may reduce stress and improve health management [15], underscoring its protective role in lowering ASCVD risk among female.

Although family medical history (e.g., myocardial infarction, hypertension, stroke, or diabetes) showed only a modest effect in our model, it remains an important ASCVD risk factor, particularly for female. Studies have found that female with a family history of ASCVD exhibit heightened heart rate responses and reduced variability under stress, both linked to long-term cardiovascular risk [43]. A family history of premature myocardial infarction has also been associated with coronary artery calcification in female [43], and additional studies confirm its role as a significant risk factor [44,45]. This relationship likely reflects a combination of genetic predispositions affecting cholesterol, blood pressure, and metabolic regulation [44], as well as shared family behaviors—such as poor diet, smoking, and physical inactivity—that contribute to ASCVD risk [41]. While mechanisms are multifactorial, our findings reinforce the importance of family history in ASCVD risk assessment, particularly among female.

Despite its significant contribution to the existing literature, this study has several limitations. First, although we identified important factors related to ASCVD risk scores, we did not establish causal directions. Our outcome variable—the 10-year ASCVD risk—was estimated using the PCE, which relies on conventional clinical and behavioral risk factors within a cross-sectional design. As such, our findings reflect associations between social network variables and estimated risk rather than direct predictions of future ASCVD events. Second, discrepancies in feature importance between LASSO and XGBoost models were attributable to methodological differences. LASSO, as a regression-based model, does not capture feature interactions, whereas XGBoost, as a tree-based model, accounts for non-linear relationships and interactions. Third, the AUC values for the XGBoost models were below the commonly accepted threshold of 0.8–0.9. However, prior ASCVD prediction studies—particularly those employing ML algorithms—have generally reported more modest discriminative performance, with AUC values often ranging from 0.6 to 0.8, or even lower in some cases, due to imbalanced outcome distributions (reflecting the relatively low incidence of ASCVD events) within study datasets [e.g., 46,47].

Fourth, age and sex are strong predictors of ASCVD risk and are closely linked to social network characteristics. Given well-established sex differences in ASCVD incidence and risk profiles [48,49], we developed sex-specific models to identify important features within each group. However, direct comparisons of pre-

dictor importance between male and female remain limited by differences in baseline risk and social relationships. Similarly, age-related variation in network characteristics complicates efforts to isolate their independent effects. Although causal inference is restricted, our findings may nonetheless help identify individuals at higher risk based on social factors. Fifth, we employed the 10-year ASCVD risk score derived from the PCE, a validated tool widely used in cardiovascular risk prediction research across diverse populations [20,48,49]. However, because the PCE was originally developed in non-Asian cohorts, it may not be fully calibrated to Korean populations, raising the possibility of misestimation or bias in the observed associations. Our results should therefore be interpreted cautiously. To address this limitation, future studies may need to incorporate clinically measured outcomes—such as carotid intima-media thickness or incident cardiovascular events—to examine associations between social network characteristics and ASCVD risk. Finally, while the CMERC cohort included both general and high-risk individuals, providing diversity in health status, it was not nationally representative. This limitation may restrict the generalizability of our findings.

In conclusion, this cross-sectional study sought to identify key social factors associated with the estimated 10-year ASCVD risk score in male and female adults. We found several important social determinants, but future longitudinal research is needed to evaluate whether these factors can predict actual ASCVD events.

NOTES

Supplementary materials

Supplementary materials are available at <https://doi.org/10.4178/epih.e2025052>.

Conflict of interest

The authors have no conflicts of interest to declare for this study.

Hyeon Chang Kim has been the Editor-in-Chief of the *Epidemiology and Health* since 2021. He was not involved in the review process.

Funding

This research was supported by the Korea National Institute of Health (KNIH) research project (No. 2022-ER0608-00; No. 2023-ER0606-00).

Acknowledgements

None.

Author contributions

Conceptualization: Choi J, Kim HC. Data curation: Jeon J, An H. Formal analysis: Choi J. Funding acquisition: Kim HC. Methodology: Choi J, Jeon J, An H. Project administration: Kim HC, Jeon J. Visualization: Choi J. Writing – original draft: Choi J, Kim HC. Writing – review & editing: Choi J, Kim HC, Jeon J, An H.

ORCID

Jungtae Choi: <https://orcid.org/0000-0002-7866-0231>; Jooeun Jeon: <https://orcid.org/0000-0001-7284-3793>; Hyoeun An: <https://orcid.org/0009-0001-8112-8115>; Hyeon Chang Kim: <https://orcid.org/0000-0001-7867-1240>

REFERENCES

1. World Health Organization. Cardiovascular diseases [cited 2025 Jul 20]. Available from: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
2. Korea Disease Control and Prevention Agency. Cardio-cerebro-vascular disease mortality trends, 2012-2022. Public Health Wkly Rep 2024;17:1391-1392. <https://doi.org/10.56788/PHWR.2024.17.32.3>
3. Seo Y, Moon J, Lee HH, Kim HC, Kaneko F, Shin S, et al. Incidence and case fatality of acute myocardial infarction in Korea, 2011-2020. Epidemiol Health 2024;46:e2024002. <https://doi.org/10.4178/epih.e2024002>
4. Moon J, Seo Y, Lee HH, Lee H, Kaneko F, Shin S, et al. Incidence and case fatality of stroke in Korea, 2011-2020. Epidemiol Health 2024;46:e2024003. <https://doi.org/10.4178/epih.e2024003>
5. Bourdieu P. The forms of capital. In: Richardson JG, editor. Handbook of theory and research in cultural studies and education. Westport: Greenwood Press; 1986, p. 241-258.
6. Chaves ML, Camozzato AL, Eizirik CL, Kaye J. Predictors of normal and successful aging among urban-dwelling elderly Brazilians. J Gerontol B Psychol Sci Soc Sci 2009;64:597-602. <https://doi.org/10.1093/geronb/gbp059>
7. Ford ES, Ahluwalia IB, Galuska DA. Social relationships and cardiovascular disease risk factors: findings from the third national health and nutrition examination survey. Prev Med 2000;30:83-92. <https://doi.org/10.1006/pmed.1999.0606>
8. Berkman LF, Glass T. Social integration, social networks, social support, and health. In: Berkman LF, Kawachi I, editors. Social epidemiology. New York: Oxford Academic; 2000, p. 137-173. <https://doi.org/10.1093/oso/9780195083316.003.0007>
9. Ertel KA, Glymour MM, Berkman LF. Social networks and health: a life course perspective integrating observational and experimental evidence. J Soc Pers Relat 2009;26:73-92. <https://doi.org/10.1177/0265407509105523>
10. Rotenberg Y, Litwin H, Manor O, Paltiel A, Barchana M, Paltiel O. Prediagnostic self-assessed health and extent of social networks predict survival in older individuals with cancer: a population based cohort study. J Geriatr Oncol 2014;5:400-407. <https://doi.org/10.1016/j.jgo.2014.08.001>
11. Cohen S, Wills TA. Stress, social support, and the buffering hypothesis. Psychol Bull 1985;98:310-357. <https://doi.org/10.1037/0033-2959.98.2.310>
12. American Psychological Association. APA dictionary of psychology; 2024 [cited 2025 Jul 20]. Available from: <https://dictionary.apa.org/social-support>
13. Glynn LM, Christenfeld N, Gerin W. Gender, social support, and cardiovascular responses to stress. Psychosom Med 1999;61:234-242. <https://doi.org/10.1097/00006842-199903000-00016>
14. Egeland GM, Tverdal A, Meyer HE, Selmer R. A man's heart and a wife's education: a 12-year coronary heart disease mortality follow-up in Norwegian men. Int J Epidemiol 2002;31:799-805. <https://doi.org/10.1093/ije/31.4.799>
15. Jaffe DH, Eisenbach Z, Neumark YD, Manor O. Effects of husbands' and wives' education on each other's mortality. Soc Sci Med 2006;62:2014-2023. <https://doi.org/10.1016/j.socscimed.2005.08.030>
16. Ghosh P, Azam S, Jonkman M, Karim A, Shamrat FJ, Ignatious E, et al. Efficient prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques. IEEE Access 2021;9:19304-19326. <https://doi.org/10.1109/ACCESS.2021.3053759>
17. Ward A, Sarraju A, Chung S, Li J, Harrington R, Heidenreich P, et al. Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population. NPJ Digit Med 2020; 3:125. <https://doi.org/10.1038/s41746-020-00331-1>
18. Shim JS, Song BM, Lee JH, Lee SW, Park JH, Choi DP, et al. Cohort profile: the cardiovascular and metabolic diseases etiology research center cohort in Korea. Yonsei Med J 2019;60:804-810. <https://doi.org/10.3349/ymj.2019.60.8.804>
19. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019;140:e596-e646. <https://doi.org/10.1161/CIR.0000000000000678>
20. Lee DG, Han JH, Kwon KY, Kim JH, Han KH, Lee EJ. Association of 10-year atherosclerotic cardiovascular disease risk score with carotid intima-media thickness and plaque. Korean J Fam Med 2015;36:310-315. <https://doi.org/10.4082/kjfm.2015.36.6.310>
21. Burt RS. Network items and the general social survey. Soc Networks 1984;6:293-339. [https://doi.org/10.1016/0378-8733\(84\)90007-8](https://doi.org/10.1016/0378-8733(84)90007-8)
22. Youm Y, Laumann EO, Ferraro KF, Waite LJ, Kim HC, Park YR, et al. Social network properties and self-rated health in later life: comparisons from the Korean social life, health, and aging project and the national social life, health and aging project. BMC Geriatr 2014;14:102. <https://doi.org/10.1186/1471-2318-14-102>
23. Havranek EP, Mujahid MS, Barr DA, Blair IV, Cohen MS, Cruz-Flores S, et al. Social determinants of risk and outcomes for cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2015;132:873-898. <https://doi.org/10.1161/CIR.0000000000002228>
24. Booth A. Sex and social participation. Am Sociol Rev 1972;37: 183-193. <https://doi.org/10.2307/2094026>
25. Umberson D, Crosnoe R, Reczek C. Social relationships and health behavior across life course. Annu Rev Sociol 2010;36:139-157. <https://doi.org/10.1146/annurev-soc-070308-120011>
26. Moore G. Structural determinants of men's and women's personal networks. Sociol Rev 1990;55:726-735. <https://doi.org/10.2307/2094026>

2095868

27. Morton TL. Intimacy and reciprocity of exchange: a comparison of spouses and strangers. *J Pers Soc Psychol* 1978;36:72-81. <https://doi.org/10.1037/0022-3514.36.1.72>
28. Thompson L, Walker AJ. Gender in families: women and men in marriage, work, and parenthood. *J Marriage Fam* 1989;51:845-871. <https://doi.org/10.2307/353201>
29. Coughlan C, Ledger W. Polycystic ovarian syndrome. In: Aboulghar M, Rizk B, editors. *Ovarian stimulation*. 1st ed. Cambridge: Cambridge University Press; 2011, p. 87-102.
30. Sharma S, Mahajan N. Polycystic ovarian syndrome and menopause in forty plus women. *J Midlife Health* 2021;12:3-7. https://doi.org/10.4103/jmh.jmh_8_21
31. Merz AA, Cheng S. Sex differences in cardiovascular ageing. *Heart* 2016;102:825-831. <https://doi.org/10.1136/heartjnl-2015-308769>
32. Dégano IR, Marrugat J, Grau M, Salvador-González B, Ramos R, Zamora A, et al. The association between education and cardiovascular disease incidence is mediated by hypertension, diabetes, and body mass index. *Sci Rep* 2017;7:12370. <https://doi.org/10.1038/s41598-017-10775-3>
33. Lee H, Park JH, Floyd JS, Park S, Kim HC. Combined effect of income and medication adherence on mortality in newly treated hypertension: nationwide study of 16 million person-years. *J Am Heart Assoc* 2019;8:e013148. <https://doi.org/10.1161/JAHA.119.013148>
34. Wang T, Li Y, Zheng X. Association of socioeconomic status with cardiovascular disease and cardiovascular risk factors: a systematic review and meta-analysis. *J Public Health (Berl)* 2024;32:385-399. <https://doi.org/10.1007/s10389-023-01825-4>
35. Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. *N Engl J Med* 2007;357:370-379. <https://doi.org/10.1056/NEJMsa066082>
36. Bosma H, Appels A, Sturmans F, Grabauskas V, Gostautas A. Educational level of spouses and risk of mortality: the WHO Kaunas-Rotterdam Intervention Study (KRIS). *Int J Epidemiol* 1995;24:119-126. <https://doi.org/10.1093/ije/24.1.119>
37. Spoerri A, Schmidlin K, Richter M, Egger M, Clough-Gorr KM; Swiss National Cohort (SNC). Individual and spousal education, mortality and life expectancy in Switzerland: a national cohort study. *J Epidemiol Community Health* 2014;68:804-810. <https://doi.org/10.1136/jech-2013-203714>
38. Brown DC, Hummer RA, Hayward MD. The importance of spousal education for the self-rated health of married adults in the United States. *Popul Res Policy Rev* 2014;33:127-151. <https://doi.org/10.1007/s11113-013-9305-6>
39. Oh JE, Cho CY. The relationship between snoring and metabolic syndrome in men. *Korean J Obes* 2011;20:121-128 (Korean).
40. Sekizuka H, Miyake H. Relationship between snoring and life-style-related diseases among a Japanese occupational population. *Intern Med* 2020;59:2221-2228. <https://doi.org/10.2169/internal-medicine.4723-20>
41. Jacobson L. The family as producer of health--an extended Grossman model. *J Health Econ* 2000;19:611-637. [https://doi.org/10.1016/s0167-6296\(99\)00041-7](https://doi.org/10.1016/s0167-6296(99)00041-7)
42. Krumholz HM, Butler J, Miller J, Vaccarino V, Williams CS, Mendes de Leon CF, et al. Prognostic importance of emotional support for elderly patients hospitalized with heart failure. *Circulation* 1998;97:958-964. <https://doi.org/10.1161/01.CIR.97.10.958>
43. Wright CE, O'Donnell K, Brydon L, Wardle J, Steptoe A. Family history of cardiovascular disease is associated with cardiovascular responses to stress in healthy young men and women. *Int J Psychophysiol* 2007;63:275-282. <https://doi.org/10.1016/j.ijpsycho.2006.11.005>
44. Patel MJ, de Lemos JA, Philips B, Murphy SA, Vaeth PC, McGuire DK, et al. Implications of family history of myocardial infarction in young women. *Am Heart J* 2007;154:454-460. <https://doi.org/10.1016/j.ahj.2007.05.016>
45. Cho L, Davis M, Elgendi I, Epps K, Lindley KJ, Mehta PK, et al. Summary of updated recommendations for primary prevention of cardiovascular disease in women: JACC state-of-the-art review. *J Am Coll Cardiol* 2020;75:2602-2618. <https://doi.org/10.1016/j.jacc.2020.03.060>
46. Kwak S, Lee HJ, Kim S, Park JB, Lee SP, Kim HK, et al. Machine learning reveals sex-specific associations between cardiovascular risk factors and incident atherosclerotic cardiovascular disease. *Sci Rep* 2023;13:9364. <https://doi.org/10.1038/s41598-023-36450-4>
47. Ko SK, Kim SW, Kwon H, Kang SH, Yoon CH, Youn TJ, et al. Kolmogorov-Arnold network for atherosclerotic cardiovascular disease risk prediction. *medRxiv* [Preprint]. 2025 [cited 2025 Aug 1]. Available from: <https://doi.org/10.1101/2025.05.25.25328329>
48. Han YH, Kim HJ, Chung RH, Baek WS. A retrospective study of the relationship between sleep duration, carbohydrate intake and the atherosclerotic cardiovascular disease risk in Korean, based on the 2013-2015 Korean National Health and Nutrition Examination Survey. *Korean J Fam Pract* 2019;9:89-95 (Korean). <https://doi.org/10.21215/kjfp.2019.9.1.89>
49. Khera R, Pandey A, Ayers CR, Carnethon MR, Greenland P, Ndumele CE, et al. Performance of the pooled cohort equations to estimate atherosclerotic cardiovascular disease risk by body mass index. *JAMA Netw Open* 2020;3:e2023242. <https://doi.org/10.1001/jamanetworkopen.2020.23242>