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Key Message:
 Among 4,368 Korean adults aged 40-64 years, we identified key social factors associated with the estimated 10-year ASC-
VD risk score in males and females. For males, the “average years known in network members” showed the highest contri-
bution to risk prediction, whereas for females, “medical history with diagnosis” was the most influential feature. These find-
ings suggest that the relative importance of social and health factors in explaining ASCVD risk varies by sex.
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INTRODUCTION

Atherosclerotic cardiovascular disease (ASCVD) is the leading 
cause of premature death worldwide [1]. In Korea, the combined 
mortality rate from ischemic heart disease and cerebrovascular 
disease rose from 103.6 per 100,000 in 2012 (52.5 and 51.1, re-
spectively) to 115.4 in 2022 (65.8 and 49.6, respectively), accord-
ing to national cause-of-death statistics [2]. Recent studies further 
show that the crude incidence of acute myocardial infarction and 
stroke increased from 2011 to 2019, followed by modest declines 
in 2020, highlighting the persistent cardiovascular burden [3,4]. 
To reduce and prevent ASCVD risk, prior research has empha-
sized the importance of lifestyle factors, particularly social rela-
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tionships, which are critical for accessing necessary resources 
[5,6].

Social relationships—often conceptualized as a form of social 
capital enabling individuals to access benefits through networks—
are a fundamental human need [5]. Empirical studies have con-
sistently shown that social relationships are key determinants of 
health and longevity [7,8]. In particular, research on social net-
works, defined as “the web of social relationships that surround 
an individual” [8], has linked them to ASCVD risk. For instance, 
social isolation and poor-quality relationships have been associat-
ed with greater risks of myocardial infarction, atherosclerosis, au-
tonomic dysregulation, and hypertension [9,10]. Central to these 
associations is social support, defined as either the perceived sat-
isfaction from social interactions [11] or “the provision of assis-
tance or comfort to others, typically to help them cope with bio-
logical, psychological, and social stressors” [12], which is shaped 
by network structures where resources are exchanged [9]. Conse-
quently, individuals with stronger networks are more likely to ac-
cess emotional, informational, and financial support, reducing 
stress and discouraging harmful behaviors [13]. Socioeconomic 
status (SES) also shapes network quality; higher income and spous-
al education are linked to lower ASCVD risk through healthier 
lifestyles and greater resource access [7,14,15].

Although prior studies have demonstrated the influence of so-
cial factors on ASCVD risk, relatively little research has investi-
gated which specific social factors, including both social network 
components and health-related variables, are most important in 
explaining ASCVD risk among male and female adults. To evalu-
ate the simultaneous effects of multiple factors and their relative 
importance, machine learning (ML) approaches can be highly 
useful. ML algorithms are particularly suited for addressing mul-
ticollinearity and capturing complex interactions without strict 
model assumptions [16,17]. Furthermore, interpretable ML meth-
ods, such as extreme gradient boosting (XGBoost) combined with 
Shapley additive explanations (SHAP) values, can provide clear 
insights into the importance of individual predictors. Accordingly, 
this study applies ML approaches to identify key social factors as-
sociated with ASCVD risk in male and female adults.

MATERIALS AND METHODS

Study population
This study used baseline data from the Cardiovascular and Met-

abolic Diseases Etiology Research Center (CMERC) cohort, which 
recruited participants from Seoul and surrounding areas to iden-
tify cardiovascular risk factors and develop predictive tools [18]. 
Eligible participants were community-dwelling Korean adults aged 
30-64 years, with no recent history of cancer or cardiovascular 
disease (CVD), no current pregnancy, and no plans to relocate 
within 2 years. Between 2013 and 2018, baseline assessments were 
conducted at 2 research clinics: Yonsei University College of Med-
icine in Seoul (n= 4,060) and Ajou University School of Medicine 
in Suwon (n= 4,037).

Of the 8,097 participants enrolled, 1,210 individuals under age 
40 were excluded to enable calculation of the 10-year risk of AS-
CVD using the pooled cohort equations (PCEs), described in the 
following section. An additional 2,519 participants were excluded 
due to missing data on explanatory variables. The final analytic 
sample included 4,368 participants, of whom 69% were females 
aged 40-64 years.

Atherosclerotic cardiovascular disease risk score
The outcome variable, ASCVD risk, was measured using PCEs, 

which estimate the 10-year ASCVD risk score. The American 
College of Cardiology (ACC) and American Heart Association 
(AHA) recommend PCEs as a risk calculator, providing sex-spe-
cific and race-specific estimates of 10-year absolute risks of AS-
CVD events, including non-fatal myocardial infarction, fatal cor-
onary heart disease, and non-fatal or fatal stroke [19].

In this study, the ASCVD risk score was calculated using the 
PCE for non-Hispanic Whites [20]. Predictor variables included 
self-reported age, sex, race, diabetes diagnosis, current smoking 
status, antihypertensive medication use, total cholesterol, high-
density lipoprotein cholesterol, and systolic blood pressure. We 
then classified individuals into risk groups according to the 2019 
ACC/AHA guidelines: low risk (<5.0%), borderline risk (5.0-7.5%), 
intermediate risk (7.5-20.0%), and high risk (≥ 20.0%) [19]. For 
the binary outcome variable, we applied a cutoff of 5%, coding 
participants as low risk (0) or at risk (1).

Social network
The CMERC cohort applied a social network module known 

as the name generator. This instrument was originally developed 
for the General Social Survey in the United States to explore so-
cial dynamics related to government structures and personal con-
nections, including equality, family, work, religion, environment, 
national identity, and citizenship [21]. A version adapted for the 
Korean context has been implemented in large-scale social sur-
veys and has demonstrated strong validity in capturing key net-
work properties relevant to health research [22].

Participants were asked to name their spouse (if applicable) 
and up to 5 individuals with whom they had discussed impor-
tant matters in the past year. For each listed person, participants 
provided information on relationship type (e.g., spouse, parent, 
friend, provider) and demographics (age, sex, education, resi-
dence). They also reported relationship duration, frequency of 
communication (phone, text, or social media), face-to-face con-
tact, emotional closeness, and ease of discussing health issues. 
Based on these responses, we constructed 42 social network vari-
ables across 4 domains: (1) network size and demographics, (2) 
interaction frequency and communication intensity, (3) network 
structure (triads, density, and mediation), and (4) spousal rela-
tionship dynamics [5,8]. A detailed description of social network, 
socioeconomic, and health-related variables is provided in Sup-
plementary Material 1.
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Statistical analysis
We applied the least absolute shrinkage and selection operator 

(LASSO) and XGBoost to identify key factors associated with AS-
CVD risk and used SHAP values to assess feature importance. 
These ML algorithms are widely applied in cardiovascular re-
search because of their distinct strengths [16,17]; detailed mecha-
nisms and advantages are described in the Supplementary Mate-
rial 2. LASSO regression was used for preliminary variable selec-
tion, as it simultaneously performs regularization and shrinks co-
efficients of less relevant or correlated variables to zero. XGBoost 
was then used to build predictive models based on the parsimoni-
ous set of predictors identified by LASSO. This process improves 
accuracy and robustness, as XGBoost often outperforms tradi-
tional methods and other ML algorithms, particularly for struc-
tured data [16]. To avoid redundancy and collinearity, variables 
used to calculate the ASCVD risk score were excluded from the 
ML models.

We first applied LASSO regression to reduce model parame-
ters, selecting the optimal penalty term (λ) via cross-validation. 
Following this step, we divided the data into training (80%; 
n= 1,095 for male, n= 2,399 for female) and test (20%; n= 274 for 
male, n = 600 for female) datasets, performed hyperparameter 
tuning for XGBoost, and selected optimal values. We then con-
structed sex-specific XGBoost models and evaluated them with 
the test datasets, calculating the area under the receiver operating 
characteristic curve (AUC). Within each model, we identified key 
factors by examining their relative importance to ASCVD risk us-
ing SHAP values, which quantify each variable’s contribution to 
increasing or decreasing the predicted probability of risk. Impor-
tant factors were reported separately for male and female and 
compared by sex.

For descriptive statistics, we compared socio-demographic char-
acteristics, social network composition, comorbidities, and health-
related behaviors between male and female participants. The Welch 
2-sample t-test was used for continuous variables to account for 
unequal sample sizes, and the chi-square test was applied to cate-
gorical variables. Given consistent evidence of sex differences in 
social network structure and CVD [13,23], all analyses were strat-
ified by sex. Continuous variables were mean-centered and 
rescaled to have comparable standard deviations. Analyses were 
conducted using R version 4.3.3 (R Foundation for Statistical 
Computing, Vienna, Austria), with statistical significance defined 
as p-value < 0.05.

Ethics statement
The CMERC cohort study was approved by the Institutional 

Review Boards of Severance Hospital, Yonsei University Health 
System, Seoul, Korea (No. 4-2013-0661), and Ajou University 
School of Medicine, Suwon, Korea (AJIRB-BMR-SUR-13-272). 
Written informed consent was obtained from all participants and 
stored securely in locked file cabinets.

RESULTS

Socio-demographic characteristics
A total of 4,368 participants, including 1,369 male and 2,999 fe-

male, were analyzed. As shown in Supplementary Material 3, 
male and female differed significantly in socio-demographic 
characteristics, with the exception of age. Regarding education, a 
higher proportion of male had completed high school or higher 
degrees compared with female (93.71 vs. 83.36%). A similar pat-
tern was observed for spousal education, with a larger proportion 
of female reporting that their spouses held at least a high school 
degree compared with male (92.11 vs. 90.50%). Annual income 
was also higher among male than among female. In addition, a 
greater proportion of male were currently married compared with 
female (99.78 vs. 98.63%).

Comorbidities and health-related behaviors
Substantial sex differences were observed in comorbidities and 

health-related behaviors (Supplementary Material 3). Male adults 
had significantly higher prevalence of comorbidities and engaged 
more frequently in risk behaviors such as alcohol consumption 
and cigarette smoking compared with female adults. In terms of 
ASCVD risk, a score > 5% was observed in 952 male (69.54%) 
and 221 female (7.37%), a difference that was statistically signifi-
cant (p< 0.001). This contrast is illustrated in Figure 1, where the 
peak frequency for female is concentrated at the very low end of 
ASCVD risk scores, whereas male display a broader distribution 
across the risk spectrum, though still with a higher proportion of 
low-risk individuals. These findings indicate that male are more 
likely than female to have elevated ASCVD risk scores.

Network composition characteristics
Significant sex differences were found in 31 out of 42 social net-

work variables. This suggests that male and female engage differ-
ently in social relationships, consistent with prior research show-
ing that female are more likely to have confidence, form deeper 
bonds with network members, and maintain active connections 
with each member [24,25]. In Supplementary Material 3, female 
scored higher than male in measures such as close triads by affili-
ation, network density by affiliation, network density by commu-
nication frequency, total communication frequency (days), and 
average years known for network members. These findings indicate 
that female may be more likely than male to maintain close-knit 
inner circles of relationships [26].

Indicators of marital relationships further suggest that female 
engaged in more leisure activities with their spouses and relied on 
them more than male. This aligns with previous studies reporting 
that wives are more likely to disclose personal feelings and thoughts, 
while husbands tend to provide opinions or public-facing perspec-
tives [27]. Thus, female appear to share more personal emotions 
and views with their husbands, while husbands offer feedback, 
fostering stronger emotional reliance within the marital bond [28].
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LASSO regression
We calculated the minimum mean squared error (MSE) fol-

lowing 10-fold cross-validation (Supplementary Material 4). The 

penalty terms (λ) with the smallest MSE were -4.634 for male and 
-5.246 for female. These values were applied to the LASSO regres-
sion models to estimate coefficients for each variable. As present-

Figure 2. Feature importance of SHAP values extracted from XGBoost models trained to predict the ASCVD risk. The bar plots display the 
mean absolute SHAP values for each feature, representing their average contribution to the predicted ASCVD risk scores across the sample. 
(A) Male, and (B) female adults. Higher SHAP values indicate greater influence on model predictions. For males, the most influential predic-
tors included average years known in network members, spouse’s education level, medical history with diagnosis, and snoring frequency. 
For females, the most important features were medical history with diagnosis, logged income, education level, and average years known 
in network members. SHAP, Shapley additive explanations; XGBoost, extreme gradient boosting; ASCVD, atherosclerotic cardiovascular 
disease.
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Figure 1. Distribution of atherosclerotic cardiovascular disease (ASCVD) risk score by sex. Histograms display the distribution of ASCVD risk 
scores among (A) female and (B) male participants. The ASCVD risk score was calculated using pooled cohort equations. The distribution 
for females is highly right-skewed, with most values concentrated below 5%, indicating a lower predicted risk overall. In contrast, male 
participants exhibit a broader distribution, with a higher proportion of individuals having risk scores above 5%. 
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ed in Supplementary Material 5, 21 variables were selected for 
male and 17 for female. Using the variables retained by LASSO 
regression, we evaluated the relative contribution of each feature 
to ASCVD risk prediction in the XGBoost model.

XGBoost model
To optimize model performance, hyperparameters for the XG-

Boost models were tuned, with results provided in Supplementary 
Material 6. The lowest root MSE values were selected as tuning pa-
rameters (Supplementary Materials 7 and 8). The final XGBoost 
models achieved AUC values of 0.65 for male and 0.60 for female. 
As shown in Figure 2, SHAP values derived from the XGBoost 
models highlighted the most important predictors of ASCVD 
risk, with results summarized in Table 1. Gray cells in Table 1 in-
dicate overlapping factors between male and female.

Figures 3 and 4 further illustrate the probability contributions 
of individual features to ASCVD risk predictions in male and fe-
male samples. The red lines at y-hat= 1.00 indicate that in some 
cases, the predicted probability of the positive class (1= above 5%) 
reached its maximum of 100%.

DISCUSSION

Using data from a community-based cohort of middle-aged 
Korean adults, we investigated sex-specific features of ASCVD risk. 
Consistent with previous research, male exhibited higher predict-
ed ASCVD risk scores than female. However, this does not imply 
that female are inherently protected. Clinical studies have shown 
that hormonal changes—particularly those related to polycystic 
ovary syndrome (PCOS) and menopause—can elevate ASCVD 
risk in female. PCOS, characterized by excess androgen produc-
tion, contributes to ovarian dysfunction and insulin resistance, 
while declining estrogen levels during menopause increase sus-
ceptibility to hypertension and ASCVD [29,30]. Thus, while male 
displayed a higher overall risk, interpreting this as a protective ef-
fect for female is misleading, especially given the impact of age-
related hormonal changes.

We found that average years known for network members, 
medical history, logged income, and education level were com-

mon explanatory factors for ASCVD risk in both sexes. Notably, 
longer average relationship duration may indirectly reflect older 
age—a well-established risk factor for ASCVD—and may exert 
stronger effects in male than in premenopausal female [31]. Al-
ternatively, longer relationships may signify more stable and emo-
tionally rewarding ties, enhancing access to social support, health 
information, and positive behavioral influence [5,6]. However, re-
lationship length does not necessarily ensure strong social ties, as 
variations in tie strength can affect support over time. This find-
ing should therefore be interpreted cautiously, and future longitu-
dinal studies should investigate how relationship quality and dy-
namics evolve across the life course.

Annual income and education are established social determi-
nants of health, with extensive evidence demonstrating an inverse 
association between SES and ASCVD incidence [32,33]. Higher 
SES is linked to healthier behaviors—including smoking cessation, 
regular exercise, and better adherence to medical regimens—
through improved behavioral control and long-term health plan-
ning [32]. Meta-analyses further indicate that individuals with 
higher SES benefit from better access to financial, informational, 
and social resources, including stronger support networks that re-
duce ASCVD risk [34]. For instance, Lee et al. [33] reported that 
older Korean adults with lower income had poorer medication 
adherence due to limited support and access to care, thereby in-
creasing their ASCVD risk. These findings underscore the impor-
tance of SES as a determinant of ASCVD in both sexes.

Among social network components, we found that a greater 
average frequency of meetings and communication was associat-
ed with higher ASCVD risk. This counterintuitive result suggests 
that frequency alone may not confer health benefits; rather, the 
quality of interactions may be more decisive [7]. Frequent contact 
may at times reinforce harmful behaviors—such as smoking, al-
cohol use, or misinformation—rather than promote health [8,10]. 
For example, individuals with obese or smoking peers are more 
likely to adopt similar behaviors [35]. These findings emphasize 
that the health impact of social networks depends more on the 
quality than the quantity of interactions. Future research should 
examine the content of resources and activities exchanged during 
interactions, with particular attention to differences by sex and 

Table 1. Top 10 most important features

Importance Male Female

1 Average years known for network members Medical history with diagnosis
2 Spouse’s education level Logged income
3 Medical history with diagnosis Education level
4 Snoring frequency Average years known for network members
5 Logged income Family medical history with diagnosis
6 Average frequency of meeting (day) Average frequency of communication (time)
7 Intimacy Health counseling
8 Education level Total frequency of communication (day)

  9 Sedentary time (min) Network density by communication frequency
10 Education level in network Sharing concerns with a spouse
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education level.
Spousal education emerged as an additional important factor 

for male but not for female. This aligns with research involving 
37,618 married Israeli couples (aged 45-69), which showed that 
husbands’ CVD mortality was more strongly linked to wives’ edu-
cation than to their own, while husbands’ education had little ef-
fect on wives’ outcomes [13]. Similarly, a Dutch study found high-
er coronary mortality among male with less-educated wives [36], 

and comparable findings have been reported elsewhere [13,37]. 
In contrast, a United States-based study reported opposite results, 
suggesting that husbands’ education was more important for wives’ 
self-rated health, while wives’ education had no significant effect 
[38]. Such discrepancies may reflect changing household roles 
and cultural variations in how education influences health within 
families. 

Snoring frequency was the fourth most important ASCVD risk 

Figure 3. Probability of having the ASCVD risk among the important features in male. Each plot shows the predicted probability (y) of 
having elevated ASCVD risk across varying values of a given feature, as estimated by the XGBoost model. The color scale represents the 
predicted risk score (y-hat), ranging from low (blue) to high (red). The black line indicates the average predicted probability trend across 
individuals. Features are sorted by their relative importance in descending order (left to right, top to bottom), with the top-ranked variables 
(e.g., average years known in network members, spouse’s education level, and medical history with diagnosis) shown in the upper panels. 
ASCVD, atherosclerotic cardiovascular disease; XGBoost, extreme gradient boosting. 
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factor among male. Prior studies have found higher morbidity 
and mortality from ASCVD among male snorers [39,40]. Snor-
ing, as a manifestation of sleep-disordered breathing, can reduce 
sleep quality and disrupt normal physiological function, thereby 
increasing ASCVD risk [39]. Habitual snorers also face greater 

risks of hypertension, coronary heart disease, and diabetes [40]. 
In this regard, snoring represents an important modifiable risk 
factor for ASCVD in male, suggesting that pharmacological in-
terventions and lifestyle modifications may be beneficial in lower-
ing risk.

Figure 4. Probability of having the ASCVD risk among the important features in female. Each plot shows the predicted probability (y) of 
having elevated ASCVD risk across varying values of a given feature, as estimated by the XGBoost model. The color scale represents the 
predicted risk score (y-hat), ranging from low (blue) to high (red). The black line indicates the average predicted probability trend across 
individuals. Features are sorted by their relative importance in descending order (left to right, top to bottom), with the top-ranked variables 
(e.g., average years known in network members, spouse’s education level, and medical history with diagnosis) shown in the upper panels. 
ASCVD, atherosclerotic cardiovascular disease; XGBoost, extreme gradient boosting.
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Among female, sharing concerns with a spouse was identified 
as an important feature associated with ASCVD risk. Prior research 
has shown that spousal presence is linked to reduced ASCVD risk, 
likely due to the strong social, emotional, economic, and legal ties 
inherent in marital relationships [41]. Sharing concerns may fos-
ter emotional support and resource exchange, thereby enhancing 
well-being. Female lacking such support face higher risks of both 
fatal and non-fatal cardiovascular outcomes [42]. This form of 
spousal communication may reduce stress and improve health 
management [15], underscoring its protective role in lowering 
ASCVD risk among female.

Although family medical history (e.g., myocardial infarction, 
hypertension, stroke, or diabetes) showed only a modest effect in 
our model, it remains an important ASCVD risk factor, particu-
larly for female. Studies have found that female with a family his-
tory of ASCVD exhibit heightened heart rate responses and re-
duced variability under stress, both linked to long-term cardio-
vascular risk [43]. A family history of premature myocardial in-
farction has also been associated with coronary artery calcification 
in female [43], and additional studies confirm its role as a signifi-
cant risk factor [44,45]. This relationship likely reflects a combina-
tion of genetic predispositions affecting cholesterol, blood pressure, 
and metabolic regulation [44], as well as shared family behaviors 
—such as poor diet, smoking, and physical inactivity—that con-
tribute to ASCVD risk [41]. While mechanisms are multifactorial, 
our findings reinforce the importance of family history in ASCVD 
risk assessment, particularly among female.

Despite its significant contribution to the existing literature, this 
study has several limitations. First, although we identified impor-
tant factors related to ASCVD risk scores, we did not establish caus-
al directions. Our outcome variable—the 10-year ASCVD risk—
was estimated using the PCE, which relies on conventional clini-
cal and behavioral risk factors within a cross-sectional design. As 
such, our findings reflect associations between social network 
variables and estimated risk rather than direct predictions of fu-
ture ASCVD events. Second, discrepancies in feature importance 
between LASSO and XGBoost models were attributable to meth-
odological differences. LASSO, as a regression-based model, does 
not capture feature interactions, whereas XGBoost, as a tree-based 
model, accounts for non-linear relationships and interactions. 
Third, the AUC values for the XGBoost models were below the 
commonly accepted threshold of 0.8-0.9. However, prior ASCVD 
prediction studies—particularly those employing ML algorithms 
—have generally reported more modest discriminative perfor-
mance, with AUC values often ranging from 0.6 to 0.8, or even 
lower in some cases, due to imbalanced outcome distributions 
(reflecting the relatively low incidence of ASCVD events) within 
study datasets [e.g., 46,47].

Fourth, age and sex are strong predictors of ASCVD risk and 
are closely linked to social network characteristics. Given well-es-
tablished sex differences in ASCVD incidence and risk profiles 
[48,49], we developed sex-specific models to identify important 
features within each group. However, direct comparisons of pre-

dictor importance between male and female remain limited by 
differences in baseline risk and social relationships. Similarly, age-
related variation in network characteristics complicates efforts 
to isolate their independent effects. Although causal inference is 
restricted, our findings may nonetheless help identify individuals 
at higher risk based on social factors. Fifth, we employed the 10-
year ASCVD risk score derived from the PCE, a validated tool 
widely used in cardiovascular risk prediction research across di-
verse populations [20,48,49]. However, because the PCE was orig-
inally developed in non-Asian cohorts, it may not be fully cali-
brated to Korean populations, raising the possibility of misestima-
tion or bias in the observed associations. Our results should there-
fore be interpreted cautiously. To address this limitation, future 
studies may need to incorporate clinically measured outcomes—
such as carotid intima-media thickness or incident cardiovascular 
events—to examine associations between social network charac-
teristics and ASCVD risk. Finally, while the CMERC cohort in-
cluded both general and high-risk individuals, providing diversity 
in health status, it was not nationally representative. This limita-
tion may restrict the generalizability of our findings. 

In conclusion, this cross-sectional study sought to identify key 
social factors associated with the estimated 10-year ASCVD risk 
score in male and female adults. We found several important so-
cial determinants, but future longitudinal research is needed to 
evaluate whether these factors can predict actual ASCVD events.
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